Domain epitaxy for thin film growth
Narayan, Jagdish
2005-10-18
A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.
Article and method for making an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Schick, David Edward; Kottilingam, Srikanth Chandrudu
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of providing a metal alloy powder; forming an initial layer with the metal alloy powder, the initial layer having a preselected thickness and a preselected shape, the preselected shape including at least one aperture; sequentially forming an additional layer over the initial layer with the metal alloy powder, the additional layer having a second preselected thickness and a second preselected shape, the second preselected shape including at least one aperture corresponding to the at least one aperture in the initialmore » layer; and joining the additional layer to the initial layer, forming a structure having a predetermined thickness, a predetermined shape, and at least one aperture having a predetermined profile. The structure is attached to a substrate to make the article.« less
Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications
NASA Astrophysics Data System (ADS)
Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina
2002-07-01
The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.
Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne
2009-05-05
The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.
Control of Alq3 wetting layer thickness via substrate surface functionalization.
Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J
2007-06-05
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, T.M.; Lewandowski, J.J.
Recently, laminate structures have been investigated as a method for enhancing the fracture resistance of discontinuously reinforced aluminum (DRA) materials. Laminated DRA materials have been constructed which contain alternating layers of DRA material and monolithic aluminum. Initiation in these laminates has been found to preferentially occur in the DRA layers. After initiation, stable crack growth is produced in the DRA material via a crack bridging mechanism in which the ductile aluminum ligaments in the crack wake serve to reduce the driving force for propagation in the DRA layer. In a manner similar to that of Kaufman and Goolsby, it wasmore » proposed that the initiation toughness of the DRA laminates may be improved if the thickness of the DRA layers was reduced. The goal of this study was to investigate the influence of thickness on the toughness of a DRA material based upon a transition from plane strain to plane stress conditions and how this transition may affect the fracture resistance of laminated DRA materials. The following sections document initial attempts to determine the influence of DRA thickness on toughness both in conventional DRA materials and laminated DRA materials.« less
Correlation of CsK2Sb photocathode lifetime with antimony thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.
CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.
Correlation of CsK 2Sb photocathode lifetime with antimony thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.
CsK 2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for themore » alkali.« less
Correlation of CsK 2Sb photocathode lifetime with antimony thickness
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; ...
2015-06-10
CsK 2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for themore » alkali.« less
Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A.; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for themore » alkali.« less
Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun
2018-04-01
A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene
2017-07-01
The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J. B.
Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.
Photovoltaic cell with thin CS layer
Jordan, John F.; Albright, Scot P.
1994-01-18
An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.
NASA Astrophysics Data System (ADS)
Kawai, E.; Umeno, Y.
2017-05-01
As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.
Corrosion Behavior of Weathering Steel Under Thin Electrolyte Layer at Different Relative Humidity
NASA Astrophysics Data System (ADS)
Xia, Yan; Liu, Pan; Zhang, Jianqing; Cao, Fahe
2018-01-01
The corrosion behavior of weathering steel under thin electrolyte layer (TEL) at different relative humidity (RH) was investigated by cathodic polarization, electrochemical impedance spectroscopy, electrochemical noise, SEM/EDS, XRD and Raman spectroscopy. The results indicate that during the initial stage, the corrosion rate increases as the RH decreases when the initial thickness of TEL is above 100 μm. During the middle and final corrosion stages, the corrosion behavior of weathering steel is influenced by RH, the initial thickness of TEL and corrosion product. The TEL corrosion is divided into three types, and a weathering steel corrosion model under TEL and bulk solution is also proposed.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Aboudi, Jacob; Arnold, Steven M.
1999-01-01
The effects of interfacial roughness and oxide film thickness on thermally-induced stresses in plasma-sprayed thermal barrier coatings subjected to thermal cycling are investigated using the recently developed higher-order theory for functionally graded materials. The higher-order theory is shown to be a viable alternative to the finite-element approach, capable of modeling different interfacial roughness architectures in the presence of an aluminum oxide layer and capturing the high stress gradients that occur at the top coat/bond coat interface. The oxide layer thickness is demonstrated to have a substantially greater effect on the evolution of residual stresses than local variations in interfacial roughness. Further, the location of delamination initiation in the top coat is predicted to change with increasing oxide layer thickness. This result can be used to optimize the thickness of a pre-oxidized layer introduced at the top coat/bond coat interface in order to enhance TBC durability as suggested by some researchers. The results of our investigation also support a recently proposed hypothesis regarding delamination initiation and propagation in the presence of an evolving bond coat oxidation, while pointing to the importance of interfacial roughness details and specimen geometry in modeling this phenomenon.
Mallik, Arun Kumar; Farrell, Gerald; Wu, Qiang; Semenova, Yuliya
2017-05-10
In this paper, we investigate both theoretically and experimentally the influence of the agarose hydrogel layer thickness on the sensitivity of a proposed relative humidity (RH) sensor based on a silica microsphere resonator coated with agarose hydrogel. The operating principle of the sensor relies on excitation of whispering gallery modes (WGMs) in the coated silica microsphere using the evanescent field of a tapered fiber. A change in the ambient relative humidity is detected by measuring the wavelength shift of the WGMs in the transmission spectrum of the tapered fiber. Using perturbation theory, we analyze the influence of the agarose coating thickness on the sensitivity of the proposed sensor and compare the results of this analysis with experimental findings for different coating layer thicknesses. We demonstrate that an increase in the coating layer thickness initially leads to an increase in the sensitivity to RH and reaches saturation at higher values of the agarose layer thickness. The results of the study are useful for the design and optimization of microsphere sensor parameters to meet a performance specification.
NASA Astrophysics Data System (ADS)
Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam
2018-06-01
We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.
Impact of non-integer planetary revolutions on the distribution of evaporated optical coatings
Oliver, J. B.
2017-02-08
Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.
Determination of layer ordering using sliding-window Fourier transform of x-ray reflectivity data
NASA Astrophysics Data System (ADS)
Smigiel, E.; Knoll, A.; Broll, N.; Cornet, A.
1998-01-01
X-ray reflectometry allows the determination of the thickness, density and roughness of thin layers on a substrate from several Angstroms to some hundred nanometres. The thickness is determined by simulation with trial-and-error methods after extracting initial values of the layer thicknesses from the result of a classical Fast Fourier Transform (FFT) of the reflectivity data. However, the order information of the layers is lost during classical FFT. The order of the layers has then to be known a priori. In this paper, it will be shown that the order of the layers can be obtained by a sliding-window Fourier transform, the so-called Gabor representation. This joint time-frequency analysis allows the direct determination of the order of the layers and, therefore, the use of a more appropriate starting model for refining simulations. A simulated and a measured example show the interest of this method.
Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; ...
2015-01-16
Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performedmore » after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm 3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm 3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm 3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.
Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performedmore » after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm 3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm 3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm 3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.« less
Impact of small-scale vegetation structure on tephra layer preservation
Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.
2016-01-01
The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415
NASA Astrophysics Data System (ADS)
Li, H.; Liu, Y. H.
2008-11-01
The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.
Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates
NASA Astrophysics Data System (ADS)
Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.
2016-12-01
Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.
Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas
2013-11-01
Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon). Copyright © 2013 Elsevier B.V. All rights reserved.
Leading-edge effects on boundary-layer receptivity
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Kerschen, Edward J.
1990-01-01
Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.
Double-HE-Layer Detonation-Confinement Sandwich Tests: The Effect of Slow-Layer Density
NASA Astrophysics Data System (ADS)
Hill, Larry
2013-06-01
Over a period of several years, we have explored the phenomenon in which slabs of high explosives (HEs) with differing detonation speeds are joined along one of their faces. Both are initiated (usually by a line-wave generator) at one edge. If there were no coupling between the layers, the detonation in the fast HE would outrun that in the slow HE. In reality, the detonation in the fast HE transmits an oblique shock into the slow HE, the phase speed of which is equal to the speed of the fast HE. This has one of two effects depending on the particulars. First, the oblique shock transmitted to the slow HE can pre-shock and deaden it, extinguishing the detonation in the slow HE. Second, the oblique shock can transversely initiate the slow layer, pulling its detonation along at the fast HE speed. When the second occurs, it does so at the ``penalty'' of a nominally dead layer, which forms in the slow HE adjacent to the material interface. We present the results of tests in which the fast layer was 3-mm-thick PBX 9501 (95 wt% HMX), and the slow layer was 8-mm-thick PBX 9502 (95 wt% TATB). The purpose was to observe the effect of slow layer density on the ``dead'' layer thickness. Very little effect was observed across the nominal PBX 9502 density range, 1.885-1.895 g/cc.
Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J
2014-04-01
Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.
Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.
Surface morphology and interdiffusion of LiF in Alq3-based organic light-emitting devices.
Lee, Young Joo; Li, Xiaolong; Kang, Da-Yeon; Park, Seong-Sik; Kim, Jinwoo; Choi, Jeong-Woo; Kim, Hyunjung
2008-09-01
Highly efficient organic light-emitting devices (OLEDs) have been realized by insertion of a thin insulating lithium fluoride (LiF) layer between aluminum (Al) cathode and an electron transport layer, tris-(8-hydroxyquinoline) aluminum (Alq(3)). In this paper, we study the surface morphology of LiF on Alq(3) by synchrotron X-ray scattering and atomic force microscopy (AFM) as a function of thickness of LiF. We also study the interdiffusion of LiF into Al cathode as well as into Alq(3) layer as a function of temperature. Initially, LiF molecules are distributed randomly as clusters on the Alq(3) layer and then gradually form a layer as increasing LiF thickness. The interdiffusion of LiF into Al occurs more actively than into Alq(3) in annealing process. LiF on Alq(3) induces the ordering of Al to (111) direction strongly with increasing LiF thickness.
Turbulent boundary layer on the surface of a sea geophysical antenna
NASA Astrophysics Data System (ADS)
Smol'Yakov, A. V.
2010-11-01
A theory is constructed that makes it possible to calculate the initial parameters necessary for calculating the hydrodynamic (turbulent) noise, which is a handicap to the operation of sea geophysical antennas. Algorithms are created for calculating the profile and defect of the average speed, displacement thickness, momentum thickness, and friction resistance in a turbulent boundary layer on a cylinder in its axial flow. Results of calculations using the developed theory are compared to experimental data. As the diameter of the cylinder tends to infinity, all relations of the theory pass to known relations for the boundary layer on a flat plate. The developed theory represents the initial stage of creating a method to calculate hydrodynamic noise, which is handicap to the operation of sea geophysical antennas.
1981-09-01
1970, p. 417. 16 Wieghardt, K., Tillmann, W., "On the Turbulent Friction Layer for Rising Pressure", NACA, TM 1374, 1957. 17 Andersen, P.S., Kays, W.M...thickness is 5000. derived from the "Strong Reynolds Analogy" (S.R.A.) A 12 eeg . deflection of the wall around a sharp edge may be us d o ep es nt p~-- o Tu...which yields (3) / / 02 /S - t 02 S = Se-t boundayI y,0in flame I with so as the initial shear layer thickness. zonemod 2S 10 / tms 2. Initial
In situ nanoindentation study of plastic Co-deformation in Al-TiN nanocomposites
Li, N.; Wang, H.; Misra, A.; ...
2014-10-16
We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. Our results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.
Multilayer Black Phosphorus Near-Infrared Photodetectors.
Hou, Chaojian; Yang, Lijun; Li, Bo; Zhang, Qihan; Li, Yuefeng; Yue, Qiuyang; Wang, Yang; Yang, Zhan; Dong, Lixin
2018-05-23
Black phosphorus (BP), owing to its distinguished properties, has become one of the most competitive candidates for photodetectors. However, there has been little attention paid on photo-response performance of multilayer BP nanoflakes with large layer thickness. In fact, multilayer BP nanoflakes with large layer thickness have greater potential from the fabrication viewpoint as well as due to the physical properties than single or few layer ones. In this report, the thickness-dependence of the intrinsic property of BP photodetectors in the dark was initially investigated. Then the photo-response performance (including responsivity, photo-gain, photo-switching time, noise equivalent power, and specific detectivity) of BP photodetectors with relative thicker thickness was explored under a near-infrared laser beam ( λ IR = 830 nm). Our experimental results reveal the impact of BP's thickness on the current intensity of the channel and show degenerated p-type BP is beneficial for larger current intensity. More importantly, the photo-response of our thicker BP photodetectors exhibited a larger responsivity up to 2.42 A/W than the few-layer ones and a fast response photo-switching speed (response time is ~2.5 ms) comparable to thinner BP nanoflakes was obtained, indicating BP nanoflakes with larger layer thickness are also promising for application for ultra-fast and ultra-high near-infrared photodetectors.
Alasil, Tarek; Wang, Kaidi; Yu, Fei; Field, Matthew G.; Lee, Hang; Baniasadi, Neda; de Boer, Johannes F.; Coleman, Anne L.; Chen, Teresa C.
2015-01-01
Purpose To determine the retinal nerve fiber layer (RNFL) thickness at which visual field (VF) damage becomes detectable and associated with structural loss. Design Retrospective cross-sectional study. Methods Eighty seven healthy and 108 glaucoma subjects (one eye per subject) were recruited from an academic institution. All patients had VF examinations (Swedish Interactive Threshold Algorithm 24-2 test of the Humphrey visual field analyzer 750i; Carl Zeiss Meditec, Dublin, CA) and spectral domain optical coherence tomography RNFL scans (Spectralis, Heidelberg Engineering, Heidelberg, Germany). Comparison of RNFL thicknesses values with VF threshold values showed a plateau of VF threshold values at high RNFL thickness values and then a sharp decrease at lower RNFL thickness values. A broken stick statistical analysis was utilized to estimate the tipping point at which RNFL thickness values are associated with VF defects. The slope for the association between structure and function was computed for data above and below the tipping point. Results The mean RNFL thickness value that was associated with initial VF loss was 89 μm. The superior RNFL thickness value that was associated with initial corresponding inferior VF loss was 100 μm. The inferior RNFL thickness value that was associated with initial corresponding superior VF loss was 73 μm. The differences between all the slopes above and below the aforementioned tipping points were statistically significant (p<0.001). Conclusions In open angle glaucoma, substantial RNFL thinning or structural loss appears to be necessary before functional visual field defects become detectable. PMID:24487047
Anomalous temperature dependence of layer spacing of de Vries liquid crystals: Compensation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, K.; Kocot, A.; Vij, J. K., E-mail: jvij@tcd.ie
Smectic liquid crystals that exhibit temperature independent layer thickness offer technological advantages for their use in displays and photonic devices. The dependence of the layer spacing in SmA and SmC phases of de Vries liquid crystals is found to exhibit distinct features. On entering the SmC phase, the layer thickness initially decreases below SmA to SmC (T{sub A–C}) transition temperature but increases anomalously with reducing temperature despite the molecular tilt increasing. This anomalous observation is being explained quantitatively. Results of IR spectroscopy show that layer shrinkage is caused by tilt of the mesogen's rigid core, whereas the expansion is causedmore » by the chains getting more ordered with reducing temperature. This mutual compensation arising from molecular fragments contributing to the layer thickness differs from the previous models. The orientational order parameter of the rigid core of the mesogen provides direct evidence for de Vries cone model in the SmA phase for the two compounds investigated.« less
NASA Astrophysics Data System (ADS)
Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.
2017-12-01
Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from the well data could potentially support the loading originating initially from within the salt. Such internal loading needs to be considered in modelling salt deformation for a variety of practical and academic purposes.
Lee, Wei Li; Guo, Wei Mei; Ho, Vincent H B; Saha, Amitaksha; Chong, Han Chung; Tan, Nguan Soon; Tan, Ern Yu; Loo, Say Chye Joachim
2015-11-01
Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while being able to tune their individual release over months. We believe that our findings would be of interest to the readers of Acta Biomaterialia because the proposed system could open a new avenue on how two drugs can be released, through rate-controlling carriers, for combination chemotherapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shiojima, Taro; Inoue, Yuuki; Kyomoto, Masayuki; Ishihara, Kazuhiko
2016-08-01
A highly efficient methodology for preparing a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on the surface of poly(ether ether ketone) (PEEK) was examined by photoinduced and self-initiated graft polymerization. To enhance the polymerization rate, we demonstrated the effects of inorganic salt additives in the feed monomer solution on thickness of grafted PMPC layer. Photoinduced polymerization occurred and the PMPC graft layer was successfully formed on the PEEK surface, regardless of inorganic salt additives. Moreover, it was clearly observed that the addition of inorganic salt enhanced the grafting thickness of PMPC layer on the surface even when the photoirradiation time was shortened. The addition of inorganic salt additives in the feed monomer solution enhanced the polymerization rate of MPC and resulted in thicker PMPC layers. In particular, we evaluated the effect of NaCl concentration and how this affected the polymerization rate and layer thickness. We considered that this phenomenon was due to the hydration of ions in the feed monomer solution and subsequent apparent increase in the MPC concentration. A PMPC layer with over 100-nm-thick, which was prepared by 5-min photoirradiation in 2.5mol/L inorganic salt aqueous solution, showed good wettability and protein adsorption resistance compared to that of untreated PEEK. Hence, we concluded that the addition of NaCl into the MPC feed solution would be a convenient and efficient method for preparing a graft layer on PEEK. Photoinduced and self-initiated graft polymerization on the PEEK surface is one of the several methodologies available for functionalization. However, in comparison with free-radical polymerization, the efficiency of polymerization at the solid-liquid interface is limited. Enhancement of the polymerization rate for grafting could solve the problem. In this study, we observed the acceleration of the polymerization rate of MPC in an aqueous solution by the addition of inorganic salt. The salt itself did not show any adverse effects on the radical polymerization; however, the apparent concentration of the monomer in feed may be increased due to the hydration of ions attributed to salt additives. We could obtain PMPC-grafted PEEK with sufficient PMPC thickness to obtain good functionality with only 5-min photoirradiation by using 2.5mol/L NaCl in the feed solution. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Modeling of thin, back-wall silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.
1979-01-01
The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.
Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Joel B.; Belev, George; Kasap, Safa O.
2012-07-01
We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less
NASA Astrophysics Data System (ADS)
Zhang, Haodong; van Pelt, Thomas; Nalin Mehta, Ankit; Bender, Hugo; Radu, Iuliana; Caymax, Matty; Vandervorst, Wilfried; Delabie, Annelies
2018-07-01
Tin disulfide (SnS2) is a n-type semiconductor with a hexagonally layered crystal structure and has promising applications in nanoelectronics, optoelectronics and sensors. Such applications require the deposition of SnS2 with controlled crystallinity and thickness control at monolayer level on large area substrate. Here, we investigate the nucleation and growth mechanism of two-dimensional (2D) SnS2 by chemical vapor deposition (CVD) using SnCl4 and H2S as precursors. We find that the growth mechanism of 2D SnS2 is different from the classical layer-by-layer growth mode, by which monolayer-thin 2D transition metal dichalcogenides can be formed. In the initial nucleation stage, isolated 2D SnS2 domains of several monolayers high are formed. Next, 2D SnS2 crystals grow laterally while keeping a nearly constant height until layer closure is achieved, due to the higher reactivity of SnS2 crystal edges than basal planes. We infer that the thickness of the 2D SnS2 crystals is determined by the height of initial SnS2 islands. After layer closure, SnS2 grows on grain boundaries and results in 3D growth mode, accompanied by spiral growth. Our findings suggest an approach to prepare 2D SnS2 with a controlled thickness of several monolayers and add more knowledge on the nucleation and growth mechanism of 2D materials.
Predicting the compressibility behaviour of tire shred samples for landfill applications.
Warith, M A; Rao, Sudhakar M
2006-01-01
Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
Impact of mechanical heterogeneity on joint density in a welded ignimbrite
NASA Astrophysics Data System (ADS)
Soden, A. M.; Lunn, R. J.; Shipton, Z. K.
2016-08-01
Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.
Effect of viscosity of a thermoplastic prepreg and matrix upon winding of rings
NASA Astrophysics Data System (ADS)
Stavrov, V. P.; Markov, A. V.; Zhernovskii, A. V.; Friedrich, K. F.
2000-05-01
The problem of compression of a unidirectional layer and shear of a polymer interlayer during winding of rings is considered. The equations determining the dependence of the layer thickness and stresses on the parameters entering into the power flow law for a prepreg and polymer matrix and on the basic parameters of the winding process—the initial tension of the prepreg, its placement rate, and the radius of a mandrel—are derived. The ring thickness measurements obtained at various temperatures and initial tension forces of plies confirm the adequacy of the model offered. It is found that the viscous properties of the prepreg and matrix upon winding affect the relative change in the layer thickness to a greater extent than the stresses in these layers. With increase in temperature and tension force upon winding, the effect of viscous deformations of the prepreg and matrix increases. A decrease in viscosity and an increase in the tension force of the tape lead to a higher strength of the ring in tension and interlaminar shear; however, the growing percolation of the polymer melt leads to a greater inhomogeneity of the structure of the composite in the ring and to a lower reinforcing effect of the factors mentioned.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1992-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1993-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Polymerization contraction stress in thin resin composite layers as a function of layer thickness.
Alster, D; Feilzer, A J; de Gee, A J; Davidson, C L
1997-05-01
In the present study, the effect of layer thickness on the curing stress in thin resin composite layers was investigated. Since the value of the contraction stress is dependent on the compliance of the measuring equipment (especially for thin films), a method to determine the compliance of the test apparatus was tested. A chemically initiated resin composite (Clearfil F2, Kuraray) was inserted between two sandblasted and silane-coated stainless steel discs in a tensilometer. The curing contraction of the cylindrical samples was continuously counteracted by feedback displacement of the tensilometer crosshead, and the curing stress development was registered. After 20 min, the samples were loaded in tension until fracture. The curing stress was determined for layer thicknesses of 50, 100, 200, 300, 400, 500, 600, 700 microns, 1.4 mm and 2.7 mm. The compliance of the apparatus was calculated with the aid of a non-linear regression analysis, using an equation derived from Hooke's Law as the model. None of the samples fractured due to contraction stress prior to tensile loading. The contraction stress after 20 min decreased from 23.3 +/- 5.3 MPa for the 50 microns layer to 5.5 +/- 0.6 MPa for the 2.7 mm layer. The compliance on the apparatus was 0.029 mm/MPa. A measuring method was developed which was found to be suitable for the determination of axial polymerization contraction stress in this films of chemically initiated resin composites. The method makes it possible to estimate the stress levels that occur in resin composite films in the clinical situation.
[Characteristics of soil moisture in artificial impermeable layers].
Suo, Gai-Di; Xie, Yong-Sheng; Tian, Fei; Chuai, Jun-Feng; Jing, Min-Xiao
2014-09-01
For the problem of low water and fertilizer use efficiency caused by nitrate nitrogen lea- ching into deep soil layer and soil desiccation in dryland apple orchard, characteristics of soil moisture were investigated by means of hand tamping in order to find a new approach in improving the water and fertilizer use efficiency in the apple orchard. Two artificial impermeable layers of red clay and dark loessial soil were built in soil, with a thickness of 3 or 5 cm. Results showed that artificial impermeable layers with the two different thicknesses were effective in reducing or blocking water infiltration into soil and had higher seepage controlling efficiency. Seepage controlling efficiency for the red clay impermeable layer was better than that for the dark loessial soil impermeable layer. Among all the treatments, the red clay impermeable layer of 5 cm thickness had the highest bulk density, the lowest initial infiltration rate (0.033 mm · min(-1)) and stable infiltration rate (0.018 mm · min(-1)) among all treatments. After dry-wet alternation in summer and freezing-thawing cycle in winter, its physiochemical properties changed little. Increase in years did not affect stable infiltration rate of soil water. The red clay impermeable layer of 5 cm thickness could effectively increase soil moisture content in upper soil layer which was conducive to raise the water and nutrient use efficiency. The approach could be applied to the apple production of dryland orchard.
Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Bolch, Wesley E.; Parlos, Alexander
1996-01-01
Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.
NASA Astrophysics Data System (ADS)
Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei
2014-12-01
High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.
Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Akyurek, Bengu Ozge
Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.
NASA Astrophysics Data System (ADS)
Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert
2015-07-01
The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.
Formation of nickel germanides from Ni layers with thickness below 10 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel
2017-03-01
The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less
Complex layering of the Orange Mountain Basalt: New Jersey, USA
NASA Astrophysics Data System (ADS)
Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris
2018-06-01
The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.
Anatomy and dynamics of a floodplain, Powder River, Montana, U.S.A.
Pizzuto, J.E.; Moody, J.A.; Meade, R.H.
2008-01-01
Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains; during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 in from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s-1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers of nearly constant thickness. Mud layers alternated with sand layers, which were relatively thick near the channel. Together, these beds created a distinctive natural levee. In some locations, individual flood deposits began as a thin mud layer that gradually coarsened upwards to medium-grained sand. Coarsening-upwards sequences form initially as mud because only the uppermost layers of water in the channel supply the first overbank flows, which are rich in mud but starved of sand. At successively higher stages, fine sands and then medium sands increase in concentration in the floodwater and are deposited as fine- and medium-sand layers overlying the initial mud layer. Theoretical predictions from mathematical models of sediment transport by advection and diffusion indicate that these processes acting alone are unlikely to create the observed sand layers of nearly uniform thickness that extend across much of the floodplain. We infer that other transport processes, notably bedload transport, must be important along Powder River. Even with the centimeter-scale measurements of floodplain deposits, daily hydraulic data, and precise annual surface topographic surveys, we were unable to determine any clear correspondence between the gauged flow record of overbank floods and the depositional layers mapped in the floodplain. These results provide a detailed example of floodplain deposits and depositional processes that should prove useful for interpreting natural levee deposits in a variety of geologic settings. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.
2016-03-15
Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less
Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes
NASA Astrophysics Data System (ADS)
Hwa Lee, Chang; Lee, Yoo Lee; Jeon, Min Ku; Choi, Yong Taek; Kang, Kweon Ho; Park, Geun Il
2014-06-01
The effect of pretreatment processes for the Zr electrorefining of oxidized Zircaloy-4 cladding tubes is examined in LiCl-KCl-ZrCl4 molten salts at 500 °C. The cyclic voltammetries reveal that the Zr dissolution kinetics is highly dependent on the thickness of a Zr oxide layer formed at 500 °C under air atmosphere. For the Zircaloy-4 tube covered with a 1 μm thick oxide layer, the Zr dissolution process is initiated from a non-stoichiometric Zr oxide surface through salt treatment at an open circuit potential in the molten salt electrolyte. The Zr dissolution of the samples in the middle range of oxide layer thickness appears to be more effectively derived by the salt treatment coupled with an anodic potential application at an oxidation potential of Zr. A modification of the process scheme offers an applicability of Zr electrorefining for the treatment of oxidized cladding hull wastes.
AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation
NASA Astrophysics Data System (ADS)
Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.
2017-09-01
In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.
NASA Astrophysics Data System (ADS)
Minkel, Donald Howe
Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.
NASA Astrophysics Data System (ADS)
Haque, K. A. S. M. Ehteshamul; Galib, Md. Mehedi Hassan
2013-10-01
III-V single-junction solar cells have already achieved very high efficiency levels. However, their use in terrestrial applications is limited by the high fabrication cost. High-efficiency, ultrathin-film solar cells can effectively solve this problem, as their material requirement is minimum. This work presents a comparison among several III-V compounds that have high optical absorption capability as well as optimum bandgap (around 1.4 eV) for use as solar cell absorbers. The aim is to observe and compare the ability of these materials to reach a target efficiency level of 20% with minimum possible cell thickness. The solar cell considered has an n-type ZnSe window layer, an n-type Al0.1Ga0.9As emitter layer, and a p-type Ga0.5In0.5P back surface field (BSF) layer. Ge is used as the substrate. In the initial design, a p-type InP base was sandwiched between the emitter and the BSF layer, and the design parameters for the device were optimized by analyzing the simulation outcomes with ADEPT/F, a one-dimensional (1D) simulation tool. Then, the minimum cell thickness that achieves 20% efficiency was determined by observing the efficiency variation with cell thickness. Afterwards, the base material was changed to a few other selected III-V compounds, and for each case, the minimum cell thickness was determined in a similar manner. Finally, these cell thickness values were compared and analyzed to identify more effective base layer materials for III-V single-junction solar cells.
Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Phung, Pham Kim; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan
2016-01-01
In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.
The threshold strength of laminar ceramics utilizing molar volume changes and porosity
NASA Astrophysics Data System (ADS)
Pontin, Michael Gene
It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.
Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control
NASA Technical Reports Server (NTRS)
Heyliger, P. R.; Ramirez, G.; Pei, K. C.
1994-01-01
The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.
Atomic-layer soft plasma etching of MoS2
Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)
2016-01-01
Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335
Article and method for making an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Schick, David Edward; Kottilingam, Srikanth Chandrudu
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of depositing a metal alloy powder to form an initial layer including at least one aperture, melting the metal alloy powder with a focused energy source to transform the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder to form a layer including at least one aperture corresponding to the at least one aperture in the initial layer, melting the additional layer of the metal alloy powder with the focused energymore » source to increase the sheet thickness, and repeating the steps of sequentially depositing and melting the additional layers of metal alloy powder until a structure including at least one aperture having a predetermined profile is obtained. The structure is attached to a substrate to make the article.« less
NASA Astrophysics Data System (ADS)
Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.
2017-10-01
The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.
High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor
NASA Astrophysics Data System (ADS)
Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.
2015-11-01
We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.
NASA Technical Reports Server (NTRS)
Siegel, C. M. (Inventor)
1984-01-01
A method is described for thinning an epitaxial layer of a wafer that is to be used in producing diodes having a specified breakdown voltage and which also facilitates the thinning process. Current is passed through the epitaxial layer, by connecting a current source between the substrate of the wafer and an electrolyte in which the wafer is immersed. When the wafer is initially immersed, the voltage across the wafer initially drops and then rises at a steep rate. When light is applied to the wafer the voltage drops, and when the light is interrupted the voltage rises again. These changes in voltage, each indicate the breakdown voltage of a Schottky diode that could be prepared from the wafer at that time. The epitaxial layer is thinned by continuing to apply current through the wafer while it is immersed and light is applied, to form an oxide film and when the oxide film is thick the wafer can then be cleaned of oxide and the testing and thinning continued. Uninterrupted thinning can be achieved by first forming an oxide film, and then using an electrolyte that dissolves the oxide about as fast as it is being formed, to limit the thickness of the oxide layer.
Hu, Hang; Dong, Binghai; Hu, Huating; Chen, Fengxiang; Kong, Mengqin; Zhang, Qiuping; Luo, Tianyue; Zhao, Li; Guo, Zhiguang; Li, Jing; Xu, Zuxun; Wang, Shimin; Eder, Dominik; Wan, Li
2016-07-20
In this study we design and construct high-efficiency, low-cost, highly stable, hole-conductor-free, solid-state perovskite solar cells, with TiO2 as the electron transport layer (ETL) and carbon as the hole collection layer, in ambient air. First, uniform, pinhole-free TiO2 films of various thicknesses were deposited on fluorine-doped tin oxide (FTO) electrodes by atomic layer deposition (ALD) technology. Based on these TiO2 films, a series of hole-conductor-free perovskite solar cells (PSCs) with carbon as the counter electrode were fabricated in ambient air, and the effect of thickness of TiO2 compact film on the device performance was investigated in detail. It was found that the performance of PSCs depends on the thickness of the compact layer due to the difference in surface roughness, transmittance, charge transport resistance, electron-hole recombination rate, and the charge lifetime. The best-performance devices based on optimized TiO2 compact film (by 2000 cycles ALD) can achieve power conversion efficiencies (PCEs) of as high as 7.82%. Furthermore, they can maintain over 96% of their initial PCE after 651 h (about 1 month) storage in ambient air, thus exhibiting excellent long-term stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby
Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such asmore » the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.« less
NASA Astrophysics Data System (ADS)
Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.
2015-10-01
This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.
Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body
NASA Astrophysics Data System (ADS)
Das, S. P.; Srinivasan, U.; Arakeri, J. H.
2013-07-01
Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.
Advanced development of TFA-MOD coated conductors
NASA Astrophysics Data System (ADS)
Rupich, M. W.; Li, X.; Sathyamurthy, S.; Thieme, C.; Fleshler, S.
2011-11-01
American Superconductor is manufacturing 2G wire for initial commercial applications. The 2G wire properties satisfy the requirements for these initial projects; however, improvements in the critical current, field performance and cost are required to address the broad range of potential commercial and military applications. In order to meet the anticipated the performance and cost requirements, AMSC's R&D effort is focused on two major areas: (1) higher critical current and (2) enhanced flux pinning. AMSC's current 2G production wire, designed around a 0.8 μm thick YBCO layer deposited by a Metal Organic Deposition (MOD) process, carries a critical current in the range of 200-300 A/cm-w (77 K, sf). Achieving higher critical current requires increasing the thickness of the YBCO layer. This paper describes recent progress at AMSC on increasing the critical current of MOD-YBCO films using processes compatible with low-cost, high-rate manufacturing.
Separation of variables solution for non-linear radiative cooling
NASA Technical Reports Server (NTRS)
Siegel, Robert
1987-01-01
A separation of variables solution has been obtained for transient radiative cooling of an absorbing-scattering plane layer. The solution applies after an initial transient period required for adjustment of the temperature and scattering source function distributions. The layer emittance, equal to the instantaneous heat loss divided by the fourth power of the instantaneous mean temperature, becomes constant. This emittance is a function of only the optical thickness of the layer and the scattering albedo; its behavior as a function of these quantities is considerably different than for a layer at constant temperature.
NASA Astrophysics Data System (ADS)
Zolotukhin, D.; Seredin, P.; Lenshin, A.; Goloshchapov, D.; Mizerov, A.
2017-11-01
We report on successful growth of GaN nanorods by low-temperature plasma-assisted molecular beam epitaxy on a Si(111) substrate with and without preformed thin porous Si layer (por-Si). The deposited GaN initially forms islands which act as a seed for the wires. Porous structure of the por-Si layer helps to control nucleation islands sizes and achieve homogeneous distribution of the nanorods diameters. In addition 850 nm-thick crack-free GaN layer was formed on Si(111) substrate with preformed por-Si layer.
Aero-Heating of Shallow Cavities in Hypersonic Freestream Flow
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Berger, Karen T.; Merski, N. R., Jr.; Woods, William A.; Hollingsworth, Kevin E.; Hyatt, Andrew; Prabhu, Ramadas K.
2010-01-01
The purpose of these experiments and analysis was to augment the heating database and tools used for assessment of impact-induced shallow-cavity damage to the thermal protection system of the Space Shuttle Orbiter. The effect of length and depth on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These rapid-response experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated immediately prior to the launch of STS-114, the initial flight in the Space Shuttle Return-To-Flight Program, and continued during the first week of the mission. Previously-designed and numerically-characterized blunted-nose baseline flat plates were used as the test surfaces. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process and the two-dimensional flow assumptions used for the data analysis. The experimental boundary layer state conditions were inferred using the measured heating distributions on a no-cavity test article. Two test plates were developed, each containing 4 equally-spaced spanwise-distributed cavities. The first test plate contained cavities with a constant length-to-depth ratio of 8 with design point depth-to-boundary-layer-thickness ratios of 0.1, 0.2, 0.35, and 0.5. The second test plate contained cavities with a constant design point depth-to-boundary-layer-thickness ratio of 0.35 with length-to-depth ratios of 8, 12, 16, and 20. Cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary results indicate that the floor-averaged Bump Factor (local heating rate nondimensionalized by upstream reference) at the tested conditions is approximately 0.3 with a standard deviation of 0.04 for laminar-in/laminar-out conditions when the cavity length-to-boundary-layer thickness is between 2.5 and 10 and for cavities in the depth-to-boundary-layer-thickness range of 0.3 to 0.8. Over this same range of conditions and parameters, preliminary results also indicate that the maximum Bump Factor on the cavity centerline falls between 2.0 and 2.75, as long as the cavity-exit conditions remain laminar. Cavities with length-to-boundary-layer-thickness ratio less than 2.5 can not be easily classified with this approach and require further analysis.
Growth of multilayered polycrystalline reaction rims in the MgO-SiO2 system, part I: experiments
NASA Astrophysics Data System (ADS)
Gardés, E.; Wunder, B.; Wirth, R.; Heinrich, W.
2011-01-01
Growth of transport-controlled reaction layers between single crystals of periclase and quartz, and forsterite and quartz was investigated experimentally at 1.5 GPa, 1100°C to 1400°C, 5 min to 72 h under dry and melt-free conditions using a piston-cylinder apparatus. Starting assemblies consisting of Per | Qtz | Fo sandwiches produced polycrystalline double layers of forsterite and enstatite between periclase and quartz, and enstatite single layers between forsterite and quartz. The position of inert Pt-markers initially deposited at the interface of the reactants and inspection of mass balance confirmed that both layer-producing reactions are controlled by MgO diffusion, while SiO2 is relatively immobile. BSE and TEM imaging revealed thicknesses from 0.6 μm to 14 μm for double layers and from 0 to 6.8 μm for single layers. Both single and double layers displayed non-parabolic growth together with pronounced grain coarsening. Textural evolution and growth rates for each reaction are directly comparable. Forsterite-enstatite double layers are always wider than enstatite single layers, and the growth of enstatite in the double layer is slower than that in the single layer. In double layers, the enstatite/forsterite layer thickness ratio significantly increases with temperature, reflecting different MgO mobilities as temperature varies. Thus, thickness ratios in multilayered reaction zones may contain a record of temperature, but also that of any physico-chemical parameter that modifies the mobilities of the chemical components between the various layers. This potential is largely unexplored in geologically relevant systems, which calls for further experimental studies of multilayered reaction zones.
Theoretical models for the combustion of alloyable materials
NASA Astrophysics Data System (ADS)
Armstrong, Robert
1992-09-01
The purpose of this work is to extend a theoretical model of layered (laminar) media for SHS combustion presented in an earlier article [1] to explore possible mechanisms for after-burning in SHS ( i.e., gasless) combustion. As before, our particular interest is how the microscopic geometry of the solid reactants is reflected in the combustion wave and in the reaction product. The model is constructed from alternating lamina of two pure reactants that interdiffuse exothermically to form a product. Here, the laminar model is extended to contain layers of differing thicknesses. Using asymptotic theory, it was found that under certain conditions, the combustion wave can become “detached,” and an initial thin flame propagates through the media, leaving a slower, thicker flame following behind ( i.e., afterburning). Thin laminae are consumed in the initial flame and are thick in the secondary. The thin flame has a width determined by the inverse of the activation energy of diffusion, as found previously. The width of the afterburning zone, however, is determined by the absolute time of diffusion for the thicker laminae. Naturally, when the laminae are all the same thickness, there is only one thin flame. The condition for the appearance of afterburning is found to be contingent on the square of the ratio of smallestto-largest thicknesses being considerably less than unity.
Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.
The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less
Zhao, Jing; Wang, Ya Xing; Zhang, Qi; Wei, Wen Bin; Xu, Liang; Jonas, Jost B
2018-03-13
To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler's layer) and large choroidal vessel layer (Haller's layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P < 0.05) with higher prevalence of age-related macular degeneration (AMD) (except for geographic atrophy), while it was not significantly (all P > 0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P < 0.001; multivariate analysis) with older age and longer axial length, while the ratios of Sattler's layer and Haller's layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller's and Sattler's layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
NASA Astrophysics Data System (ADS)
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Analysis of epitaxial drift field N on P silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.; Brandhorst, H. W., Jr.
1976-01-01
The performance of epitaxial drift field silicon solar cell structures having a variety of impurity profiles was calculated. These structures consist of a uniformly doped P-type substrate layer, and a P-type epitaxial drift field layer with a variety of field strengths. Several N-layer structures were modeled. A four layer solar cell model was used to calculate efficiency, open circuit voltage and short circuit current. The effect on performance of layer thickness, doping level, and diffusion length was determined. The results show that peak initial efficiency of 18.1% occurs for a drift field thickness of about 30 micron with the doping rising from 10 to the 17th power atoms/cu cm at the edge of the depletion region to 10 to the 18th power atoms/cu cm in the substrate. Stronger drift fields (narrow field regions) allowed very high performance (17% efficiency) even after irradiation to 3x10 to the 14th power 1 MeV electrons/sq cm.
NASA Astrophysics Data System (ADS)
Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.
2012-04-01
Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.
Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling
NASA Astrophysics Data System (ADS)
Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael
2016-03-01
Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.
The rollup of a vortex layer near a wall
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Orlandi, Paolo
1993-01-01
The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.
Plasma electrolytic oxidation of Titanium Aluminides
NASA Astrophysics Data System (ADS)
Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.
2016-03-01
Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.
NASA Astrophysics Data System (ADS)
Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.
2017-09-01
Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.
NASA Astrophysics Data System (ADS)
Soltani, Osswa; Zaghdoudi, Jihene; Kanzari, Mounir
2018-06-01
By means of two fluid model and transfer matrix method (TMM), we investigate theoretically the transmittance properties of a defective hybrid dielectric-dielectric photonic crystal that contains a superconducting material as a defect layer. The considered hybrid photonic structure is: H(LH) 7(HLSLH) P H(LH) 7 , where H is the high refractive index dielectric, L is the low refractive index dielectric, S is the superconducting material and P is the repetitive number. The results show that the variation of the number and the positions of the transmissions modes depend strongly on the repetitive number P, the temperature T and the thickness of the layer S. An improvement of the spectral response is obtained with the exponential gradation of layer thicknesses dj =d0 + βejα , where d0 is the initial thickness of the layer j, α and β are two particular constants for each material. In addition, the effect of the incident angle for both transverse electric (TE) and transverse magnetic (TM) polarizations on the transmittance spectrum is discussed. As a result, we propose a tunable narrow stop-band polychromatic filter that covers the visible wavelength.
A correlation to estimate the velocity of convective currents in boilover.
Ferrero, Fabio; Kozanoglu, Bulent; Arnaldos, Josep
2007-05-08
The mathematical model proposed by Kozanoglu et al. [B. Kozanoglu, F. Ferrero, M. Muñoz, J. Arnaldos, J. Casal, Velocity of the convective currents in boilover, Chem. Eng. Sci. 61 (8) (2006) 2550-2556] for simulating heat transfer in hydrocarbon mixtures in the process that leads to boilover requires the initial value of the convective current's velocity through the fuel layer as an adjustable parameter. Here, a correlation for predicting this parameter based on the properties of the fuel (average ebullition temperature) and the initial thickness of the fuel layer is proposed.
NASA Astrophysics Data System (ADS)
Veloso, A.; Freitas, P. P.; Wei, P.; Barradas, N. P.; Soares, J. C.; Almeida, B.; Sousa, J. B.
2000-08-01
Bottom-pinned Mn83Ir17 spin valves with enhanced specular scattering were fabricated, showing magnetoresistance (MR) values up to 13.6%, lower sheet resistance R□ and higher ΔR□. Two nano-oxide layers (NOL) are grown on both sides of the CoFe/Cu/CoFe spin valve structure by natural oxidation or remote plasma oxidation of the starting CoFe layer. Maximum MR enhancement is obtained after just 1 min plasma oxidation. Rutherford backscattering analysis shows that a 15±2 Å oxide layer grows at the expense of the initial (prior to oxidation) CoFe layer, with ˜12% reduction of the initial 40 Å CoFe thickness. X-ray reflectometry indicates that Kiessig fringes become better defined after NOL growth, indicating smoother inner interfaces, in agreement with the observed decrease of the spin valve ferromagnetic Néel coupling.
A three-dimensional simulation of transition and early turbulence in a time-developing mixing layer
NASA Technical Reports Server (NTRS)
Cain, A. B.; Reynolds, W. C.; Ferziger, J. H.
1981-01-01
The physics of the transition and early turbulence regimes in the time developing mixing layer was investigated. The sensitivity of the mixing layer to the disturbance field of the initial condition is considered. The growth of the momentum thickness, the mean velocity profile, the turbulence kinetic energy, the Reynolds stresses, the anisotropy tensor, and particle track pictures of computations are all examined in an effort to better understand the physics of these regimes. The amplitude, spectrum shape, and random phases of the initial disturbance field were varied. A scheme of generating discrete orthogonal function expansions on some nonuniform grids was developed. All cases address the early or near field of the mixing layer. The most significant result shows that the secondary instability of the mixing layer is produced by spanwise variations in the straining field of the primary vortex structures.
Full two-dimensional transient solutions of electrothermal aircraft blade deicing
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.; Leffel, K. L.
1985-01-01
Two finite difference methods are presented for the analysis of transient, two-dimensional responses of an electrothermal de-icer pad of an aircraft wing or blade with attached variable ice layer thickness. Both models employ a Crank-Nicholson iterative scheme, and use an enthalpy formulation to handle the phase change in the ice layer. The first technique makes use of a 'staircase' approach, fitting the irregular ice boundary with square computational cells. The second technique uses a body fitted coordinate transform, and maps the exact shape of the irregular boundary into a rectangular body, with uniformally square computational cells. The numerical solution takes place in the transformed plane. Initial results accounting for variable ice layer thickness are presented. Details of planned de-icing tests at NASA-Lewis, which will provide empirical verification for the above two methods, are also presented.
The roles of buffer layer thickness on the properties of the ZnO epitaxial films
NASA Astrophysics Data System (ADS)
Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou
2016-12-01
In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu
2017-10-01
We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.
NASA Astrophysics Data System (ADS)
Jampana, Balakrishnam R.
The III-nitride semiconductor material system, which consists of InN, GaN, AlN and their alloys, offers a substantial potential in developing ultra-high efficiency photovoltaics mainly due to its wide range of direct-bandgap (0.7 eV -- 3.4 eV), and other electronic, optical and mechanical properties. However, this novel InGaN material system poses technological challenges which extended into the performance of InGaN devices. The development of wide-band gap p--n InGaN homojunction solar cells with bandgap < 2.4 eV is investigated in the present work. The growth, fabrication and characterization of a 2.7 eV bandgap InGaN solar cell with a 1.73 eV open-circuit voltage is demonstrated. Limited solar cell performance, in terms of short-circuit current and efficiency, is observed. The poor performance of the InGaN solar cell is related to the formation of extended crystalline defects in InGaN epilayers of the solar cell structure. To investigate the influence of extended crystalline defects on InGaN epilayer properties, a few In0.12Ga0.88N epilayers with different thicknesses are grown and characterized for structural properties using high-resolution X-ray diffraction. The structural parameters, modeled as mosaic blocks, indicate deterioration in InGaN crystal quality when the film thickness exceeds a critical layer thickness. An associated increase in density of threading dislocations with deteriorated InGaN crystal quality is observed. The critical layer thickness is determined for a few InGaN compositions in the range of 6 -- 21 % In, and it decreases with increasing InGaN composition. Surface roughening and formation of V-defects are observed on InGaN surface beyond the critical layer thickness. An Urbach tail in optical absorption of InGaN epilayer is observed and it is related to the formation of V-defects. The direct consequence of light absorption via V-defects is a decrease in photoluminescence peak intensity with increasing InGaN epilayer thickness beyond critical layer thickness. Two p-i-n InGaN solar cell structures were designed, with InGaN epilayer thickness in one solar cell greater than the critical layer thickness and the other with a lower thickness, to investigate the influence of V-defects on performance of the solar cells. The photoresponse of the p-i-n InGaN solar cell with thicker InGaN epilayer is poor, while the other solar cell had good photoresponse and external quantum efficiency. Extending this investigation to a p-n InGaN solar cell, a solar cell with total InGaN epilayer less than the critical layer thickness is grown. The photoresponse and external quantum efficiency of the present solar cell is superior compared to the initially designed p-n InGaN homojunction solar cells. Solar cell characteristics without p-GaN capping layer in the above p-n InGaN solar cell are also investigated. Good open-circuit voltage is observed, but the short-circuit current and efficiency are limited by the formation of extended crystalline defects, as observed with other initial solar cell designs. A processing sequence is developed to coat III-nitride sidewalls, created during fabrication to form electrical contacts, with SiO2 to maximize the active device area and minimize accidental damage of solar cell during fabrication. Additionally, deposition of current spreading layers on p-type III-nitride epilayer to reduce the series resistance is evaluated. The III-nitrides are primarily grown on sapphire substrate and in a continued effort they are realized later on silicon substrate. InGaN solar cell structures were grown simultaneously on GaN/sapphire and GaN/silicon templates and their photoresponse is compared.
Mechanical modeling and characteristic study for the adhesive contact of elastic layered media
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo
2017-11-01
This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.
Compression Fracture of CFRP Laminates Containing Stress Intensifications.
Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo
2017-09-05
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.
Compression Fracture of CFRP Laminates Containing Stress Intensifications
Schütt, Martin; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl
2017-01-01
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers. PMID:28872623
Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...
2015-06-24
Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less
Measurement of the residual stress distribution in a thick pre-stretched aluminum plate
NASA Astrophysics Data System (ADS)
Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.
2008-12-01
Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
Size segregation in a granular bore
NASA Astrophysics Data System (ADS)
Edwards, A. N.; Vriend, N. M.
2016-10-01
We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.
A new facility for studying shock-wave passage over dust layers
NASA Astrophysics Data System (ADS)
Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.
2016-03-01
Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.
MBE growth of highly reproducible VCSELs
NASA Astrophysics Data System (ADS)
Houng, Y. M.; Tan, M. R. T.
1997-05-01
Advances in the design of heterojunction devices have placed stringent demands on the epitaxial material technologies required to fabricate these structures. The increased demand for more stringent tolerance and complex device structures have resulted in a situation where acceptable growth yields will be realized only if epitaxial growth is directly monitored and controlled in real time. We report the growth of 980- and 850-nm vertical cavity surface emitting lasers (VCSEL's) by gas-source molecular beam epitaxy (GSMBE), in which the pyrometric interferometry technique is used for in situ monitoring and feedback control of layer thickness to obtain the highly reproducible distributed Bragg reflectors (DBR) for VCSEL structures. This technique uses an optical pyrometer to measure emissivity oscillations of the growing epi-layer surface. The growing layer thickness can then be related to the emissivity oscillation signals. When the layer reaches the desired thickness, the growth of the subsequent layer is initiated. By making layer thickness measurements and control in real-time throughout the entire growth cycle of the structure, the Fabry-Perot resonance at the desired wavelength is reproducibly obtained. The run-to-run variation of the Fabry-Perot wavelength of VCSEL structures is < ± 0.4%. Using this technique, the group III fluxes can also be calibrated and corrected for flux drifts, thus we are able to control the gain peak of the active region with a run-to-run variation of less than 0.3%. Surface emitting laser diodes were fabricated and operated CW at room temperature. CW threshold currents of 3 and 5 mA are measured at room temperature for 980- and 850-nm lasers, respectively. Output powers higher than 25 mW for 980-nm and 12 mW for 850-nm devices are obtained.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1980-01-01
Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.
Effect of Initial Condition on Subsonic Jet Noise from Two Rectangular Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2012-01-01
Differences in jet noise data from two small 8:1 aspect ratio nozzles are investigated experimentally. The interiors of the two nozzles are identical but one has a thin-lip at the exit while the has a perpendicular face at the exit (thick-lip). It is found that the thin-lip nozzle is substantially noisier throughout the subsonic Mach number range. As much as 5dB difference in OASPL is noticed around Mj =0.96. Hot-wire measurements are carried out for the characteristics of the exit boundary layer and, overall, the noise difference can be ascribed to differences in the boundary layer state. The boundary layer of the quieter (thick-lip) nozzle goes through transition around M(sub j) =0.25 and at higher M(sub j) it remains "nominally turbulent". In comparison, the boundary layer of the thin-lip nozzle is found to remain "nominally laminar". at high subsonic conditions. The nominally laminar state involves significantly larger turbulence intensities commensurate with the higher radiated noise.
Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kaichen, E-mail: dkc12@mails.tsinghua.edu.cn, E-mail: wuj@berkeley.edu; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084
2016-07-11
Due to its thermally driven structural phase transition, vanadium dioxide (VO{sub 2}) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO{sub 2} actuators severely obstructs the actuation performance and application. Here, we introduce a “seesaw” method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO{sub 2} actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvaturemore » and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO{sub 2} actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This “seesaw” method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.« less
Atomic layer epitaxy of YBaCuO for optoelectronic applications
NASA Technical Reports Server (NTRS)
Skogman, R. A.; Khan, M. A.; Van Hove, J. M.; Bhattarai, A.; Boord, W. T.
1992-01-01
An MOCVD-based atomic-layer epitaxy process is being developed as a potential solution to the problems of film-thickness and interface-abruptness control which are encountered when fabricating superconductor-insulator-superconductor devices using YBa2Cu3O(7-x). In initial studies, the atomic-layer MOCVD process yields superconducting YBa2Cu3O(7-x) films with substrate temperatures of 605 C during film growth, and no postdeposition anneal. The low temperature process yields a smooth film surface and can reduce interface degradation due to diffusion.
Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...
2016-05-11
Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.
High efficiency, low cost, thin film silicon solar cell design and method for making
Sopori, Bhushan L.
2001-01-01
A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.
High efficiency low cost thin film silicon solar cell design and method for making
Sopori, Bhushan L.
1999-01-01
A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.
Nieves-Moreno, María; Martínez-de-la-Casa, José M; Morales-Fernández, Laura; Sánchez-Jean, Rubén; Sáenz-Francés, Federico; García-Feijoó, Julián
2018-01-01
To examine differences in individual retinal layer thicknesses measured by spectral domain optical coherence tomography (SD-OCT) (Spectralis®) produced with age and according to sex. Cross-sectional, observational study. The study was conducted in 297 eyes of 297 healthy subjects aged 18 to 87 years. In one randomly selected eye of each participant the volume and mean thicknesses of the different macular layers were measured by SD-OCT using the instrument's macular segmentation software. Volume and mean thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigmentary epithelium (RPE) and photoreceptor layer (PR). Retinal thickness was reduced by 0.24 μm for every one year of age. Age adjusted linear regression analysis revealed mean GCL, IPL, ONL and PR thickness reductions and a mean OPL thickness increase with age. Women had significantly lower mean GCL, IPL, INL, ONL and PR thicknesses and volumes and a significantly greater mRNFL volume than men. The thickness of most retinal layers varies both with age and according to sex. Longitudinal studies are needed to determine the rate of layer thinning produced with age.
Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto
2017-06-15
The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.
2003-01-01
During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).
Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange
NASA Astrophysics Data System (ADS)
Browning, Paul; Eichfeld, Sarah; Zhang, Kehao; Hossain, Lorraine; Lin, Yu-Chuan; Wang, Ke; Lu, Ning; Waite, A. R.; Voevodin, A. A.; Kim, Moon; Robinson, Joshua A.
2015-03-01
Few-layer tungsten diselenide (WSe2) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe2, and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe2 using this method.
Agarose coated spherical micro resonator for humidity measurements.
Mallik, Arun Kumar; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Farrell, Gerald; Semenova, Yuliya
2016-09-19
A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature.
The history and fate of three families of lithosphere on Earth
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Based on compilations of surface heat flux to constrain the thermal boundary layer thickness, lithosphere thickness can be shown to have a trimodal distribution. In ocean basins, lithosphere thickness ranges from thin (<10 km) beneath young ocean basins, which dominate, to thick (<100 km) beneath old ocean basins, which are rare due to subduction. Continents have thicker lithospheres and define two additional peaks: 30%, reflecting most of the Archean cratons, are 180-220 km thick and 60% are 90-140 km thick. While ocean basins subduct after their lithospheres grow thick, continents do not, despite their thicker lithospheres. The insubductibility of continents is because the buoyancy of thick crust compensates for the thick cold lithosphere and because continental thermal boundary layers do not grow indefinitely. Lithospheric growth is understood to be limited by the onset of small-scale convective instabilities, but why then do continental lithospheres have two different critical thicknesses? Initial thickness, at the time of formation, is critical. Continental lithospheres less than 120 km thick are subject to magmatic modification (refertilization) in the form of thermo-chemical erosion, which gradually thins the lithosphere. Lithospheres greater than 120 km appear to be relatively immune to significant lithospheric thinning. This may in part be because refertilization-driven destabilization does not occur since deep melting is suppressed beneath thick lithosphere. To resist thermal thinning, it seems necessary that anomalously thick lithospheres were born with intrinsic strength, widely hypothesized to have been imparted by the unusual petrogenesis of cratonic mantle, wherein high degrees of melting early in Earth's history resulted in the formation of a dehydrated and strong chemical boundary layer. Another possibility is that cratonic mantle is characterized by the strengthening effects of larger grain size, owing to the high degrees of melting that decrease the number of clinopyroxene pinning points. In summary, a lithosphere's fate depends on the nature of its origin. Continental lithospheres born thick will have long, boring lives, continental lithospheres born thin will be forever tormented, and oceanic lithospheres are fated to have calm but brief lives at the Earth's surface.
Sharma, N; Periasamy, C; Chaturvedi, N
2018-07-01
In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.
O'Grady, K M; Agrawal, A; Bhattacharyya, T K; Shah, A; Toriumi, D M
2000-11-01
To examine the effects of fibrinogen concentration and application thickness of fibrin tissue adhesive on skin graft survival. Prospective controlled study. Ten domestic pigs were included in the study. A 20 x 5-cm area of skin was harvested bilaterally along the flanks of the animals using a Padgett dermatome. The harvested grafts were trimmed into four 4 x 4-cm squares. Donor sites were treated according to group assignment and the non-meshed grafts were placed on the side opposite their initial orientation and secured with staples. Both single- and multiple-donor human fibrin tissue adhesive preparations, with low and high average fibrinogen concentrations of 30 mg/mL and 60 mg/ mL, were used. Adhesive preparations were applied in either a thin layer (0.015 mL/cm2) or a thick layer (0.06 mL/cm2) using a spray applicator. A constant thrombin concentration of 10 U/mL was used in the study. No adhesive was used in the control group and grafts were stabilized with staples. No topical dressings were applied to any of the treatment sites. Animals were sacrificed 4 weeks after graft application. Based on statistical analysis, thickness of adhesive application had a significant effect on skin graft survival. Percent mean graft survival in the control and thin application groups was found to be 92% and 97.8% respectively; the mean survival rate in the thick application group was 63.1%. Fibrinogen concentration, when evaluated independently within the thin and thick application groups, was found to have no significant effect on graft survival. Independent of fibrinogen concentration, a thin layer of fibrin tissue adhesive, when applied between two opposing surfaces, does not interfere with and may support the healing process, whereas a thick layer of adhesive inhibits skin graft healing.
NASA Astrophysics Data System (ADS)
Xu, Lei; Robson, Joseph D.; Wang, Li; Prangnell, Philip B.
2018-02-01
The thickness of the intermetallic compound (IMC) layer that forms when aluminum is welded to steel is critical in determining the properties of the dissimilar joints. The IMC reaction layer typically consists of two phases ( η and θ) and many attempts have been made to determine the apparent activation energy for its growth, an essential parameter in developing any predictive model for layer thickness. However, even with alloys of similar composition, there is no agreement of the correct value of this activation energy. In the present work, the IMC layer growth has been characterized in detail for AA6111 aluminum to DC04 steel couples under isothermal annealing conditions. The samples were initially lightly ultrasonically welded to produce a metallic bond, and the structure and thickness of the layer were then characterized in detail, including tracking the evolution of composition and grain size in the IMC phases. A model developed previously for Al-Mg dissimilar welds was adapted to predict the coupled growth of the two phases in the layer, whilst accounting explicitly for grain boundary and lattice diffusion, and considering the influence of grain growth. It has been shown that the intermetallic layer has a submicron grain size, and grain boundary diffusion as well as grain growth plays a critical role in determining the thickening rate for both phases. The model was used to demonstrate how this explains the wide scatter in the apparent activation energies previously reported. From this, process maps were developed that show the relative importance of each diffusion path to layer growth as a function of temperature and time.
Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation
2011-04-14
Quirk JJ, Shepherd JE (1997) An analytical model for direct initiation of gaseous detonation waves, in 21st International Symposium on Shock Waves...the initial vorticity thickness, hi is here performed over (x1, x3) planes and ∆U0 is the initial velocity difference across the layer. In all cases...Reynolds numbers were 1452, 1507 and 2004. Selle et al. [9] showed that this database is relevant for fully-turbulent flow modeling . VI. RESULTS In all
Liu, Yang; Hudak, Nicholas S; Huber, Dale L; Limmer, Steven J; Sullivan, John P; Huang, Jian Yu
2011-10-12
Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al(2)O(3) surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al(2)O(3) layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al(2)O(3) layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium-alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al(2)O(3) onto the active materials or electrodes.
Distributing Radiant Heat in Insulation Tests
NASA Technical Reports Server (NTRS)
Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.
1986-01-01
Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.
Saha, Sampa
2011-01-01
Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO2 substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO2 stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO2 under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from non-cross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ~100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 hour. At temperatures >100 °C, the polymer brush layers delaminate as large area films. PMID:21728374
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
A numerical investigation of the impact of surface topology on laminar boundary layers
NASA Astrophysics Data System (ADS)
Beratlis, Nikolaos; Squires, Kyle; Balaras, Elias
2015-11-01
Surface topology, such as dimples or trip wires, has been utilized in the past for passive separation control over bluff bodies. The majority of the work, however, has focused on the indirect effects on the drag and lift forces, while the details of the impact on the boundary layer evolution are not well understood. Here we report a series of DNS of flow over a single row of spherical and hexagonal dimples, as well as, circular grooves. The Reynolds number and the thickness of the incoming laminar boundary layer is carefully controlled. In all cases transition to turbulence downstream of the elements comes with reorientation of the spanwise vorticity into hairpin like vortices. Although qualitatively the transition mechanism amongst different dimples and grooves is similar, important quantitative differences exist: two-dimensional geometries such as the groove, are more stable than three-dimensional geometries. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist, but in all cases the boundary layer evolves in a self-similar manner.
Triplex molecular layers with nonlinear nanomechanical response
NASA Astrophysics Data System (ADS)
Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.
2002-06-01
The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.
NASA Astrophysics Data System (ADS)
Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha
2015-10-01
Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu
We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use localmore » SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.« less
Deep electromagnetic sounding of the moon with Lunokhod 2 data
NASA Technical Reports Server (NTRS)
Vanyan, L. L.; Yegorov, I. V.; Faynberg, E. B.
1977-01-01
Results of electromagnetic sounding distinguished an outer high resistance shell about 200 km thick in the moon's structure. A preliminary petrological interpretation of the moon's layers indicated their origin as a consequence of differentiation of the initial peridotite material. Upon melting, 20% to 40% of the material melts and is removed to form a high resistance basaltic shell underlain by a layer of spinal peridotites enriched in divalent iron oxides and having a reduced resistance.
Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates
NASA Astrophysics Data System (ADS)
Bae, Changdeuck; Kim, Hyunchul; Yang, Yunjeong; Yoo, Hyunjun; Montero Moreno, Josep M.; Bachmann, Julien; Nielsch, Kornelius; Shin, Hyunjung
2013-06-01
An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications. Electronic supplementary information (ESI) available: TEM gallery of silica NTs under different experimental conditions, detailed calculation of estimating the thickness of condensed water and Hamaker constants, and a comparison of processing times. See DOI: 10.1039/c3nr00906h
Webber, Karen L.; Simmons, William B.; Falster, Alexander U.; Foord, Eugene E.
1999-01-01
Pegmatites of the Pala and Mesa Grande Pegmatite Districts, San Diego County, California are typically thin, sheet-like composite pegmatite-aplite dikes. Aplitic portions of many dikes display pronounced mineralogical layering referred to as "line rock," characterized by fine-grained, garnet-rich bands alternating with albite- and quartz-rich bands. Thermal modeling was performed for four dikes in San Diego County including the 1 m thick Himalaya dike, the 2 m thick Mission dike, the 8 m thick George Ashley dike, and the 25 m thick Stewart dike. Calculations were based on conductive cooling equations accounting for latent heat of crystallization, a melt emplacement temperature of 650 °C into 150 °C fractured, gabbroic country rock at a depth of 5 km, and an estimated 3 wt% initial H2O content in the melt. Cooling to -5 cm/s. Crystal size distribution (CSD) studies of garnet from layered aplites suggest growth rates of about 10-6 cm/s. These results indicate that the dikes cooled and crystallized rapidly, with variable nucleation rates but high overall crystal-growth rates. Initial high nucleation rates coincident with emplacement and strong undercooling can account for the millimeter-size aplite grains. Lower nucleation rates coupled with high growth rates can explain the decimeter-size minerals in the hanging walls, cores, and miarolitic cavities of the pegmatites. The presence of tourmaline and/or lepidolite throughout these dikes suggests that although the melts were initially H2O-undersaturated, high melt concentrations of incompatible (or fluxing) components such as B, F, and Li (±H2O), aided in the development of large pegmatitic crystals that grew rapidly in the short times suggested by the conductive cooling models.
Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz
2016-01-01
Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, P. O. A.; Ryves, L.; Tucker, M. D.
2008-10-01
Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less
Lithospheric strength and its relationship to the elastic and seismogenic layer thickness
NASA Astrophysics Data System (ADS)
Watts, A. B.; Burov, E. B.
2003-08-01
Plate flexure is a phenomenon that describes how the lithosphere responds to long-term (>105 yr) geological loads. By comparing the flexure in the vicinity of ice, volcano, and sediment loads to predictions based on simple plate models it has been possible to estimate the effective elastic thickness of the lithosphere, Te. In the oceans, Te is the range 2-50 km and is determined mainly by plate and load age. The continents, in contrast, are characterised by Te values of up to 80 km and greater. Rheological considerations based on data from experimental rock mechanics suggest that Te reflects the integrated brittle, elastic and ductile strength of the lithosphere. Te differs, therefore, from the seismogenic layer thickness, Ts, which is indicative of the depth to which anelastic deformation occurs as unstable frictional sliding. Despite differences in their time scales, Te and Ts are similar in the oceans where loading reduces the initial mechanical thickness to values that generally coincide with the thickness of the brittle layer. They differ, however, in continents, which, unlike oceans, are characterised by a multi-layer rheology. As a result, Te≫Ts in cratons, many convergent zones, and some rifts. Most rifts, however, are characterised by a low Te that has been variously attributed to a young thermal age of the rifted lithosphere, thinning and heating at the time of rifting, and yielding due to post-rift sediment loading. Irrespective of their origin, the Wilson cycle makes it possible for low values to be inherited by foreland basins which, in turn, helps explain why similarities between Te and Ts extend beyond rifts into other tectonic regions such as orogenic belts and, occasionally, the cratons themselves.
Effect of layer thickness on the elution of bulk-fill composite components.
Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof
2017-01-01
An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Quadratic bottom friction coefficient: 0.003 Bottom boundary layer thickness: 10 m EMC/MMAB Information . Provide seamless boundary and initial conditions to regional ocean physical and biogeochemical models RTOFS. Their report is available here (pdf). Model Configuration The dynamical model is HYCOM. The model
NASA Astrophysics Data System (ADS)
Geenen, F. A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.
2018-02-01
The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of tc = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 ° C , thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness tc. The results are discussed in the framework of classical nucleation theory.
High efficiency low cost thin film silicon solar cell design and method for making
Sopori, B.L.
1999-04-27
A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.
Shin, Ji Soo
2017-01-01
Purpose The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. Methods This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. Results The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 µm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Conclusions Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. PMID:29022292
Shin, Ji Soo; Lee, Young Hoon
2017-12-01
The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 μm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society
Time-dependent Calculations of an Impact-triggered Runaway Greenhouse Atmosphere on Mars
NASA Technical Reports Server (NTRS)
Segura, T. L.; Toon, O. B.; Colaprete, A.
2003-01-01
Large asteroid and comet impacts result in the production of thick (greater than tens of meters) global debris layers of 1500+ K and the release through precipitation of impact-injected steam and melting ground ice) of large amounts (greater than tens of meters global equivalent thickness) of water on the surface of Mars. Modeling shows that the surface of Mars is still above the freezing point of water after the rainout of the impact-injected steam and melting of subsurface ice. The energy remaining in the hot debris layer will allow evaporation of this water back into the atmosphere where it may rain out at a later time. Given a sufficiently rapid supply of this water to the atmosphere it will initiate a temporary "runaway" greenhouse state.
Streakline flow visualization of discrete hole film cooling with holes inclined 30 deg to surface
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.; Lane, J. M.
1976-01-01
Film injection from three rows of discrete holes angled 30 deg to the surface in line with mainstream flow and spaced 5 diameters apart in a staggered array was visualized by using helium bubbles as tracer particles. Both the main stream and the film injectant were ambient air. Detailed streaklines showing the turbulent motion of the film mixing with the main stream were obtained by photographing small, neutrally buoyant helium-filled soap bubbles which followed the flow field. The ratio of boundary layer thickness to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. The results showed the behavior of the film and its interaction with the main stream for a range of blowing rates and two initial boundary layer thicknesses.
Cloud layer thicknesses from a combination of surface and upper-air observations
NASA Technical Reports Server (NTRS)
Poore, Kirk D.; Wang, Junhong; Rossow, William B.
1995-01-01
Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.
NASA Astrophysics Data System (ADS)
Boulahanis, B.; Aghaei, O.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Nedimovic, M. R.; Carton, H. D.; Canales, J. P.
2017-12-01
Recent studies suggest that eustatic sea level fluctuations induced by glacial cycles in the Pleistocene may influence mantle-melting and volcanic eruptions at mid-ocean ridges (MOR), with models predicting variation in oceanic crustal thickness linked to sea level change. Previous analyses of seafloor bathymetry as a proxy for crustal thickness show significant spectral energy at frequencies linked to Milankovitch cycles of 1/23, 1/41, and 1/100 ky-1, however the effects of faulting in seafloor relief and its spectral characteristics are difficult to separate from climatic signals. Here we investigate the hypothesis of climate driven periodicity in MOR magmatism through spectral analysis, time series comparisons, and statistical characterization of bathymetry data, seismic layer 2A thickness (as a proxy for extrusive volcanism), and seafloor-to-Moho thickness (as a proxy for total magma production). We utilize information from a three-dimensional multichannel seismic study of the East Pacific Rise and its flanks from 9°36`N to 9°57`N. We compare these datasets to the paleoclimate "LR04" benthic δ18O stack. The seismic dataset covers 770 km2 and provides resolution of Moho for 92% of the imaged region. This is the only existing high-resolution 3-D image across oceanic crust, making it ideal for assessing the possibility that glacial cycles modulate magma supply at fast spreading MORs. The layer 2A grid extends 9 km (170 ky) from the ridge axis, while Moho imaging extends to a maximum of 16 km (310 ky). Initial results from the East Pacific Rise show a relationship between sea level and both crustal thickness and sea floor depth, consistent with the hypothesis that magma supply to MORs may be modulated by glacial cycles. Analysis of crustal thickness and bathymetry data reveals spectral peaks at Milankovitch frequencies of 1/100 ky-1 and 1/41 ky-1 where datasets extend sufficiently far from the ridge. The layer 2A grid does not extend sufficiently far from the ridge to be conclusive. Correlations between sea level and crustal thickness suggest a lag of 65 ky between sea level forcing and crustal thickness response. A further lag of 25 ky is observed between crustal thickness variations and seafloor depth change, which we attribute to the finite width of the crustal formation zone.
Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly.
Xing, Qi; Eadula, Sandeep R; Lvov, Yuri M
2007-06-01
Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.
Heteroepitaxy of orientation-patterned nonlinear optical materials
NASA Astrophysics Data System (ADS)
Tassev, Vladimir L.; Vangala, Shivashankar R.; Peterson, Rita D.; Snure, Michael
2018-03-01
We report some recent results on thick heteroepitaxial growth of GaP on GaAs substrates and on orientation-patterned (OP) GaAs templates conducted in a hot-wall horizontal quartz reactor for Hydride Vapor Phase Epitaxy. The growths on the plain substrates resulted in up to 500 μm thick GaP with smooth surface morphology (RMS < 1-2 nm) and high crystalline quality (FWHM = 100-150 arcsec), comparable to the quality of the related homoepitaxial growths of GaP on GaP. Up to 300 μm thick OPGaP quasi-phase matching structures with excellent domain fidelity were also heteroepitaxially grown with high reproducibility on OPGaAs templates in support of frequency conversion laser source development for the mid and longwave infrared. We studied the GaAsxP1-x ternary transition layer that forms between the growing film and the substrate. We also undertook steps to determine some important characteristics of heteroepitaxy such as thickness of the pseudomorphous growth and periodicity of the expected misfit dislocations. The formation of these and some other defects and their distribution within the layer thickness was also investigated. Samples were characterized by Nomarski optical microscopy, transmission optical measurements, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The focus was predominantly on the interface and, more precisely, on what influence the pre-growth surface treatment of the substrate has on the initial and the following stages of growth, as well on the mechanisms of the strain relaxation from the lattice and thermal mismatch between layer and substrate. The efforts to accommodate the growing film to the foreign substrate by engineering an intermediate buffer layer were extended to thick growths of GaAsxP1-x ternary with the idea to combine in one material the best of the nonlinear properties of GaP and GaAs that are strictly relevant to the pursued applications.
Stab Sensitivity of Energetic Nanolaminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gash, A; Barbee, T; Cervantes, O
2006-05-22
This work details the stab ignition, small-scale safety, and energy release characteristics of bimetallic Al/Ni(V) and Al/Monel energetic nanolaminate freestanding thin films. The influence of the engineered nanostructural features of the energetic multilayers is correlated with both stab initiation and small-scale energetic materials testing results. Structural parameters of the energetic thin films found to be important include the bi-layer period, total thickness of the film, and presence or absence of aluminum coating layers. In general the most sensitive nanolaminates were those that were relatively thick, possessed fine bi-layer periods, and were not coated. Energetic nanolaminates were tested for their stabmore » sensitivity as freestanding continuous parts and as coarse powders. The stab sensitivity of mock M55 detonators loaded with energetic nanolaminate was found to depend strongly upon both the particle size of the material and the configuration of nanolaminate material, in the detonator cup. In these instances stab ignition was observed with input energies as low as 5 mJ for a coarse powder with an average particle dimension of 400 {micro}m. Selected experiments indicate that the reacting nanolaminate can be used to ignite other energetic materials such as sol-gel nanostructured thermite, and conventional thermite that was either coated onto the multilayer substrate or pressed on it. These results demonstrate that energetic nanolaminates can be tuned to have precise and controlled ignition thresholds and can initiate other energetic materials and therefore are viable candidates as lead-free impact initiated igniters or detonators.« less
NASA Astrophysics Data System (ADS)
Wu, Sigang; Dai, Hongzhe; Wang, Wei
2007-12-01
This paper designs an innovative reinforced concrete (RC) beam strengthened with carbon fiber reinforced concrete (CFRC) composites. Six groups of test beams, five with different degrees of strengthening, achieved by changing the location and the thickness of the CFRC layer, and one virgin RC beam, were tested in four-point bending over a span of 3000 mm. We investigate the effect of the CFRC layer on the flexural performance and the electrical properties of the designed beams. The test results indicate that the CFRC strengthened RC beam exhibits improved electrical properties as well as better mechanical performance. Also, the location and the thickness of the CFRC layer affect the initial electrical resistance and other electrical properties of the beam. Relationships between electrical resistance, loading, deflection and cracks show that the increase in the electrical resistance can be used to monitor the extent of damage to the designed beam. Based on this discovery, a new health monitoring technique for RC structures is produced by means of electrical resistance measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha
2015-01-01
The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less
Zhou, Dejian; Bruckbauer, Andreas; Batchelor, Matthew; Kang, Dae-Joon; Abell, Chris; Klenerman, David
2004-10-12
The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision. Copyright 2004 American Chemical Society
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
Zone compensated multilayer laue lens and apparatus and method of fabricating the same
Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian
2015-07-14
A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.
A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, themore » 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.« less
Spectral ellipsometry as a method for characterization of nanosized films with ferromagnetic layers
NASA Astrophysics Data System (ADS)
Hashim, H.; Singkh, S. P.; Panina, L. V.; Pudonin, F. A.; Sherstnev, I. A.; Podgornaya, S. V.; Shpetnyi, I. A.; Beklemisheva, A. V.
2017-11-01
Nanosized films with ferromagnetic layers are widely used in nanoelectronics, sensor systems and telecommunications. Their properties may strongly differ from those of bulk materials that is on account of interfaces, intermediate layers and diffusion. In the present work, spectral ellipsometry and magnetooptical methods are adapted for characterization of the optical parameters and magnetization processes in two- and three-layer Cr/NiFe, Al/NiFe and Cr(Al)/Ge/NiFe films onto a sitall substrate for various thicknesses of Cr and Al layers. At a layer thickness below 20 nm, the complex refractive coefficients depend pronouncedly on the thickness. In two-layer films, remagnetization changes weakly over a thickness of the top layer, but the coercive force in three-layer films increases by more than twice upon remagnetization, while increasing the top layer thickness from 4 to 20 nm.
Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang
2011-11-01
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
NASA Astrophysics Data System (ADS)
Ghazian, Reza Khabbaz; Buiter, Susanne J. H.
2014-09-01
The Zagros fold-and-thrust belt formed in the collision of Arabia with Central Iran. Its sedimentary sequence is characterised by the presence of several weak layers that may control the style of folding and thrusting. We use 2-D thermo-mechanical models to investigate the role of salt in the southeast Zagros fold-and-thrust belt. We constrain the crustal and lithospheric thickness, sedimentary stratification, convergence velocity, and thermal structure of the models from available geological and geophysical data. We find that the thick basal layer of Hormuz salt in models on the scale of the upper-mantle decouples the overlying sediments from the basement and localises deformation in the sediments by trench-verging shear bands. In the collision stage of the models, basement dips with + 1° towards the trench. Including the basal Hormuz salt improves the fit of predicted topography to observed topography. We use the kinematic results and thermal structure of this large-scale model as the initial conditions of a series of upper-crustal-scale models. These models aim to investigate the effects of basal and intervening weak layers, salt strength, basal dip, and lateral salt distribution on deformation style of the simply folded Zagros. Our results show that in addition to the Hormuz salt at the base of the sedimentary cover, at least one intervening weak layer is required to initiate fold-dominated deformation in the southeast Zagros. We find that an upper-crustal-scale model, with a basal and three internal weak layers with viscosities between 5 × 1018 and 1019 Pa s, and a basement that dips + 1° towards the trench, best reproduces present-day topography and the regular folding of the sedimentary layers of the simply folded Zagros.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1977-01-01
The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiko, M.; Nose, K.; Suenaga, R.
2013-12-28
The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed thatmore » the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.« less
Effects of channel thickness on oxide thin film transistor with double-stacked channel layer
NASA Astrophysics Data System (ADS)
Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk
2017-11-01
To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.
NASA Astrophysics Data System (ADS)
Ozkan, Cengiz Sinan
Strained layer semiconductor structures provide possibilities for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows commensurately with a misfit strain that can be accommodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In addition, in the absence of a capping layer, Sisb{1-x}Gesb{x} films exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. Surface roughening takes place in the form of ridges aligned along {<}100{>} or {<}110{>} directions depending on the film thickness and the rate of strain relief. Recent work has shown that surface roughening makes a very significant contribution to strain relaxation in heteroepitaxial thin films. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation, such as stacking faults and 90sp° dislocations. In addition, capping layers with suitable thickness will surpress surface roughening and keep most of the strain in the film. We study surface roughening and defect formation by conducting controlled annealing experiments on initially flat and defect free films grown by LPCVD in a hydrogen ambient. We study films with both subcritical and supercritical thicknesses. In addition, we compare the relaxation behaviour of capped and uncapped films where surface roughening was inhibited in films with a capping layer. TEM and AFM studies were conducted to study the morphology and microstructure of these films. X-ray diffraction measurements were made to determine the amount of strain relaxation in these films. Further studies of surface roughening on heteroepitaxial films under a positive biaxial stress have shown that, morphological evolution occurs regardless of the sign of stress in the film. Finally, we have studied surface roughening processes in real time by conducting in-situ TEM experiments. We have observed that the kinetics of roughening depend strongly on the annealing ambient.
NASA Astrophysics Data System (ADS)
Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Yu, Ji-Sung; Kim, Joo-Sung; Kim, Duck-Ho; Min, Byoung-Chul; Choe, Sug-Bong
2018-02-01
In this study, we investigate the influence of the ferromagnetic layer thickness on the magnetization process. A series of ultrathin Pt/Co/TiO2/Pt films exhibits domain-wall (DW) speed variation of over 100,000 times even under the same magnetic field, depending on the ferromagnetic layer thickness. From the creep-scaling analysis, such significant variation is found to be mainly attributable to the thickness-dependence of the creep-scaling constant in accordance with the creep-scaling theory of the linear proportionality between the creep-scaling constant and the ferromagnetic layer thickness. Therefore, a thinner film shows a faster DW speed. The DW roughness also exhibits sensitive dependence on the ferromagnetic layer thickness: a thinner film shows smoother DW. The present observation provided a guide for an optimal design rule of the ferromagnetic layer thickness for better performance of DW-based devices.
NASA Astrophysics Data System (ADS)
Saez, Núria; Ruiz, Xavier; Pallarés, Jordi; Shevtsova, Valentina
2013-04-01
An accelerometric record from the IVIDIL experiment (ESA Columbus module) has exhaustively been studied. The analysis involved the determination of basic statistical properties as, for instance, the auto-correlation and the power spectrum (second-order statistical analyses). Also, and taking into account the shape of the associated histograms, we address another important question, the non-Gaussian nature of the time series using the bispectrum and the bicoherence of the signals. Extrapolating the above-mentioned results, a computational model of a high-temperature shear cell has been performed. A scalar indicator has been used to quantify the accuracy of the diffusion coefficient measurements in the case of binary mixtures involving photovoltaic silicon or liquid Al-Cu binary alloys. Three different initial arrangements have been considered, the so-called interdiffusion, centred thick layer and the lateral thick layer. Results allow us to conclude that, under the conditions of the present work, the diffusion coefficient is insensitive to the environmental conditions, that is to say, accelerometric disturbances and initial shear cell arrangement.
Diamond heteroepitaxial lateral overgrowth
Tang, Y. -H.; Bi, B.; Golding, B.
2015-02-24
A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moddeman, W.E.; Foose, D.S.; Bowling, W.C.
Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface chemistry of three BORAZON* materials: Type I, 510, and 550. Samples were examined in the ``as-received`` condition and following heat treatments in air. Boron oxides were found on the Type I and 550 BORAZON crystals; oxide thicknesses were estimated to be 15A. The titanium-coated product, 510, was found to have a discontinuous titanium coating with a TiO{sub 2} layer that was approximately 20A thick. Following heat treatment at 800{degrees}C for 1 hr in air, the boron oxide layer on the Type I crystals was foundmore » to increase in thickness to approximately 30A. The same heat treatment on the 510 crystals yielded a multi-layered structure consisting of an enriched outer layer of B{sub 2}O{sub 3} over a predominantly TiO{sub 2} one. The entire initial titanium coating was oxidized, and segregated patches of B{sub 2}O{sub 3} (``islands``) were observed. The segregated patches can be explained in terms of the coalescence of liquid B{sub 2}O{sub 3} (melting point = 450{degrees}C). The 550 crystals were oxidized at 500{degrees}C. The oxide formed at this temperature was B{sub x}O (x > 0.67). These results were interpreted in terms of their potential use in sealing BORAZON to glass in vitreous bonding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moddeman, W.E.; Foose, D.S.; Bowling, W.C.
Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface chemistry of three BORAZON* materials: Type I, 510, and 550. Samples were examined in the as-received'' condition and following heat treatments in air. Boron oxides were found on the Type I and 550 BORAZON crystals; oxide thicknesses were estimated to be 15A. The titanium-coated product, 510, was found to have a discontinuous titanium coating with a TiO{sub 2} layer that was approximately 20A thick. Following heat treatment at 800{degrees}C for 1 hr in air, the boron oxide layer on the Type I crystals was foundmore » to increase in thickness to approximately 30A. The same heat treatment on the 510 crystals yielded a multi-layered structure consisting of an enriched outer layer of B{sub 2}O{sub 3} over a predominantly TiO{sub 2} one. The entire initial titanium coating was oxidized, and segregated patches of B{sub 2}O{sub 3} ( islands'') were observed. The segregated patches can be explained in terms of the coalescence of liquid B{sub 2}O{sub 3} (melting point = 450{degrees}C). The 550 crystals were oxidized at 500{degrees}C. The oxide formed at this temperature was B{sub x}O (x > 0.67). These results were interpreted in terms of their potential use in sealing BORAZON to glass in vitreous bonding.« less
Earliest accumulation history of the north polar layered deposits, Mars from SHARAD
NASA Astrophysics Data System (ADS)
Nerozzi, Stefano; Holt, John W.
2018-07-01
The approximately 2 km thick north polar layered deposits (NPLD) are often considered to contain the most complete and detailed stratigraphic records of recent climate of Mars. Exposures of the dense layering within troughs and scarps allowed detailed reconstructions of the latest accumulation history of these water ice deposits, but we lack knowledge of their initial emplacement. The Shallow Radar (SHARAD) onboard Mars Reconnaissance Orbiter (MRO) penetrates the NPLD to their base and detects their internal layering, overcoming the limitation of scarce and scattered visible outcrops of the lowermost sequences. In this study, we map reflectors in SHARAD data that result from discrete stratigraphic horizons in order to delineate the three-dimensional stratigraphy of the lowermost ∼500 m NPLD sequence and reconstruct their accumulation history. We confirm the large-scale lateral continuity and thickness uniformity of the deposits previously detected within the lowermost NPLD. However, stratigraphic complexity-in the form of pinch-outs and significant thickness variations-arises when we examine single radar units. We find evidence of an initially limited geographic stability of water ice within two deposits that are centered at the North Pole and present-day Gemina Lingula. A period of lateral ice sheet growth followed, interrupted only once by a retreat episode. Lower net accumulation is observed on pre-existing slopes, suggesting a reduction of water ice stability due to increased solar radiation incidence and/or transport by katabatic winds. Lateral transport of water ice by wind is also suggested by thickness undulations toward the top of the sequence, resembling cyclic steps. Water ice accumulation models based on orbital forcing predict a sequence of deposition and retreat events that is generally compatible with our reconstructed accumulation history. Therefore, we interpret the stratigraphic complexity that we observe as regional and, possibly global, climate change induced by orbital forcing. We also find that at least two units are completely buried within the NPLD and do not outcrop, and that NPLD deposition in some places was contemporaneous with deposition of the stratigraphically underlying cavi unit in other places. Both of these findings show that radar reflector mapping is a necessary complement to any stratigraphic reconstruction based on visible exposures.
Investigation of Al/CuO multilayered thermite ignition
NASA Astrophysics Data System (ADS)
Nicollet, Andréa; Lahiner, Guillaume; Belisario, Andres; Souleille, Sandrine; Djafari-Rouhani, Mehdi; Estève, Alain; Rossi, Carole
2017-01-01
The ignition of the Al/CuO multilayered material is studied experimentally to explore the effects of the heating surface area, layering, and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area must be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu2O, and then the oxygen diffuses across the Cu2O and Al2O3 layers before reaching the Al layer, where it reacts to form Al2O3. The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also provide evidence that, for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value. This time point is referred to as the minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of the CuO thickness), the minimum ignition response time can be easily tuned from 59 μs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. This work not only provides a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but also details a reliable and robust MicroElectroMechanical Systems process to fabricate igniters and brings new understanding of phenomena governing the ignition process of Al/CuO multilayers.
NASA Technical Reports Server (NTRS)
Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.;
2002-01-01
During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).
Characterization on White Etching Layer Formed During Ceramic Milling of Inconel 718
NASA Astrophysics Data System (ADS)
Kruk, A.; Wusatowska-Sarnek, A. M.; Ziętara, M.; Jemielniak, K.; Siemiątkowski, Z.; Czyrska-Filemonowicz, A.
2018-03-01
A comprehensive characterization of the near surface formed during the interrupted high-speed dry ceramic milling of IN718 was performed using light imaging, SEM/EDX, TEM and nano-hardness methods. It was found out that even an initial cut by a fresh tool creates a sub-surface alteration roughly 20 µm deep. The depth of altered sub-surface progressively changed to a roughly 40 µm when the tool reached an approximately half of its life, and almost 60 µm at the tool's end of the life. In the last two cases, the visible WEL (utilizing a light microscope) of the thickness roughly 6 and 15 µm was created, respectively. The outermost layer of the deformed subsurface was found to be for all three cases approximately 1.5 µm thick and composed of dynamically recrystallized γ phase grains with the average diameter of approximately 150 nm. This layer was free of δ phase and γ' or γ″ precipitates. It was followed by a plastically deformed zone.
Native oxide formation on pentagonal copper nanowires: A TEM study
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian
2018-06-01
Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.
NASA Astrophysics Data System (ADS)
Houng, Y. M.; Tan, M. R. T.; Liang, B. W.; Wang, S. Y.; Yang, L.; Mars, D. E.
1994-03-01
We report the growth of InGaAs/GaAs vertical cavity surface emitting lasers (VCSELs) with an emission wavelength at 0.98 μm by gas-source molecular beam epitaxy (GSMBE). The surface emitting laser diodes are composed of a 15-pair p + GaAs/AlAs graded mirror with a 3-quantum well In 0.2Ga 0.8As active region and a 16.5-pair n + GaAs/AlAs grade mirror on an n + GaAs substrate. We use a simple interferometric technique for in-situ monitoring and feedback control of layer thickness to obtain a highly reproducible Bragg reflector. This technique uses an optical pyrometer to measure apparent temperature oscillations of the growing epi-layer surface. These measurements can be performed with continuous substrate rotation and without any growth interruption. The growing layer thickness can then be related to the apparent temperature oscillation spectrum. When the layer reaches the desired thickness, the growth of the subsequent layer is then initiated. By making layer thickness measurements and control in real-time throughout the entire growth cycle of the structure, the center of the mirror reflectivity and the Fabry-Pérot resonance at the desired wavelength can be reproducibly obtained. The reproducibility of the center wavelength and FWHM of the reflectivity stop-band with a variation of ≤ 0.2% was achieved in the AlAs/GaAs mirror stacks grown using this technique. The VCSEL structures with a variation of the Fabry-Pérot wavelength of ≤ 0.4% have been grown. Bottom-emitting laser diodes were fabricated and operated CW at room temperature. CW threshold currents of 3 and 6 mA are measured at room temperature for 10 and 25 μm diameter lasers, respectively. Output powers higher than 15 mW are obtained from these devices. These devices have an external quantum efficiency higher than 40%.
Overview of Boundary Layer Transition Research in Support of Orbiter Return To Flight
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Greene, Francis A.; Kinder, Gerald R.; Wang, K. C.
2006-01-01
A predictive tool for estimating the onset of boundary layer transition resulting from damage to and/or repair of the thermal protection system was developed in support of Shuttle Return to Flight. The boundary layer transition tool is part of a suite of tools that analyze the aerothermodynamic environment to the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time (and thus Mach number) at transition onset is predicted to help define the aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local thermal protection system and structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against select flight data. Computed local boundary layer edge conditions were used to correlate the results, specifically the momentum thickness Reynolds number over the edge Mach number and the boundary layer thickness. For the initial Return to Flight mission, STS-114, empirical curve coefficients of 27, 100, and 900 were selected to predict transition onset for protuberances based on height, and cavities based on depth and length, respectively.
NASA Astrophysics Data System (ADS)
Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong
2017-09-01
Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.
Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.
2017-07-01
The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of -5.13 × 104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.
2013-08-01
Sasobit® STA 0+35 cross-section layer thicknesses as constructed............................... 36 Figure 50. Evotherm ™ center-line layer thicknesses...as constructed. ................................................ 37 Figure 51. Evotherm ™ STA 0+15 cross-section layer thicknesses as constructed...37 Figure 52. Evotherm ™ STA 0+25 cross-section layer thicknesses as constructed. .......................... 38 Figure 53
Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer
NASA Astrophysics Data System (ADS)
Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra
2017-05-01
Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.
Metaporous layer to overcome the thickness constraint for broadband sound absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young, E-mail: yykim@snu.ac.kr
The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriatemore » partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.« less
Shin, Hye-Young; Park, Hae-Young Lopilly; Jung, Kyoung-In; Choi, Jin-A; Park, Chan Kee
2014-01-01
To determine whether the ganglion cell-inner plexiform layer (GCIPL) or circumpapillary retinal nerve fiber layer (cpRNFL) is better at distinguishing eyes with early glaucoma from normal eyes on the basis of the the initial location of the visual field (VF) damage. Retrospective, observational study. Eighty-four patients with early glaucoma and 43 normal subjects were enrolled. The patients with glaucoma were subdivided into 2 groups according to the location of VF damage: (1) an isolated parafoveal scotoma (PFS, N = 42) within 12 points of a central 10 degrees in 1 hemifield or (2) an isolated peripheral nasal step (PNS, N = 42) within the nasal periphery outside 10 degrees of fixation in 1 hemifield. All patients underwent macular and optic disc scanning using Cirrus high-definition optical coherence tomography (Carl Zeiss Meditec, Dublin, CA). The GCIPL and cpRNFL thicknesses were compared between groups. Areas under the receiver operating characteristic curves (AUCs) were calculated. Comparison of diagnostic ability using AUCs. The average and minimum GCIPL of the PFS group were significantly thinner than those of the PNS group, whereas there was no significant difference in the average retinal nerve fiber layer (RNFL) thickness between the 2 groups. The AUCs of the average (0.962) and minimum GCIPL (0.973) thicknesses did not differ from that of the average RNFL thickness (0.972) for discriminating glaucomatous changes between normal and all glaucoma eyes (P =0.566 and 0.974, respectively). In the PFS group, the AUCs of the average (0.988) and minimum GCIPL (0.999) thicknesses were greater than that of the average RNFL thickness (0.961, P =0.307 and 0.125, respectively). However, the AUCs of the average (0.936) and minimum GCIPL (0.947) thicknesses were lower than that of the average RNFL thickness (0.984) in the PNS group (P =0.032 and 0.069, respectively). The GCIPL parameters were more valuable than the cpRNFL parameters for detecting glaucoma in eyes with parafoveal VF loss, and the cpRNFL parameters were better than the GCIPL parameters for detecting glaucoma in eyes with peripheral VF loss. Clinicians should know that the diagnostic capability of macular GCIPL parameters depends largely on the location of the VF loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2016-07-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
NASA Astrophysics Data System (ADS)
Li, Lu; Qiu, Nansheng
2017-06-01
In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.
Thermal Evolution of The Moon With a Thicker Kreep Layer
NASA Astrophysics Data System (ADS)
Hess, P. C.; Parmentier, E. M.
1998-01-01
The canonical view of the magma ocean is of a monotonically cooling large magma body perhaps enveloping the entire Moon, which solidified within about 100 my of the formation of the Moon. This model is consistent with W-Hf Sm-Nd isotope data, the very old ages of FAN and some magnesian-suite norites and troctolites and the model ages for KREEP. Recently, Korotev and Wieczorek and Phillips have argued that the crystallization of the last dregs of the magma ocean was not only prolonged but large amounts of radiogenic heating resulted in the remelting and dissolution of mafic cumulates by the UrKREEP liquid. These melts are believed to be parent liquids to the magnesian-suite troctolites because they account for the combination of high contents of incompatible trace elements and the very refractory major element composition. This model requires that the heat budget changes from one that cools the magma ocean to one that initiates reheating. About the only way to reverse this cooling trend is to segregate the magma ocean under some portions of the crust. For example, if the residual liquids are locally doubled in thickness the surface cooling is reduced thus reversing the cooling tend. By mass balance some portions of the magma ocean would be thinned and thereby would experience an accelerated cooling.accelerated cooling. We have examined the thermal history of the upper Moon. We formulate models of radioactive heating and conductive cooling to examine the possible role of a thick KREEP-rich layer on lunar regional thermal evolution. The models treat heat transfer by conduction in a spherical geometry with a KREEP layer containing a prescribed rate of radiogenic heating. The region of thick KREEP presumably exists only within the Imbrium-Procellarum region of the Moon. The spherical model is a reasonable representation of this case since the lateral dimensions of the region are large compared to its depth. The edges of the thick KREEP region which are not treated explicitly in this model will be small compared to the size of the region- As a basis for discussion we consider a 10km thick KREEP layer at the bottom of a 50km thick crust. The crust is capped with a 3km thick brecciated regolith layer in which the conductivity is reduced by a factor of ten. Within the layer we examine heating rates that are multiples of the rate radiogenic heating due to chondritic abundances of U and Th.
Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei
2013-02-01
High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.
Clinical applications of very high frequency ultrasound in ophthalmology
NASA Astrophysics Data System (ADS)
Silverman, Ronald H.; Coleman, D. Jackson; Reinstein, Dan Z.; Lizzi, Frederic L.
2004-05-01
The eye is ideally suited for diagnostic imaging with very high frequency (>35 MHz) ultrasound (VHFU) because of its peripheral location and cystic structure. VHFU allows high resolution visualization of pathologies affecting the anterior segment of the eye, including tumors, cysts, foreign bodies, and corneal pathologies. We developed a series of prototype instruments suitable for ophthalmic studies using both polymer and lithium niobate transducers, with digitization of radiofrequency echo data at up to 500 MHz. While initially using linear scan geometries, we subsequently developed an arc-shaped scan matched to the curvature of the 0.5-mm-thick cornea to circumvent the effect of specular deflection of the ultrasound beam produced by the corneas curved surface. This technique allowed us to obtain data across the entire cornea and determination of the thickness of each corneal layer, including the epithelium (approximately 50 microns in thickness) and the surgically induced interface produced in LASIK, the most common form of refractive surgery. By scanning in a series of meridians, and applying optimized signal processing strategies (deconvolution, analytic signal envelope determination), corneal pachymetric maps representing the local thickness of each layer can be generated and aid in diagnosis of surgically induced defects or refractive abnormalities.
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
NASA Astrophysics Data System (ADS)
Richardson, Mark; Stephens, Graeme L.
2018-03-01
Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.
Relative Translucency of a Multilayered Ultratranslucent Zirconia Material.
Shamseddine, Loubna; Majzoub, Zeina
2017-12-01
The aim of this study was to compare the translucency parameter (TP) of ultratranslucent multilayered (UTML) zirconia according to thickness and layer level. Rectangles of UTML zirconia with four layers [dentin layer (DEL), first transitional layer (FTL), second transitional layer (STL), and enamel layer (ENL)] and four different thicknesses (0.4, 0.6, 0.8, and 1 mm) were milled from blanks. Digital images were taken in a dark studio against white and black backgrounds under simulated daylight illumination and international commission on illumination (CIE) Lab* color values recorded using Photoshop Creative Cloud software. The TP was computed and compared according to thickness and layer level using analysis of variance (ANOVA) followed by Bonferroni post hoc analysis for multiple comparisons. Significance was set at p < 0.05. In each thickness, TP values were similar between any two layers. The significant effect of thickness on the TP was observed only in the first two layers. In the DEL, translucency was significantly greater at 0.4 mm than all other thicknesses. In the FTL, differences were significant between 0.4 and 0.8 mm and between 0.4 and 1 mm. The investigated zirconia does not seem to show gradational changes in relative translucency from dentin to enamel levels regardless of the thickness used. Thickness affected the TP only in the first two layers with better translu-cency at 0.4 mm. Since relative translucency does not seem to be significantly different between layers, clinicians can modify the apicocoronal positioning of the UTML layers within the restoration according to the desired Chroma without any implications on the clinically perceived translucency. While the thickness of 0.4 mm may be suggested for anterior esthetic veneers because of its higher translucency, the other thicknesses of 0.6 to 1 mm can be used to mask colored abutments in full contour restorations.
Non-Uniform Thickness Electroactive Device
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2006-01-01
An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
A steadying effect of acoustic excitation on transitory stall
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1991-01-01
The effect of acoustic excitation on a class of separated flows with a transitional boundary layer at the point of separation is considered. Experimental results on the flow over airfoils, a two-dimensional backward-facing step, and through large angle conical diffusers are presented. In all cases, the separated flow undergoes large amplitude fluctuations, much of the energy being concentrated at unusually low frequencies. In each case, an appropriate high frequency acoustic excitation is found to be effective in reducing the fluctuations substantially. The effective excitation frequency scales on the initial boundary layer thickness and the effect is apparently achieved through acoustic tripping of the separating boundary layer.
Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness
NASA Astrophysics Data System (ADS)
Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti
2018-01-01
The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.
The frictional properties of a simulated gouge having a fractal particle distribution
Biegel, R.L.; Sammis, C.G.; Dieterich, J.H.
1989-01-01
The frictional properties of a layer of simulated Westerly granite fault gouge sandwiched between sliding blocks of Westerly granite have been measured in a high-speed servo-controlled double-direct shear apparatus. Most gouge layers were prepared to have a self-similar particle distribution with a fractal dimension of 2.6. The upper fractal limit was varied between 45 and 710 ??m. Some gouges were prepared with all particles in the range between 360 and 710 ??m. In each experiment the sliding velocity was cyclically alternated between 1 and 10 ??ms-1 and the coefficient of friction ??m and its transient parameters a, b and Dc were measured as functions of displacement. In addition to the particle size distribution, the following experimental variables were also investigated: the layer thickness (1 and 3 mm), the roughness of the sliding surfaces (Nos 60 and 600 grit) and the normal stress (10 and 25 MPa). Some of the sample assemblies were epoxy impregnated following a run so the gouge structure could be microscopically examined in thin section. We observed that gouges which were initially non-fractal evolved to a fractal distribution with dimension 2.6. Gouges which had an initial fractal distribution remained fractal. When the sliding blocks had smooth surfaces, the coefficient of friction was relatively low and was independent of the particle distribution. In these cases, strong velocity weakening was observed throughout the experiment and the transient parameters a, b and Dc, remained almost constant. When the sliding blocks had rough surfaces, the coefficient of friction was larger and more dependent on the particle distribution. Velocity strengthening was observed initially but evolved to velocity weakening with increased sliding displacement. All three transient parameters changed with increasing displacement. The a and b values were about three times as large for rough surfaces as for smooth. The characteristic displacement Dc was not sensitive to surface roughness but was the only transient parameter which was sensitive to the normal stress. For the case of rough surfaces, the coefficient of friction of the 1 mm thick gouge was significantly larger than that for the 3 mm thick layers. Many of these observations can be explained by a micromechanical model in which the stress in the gouge layer is heterogeneous. The applied normal and shear stresses are supported by 'grain bridges' which span the layer and which are continually forming and failing. In this model, the frictional properties of the gouge are largely determined by the dominant failure mode of the bridging structures. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni
2007-08-15
Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 {mu}m and the blocking layer thicknesses varied from 1 to 51 {mu}m. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was {approx}200 {mu}m. Asmore » expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk.« less
Cordeiro, Daniela Valença; Lima, Verônica Castro; Castro, Dinorah P; Castro, Leonardo C; Pacheco, Maria Angélica; Lee, Jae Min; Dimantas, Marcelo I; Prata, Tiago Santos
2011-01-01
To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC) and conventional peripapillary retinal nerve fiber layer (pRNFL) analyses provided by spectral domain optical coherence tomography (SD-OCT) in glaucoma. Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers) and pRNFL thickness measurement (3.45 mm circular scan) by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC) curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm(2) disc sizes were arbitrarily chosen (based on data distribution) and the predicted areas under the ROC curves (AUCs) and sensitivities were compared at fixed specificities for each. Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872) and GCC parameters (average thickness = 0.824; P = 0.19). The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176) or average GCC thickness (0.088; P ≥ 0.56). AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm(2)) were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities - at 80% specificity for average pRNFL (84.5%) and GCC thicknesses (74.5%) - were found with disc sizes fixed at 1.5 mm(2) and 2.5 mm(2). Diagnostic accuracy was similar between pRNFL and GCC thickness parameters. Although not statistically significant, there was a trend for a better diagnostic accuracy of pRNFL thickness measurement in cases of smaller discs. For GCC analysis, an inverse effect was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.
The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less
Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; ...
2017-08-29
The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less
Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko
2012-09-01
Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.
NASA Astrophysics Data System (ADS)
Yu, Y.; Hopkins, C.
2018-05-01
Time-dependent forces applied by 2 and 4.5 mm diameter drops of water (with velocities up to terminal velocity) impacting upon a glass plate with or without a water layer (up to 10 mm depth) have been measured using two different approaches, force transduction and wavelet deconvolution. Both approaches are in close agreement for drops falling on dry glass. However, only the wavelet approach is able to measure natural features of the splash on shallow water layers that impart forces to the plate after the initial impact. At relatively high velocities (including terminal velocity) the measured peak force from the initial impact is significantly higher than that predicted by idealised drop shape models and models from Roisman et al. and Marengo et al. Hence empirical formulae are developed for the initial time-dependent impact force from drops falling at (a) different velocities up to and including terminal velocity onto a dry glass surface, (b) terminal velocity onto dry glass or glass with a water layer and (c) different velocities below terminal velocity onto dry glass or glass with a water layer. For drops on dry glass, the empirical formulae are applicable to a glass plate or a composite layered plate with a glass surface, although they apply to other plate thicknesses and are applicable to any plate material with a similar surface roughness and wettability. The measurements also indicate that after the initial impact there can be high level forces when bubbles are entrained in the water layer.
Forecast model applications of retrieved three dimensional liquid water fields
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data.
Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro
2013-02-01
Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Passivation of uranium towards air corrosion by N 2+ and C + ion implantation
NASA Astrophysics Data System (ADS)
Arkush, R.; Mintz, M. H.; Shamir, N.
2000-10-01
The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.
2014-10-01
A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
Effect of layer thickness on the properties of nickel thermal sprayed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id
Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less
Predoi, Mihai Valentin; Ech Cherif El Kettani, Mounsif; Leduc, Damien; Pareige, Pascal; Coné, Khadidiatou
2015-08-01
The capability of shear horizontal (SH) guided waves, to evaluate geometrical imperfections in a bonding layer, is investigated. SH waves are used in a three-layer structure in which the adhesive layer has variable thickness. It is proven that the SH waves are adapting to the local thickness of the adhesive layer (adiabatic waves). This is particularly useful in case of small thickness variations, which is of technical interest. The influence of thickness and stiffness of the adhesive layer on the wavenumbers are investigated. The selected SH2 mode is proven to be very sensitive to the adhesive layer thickness variation in the given frequency range and considerably less sensitive to the adhesive stiffness variation. This property is due to its specific displacement field and is important in practical applications, such as inspection techniques based on SH waves, in order to avoid false alarms.
NASA Astrophysics Data System (ADS)
Assis, Anu; Shahul Hameed T., A.; Predeep, P.
2017-06-01
Mobility and current handling capabilities of Organic Field Effect Transistor (OFET) are vitally important parameters in the electrical performance where the material parameters and thickness of different layers play significant role. In this paper, we report the simulation of an OFET using multi physics tool, where the active layer is pentacene and Poly Methyl Methacrylate (PMMA) forms the dielectric. Electrical characterizations of the OFET on varying the thickness of the dielectric layer from 600nm to 400nm are simulated and drain current, transconductance and mobility are analyzed. In the study it is found that even though capacitance increases with reduction in dielectric layer thickness, the transconductance effect is reflected many more times in the mobility which in turn could be attributed to the variations in transverse electric field. The layer thickness below 300nm may result in gate leakage current points to the requirement of optimizing the thickness of different layers for better performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, L.H., E-mail: l2liao@uwaterloo.ca; Jin, H.; Gallerneault, M.
2015-03-15
The through-thickness annealing behavior of a laminated AA3xxx–AA6xxx alloy system at 300 °C has been studied by scanning electron microscopy, electron backscatter diffraction analysis, electron probe micro-analysis, differential scanning calorimetry, and hardness measurement. Results show that the recrystallization process starts at the interface region between the AA3xxx (clad) and AA6xxx (core) layers. Subsequently, the recrystallization process front progresses into the core layer, while the clad layer is the last region to recrystallize. It is also found that precipitation precedes recrystallization in the entire laminate at the investigated temperature. The preferential onset of recrystallization at the interface region is attributed tomore » the net driving pressure being the highest in this region. The factors that lead to such enhanced net driving pressure are (a) deformation incompatibility between the two alloy layers, (b) lower solute content of the interface, which also leads to lower volume fraction of precipitates, and (c) an accelerated rate of precipitate coarsening due to the presence of a higher density of dislocations. The gradual progress of recrystallization from the interface towards the core layer is dictated by precipitate coarsening and the dependence of its rate on the density of deformation-induced dislocations. The lower driving pressure due to lower work hardening capacity, high solute drag pressure due to Mn, and additional Zener drag from precipitates that form due to solute redistribution during annealing explain the late initiation of recrystallization in the clad layer. - Highlights: • The through-thickness recrystallization of a laminated system is investigated. • The early onset of recrystallization at the interface is discussed. • The effects of precipitation and coarsening on recrystallization are analyzed.« less
Fire performances of foam core particleboards continuously produced in a one-step process
Ali Shalbafan; Mark A. Dietenberger; Johannes Welling
2013-01-01
For further progress of novel foam core particleboards, their fire performance was examined with cone calorimetry tests (ASTM E 1354-11a). Specimens with varying surface layer thicknesses, foam densities (polystyrene foam), and processing temperatures were tested. Using the initially recommended cone irradiance of 35 kW/m2, different flammability...
Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.
Distributed bragg reflector using AIGaN/GaN
Waldrip, Karen E.; Lee, Stephen R.; Han, Jung
2004-08-10
A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.
Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook
2014-06-25
We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.
Patterns of brittle deformation under extension on Venus
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Zuber, M. T.
1994-01-01
The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei
The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Msmore » change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.« less
Applying a uniform layer of disinfectant by wiping.
Cooper, D W
2000-01-01
Disinfection or sterilization often requires applying a film of liquid to a surface, frequently done by using a wiper as the applicator. The wiper must not only hold a convenient amount of liquid, it must deposit it readily and uniformly. Contact time is critical to disinfection efficacy. Evaporation can limit the contact time. To lengthen the contact time, thickly applied layers are generally preferred. The thickness of such layers can be determined by using dyes or other tracers, as long as the tracers do not significantly affect the liquid's surface tension and viscosity and thus do not affect the thickness of the applied layer. Alternatively, as done here, the thickness of the layer can be inferred from the weight loss of the wiper. Results are reported of experiments on thickness of the layers applied under various conditions. Near saturation, hydrophilic polyurethane foam wipers gave layers roughly 10 microns thick, somewhat less than expected from hydrodynamic theory, but more than knitted polyester or woven cotton. Wipers with large liquid holding capacity, refilled often, should produce more nearly uniform layers. Higher pressures increase saturation in the wiper, tending to thicken the layer, but higher pressures also force liquid from the interface, tending to thin the layer, so the net result could be thicker or thinner layers, and there is likely to be an optimal pressure.
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.
2018-03-01
In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).
Tunable self-organization of nanocomposite multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. Q.; Pei, Y. T.; Shaha, K. P.
In this letter we report the controlled growth and microstructural evolution of self-assembled nanocomposite multilayers that are induced by surface ion-impingement. The nanoscale structures together with chemical composition, especially at the growing front, have been investigated with high-resolution transmission electron microscopy. Concurrent ion impingement of growing films produces an amorphous capping layer 3 nm in thickness where spatially modulated phase separation is initiated. It is shown that the modulation of multilayers as controlled by the self-organization of nanocrystallites below the capping layer, can be tuned through the entire film.
NASA Astrophysics Data System (ADS)
Teimouri, R.; Mohammadpour, R.
2018-06-01
CH3 NH3 PbI3 (MAPbI3) thin film solar cells, which are reported at laboratory efficiency scale of nearly 22%, are the subject of much attention by energy researchers due to their low cost buildup, acceptable efficiency, high absorption coefficient and diffusion length. The main purpose of this research is to simulate the structure of thin film perovskite solar cells through numerical simulation of SCAPS based on the empirical data for different hole transport layers. After simulating the initial structure of FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD solar cell, the hole transport layer Spiro-OMeTAD thickness was optimized on a small scale using modeling. The researchers also sought to reduce the amount of this material and the cost of construction. Ultimately, an optimum thickness of 140 nm was obtained for this cell with efficiency of 22.88%. The effect of employing alternative inorganic hole transport layer was investigated as a substitute for Spiro-OMeTAD; Copper antimony sulphide (CuSbS2) was selected due to abundant and available material and high open circuit voltage of about 988 mV. Thickness variations were also performed on a MAPbI3/CuSbS2 solar cell. Finally, It has obtained that perovskite solar cell with 120 nm-thick of CuSbS2 has 23.14% conversion efficiency with acceptable VOC and JSC values.
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
The effect of viscoelasticity on the stability of a pulmonary airway liquid layer
NASA Astrophysics Data System (ADS)
Halpern, David; Fujioka, Hideki; Grotberg, James B.
2010-01-01
The lungs consist of a network of bifurcating airways that are lined with a thin liquid film. This film is a bilayer consisting of a mucus layer on top of a periciliary fluid layer. Mucus is a non-Newtonian fluid possessing viscoelastic characteristics. Surface tension induces flows within the layer, which may cause the lung's airways to close due to liquid plug formation if the liquid film is sufficiently thick. The stability of the liquid layer is also influenced by the viscoelastic nature of the liquid, which is modeled using the Oldroyd-B constitutive equation or as a Jeffreys fluid. To examine the role of mucus alone, a single layer of a viscoelastic fluid is considered. A system of nonlinear evolution equations is derived using lubrication theory for the film thickness and the film flow rate. A uniform film is initially perturbed and a normal mode analysis is carried out that shows that the growth rate g for a viscoelastic layer is larger than for a Newtonian fluid with the same viscosity. Closure occurs if the minimum core radius, Rmin(t), reaches zero within one breath. Solutions of the nonlinear evolution equations reveal that Rmin normally decreases to zero faster with increasing relaxation time parameter, the Weissenberg number We. For small values of the dimensionless film thickness parameter ɛ, the closure time, tc, increases slightly with We, while for moderate values of ɛ, ranging from 14% to 18% of the tube radius, tc decreases rapidly with We provided the solvent viscosity is sufficiently small. Viscoelasticity was found to have little effect for ɛ >0.18, indicating the strong influence of surface tension. The film thickness parameter ɛ and the Weissenberg number We also have a significant effect on the maximum shear stress on tube wall, max(τw), and thus, potentially, an impact on cell damage. Max(τw) increases with ɛ for fixed We, and it decreases with increasing We for small We provided the solvent viscosity parameter is sufficiently small. For large ɛ ≈0.2, there is no significant difference between the Newtonian flow case and the large We cases.
NASA Astrophysics Data System (ADS)
Ao, Wen; Wang, Yang; Wu, Shixi
2017-07-01
Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.
Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanoto, H.; Loke, W. K.; Yoon, S. F.
In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less
Layer-by-layer-based silica encapsulation of individual yeast with thickness control.
Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S
2015-01-01
In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral photonic crystals with an anisotropic defect layer.
Gevorgyan, A H; Harutyunyan, M Z
2007-09-01
In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.
Kee, Changwon; Cho, Changhwan
2003-06-01
The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2017-12-01
The relations to calculate the maximum value of strains in processes of bending tubes on benders, in stretched layers of tubes, are presented in this work on the basis of the EU-Directive concerning production of pressure equipment. It has been shown that for large deformations that occur during bending of the pipes on knees, logarithmic strain measures (real) and relative strain measures give different values of strain but equal wall thicknesses in the bending zone. Logarithmic measures are frequently used in engineering practice and are valid for large and small deformations. Reverse expressions were also derived to calculate the required initial wall thickness of the tube to be bent, in order to obtain the desired wall thickness of the knee after bending.
Civelekler, Mustafa; Halili, Ismail; Gundogan, Faith C; Sobaci, Gungor
2009-01-01
Purpose: To investigate the value of temporal retinal nerve fiber layer (RNFLtemporal) thickness in the prediction of malingering. Materials and Methods: This prospective, cross-sectional study was conducted on 33 military conscripts with optic disc temporal pallor (ODTP) and 33 age-and sex-matched healthy controls. Initial visual acuity (VAi) and visual acuity after simulation examination techniques (VAaset) were assessed. The subjects whose VAaset were two or more lines higher than VAi were determined as malingerers. Thickness of the peripapillary RNFL was determined with OCT (Stratus OCT™, Carl Zeiss Meditec, Inc.). RNFLtemporal thickness of the subjects were categorized into one of the 1+ to 4+ groups according to 50% confidence interval (CI), 25% CI and 5% CI values which were assessed in the control group. The VAs were converted to LogMAR-VAs for statistical comparisons. Results: A significant difference was found only in the temporal quadrant of RNFL thickness in subjects with ODTP (P=0.002). Mean LogMAR-VA increased significantly after SETs (P<0.001). Sensitivity, specificity, positive and negative predictive values of categorized RNFLtemporal thickness in diagnosing malingering were 84.6%, 75.0%, 68.8%, 88.2%, respectively. ROC curve showed that RNFLtemporal thickness of 67.5 μm is a significant cut-off point in determining malingering (P=0.001, area under the curve:0.862). The correlations between LogMAR-VAs and RNFLtemporal thicknesses were significant; the correlation coefficient for LogMAR-VAi was lower than the correlation for LogMAR-VAaset (r=−0.447, P=0.009 for LogMAR-VAi; r=−0.676, P<0.001 for LogMAR-VAaset). Conclusions: RNFLtemporal thickness assessment may be a valuable tool in determining malingering in subjects with ODTP objectively. PMID:19700875
NASA Astrophysics Data System (ADS)
Assari, A. H.; Eghbali, B.
2016-09-01
Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.
Interferometric data for a shock-wave/boundary-layer interaction
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Brown, James L.; Miles, John B.
1986-01-01
An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.
Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momblona, C.; Malinkiewicz, O.; Soriano, A.
2014-08-01
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less
Structure and transport in organic semiconductor thin films
NASA Astrophysics Data System (ADS)
Vos, Sandra Elizabeth Fritz
Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.
NASA Astrophysics Data System (ADS)
Reyhani, A.; Gholizadeh, A.; vahedi, V.; Khanlary, M. R.
2018-01-01
The effects of gamma-irradiation are studied on the morphology and structural properties of ZnO nanowire with various diameters. The ZnO nanowires are grown using Zn thin films at various initial thicknesses including 125, 250 and 500 nm in air ambient. The results illustrate dramatic effects of Gamma-irradiation on the deformation of ZnO nanowires. Thus, radiation induce ripple ZnO surfaces instead ZnO nanowires. Gamma-irradiation has also been effective on the optical and crystalline properties of the nanowires. X-ray diffraction attests that size of the ZnO nano-structures has changed and (l00) crystalline direction related to Zn metal has been created after irradiation. UV-Visible spectra display two areas for transmittance of irradiated ZnO nanowires, one in the Visible-light and the other in IR sub-region. In the Visible-light area, the layer gets thicker from 125 to 500 nm; the difference between the layer transmittance spectra is reduced before and after gamma irradiation. In the IR-light region, with increasing of ZnO initial thickness, the difference between the layer transmittance spectra is increased before and after gamma irradiation. The photoluminescence spectroscopy displays that intensity of green-yellow band improves in compared to near-band-edge emission due to formation of Zn metal and oxygen vacancies after gamma irradiation.
Using laser-driven flyer plates to study the shock initiation of nanoenergetic materials
NASA Astrophysics Data System (ADS)
Shaw, William; Dlott, Dana
2013-06-01
A tabletop system has been developed to launch aluminum laser-driven flyer plates at speeds up to 4 km/s. The flyer plates are used to initiate a variety of nanoenergetic materials including aluminum/iron oxide particles produced by arrested ball milling, and multi-layer nano-thermites produced by sputtering. The initiation process is probed by a variety of high-speed diagnostics including time-resolved emission spectroscopy. Impact velocity initiation thresholds for different thickness flyer plates, producing different duration shocks, were determined. The durations of the emission bursts and the effects of nanostructure and microstructure on these bursts were used to investigate the fundamental mechanisms of impact initiation.
Numerical simulations of Richtmyer{endash}Meshkov instabilities in finite-thickness fluid layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikaelian, K.O.
1996-05-01
Direct numerical simulations of Richtmyer{endash}Meshkov instabilities in shocked fluid layers are reported and compared with analytic theory. To investigate new phenomena such as freeze-out, interface coupling, and feedthrough, several new configurations are simulated on a two-dimensional hydrocode. The basic system is an {ital A}/{ital B}/{ital A} combination, where {ital A} is air and {ital B} is a finite-thickness layer of freon, SF{sub 6}, or helium. The middle layer {ital B} has perturbations either on its upstream or downstream side, or on both sides, in which case the perturbations may be in phase (sinuous) or out of phase (varicose). The evolutionmore » of such perturbations under a Mach 1.5 shock is calculated, including the effect of a reshock. Recently reported gas curtain experiments [J. M. Budzinski {ital et} {ital al}., Phys. Fluids {bold 6}, 3510 (1994)] are also simulated and the code results are found to agree very well with the experiments. A new gas curtain configuration is also considered, involving an initially sinuous SF{sub 6} or helium layer and a new pattern, opposite mushrooms, is predicted to emerge. Upon reshock a relatively simple sinuous gas curtain is found to evolve into a highly complex pattern of nested mushrooms. {copyright} {ital 1996 American Institute of Physics.}« less
Effect of capping layer on spin-orbit torques
NASA Astrophysics Data System (ADS)
Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.
2018-04-01
In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.
Nicoara, Nicoleta; Kunze, Thomas; Jackson, Philip; Hariskos, Dimitrios; Duarte, Roberto Félix; Wilks, Regan G; Witte, Wolfram; Bär, Marcus; Sadewasser, Sascha
2017-12-20
We report on the initial stages of CdS buffer layer formation on Cu(In,Ga)Se 2 (CIGSe) thin-film solar cell absorbers subjected to rubidium fluoride (RbF) postdeposition treatment (PDT). A detailed characterization of the CIGSe/CdS interface for different chemical bath deposition (CBD) times of the CdS layer is obtained from spatially resolved atomic and Kelvin probe force microscopy and laterally integrating X-ray spectroscopies. The observed spatial inhomogeneity in the interface's structural, chemical, and electronic properties of samples undergoing up to 3 min of CBD treatments is indicative of a complex interface formation including an incomplete coverage and/or nonuniform composition of the buffer layer. It is expected that this result impacts solar cell performance, in particular when reducing the CdS layer thickness (e.g., in an attempt to increase the collection in the ultraviolet wavelength region). Our work provides important findings on the absorber/buffer interface formation and reveals the underlying mechanism for limitations in the reduction of the CdS thickness, even when an alkali PDT is applied to the CIGSe absorber.
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1972-01-01
A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.
NASA Astrophysics Data System (ADS)
Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie
2018-06-01
The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.
Calibration of Axisymmetric and Quasi-1D Solvers for High Enthalpy Nozzles
NASA Technical Reports Server (NTRS)
Papadopoulos, P. E.; Gochberg, L. A.; Tokarcik-Polsky, S.; Venkatapathy, E.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
The proposed paper will present a numerical investigation of the flow characteristics and boundary layer development in the nozzles of high enthalpy shock tunnel facilities used for hypersonic propulsion testing. The computed flow will be validated against existing experimental data. Pitot pressure data obtained at the entrance of the test cabin will be used to validate the numerical simulations. It is necessary to accurately model the facility nozzles in order to characterize the test article flow conditions. Initially the axisymmetric nozzle flow will be computed using a Navier Stokes solver for a range of reservoir conditions. The calculated solutions will be compared and calibrated against available experimental data from the DLR HEG piston-driven shock tunnel and the 16-inch shock tunnel at NASA Ames Research Center. The Reynolds number is assumed to be high enough at the throat that the boundary layer flow is assumed turbulent at this point downstream. The real gas affects will be examined. In high Mach number facilities the boundary layer is thick. Attempts will be made to correlate the boundary layer displacement thickness. The displacement thickness correlation will be used to calibrate the quasi-1D codes NENZF and LSENS in order to provide fast and efficient tools of characterizing the facility nozzles. The calibrated quasi-1D codes will be implemented to study the effects of chemistry and the flow condition variations at the test section due to small variations in the driver gas conditions.
Growth of Transgressive Sills in Mechanically Layered Media: Faroe Islands, NE Atlantic Margin
NASA Astrophysics Data System (ADS)
Walker, R. J.
2014-12-01
Igneous sills represent an important contribution to upper crustal magma transport, acting as magma conduits and stores (i.e. as sill networks, or as nascent magma chambers). Complex sill-network intrusion in basin settings can have significant impact on subsurface fluid flow (e.g., water aquifer and hydrocarbon systems), geothermal systems, the maturation of hydrocarbons, and methane release. Models for these effects are critically dependent on the models for sill emplacement. This study focuses on staircase-geometry sills in the Faroe Islands, on the European Atlantic Margin, which are hosted in mechanically layered lavas (1-20 m thick) and basaltic volcaniclastic units (1-30 m thick). The sills range from 20-50 m thick, with each covering ~17 km2, and transgressing a vertical range of ~480 m. Steps in the sills are elliptical in cross section, and discontinuous laterally, forming smooth transgressive ramps, hence are interpreted as representing initial stages of sill propagation as magma fingers, which inflate through time to create a through-going sheet. Although steps correspond to the position of some host rock layer interfaces and volcaniclastic horizons, most interfaces are bypassed. The overall geometry of the sills is consistent with ENE-WSW compression, and NNW-SSE extension, and stress anisotropy-induced transgression. Local morphology indicates that mechanical layering suppressed tensile stress ahead of the crack tip, leading to a switch in minimum and intermediate stress axes, facilitating lateral sill propagation as fingers, and resulting in a stepped transgressive geometry.
Recombination zone in white organic light emitting diodes with blue and orange emitting layers
NASA Astrophysics Data System (ADS)
Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi
2012-10-01
White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.
Hashimoto, Yuki; Saito, Wataru; Fujiya, Akio; Yoshizawa, Chikako; Hirooka, Kiriko; Mori, Shohei; Noda, Kousuke; Ishida, Susumu
2015-01-01
Purpose To investigate sequential post-operative thickness changes in inner and outer retinal layers in eyes with an idiopathic macular hole (MH). Methods Retrospective case series. Twenty-four eyes of 23 patients who had received pars plana vitrectomy (PPV) for the closure of MH were included in the study. Spectral domain optical coherence tomography C-scan was used to automatically measure the mean thickness of the inner and outer retinal layers pre-operatively and up to 6 months following surgery. The photoreceptor outer segment (PROS) length was measured manually and was used to assess its relationship with best-corrected visual acuity (BCVA). Results Compared with the pre-operative thickness, the inner layers significantly thinned during follow-up (P = 0.02), particularly in the parafoveal (P = 0.01), but not perifoveal, area. The post-operative inner layer thinning ranged from the ganglion cell layer to the inner plexiform layer (P = 0.002), whereas the nerve fiber layer was unaltered. Outer layer thickness was significantly greater post-operatively (P = 0.002), and especially the PROS lengthened not only in the fovea but also in the parafovea (P < 0.001). Six months after surgery, BCVA was significantly correlated exclusively with the elongated foveal PROS (R = 0.42, P = 0.03), but not with any of the other thickness parameters examined. Conclusions Following PPV for MH, retinal inner layers other than the nerve fiber layer thinned, suggestive of subclinical thickening in the inner layers where no cyst was evident pre-operatively. In contrast, retinal outer layer thickness significantly increased, potentially as a result of PROS elongation linking tightly with favorable visual prognosis in MH eyes. PMID:26291526
Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin.
Raju, Gayathri; Katiyar, Neeraj; Vadukumpully, Sajini; Shankarappa, Sahadev A
2018-02-01
Transdermal particulate penetration across thick-skin, such as that of palms and sole, is particularly important for drug delivery for disorders such as small fiber neuropathies. Nanoparticle-based drug delivery across skin is believed to have much translational applications, but their penetration especially through thick-skin, is not clear. This study specifically investigates the effectiveness of gold nanoparticles (AuNPs) for thick-skin penetration, especially across the stratum corneum (SC) as a function of particle size. The thick-skinned hind-paw of rat was used to characterize depth and distribution of AuNPs of varying sizes, namely, 22±3, 105±11, and 186±20nm. Epidermal penetration of AuNPs was characterized both, in harvested skin from the hind-paw using a diffusion chamber, as well as in vivo. Harvested skin segments exposed to 22nm AuNPs for only 3h demonstrated higher penetration (p<0.05) as compared to the 105 and 186nm particles. In animal studies, hind-paw skin of adult rats exposed to AuNPs solution for the same time, demonstrated nanoparticles in blood on the 4th day, and histological analysis revealed AuNPs in epidermal layers just below the SC, with no apparent tissue response. We conclude that the thick-skin allows nanoparticle penetration and acts as a depot for release of AuNPs into circulation long after the initial exposure has ceased. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
Choroidal Haller's and Sattler's Layers Thickness in Normal Indian Eyes.
Roy, Rupak; Saurabh, Kumar; Vyas, Chinmayi; Deshmukh, Kaustubh; Sharma, Preeti; Chandrasekharan, Dhileesh P; Bansal, Aditya
2018-01-01
This study aims to study normative choroidal thickness (CT) and Haller's and Sattler's layers thickness in normal Indian eyes. The choroidal imaging of 73 eyes of 43 healthy Indian individuals was done using enhanced depth imaging feature of spectralis optical coherence tomography. Rraster scan protocol centered at fovea was used for imaging separately by two observers. CT was defined as the length of the perpendicular line drown from the outer border of hypereflective RPE-Bruch's complex to inner margin of choroidoscleral junction. Choroidal vessel layer thickness was measured after defining a largest choroidal vessel lumen within 750 μ on either side of the subfoveal CT vector. A perpendicular line was drawn to the innermost border of this lumen, and the distance between the perpendicular line and innermost border of choroidoscleral junction gave large choroidal vessel layer thickness (LCVLT, Haller's layer). Medium choroidal vessel layer thickness (MCVLT, Sattler's layer) was measured as the distance between same perpendicular line and outer border of hypereflective RPE-Bruch's complex. The mean age of individuals was 28.23 ± 15.29 years (range 14-59 years). Overall, the mean subfoveal CT was 331.6 ± 63.9 μ. Mean LCVLT was 227.08 ± 51.24 μ and the mean MCVLT was 95.65 ± 23.62 μ. CT was maximum subfoveally with gradual reduction in the thickness as the distance from the fovea increased. This is the first study describing the choroidal sublayer thickness, i.e., Haller's and Sattler's layer thickness along with CT in healthy Indian population.
Choroidal Haller's and Sattler's Layers Thickness in Normal Indian Eyes
Roy, Rupak; Saurabh, Kumar; Vyas, Chinmayi; Deshmukh, Kaustubh; Sharma, Preeti; Chandrasekharan, Dhileesh P.; Bansal, Aditya
2018-01-01
AIM: This study aims to study normative choroidal thickness (CT) and Haller's and Sattler's layers thickness in normal Indian eyes. MATERIALS AND METHODS: The choroidal imaging of 73 eyes of 43 healthy Indian individuals was done using enhanced depth imaging feature of spectralis optical coherence tomography. Rraster scan protocol centered at fovea was used for imaging separately by two observers. CT was defined as the length of the perpendicular line drown from the outer border of hypereflective RPE-Bruch's complex to inner margin of choroidoscleral junction. Choroidal vessel layer thickness was measured after defining a largest choroidal vessel lumen within 750 μ on either side of the subfoveal CT vector. A perpendicular line was drawn to the innermost border of this lumen, and the distance between the perpendicular line and innermost border of choroidoscleral junction gave large choroidal vessel layer thickness (LCVLT, Haller's layer). Medium choroidal vessel layer thickness (MCVLT, Sattler's layer) was measured as the distance between same perpendicular line and outer border of hypereflective RPE-Bruch's complex. RESULTS: The mean age of individuals was 28.23 ± 15.29 years (range 14–59 years). Overall, the mean subfoveal CT was 331.6 ± 63.9 μ. Mean LCVLT was 227.08 ± 51.24 μ and the mean MCVLT was 95.65 ± 23.62 μ. CT was maximum subfoveally with gradual reduction in the thickness as the distance from the fovea increased. CONCLUSION: This is the first study describing the choroidal sublayer thickness, i.e., Haller's and Sattler's layer thickness along with CT in healthy Indian population. PMID:29899646
NASA Astrophysics Data System (ADS)
Bahlburg, Heinrich; Nentwig, Vanessa; Matthias, Kreutzer
2016-04-01
On September 16, 2015, at 7:54 pm local time, an earthquake with Mw 8.3 occurred off the coast of Central Chile, 46 km west of the town of Illapel. Its hypocenter was located at a depth of 8.7 km in the transition zone from the Chilean flat slab to the central Chilean steep slab subduction geometry, and near the intersection of the Juan Fernandez Ridge with the South America plate. The quake caused a predominantly minor tsunami between Caldera (c. 27°S) and Los Vilos (c. 32°S). Only at Coquimbo and La Serena (c. 30°S) did the tsunami attain large wave heights on the order of 4.5 m leading to flooding and destruction of infrastructure. Maximum inundation distance was c. 700 m at Playa Changa, Coquimbo Bay. Minor flooding occurred along the northward adjacent beaches of La Serena reaching inundation distances of up to 150 m. Tsunami deposits are usually the only observable evidence of past events. To understand how tsunami deposits form and are preserved, and how they can be identified in the geological record, it is of paramount importance to undertake detailed studies in the wake of actual events. Here we report initial field data of a sedimentological post-tsunami field survey undertaken in October 2015. The most comprehensive and instructive sedimentological record of the September 16, 2015 tsunami is preserved at Playa Los Fuertes in La Serena. Along a 30 m long trench perpendicular to the coast we observed a laminated package of tsunami deposits of varying thickness. The deposits have an erosive basal unconformity with an amplitude of at least 10 cm. The preserved deposit thickness varies between 10 an 50 cm. The deposit consists of 7 layers of variable thickness, ranging between dark laminae a few millimeters thick and rich in heavy minerals, and lighter colored sand layers up to 15 cm thick. Grain size distributions are moderately well to well sorted and unimodal with modes between 1.3 and 2.0 Φ (medium sand). A c. 10 cm thick laminated layer in the central part of the vertical section includes mildly trough-shaped crossbeds indicating landward flow, a c. 5 cm thick layer 10 cm below the top in the interior part of the trench contains planar cross beds formed by outflow currents. Water escape occur as small sand diapirs and volcanoes within the final deposit. Water escape through small volcanoes appears to have been coeval to formation of the overlying layer by traction deposition as sand issuing from the lower layer has been preserved as a thin plume deformed in the downcurrent, i.e. landward, direction in the newly forming upper layer. Other sectors of the sediment show sand diapirs intruding up to 15 cm into the overlying tsunami deposit. The assemblage of laminae, layers and sedimentary structures indicates that the deposit records at least two events of tsunami inflow indicated by crossbeds and deformed sand volcano plumes, and one outflow event. Intervening layers without directional structures can not be assigned unequivocally to either inflow or outflow deposition.
Huang, Xiaohua
2013-01-01
The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862
Two-layer thermal barrier coating for turbine airfoils - furnace and burner rig test results
NASA Technical Reports Server (NTRS)
Stecura, S.
1976-01-01
A simple, two-layer plasma-sprayed thermal barrier coating system was developed which has the potential for protecting high temperature air-cooled gas turbine components. Of those coatings initially examined, the most promising system consisted of a Ni-16Cr-6Al-0.6Y (in wt%) thermal barrier coating (about 0.005 to 0.010 cm thick) and a ZrO2-12Y2O3 (in wt%) thermal barrier coating (about 0.025 to 0.064 cm thick). This thermal barrier substantially lowered the metal temperature of an air-cooled airfoil. The coating withstood 3,200 cycles (80 sec at 1,280 C surface temperature) and 275 cycles (1 hr at 1,490 C surface temperature) without cracking or spalling. No separation of the thermal barrier from the bond coating or the bond coating from the substrate was observed.
Domain and rim growth kinetics in stratifying foam films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Yilixiati, Subinuer; Sharma, Vivek
Foam films are freely standing thin liquid films that typically consist of two surfactant-laden surfaces that are ~5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. During the initial expansion, a rim forms near the contact line between the growing thinner domain and the surrounding region, which influences the dynamics of domain growth as well as stratification Using newly developed interferometry digitial imaging optical microscopy (IDIOM) technique, we capture the rim evolution dynamics. Finally, we also develop a theoretical model to describe both rim evolution and domain growth dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Judy; Dong, Lei; Howe, Jane Y
2011-01-01
The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.
2014-09-01
We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.
Effect of tethering on the surface dynamics of a thin polymer melt layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang
The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less
Effect of tethering on the surface dynamics of a thin polymer melt layer
Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; ...
2016-05-13
The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less
Ocular changes in primary hypothyroidism.
Ozturk, Banu T; Kerimoglu, Hurkan; Dikbas, Oguz; Pekel, Hamiyet; Gonen, Mustafa S
2009-12-29
To determine the ocular changes related to hypothyrodism in newly diagnosed patients without orbitopathy. Thirty-three patients diagnosed to have primary overt hypothyroidism were enrolled in the study. All subjects were assigned to underwent central corneal thickness (CCT), anterior chamber volume, depth and angle measurements with the Scheimpflug camera (Pentacam, Oculus) and cup to disc ratio (C/D), mean retinal thickness and mean retinal nerve fiber layer (RNFL) thickness measurements with optical coherence tomography (OCT) in addition to ophthalmological examination preceeding the replacement therapy and at the 1(st), 3(rd )and 6(th )months of treatment. The mean age of the patients included in the study were 40.58 +/- 1.32 years. The thyroid hormone levels return to normal levels in all patients during the follow-up period, however the mean intraocular pressure (IOP) revealed no significant change. The mean CCT was 538.05 +/- 3.85 mu initially and demonstrated no statistically significant change as the anterior chamber volume, depth and angle measurements did. The mean C/D ratio was 0.29 +/- 0.03 and the mean retinal thickness was 255.83 +/- 19.49 mu initially and the treatment did not give rise to any significant change. The mean RNFL thickness was also stable during the control visits, so no statistically significant change was encountered. Neither hypothyroidism, nor its replacement therapy gave rise to any change of IOP, CCT, anterior chamber parameters, RNFL, retinal thickness and C/D ratio.
Timing of Glacial Lake Missoula Outburst Floods and the southwestern Cordilleran Ice Sheet retreat.
NASA Astrophysics Data System (ADS)
Hendy, I. L.; Bervid, H. D.; Carlson, A. E.
2017-12-01
Glacial Lake Missoula formed when the Purcell Trench Lobe dammed the Clark Fork River in Montana and catastrophically collapsed repeatedly through the last glacial period as the southern Cordilleran Ice Sheet advanced and retreated. A well-dated 50-kyr jumbo piston core MD02-2496 (48.97˚ N, 127.04˚ W, water depth of 1243 m) collected from the continental slope 75 km off Vancouver Island contains evidence of these floods. The in-situ bulk elemental composition of the 35-m core was determined at 1 mm intervals using an ITRAX X-ray Fluorescence (XRF) Core Scanner (Cox Analytical Instruments) at the Sediment Geochemistry Lab of the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University. With 40 mixed planktonic foraminifera and bulk organic carbon 14C ages, the core provides a high-resolution resolution record of glaciomarine sedimentation during deglaciation. A series of >81 layers of fine-grained sediments with ancient (K/Ar ages of 300 Ma and eNd of -8) shale-like (high Rb counts) composition can be found between 19.6 and 9.2 m below coretop. These layers are interspersed by coarser grained, young (K/Ar ages of 100 Ma and eNd of -3) sediments containing ice-rafted debris (IRD). The composition and age of the layers indicates the sediments originated in Glacial Lake Missoula and were transported by ocean currents 250 miles north along the west coast of North America. The flood layers begin at 19.5 ka with five thin (<5 cm thick) layers before thick flood layers (>5 cm thick) appear after 19.3 ka. At 17.1 ka, IRD concentrations increase from <1 grain g-1 to 20 grains g-1, and remain >50 grains g-1 from 16.5-16.35 ka, except in flood layers, as the Juan de Fuca Strait deglaciated. Another 16 flood layers occur from 16.3-15.65 ka; however, the base and top of these layers are diffuse rather than abrupt like earlier flood layers suggesting enhanced mixing between flood and melt waters. The final flood layers from 14.9-14.5 ka are thin (<2 cm thick) suggesting that the final floods were small events similar to the initial floods. This well-dated sequence displays how Glacial Lake Missoula flood sedimentation changed during the advance and retreat of the Cordilleran Ice Sheet.
Flow characteristics and scaling past highly porous wall-mounted fences
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2017-07-01
An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu
In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less
Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D
2017-11-01
Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung Nam; Lee, Kitae, E-mail: klee@kaeri.re.kr; Kumar, Manoj
A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beammore » with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in
2016-02-07
We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Wei, Jun
2016-09-01
Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu
2018-07-01
In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.
Impact of Future Volcanic Eruptions on Stratospheric Ozone
NASA Astrophysics Data System (ADS)
Wilmouth, D. M.; Klobas, J. E.; Weisenstein, D.; Anderson, J. G.; Salawitch, R. J.
2017-12-01
Due to the anthropogenic release of chlorine-containing chemicals such as chlorofluorocarbons into the atmosphere in the twentieth century, a large volcanic eruption occurring today would initiate chemical reactions that reduce the thickness of the ozone layer. In the future, when atmospheric levels of chlorine are reduced, large volcanic eruptions are instead expected to increase the thickness of the ozone layer, but important details relevant to this shift in volcanic impact are not well known. Here we use the AER-2D chemical transport model to simulate a Pinatubo-like volcanic eruption in contemporary and future atmospheres. In particular, we explore the sensitivity of column ozone to volcanic eruption for four different climate change scenarios over the remainder of this century and also establish the importance of bromine-containing very short-lived substances (VSLS) in determining whether future eruptions will lead to ozone depletion. We find that the ozone layer will be vulnerable to volcanic perturbation for considerably longer than previously believed. Finally, we consider the impact on column ozone of inorganic halogens being co-injected into the stratosphere following future explosive eruptions using realistic hydrogen halide to sulfur dioxide ratios.
Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder
NASA Astrophysics Data System (ADS)
Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang
2015-06-01
The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.
Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F; Franz, Axel R
2014-01-01
Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs') measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs' at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs'. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.
Initiated chemical vapor deposition polymers for high peak-power laser targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxamusa, Salmaan H.; Lepro, Xavier; Lee, Tom
2016-12-05
Here, we report two examples of initiated chemical vapor deposition (iCVD) polymers being developed for use in laser targets for high peak-power laser systems. First, we show that iCVD poly(divinylbenzene) is more photo-oxidatively stable than the plasma polymers currently used in laser targets. Thick layers (10–12 μm) of this highly crosslinked polymer can be deposited with near-zero intrinsic film stress. Second, we show that iCVD epoxy polymers can be crosslinked after deposition to form thin adhesive layers for assembling precision laser targets. The bondlines can be made as thin as ~ 1 μm, approximately a factor of 2 thinner thanmore » achievable using viscous resin-based adhesives. These bonds can withstand downstream coining and stamping processes.« less
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
NASA Astrophysics Data System (ADS)
Srinivasan, M. A.; Rao, C. Dhananjaya; Krishnaiah, M.
2016-05-01
The present study describes Mie lidar observations of the cirrus cloud passage showing transition between double thin layers into single thick and single thick layer into double thin layers of cirrus over Gadanki region. During Case1: 17 January 2007, Case4: 12 June 2007, Case5: 14 July 2007 and Case6: 24 July 2007 the transition is found to from two thin cirrus layers into single geometrically thick layer. Case2: 14 May 2007 and Case3: 15 May 2007, the transition is found to from single geometrically thick layer into two thin cirrus layers. Linear Depolarization Ratio (LDR) and Back Scatter Ration (BSR) are found to show similar variation with strong peaks during transition; both LDR and Cloud Optical Depth (COD) is found to show similar variation except during transition with strong peaks in COD which is not clearly found from LDR for the all cases. There is a significant weakening of zonal and meridional winds during Case1 which might be due to the transition from multiple to single thick cirrus indicating potential capability of thick cirrus in modulating the wind fields. There exists strong upward wind dominance contributed to significant ascent in cloud-base altitude thereby causing transition of multiple thin layers into single thick cirrus.
Effects of SiO 2 overlayer at initial growth stage of epitaxial Y 2O 3 film growth
NASA Astrophysics Data System (ADS)
Cho, M.-H.; Ko, D.-H.; Choi, Y. G.; Lyo, I. W.; Jeong, K.; Whang, C. N.
2000-12-01
We investigated the dependence of the Y 2O 3 film growth on Si surface at initial growth stage. The reflection high-energy electron diffraction, X-ray scattering, and atomic force microscopy showed that the film crystallinity and morphology strongly depended on whether Si surface contained O or not. In particular, the films grown on oxidized surfaces revealed significant improvement in crystallinity and surface smoothness. A well-ordered atomic structure of Y 2O 3 film was formed on 1.5 nm thick SiO 2 layer with the surface and interfacial roughness markedly enhanced, compared with the film grown on the clean Si surfaces. The epitaxial film on the oxidized Si surface exhibited extremely small mosaic structures at interface, while the film on the clean Si surface displayed an island-like growth with large mosaic structures. The nucleation sites for Y 2O 3 were provided by the reaction between SiO 2 and Y at the initial growth stage. The SiO 2 layer known to hinder crystal growth is found to enhance the nucleation of Y 2O 3, and provides a stable buffer layer against the silicide formation. Thus, the formation of the initial SiO 2 layer is the key to the high-quality epitaxial growth of Y 2O 3 on Si.
SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu
Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonicmore » vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.« less
Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiyan; Wang, Wenliang; Yang, Weijia
2015-05-14
AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less
Magnetic property zonation in a thick lava flow
NASA Astrophysics Data System (ADS)
Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd
1992-04-01
Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.
Development of dual-polarization LEKIDs for CMB observations
NASA Astrophysics Data System (ADS)
McCarrick, Heather; Abitbol, Maximilian H.; Ade, Peter A. R.; Barry, Peter; Bryan, Sean; Che, George; Day, Peter; Doyle, Simon; Flanigan, Daniel; Johnson, Bradley R.; Jones, Glenn; LeDuc, Henry G.; Limon, Michele; Mauskopf, Philip; Miller, Amber; Tucker, Carole; Zmuidzinas, Jonas
2016-07-01
We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped-element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.
Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation
NASA Astrophysics Data System (ADS)
Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun
2017-03-01
The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.
NASA Astrophysics Data System (ADS)
Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.
There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-05-16
In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.
Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures
NASA Astrophysics Data System (ADS)
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-05-01
In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.
NASA Astrophysics Data System (ADS)
Nakami, S.; Narioka, T.; Kobayashi, T.; Nagase, T.; Naito, H.
2017-11-01
The dependence of active-layer thickness on the power conversion efficiency (PCE) of inverted organic photovoltaics (OPVs) based on poly(3-hexylthiphene) and [6,6]-phenyl-C61-butyric acid methyl ester was investigated. When PCEs were measured immediately after device fabrication, the optimum thickness was ~100 nm. It was, however, found that thick OPVs exhibit higher PCEs a few months later, whereas thin OPVs simply degraded with time. Consequently, the optimum thickness changed with time. Considering this fact, we discuss the relationship between the active-layer thickness and PCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wug-Dong; Tanioka, Kenkichi
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less
Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-11-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.
NASA Astrophysics Data System (ADS)
Lin, Xiao; Yang, Xiaoming; Tan, Lili; Li, Mei; Wang, Xin; Zhang, Yu; Yang, Ke; Hu, Zhuangqi; Qiu, Jianhong
2014-01-01
Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.
Ultrasonographic, endoscopic and histological appearance of the caecum in clinically healthy cats.
Hahn, Harriet; Freiche, Valérie; Baril, Aurélie; Charpentier, Julie; Desquilbet, Loïc; Le Poder, Sophie; Servely, Jean-Luc; Laloy, Eve; Pey, Pascaline
2017-02-01
Objectives The aim of the study was to describe the ultrasonographic and endoscopic appearance and characteristics of the caecum in asymptomatic cats, and to correlate these findings with histology. Methods Ex vivo ultrasonographic and histologic evaluations of a fresh caecum were initially performed. Then, 20 asymptomatic cats, privately owned or originating from a reproductive colony, were recruited. All cats had an ultrasonographic examination of the ileocaecocolic junction, where the thickness of the caecal wall, ileocolic lymph nodes and the echogenicity of the local fat were assessed. They all underwent a colonoscopy with a macroscopic assessment of the mucosa and biopsies for histology. Results An ultrasonographic hypoechoic nodular inner layer, which corresponded to the coalescence of multiple lymphoid follicles originating from the submucosa and protruding in the mucosa on histology, was visible in all parts of the caecum. The combined mucosa and submucosa was measured ultrasonographically and defined as the follicular layer. Although all cats were asymptomatic, 3/19 cats showed mild caecal inflammation on histology. The most discriminatory ultrasonographic parameter in assessing this subclinical inflammation was the thickness of the follicular layer at the entrance of the caecum, with a cut-off value of 2.0 mm. All cats (20/20) showed some degree of macroscopic 'dimpling' of the caecal mucosa on endoscopy. Conclusions and relevance Lymphoid follicles in the caecal mucosa and submucosa constitute a unique follicular layer on ultrasound. In asymptomatic cats, a subtle, non-clinically relevant inflammation may exist and this is correlated with an increased thickness of the follicular layer on ultrasound. On endoscopy, a 'dimpled aspect' to the caecal mucosa is a normal finding in the asymptomatic cat.
Iyigundogdu, Ilkin; Derle, Eda; Asena, Leyla; Kural, Feride; Kibaroglu, Seda; Ocal, Ruhsen; Akkoyun, Imren; Can, Ufuk
2018-02-01
Aim To compare the relationship between white matter hyperintensities (WMH) on brain magnetic resonance imaging and retinal nerve fiber layer (RNFL), choroid, and ganglion cell layer (GCL) thicknesses in migraine patients and healthy subjects. We also assessed the role of cerebral hypoperfusion in the formation of these WMH lesions. Methods We enrolled 35 migraine patients without WMH, 37 migraine patients with WMH, and 37 healthy control subjects examined in the Neurology outpatient clinic of our tertiary center from May to December 2015. RFNL, choroid, and GCL thicknesses were measured by optic coherence tomography. Results There were no differences in the RFNL, choroid, or GCL thicknesses between migraine patients with and without WMH ( p > 0.05). Choroid layer thicknesses were significantly lower in migraine patients compared to control subjects ( p < 0.05), while there were no differences in RFNL and GCL thicknesses ( p > 0.05). Conclusions The 'only cerebral hypoperfusion' theory was insufficient to explain the pathophysiology of WMH lesions in migraine patients. In addition, the thinning of the choroid thicknesses in migraine patients suggests a potential causative role for cerebral hypoperfusion and decreased perfusion pressure of the choroid layer.
High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen
2013-11-19
A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.
Effect of layer thickness on the thermal release from Be-D co-deposited layers
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2014-08-01
The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967-70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D2 release from co-deposited Be-(0.05)D layers produced at ˜323 K. Bake desorption of layers of thickness 0.2-0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be-D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction.
Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.
1992-01-01
An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.
Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.
2018-03-01
Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, W. H.; He, X. T.; CAPT, Peking University, Beijing 100871
2011-02-15
In this research, competitions between Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz instability (KHI) in two-dimensional incompressible fluids within a linear growth regime are investigated analytically. Normalized linear growth rate formulas for both the RTI, suitable for arbitrary density ratio with continuous density profile, and the KHI, suitable for arbitrary density ratio with continuous density and velocity profiles, are obtained. The linear growth rates of pure RTI ({gamma}{sub RT}), pure KHI ({gamma}{sub KH}), and combined RTI and KHI ({gamma}{sub total}) are investigated, respectively. In the pure RTI, it is found that the effect of the finite thickness of the density transition layermore » (L{sub {rho}}) reduces the linear growth of the RTI (stabilizes the RTI). In the pure KHI, it is found that conversely, the effect of the finite thickness of the density transition layer increases the linear growth of the KHI (destabilizes the KHI). It is found that the effect of the finite thickness of the density transition layer decreases the ''effective'' or ''local'' Atwood number (A) for both the RTI and the KHI. However, based on the properties of {gamma}{sub RT}{proportional_to}{radical}(A) and {gamma}{sub KH}{proportional_to}{radical}(1-A{sup 2}), the effect of the finite thickness of the density transition layer therefore has a completely opposite role on the RTI and the KHI noted above. In addition, it is found that the effect of the finite thickness of the velocity shear layer (L{sub u}) stabilizes the KHI, and for the most cases, the combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Regarding the combined RTI and KHI, it is found that there is a competition between the RTI and the KHI because of the completely opposite effect of the finite thickness of the density transition layer on these two kinds of instability. It is found that the competitions between the RTI and the KHI depend, respectively, on the Froude number, the density ratio of the light fluid to the heavy one, and the finite thicknesses of the density transition layer and the velocity shear layer. Furthermore, for the fixed Froude number, the linear growth rate ratio of the RTI to the KHI decreases with both the density ratio and the finite thickness of the density transition layer, but increases with the finite thickness of the velocity shear layer and the combined finite thicknesses of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}). In summary, our analytical results show that the effect of the finite thickness of the density transition layer stabilizes the RTI and the overall combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Thus, it should be included in applications where the transition layer effect plays an important role, such as the formation of large-scale structures (jets) in high energy density physics and astrophysics and turbulent mixing.« less
A new approach to assess the skier additional stress within a multi-layered snowpack
NASA Astrophysics Data System (ADS)
Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg
2014-05-01
The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.
Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment
2017-05-21
to thicker layers (~40 nm). Author Keywords photoalignment; azodye; reactive mesogen 1. Introduction Photoalignment of liquid crystals by azodye...Polymerizable azodyes[3] as well as passivation of the azodye film by spin-coating with a layer of reactive mesogen[4] are currently proposed solutions...thick alignment film rather than a ~40 nm thick alignment film ; cells with thin alignment layers are stable to exposure to polarized light for at
Qi, Qiong; Yu, Aifang; Wang, Liangmin; Jiang, Chao
2010-11-01
The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm2Ns with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm2Ns and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.
NASA Astrophysics Data System (ADS)
Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo
2017-10-01
A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.
Work Function Variations in Twisted Graphene Layers
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...
2018-01-31
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Crystallization of silicon-germanium by aluminum-induced layer exchange
NASA Astrophysics Data System (ADS)
Isomura, Masao; Yajima, Masahiro; Nakamura, Isao
2018-02-01
We have studied the crystallization of amorphous silicon-germanium (a-SiGe) by aluminum (Al)-induced layer exchange (ALILE) with a starting structure of glass/Al/Al oxide/a-SiGe. We examined ALILE at 450 °C, which is slightly higher than the eutectic temperature of Ge and Al, in order to shorten the ALILE time. We successfully produced c-SiGe films oriented in the (111) direction for 16 h without significant alloying. The thickness of Al layers should be 2800 Å or more to complete the ALILE for the a-SiGe layers of 2000-2800 Å thickness. When the Al layer is as thick as the a-SiGe layer, almost uniform c-SiGe is formed on the glass substrate. On the other hand, the islands of c-SiGe are formed on the glass substrate when the Al layer is thicker than the a-SiGe layer. The islands become smaller with thicker Al layers because more excess Al remains between the SiGe islands. The results indicate that the configuration of c-SiGe can be altered from a uniform structure to island structures of various sizes by changing the ratio of a-SiGe thickness to Al thickness.
Work Function Variations in Twisted Graphene Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Abdellatif, Mona K; Fouad, Mohamed M
2018-03-01
To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.
Broadband operation of rolled-up hyperlenses
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Rottler, Andreas; Bröll, Markus; Ehlermann, Jens; Stemmann, Andrea; Stickler, Daniel; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan
2012-06-01
This work is related to an earlier publication [Schwaiger , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.163903 102, 163903 (2009)], where we demonstrated by means of fiber-based transmission measurements that rolled-up Ag-(In)GaAs multilayers represent three-dimensional metamaterials with a plasma edge which is tunable over the visible and near-infrared regime by changing the thickness ratio of Ag and (In)GaAs, and predicted by means of finite-difference time-domain simulations that hyperlensing occurs at this frequency-tunable plasma edge. In the present work we develop a method to measure reflection curves on these structures and find that they correspond to the same tunable plasma edge. We find that retrieving the effective parameters from transmission and reflection data fails, because our realized metamaterials exceed the single-layer thicknesses of 5nm, which we analyze to be the layer thickness limit for the applicability of effective parameter retrieval. We show that our realized structures nevertheless have the functionality of an effective metamaterial by supplying a detailed finite-difference time-domain study which compares light propagation through our realized structure (17-nm-thick Ag layers and 34-nm-thick GaAs layers) and light propagation through an idealized structure of the same total thickness but with very thin layers [2-nm-thick Ag layers and 4-nm-thick (In)GaAs layers]. In particular, our simulations predict broadband hyperlensing covering a large part of the visible spectrum for both the idealized and our realized structures.
Li, Song-Lin; Miyazaki, Hisao; Song, Haisheng; Kuramochi, Hiromi; Nakaharai, Shu; Tsukagoshi, Kazuhito
2012-08-28
We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.
Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-03-01
We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.
NASA Astrophysics Data System (ADS)
Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias
2017-11-01
Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.
NASA Astrophysics Data System (ADS)
Goto, Takeyoshi; Kinugasa, Tomoya
2018-05-01
The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness < 4 nm indicate the formation of structured ice-like hydrogen bond (H-bond) layers for the higher energy shifts or the formation of slightly weaker H-bond layers as compared to those in the bulk liquid state for lower energy shifts. In either case, the H-bond structure of bulk liquid water is nearly lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.
NASA Astrophysics Data System (ADS)
Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.
2018-05-01
The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.
NASA Astrophysics Data System (ADS)
Knauer, A.; Gramlich, S.; Staske, R.
1988-11-01
Comprehensive studies were made of the relationship between the photoluminescence intensity and the effective carrier lifetime, on the one hand, and the quality of the surface treatment of wafers (damage, oxide layer thickness) and the initial properties of a material (surface and bulk defects, inhomogeneity of the dopant concentration), on the other.
Analytical and experimental investigation of fatigue in lap joints
NASA Astrophysics Data System (ADS)
Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.
A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.
Topography and stratigraphy of Martian polar layered deposits
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Cutts, J. A.; Howard, A. D.
1982-01-01
The first samples of high resolution Viking Orbiter topographic and stratigraphic data for the layered polar deposits of Mars are presented, showing that these deposits are with respect to both slopes and angular relief similar to those in the south. It is also demonstrated that, in conjunction with stereophotogrammetry, photoclinometry holds promise as a tool for detailed layered deposit studies. The spring season photography, which lends itself to photoclinometric analysis, covers the entire area of the north polar deposits. Detailed tests of layered terrain evolution hypotheses will be made, upon refinement of the data by comparison with stereo data. A more promising refining technique will make use of averaging perpendicular to selected sections to enhance SNR. Local reliefs of 200-800 m, and slopes of 1-8 deg, lead to initial calculations of average layer thickness which yields results of 14-46 m, linearly correlated with slope.
Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2015-12-01
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
Nuutila, Kristo; Singh, Mansher; Kruse, Carla; Eriksson, Elof
2017-08-01
Epidermal stem cells present in the skin appendages of the dermis might be crucial in wound healing. In this study, the authors located these cells in the dermis and evaluated their contribution to full-thickness wound healing in a porcine model. Four sequentially deeper 0.35-mm-thick skin grafts were harvested from the same donor site going down to 1.4 mm in depth (layers 1 through 4). The layers were minced to 0.8 × 0.8 × 0.35-mm micrografts and transplanted (1:2) onto full-thickness porcine wounds. Healing was monitored up to 28 days and biopsy specimens were collected on days 6 and 10. Multiple wound healing parameters were used to assess the quality of healing. The authors' results showed that wounds transplanted with layer 2 (0.35 to 0.7 mm) and layer 3 (0.7 to 1.05 mm) micrografts demonstrated reepithelialization rates comparable to that of split-thickness skin graft (layer 1, 0.00 to 0.35 mm; split-thickness skin graft) at day 10. At day 28, dermal micrografts (layers 2 and 3) showed quality of healing comparable to that of split-thickness skin grafts (layer 1) in terms of wound contraction and scar elevation index. The amounts of epidermal stem cells [cluster of differentiation (CD) 34] and basal keratinocytes (KRT14) at each layer were quantified by immunohistochemistry. The analysis showed that layers 2 and 3 contained the most CD34 cells and layer 1 was the richest in KRT14 cells. The immunohistochemistry also indicated that, by day 6, CD34 cells had differentiated into KRT14 cells, which migrated from the grafts and contributed to the reepithelialization of the wound.
NASA Astrophysics Data System (ADS)
Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-05-01
By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.
Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells.
Chernyy, Sergey; Jensen, Bettina E B; Shimizu, Kyoko; Ceccato, Marcel; Pedersen, Steen Uttrup; Zelikin, Alexander N; Daasbjerg, Kim; Iruthayaraj, Joseph
2013-08-15
This work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery. Copyright © 2013 Elsevier Inc. All rights reserved.
Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea
We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less
Studies of the Initial Stages of Epitaxial Growth of Germanium on Silicon
NASA Astrophysics Data System (ADS)
Krishnamurthy, Mohan
The epitaxial growth of ultra-thin films (< 1nm thick) of Ge on Si(100) has been studied in -situ in an Ultra High Vacuum-Scanning Transmission Electron Microscope. Ge was deposited on clean Si(100) using molecular beam techniques to study two types of growth processes, Molecular Beam Epitaxy (MBE) and Solid Phase MBE. Ge grows in the Stranski-Krastanov growth mode, forming islands after initial layer growth. This islanding transition has been studied with high spatial resolution biassed Secondary Electron Imaging and Auger spectroscopy and imaging. Ex -situ Transmission Electron Microscopy (TEM) and Reflection High Energy Diffraction (RHEED) were also used to characterize the transition. The islanding process and its subsequent evolution was monitored with the help of island size distributions, sensitive to islands above 2nm in size. The studies indicate that Ge forms islands in equilibrium with a 3 monolayer (ML) thick intermediate layer. These islands may initially grow coherently strained (dislocation free) with radii usually below 10nm under the conditions. The strain in these islands reduces the adatom sticking coefficient and strongly influences the microstructural evolution. The intermediate layer may grow metastably under certain conditions to as much as 7 ML before collapsing to its equilibrium form. The influence of three types of adatom sinks--strained islands, dislocated islands and contaminant particles have been studied. The contaminant particles are the strongest sinks, followed by dislocated islands and strained islands. Stepped (vicinal) surfaces (1^circ and 5 ^circ toward {110 }) had no significant influence possibly due to the steps being weak adatom sinks. The coarsening of Ge islands does not follow the Ostwald ripening model at the early stages and is influenced by the supersaturation in the intermediate layer and the strain in the coherent islands. A novel mechanism has been observed, where the larger (dislocated) islands grow at the expense of the unstable intermediate layer while the distribution of smaller (strained) islands is constant. This is possibly due to the lower sticking coefficient at the strained islands.
Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates.
Bae, Changdeuck; Kim, Hyunchul; Yang, Yunjeong; Yoo, Hyunjun; Montero Moreno, Josep M; Bachmann, Julien; Nielsch, Kornelius; Shin, Hyunjung
2013-07-07
An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.
NASA Astrophysics Data System (ADS)
Fetecau, Constatin; Shah, Nehad Ali; Vieru, Dumitru
2017-12-01
The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined. Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration, three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution (the steady-state), for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.
X-ray diffraction analysis of residual stress in zirconia dental composites
NASA Astrophysics Data System (ADS)
Allahkarami, Masoud
Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.
Long-range effect of ion implantation of Raex and Hardox steels
NASA Astrophysics Data System (ADS)
Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.
2016-09-01
Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.
Solid oxide fuel cell cathode with oxygen-reducing layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis
The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous filmmore » or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.« less
Pane, Epita S; Palamara, Joseph E A; Messer, Harold H
2015-12-01
This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.
Nieves-Moreno, María; Martínez-de-la-Casa, José M; Bambo, María P; Morales-Fernández, Laura; Van Keer, Karel; Vandewalle, Evelien; Stalmans, Ingeborg; García-Feijoó, Julián
2018-02-01
This study examines the capacity to detect glaucoma of inner macular layer thickness measured by spectral-domain optical coherence tomography (SD-OCT) using a new normative database as the reference standard. Participants ( N = 148) were recruited from Leuven (Belgium) and Zaragoza (Spain): 74 patients with early/moderate glaucoma and 74 age-matched healthy controls. One eye was randomly selected for a macular scan using the Spectralis SD-OCT. The variables measured with the instrument's segmentation software were: macular nerve fiber layer (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) volume and thickness along with circumpapillary RNFL thickness (cpRNFL). The new normative database of macular variables was used to define the cutoff of normality as the fifth percentile by age group. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of each macular measurement and of cpRNFL were used to distinguish between patients and controls. Overall sensitivity and specificity to detect early-moderate glaucoma were 42.2% and 88.9% for mRNFL, 42.4% and 95.6% for GCL, 42.2% and 94.5% for IPL, and 53% and 94.6% for RNFL, respectively. The best macular variable to discriminate between the two groups of subjects was outer temporal GCL thickness as indicated by an AUROC of 0.903. This variable performed similarly to mean cpRNFL thickness (AUROC = 0.845; P = 0.29). Using our normative database as reference, the diagnostic power of inner macular layer thickness proved comparable to that of peripapillary RNFL thickness. Spectralis SD-OCT, cpRNFL thickness, and individual macular inner layer thicknesses show comparable diagnostic capacity for glaucoma and RNFL, GCL, and IPL thickness may be useful as an alternative diagnostic test when the measure of cpRNFL shows artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, S.; Li, N.; Maeder, X.
We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.
Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations.
Rajesh, Sahadevan; Yan, Yu; Chang, Hsueh-Chia; Gao, Haifeng; Phillip, William A
2014-12-23
Charge mosaic membranes, which possess distinct cationic and anionic domains that traverse the membrane thickness, are capable of selectively separating dissolved salts from similarly sized neutral solutes. Here, the generation of charge mosaic membranes using facile layer-by-layer assembly methodologies is reported. Polymeric nanotubes with pore walls lined by positively charged polyethylenimine moieties or negatively charged poly(styrenesulfonate) moieties were prepared via layer-by-layer assembly using track-etched membranes as sacrificial templates. Subsequently, both types of nanotubes were deposited on a porous support in order to produce mixed mosaic membranes. Scanning electron microscopy demonstrates that the facile deposition techniques implemented result in nanotubes that are vertically aligned without overlap between adjacent elements. Furthermore, the nanotubes span the thickness of the mixed mosaic membranes. The effects of this unique nanostructure are reflected in the transport characteristics of the mixed mosaic membranes. The hydraulic permeability of the mixed mosaic membranes in piezodialysis operations was 8 L m(-2) h(-1) bar(-1). Importantly, solute rejection experiments demonstrate that the mixed mosaic membranes are more permeable to ionic solutes than similarly sized neutral molecules. In particular, negative rejection of sodium chloride is observed (i.e., the concentration of NaCl in the solution that permeates through a mixed mosaic membrane is higher than in the initial feed solution). These properties illustrate the ability of mixed mosaic membranes to permeate dissolved ions selectively without violating electroneutrality and suggest their utility in ionic separations.
Hao, Liang
2014-01-01
In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879
NASA Astrophysics Data System (ADS)
Chen, Qi; Huang, Shenghai; Ma, Qingkai; Lin, Huiling; Pan, Mengmeng; Liu, Xinting; Lu, Fan; Shen, Meixiao
2017-02-01
The structural characteristics of the outer retinal layers in primary open angle glaucoma (POAG) are still controversial, and these changes, along with those in the inner retinal layers, could have clinical and/or pathophysiological significance. A custom-built ultra-high resolution optical coherence tomography (UHR-OCT) combined with an automated segmentation algorithm can image and measure the eight intra-retinal layers. The purpose of this study is to determine the thickness characteristics of the macular intra-retinal layers, especially the outer layers, in POAG patients. Thirty-four POAG patients (56 eyes) and 33 normal subjects (63 eyes) were enrolled. Thickness profiles of the eight intra-retinal layers along a 6-mm length centred on the fovea at the horizontal and vertical meridians were obtained and the regional thicknesses were compared between two groups. The associations between the thicknesses of each intra-retinal layer and the macular visual field (VF) sensitivity were then analysed. POAG affected not only the inner retinal layers but also the photoreceptor layers and retinal pigment epithelium of the outer retina. However, the VF loss was correlated mainly with the damage of the inner retinal layers. UHR-OCT with automated algorithm is a useful tool in detecting microstructural changes of macula with respect to the progression of glaucoma.
Effect of spacer layer on the magnetization dynamics of permalloy/rare-earth/permalloy trilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Chen, E-mail: ronanluochen@gmail.com; Yin, Yuli; Zhang, Dong
2015-05-07
The permalloy/rare-earth/permalloy trilayers with different types (Gd and Nd) and thicknesses of spacer layer are investigated using frequency dependence of ferromagnetic resonance (FMR) measurements at room temperature, which shows different behaviors with different rare earth spacer layers. By fitting the frequency dependence of the FMR resonance field and linewidth, we find that the in-plane uniaxial anisotropy retains its value for all samples, the perpendicular anisotropy remains almost unchanged for different thickness of Gd layer but the values are tailored by different thicknesses of Nd layer. The Gilbert damping is almost unchanged with different thicknesses of Gd; however, the Gilbert dampingmore » is significantly enhanced from 8.4×10{sup −3} to 20.1×10{sup −3} with 6 nm of Nd and then flatten out when the Nd thickness rises above 6 nm.« less
NASA Technical Reports Server (NTRS)
Goecke, S. A.
1973-01-01
A 0.56-inch thick aft-facing step was located 52.1 feet from the leading edge of the left wing of an XB-70 airplane. A boundary-layer rake at a mirror location on the right wing was used to obtain local flow properties. Reynolds numbers were near 10 to the 8th power, resulting in a relatively thick boundary-layer. The momentum thickness ranged from slightly thinner to slightly thicker than the step height. Surface static pressures forward of the step were obtained for Mach numbers near 0.9, 1.5, 2.0, and 2.4. The data were compared with thin boundary-layer results from flight and wind-tunnel experiments and semiempirical relationships. Significant differences were found between the thick and the thin boundary-layer data.
Effect of layer thickness on device response of silicon heavily supersaturated with sulfur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, David; Department of Physics and Nuclear Engineering, United States Military Academy, West Point NY 10996; Mathews, Jay
2016-05-15
We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measuredmore » concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.« less
NASA Astrophysics Data System (ADS)
Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor
2017-11-01
Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.
Ocular changes in primary hypothyroidism
2009-01-01
Background To determine the ocular changes related to hypothyrodism in newly diagnosed patients without orbitopathy. Findings Thirty-three patients diagnosed to have primary overt hypothyroidism were enrolled in the study. All subjects were assigned to underwent central corneal thickness (CCT), anterior chamber volume, depth and angle measurements with the Scheimpflug camera (Pentacam, Oculus) and cup to disc ratio (C/D), mean retinal thickness and mean retinal nerve fiber layer (RNFL) thickness measurements with optical coherence tomography (OCT) in addition to ophthalmological examination preceeding the replacement therapy and at the 1st, 3rd and 6th months of treatment. The mean age of the patients included in the study were 40.58 ± 1.32 years. The thyroid hormone levels return to normal levels in all patients during the follow-up period, however the mean intraocular pressure (IOP) revealed no significant change. The mean CCT was 538.05 ± 3.85 μ initially and demonstrated no statistically significant change as the anterior chamber volume, depth and angle measurements did. The mean C/D ratio was 0.29 ± 0.03 and the mean retinal thickness was 255.83 ± 19.49 μ initially and the treatment did not give rise to any significant change. The mean RNFL thickness was also stable during the control visits, so no statistically significant change was encountered. Conclusions Neither hypothyroidism, nor its replacement therapy gave rise to any change of IOP, CCT, anterior chamber parameters, RNFL, retinal thickness and C/D ratio. PMID:20040111
NASA Astrophysics Data System (ADS)
Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval
2016-04-01
A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.
High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.
2016-12-01
We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.
NASA Astrophysics Data System (ADS)
Barth, A. P.; Brandl, P. A.; Li, H.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Tepley, F. J., III; Yogodzinski, G. M.
2014-12-01
The destruction of lithospheric plates by subduction is a fundamentally important process leading to arc magmatism and the creation of continental crust, yet subduction initiation and early magmatic arc evolution remain poorly understood. For many arc systems, onset of arc volcanism and early evolution are obscured by metamorphism or the record is deeply buried; however, initial products of arc systems may be preserved in forearc and backarc sedimentary records. IODP Expedition 351 recovered this history from the dispersed ash and pyroclast record in the proximal rear-arc of the northern IBM system west of the Kyushu-Palau Ridge. Drilling at Site U1438 in the Amami Sankaku Basin recovered a thick volcaniclastic record of subduction initiation and the early evolution of the Izu-Bonin Arc. A 160-m thick section of Neogene sediment overlies 1.3 kilometers of Paleogene volcaniclastic rocks with andesitic average composition; this volcaniclastic section was deposited on mafic volcanic basement rocks. The thin upper sediment layer is primarily terrigenous, biogenic and volcaniclastic mud and ooze with interspersed ash layers. The underlying Eocene to Oligocene volcaniclastic rocks are 33% tuffaceous mudstone, 61% tuffaceous sandstone, and 6% conglomerate with volcanic and rare sedimentary clasts commonly up to pebble and rarely to cobble size. The clastic section is characterized by repetitive conglomerate and sandstone-dominated intervals with intervening mudstone-dominated intervals, reflecting waxing and waning of coarse arc-derived sediment inputs through time. Volcanic lithic clasts in sandstones and conglomerates range from basalt to rhyolite in composition and include well-preserved pumice, reflecting a lithologically diverse and compositionally variable arc volcanic source.
Characterization of Blistering and Delamination in Depleted Uranium Hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biobaum, K. J. M.
2013-03-01
Blistering and delamination are the primary failure mechanisms during the processing of depleted uranium (DU) hohlraums. These hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold; a final thick gold layer is electrodeposited on the exterior. The hohlraum is deposited on a copper-coated aluminum mandrel; the Al and Cu are removed with chemical etching after the gold and DU layers are deposited. After the mandrel is removed, blistering and delamination are observed on the interiors of some hohlraums, particularly at the radius region. It is hypothesized that blisters are caused by pinholes in the coppermore » and gold layers; etchant leaking through these holes reaches the DU layer and causes it to oxidize, resulting in a blister. Depending on the residual stress in the deposited layers, blistering can initiate larger-scale delamination at layer interfaces. Scanning electron microscopy indicates that inhomogeneities in the machined aluminum mandrel are replicated in the sputter-deposited copper layer. Furthermore, the Cu layer exhibits columnar growth with pinholes that likely allow etchant to come in contact with the gold layer. Any inhomogeneities or pinholes in this initial gold layer then become nucleation sites for blistering. Using a focused ion beam system to etch through the gold layer and extract a cross-sectional sample for transmission electron microscopy, amorphous, intermixed layers at the gold/DU interfaces are observed. Nanometer-sized bubbles in the sputtered and electrodeposited gold layers are also present. Characterization of the morphology and composition of the deposited layers is the first step in determining modifications to processing parameters, with the goal of attaining a significant improvement in hohlraum yield.« less
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samih, Y., E-mail: youssef.samih@univ-lorraine.fr; Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures; Beausir, B.
2013-09-15
Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustratedmore » through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.« less
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali
2018-06-01
The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.
NASA Astrophysics Data System (ADS)
Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan
2018-06-01
With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.
Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness
NASA Astrophysics Data System (ADS)
Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.
2010-05-01
Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yue; Yang, Hao-Zhi; Chen, Sheng-Chi; Lu, Ying-Bo; Xin, Yan-Qing; Yang, Tian-Lin; Sun, Hui
2018-05-01
Nitrogen-doped indium tin zinc oxide (ITZO:N) thin film transistors (TFTs) were deposited on SiO2 (200 nm)/p-Si〈1 0 0〉 substrates by RF magnetron sputtering at room temperature. The structural, chemical compositions, surface morphology, optical and electrical properties as a function of the active layer thickness were investigated. As the active layer thickness increases, Zn content decreases and In content increases gradually. Meanwhile, Sn content is almost unchanged. When the thickness of the active layer is more than 45 nm, the ITZO:N films become crystallized and present a crystal orientation along InN(0 0 2) plan. No matter what the thickness is, ITZO:N films always display a high transmittance above 80% in the visible region. Their optical band gaps fluctuate between 3.4 eV and 3.62 eV. Due to the dominance of low interface trap density and high carrier concentration, ITZO:N TFT shows enhanced electrical properties as the active layer thickness is 35 nm. Its field-effect mobility, on/off radio and sub-threshold swing are 17.53 cm2 V‑1 · s‑1, 106 and 0.36 V/dec, respectively. These results indicate that the suitable thickness of the active layer can enhance the quality of ITZO:N films and decrease the defects density of ITZO:N TFT. Thus, the properties of ITZO:N TFT can be optimized by adjusting the thickness of the active layer.
Hutsler, Jeffrey J; Lee, Dong-Geun; Porter, Kristin K
2005-08-02
The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.
Contact method to allow benign failure in ceramic capacitor having self-clearing feature
Myers, John D; Taylor, Ralph S
2012-06-26
A capacitor exhibiting a benign failure mode has a first electrode layer, a first ceramic dielectric layer deposited on a surface of the first electrode, and a second electrode layer disposed on the ceramic dielectric layer, wherein selected areas of the ceramic dielectric layer have additional dielectric material of sufficient thickness to exhibit a higher dielectric breakdown voltage than the remaining majority of the dielectric layer. The added thickness of the dielectric layer in selected areas allows lead connections to be made at the selected areas of greater dielectric thickness while substantially eliminating a risk of dielectric breakdown and failure at the lead connections, whereby the benign failure mode is preserved.
2018-01-01
Objectives To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. Materials and Methods B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness (n = 10). All increments were light-cured to 16 J/cm2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test (p = 0.05). Results Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. Conclusions The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues. PMID:29765902
Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-01-01
Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131
P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED
NASA Astrophysics Data System (ADS)
Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.
2017-09-01
The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.
Rocha Maia, Rodrigo; Oliveira, Dayane; D'Antonio, Tracy; Qian, Fang; Skiff, Frederick
2018-05-01
To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness ( n = 10). All increments were light-cured to 16 J/cm 2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test ( p = 0.05). Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues.
Controlling the optical parameters of self-assembled silver films with wetting layers and annealing
NASA Astrophysics Data System (ADS)
Ciesielski, Arkadiusz; Skowronski, Lukasz; Trzcinski, Marek; Szoplik, Tomasz
2017-11-01
We investigated the influence of presence of Ni and Ge wetting layers as well as annealing on the permittivity of Ag films with thicknesses of 20, 35 and 65 nm. Most of the research on thin silver films deals with very small (<20 nm) or relatively large (≥50 nm) thicknesses. We studied the transition region (around 30 nm) from charge percolation pathways to fully continuous films and compared the values of optical parameters among silver layers with at least one fixed attribute (thickness, wetting and capping material, post-process annealing). Our study, based on atomic force microscopy, ellipsometric and X-ray photoelectron spectroscopy measurements, shows that utilizing a wetting layer is comparable to increasing the thickness of the silver film. Both operations decrease the roughness-to-thickness ratio, thus decreasing the scattering losses and both narrow the Lorentz-shaped interband transition peak. However, while increasing silver thickness increases absorption on the free carriers, the use of wetting layers influences the self-assembled internal structure of silver films in such a way, that the free carrier absorption decreases. Wetting layers also introduce additional contributions from effects like segregation or diffusion, which evolve in time and due to annealing.
NASA Astrophysics Data System (ADS)
Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso
2018-06-01
Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.
Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography.
Dementyev, Dmitriy D; Kourenkov, Vyacheslav V; Rodin, Alexander S; Fadeykina, Tatyana L; Diaz Martines, Tatyana E
2005-01-01
To determine whether the increase in intraocular pressure (IOP) during LASIK suction can induce a decrease in retinal nerve fiber layer thickness assessed by optical coherence tomography (OCT). Nineteen patients (38 eyes) were enrolled in the study. Intraocular pressure was normal at all pre- and postoperative examinations. Retinal nerve fiber layer thickness was measured using OCT-3 Stratus prior to and 1 week and 3 months after LASIK. Laser in situ keratomileusis was performed using the Bausch & Lomb Hansatome microkeratome and the NIDEK EC-5000 excimer laser. Optical coherence tomography mean retinal nerve fiber layer thickness values before and after LASIK were compared using the Student paired t test. Mean patient age was 27.8 years (range: 18 to 33 years). Mean preoperative spherical equivalent refractive error was -4.9 diopters (D) (range: -2.0 to -8.5 D). Mean time of microkeratome suction was 30 seconds (range: 20 to 50 seconds). Preoperatively, the mean retinal nerve fiber layer thickness obtained by OCT was 104.2+/-9.0 microm; at 1 week postoperatively the mean thickness was 101.9+/-6.9 microm, and 106.7+/-6.1 microm at 3 months postoperatively. Mean retinal nerve fiber layer thicknesses obtained by OCT were not significantly different between preoperative and 1 week and 3 months after LASIK (P > or = .05). Laser in situ keratomileusis performed on young myopic patients does not have a significant effect on retinal nerve fiber layer thickness determined by OCT. Further studies are required to reveal the risk of possible optic nerve or retinal nerve fiber layer damage by elevated IOP during LASIK.
NASA Astrophysics Data System (ADS)
Lakey, Pascale; Pöschl, Ulrich; Shiraiwa, Manabu
2015-04-01
Oxidants cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. The respiratory tract is covered in a thin layer of fluid which extends from the nasal cavity to the alveoli and contain species that scavenge ozone and other incoming oxidants. The kinetic multi-layer model of the epithelial lining fluid (KM-ELF) has been developed in order to investigate the reactions of ozone and OH with antioxidants (ascorbate, uric acid, glutathione and α-tocopherol) and surfactant lipids and proteins within the epithelial lining fluid (ELF). The model incorporates different processes: gas phase diffusion, adsorption and desorption from the surface, bulk phase diffusion and known reactions at the surface and in the bulk. The ELF is split into many layers: a sorption layer, a surfactant layer, a near surface bulk layer and several bulk layers. Initial results using KM-ELF indicate that at ELF thicknesses of 80 nm and 1 × 10-4cm the ELF would become rapidly saturated with ozone with saturation occurring in less than a second. However, at an ELF thickness of 1 × 10-3cm concentration gradients were observed throughout the ELF and the presence of antioxidants reduced the O3 reaching the lung cells and tissues by 40% after 1 hour of exposure. In contrast, the antioxidants were efficient scavengers of OH radicals, although the large rate constants of OH reacting with the antioxidants resulted in the antioxidants decaying away rapidly. The chemical half-lives of the antioxidants and surface species were also calculated using KM-ELF as a function of O3 and OH concentration and ELF thickness. Finally, the pH dependence of the products of reactions between antioxidants and O3 were investigated. The KM-ELF model predicted that a harmful ascorbate ozonide product would increase from 1.4 × 1011cm-3at pH 7.4 to 1.1 × 1014 cm-3 at pH 4after 1 hour although a uric acid ozonide product would decrease from 2.0 × 1015cm-3to 5.9 × 1012cm-3.
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
Li, Hongkai; Zhao, Qian; Lu, Xinchun; Luo, Jianbin
2017-11-01
In the copper (Cu) chemical mechanical planarization (CMP) process, accurate determination of a process reaching the end point is of great importance. Based on the eddy current technology, the in situ thickness measurement of the Cu layer is feasible. Previous research studies focus on the application of the eddy current method to the metal layer thickness measurement or endpoint detection. In this paper, an in situ measurement system, which is independently developed by using the eddy current method, is applied to the actual Cu CMP process. A series of experiments are done for further analyzing the dynamic response characteristic of the output signal within different thickness variation ranges. In this study, the voltage difference of the output signal is used to represent the thickness of the Cu layer, and we can extract the voltage difference variations from the output signal fast by using the proposed data processing algorithm. The results show that the voltage difference decreases as thickness decreases in the conventional measurement range and the sensitivity increases at the same time. However, it is also found that there exists a thickness threshold, and the correlation is negative, when the thickness is more than the threshold. Furthermore, it is possible that the in situ measurement system can be used within a larger Cu layer thickness variation range by creating two calibration tables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com; Bandyopadhyay, Kaushik; Saha, Partha
2014-07-01
In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities.more » The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.« less
Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ken Shuang
2004-11-01
This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimentalmore » data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.« less
Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S., E-mail: anil@physics.iisc.ernet.in
The dependence of perpendicular magnetization and Curie temperature (T{sub c}) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt{sub s}) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T{sub c} was measured using SQUID magnetometer. We have observed a systematic dependence of T{sub c} on the thickness of Pt{sub s}. For 8 nm thickness of Pt{sub s} the Co layer of 0.35 nm showed ferromagnetism with perpendicular anisotropy atmore » room temperature. As the thickness of the Pt{sub s} was decreased to 2 nm, the T{sub c} went down below 250 K. XRD data indicated polycrystalline growth of Pt{sub s} on SiO{sub 2}. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5 nm)/Pt(3 nm)/Co(0.35 nm)/Pt(2 nm) had much higher T{sub c} (above 300 K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T{sub c} and anisotropy by varying the Pt{sub s} thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pt{sub s} layer which hosts the Co layer.« less
Röhe, Ilen; Hüttner, Friedrich Joseph; Plendl, Johanna; Drewes, Barbara; Zentek, Jürgen
2018-02-05
The histological characterization of the intestinal mucus layer is important for many scientific experiments investigating the interaction between intestinal microbiota, mucosal immune response and intestinal mucus production. The aim of this study was to examine and compare different fixation protocols for displaying and quantifying the intestinal mucus layer in piglets and to test which histomorphological parameters may correlate with the determined mucus layer thickness. Jejunal and colonal tissue samples of weaned piglets (n=10) were either frozen in liquid nitrogen or chemically fixed using methacarn solution. The frozen tissue samples were cryosectioned and subsequently postfixed using three different postfixatives: paraformaldehyde vapor, neutrally buffered formalin solution and ethanol solution. After dehydration, methacarn fixed tissues were embedded in paraffin wax. Both sections of cryopreserved and methacarn fixed tissue samples were stained with Alcian blue (AB)-PAS followed by the microscopically determination of the mucus layer thickness. Different pH values of the Alcian Blue staining solution and two mucus layer thickness measuring methods were compared. In addition, various histomorphological parameters of methacarn fixed tissue samples were evaluated including the number of goblet cells and the mucin staining area. Cryopreservation in combination with chemical postfixation led to mucus preservation in the colon of piglets allowing mucus thickness measurements. Mucus could be only partly preserved in cryosections of the jejunum impeding any quantitative description of the mucus layer thickness. The application of different postfixations, varying pH values of the AB solution and different mucus layer measuring methods led to comparable results regarding the mucus layer thickness. Methacarn fixation proved to be unsuitable for mucus depiction as only mucus patches were found in the jejunum or a detachment of the mucus layer from the epithelium was observed in the colon. Correlation analyses revealed that the proportion of the mucin staining area per crypt area (relative mucin staining) measured in methacarn fixed tissue samples corresponded to the colonal mucus layer thickness determined in cryopreserved tissue samples. In conclusion, the results showed that cryopreservation using liquid nitrogen followed by chemical postfixation and AB-PAS staining led to a reliable mucus preservation allowing a mucus thickness determination in the colon of pigs. Moreover, the detected relative mucin staining area may serve as a suitable histomorphological parameter for the assessment of the intestinal mucus layer thickness. The findings obtained in this study can be used for the implementation of an improved standard for the histological description of the mucus layer in the colon of pigs.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-02-24
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.
Bhaduri, Basanta; Shelton, Ryan L; Nolan, Ryan M; Hendren, Lucas; Almasov, Alexandra; Labriola, Leanne T; Boppart, Stephen A
2017-11-01
Influence of diabetes mellitus (DM) and diabetic retinopathy (DR) on parafoveal retinal thicknesses and their ratios was evaluated. Six retinal layer boundaries were segmented from spectral-domain optical coherence tomography images using open-source software. Five study groups: (1) healthy control (HC) subjects, and subjects with (2) controlled DM, (3) uncontrolled DM, (4) controlled DR and (5) uncontrolled DR, were identified. The one-way analyses of variance (ANOVA) between adjacent study groups (i. e. 1 with 2, 2 with 3, etc) indicated differences in retinal thicknesses and ratios. Overall retinal thickness, ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness, and their combination (GCL+ IPL), appeared to be significantly less in the uncontrolled DM group when compared to controlled DM and controlled DR groups. Although the combination of nerve fiber layer (NFL) and GCL, and IPL thicknesses were not different, their ratio, (NFL+GCL)/IPL, was found to be significantly higher in the controlled DM group compared to the HC group. Comparisons of the controlled DR group with the controlled DM group, and with the uncontrolled DR group, do not show any differences in the layer thicknesses, though several significant ratios were obtained. Ratiometric analysis may provide more sensitive parameters for detecting changes in DR. Picture: A representative segmented OCT image of the human retina is shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Simplified Analytic Investigation of the Riverside Effects of Sediment Diversions
2013-09-01
demonstrated that the river bed consists of a sand layer of variable thickness, underlain by erosion resistant strata (either relict glacial deposits...following analysis. Simplifications and Initial Conditions. Consider a river modeled as a wide rectangular channel of constant width (Figure 1). The...CHETN-VII-13 September 2013 14 Short term effects include the redistribution of sediment by erosion upstream of the diversion to deposition
Polygonal crack patterns by drying thin films under quasi-two-dimensional confinement
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Lowensohn, Janna; Burton, Justin
Cracks patterns such as T/Y junction cracks in dried mud are ubiquitous in nature. Although the conditions for cracking in solids is well-known, cracks in colloidal and granular systems are more complex. Here we report the formations of polygonal cracks by drying thin films of corn starch ( 10 μm in diameter) under quasi-2D confinement. We find there are two drying stages before the films are completely dried. Initially, a compaction front invades throughout the film. Then, a second drying stage ''percolates'' throughout the film with a characteristic branching pattern, leading to a dense packing of particles connected by liquid capillary bridges. Finally, polygonal cracks appear as the remaining liquid dries. The same drying kinetics occur for films with different thickness, h, except that fractal-like fracture patterns form in thin films, where the thickness is comparable to the particle size, while polygons form in thick films with many layers of particles. We also find that the average area of the polygons, A, in fully dried films scales with the thickness, A hβ , where β 1 . 5 , and the prefactor depends on the initial packing fraction of the suspension. This form is consistent with a simple energy balance criterion for crack formation.
Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane
NASA Astrophysics Data System (ADS)
Taton, G.; Lagrange, D.; Conedera, V.; Renaud, L.; Rossi, C.
2013-10-01
We have developed a new nanothermite based polymeric electro-thermal initiator for non-contact ignition of a propellant. A reactive Al/CuO multilayer nanothermite resides on a 100 µm thick SU-8/PET (polyethyleneterephtalate) membrane to insulate the reactive layer from the silicon bulk substrate. When current is supplied to the initiator, the chemical reaction Al+CuO occurs and sparkles are spread to a distance of several millimeters. A micro-manufacturing process for fabricating the initiator is presented and the electrical behaviors of the ignition elements are also investigated. The characteristics of the initiator made on a 100 µm thick SU-8/PET membrane were compared to two bulk electro-thermal initiators: one on a silicon and one on a Pyrex substrate. The PET devices give 100% of Al/CuO ignition success for an electrical current >250 mA. Glass based reactive initiators give 100% of Al/CuO ignition success for an electrical current >500 mA. Reactive initiators directly on silicon cannot initiate even with a 4 A current. At low currents (<1 A), the initiation time is two orders of magnitude longer for Pyrex initiator compared to those obtained for PET initiator technology. We also observed that, the Al/CuO thermite film on PET membrane reacts within 1 ms (sparkles duration) whereas it reacts within 4 ms on Pyrex. The thermite reaction is 40 times greater in intensity using the PET substrate in comparison to Pyrex.
Han, Mei; Zhao, Chen; Han, Quan-Hong; Xie, Shiyong; Li, Yan
2016-08-01
To examine the changes of non-arteritic anterior ischemic optic neuropathy (NAION) by serial morphometry using Fourier domain optical coherence tomography (FD-OCT). Retrospective study in patients with newly diagnosed NAION (n=33, all unilateral) and controls (n=75 unilateral NAION patients with full contralateral eye vision) who underwent FD-OCT of the optic disk, optic nerve head (ONH), and macula within 1 week of onset and again 1, 3, 6, and 12 months later. The patients showed no improvement in vision during follow-up. Within 1 week of onset, all NAION eyes exhibited severe ONH fiber crowding and peripapillary retinal nerve fiber layer (RNFL) edema. Four had subretinal fluid accumulation and 12 had posterior vitreous detachment (PVD) at the optic disc surface. Ganglion cell complex (GCC) and RNFL thicknesses were reduced at 1 and 3 months (p < 0.05), with no deterioration thereafter. Initial RNFL/GCC contraction magnitude in the superior hemisphere correlated with the severity of inferior visual field deficits. NAION progression is characterized by an initial phase of accelerated RNFL and GCC deterioration. These results reveal that the kinetic change of neural retina in NAION and may have implication on the time window for treatment of NAION. FD-OCT is useful in the evaluation of NAION.
Soft Plumbing: Direct-Writing and Controllable Perfusion of Tubular Soft Materials
NASA Astrophysics Data System (ADS)
Guenther, Axel; Omoruwa, Patricia; Chen, Haotian; McAllister, Arianna; Jeronimo, Mark; Malladi, Shashi; Hakimi, Navid; Cao, Li; Ramchandran, Arun
2016-11-01
Tubular and ductular structures are abundant in tissues in a wide variety of diameters, wall thicknesses, and compositions. In spite of their relevance to engineered tissues, organs-on-chips and soft robotics, the rapid and consistent preparation of tubular structures remains a challenge. Here, we use a microfabricated printhead to direct-write biopolymeric tubes with dimensional and compositional control. A biopolymer solution is introduced to the center layer of the printhead, and the confining fluids to the top and the bottom layers. The radially flowing biopolymer solution is sandwiched between confining solutions that initiate gelation, initially assuming the shape of a funnel until emerging through a cylindrical confinement as a continuous biopolymer tube. Tubular constructs of sodium alginate and collagen I were obtained with inner diameters (0.6-2.2mm) and wall thicknesses (0.1-0.4mm) in favorable agreement with predictions of analytical models. We obtained homogeneous tubes with smooth and buckled walls and heterotypic constructs that possessed compositions that vary along the tube circumference or radius. Ductular soft materials were reversibly hosted in 3D printed fluidic devices for the perfusion at well-defined transmural pressures to explore the rich variety of dynamical features associated with collapsible tubes that include buckling, complete collapse, and self-oscillation.
On the origins of hardness of Cu–TiN nanolayered composites
Pathak, S.; Li, N.; Maeder, X.; ...
2015-07-18
We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.
Method for depositing layers of high quality semiconductor material
Guha, Subhendu; Yang, Chi C.
2001-08-14
Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.
The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki
2016-08-28
The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less
Li, Xin; Jordan, Matthew B; Ayari, Taha; Sundaram, Suresh; El Gmili, Youssef; Alam, Saiful; Alam, Muhbub; Patriarche, Gilles; Voss, Paul L; Paul Salvestrini, Jean; Ougazzaden, Abdallah
2017-04-11
Practical boron nitride (BN) detector applications will require uniform materials over large surface area and thick BN layers. To report important progress toward these technological requirements, 1~2.5 µm-thick BN layers were grown on 2-inch sapphire substrates by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties were carefully characterized and discussed. The thick layers exhibited strong band-edge absorption near 215 nm. A highly oriented two-dimensional h-BN structure was formed at the film/sapphire interface, which permitted an effective exfoliation of the thick BN film onto other adhesive supports. And this structure resulted in a metal-semiconductor-metal (MSM) device prototype fabricated on BN membrane delaminating from the substrate. MSM photodiode prototype showed low dark current of 2 nA under 100 V, and 100 ± 20% photoconductivity yield for deep UV light illumination. These wafer-scale MOVPE-grown thick BN layers present great potential for the development of deep UV photodetection applications, and even for flexible (opto-) electronics in the future.
Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay
2018-02-12
There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p < 0.05). We found significant correlations between inner retinal layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.
Dotan, Gad; Kesler, Anat; Naftaliev, Elvira; Skarf, Barry
2015-05-01
To report on the correlation of structural damage to the axons of the optic nerve and visual outcome following bilateral non-arteritic anterior ischemic optic neuropathy. A retrospective review of the medical records of 25 patients with bilateral sequential non-arteritic anterior ischemic optic neuropathy was performed. Outcome measures were peripapillary retinal nerve fiber layer thickness measured with the Stratus optical coherence tomography scanner, visual acuity and visual field loss. Median peripapillary retinal nerve fiber layer (RNFL) thickness, mean deviation (MD) of visual field, and visual acuity of initially involved NAION eyes (54.00 µm, -17.77 decibels (dB), 0.4, respectively) were comparable to the same parameters measured following development of second NAION event in the other eye (53.70 µm, p = 0.740; -16.83 dB, p = 0.692; 0.4, p = 0.942, respectively). In patients with bilateral NAION, there was a significant correlation of peripapillary RNFL thickness (r = 0.583, p = 0.002) and MD of the visual field (r = 0.457, p = 0.042) for the pairs of affected eyes, whereas a poor correlation was found in visual acuity of these eyes (r = 0.279, p = 0.176). Peripapillary RNFL thickness following NAION was positively correlated with MD of visual field (r = 0.312, p = 0.043) and negatively correlated with logMAR visual acuity (r = -0.365, p = 0.009). In patients who experience bilateral NAION, the magnitude of RNFL loss is similar in each eye. There is a greater similarity in visual field loss than in visual acuity between the two affected eyes with NAION of the same individual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaitsev, S. V., E-mail: szaitsev@issp.ac.ru; Akimov, I. A.; Langer, L.
2016-09-15
The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerrmore » signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.« less
A numerical study of multiple adiabatic shear bands evolution in a 304LSS thick-walled cylinder
NASA Astrophysics Data System (ADS)
Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang
2017-01-01
The self-organization of multiple shear bands in a 304L stainless steel(304LSS) thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of the local yield stress, which play a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied the Gaussian distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicated that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20˜30μm) which has significantly different microstructures from the base material. The work-hardened layer leads to the phenomenon that most shear bands propagate along a given direction, clockwise or counterclockwise. In our simulation, periodical single direction spiral perturbations were applied to describe the grain orientation in the work-hardened layer, and the single direction spiral pattern of shear bands was successfully replicated.
Surfactant properties of oxygen in the homoepitaxial growth of Fe: a MDS study
NASA Astrophysics Data System (ADS)
Moroni, R.; Bisio, F.; Gussoni, A.; Canepa, M.; Mattera, L.
2001-06-01
The growth of ultra thin iron films (up to a thickness of 5-6 ML) on O(1×1)-Fe/Ag(0 0 1) has been investigated by means of He reflectivity ( RHe) and metastable de-excitation spectroscopy. The presence of oxygen induces a quasi-ideal layer-by-layer growth at variance with the case of the homoepitaxial growth of iron on Fe(0 0 1). The surface electronic density of states suddenly changes upon the deposition of the first half of a monolayer. After the sudden change in the first stages of the growth, the surface density of states of both O 2p and Fe 3d states remains essentially unchanged, irrespectively of the thickness of the deposited film. This provides a clear indication that oxygen floats at the surface acting as a surfactant for the growth of iron on O(1×1)-Fe/Ag(0 0 1). The stationary fraction of oxygen that remains on the topmost layer as growth proceeds depends on the substrate temperature. Post-growth annealing up to 650 K restores the initial coverage of oxygen and the ordered O(1×1) phase.
NASA Astrophysics Data System (ADS)
Das, Nandini; Maiti, H. S.
2009-11-01
Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane
Influence of the doping type and level on the morphology of porous Si formed by galvanic etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.
The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.
NASA Technical Reports Server (NTRS)
Rosner, Daniel E.; Nagarajan, R.
1987-01-01
An analysis is undertaken of aerodynamically- and centrifugally-driven liquid condensate layers on nonisothermal combustion turbines' stator vanes and rotor blades. Attention is given to the quantitative consequences of one possible mechanism for the initiation of 'hot corrosion' in the underlying blade material through a 'fluxing' of the protective oxide coating by the molten salt of the Newtonian condensate film. Illustrative calculations are presented for the condensate streamline pattern and the distributions of the steady-state condensate layer thickness, together with the corresponding oxide dissolution rate, for a test turbine blade.
Electrostatic self-assembly of polyions on charged substrates
NASA Astrophysics Data System (ADS)
Campbell, A.; Adams, W. W.; Bunning, T. J.; Visser, D.; Bliznyuk, V. N.; Tsukruk, V. V.
1997-03-01
The kinetics of formation of self-assembled monolayers is studied for polystyrene sulfonate(PSS) adsorbed on oppositely charged surfaces of amine terminated self-assembled monolayers(SAM) and polyallylamine(PAA). During the early stages of deposition in both cases, an inhomogeneous deposition is noted as measured by atomic force and friction force microscopy. Island formation of unperturbed PSS coils on defect sites is observed during the initial stage of deposition. Longer deposition times result in an equilibration of the polymer layers into highly flattened macromolecular chains. AFM and FFM measurements are combined with ellipsometer and X-ray reflectivity results to quantitate the layer thicknesses and roughness with time.
Development of a low-cost x-ray mask for high-aspect-ratio MEM smart structures
NASA Astrophysics Data System (ADS)
Ajmera, Pratul K.; Stadler, Stefan; Abdollahi, Neda
1998-07-01
A cost-effective process with short fabrication time for making x-ray masks for research and development purposes is described here for fabricating high-aspect ratio microelectromechanical structures using synchrotron based x- ray lithography. Microscope cover glass slides as membrane material is described. Slides with an initial thickness of 175 micrometers are etched to a thickness in the range of 10 - 25 micrometers using a diluted HF and buffered hydrofluoric acid solutions. The thinned slides are glued on supportive mask frames and sputtered with a chromium/silver sandwich layer which acts as a plating base layer for the deposition of the gold absorber. The judicial choice of glue and mask frame material are significant parameters in a successful fabrication process. Gold absorber structures are electroplated on the membrane. Calculations are done for contrast and dose ratio obtained in the photoresist after synchrotron radiation as a function of the mask design parameters. Exposure experiments are performed to prove the applicability of the fabricated x-ray mask.
NASA Astrophysics Data System (ADS)
Mase, Suguru; Hamada, Takeaki; Freedsman, Joseph J.; Egawa, Takashi
2018-06-01
We have demonstrated a vertical GaN-on-Si p-n diode with breakdown voltage (BV) as high as 839 V by using a low Si-doped strained layer superlattice (SLS). The p-n vertical diode fabricated by using the n‑-SLS layer as a part of the drift layer showed a remarkable enhancement in BV, when compared with the conventional n‑-GaN drift layer of similar thickness. The vertical GaN-on-Si p-n diodes with 2.3 μm-thick n‑-GaN drift layer and 3.0 μm-thick n‑-SLS layer exhibited a differential on-resistance of 4.0 Ω · cm2 and a BV of 839 V.
NASA Astrophysics Data System (ADS)
Bush, A. A.; Shkuratov, V. Ya.; Chernykh, I. A.; Fetisov, Y. K.
2010-03-01
Layered thick-film composites containing one lead zirconate titanate (PZT) layer, one nickel zinc ferrite (NZF) layer, two PZT-NZF layers, or three PZT-NZF-PZT layers each 40-50 μm thick are prepared. The layers are applied by screen printing on a ceramic aluminum oxide substrate with a preformed contact (conducting) layer. The dielectric properties of the composites are studied in the temperature interval 80-900 K and the frequency interval 25 Hz-1 MHz. Polarized samples exhibit piezoelectric, pyroelectric, and magnetoelectric effects. In tangentially magnetized two- and three-layer composites, the magnetoelectric conversion factor equals 57 kV/(m T) at low frequencies and reaches 2000 kV/(m T) at the mechanical resonance frequency.
Fast Disinfecting Antimicrobial Surfaces
Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.
2013-01-01
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651
A Study of the Physical Processes of an Advection Fog BoundaryLayer
NASA Astrophysics Data System (ADS)
Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.
2016-12-01
Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.
NASA Astrophysics Data System (ADS)
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Effect of periocular humidity on the tear film lipid layer.
Korb, D R; Greiner, J V; Glonek, T; Esbah, R; Finnemore, V M; Whalen, A C
1996-03-01
The purpose of this study was to determine the relationship between the tear film and humidity by examining whether alterations in periocular humidity influence the thickness of the tear film lipid layer. Thirteen dry eye subjects presenting with a baseline lipid layer thickness of < or = 60 nm were fitted with modified swim goggles in which the right eye (OD) was exposed to conditions of high humidity and the left eye (OS) remained exposed to ambient room conditions. The lipid layer was monitored over a 60-min time course with goggles on and for an additional 60 min following goggle removal. The OD lipid layer increased significantly in thickness within 5 min of exposure to conditions of high humidity (p < 0.0001), reaching a maximum increase of 66.4 nm after 15 min of goggle wear (p < 0.0001). This maximum increase to a lipid layer thickness of 120.5 nm was maintained at the 30- and 60-min goggle time points. No significant change was detected OS. Following goggle removal, OD values declined but remained significantly elevated over the OS lipid layer thickness throughout the 60-min postgoggle period. Moderate to total relief of dry eye symptoms was reported during goggle wear and generally persisted at a reduced level for 1-3 h following goggle removal. Increased periocular humidity results in an increase in tear film lipid layer thickness, possibly by providing an environment that is more conducive to the spreading of meibomian lipid and its incorporation into the tear film.
Drits, Victor A.; Środoń, Jan; Eberl, D.D.
1997-01-01
The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good agreement with estimates of the mean thickness of fundamental particles obtained both from TEM measurements and from fixed cations content, up to a mean value of 20 layers. Correction for instrumental broadening under the conditions employed here is unnecessary for this range of thicknesses.
Kim, Eun Kyoung; Park, Hae-Young Lopilly; Park, Chan Kee
2017-01-01
To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24-2 standard automated perimetry (SAP). RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.
2015-01-01
A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.
Faria, Mun Y; Ferreira, Nuno P; Mano, Sofia; Cristóvao, Diana M; Sousa, David C; Monteiro-Grillo, Manuel E
2018-05-01
To provide a spectral-domain optical coherence tomography (SD-OCT)-based analysis of retinal layers thickness and nasal displacement of closed macular hole after internal limiting membrane peeling in macular hole surgery. In this nonrandomized prospective interventional study, 36 eyes of 32 patients were subjected to pars plana vitrectomy and 3.5 mm diameter internal limiting membrane (ILM) peeling for idiopathic macular hole (IMH). Nasal and temporal internal retinal layer thickness were assessed with SD-OCT. Each scan included optic disc border so that distance between optic disc border and fovea were measured. Thirty-six eyes had a successful surgery with macular hole closure. Total nasal retinal thickening (p<0.001) and total temporal retinal thinning (p<0.0001) were observed. Outer retinal layers increased thickness after surgery (nasal p<0.05 and temporal p<0.01). Middle part of inner retinal layers (mIRL) had nasal thickening (p<0.001) and temporal thinning (p<0.05). The mIRL was obtained by deducting ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL) thickness from overall thickness of the inner retinal layer. Papillofoveal distance was shorter after ILM peeling in macular hole surgery (3,651 ± 323 μm preoperatively and 3,361 ± 279 μm at 6 months; p<0.0001). Internal limiting membrane peel is associated with important alteration in inner retinal layer architecture, with thickening of mIRL and shortening of papillofoveal distance. These factors may contribute to recovery of disrupted foveal photoreceptor and vision improvement after IMH closure.
Villain, Max A; Greenfield, David S
2003-01-01
To assess reproducibility of quadrantic and clock hour sectors of retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Normal eyes of healthy volunteers meeting eligibility criteria were imaged by two inexperienced operators. Six 360 degrees circular scans with a diameter of 3.4 mm centered on the optic disc were obtained during each scanning session, and a baseline image was formed using 3 high-quality images defined by the software. Images were obtained on three different days within a 4-week period. Variance and coefficient of variation (CV) were calculated for quadrantic and retinal nerve fiber layer clock hour sectors obtained from the baseline image. Five normal eyes were scanned. Intraoperator reproducibility was high. The mean (+/- SD) CV for total retinal nerve fiber layer thickness was 5.3 +/- 3.82% and 4.33 +/- 3.7% for operators 1 and 2, respectively. Interoperator reproducibility was good with statistically similar variance for all quadrantic and clock hour retinal nerve fiber layer parameters (P = .42 to .99). The nasal retinal nerve fiber layer was the most variable sector for both operators (mean CV: 10.42% and 7.83% for operators 1 and 2, respectively). Differences in mean total, nasal, temporal, and superior retinal nerve fiber layer thickness were not statistically significant between operators for all eyes; however, for inferior retinal nerve fiber layer thickness, there was a significant (P = .0007) difference between operators in one eye. Peripapillary retinal nerve fiber layer thickness assessments using optical coherence tomography have good intraoperator and interoperator reproducibility. Inexperienced operators can generate useful measurement data with acceptable levels of variance.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582
Depth Measurements Using Alpha Particles and Upsettable SRAMs
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Reier, M.; Soli, G. A.
1995-01-01
A custom designed SRAM was used to measure the thickness of integrated circuit over layers and the epi-layer thickness using alpha particles and a test SRAM. The over layer consists of oxide, nitride, metal, and junction regions.
NASA Astrophysics Data System (ADS)
Gholami, Peyman; Roy, Priyanka; Kuppuswamy Parthasarathy, Mohana; Ommani, Abbas; Zelek, John; Lakshminarayanan, Vasudevan
2018-02-01
Retinal layer shape and thickness are one of the main indicators in the diagnosis of ocular diseases. We present an active contour approach to localize intra-retinal boundaries of eight retinal layers from OCT images. The initial locations of the active contour curves are determined using a Viterbi dynamic programming method. The main energy function is a Chan-Vese active contour model without edges. A boundary term is added to the energy function using an adaptive weighting method to help curves converge to the retinal layer edges more precisely, after evolving of curves towards boundaries, in final iterations. A wavelet-based denoising method is used to remove speckle from OCT images while preserving important details and edges. The performance of the proposed method was tested on a set of healthy and diseased eye SD-OCT images. The experimental results, compared between the proposed method and the manual segmentation, which was determined by an optometrist, indicate that our method has obtained an average of 95.29%, 92.78%, 95.86%, 87.93%, 82.67%, and 90.25% respectively, for accuracy, sensitivity, specificity, precision, Jaccard Index, and Dice Similarity Coefficient over all segmented layers. These results justify the robustness of the proposed method in determining the location of different retinal layers.
Hasanov, Samir; Demirkilinc Biler, Elif; Acarer, Ahmet; Akkın, Cezmi; Colakoglu, Zafer; Uretmen, Onder
2018-05-09
To evaluate and follow-up of functional and morphological changes of the optic nerve and ocular structures prospectively in patients with early-stage Parkinson's disease. Nineteen patients with a diagnosis of early-stage Parkinson's disease and 19 age-matched healthy controls were included in the study. All participants were examined minimum three times at the intervals of at least 6 month following initial examination. Pattern visually evoked potentials (VEP), contrast sensitivity assessments at photopic conditions, color vision tests with Ishihara cards and full-field visual field tests were performed in addition to measurement of retinal nerve fiber layer (RNFL) thickness of four quadrants (top, bottom, nasal, temporal), central and mean macular thickness and macular volumes. Best corrected visual acuity was observed significantly lower in study group within all three examinations. Contrast sensitivity values of the patient group were significantly lower in all spatial frequencies. P100 wave latency of VEP was significantly longer, and amplitude was lower in patient group; however, significant deterioration was not observed during the follow-up. Although average peripapillary RNFL thickness was not significant between groups, RNFL thickness in the upper quadrant was thinner in the patient group. While there was no difference in terms of mean macular thickness and total macular volume values between the groups initially, a significant decrease occurred in the patient group during the follow-up. During the initial and follow-up process, a significant deterioration in visual field was observed in the patient group. Structural and functional disorders shown as electro-physiologically and morphologically exist in different parts of visual pathways in early-stage Parkinson's disease.
Thin Thermal-Insulation Blankets for Very High Temperatures
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2003-01-01
Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Harley, O J H; Pickford, M A
2013-04-01
Mismatches in the thickness of subcutaneous fat at the level of the umbilicus and suprapubic region can result in an unsightly bulge and an unfavourable result following standard abdominoplasty. This problem can be avoided by thinning the abdominoplasty flap. This study was carried out to assess the thickness of the subcutaneous fat layer at the level of the umbilicus and the supra-pubic region. Measurements of full thickness fat and the depth of Scarpa's fascia separating superficial and sub-Scarpa fat layers were taken from the CT scans in 69 women; mean age 52 years (range 30-79). The thickness of the skin and abdominal wall fat was an average of 7 mm thicker (max 22 mm; p < 0.05). The thickness of the fat layer superficial to Scarpa's fascia was an average of 19 mm at mid abdomen and 22 mm in the lower abdomen (p < 0.05). The thickness of the fat layer deep to Scarpa's fascia was 14 mm in the mid abdomen and 5 mm in the lower abdomen (p < 0.05). In 55% of patients the difference in thickness of the mid abdominal and lower abdominal fat was greater than 5 mm, a difference that could lead to a noticeable mismatch and therefore an unfavourable outcome. Results of this study suggest that selectively thinning the fat layer deep to Scarpa's fascia would address potential mismatches and preserve the Scarpa's fascia layer in more than 50% of cases, therefore allowing wounds to be closed with an effective deep tension layer. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Li, Shu-ting; Wang, Xiang-ning; Du, Xin-hua; Wu, Qiang
2017-01-01
Purpose To compare intra-retinal layer thickness measurements between eyes with no or mild diabetic retinopathy (DR) and age-matched controls using Spectralis spectral-domain optical coherence tomography (SD-OCT). Methods Cross-sectional observational analysis study. High-resolution macular volume scans (30° * 25°) were obtained for 133 type 2 diabetes mellitus (T2DM) patients with no DR, 42 T2DM patients with mild DR and 115 healthy controls. The mean thickness was measured in all 9 Early Treatment Diabetic Retinopathy Study (ETDRS) sectors for 8 separate layers, inner retinal layer (IRL), outer retinal layer (ORL) and total retina (TR), after automated segmentation. The ETDRS grid consisted of three concentric circles of 1-, 3-, and 6-mm diameter. The superior, inferior, temporal, and nasal sectors of the 3- and 6-mm circles were respectively designated as S3, I3, T3, and N3 and S6, I6, T6, and N6. Linear regression analyses were conducted to evaluate the associations between the intra-retinal layer thicknesses, age, diabetes duration, fasting blood glucose and HbA1c. Results The mean age and duration of T2DM were 61.1 and 13.7 years, respectively. Although no significant differences in the average TR and ORL volumes were observed among the groups, significant differences were found in the volume and sectorial thicknesses of the inner plexiform layer (IPL), outer plexiform layer (OPL) and IRL among the groups. In particular, the thicknesses of the IPL (S3, T3, S6, I6 and T6 sectors) and the IRL (S6 sector) were decreased in the no-DR group compared with the controls (P < 0.05). The thickness of the OPL (S3, N3, S6 and N6 sectors) was thinner in the no-DR group than in mild DR (P < 0.05). The average IPL thickness was significantly negatively correlated with age and the duration of diabetes. Conclusion The assessment of the intra-retinal layer thickness showed a significant decrease in the IPL and IRL thicknesses in Chinese adults with T2DM, even in the absence of visible microvascular signs of DR. PMID:28493982
Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.
Bandura, A V; Evarestov, R A; Lukyanov, S I
2014-07-28
A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.
Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth
Tang, Y. -H.; Golding, B.
2016-02-02
Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less
Functional wettability in carbonate reservoirs
Brady, Patrick V.; Thyne, Geoffrey
2016-10-11
Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less
Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2012-12-01
Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.
Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul
2018-02-01
To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT < 200 μm; B group, 200 μm ≤ CMT < 300 μm; and C group, CMT > 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.
[Factors influencing the measurement of tear film lipid layer thickness with interferometry].
Finis, D; Pischel, N; Borrelli, M; Schrader, S; Geerling, G
2014-06-01
The quantitative measurement of the tear film lipid layer thickness is a relatively new and promising method. However, so far it has not been investigated whether there is a diurnal or a day to day variability and whether certain factors are confounding the measurement of the lipid layer thickness. In three different experimental settings, 10 subjects without known sicca syndrome were examined at three different time points on one day, on three different days and before and after therapeutic expression of the Meibomian glands. As a comparison, the parameters tear film break-up time, tear meniscus height, diagnostic expression of the Meibomian glands and subjective symptoms, determined using the OSDI (ocular surface disease index) questionnaire, were measured. The results of the study showed a smaller variation of the lipid layer thickness measurements during the day and from day to day compared to the tear film break-up time. The expression of the Meibomian glands significantly increased the lipid layer thickness. There was a correlation between the baseline values of tear film break-up time and the lipid layer thickness. Our data showed that the lipid layer thickness as measured with the Lipiview® interferometer appears to be a relatively constant parameter over time. In addition, the expression of the Meibomian glands could be identified as a potential confounding factor. In this study we included only healthy subjects without known sicca syndrome. For the future our findings need to be validated in dry eye patients. Georg Thieme Verlag KG Stuttgart · New York.
Ghate, Deepta A; Holley, Glenn; Dollinger, Harli; Bullock, Joseph P; Markwardt, Kerry; Edelhauser, Henry F
2008-10-01
To evaluate human corneal endothelial mucin layer thickness and ultrastructure after phacoemulsification and irrigation-aspiration with either next generation ophthalmic irrigating solution (NGOIS) or BSS PLUS. Paired human corneas were mounted in an artificial anterior chamber, exposed to 3 minutes of continuous ultrasound (US) at 80% power using the Alcon SERIES 20000 LEGACY surgical system (n = 9) or to 2 minutes of pulsed US at 50% power, 50% of the time at 20 pps using the Alcon INFINITI Vision System (n = 5), and irrigated with 250 mL of either NGOIS or BSS PLUS. A control group of paired corneas did not undergo phacoemulsification or irrigation-aspiration (n = 5). Corneas were divided and fixed for mucin staining or transmission electron microscopy. Mucin layer thickness was measured on the transmission electron microscopy prints. The mucin layer thickness in the continuous phaco group was 0.77 +/- 0.02 microm (mean +/- SE) with NGOIS and 0.51 +/- 0.01 microm with BSS PLUS (t test, P < 0.001). The mucin layer thickness in the pulsed phaco group was 0.79 +/- 0.02 microm with NGOIS and 0.54 +/- 0.01 microm with BSS PLUS (P < 0.001). The mucin layer thickness in the untreated control group was 0.72 +/- 0.02 microm. The endothelial ultrastructure was normal in all corneas. In this in vitro corneal model, NGOIS, due to its lower surface tension and higher viscosity, preserved endothelial mucin layer thickness better than BSS PLUS with both the INFINITI Vision System (pulsed US) and the LEGACY surgical system (continuous US).
New magnetic phase and magnetic coherence in Nd/Sm(001) superlattices
NASA Astrophysics Data System (ADS)
Soriano, S.; Dufour, C.; Dumesnil, K.; Stunault, A.
2006-06-01
In order to investigate magnetic phenomena in Nd and Sm layers separately, resonant x-ray magnetic scattering experiments have been performed to study Nd/Sm(001) superlattices with different relative layers thickness. The samples were grown using molecular beam epitaxy, and optimized to yield dhcp Sm growth and thus a coherent dhcp stacking across the Nd/Sm superlattices. The magnetic phases in Sm layers are very close to the ones evidenced in dhcp thick films. In contrast, the magnetism in Nd layers shows strong differences with the bulk case. In superlattices with a large Sm thickness (>8 nm), no magnetic scattering usually associated with Nd magnetic structure was detected. In superlattices with smaller Sm thickness (<4 nm), new Nd magnetic phases have been observed. A detailed analysis of the propagation of the magnetic structures in the cubic and hexagonal sublattices of both Sm and Nd is presented. Both Sm hexagonal and cubic magnetic phases propagate coherently through 3.7 nm thick Nd layers but remain confined in Sm layers when the Nd layers are 7.1 nm thick. In contrast, the critical Sm thickness allowing a coherent propagation of Nd magnetic order is different for the hexagonal and cubic sublattices above 5 K. Finally, we show that: (i) a spin-density wave and a 4f magnetic order with perpendicular polarization are exclusive on a given crystallographic site (either hexagonal or cubic); (ii) a 4f magnetic order on a crystallographic site does not perturb the establishment of a spin-density wave with a perpendicular polarization on the other site.
NASA Technical Reports Server (NTRS)
Policastro, Steven G. (Inventor); Woo, Dae-Shik (Inventor)
1983-01-01
A self-aligned method of implanting the edges of NMOS/SOS transistors is described. The method entails covering the silicon islands with a thick oxide layer, applying a protective photoresist layer over the thick oxide layer, and exposing the photoresist layer from the underside of the sapphire substrate thereby using the island as an exposure mask. Only the photoresist on the islands' edges will be exposed. The exposed photoresist is then removed and the thick oxide is removed from the islands edges which are then implanted.
Evaluation and analysis of LTPP pavement layer thickness data
DOT National Transportation Integrated Search
2002-07-30
In 2001, the Federal Highway Administration sponsored a study to review pavement layer thickness data for Long Term Pavement Performance (LTPP) sites. The main objective of the study was to assess the quality and completeness of pavement layering inf...
NASA Astrophysics Data System (ADS)
Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas
2017-05-01
Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.
Assessment of the growth/etch back technique for the production of Ge strain-relaxed buffers on Si
NASA Astrophysics Data System (ADS)
Hartmann, J. M.; Aubin, J.
2018-04-01
Thick Ge layers grown on Si(0 0 1) are handy for the production of GeOI wafers, as templates for the epitaxy of III-V and GeSn-based heterostructures and so on. Perfecting their crystalline quality would enable to fabricate suspended Ge micro-bridges with extremely high levels of tensile strain (for mid IR lasers). In this study, we have used a low temperature (400 °C)/high temperature (750 °C) approach to deposit with GeH4 various thickness Ge layers in the 0.5 μm - 5 μm range. They were submitted afterwards to short duration thermal cycling under H2 (in between 750 °C and 875-890 °C) to lower the Threading Dislocation Density (TDD). Some of the thickest layers were partly etched at 750 °C with gaseous HCl to recover wafer bows compatible with device processing later on. X-ray Diffraction (XRD) showed that the layers were slightly tensile-strained, with a 104.5-105.5% degree of strain relaxation irrespective of the thickness. The surface was cross-hatched, with a roughness slightly decreasing with the thickness, from 2.0 down to 0.8 nm. The TDD (from Omega scans in XRD) decreased from 8 × 107 cm-2 down to 107 cm-2 as the Ge layer thickness increased from 0.5 up to 5 μm. The lack of improvement when growing 5 μm thick layers then etching a fraction of them with HCl over same thickness layers grown in a single run was at variance with Thin Solid Films 520, 3216 (2012). Low temperature HCl defect decoration confirmed those findings, with (i) a TDD decreasing from slightly more 107 cm-2 down to 5 × 106 cm-2 as the Ge layer thickness increased from 1.3 up to 5 μm and (ii) no TDD hysteresis between growth and growth then HCl etch-back.
Effect of capping layer on interlayer coupling in synthetic spin valves
NASA Astrophysics Data System (ADS)
Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan
2005-01-01
The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.
The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
Huynh, Son C; Wang, Xiu Ying; Rochtchina, Elena; Mitchell, Paul
2006-09-01
To study the distribution of retinal nerve fiber layer (RNFL) thickness by ocular and demographic variables in a population-based study of young children. Population-based cross-sectional study. One thousand seven hundred sixty-five of 2238 (78.9%) eligible 6-year-old children participated in the Sydney Childhood Eye Study between 2003 and 2004. Mean age was 6.7 years (50.9% boys). Detailed examination included cycloplegic autorefraction and measurement of axial length. Retinal nerve fiber layer scans using an optical coherence tomographer were performed with a circular scan pattern of 3.4-mm diameter. Multivariate analyses were performed to examine the distribution of RNFL parameters with gender, ethnicity, axial length, and refraction. Peripapillary RNFL thickness and RNFL(estimated integral) (RNFL(EI)), which measures the total cross-sectional area of ganglion cell axons converging onto the optic nerve head. Peripapillary RNFL thickness and RNFL(EI) were normally distributed. The mean+/-standard deviation RNFL average thickness was 103.7+/-11.4 microm and RNFL(EI) was 1.05+/-0.12 mm2. Retinal nerve fiber layer thickness was least for the temporal quadrant (75.7+/-14.7 microm), followed by the nasal (81.7+/-19.6 microm), inferior (127.8+/-20.5 microm), and superior (129.5+/-20.6 microm) quadrants. Multivariate adjusted RNFL average thickness was marginally greater in boys than in girls (104.7 microm vs. 103.2 microm; P = 0.007) and in East Asian than in white children (107.7 microm vs. 102.7 microm; P<0.0001). The RNFL was thinner with greater axial length (P(trend)<0.0001) and less positive spherical equivalent refractions (P(trend) = 0.004). Retinal nerve fiber layer average thickness and RNFL(EI) followed a normal distribution. Retinal nerve fiber layer thickness varied marginally with gender, but differences were more marked between white and East Asian children. Retinal nerve fiber layer thinning was associated with increasing axial length and less positive refractions.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin
2017-11-01
A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.
Effect of the Platinum Electroplated Layer Thickness on the Coatings' Microstructure
NASA Astrophysics Data System (ADS)
Zagula-Yavorska, Maryana; Gancarczyk, Kamil; Sieniawski, Jan
2017-03-01
CMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.
Investigation of superlattice device structures
NASA Technical Reports Server (NTRS)
Gergis, I. S.; Manasevit, H. M.; Lin, A. L.; Jones, A. B.
1985-01-01
This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film and the elastic strain in the intervening Si layers.
Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell
NASA Astrophysics Data System (ADS)
Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.
2017-08-01
P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun
2016-06-15
In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less
Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P
2014-03-10
We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.
Residual stress within nanoscale metallic multilayer systems during thermal cycling
Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...
2015-09-21
Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less
Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M
2017-02-01
We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Nam-Hui; Han, Dong-Soo; Jung, Jinyong; Park, Kwonjin; Swagten, Henk J. M.; Kim, June-Seo; You, Chun-Yeol
2017-10-01
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) and the interfacial perpendicular magnetic anisotropy (iPMA) between a heavy metal and ferromagnet are investigated by employing Brillouin light scattering. With increasing thickness of the heavy-metal (Pt) layer, the iDMI and iPMA energy densities are rapidly enhanced and they saturate for a Pt thickness of 2.4 nm. Since these two individual magnetic properties show the same Pt thickness dependence, this is evidence that the iDMI and iPMA at the interface between the heavy metal and ferromagnet, the physical origin of these phenomena, are effectively enhanced upon increasing the thickness of the heavy-metal layer.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-01-01
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.
Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz
2015-01-01
To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy
Francis, Andrew W.; Wanek, Justin; Lim, Jennifer I.; Shahidi, Mahnaz
2015-01-01
Purpose To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. Methods High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. Results In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Conclusions Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR. PMID:26699878
Characteristics of blue organic light emitting diodes with different thick emitting layers
NASA Astrophysics Data System (ADS)
Li, Chong; Tsuboi, Taiju; Huang, Wei
2014-08-01
We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.
Casimir Pressure in Mds-Structures
NASA Astrophysics Data System (ADS)
Yurova, V. A.; Bukina, M. N.; Churkin, Yu. V.; Fedortsov, A. B.; Klimchitskaya, G. L.
2012-07-01
The Casimir pressure on the dielectric layer in metal-dielectric-semiconductor (MDS) structures is calculated in the framework of the Lifshitz theory at nonzero temperature. In this calculation the standard parameters of semiconductor devices with a thin dielectric layer are used. We consider the thickness of a layer decreasing from 40 to 1 nm. At the shortest thickness the Casimir pressure achieves 8 MPa. At small thicknesses the results are compared with the predictions of nonrelativistic theory.
Method to control residual stress in a film structure and a system thereof
Parthum, Sr., Michael J.
2008-12-30
A method for controlling residual stress in a structure in a MEMS device and a structure thereof includes selecting a total thickness and an overall equivalent stress for the structure. A thickness for each of at least one set of alternating first and second layers is determined to control an internal stress with respect to a neutral axis for each of the at least alternating first and second layers and to form the structure based on the selected total thickness and the selected overall equivalent stress. Each of the at least alternating first and second layers is deposited to the determined thickness for each of the at least alternating first and second layers to form the structure.
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
NASA Astrophysics Data System (ADS)
Yazdanfar, M.; Stenberg, P.; Booker, I. D.; Ivanov, I. G.; Kordina, O.; Pedersen, H.; Janzén, E.
2013-10-01
The development of a chemical vapor deposition (CVD) process for very thick silicon carbide (SiC) epitaxial layers suitable for high power devices is demonstrated by epitaxial growth of 200 μm thick, low doped 4H-SiC layers with excellent morphology at growth rates exceeding 100 μm/h. The process development was done in a hot wall CVD reactor without rotation using both SiCl4 and SiH4+HCl precursor approaches to chloride based growth chemistry. A C/Si ratio <1 and an optimized in-situ etch are shown to be the key parameters to achieve 200 μm thick, low doped epitaxial layers with excellent morphology.
Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region
NASA Astrophysics Data System (ADS)
Sharma, Anuj K.
2018-05-01
Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.
Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors
NASA Astrophysics Data System (ADS)
Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong
2017-01-01
Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.
Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing
2012-03-01
The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.
Yoon, Chang Ki; Yu, Hyeong Gon
2018-03-01
To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p < 0.001), but significantly thinner in NISE than in IISE eyes (p < 0.001) in both horizontal and vertical OCT scans. Retinal nerve fibre layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p < 0.001). Ganglion cell-inner plexiform layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Goteti, Rajesh; Agar, Susan M.; Brown, John P.; Ball, Philip; Zuhlke, Rainer
2017-04-01
Mechanical stratification in LES (Layered Evaporate Sequences) can have a distinct impact on structural and depositional styles in rifted margin salt tectonics. The bulk mechanical response of an LES under geological loading is dependent, among other factors, on the relative proportions of salt and sediment, salt mobility and sedimentation rate. To assess the interactions among the aforementioned factors in a physically consistent manner, we present 2D, large-strain finite element models of an LES salt minibasin and diapirs. Loading from the deposition of alternating salt and sediment layers (i.e., LES), gravity and a prescribed geothermal gradient provide the driving force for halokinesis in the models. To accurately capture the mechanical impact of stratification within the modeled LES, salt is assigned a temperature-dependent visco-plastic rheology, whereas the sediments are assigned a non-associative cap-plasticity model that supports both compaction and shear localization. Perturbations in the initial salt-sediment interface are used to initiate the salt diapirs. Model results suggest that active diapirism in the basal halite layer initiates when the pressure at the base of the incipient salt diapir exceeds that beneath the minibasin. Vertical growth of the diapir is also accompanied by its lateral expansion at higher structural levels where it preferentially intrudes the adjacent pre- and syn-kinematic salt layers. This pressure pumping of deeper salt into shallow salt layers, can result in rapid thickness changes between successive sediment layers within the LES. Caution needs to be exercised as such thickness changes observed in seismic images may not be entirely due to the shifting of depocenters but also due to the lateral pumping of salt within the LES. The presence of salt layers at multiple structural levels decouples the deformation between successive clastic layers resulting in disharmomic folding with contrasting strain histories in the sedimentary stringers. A significant proportion of the bulk deviatoric strain is preferentially partitioned into the salt layers. Effective plastic shear strains within the sediment stringers generally remain low in the minibasin but can be significantly higher with attendant intense folding near the diapirs. In non-LES systems, the shape of a salt diapir is often used as indicator of relative rates of salt supply and sedimentation over geological time. However our models suggest that this rule-of-thumb may not apply in LES where the shape of the salt diapir is a function of the mechanical properties of the salt layers at various structural levels in addition to the relative rates of salt supply and sedimentation. Imaging challenges in LES may preclude placing strong constraints on structural timing based on interpretation of interfaces between the stringers and the salt diapir. In such situations, geomechanical forward modeling can be a useful tool in placing physics-based quantitative constraints on the timing of LES structures.
Thermally stable diamond brazing
Radtke, Robert P [Kingwood, TX
2009-02-10
A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.
NASA Astrophysics Data System (ADS)
Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang
2017-12-01
Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.
High energy PIXE: A tool to characterize multi-layer thick samples
NASA Astrophysics Data System (ADS)
Subercaze, A.; Koumeir, C.; Métivier, V.; Servagent, N.; Guertin, A.; Haddad, F.
2018-02-01
High energy PIXE is a useful and non-destructive tool to characterize multi-layer thick samples such as cultural heritage objects. In a previous work, we demonstrated the possibility to perform quantitative analysis of simple multi-layer samples using high energy PIXE, without any assumption on their composition. In this work an in-depth study of the parameters involved in the method previously published is proposed. Its extension to more complex samples with a repeated layer is also presented. Experiments have been performed at the ARRONAX cyclotron using 68 MeV protons. The thicknesses and sequences of a multi-layer sample including two different layers of the same element have been determined. Performances and limits of this method are presented and discussed.
Method of Fabricating Schottky Barrier solar cell
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M. (Inventor)
1982-01-01
On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.
First high-resolution stratigraphic column of the Martian north polar layered deposits
Fishbaugh, K.E.; Hvidberg, C.S.; Byrne, S.; Russell, P.S.; Herkenhoff, K. E.; Winstrup, M.; Kirk, R.
2010-01-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/-1.4 m, and 6 of 13 marker beds are separated by ???25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex. Copyright ?? 2010 by the American Geophysical Union.
First high-resolution stratigraphic column of the Martian north polar layered deposits
NASA Astrophysics Data System (ADS)
Fishbaugh, Kathryn E.; Hvidberg, Christine S.; Byrne, Shane; Russell, Patrick S.; Herkenhoff, Kenneth E.; Winstrup, Mai; Kirk, Randolph
2010-04-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/- 1.4 m, and 6 of 13 marker beds are separated by ˜25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex.
Cortical thickness measurement from magnetic resonance images using partial volume estimation
NASA Astrophysics Data System (ADS)
Zuluaga, Maria A.; Acosta, Oscar; Bourgeat, Pierrick; Hernández Hoyos, Marcela; Salvado, Olivier; Ourselin, Sébastien
2008-03-01
Measurement of the cortical thickness from 3D Magnetic Resonance Imaging (MRI) can aid diagnosis and longitudinal studies of a wide range of neurodegenerative diseases. We estimate the cortical thickness using a Laplacian approach whereby equipotentials analogous to layers of tissue are computed. The thickness is then obtained using an Eulerian approach where partial differential equations (PDE) are solved, avoiding the explicit tracing of trajectories along the streamlines gradient. This method has the advantage of being relatively fast and insure unique correspondence points between the inner and outer boundaries of the cortex. The original method is challenged when the thickness of the cortex is of the same order of magnitude as the image resolution since partial volume (PV) effect is not taken into account at the gray matter (GM) boundaries. We propose a novel way to take into account PV which improves substantially accuracy and robustness. We model PV by computing a mixture of pure Gaussian probability distributions and use this estimate to initialize the cortical thickness estimation. On synthetic phantoms experiments, the errors were divided by three while reproducibility was improved when the same patients was scanned three consecutive times.
Iridium Interfacial Stack - IrIS
NASA Technical Reports Server (NTRS)
Spry, David
2012-01-01
Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the SiC chip circuitry.
Concentration history during pumping from a leaky aquifer with stratified initial concentration
Goode, Daniel J.; Hsieh, Paul A.; Shapiro, Allen M.; Wood, Warren W.; Kraemer, Thomas F.
1993-01-01
Analytical and numerical solutions are employed to examine the concentration history of a dissolved substance in water pumped from a leaky aquifer. Many aquifer systems are characterized by stratification, for example, a sandy layer overlain by a clay layer. To obtain information about separate hydrogeologic units, aquifer pumping tests are often conducted with a well penetrating only one of the layers. When the initial concentration distribution is also stratified (the concentration varies with elevation only), the concentration breakthrough in the pumped well may be interpreted to provide information on aquifer hydraulic and transport properties. To facilitate this interpretation, we present some simple analytical and numerical solutions for limiting cases and illustrate their application to a fractured bedrock/glacial drift aquifer system where the solute of interest is dissolved radon gas. In addition to qualitative information on water source, this method may yield estimates of effective porosity and saturated thickness (or fracture transport aperture) from a single-hole test. Little information about dispersivity is obtained because the measured concentration is not significantly affected by dispersion in the aquifer.
Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD
NASA Astrophysics Data System (ADS)
Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin
2003-04-01
FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.
Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Cohn, Adam P; Douglas, Anna; Pint, Cary L
2017-03-01
Despite the promise of surface engineering to address the challenge of polysulfide shuttling in sulfur-carbon composite cathodes, melt infiltration techniques limit mechanistic studies correlating engineered surfaces and polysulfide anchoring. Here, we present a controlled experimental demonstration of polysulfide anchoring using vapor phase isothermal processing to fill the interior of carbon nanotubes (CNTs) after assembly into binder-free electrodes and atomic layer deposition (ALD) coating of polar V 2 O 5 anchoring layers on the CNT surfaces. The ultrathin submonolayer V 2 O 5 coating on the CNT exterior surface balances the adverse effect of polysulfide shuttling with the necessity for high sulfur utilization due to binding sites near the conductive CNT surface. The sulfur loaded into the CNT interior provides a spatially separated control volume enabling high sulfur loading with direct sulfur-CNT electrical contact for efficient sulfur conversion. By controlling ALD coating thickness, high initial discharge capacity of 1209 mAh/g S at 0.1 C and exceptional cycling at 0.2 C with 87% capacity retention after 100 cycles and 73% at 450 cycles is achieved and correlated to an optimal V 2 O 5 anchoring layer thickness. This provides experimental evidence that surface engineering approaches can be effective to overcome polysulfide shuttling by controlled design of molecular-scale building blocks for efficient binder free lithium sulfur battery cathodes.
Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.
Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A
2012-03-15
We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase. © 2012 American Chemical Society
Fracture toughness of the nickel-alumina laminates by digital image-correlation technique
NASA Astrophysics Data System (ADS)
Mekky, Waleed
The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.; Fuks, Kelly H.; Murchie, Scott
1995-01-01
A packet of relatively resistant layers, totaling approx. 400 m thickness, is present at the tops of the chasma walls throughout Valles Marineris. The packet consists of an upper dark layer (approx. 50 m thick), a central bright layer (approx. 250 m thick), and a lower dark layer (approx. 100 m thick). The packet appears continuous and of nearly constant thickness and depth below ground surface over the whole Valles system (4000 km E-W, 800 km N-S), independent of elevation (3-10 km) and age of plateau surface (Noachian through upper Hesperian). The packet continues undisturbed beneath the boundary between surface units of Noachian and Hesperian ages, and continues undisturbed beneath impact craters transected by chasma walls. These attributes are not consistent with layer formation by volcanic or sedimentary deposition, and are consistent with layer formation in situ, i.e., by diagenesis, during or after upper Hesperian time. Diagenesis seems to require the action of aqueous solutions in the near subsurface, which are not now stable in the Valles Marineris area. To permit the stability of aqueous solutions, Mars must have had a fairly dense atmosphere, greater than or equal to 1 bar CO2, when the layers formed. Obliquity variations appear to be incapable of producing such a massive atmosphere so late in Mars' history.
Spin-valve Josephson junctions for cryogenic memory
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany M.; Bertus, T. J.; Glick, Joseph A.; Loloee, R.; Pratt, W. P.; Birge, Norman O.
2018-01-01
Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenic memory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and π by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the superconducting quantum interference device (SQUID) used for phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a "phase diagram" for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.
4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells
NASA Astrophysics Data System (ADS)
Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten
2017-09-01
Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.
Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Grosser, Wendy I.
1997-01-01
When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.
High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.; Forrest, Stephen
2015-08-18
A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first photoactive organic layer that is a mixture of an organic acceptor material and an organic donor material, wherein the first photoactive organic layer has a thickness not greater than 0.8 characteristic charge transport lengths; a second photoactive organic layer in direct contact with the first organic layer, wherein the second photoactive organic layer is an unmixed layer of the organic acceptor material of the first photoactive organic layer, and the second photoactive organic layer has a thickness not less than about 0.1 optical absorption lengths; and a third photoactive organic layer disposed between the first electrode and the second electrode and in direct contact with the first photoactive organic layer. The third photoactive organic layer is an unmixed layer of the organic donor layer of the first photoactive organic layer and has a thickness not less than about 0.1 optical absorption lengths.
Superconducting and Magnetic Properties of Vanadium/iron Superlattices.
NASA Astrophysics Data System (ADS)
Wong, Hong-Kuen
A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).
Interface structure in nanoscale multilayers near continuous-to-discontinuous regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in
2016-07-28
Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less
The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions
NASA Astrophysics Data System (ADS)
Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.
2013-12-01
During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer and a 7 μm thick palisade-shaped layer evolve. At similar conditions and a differential stress of 30 MPa, the rim thickness remains similar; consequently the effect of non-isostatic stress on dolomite rim growth is negligible. Platinum markers show that the initial calcite-magnesite interface is located between granular and palisade-forming dolomite, indicating that rim growth occurs by counter diffusion of MgO and CaO. Diffusion of MgO across the dolomite reaction rim into calcite forms additionally magnesio-calcite grains with diameters of ≈ 13 - 46 μm, depending on the experimental conditions and increasing with increasing distance to the dolomite boundary. At T = 750°C, t = 29 hours, the thickness of the magnesio-calcite layer is 32 μm (isostatic) - 35 μm (σ = 30 MPa). The experiments indicate that solid-state reaction rim growth of dolomite between calcite and magnesite is primarily controlled by diffusion of MgO and CaO, forming layers with different microstructures during growth into the educt phases. The kinetics of the reaction in the carbonate system are not significantly changed by differential stresses up to 40 MPa. We suggest that volume diffusion is the dominant transport mechanism, which is presumably less affected by non-isostatic stresses than grain boundary diffusion.
A new method for the automatic interpretation of Schlumberger and Wenner sounding curves
Zohdy, A.A.R.
1989-01-01
A fast iterative method for the automatic interpretation of Schlumberger and Wenner sounding curves is based on obtaining interpreted depths and resistivities from shifted electrode spacings and adjusted apparent resistivities, respectively. The method is fully automatic. It does not require an initial guess of the number of layers, their thicknesses, or their resistivities; and it does not require extrapolation of incomplete sounding curves. The number of layers in the interpreted model equals the number of digitized points on the sounding curve. The resulting multilayer model is always well-behaved with no thin layers of unusually high or unusually low resistivities. For noisy data, interpretation is done in two sets of iterations (two passes). Anomalous layers, created because of noise in the first pass, are eliminated in the second pass. Such layers are eliminated by considering the best-fitting curve from the first pass to be a smoothed version of the observed curve and automatically reinterpreting it (second pass). The application of the method is illustrated by several examples. -Author
RBS/Channeling Studies of Swift Heavy Ion Irradiated GaN Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathish, N.; Dhamodaran, S.; Pathak, A. P.
2009-03-10
Epitaxial GaN layers grown by MOCVD on c-plane sapphire substrates were irradiated with 150 MeV Ag ions at a fluence of 5x10{sup 12} ions/cm{sup 2}. Samples used in this study are 2 {mu}m thick GaN layers, with and without a thin AlN cap-layer. Energy dependent RBS/Channeling measurements have been carried out on both irradiated and unirradiated samples for defects characterization. Observed results are compared and correlated with previous HRXRD, AFM and optical studies. The {chi}{sub min} values for unirradiated samples show very high value and the calculated defect densities are of the order of 10{sup 10} cm{sup -2} as expectedmore » in these samples. Effects of irradiation on these samples are different as initial samples had different defect densities. Epitaxial reconstruction of GaN buffer layer has been attributed to the observed changes, which are generally grown to reduce the strain between GaN and Sapphire.« less
Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J
2009-06-01
Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
Dawson, Dana K.; Maceira, Alicia M.; Raj, Vimal J.; Graham, Catriona; Pennell, Dudley J.; Kilner, Philip J.
2011-01-01
Background We used cardiovascular magnetic resonance (CMR) to study normal left ventricular (LV) trabeculation as a basis for differentiation from pathological noncompaction. Methods and Results The apparent end-diastolic (ED) and end-systolic (ES) thicknesses and thickening of trabeculated and compacted myocardial layers were measured in 120 volunteers using a consistent selection of basal, mid, and apical CMR short-axis slices. All had a visible trabeculated layer in 1 or more segments. The compacted but not the trabeculated layer was thicker in men than in women (P<0.01 at ED and ES). When plotted against age, the trabeculated and compacted layer thicknesses demonstrated opposite changes: an increase of the compact layer after the fourth decade at both ED and ES (P<0.05) but a decrease of the trabeculated layer. There was age-related preservation of total wall thickness at ED but an increase at ES (P<0.05). The compacted layer thickened, whereas the trabeculated layer thinned with systole, but neither change differed between sexes. With age, the most trabeculated LV segments showed significantly greater systolic thinning of trabeculated layers and, conversely, greater thickening of the compact segments (P<0.05). Total wall thickening is neither sex nor age dependent. There were no sex differences in the trabeculated/compacted ratio at ES or ED, but the ES trabeculated/compacted ratio was smaller in older (50 to 79 years) versus younger (20 to 49 years) groups (P<0.05). Conclusions We demonstrated age- and sex-related morphometric differences in the apparent trabeculated and compacted layer thicknesses and systolic thinning of the visible trabeculated layer that contrasts with compacted myocardial wall thickening. PMID:21193690
Bamberg, Christian; Dudenhausen, Joachim W; Bujak, Verena; Rodekamp, Elke; Brauer, Martin; Hinkson, Larry; Kalache, Karim; Henrich, Wolfgang
2018-06-01
We undertook a randomized clinical trial to examine the outcome of a single vs. a double layer uterine closure using ultrasound to assess uterine scar thickness. Participating women were allocated to one of three uterotomy suture techniques: continuous single layer unlocked suturing, continuous locked single layer suturing, or double layer suturing. Transvaginal ultrasound of uterine scar thickness was performed 6 weeks and 6 - 24 months after Cesarean delivery. Sonographers were blinded to the closure technique. An "intent-to-treat" and "as treated" ANOVA analysis included 435 patients (n = 149 single layer unlocked suturing, n = 157 single layer locked suturing, and n = 129 double layer suturing). 6 weeks postpartum, the median scar thickness did not differ among the three groups: 10.0 (8.5 - 12.3 mm) single layer unlocked vs. 10.1 (8.2 - 12.7 mm) single layer locked vs. 10.8 (8.1 - 12.8 mm) double layer; (p = 0.84). At the time of the second follow-up, the uterine scar was not significantly (p = 0.06) thicker if the uterus had been closed with a double layer closure 7.3 (5.7 - 9.1 mm), compared to single layer unlocked 6.4 (5.0 - 8.8 mm) or locked suturing techniques 6.8 (5.2 - 8.7 mm). Women who underwent primary or elective Cesarean delivery showed a significantly (p = 0.03, p = 0.02, "as treated") increased median scar thickness after double layer closure vs. single layer unlocked suture. A double layer closure of the hysterotomy is associated with a thicker myometrium scar only in primary or elective Cesarean delivery patients. © Georg Thieme Verlag KG Stuttgart · New York.
Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan
2014-01-01
Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468
Tunable Transport Gap in Phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Zhang, Wei; Demarteau, Marcel
2014-08-11
In this paper, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ~0.3 to ~1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gatemore » oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. In conclusion, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.« less
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field
NASA Technical Reports Server (NTRS)
Crawford, R. A.
1988-01-01
The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.
Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1981-01-01
Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.
A Thermoelectric Generator Using Porous Si Thermal Isolation
Hourdakis, Emmanouel; Nassiopoulou, Androula G.
2013-01-01
In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923
NASA Astrophysics Data System (ADS)
Cheng, Junfeng; Chen, Zhiru; Zhou, Jiaqi; Cao, Zheng; Wu, Dun; Liu, Chunlin; Pu, Hongting
2018-05-01
The effects of layer thickness on the compatibility between polycarbonate (PC) and polystyrene (PS) and physical properties of PC/PS multilayered film via nanolayer coextrusion are studied. The morphology of multilayered structure is observed using a scanning electron microscope. This multilayered structure may have a negative impact on the transparency, but it can improve the water resistance and heat resistance of film. To characterize the compatibility between PC and PS, differential scanning calorimetry is used to measure the glass transition temperature. The compatibility is found to be improved with the decrease of layer thickness. Therefore, the viscosity of multilayered film is also reduced with the decrease of layer thickness. In addition, the multilayered structure can improve the tensile strength with the increase of layer numbers. Because of the complete and continuous layer structure of PC, the PC/PS multilayered film can retain its mechanical strength at the temperature above Tg of PS.
Doped bottom-contact organic field-effect transistors
NASA Astrophysics Data System (ADS)
Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn
2018-07-01
The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.
NASA Astrophysics Data System (ADS)
Li, Xiongyan; Qin, Ruibao; Gao, Yunfeng; Fan, Hongjun
2017-03-01
In the marine sandstone reservoirs of the M oilfield the water cut is up to 98%, while the recovery factor is only 35%. Additionally, the distribution of the remaining oil is very scattered. In order to effectively assess the potential of the remaining oil, the logging evaluation of the water-flooded layers and the distribution rule of the remaining oil are studied. Based on the log response characteristics, the water-flooded layers can be qualitatively identified. On the basis of the mercury injection experimental data of the evaluation wells, the calculation model of the initial oil saturation is built. Based on conventional logging data, the evaluation model of oil saturation is established. The difference between the initial oil saturation and the residual oil saturation can be used to quantitatively evaluate the water-flooded layers. The evaluation result of the water-flooded layers is combined with the ratio of the water-flooded wells in the marine sandstone reservoirs. As a result, the degree of water flooding in the marine sandstone reservoirs can be assessed. On the basis of structural characteristics and sedimentary environments, the horizontal and vertical water-flooding rules of the different types of reservoirs are elaborated upon, and the distribution rule of the remaining oil is disclosed. The remaining oil is mainly distributed in the high parts of the structure. The remaining oil exists in the top of the reservoirs with good physical properties while the thickness of the remaining oil ranges from 2-5 m. However, the thickness of the remaining oil of the reservoirs with poor physical properties ranges from 5-8 m. The high production of some of the drilled horizontal wells shows that the above distribution rule of the remaining oil is accurate. In the marine sandstone reservoirs of the M oilfield, the research on the well logging evaluation of the water-flooded layers and the distribution rule of the remaining oil has great practical significance to the prediction of the distribution of the remaining oil and the optimization of well locations.
Laminate armor and related methods
Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M
2013-02-26
Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
Analytical Prediction of Damage Growth in Notched Composite Panels Loaded in Axial Compression
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; McGowan, David M.; Davila, Carlos G.
1999-01-01
A progressive failure analysis method based on shell elements is developed for the computation of damage initiation and growth in stiffened thick-skin stitched graphite-epoxy panels loaded in axial compression. The analysis method involves a step-by-step simulation of material degradation based on ply-level failure mechanisms. High computational efficiency is derived from the use of superposed layers of shell elements to model each ply orientation in the laminate. Multiple integration points through the thickness are used to obtain the correct bending effects through the thickness without the need for ply-by-ply evaluations of the state of the material. The analysis results are compared with experimental results for three stiffened panels with notches oriented at 0, 15 and 30 degrees to the panel width dimension. A parametric study is performed to investigate the damage growth retardation characteristics of the Kevlar stitch lines in the pan
Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films
NASA Astrophysics Data System (ADS)
Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.
2016-03-01
W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.
Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H
2010-07-19
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.
Oxygen octahedral distortions in LaMO 3/SrTiO 3 superlattices
Sanchez-Santolino, Gabriel; Cabero, Mariona; Varela, Maria; ...
2014-04-24
Here we study the interfaces between the Mott insulator LaMnO 3 (LMO) and the band insulator SrTiO 3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectrum imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO 3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies.more » On the other hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. In conclusion, these findings will be discussed in view of the transport and magnetic differences found in previous studies.« less
Antiferromagnetic exchange and magnetoresistance enhancement in Co-Re superlattices
NASA Astrophysics Data System (ADS)
Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.; Ferreira, J.; Monteiro, P.
1992-02-01
Co-Re superlattices were prepared that show either antiferromagnetic or ferromagnetic coupling between the Co layers depending on the Re spacer thickness. Enhanced saturation magnetoresistance occurs for antiferromagnetically coupled layers. The saturation magnetoresistance decays exponentially with Re thickness but does not depend critically on the Co thickness.
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie
2018-01-01
The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.
Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young
2013-05-01
ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.
NASA Astrophysics Data System (ADS)
Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.
2018-05-01
The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Dudley, Kenneth
2003-01-01
A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.
NASA Astrophysics Data System (ADS)
Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.
2009-04-01
First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR spectra of EPS was observed with carbohydrates, using cellulose, dextran and humic acid Na salt as controls. Obviously, humification does not play a key role during this initial phase of soil formation. It was hypothesized that biological soil crusts facilitate the weathering of mineral substrate by (I) circumventing loss of fine particles with erosion, (II) by chemical treatment of minerals and (III) by catching small mineral-particles by glutinous EPS on the soil surface from the surrounding area.
Interfacial thin films rupture and self-similarity
NASA Astrophysics Data System (ADS)
Ward, Margaret H.
2011-06-01
Two superposed thin layers of fluids are prone to interfacial instabilities due to London-van der Waals forces. Evolution equations for the film thicknesses are derived using lubrication theory. Using the intrinsic scales, for a single layer, results in a system with parametric dependence of four ratios of the two layers: surface tension, Hamaker constant, viscosity, and film thickness. In contrast to the single layer case, the bilayer system has two unstable eigenmodes: squeezing and bending. For some particular parameter regimes, the system exhibits the avoided crossing behavior, where the two eigenmodes are interchanged. Based on numerical analysis, the system evolves into four different rupture states: basal layer rupture, upper layer rupture, double layer rupture, and mixed layer rupture. The ratio of Hamaker constants and the relative film thickness of the two layers control the system dynamics. Remarkably, the line of avoided crossing demarks the transition region of mode mixing and energy transfer, affecting the scaling of the dynamical regime map consequentially. Asymptotic and numerical analyses are used to examine the self-similar ruptures and to extract the power law scalings for both the basal layer rupture and the upper layer rupture. The scaling laws for the basal layer rupture are the same as those of the single layer on top of a substrate. The scaling laws for the upper layer rupture are different: the lateral length scale decreases according to (tr-t)1/3 and the film thickness decreases according to (tr-t)1/6.
Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections
Messinger, Jeffrey D.; Sloan, Kenneth R.; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F.
2011-01-01
Purpose. To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL] and inner plexiform [IPL] layers and outer plexiform [OPL] and outer nuclear [ONL] layers). Methods. In 0.8-μm-thick, macula-wide sections through the foveola of 18 donors (age range, 40–92 years), 21 layers were measured at 25 locations by a trained observer and validated by a second observer. Tissue volume changes were assessed by comparing total retinal thickness in ex vivo OCT and in sections. Results. Median tissue shrinkage was 14.5% overall and 29% in the fovea. Histologic laminar boundaries resembled those in SD-OCT scans, but the shapes of the foveolar OPL and ONL differed. Histologic GCL, IPL, and OPLHenle were thickest at 0.8. to 1, 1.5, and 0.4 mm eccentricity, respectively. ONL was thickest in an inward bulge at the foveal center. At 1 mm eccentricity, GCL, INL, and OPLHenle represented 17.3% to 21.1%, 18.0% to 18.5%, and 14.2% to 16.6% of total retinal thickness, respectively. In donors ≥70 years of age, the RPE and choroid were 17.1% and 29.6% thinner and OPLHenle was 20.8% thicker than in donors <70 years. Conclusions. In this study, the first graphic representation and thickness database of chorioretinal layers in normal macula were generated. Newer OCT systems can separate GCL from IPL and OPLHenle from ONL, with good agreement for the proportion of retinal thickness occupied by OPLHenle in OCT and histology. The thickening of OPLHenle in older eyes may reflect Müller cell hypertrophy associated with rod loss. PMID:21421869
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matvejeff, M., E-mail: mikko.matvejeff@picosun.com; Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo; Ahvenniemi, E.
We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.
Note: Measurement of the cathode layer thickness in glow discharges with a Langmuir probe
NASA Astrophysics Data System (ADS)
Wang, Hao; Hou, Xinyu; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin
2018-06-01
A method using a Langmuir probe to determine the thickness of the cathode layer for a glow discharge is developed. The method is based on the phenomenon that the curve of the voltage-current characteristics changes in shape as the Langmuir probe moves from the positive column into the cathode layer. The method was used to measure the thicknesses of the cathode layer in the normal glow discharges of argon and air with the cathodes made from stainless steel and aluminum. The results are in good agreement with those given in a book of gas discharge.
Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan
1998-01-01
A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Thompson, G. A.; Jadaan, Osama M.
Objectives. The purpose of this study was to analyze the stress distribution through the thickness of bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests and to systematically examine how the individual layer thickness influences this stress distribution and the failure origin. Methods. Ring-on-ring tests were performed on In-Ceram Alumina/Vitadur Alpha porcelain bilayered disks with porcelain in the tensile side, and In-Ceram Alumina to porcelain layer thickness ratios of 1:2, 1:1, and 2:1 were used to characterize the failure origins as either surface or interface. Based on the thermomechanical properties and thickness of each layer, the cooling temperaturemore » from glass transition temperature, and the ring-on-ring loading configuration, the stress distribution through the thickness of the bilayer was calculated using closed-form solutions. Finite element analyses were also performed to verify the analytical results. Results. The calculated stress distributions showed that the location of maximum tension during testing shifted from the porcelain surface to the In-Ceram Alumina/porcelain interface when the relative layer thickness ratio changed from 1:2 to 1:1 and to 2:1. This trend is in agreement with the experimental observations of the failure origins. Significance. For bilayered dental ceramics subjected to ring-on-ring tests, the location of maximum tension can shift from the surface to the interface depending upon the layer thickness ratio. The closed-form solutions for bilayers subjected to both thermal stresses and ring-on-ring tests are explicitly formulated which allow the biaxial strength of the bilayer to be evaluated.« less
NASA Astrophysics Data System (ADS)
Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.
2017-12-01
Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust <1 Ma to 4.5-5 km/s in crust >15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at 65-70 Ma. The proximity and thermal influence of the Rio Grande Rise might explain the anomalous appearance of the layer 2A event at the older ages of crust for the study.
Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.
van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo
2008-03-01
The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.