Sample records for initial linear region

  1. A nonlinear model for analysis of slug-test data

    USGS Publications Warehouse

    McElwee, C.D.; Zenner, M.A.

    1998-01-01

    While doing slug tests in high-permeability aquifers, we have consistently seen deviations from the expected response of linear theoretical models. Normalized curves do not coincide for various initial heads, as would be predicted by linear theories, and are shifted to larger times for higher initial heads. We have developed a general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the well bore, and a Hvorslev model for the aquifer, which explains these data features. The model produces a very good fit for both oscillatory and nonoscillatory field data, using a single set of physical parameters to predict the field data for various initial displacements at a given well. This is in contrast to linear models which have a systematic lack of fit and indicate that hydraulic conductivity varies with the initial displacement. We recommend multiple slug tests with a considerable variation in initial head displacement to evaluate the possible presence of nonlinear effects. Our conclusion is that the nonlinear model presented here is an excellent tool to analyze slug tests, covering the range from the underdamped region to the overdamped region.

  2. Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - De-Sitter Universe

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; van Kampen, E.

    1993-07-01

    The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.

  3. Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Joyce, Michael; Sicard, François

    2013-03-01

    One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.

  4. Stereo matching and view interpolation based on image domain triangulation.

    PubMed

    Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce

    2013-09-01

    This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.

  5. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  6. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    NASA Astrophysics Data System (ADS)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.

  7. Combined method for confidence regions mapping of small bodies motion at any point in time. (Russian Title: Комбинированный способ отображения доверительных областей движения малых тел на произвольный момент времени)

    NASA Astrophysics Data System (ADS)

    Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.

    2011-07-01

    The combined method for mapping of the confidence region of the motion of the small bodies of Solar system at any point in time is proposed. In this method firstly one carries out linear mapping of the initial region at given point in time. If nonlinear-ity coefficient of evaluated region provided to be larger of permissible ones, that one carries out linear mapping of the initial region at limit moment for which this region be ellipsoidal. After that obtained region is mapping at given point in time by nonlinear method.

  8. SENSITIVITY ANALYSIS AND PRELIMINARY EVALUATION OF RELMAP (REGIONAL LAGRANGIAN MODEL OF AIR POLLUTION) INVOLVING FINE AND COURSE PARTICULATE MATTER

    EPA Science Inventory

    In response to the new, size-discriminate federal standards for Inhalable Particulate Matter, the Regional Lagrangian Model of Air Pollution (RELMAP) has been modified to include simple, linear parameterizations. As an initial step in the possible refinement, RELMAP has been subj...

  9. Correlations between physical properties of jawbone and dental implant initial stability.

    PubMed

    Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q; Hodges, James S; Ko, Ching-Chang

    2009-05-01

    There is confusion in the literature about how physical properties of bone vary between maxillary and mandibular regions and which physical properties affect initial implant stability. The purpose of this study was to determine correlations between physical properties of bone and initial implant stability, and to determine how physical properties and initial stability vary among regions of jawbone. Four pairs of edentulous maxillae and mandibles were retrieved from fresh human cadavers. Six implants per pair were placed in different anatomical regions (maxillary anterior, right and left maxillary posterior, mandibular anterior, right and left mandibular posterior). Immediately after surgery, initial implant stability was measured with a resonance frequency device and a tapping device. Implant surgeries and initial stability measurements were performed within 72 hours of death. Elastic modulus (EM) and hardness were measured using nano-indentation. Composite apparent density (cAD) was measured using Archimedes' principle. Bone-implant contact percentage and cortical bone thickness were recorded histomorphometrically. Mixed linear models and univariate-correlation analyses were used (alpha=.05). Generally, mandibular bone had higher initial implant stability and physical properties than maxillary bone. Initial implant stability was higher in the anterior region than in the posterior. EM was higher in the posterior region than in the anterior; the reverse was true for cAD. Of the properties evaluated, cAD had the highest correlation with initial implant stability (r=0.82). Both physical properties of bone and initial implant stability differed between regions of jawbone.

  10. Spherical means of solutions of partial differential equations in a conical region

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The spherical means of the solutions of a linear partial differential equation Lu = f in a conical region are studied. The conical region is bounded by a surface generated by curvilinear ti surfaces. The spherical mean is the average of u over a constant ti surface. The conditions on the linear differential operator, L, and on the orthogonal coordinates (ti, eta, zeta) are established so that the spherical mean of the solution subjected to the appropriate boundary and initial conditions can be determined directly as a problem with only space variable. Conditions are then established so that the spherical mean of the solution in one concial region will be proportional to that of a known solution in another conical region. Applications to various problems of mathematical physics and their physical interpretations are presented.

  11. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique.

    PubMed

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  12. Optimal rendezvous in the neighborhood of a circular orbit

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1975-01-01

    The minimum velocity change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples presented.

  13. The quasi-linear relaxation of thick-target electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Mcclements, K. G.; Brown, J. C.; Emslie, A. G.

    1986-01-01

    The effects of quasi-linear interactions on thick-target electron beams in the solar corona are investigated. Coulomb collisions produce regions of positive gradient in electron distributions which are initially monotonic decreasing functions of energy. In the resulting two-stream instability, energy and momentum are transferred from electrons to Langmuir waves and the region of positive slope in the electron distribution is replaced by a plateau. In the corona, the timescale for this quasi-linear relaxation is very short compared to the collision time. It is therefore possible to model the effects of quasi-linear relaxation by replacing any region of positive slop in the distribution by a plateau at each time step, in such a way as to conserve particle number. The X-ray bremsstrahlung and collisional heating rate produced by a relaxed beam are evaluated. Although the analysis is strictly steady state, it is relevant to the theoretical interpretation of hard X-ray bursts with durations of the order of a few seconds (i.e., the majority of such bursts).

  14. Spherical means of solutions of partial differential equations in a conical region

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1975-01-01

    The spherical means of the solutions of a linear partial differential equation Lu = f in a conical region are studied. The conical region is bounded by a surface generated by curvilinear xi lines and by two truncating xi surfaces. The spherical mean is the average of u over a constant xi surface. Conditions on the linear differential operator, L, and on the orthogonal coordinates xi, eta, and zeta are established so that the problem for the determination of the spherical mean of the solution subjected to the appropriate boundary and initial conditions can be reduced to a problem with only one space variable. Conditions are then established so that the spherical mean of the solution in one conical region will be proportional to that of a known solution in another conical region. Applications to various problems of mathematical physics and their physical interpretations are presented.

  15. Functional Linear Model with Zero-value Coefficient Function at Sub-regions.

    PubMed

    Zhou, Jianhui; Wang, Nae-Yuh; Wang, Naisyin

    2013-01-01

    We propose a shrinkage method to estimate the coefficient function in a functional linear regression model when the value of the coefficient function is zero within certain sub-regions. Besides identifying the null region in which the coefficient function is zero, we also aim to perform estimation and inferences for the nonparametrically estimated coefficient function without over-shrinking the values. Our proposal consists of two stages. In stage one, the Dantzig selector is employed to provide initial location of the null region. In stage two, we propose a group SCAD approach to refine the estimated location of the null region and to provide the estimation and inference procedures for the coefficient function. Our considerations have certain advantages in this functional setup. One goal is to reduce the number of parameters employed in the model. With a one-stage procedure, it is needed to use a large number of knots in order to precisely identify the zero-coefficient region; however, the variation and estimation difficulties increase with the number of parameters. Owing to the additional refinement stage, we avoid this necessity and our estimator achieves superior numerical performance in practice. We show that our estimator enjoys the Oracle property; it identifies the null region with probability tending to 1, and it achieves the same asymptotic normality for the estimated coefficient function on the non-null region as the functional linear model estimator when the non-null region is known. Numerically, our refined estimator overcomes the shortcomings of the initial Dantzig estimator which tends to under-estimate the absolute scale of non-zero coefficients. The performance of the proposed method is illustrated in simulation studies. We apply the method in an analysis of data collected by the Johns Hopkins Precursors Study, where the primary interests are in estimating the strength of association between body mass index in midlife and the quality of life in physical functioning at old age, and in identifying the effective age ranges where such associations exist.

  16. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  17. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  18. Optimal rendezvous in the neighborhood of a circular orbit

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1976-01-01

    The minimum velocity-change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity-change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples are presented.

  19. Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Sleight, David W.; Grenoble, Ray

    2015-01-01

    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.

  20. Experimental and analytical analysis of stress-strain behavior in a (90/0 deg)2s, SiC/Ti-15-3 laminate

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike

    1991-01-01

    The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.

  1. Nonlinear fishbone dynamics in spherical tokamaks

    DOE Data Explorer

    Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  2. Nonlinear fishbone dynamics in spherical tokamaks

    DOE PAGES

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less

  3. Timeline trend profile and seasonal variations in nicotine present in ambient PM10 samples: A four year investigation from Delhi region, India

    NASA Astrophysics Data System (ADS)

    Yadav, Shweta; Tandon, Ankit; Attri, Arun K.

    2014-12-01

    The detection of nicotine, an organic tracer for Environmental Tobacco Smoke (ETS), in the collected PM10 samples from Delhi region's ambient environment, in a appropriately designed investigation was initiated over four years (2006-2009) to: (1) Comprehend seasonal and inter-annual variations in the nicotine present in PM10; (2) Extract regression based linear trend profile manifested by nicotine in PM10; (3) Determine the non-linear trend timeline from the nicotine data, and compare it with the obtained linear trend; (4) Suggest the possible use of the designed experiment and analysis to have a qualitative appraisal of Tobacco Smoking activity in the sampling region. The PM10 samples were collected in a monthly time-series sequence at a known receptor site. Quantitative estimates of nicotine (ng m-3) were made by using a Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GC/MS). The annual average concentrations of nicotine (ng m-3) were 516 ± 302 (2008) > 494 ± 301 (2009) > 438 ± 250 (2007) > 325 ± 149 (2006). The estimated linear trend of 5.4 ng m-3 month-1 corresponded to 16.3% per annum increase in the PM10 associated nicotine. The industrial production of India's tobacco index normalized to Delhi region's consumption, pegged an increase at 10.5% per annum over this period.

  4. Non-modal linear stability analysis of thin film spreading by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin John

    The spontaneous spreading and stability characteristics of a thin Newtonian liquid film partially coated by an insoluble surfactant monolayer are investigated in this thesis. Thin films sheared by Marangoni stresses ire characterized by film thinning in the upstream region near the terminating edge of the initial monolayer and an advancing ridge further downstream. For sufficiently thin films, experiments have shown there develops dendritic fingering patterns upstream of the ridge. To probe the mechanisms responsible for unstable flow, a non-modal linear stability analysis is required because the base-states describing these flows are space and time-dependent. A new measure of disturbance amplification is introduced, based on the relative kinetic energy of the perturbations to the base-states, to analyze surfactant monolayers spreading either from a finite or infinite source. These studies reveal that disturbance amplification is most significant in highly curved regions of the film characterized by a large: change in the shear stress, which can develop at the advancing ridge and at the edge of the initial monolayer. For spreading from both a finite and infinite source, disturbances that convect through the ridge undergo transient amplification but eventually decay to restore film stability. By contrast, disturbances that localize to the thinned region undergo sustained amplification when surfactant is continuously supplied to the liquid film thereby promoting film instability. By focusing on these susceptible regions, the relevant evolution equations are simplified to extract more information about the mechanism leading to instability. The length-scale controlling these "inner" regions represents the balance of viscous, capillary and Marangoni stresses. Simplification of these equations allows identification of steady travelling wave solutions whose linearized stability behavior shows that a flat film subject to a jump increase in shear stress is asymptotically unstable. This thesis concludes by comparing recent experiments in our laboratory of a droplet of low surface tension liquid (oleic acid) spreading on a thin Newtonian film (glycerol) before the onset of instability with numerical simulations. Similar power law behavior for the ridge advance and qualitatively similar film profiles shapes occur when the simulations utilize a non-linear equation of state for the surfactant monolayer.

  5. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  6. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  7. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m{sub l}(θ) ∝ sin{sup –1}θ and m{sub l}(θ) ∝ sin{sup –2}θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear massmore » profiling, m{sub l}(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m{sub l}(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.« less

  8. Multi-Wavelength Interferometric Observations of YSO Disks

    NASA Astrophysics Data System (ADS)

    Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.

    2010-01-01

    We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.

  9. Spherical collapse and virialization in f ( T ) gravities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Rui-Hui; Zhai, Xiang-Hua; Li, Xin-Zhou, E-mail: 1000379711@smail.shnu.edu.cn, E-mail: zhaixh@shnu.edu.cn, E-mail: kychz@shnu.edu.cn

    2017-03-01

    Using the classical top-hat profile, we study the non-linear growth of spherically symmetric density perturbation and structure formation in f ( T ) gravities. In particular, three concrete models, which have been tested against the observation of large-scale evolution and linear perturbation of the universe in the cosmological scenario, are investigated in this framework, covering both minimal and nonminimal coupling cases of f ( T ) gravities. Moreover, we consider the virialization of the overdense region in the models after they detach from the background expanding universe and turn around to collapse. We find that there are constraints in themore » magnitude and occurring epoch of the initial perturbation. The existence of these constraints indicates that a perturbation that is too weak or occurs too late will not be able to stop the expanding of the overdense region. The illustration of the evolution of the perturbation shows that in f ( T ) gravities, the initial perturbation within the constraints can eventually lead to clustering and form structure. The evolution also shows that nonminimal coupling models collapse slower than the minimal coupling one.« less

  10. Effects of magnetic fields on photoionized pillars and globules

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Lim, Andrew J.

    2011-04-01

    The effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of H II regions are investigated using 3D radiation-magnetohydrodynamics simulations. It is shown, in agreement with previous work, that a strong initial magnetic field is required to significantly alter the non-magnetized dynamics because the energy input from photoionization is so large that it remains the dominant driver of the dynamics in most situations. Additionally, it is found that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the 'Pillars of Creation' in M16 and also some cometary globules. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped dense ionized ribbon which partially shields the ionization front and would be readily observable in recombination lines. A simple analytic model is presented to explain the properties of this bright linear structure. These results show that magnetic field strengths in star-forming regions can in principle be significantly constrained by the morphology of structures which form at the borders of H II regions.

  11. Hybrid active contour model for inhomogeneous image segmentation with background estimation

    NASA Astrophysics Data System (ADS)

    Sun, Kaiqiong; Li, Yaqin; Zeng, Shan; Wang, Jun

    2018-03-01

    This paper proposes a hybrid active contour model for inhomogeneous image segmentation. The data term of the energy function in the active contour consists of a global region fitting term in a difference image and a local region fitting term in the original image. The difference image is obtained by subtracting the background from the original image. The background image is dynamically estimated from a linear filtered result of the original image on the basis of the varying curve locations during the active contour evolution process. As in existing local models, fitting the image to local region information makes the proposed model robust against an inhomogeneous background and maintains the accuracy of the segmentation result. Furthermore, fitting the difference image to the global region information makes the proposed model robust against the initial contour location, unlike existing local models. Experimental results show that the proposed model can obtain improved segmentation results compared with related methods in terms of both segmentation accuracy and initial contour sensitivity.

  12. The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moser, Robert D.

    1991-01-01

    The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.

  13. Life on the edge: squirrel-cage fringe fields and their effects in the MBE-4 combiner experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.

    1996-02-01

    The MBE-4 combiner experiment employs an electrostatic combined-function focusing/bending element, the so-called ``squirrel-cage`` just before the actual merging region. There has been concern that non-linear fields, primarily in the fringe regions at the beginning and end of the cage, may be strong enough to lead to significant emittance degradation. This note present the results of numerical calculations which determined the anharmonic, non-linear components of the 3D fields in the cage and the resultant, orbit-integrated effects upon the MBE-4 beamlets. We find that while the anharmonic effects are small compared to the dipole deflection, the resultant transverse emittance growth is significantmore » when compared to the expected value of the initial emittance of the individual beamlets.« less

  14. Tectono-stratigraphic evolution of salt-controlled minibasins in a fold and thrust belt, the Oligo-Miocene central Sivas Basin

    NASA Astrophysics Data System (ADS)

    Kergaravat, Charlie; Ribes, Charlotte; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2017-09-01

    The Central Sivas Basin (Turkey) provides an outcrop example of a minibasin province developed above a salt canopy within a foreland-fold and thrust belt. Several minibasins are examined to assess the influence of regional Oligo-Miocene shortening during the development of a minibasin province. The results are based on extensive field work, including regional and detailed outcrop mapping of at least 15 minibasin margins and analysis of the structural elements at all scales. This reveals a progressive increase in shortening and a decrease in salt tectonics during evolution of the province. The initiation of minibasins is driven mostly by the salt-induced accommodation forming a polygonal network of salt structures with mainly local halokinetic sequences (i.e. hooks and wedges). The initiation of shortening is marked by an abrupt increase in sedimentation rate within the flexural foreland basin causing burial of the preexisting salt structures. Subsequently, orogenic compression encourages the rejuvenation of linear salt structures oriented at right angle to the regional shortening direction. The influence of orogenic shortening during the last steps of the minibasin province evolution is clearly shown by: (i) the squeezing of salt structures to form welds which are developed both at right angle and oblique to the regional shortening direction, (ii) the emergence of thrust faults, (iii) the tilting and rotation of minibasins about vertical axis associated with the formation of strike-slip fault zones, and (iv) the extrusion of salt sheets. The pre-shortening geometry of the salt structures pattern, polygonal network of walls and diapirs versus linear and sub-parallel walls, influence the resultant structural style of the minibasin province subjected to shortening. Preexisting linear depocenter limited by sub-parallel walls accommodate preferentially the shortening compare to the preexisting sub-circular depocenter limited by polygonal network of salt walls and diapirs.

  15. Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real; Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138

    2013-04-15

    Collisionless shocks are ubiquitous in astrophysics and in the lab. Recent numerical simulations and experiments have shown how they can arise from the encounter of two collisionless plasma shells. When the shells interpenetrate, the overlapping region turns unstable, triggering the shock formation. As a first step towards a microscopic understanding of the process, we analyze here in detail the initial instability phase. On the one hand, 2D relativistic Particle-In-Cell simulations are performed where two symmetric initially cold pair plasmas collide. On the other hand, the instabilities at work are analyzed, as well as the field at saturation and the seedmore » field which gets amplified. For mildly relativistic motions and onward, Weibel modes govern the linear phase. We derive an expression for the duration of the linear phase in good agreement with the simulations. This saturation time constitutes indeed a lower-bound for the shock formation time.« less

  16. Ends-in Vs. Ends-Out Recombination in Yeast

    PubMed Central

    Hastings, P. J.; McGill, C.; Shafer, B.; Strathern, J. N.

    1993-01-01

    Integration of linearized plasmids into yeast chromosomes has been used as a model system for the study of recombination initiated by double-strand breaks. The linearized plasmid DNA recombines efficiently into sequences homologous to the ends of the DNA. This efficient recombination occurs both for the configuration in which the break is in a contiguous region of homology (herein called the ends-in configuration) and for ``omega'' insertions in which plasmid sequences interrupt a linear region of homology (herein called the ends-out configuration). The requirements for integration of these two configurations are expected to be different. We compared these two processes in a yeast strain containing an ends-in target and an ends-out target for the same cut plasmid. Recovery of ends-in events exceeds ends-out events by two- to threefold. Possible causes for the origin of this small bias are discussed. The lack of an extreme difference in frequency implies that cooperativity between the two ends does not contribute to the efficiency with which cut circular plasmids are integrated. This may also be true for the repair of chromosomal double-strand breaks. PMID:8307337

  17. Comparison of photo detectors and operating conditions for decay time determination in phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Knappe, C.; Nada, F. Abou; Richter, M.; Aldén, M.

    2012-09-01

    This work compares the extent of linear response regions from standard time-resolving optical detectors for phosphor thermometry. Different types of photomultipliers (ordinary and time-gated) as well as an avalanche photodiode were tested and compared using the phosphorescence decay time of cadmium tungstate (CdWO4). Effects originating from incipient detector saturation are revealed as a change in evaluated phosphorescence decay time, which was found to be a more sensitive measure for saturation than the conventional signal strength comparison between in- and output. Since the decay time of thermographic phosphors is used for temperature determination systematic temperature errors in the order of several tens of Kelvins may be introduced. Saturation from the initial intensity is isolated from temporally developed saturation by varying the CdWO4 decay time over the microsecond to nanosecond range, resultant of varying the temperature from 290 to 580 K. A detector mapping procedure is developed in order to identify linear response regions where the decay-to-temperature evaluations are unbiased. In addition, this mapping procedure generates a library of the degree of distortion for operating points outside of linear response regions. Signals collected in the partly saturated regime can thus be corrected to their unbiased value using this library, extending the usable detector operating range significantly.

  18. Non-linear coherent mode interactions and the control of shear layers

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, D. E.; Liu, J. T. C.

    1990-01-01

    A nonlinear integral formulation, based on local linear stability considerations, is used to study the collective interactions between discrete wave-modes associated with large-scale structures and the mean flow in a developing shear layer. Aspects of shear layer control are examined in light of the sensitivity of these interactions to the initial frequency parameter, modal energy contents and modal phases. Manipulation of the large-scale structure is argued to be an effective means of controlling the flow, including the small-scale turbulence dominated region far downstream. Cases of fundamental, 1st and 2nd subharmonic forcing are discussed in conjunction with relevant experiments.

  19. Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case

    NASA Astrophysics Data System (ADS)

    Fernández Tío, Julián M.; Dotti, Gustavo

    2017-06-01

    Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

  20. Modelization of highly nonlinear waves in coastal regions

    NASA Astrophysics Data System (ADS)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  1. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  2. Nonlinear system controller design based on domain of attaction: An application to CELSS analysis and control

    NASA Technical Reports Server (NTRS)

    Babcock, P. S., IV

    1986-01-01

    Nonlinear system controller design based on the domain of attraction is presented. This is particularly suited to investigating Closed Ecological Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste storage capacity and system mass, and how information is used for control in CELSS models are examined. The models' high dimensionality and nonlinear state equations make them difficult to analyze by any other technique. The domain of attraction is the region in initial conditions that tend toward an attractor and it is delineated by randomly selecting initial conditions from the region of state space being investigated. Error analysis is done by repeating the domain simulations with independent samples. A refinement of this region is the domain of performance which is the region of initial conditions meeting a performance criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system's ability to recovery from state perturbations. Considering random perturbations, the minimum radius of the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. Design of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are presented. Measures of the domain of attraction are used to show the global behavior of these models under a variety of design and controller scenarios.

  3. Classification and Analysis of Four Types of Elevated Nocturnal Convective Initiation During Summer 2015

    NASA Astrophysics Data System (ADS)

    Stelten, S. A.; Gallus, W. A., Jr.

    2015-12-01

    A large portion of precipitation seen in the Great Plains region of the United States falls from nocturnal convection. Quite often, nocturnally initiated convection may grow upscale into a Mesoscale Convective System (MCS) that in turn may cause high impact weather events such as severe wind, flooding, and even tornadoes. Thus, correctly predicting nocturnal convective initiation is an integral part of forecasting for the Great Plains. Unfortunately, it is also one of the most challenging aspects of forecasting for this region. Many forecasters familiar with the Great Plains region have noted that elevated nocturnal convective initiation seems to favor a few distinct and rather diverse modes, which pose varying degrees of forecasting difficulties. This study investigates four of these modes, including initiation caused by the interaction of the low level jet and a frontal feature, initiation at the nose of the low level jet without the presence of a frontal feature, linear features ahead of and perpendicular to a forward propagating MCS, and initiation occurring with no discernible large scale forcing mechanism. Improving elevated nocturnal convective initiation forecasts was one of the primary goals of the Plains Elevated Convection At Night (PECAN) field campaign that took place from June 1 to July 15, 2015, which collected a wealth of convective initiation data. To coincide with these data sets, nocturnal convective initiation episodes from the 2015 summer season were classified into each of the aforementioned groups. This allowed for a thorough investigation of the frequency of each type of initiation event, as well as identification of typical characteristics of the atmosphere (forcing mechanisms present, available instability, strength/location of low level jet, etc.) during each event type. Then, using archived model data and the vast data sets collected during the PECAN field campaign, model performance during PECAN for each convective initiation mode was compared to the high quality data sets in order to flesh out why certain convective initiation modes may be more difficult to forecast than others.

  4. Isoprene-styrene copolymer elastomer and tetrahydrofurfuryl methacrylate mixtures for soft prosthetic applications.

    PubMed

    Nazhat, S N; Parker, S; Patel, M P; Braden, M

    2001-09-01

    Novel elastomer/methacrylate systems have been developed for potential soft prosthetic applications. Mixtures of varying compositions of an isoprene-styrene copolymer elastomer and tetrahydrofurfuryl methacrylate (SIS/THFMA) formed one-gel systems and were heat cured with a peroxide initiator. The blends were characterised in terms of sorption in deionised water and simulated body fluids (SBF), tensile properties and viscoelastic parameters of storage modulus and tan delta, as well as glass transition temperatures using dynamic mechanical analysis (DMA). DMA data gave two distinct peaks in tan delta, a lower temperature transition due to the isoprene phase in SIS and one at high temperature thought to be a combination of THFMA and the styrene phase in SIS. The tensile data showed a clear phase inversion within the mid range compositions changing from plastic to elastomeric behaviour. The sorption studies in deionised water showed a two stage uptake with an initial Fickian region that was linear to t 1/2 followed by a droplet growth/clustering system. The slope of the linear region was dependent on the composition ratio. The extent of overall uptake was osmotically dependent as all materials equilibrated at a much lower uptake in SBF. The diffusion coefficients were found to be concentration dependent.

  5. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human.

    PubMed

    Hanya, Shizuo

    2013-01-01

    Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson's coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). This study concluded that the water-hammer formula (one-point method) provides a reliable and conventional estimate of beat-to-beat aortic regional pulse wave velocity consistently regardless of the changes in physiological states in human clinically. (English Translation of J Jpn Coll Angiol 2011; 51: 215-221).

  6. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human

    PubMed Central

    2013-01-01

    Background: Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Methods: Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. Results: The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson’s coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). Conclusion: This study concluded that the water-hammer formula (one-point method) provides a reliable and conventional estimate of beat-to-beat aortic regional pulse wave velocity consistently regardless of the changes in physiological states in human clinically. (*English Translation of J Jpn Coll Angiol 2011; 51: 215-221) PMID:23825494

  7. An approach for maximizing the smallest eigenfrequency of structure vibration based on piecewise constant level set method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfang; Chen, Weifeng

    2018-05-01

    Maximization of the smallest eigenfrequency of the linearized elasticity system with area constraint is investigated. The elasticity system is extended into a large background domain, but the void is vacuum and not filled with ersatz material. The piecewise constant level set (PCLS) method is applied to present two regions, the original material region and the void region. A quadratic PCLS function is proposed to represent the characteristic function. Consequently, the functional derivative of the smallest eigenfrequency with respect to PCLS function takes nonzero value in the original material region and zero in the void region. A penalty gradient algorithm is proposed, which initializes the whole background domain with the original material and decreases the area of original material region till the area constraint is satisfied. 2D and 3D numerical examples are presented, illustrating the validity of the proposed algorithm.

  8. Oxidation of U-20 at% Zr alloy in air at 423 1063 K

    NASA Astrophysics Data System (ADS)

    Matsui, Tsuneo; Yamada, Takanobu; Ikai, Yasushi; Naito, Keiji

    1993-01-01

    The oxidation behavior of U 0.80Zr 0.20 alloy (two-phase mixture of U and UZr 2 below 878 K and single solid solution above 1008 K) was studied by thermogravimetry in the temperature range from 423 to 1063 K in air. During oxidation in the low temperature region (423-503 K), the sample kept its initial shape (a rectangular rod) and the surface of the sample was covered by a black thin adherent UO2 + x oxide layer. On the other hand, by oxidation in the middle temperature region, the sample broke to several pieces of thin plates and blocks, and fine powder at 643-723 K and entirely to fine powder at 775-878 K, all of which were analyzed to be a mixture of U 3O 8 and ZrO 2. By oxidation in the high temperature region (1008-1063 K) the sample broke to very fine powder, which consisted of U 3O 8 and ZrO 2. Based on the sample shape, the oxide phase identified after oxidation and the slope value of the bilogarithmic plots of the weight gain against time, the oxidation kinetics was analyzed with a paralinear equation in the low temperature region below 503 K and a linear equation in the middle and high temperature regions above 643 K. Oxidation rates of U 0.80Zr 0.20 (two-phase mixture) in the low and middle temperature regions were smaller than those of uranium metal. A discontinuity in the plot of the linear oxidation rate constant versus reciprocal temperature was found to be present between 723 and 838 K, similarly to the case of uranium metal previously reported. The linear rate constants of single-phase solid solution in the high temperature region above 1008 K seemed to be a little smaller than those estimated by the extrapolation of the values in the middle temperature region.

  9. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    NASA Astrophysics Data System (ADS)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  10. Triggering of longitudinal combustion instabilities in solid rocket motors: Nonlinear combustion response

    NASA Technical Reports Server (NTRS)

    Wicker, J. M.; Greene, W. D.; Kim, S. I.; Yang, V.

    1995-01-01

    Pulsed oscillations in solid rocket motors are investigated with emphasis on nonlinear combustion response. The study employs a wave equation governing the unsteady motions in a two-phase flow, and a solution technique based on spatial- and time-averaging. A wide class of combustion response functions is studied to second-order in fluctuation amplitude to determine if, when, and how triggered instabilities arise. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Based on the behavior of model dynamical systems, introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be the manner in which the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse.

  11. TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca

    2012-12-10

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less

  12. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  13. Linear infrastructure impacts on landscape hydrology.

    PubMed

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion, leading to soil loss and degradation. Where linear infrastructure densities are high, their impacts on ecological processes are likely to be considerable. Linear infrastructure is widespread across much of this relatively intact region, but there remain areas with very low infrastructure densities that need to be protected from further impacts. There is substantial scope for mitigating the impacts of existing and planned infrastructure developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Protein Determinants of Meiotic DNA Break Hotspots

    PubMed Central

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  15. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  16. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao; Zhang, Wenjuan; Meng, Qing

    2017-10-01

    A three-dimensional charge-discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge-discharge model is available. The results show that the vertical air motion at the lightning initiation sites ( W ini) has a cubic polynomial correlation with the maximum updraft of the storm cell ( W cell-max), with the adjusted regression coefficient R 2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites ( q g-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell ( q g-cell-max) and the initiation height ( z ini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of q g-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of q ice (ice crystal mixing ratio) to q g (graupel mixing ratio) illustrates an exponential relationship to q g-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.

  17. Assessment of Health-Cost Externalities of Air Pollution at the National Level using the EVA Model System

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Silver, Jeremy David; Heile Christensen, Jesper; Skou Andersen, Mikael; Geels, Camilla; Gross, Allan; Buus Hansen, Ayoe; Mantzius Hansen, Kaj; Brandt Hedegaard, Gitte; Ambelas Skjøth, Carsten

    2010-05-01

    Air pollution has significant negative impacts on human health and well-being, which entail substantial economic consequences. We have developed an integrated model system, EVA (External Valuation of Air pollution), to assess health-related economic externalities of air pollution resulting from specific emission sources/sectors. The EVA system was initially developed to assess externalities from power production, but in this study it is extended to evaluate costs at the national level. The EVA system integrates a regional-scale atmospheric chemistry transport model (DEHM), address-level population data, exposure-response functions and monetary values applicable for Danish/European conditions. Traditionally, systems that assess economic costs of health impacts from air pollution assume linear approximations in the source-receptor relationships. However, atmospheric chemistry is non-linear and therefore the uncertainty involved in the linear assumption can be large. The EVA system has been developed to take into account the non-linear processes by using a comprehensive, state-of-the-art chemical transport model when calculating how specific changes to emissions affect air pollution levels and the subsequent impacts on human health and cost. Furthermore, we present a new "tagging" method, developed to examine how specific emission sources influence air pollution levels without assuming linearity of the non-linear behaviour of atmospheric chemistry. This method is more precise than the traditional approach based on taking the difference between two concentration fields. Using the EVA system, we have estimated the total external costs from the main emission sectors in Denmark, representing the ten major SNAP codes. Finally, we assess the impacts and external costs of emissions from international ship traffic around Denmark, since there is a high volume of ship traffic in the region.

  18. Simple estimation of linear 1+1 D tsunami run-up

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Campos, J. A.; Riquelme, S.

    2016-12-01

    An analytical expression is derived concerning the linear run-up for any given initial wave generated over a sloping bathymetry. Due to the simplicity of the linear formulation, complex transformations are unnecessay, because the shoreline motion is directly obtained in terms of the initial wave. This analytical result not only supports maximum run-up invariance between linear and non-linear theories, but also the time evolution of shoreline motion and velocity. The results exhibit good agreement with the non-linear theory. The present formulation also allows computing the shoreline motion numerically from a customised initial waveform, including non-smooth functions. This is useful for numerical tests, laboratory experiments or realistic cases in which the initial disturbance might be retrieved from seismic data rather than using a theoretical model. It is also shown that the real case studied is consistent with the field observations.

  19. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  20. Multi-temporal InSAR analysis to reduce uncertainties and assess time-dependence of deformation in the northern Chilean forearc

    NASA Astrophysics Data System (ADS)

    Manjunath, D.; Gomez, F.; Loveless, J.

    2005-12-01

    Interferometric Synthetic Aperture Radar (InSAR) provides unprecedented spatial imaging of crustal deformation. However, for small deformations, such as those due to interseismic strain accumulation, potentially significant uncertainty may result from other sources of interferometric phase, such as atmospheric effects, errors in satellite baseline, and height errors in the reference digital elevation model (DEM). We aim to constrain spatial and temporal variations in crustal deformation of the northern Chilean forearc region of the Andean subduction zone (19° - 22°S) using multiple interferograms spanning 1995 - 2000. The study area includes the region of the 1995 Mw 8.1 Antofagasta earthquake and the region to the north. In contrast to previous InSAR-based studies of the Chilean forearc, we seek to distinguish interferometric phase contributions from linear and nonlinear deformation, height errors in the DEM, and atmospheric effects. Understanding these phase contributions reduces the uncertainties on the deformation rates and provides a view of the time-dependence of deformation. The inteferograms cover a 150 km-wide swath spanning two adjacent orbital tracks. Our study involves the analysis of more than 28 inteferograms along each track. Coherent interferograms in the hyper-arid Atacama Desert permit spatial phase unwrapping. Initial estimates of topographic phase were determined using 3'' DEM data from the SRTM mission. We perform a pixel-by-pixel analysis of the unwrapped phase to identify time- and baseline-dependent phase contributions, using the Gamma Remote Sensing radar software. Atmospheric phase, non-linear deformation, and phase noise were further distinguished using a combination of spatial and temporal filters. Non-linear deformation is evident for up to 2.5 years following the 1995 earthquake, followed by a return to time-linear, interseismic strain accumulation. The regional trend of linear deformation, characterized by coastal subsidence and relative uplift inland, is consistent with the displacement field expected for a locked subduction zone. Our improved determination of deformation rates is used to formulate a new elastic model of interseismic strain in the Chilean forearc.

  1. Evaluation of drought using SPEI drought class transitions and log-linear models for different agro-ecological regions of India

    NASA Astrophysics Data System (ADS)

    Alam, N. M.; Sharma, G. C.; Moreira, Elsa; Jana, C.; Mishra, P. K.; Sharma, N. K.; Mandal, D.

    2017-08-01

    Markov chain and 3-dimensional log-linear models were attempted to model drought class transitions derived from the newly developed drought index the Standardized Precipitation Evapotranspiration Index (SPEI) at a 12 month time scale for six major drought prone areas of India. Log-linear modelling approach has been used to investigate differences relative to drought class transitions using SPEI-12 time series derived form 48 yeas monthly rainfall and temperature data. In this study, the probabilities of drought class transition, the mean residence time, the 1, 2 or 3 months ahead prediction of average transition time between drought classes and the drought severity class have been derived. Seasonality of precipitation has been derived for non-homogeneous Markov chains which could be used to explain the effect of the potential retreat of drought. Quasi-association and Quasi-symmetry log-linear models have been fitted to the drought class transitions derived from SPEI-12 time series. The estimates of odds along with their confidence intervals were obtained to explain the progression of drought and estimation of drought class transition probabilities. For initial months as the drought severity increases the calculated odds shows lower value and the odds decreases for the succeeding months. This indicates that the ratio of expected frequencies of occurrence of transition from drought class to the non-drought class decreases as compared to transition to any drought class when the drought severity of the present class increases. From 3-dimensional log-linear model it is clear that during the last 24 years the drought probability has increased for almost all the six regions. The findings from the present study will immensely help to assess the impact of drought on the gross primary production and to develop future contingent planning in similar regions worldwide.

  2. Ionization correction factors for H II regions in blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Holovatyi, V. V.; Melekh, B. Ya.

    2002-08-01

    Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.

  3. Singular growth shapes in turbulent field theories

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1994-05-01

    In this work we study deterministic, turbulent partial differential equations (the Kuramoto-Sivashinsky equation and generalizations) with initial conditions which are nonzero only in a small region. We demonstrate that the asymptotic state has a well-defined growth shape, which can be determined by the combination of nonlinear growth velocities, and front propagation governed by the linear instabilities. We show that the growth shapes are, in general, singular and that a new type of instability occurs when the growth shape becomes discontinuous.

  4. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  5. pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L.

    PubMed

    Yang, Yingjie; Kurokawa, Toru; Takahama, Yoshifumi; Nindita, Yosi; Mochizuki, Susumu; Arakawa, Kenji; Endo, Satoru; Kinashi, Haruyasu

    2011-01-01

    The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.

  6. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  7. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  8. Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics.

    PubMed

    Chiha, Mahdi; Merouani, Slimane; Hamdaoui, Oualid; Baup, Stéphane; Gondrexon, Nicolas; Pétrier, Christian

    2010-06-01

    Sonochemical degradation of phenol (Ph), 4-isopropylphenol (4-IPP) and Rhodamine B (RhB) in aqueous solutions was investigated for a large range of initial concentrations in order to analyze the reaction kinetics. The initial rates of substrate degradation and H(2)O(2) formation as a function of initial concentrations were determined. The obtained results show that the degradation rate increases with increasing initial substrate concentration up to a plateau and that the sonolytic destruction occurs mainly through reactions with hydroxyl radicals in the interfacial region of cavitation bubbles. The rate of H(2)O(2) formation decreases with increasing substrate concentration and reaches a minimum, followed by almost constant production rate for higher substrate concentrations. Sonolytic degradation data were analyzed by the models of Okitsu et al. [K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes, Ultrason. Sonochem. 12 (2005) 255-262.] and Seprone et al. [N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem. 98 (1994) 2634-2640.] developed on the basis of a Langmuir-type mechanism. The five linearized forms of the Okitsu et al.'s equation as well as the non-linear curve fitting analysis method were discussed. Results show that it is not appropriate to use the coefficient of determination of the linear regression method for comparing the best-fitting. Among the five linear expressions of the Okitsu et al.'s kinetic model, form-2 expression very well represent the degradation data for Ph and 4-IPP. Non-linear curve fitting analysis method was found to be the more appropriate method to determine the model parameters. An excellent representation of the experimental results of sonolytic destruction of RhB was obtained using the Serpone et al.'s model. The Serpone et al.'s model gives a worse fit for the sonolytic degradation data of Ph and 4-IPP. These results indicate that Ph and 4-IPP undergo degradation predominantly at the bubble/solution interface, whereas RhB undergoes degradation at both bubble/solution interface and in the bulk solution. (c) 2010 Elsevier B.V. All rights reserved.

  9. Favorable target positions for intense laser acceleration of electrons in hydrogen-like, highly-charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pi, Liang-Wen; Starace, Anthony F.; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

    2015-09-15

    Classical relativistic Monte Carlo simulations of petawatt laser acceleration of electrons bound initially in hydrogen-like, highly-charged ions show that both the angles and energies of the laser-accelerated electrons depend on the initial ion positions with respect to the laser focus. Electrons bound in ions located after the laser focus generally acquire higher (≈GeV) energies and are ejected at smaller angles with respect to the laser beam. Our simulations assume a tightly-focused linearly-polarized laser pulse with intensity approaching 10{sup 22 }W/cm{sup 2}. Up to fifth order corrections to the paraxial approximation of the laser field in the focal region are taken intomore » account. In addition to the laser intensity, the Rayleigh length in the focal region is shown to play a significant role in maximizing the final energy of the accelerated electrons. Results are presented for both Ne{sup 9+} and Ar{sup 17+} target ions.« less

  10. An evaluation of the regional supply of biomass at three midwestern sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, B.C.; Dillivan, K.D.; Ojo, M.A.

    1993-12-31

    Research has been conducted on both the agronomy and the conversion of biomass. However, few studies have been initiated that combine the knowledge of growing biomass with site specific resource availability information. An economic appraisal of how much biomass might be grown in a specific area for a given price has only just been initiated. This paper examines the economics of introducing biomass production to three midwest representative areas centered on the following counties, Orange County, Indiana; Olmsted County, Minnesota; and Cass County, North Dakota. Using a regional linear programming model, estimates of economic feasibility as well as environmental impactsmore » are made. At a price of $53 per metric ton the biomass supplied to the plant gate is equal to 183,251 metric tons. At $62 per metric ton the biomass supply has increased to almost 1 million metric tons. The model predicts a maximum price of $88 per metric ton and at this price, 2,748,476 metric tons of biomass are produced.« less

  11. A study of the formation and dynamics of galaxies

    NASA Astrophysics Data System (ADS)

    Fillmore, J. A.

    The first half of this thesis is a study on the growth of perturbations in the early universe which might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  12. Unchanged Pediatric Out-of-Hospital Cardiac Arrest Incidence and Survival Rates with Regional Variation in North America

    PubMed Central

    Fink, Ericka L.; Prince, David K.; Kaltman, Jonathan R.; Atkins, Dianne L.; Austin, Michael; Warden, Craig; Hutchison, Jamie; Daya, Mohamud; Goldberg, Scott; Herren, Heather; Tijssen, Janice A.; Christenson, James; Vaillancourt, Christian; Miller, Ronna; Schmicker, Robert H.; Callaway, Clifton W.

    2016-01-01

    Aim Outcomes for pediatric out-of-hospital cardiac arrest (OHCA) are poor. Our objective was to determine temporal trends in incidence and mortality for pediatric OHCA. Methods Adjusted incidence and hospital mortality rates of pediatric non-traumatic OHCA patients from 2007-2012 were analyzed using the 9 region Resuscitation Outcomes Consortium - Epidemiological Registry (ROC-Epistry) database. Children were divided into 4 age groups: perinatal (< 3 days), infants (3 days - 1 year), children (1 - 11 years), and adolescents (12 - 19 years). ROC regions were analyzed post-hoc. Results We studied 1,738 children with OHCA. The age- and sex-adjusted incidence rate of OHCA was 8.3 per 100,000 person-years (75.3 for infants vs. 3.7 for children and 6.3 for adolescents, per 100,000 person-years, p<0.001). Incidence rates differed by year (p<0.001) without overall linear trend. Annual survival rates ranged from 6.7-10.2%. Survival was highest in the perinatal (25%) and adolescent (17.3%) groups. Stratified by age group, survival rates over time were unchanged (all p>0.05) but there was a non-significant linear trend (1.3% increase) in infants. In the multivariable logistic regression analysis, infants, unwitnessed event, initial rhythm of asystole, and region were associated with worse survival, all p<0.001. Survival by region ranged from 2.6-14.7%. Regions with the highest survival had more cases of EMS-witnessed OHCA, bystander CPR, and increased EMS-defibrillation (all p<0.05). Conclusions Overall incidence and survival of children with OHCA in ROC regions did not significantly change over a recent 5 year period. Regional variation represents an opportunity for further study to improve outcomes. PMID:27565862

  13. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, Alisa L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  14. Initial Computations of Vertical Displacement Events with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, Kyle; Sovinec, C. R.

    2014-10-01

    Disruptions associated with vertical displacement events (VDEs) have potential for causing considerable physical damage to ITER and other tokamak experiments. We report on initial computations of generic axisymmetric VDEs using the NIMROD code [Sovinec et al., JCP 195, 355 (2004)]. An implicit thin-wall computation has been implemented to couple separate internal and external regions without numerical stability limitations. A simple rectangular cross-section domain generated with the NIMEQ code [Howell and Sovinec, CPC (2014)] modified to use a symmetry condition at the midplane is used to test linear and nonlinear axisymmetric VDE computation. As current in simulated external coils for large- R / a cases is varied, there is a clear n = 0 stability threshold which lies below the decay-index criterion for the current-loop model of a tokamak to model VDEs [Mukhovatov and Shafranov, Nucl. Fusion 11, 605 (1971)]; a scan of wall distance indicates the offset is due to the influence of the conducting wall. Results with a vacuum region surrounding a resistive wall will also be presented. Initial nonlinear computations show large vertical displacement of an intact simulated tokamak. This effort is supported by U.S. Department of Energy Grant DE-FG02-06ER54850.

  15. A regularization method for extrapolation of solar potential magnetic fields

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  16. Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination based mechanism for yeast mitochondria.

    PubMed

    Gerhold, Joachim M; Sedman, Tiina; Visacka, Katarina; Slezakova, Judita; Tomaska, Lubomir; Nosek, Jozef; Sedman, Juhan

    2014-08-15

    Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Replication Intermediates of the Linear Mitochondrial DNA of Candida parapsilosis Suggest a Common Recombination Based Mechanism for Yeast Mitochondria*

    PubMed Central

    Gerhold, Joachim M.; Sedman, Tiina; Visacka, Katarina; Slezakova, Judita; Tomaska, Lubomir; Nosek, Jozef; Sedman, Juhan

    2014-01-01

    Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations. PMID:24951592

  18. Studies with spike initiators - Linearization by noise allows continuous signal modulation in neural networks

    NASA Technical Reports Server (NTRS)

    Yu, Xiaolong; Lewis, Edwin R.

    1989-01-01

    It is shown that noise can be an important element in the translation of neuronal generator potentials (summed inputs) to neuronal spike trains (outputs), creating or expanding a range of amplitudes over which the spike rate is proportional to the generator potential amplitude. Noise converts the basically nonlinear operation of a spike initiator into a nearly linear modulation process. This linearization effect of noise is examined in a simple intuitive model of a static threshold and in a more realistic computer simulation of spike initiator based on the Hodgkin-Huxley (HH) model. The results are qualitatively similar; in each case larger noise amplitude results in a larger range of nearly linear modulation. The computer simulation of the HH model with noise shows linear and nonlinear features that were earlier observed in spike data obtained from the VIIIth nerve of the bullfrog. This suggests that these features can be explained in terms of spike initiator properties, and it also suggests that the HH model may be useful for representing basic spike initiator properties in vertebrates.

  19. Geometric scaling behavior of the scattering amplitude for DIS with nuclei

    NASA Astrophysics Data System (ADS)

    Kormilitzin, Andrey; Levin, Eugene; Tapia, Sebastian

    2011-12-01

    The main question, that we answer in this paper, is whether the initial condition can influence on the geometric scaling behavior of the amplitude for DIS at high energy. We re-write the non-linear Balitsky-Kovchegov equation in the form which is useful for treating the interaction with nuclei. Using the simplified BFKL kernel, we find the analytical solution to this equation with the initial condition given by the McLerran-Venugopalan formula. This solution does not show the geometric scaling behavior of the amplitude deeply in the saturation region. On the other hand, the BFKL Pomeron calculus with the initial condition at x=1/mR given by the solution to Balitsky-Kovchegov equation, leads to the geometric scaling behavior. The McLerran-Venugopalan formula is the natural initial condition for the Color Glass Condensate (CGC) approach. Therefore, our result gives a possibility to check experimentally which approach: CGC or BFKL Pomeron calculus, is more satisfactory.

  20. Dynamic propagation of symmetric Airy pulses with initial chirps in an optical fiber

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Deng, Yangbao; Tan, Chao; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression, and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the chirped symmetric Airy pulses propagation is also disclosed separately.

  1. Improved Linear-Ion-Trap Frequency Standard

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    Improved design concept for linear-ion-trap (LIT) frequency-standard apparatus proposed. Apparatus contains lengthened linear ion trap, and ions processed alternately in two regions: ions prepared in upper region of trap, then transported to lower region for exposure to microwave radiation, then returned to upper region for optical interrogation. Improved design intended to increase long-term frequency stability of apparatus while reducing size, mass, and cost.

  2. A drop in uniaxial and biaxial nonlinear extensional flows

    NASA Astrophysics Data System (ADS)

    Favelukis, M.

    2017-08-01

    In this theoretical report, we explore small deformations of an initially spherical drop subjected to uniaxial or biaxial nonlinear extensional creeping flows. The problem is governed by the capillary number (Ca), the viscosity ratio (λ), and the nonlinear intensity of the flow (E). When the extensional flow is linear (E = 0), the familiar internal circulations are obtained and the same is true with E > 0, except that the external and internal flow rates increase with increasing E. If E < 0, the external flow consists of some unconnected regions leading to the same number of internal circulations (-3/7 < E < 0) or twice the number of internal circulations (E < -3/7), when compared to the linear case. The shape of the deformed drop is represented in terms of a modified Taylor deformation parameter, and the conditions for the breakup of the drop by a center pinching mechanism are also established. When the flow is linear (E = 0), the literature predicts prolate spheroidal drops for uniaxial flows (Ca > 0) and oblate spheroidal drops for biaxial flows (Ca < 0). For the same |Ca|, if E > 0, the drop is more elongated than the linear case, while E < 0 results in less elongated drops than the linear case. Compared to the linear case, for both uniaxial and biaxial extensional flows, E > 0 tends to facilitate drop breakup, while E < 0 makes drop breakup more difficult.

  3. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    DOE PAGES

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δ A(x,t initial) = –δ B(x,t initial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand tomore » create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less

  4. Face-selective regions show invariance to linear, but not to non-linear, changes in facial images.

    PubMed

    Baseler, Heidi A; Young, Andrew W; Jenkins, Rob; Mike Burton, A; Andrews, Timothy J

    2016-12-01

    Familiar face recognition is remarkably invariant across huge image differences, yet little is understood concerning how image-invariant recognition is achieved. To investigate the neural correlates of invariance, we localized the core face-responsive regions and then compared the pattern of fMR-adaptation to different stimulus transformations in each region to behavioural data demonstrating the impact of the same transformations on familiar face recognition. In Experiment 1, we compared linear transformations of size and aspect ratio to a non-linear transformation affecting only part of the face. We found that adaptation to facial identity in face-selective regions showed invariance to linear changes, but there was no invariance to non-linear changes. In Experiment 2, we measured the sensitivity to non-linear changes that fell within the normal range of variation across face images. We found no adaptation to facial identity for any of the non-linear changes in the image, including to faces that varied in different levels of caricature. These results show a compelling difference in the sensitivity to linear compared to non-linear image changes in face-selective regions of the human brain that is only partially consistent with their effect on behavioural judgements of identity. We conclude that while regions such as the FFA may well be involved in the recognition of face identity, they are more likely to contribute to some form of normalisation that underpins subsequent recognition than to form the neural substrate of recognition per se. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Linear and non-linear flow mode in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2017-10-01

    The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range | η | < 0.8 and the transverse momentum range 0.2

  6. Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S.; Adamová, D.; Adolfsson, J.

    The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less

  7. Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76  TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Adolfsson, J.; ...

    2017-08-04

    The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less

  8. The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions

    DOE PAGES

    Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben; ...

    2017-04-19

    Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less

  9. The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben

    Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less

  10. A computational approach to the relationship between radiation induced double strand breaks and translocations

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1994-01-01

    A theoretical framework is presented which provides a quantitative analysis of radiation induced translocations between the ab1 oncogene on CH9q34 and a breakpoint cluster region, bcr, on CH 22q11. Such translocations are associated frequently with chronic myelogenous leukemia. The theory is based on the assumption that incorrect or unfaithful rejoining of initial double strand breaks produced concurrently within the 200 kbp intron region upstream of the second abl exon, and the 16.5 kbp region between bcr exon 2 and exon 6 interact with each other, resulting in a fusion gene. for an x-ray dose of 100 Gy, there is good agreement between the theoretical estimate and the one available experimental result. The theory has been extended to provide dose response curves for these types of translocations. These curves are quadratic at low doses and become linear at high doses.

  11. Competing disturbance amplification mechanisms in two-fluid boundary layers

    NASA Astrophysics Data System (ADS)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer

    2015-11-01

    The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).

  12. On the mass function of stars growing in a flocculent medium

    NASA Astrophysics Data System (ADS)

    Maschberger, Th.

    2013-12-01

    Stars form in regions of very inhomogeneous densities and may have chaotic orbital motions. This leads to a time variation of the accretion rate, which will spread the masses over some mass range. We investigate the mass distribution functions that arise from fluctuating accretion rates in non-linear accretion, ṁ ∝ mα. The distribution functions evolve in time and develop a power-law tail attached to a lognormal body, like in numerical simulations of star formation. Small fluctuations may be modelled by a Gaussian and develop a power-law tail ∝ m-α at the high-mass side for α > 1 and at the low-mass side for α < 1. Large fluctuations require that their distribution is strictly positive, for example, lognormal. For positive fluctuations the mass distribution function develops the power-law tail always at the high-mass hand side, independent of α larger or smaller than unity. Furthermore, we discuss Bondi-Hoyle accretion in a supersonically turbulent medium, the range of parameters for which non-linear stochastic growth could shape the stellar initial mass function, as well as the effects of a distribution of initial masses and growth times.

  13. Computation of multi-dimensional viscous supersonic jet flow

    NASA Technical Reports Server (NTRS)

    Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.

    1986-01-01

    A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  14. Origami-based mechanical metamaterials with tunable frequency band structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yasuda, Hiromi; Pratt, Riley; Yang, Jinkyu

    2017-04-01

    We investigate wave dynamics in origami-based mechanical metamaterials composed of bellows-like origami structures, specifically the Tachi-Miura Polyhedron (TMP). One of the unique features of the TMP is that its structural deformations take place only along the crease lines, therefore the structure can be made of rigid plates and hinges. By utilizing this feature, we introduce linear torsional springs to model the crease lines and derive the force and displacement relationship of the TMP structure along the longitudinal direction. Our analysis shows strain softening/hardening behaviors in compression/tensile regions respectively, and the force-displacement curve can be manipulated by altering the initial configuration of the TMP (e.g., the initial folding angle). We also fabricate physical prototypes and measure the force-displacement behavior to verify our analytical model. Based on this static analysis on the TMP, we simplify the TMP structure into a linkage model, preserving the tunable strain softening/hardening behaviors. Dynamic analysis is also conducted numerically to analyze the frequency response of the simplified TMP unit cell under harmonic excitations. The simplified TMP exhibits a transition between linear and nonlinear behaviors, which depends on the amplitude of the excitation and the initial configuration. In addition, we design a 1D system composed of simplified TMP unit cells and analyze the relationship between frequency and wave number. If two different configurations of the unit cell (e.g., different initial folding angles) are connected in an alternating arrangement, the system develops frequency bandgaps. These unique static/dynamic behaviors can be exploited to design engineering devices which can handle vibrations and impact in an efficient manner.

  15. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; OBrien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to non-linear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse displacement. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  16. Fish freshness estimation using eye image processing under white and UV lightings

    NASA Astrophysics Data System (ADS)

    Kanamori, Katsuhiro; Shirataki, Yuri; Liao, Qiuhong; Ogawa, Yuichi; Suzuki, Tetsuhito; Kondo, Naoshi

    2017-05-01

    A non-destructive method of estimating the freshness of fish is required for appropriate price setting and food safety. In particular, for determining the possibility of eating raw fish (sashimi), freshness estimation is critical. We studied such an estimation method by capturing images of fish eyes and performing image processing using the temporal changes of the luminance of pupil and iris. To detect subtle non-visible changes of these features, we used UV (375 nm) light illumination in addition to visible white light illumination. Polarization and two-channel LED techniques were used to remove strong specular reflection from the cornea of the eye and from clear-plastic wrap used to cover the fish to maintain humidity. Pupil and iris regions were automatically detected separately by image processing after the specular reflection removal process, and two types of eye contrast were defined as the ratio of mean and median pixel values of each region. Experiments using 16 Japanese dace (Tribolodon hakonensis) at 23° and 85% humidity for 24 hours were performed. The eye contrast of raw fish increase non-linearly in the initial period and then decreased; however, that of frozen-thawed fish decreased linearly throughout 24 hours, regardless of the lighting. Interestingly, the eye contrast using UV light showed a higher correlation with time than that using white light only in the case of raw fish within the early 6- hour period postmortem. These results show the possibility of estimating fish freshness in the initial stage when fish are eaten raw using white and UV lightings.

  17. Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.

    2018-03-01

    Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.

  18. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- andmore » right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.« less

  19. Langmuir and Langmuir-Blodgett films of multifunctional, amphiphilic polyethers with cholesterol moieties.

    PubMed

    Reuter, Sascha; Hofmann, Anna M; Busse, Karsten; Frey, Holger; Kressler, Jörg

    2011-03-01

    Langmuir films of multifunctional, hydrophilic polyethers containing a hydrophobic cholesterol group (Ch) were studied by surface pressure-mean molecular area (π-mmA) measurements and Brewster angle microscopy (BAM). The polyethers were either homopolymers or diblock copolymers of linear poly(glycerol) (lPG), linear poly(glyceryl glycidyl ether) (lPGG), linear poly(ethylene glycol) (lPEG), or hyperbranched poly(glycerol) (hbPG). Surface pressure measurements revealed that the homopolymers lPG and hbPG did not stay at the water surface after spreading and solvent evaporation, in contrast to lPEG. Because of the incorporation of the Ch group in the polymer structure, stable Langmuir films were formed by Ch-lPG(n), Ch-lPGG(n), and Ch-hbPG(n). The Ch-hbPG(n), Ch-lPEG(n), Ch-lPEG(n)-b-lPG(m), Ch-lPEG(n)-b-lPGG(m), and Ch-lPEG(n)-b-hbPG(m) systems showed an extended plateau region assigned to a phase transition involving the Ch groups. Typical hierarchically ordered morphologies of the LB films on hydrophilic substrates were observed for all Ch-initiated polymers. All LB films showed that Ch of the Ch-initiated homopolymers is able to crystallize. This strong tendency of self-aggregation then triggers further dewetting effects of the respective polyether entities. Fingerlike morphologies are observed for Ch-lPEG(69), since the lPEG(69) entity is able to undergo crystallization after transfer onto the silicon substrate.

  20. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  1. Non-linearities in Holocene floodplain sediment storage

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows that a strong multifractality is present in the scaling relationship between sediment storage and catchment area, depending on geomorphic landscape properties. Extrapolation of data from one spatial scale to another inevitably leads to large errors: when only the data of the upper floodplains are considered, a regression analysis results in an overestimation of total floodplain deposition for the entire catchment of circa 115%. This example demonstrates multifractality and related non-linearity in scaling relationships, which influences extrapolations beyond the initial range of measurements. These different examples indicate how traditional extrapolation techniques and assumptions in sediment budget studies can be challenged by field data, further complicating our understanding of these systems. Although simplifications are often necessary when working on large spatial scale, such non-linearities may form challenges for a better understanding of system behavior.

  2. Linear instability of supersonic plane wakes

    NASA Technical Reports Server (NTRS)

    Papageorgiou, D. T.

    1989-01-01

    In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.

  3. Protoplanetary disc `isochrones' and the evolution of discs in the M˙-Md plane

    NASA Astrophysics Data System (ADS)

    Lodato, Giuseppe; Scardoni, Chiara E.; Manara, Carlo F.; Testi, Leonardo

    2017-12-01

    In this paper, we compare simple viscous diffusion models for the disc evolution with the results of recent surveys of the properties of young protoplanetary discs. We introduce the useful concept of 'disc isochrones' in the accretion rate-disc mass plane and explore a set of Monte Carlo realization of disc initial conditions. We find that such simple viscous models can provide a remarkable agreement with the available data in the Lupus star forming region, with the key requirement that the average viscous evolutionary time-scale of the discs is comparable to the cluster age. Our models produce naturally a correlation between mass accretion rate and disc mass that is shallower than linear, contrary to previous results and in agreement with observations. We also predict that a linear correlation, with a tighter scatter, should be found for more evolved disc populations. Finally, we find that such viscous models can reproduce the observations in the Lupus region only in the assumption that the efficiency of angular momentum transport is a growing function of radius, thus putting interesting constraints on the nature of the microscopic processes that lead to disc accretion.

  4. Representation of fine scale atmospheric variability in a nudged limited area quasi-geostrophic model: application to regional climate modelling

    NASA Astrophysics Data System (ADS)

    Omrani, H.; Drobinski, P.; Dubos, T.

    2009-09-01

    In this work, we consider the effect of indiscriminate nudging time on the large and small scales of an idealized limited area model simulation. The limited area model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by its « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. Compared to a previous study by Salameh et al. (2009) who investigated the existence of an optimal nudging time minimizing the error on both large and small scale in a linear model, we here use a fully non-linear model which allows us to represent the chaotic nature of the atmosphere: given the perfect quasi-geostrophic model, errors in the initial conditions, concentrated mainly in the smaller scales of motion, amplify and cascade into the larger scales, eventually resulting in a prediction with low skill. To quantify the predictability of our quasi-geostrophic model, we measure the rate of divergence of the system trajectories in phase space (Lyapunov exponent) from a set of simulations initiated with a perturbation of a reference initial state. Predictability of the "global", periodic model is mostly controlled by the beta effect. In the LAM, predictability decreases as the domain size increases. Then, the effect of large-scale nudging is studied by using the "perfect model” approach. Two sets of experiments were performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic LAM where the size of the LAM domain comes into play in addition to the first set of simulations. In the two sets of experiments, the best spatial correlation between the nudge simulation and the reference is observed with a nudging time close to the predictability time.

  5. Modelling of lateral fold growth and fold linkage: Applications to fold-and-thrust belt tectonics

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Schmalholz, Stefan

    2013-04-01

    We use a finite element model to investigate the three-dimensional fold growth and interference of two initially isolated fold segments. The most critical parameter, which controls the fold linkage mode, is the phase difference between the laterally growing fold hinge lines: 1) "Linear-linkage" yields a sub-cylindrical fold with a saddle at the location where the two initial folds linked. 2) "Oblique-linkage" produces a curved fold resembling a Type II refold structure. 3) "Oblique-no-linkage" results in two curved folds with fold axes plunging in opposite directions. 4) "Linear-no-linkage" yields a fold train of two separate sub-cylindrical folds with fold axes plunging in opposite directions. The transition from linkage to no-linkage occurs when the fold separation between the initially isolated folds is slightly larger than one half of the low-amplitude fold wavelength. The model results compare well with previously published plasticine analogue models and can be directly applied to the investigation of fold growth history in fold-and-thust belts. An excellent natural example of lateral fold linkage is described from the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The fold growth in this region is not controlled by major thrust faults but the shortening of the Paleozoic to Cenozoic passive margin sediments of the Arabian plate occurred mainly by detachment folding. The sub-cylindrical anticlines with hinge-parallel lengths of more than 50 km have not developed from single sub-cylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification and lateral fold growth. Linkage points are marked by geomorphological saddle points which are structurally the lowermost points of antiforms and points of principal curvatures with opposite sign. Linkage points can significantly influence the migration of mineral-rich fluids and hydrocarbons and are therefore of great economic importance.

  6. Shallow velocity structure across the Mariana arc

    NASA Astrophysics Data System (ADS)

    Tait, S.; Kaminski, E. C.; Carazzo, G.; Limare, A.

    2016-12-01

    Atmospheric injection of volcanic ash during explosive eruptions is controlled by the dynamics of a volcanic column and associated umbrella cloud, which are subject to a wind field, and are connected by a turbulent fountain which initiates horizontal spreading at the neutral buoyancy level. We present a new theoretical and experimental study of an axisymmetric turbulent umbrella cloud intruding horizontally at its neutral buoyancy level into a static environment linearly stratified in density. The intrusion is fed by a constant horizontal volume flux (Q0) at a finite radius (R0), where it has a constant thickness (2H0). The characteristics of the fountain (R0, H0, Q0) derive from a vertical forced plume (source momentum and buoyancy fluxes Mi , Fi) and environmental stratification N. Buoyancy drives horizontal flow but, despite high Reynolds number, impedes entrainment of ambient fluid into the umbrella cloud. Turbulent stresses are nevertheless crucial in the momentum balance. Our theory highlights the vertical profiles of density and velocity within the current of which we present experimental measurements. Initially, current buoyancy is opposed by the inertia of the ambient fluid, and current radius (RN(t)) grows linearly in time. Subsequently, turbulent drag opposes buoyancy, and the current breaks down into two parts: i) between the source and a transition radius (R0T(t)), a steady region where current thickness (2H) and mean velocity (U) are time-independent and decreasing functions of r ; ii), a contiguous unsteady « frontal » region, between the transition radius and the front (RTN), in which the current thickens. The theory predicts current shape and an asymptotic spreading behaviour (RN t^5/9) which agree well with experimental data. Our analysis of satellite observations of several sustained plinian events including the Pinatubo 1991 climactic eruption shows that both the initial and asymptotic spreading regimes predicted by the model are present.

  7. The Dynamics of Volcanic Umbrella Clouds

    NASA Astrophysics Data System (ADS)

    Tait, S.; Kaminski, E. C.; Carazzo, G.; Limare, A.

    2017-12-01

    Atmospheric injection of volcanic ash during explosive eruptions is controlled by the dynamics of a volcanic column and associated umbrella cloud, which are subject to a wind field, and are connected by a turbulent fountain which initiates horizontal spreading at the neutral buoyancy level. We present a new theoretical and experimental study of an axisymmetric turbulent umbrella cloud intruding horizontally at its neutral buoyancy level into a static environment linearly stratified in density. The intrusion is fed by a constant horizontal volume flux (Q0) at a finite radius (R0), where it has a constant thickness (2H0). The characteristics of the fountain (R0, H0, Q0) derive from a vertical forced plume (source momentum and buoyancy fluxes Mi , Fi) and environmental stratification N. Buoyancy drives horizontal flow but, despite high Reynolds number, impedes entrainment of ambient fluid into the umbrella cloud. Turbulent stresses are nevertheless crucial in the momentum balance. Our theory highlights the vertical profiles of density and velocity within the current of which we present experimental measurements. Initially, current buoyancy is opposed by the inertia of the ambient fluid, and current radius (RN(t)) grows linearly in time. Subsequently, turbulent drag opposes buoyancy, and the current breaks down into two parts: i) between the source and a transition radius (R0T(t)), a steady region where current thickness (2H) and mean velocity (U) are time-independent and decreasing functions of r ; ii), a contiguous unsteady « frontal » region, between the transition radius and the front (RTN), in which the current thickens. The theory predicts current shape and an asymptotic spreading behaviour (RN t^5/9) which agree well with experimental data. Our analysis of satellite observations of several sustained plinian events including the Pinatubo 1991 climactic eruption shows that both the initial and asymptotic spreading regimes predicted by the model are present.

  8. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    PubMed

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  9. Operation of a high impedance applied-B extraction ion diode on the SABRE positive polarity linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Cuneo, M.E.; McKay, P.F.

    We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less

  10. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a qualitatively different way of creating MHD relevant plasmas to look at the physics of magnetic reconnection. We show here an overview of the experiment and initial electrostatic and magnetic probe data. Plasma creation using plasma guns is independent of equilibrium or force balance, so we can scale many relevant parameters. As the magnetic reconnection region between two parallel current channels sweeps down a long plasma column we can generate 3D movies of magnetic reconnection from many repetitive shots. If two current channels were to move because of kink instabilities instead of mutual J x B forces and reconnection effects, each shot would less reproducible. Our data show the kink stability boundary for a single current channel. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  11. Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition–Strain–Activity Relationship

    PubMed Central

    2016-01-01

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt–alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt–Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt–Pt bond length (RPt–Pt). The RPt–Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt–Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs. PMID:25559440

  12. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship.

    PubMed

    Jia, Qingying; Liang, Wentao; Bates, Michael K; Mani, Prasanna; Lee, Wendy; Mukerjee, Sanjeev

    2015-01-27

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt-alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt-Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt-Pt bond length (RPt-Pt). The RPt-Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt-Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs.

  13. Changes in Cirrus Cloudiness and their Relationship to Contrails

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Ayers, J. Kirk; Palikonda, Rabindra; Doelling, David R.; Schumann, Ulrich; Gierens, Klaus

    2001-01-01

    Condensation trails, or contrails, formed in the wake of high-altitude aircraft have long been suspected of causing the formation of additional cirrus cloud cover. More cirrus is possible because 10 - 20% of the atmosphere at typical commercial flight altitudes is clear but ice-saturated. Since they can affect the radiation budget like natural cirrus clouds of equivalent optical depth and microphysical properties, contrail -generated cirrus clouds are another potential source of anthropogenic influence on climate. Initial estimates of contrail radiative forcing (CRF) were based on linear contrail coverage and optical depths derived from a limited number of satellite observations. Assuming that such estimates are accurate, they can be considered as the minimum possible CRF because contrails often develop into cirrus clouds unrecognizable as contrails. These anthropogenic cirrus are not likely to be identified as contrails from satellites and would, therefore, not contribute to estimates of contrail coverage. The mean lifetime and coverage of spreading contrails relative to linear contrails are needed to fully assess the climatic effect of contrails, but are difficult to measure directly. However, the maximum possible impact can be estimated using the relative trends in cirrus coverage over regions with and without air traffic. In this paper, the upper bound of CRF is derived by first computing the change in cirrus coverage over areas with heavy air traffic relative to that over the remainder of the globe assuming that the difference between the two trends is due solely to contrails. This difference is normalized to the corresponding linear contrail coverage for the same regions to obtain an average spreading factor. The maximum contrail-cirrus coverage, estimated as the product of the spreading factor and the linear contrail coverage, is then used in the radiative model to estimate the maximum potential CRF for current air traffic.

  14. The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations

    ERIC Educational Resources Information Center

    Buendía, Gabriela; Cordero, Francisco

    2013-01-01

    In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…

  15. Development of WRF-CO2 4DVAR Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zheng, T.; French, N. H. F.

    2016-12-01

    Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.

  16. Numerical simulation of swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1991-01-01

    Efforts of the last six months to computationally model the transition process characteristics of flow over swept wings are described. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full 3D Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiment. The leading edge region of a swept wing is considered in a 3D spatial simulation with random disturbances as the initial conditions.

  17. Frequency-domain full-waveform inversion with non-linear descent directions

    NASA Astrophysics Data System (ADS)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.

  18. Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions

    PubMed Central

    Chica, Claudia; Diella, Francesca; Gibson, Toby J.

    2009-01-01

    Background Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. Results The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. Conclusion The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise. PMID:19584925

  19. Stability of multiloop LQ regulators with nonlinearities. I - Regions of attraction. II - Regions of ultimate boundedness

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1986-01-01

    An investigation is conducted for the closed loop stability of linear time-invariant systems controlled by linear quadratic (LQ) regulators, in cases where nonlinearities exist in the control channels lying outside the stability sector in regions away from the origin. The estimate of the region of attraction thus obtained furnishes methods for the selection of performance function weights for more robust LQ designs. Attention is then given to the closed loop stability of linear time-invariant systems controlled by the LQ regulators when the nonlinearities in the loops escape the stability sector in a bounded region containing the origin.

  20. Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanju; Wang, Hailong; Singh, Balwinder

    The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BCmore » and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of large amounts of OC in these regions would be relatively climate-neutral rather than causing significant warming via IRF reduction.« less

  1. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  2. Creation of an in vitro biomechanical model of the trachea using rapid prototyping.

    PubMed

    Walenga, Ross L; Longest, P Worth; Sundaresan, Gobalakrishnan

    2014-06-03

    Previous in vitro models of the airways are either rigid or, if flexible, have not matched in vivo compliance characteristics. Rapid prototyping provides a quickly evolving approach that can be used to directly produce in vitro airway models using either rigid or flexible polymers. The objective of this study was to use rapid prototyping to directly produce a flexible hollow model that matches the biomechanical compliance of the trachea. The airway model consisted of a previously developed characteristic mouth-throat region, the trachea, and a portion of the main bronchi. Compliance of the tracheal region was known from a previous in vivo imaging study that reported cross-sectional areas over a range of internal pressures. The compliance of the tracheal region was matched to the in vivo data for a specific flexible resin by iteratively selecting the thicknesses and other dimensions of tracheal wall components. Seven iterative models were produced and illustrated highly non-linear expansion consisting of initial rapid size increase, a transition region, and continued slower size increase as pressure was increased. Thickness of the esophageal interface membrane and initial trachea indention were identified as key parameters with the final model correctly predicting all phases of expansion within a value of 5% of the in vivo data. Applications of the current biomechanical model are related to endotracheal intubation and include determination of effective mucus suctioning and evaluation of cuff sealing with respect to gases and secretions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Optimized in vivo detection of dopamine release using 18F-fallypride PET.

    PubMed

    Ceccarini, Jenny; Vrieze, Elske; Koole, Michel; Muylle, Tom; Bormans, Guy; Claes, Stephan; Van Laere, Koen

    2012-10-01

    The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies. Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters. The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of dopamine of 200 nM showed that an effect of striatal ligand displacement could be detected only when task timing was greater than 120 min. The prefrontal and anterior cingulate cortices are involved in reward responsiveness that can be measured using (18)F-fallypride PET in a single scanning session. To measure both striatal and extrastriatal dopamine release, the height of dopamine released and task timing need to be considered in designing activation studies depending on regional D(2/3) density.

  4. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  5. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu.

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that themore » ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.« less

  6. Subduction at upper ocean fronts by baroclinic instability

    NASA Astrophysics Data System (ADS)

    Verma, Vicky; Pham, Hieu T.; Radhakrishnan, Anand; Sarkar, Sutanu

    2017-11-01

    Large eddy simulations of upper ocean fronts that are initially in geostrophic balance show that the linear and subsequent nonlinear evolution of baroclinic intability are effective in restratifying the front. During the growth of baroclinic instability, the front develops thin regions with enhanced vertical vorticity, i.e., vorticity filaments. Moreover, the vorticity filaments organize into submesoscale eddies. The subsequent frontal dynamics is dominated by the vorticity filaments and the submesoscale eddies. Diagnosis of the horizontal force balance reveals that the regions occupied by these coherent structures have significantly large imbalance, and are characterized by large vertical velocity. High density fluid from the heavier side of the front is subducted by the vertical velocity to the bottom of the mixed layer. The process of subduction is illustrated by Lagrangian tracking of fluid particles released at a fixed depth.

  7. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  8. Application of the Hughes-LIU algorithm to the 2-dimensional heat equation

    NASA Technical Reports Server (NTRS)

    Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.

    1982-01-01

    An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.

  9. Multipass Steering: A Reference Implementation

    NASA Astrophysics Data System (ADS)

    Hennessey, Michael; Tiefenback, Michael

    2015-10-01

    We introduce a reference implementation of a protocol to compute corrections that bring all beams in one of the CEBAF linear accelerators (linac) to axis, including, with a larger tolerance, the lowest energy pass using measured beam trajectory data. This method relies on linear optics as representation of the system; we treat beamline perturbations as magnetic field errors localized to regions between cryomodules, providing the same transverse momentum kick to each beam. We produce a vector of measured beam position data with which we left-multiply the pseudo-inverse of a coefficient array, A, that describes the transport of the beam through the linac using parameters that include the magnetic offsets of the quadrupole magnets, the instrumental offsets of the BPMs, and the beam initial conditions. This process is repeated using a reduced array to produce values that can be applied to the available correcting magnets and beam initial conditions. We show that this method is effective in steering the beam to a straight axis along the linac by using our values in elegant, the accelerator simulation program, on a model of the linac in question. The algorithms in this reference implementation provide a tool for systematic diagnosis and cataloging of perturbations in the beam line. Supported by Jefferson Lab, Old Dominion University, NSF, DOE.

  10. On the interaction of small-scale linear waves with nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Xu, Chengzhu; Stastna, Marek

    2017-04-01

    In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow interaction in a fully nonlinear framework.

  11. Initial conditions for accurate N-body simulations of massive neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Villaescusa-Navarro, F.; Carbone, C.; Sefusatti, E.; Guzzo, L.

    2017-04-01

    The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterizes these models. In this work, we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1 per cent accuracy or below for all redshift relevant to non-linear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmologies adopted in previous works. We then take advantage of the flexibility of this approach to rescale the late-time linear power spectra to the simulation initial redshift, in order to be as consistent as possible with the dynamics of the N-body code and the approximations it assumes. We implement our method in a public code (REPS rescaled power spectra for initial conditions with massive neutrinos https://github.com/matteozennaro/reps) providing the initial displacements and velocities for cold dark matter and neutrino particles that will allow accurate, I.e. 1 per cent level, numerical simulations for this cosmological scenario.

  12. Initial Results from CASSIOPE/ePOP Satellite Overpasses above HAARP in 2014

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; James, H. G.; Yau, A. W.; Knudsen, D. J.

    2015-12-01

    The High Frequency Active Auroral Research Program (HAARP) facility was operated in conjunction with overpasses of the enhanced Polar Outflow Probe (ePOP) instruments on the Canadian CASSIOPE satellite. During these overpasses HAARP was operated in several different heating modes and regimes as diagnosed by the characteristics of Stimulated Electromagnetic Emissions (SEE) using ground-based receivers while simultaneously ePOP monitored in-situ HF and VLF signals, looked for ion and electron heating, and provided VHF and UHF signals for propagation effects studies. The e-POP suite of instruments and particularly the ePOP Radio Receiver Instrument (RRI) offer a unique combination diagnostics appropriate for studying the non-linear plasma effects generated high-power HF waves in the ionosphere. In this presentation, the initial results from ePOP observations from two separate 2014 measurement campaigns at HAARP (April 16 to April 29 and May 25 to June 9) will be discussed. Several innovative experiments were performed during the campaign. Experiments explored a wide range of ionospheric effects. These include: 1) Penetration of HF pump waves into the ionosphere via large and small scale irregularities, 2) effects of gyro-harmonic heating and artificial ionization layers, 3) effects of HAARP beam shape with O- and X-mode transmissions, 4) coupling of Lower Hybrid modes into Whistler waves, 5) D/E-region VLF generation in the ionosphere using VLF modulation of the HF pump 6) scattering of VHF and UHF signals and 7) scattering and non-linear modulation of a 9.5 MHz probe wave propagating through the region of the ionosphere modified by HAARP. This work supported by the Naval Research Laboratory Base Program.

  13. A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario

    NASA Astrophysics Data System (ADS)

    Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.

    2014-12-01

    It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khajenabi, Fazeleh, E-mail: f.khajenabi@gu.ac.ir

    We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. Wemore » show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.« less

  15. Wavelength selection beyond turing

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Tzuk, Omer

    2017-06-01

    Spatial patterns arising spontaneously due to internal processes are ubiquitous in nature, varying from periodic patterns of dryland vegetation to complex structures of bacterial colonies. Many of these patterns can be explained in the context of a Turing instability, where patterns emerge due to two locally interacting components that diffuse with different speeds in the medium. Turing patterns are multistable, meaning that many different patterns with different wavelengths are possible for the same set of parameters. Nevertheless, in a given region typically only one such wavelength is dominant. In the Turing instability region, random initial conditions will mostly lead to a wavelength that is similar to that of the leading eigenvector that arises from the linear stability analysis, but when venturing beyond, little is known about the pattern that will emerge. Using dryland vegetation as a case study, we use different models of drylands ecosystems to study the wavelength pattern that is selected in various scenarios beyond the Turing instability region, focusing on the phenomena of localized states and repeated local disturbances.

  16. Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media

    NASA Astrophysics Data System (ADS)

    Melia, M. A.; Cain, T. W.; Briglia, B. F.; Scully, J. R.; Fitz-Gerald, J. M.

    2017-11-01

    The evolution of open-circuit corrosion morphology as a function of immersion time for Mg alloy AZ31B in 0.6-M NaCl solution was investigated. Real-time optical microscopy accompanied by simultaneous electrochemical characterization was used to characterize the filiform corrosion (FFC) of AZ31B. Specifically, the behavior of propagating corrosion filaments on the metal surface was observed, and correlations among polarization resistance, filament propagation rates, open-circuit potential, and active coverage of local corrosion sites were revealed. Three distinct stages of corrosion were observed in 0.6-M NaCl. An initial passive region, during which a slow potential rise occurred (termed stage I), a second FFC region (termed stage II) with shallow penetrating, distinct filaments, and a final FFC region (termed stage III) with deeper penetrating filaments, aligned to form a linear front. The electrochemical properties of each stage are discussed, providing insights into the penetration rates and corrosion model.

  17. Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets

    NASA Astrophysics Data System (ADS)

    Deng, Dongge; Wu, Xinjun

    2018-03-01

    An electromagnetic method for determining axial stress in ferromagnetic bars is proposed. In this method, the tested bar is under the static magnetization provided by permanent magnets. The tested bar do not have to be magnetized up to the technical saturation because reciprocal amplitude of initial differential susceptibility (RAIDS) is adopted as the feature parameter. RAIDS is calculated from the radial magnetic flux density Br Lo = 0.5 at the Lift-off Lo = 0.5 mm, radial magnetic flux density Br Lo = 1 at the Lift-off Lo = 1 mm and axial magnetic flux density Bz Lo = 1 at the Lift-off Lo = 1 mm from the surface of the tested bar. Firstly, the theoretical derivation of RAIDS is carried out according to Gauss' law for magnetism, Ampere's Law and the Rayleigh relation in Rayleigh region. Secondly, the experimental system is set up for a 2-meter length and 20 mm diameter steel bar. Thirdly, an experiment is carried out on the steel bar to analyze the relationship between the obtained RAIDS and the axial stress. Experimental results show that the obtained RAIDS decreases almost linearly with the increment of the axial stress inside the steel bar in the initial elastic region. The proposed method has the potential to determine tensile axial stress in the slender cylindrical ferromagnetic bar.

  18. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations.

    PubMed

    Pourazadi, Shahram; Ahmadi, Sadegh; Menon, Carlo

    2015-11-05

    One of the recommended treatments for disorders associated with the lower extremity venous insufficiency is the application of external mechanical compression. Compression stockings and elastic bandages are widely used for the purpose of compression therapy and are usually designed to exert a specified value or range of compression on the leg. However, the leg deforms under external compression, which can lead to undesirable variations in the amount of compression applied by the compression bandages. In this paper, the use of an active compression bandage (ACB), whose compression can be regulated through an electrical signal, is investigated. The ACB is based on the use of dielectric elastomer actuators. This paper specifically investigates, via both analytical and non-linear numerical simulations, the potential pressure the ACB can apply when the compliancy of the human leg is taken into account. The work underpins the need to account for the compressibility of the leg when designing compression garments for lower extremity venous insufficiency. A mathematical model is used to simulate the volumetric change of a calf when compressed. Suitable parameters for this calf model are selected from the literature where the calf, from ankle to knee, is divided into six different regions. An analytical electromechanical model of the ACB, which considers its compliancy as a function of its pre-stretch and electricity applied, is used to predict the ACB's behavior. Based on these calf and ACB analytical models, a simulation is performed to investigate the interaction between the ACB and the human calf with and without an electrical stimulus applied to the ACB. This simulation is validated by non-linear analysis performed using a software based on the finite element method (FEM). In all simulations, the ACB's elastomer is stretched to a value in the range between 140 and 220 % of its initial length. Using data from the literature, the human calf model, which is examined in this work, has different compliancy in its different regions. For example, when a 28.5 mmHg (3.8 kPa) of external compression is applied to the entire calf, the ankle shows a 3.7 % of volume change whereas the knee region undergoes a 2.7 % of volume change. The paper presents the actual pressure in the different regions of the calf for different values of the ACB's stretch ratio when it is either electrically activated or not activated, and when compliancy of the leg is either considered or not considered. For example, results of the performed simulation show that about 10 % variation in compression in the ankle region is expected when the ACB initially applies 6 kPa and the compressibility of the calf is first considered and then not considered. Such a variation reduces to 5 % when the initial pressure applied by the ACB reduced by half. Comparison with non-linear FEM simulations show that the analytical models used in this work can closely estimate interaction between an active compression bandage and a human calf. In addition, compliancy of the leg should not be neglected when either designing a compression band or predicting the compressive force it can exert. The methodology proposed in this work can be extended to other types of elastic compression bandages and garments for biomedical applications.

  19. Linearization improves the repeatability of quantitative dynamic contrast-enhanced MRI.

    PubMed

    Jones, Kyle M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-04-01

    The purpose of this study was to compare the repeatabilities of the linear and nonlinear Tofts and reference region models (RRM) for dynamic contrast-enhanced MRI (DCE-MRI). Simulated and experimental DCE-MRI data from 12 rats with a flank tumor of C6 glioma acquired over three consecutive days were analyzed using four quantitative and semi-quantitative DCE-MRI metrics. The quantitative methods used were: 1) linear Tofts model (LTM), 2) non-linear Tofts model (NTM), 3) linear RRM (LRRM), and 4) non-linear RRM (NRRM). The following semi-quantitative metrics were used: 1) maximum enhancement ratio (MER), 2) time to peak (TTP), 3) initial area under the curve (iauc64), and 4) slope. LTM and NTM were used to estimate K trans , while LRRM and NRRM were used to estimate K trans relative to muscle (R Ktrans ). Repeatability was assessed by calculating the within-subject coefficient of variation (wSCV) and the percent intra-subject variation (iSV) determined with the Gage R&R analysis. The iSV for R Ktrans using LRRM was two-fold lower compared to NRRM at all simulated and experimental conditions. A similar trend was observed for the Tofts model, where LTM was at least 50% more repeatable than the NTM under all experimental and simulated conditions. The semi-quantitative metrics iauc64 and MER were as equally repeatable as K trans and R Ktrans estimated by LTM and LRRM respectively. The iSV for iauc64 and MER were significantly lower than the iSV for slope and TTP. In simulations and experimental results, linearization improves the repeatability of quantitative DCE-MRI by at least 30%, making it as repeatable as semi-quantitative metrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-08-14

    The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less

  1. Towards a robust framework for Probabilistic Tsunami Hazard Assessment (PTHA) for local and regional tsunami in New Zealand

    NASA Astrophysics Data System (ADS)

    Mueller, Christof; Power, William; Fraser, Stuart; Wang, Xiaoming

    2013-04-01

    Probabilistic Tsunami Hazard Assessment (PTHA) is conceptually closely related to Probabilistic Seismic Hazard Assessment (PSHA). The main difference is that PTHA needs to simulate propagation of tsunami waves through the ocean and cannot rely on attenuation relationships, which makes PTHA computationally more expensive. The wave propagation process can be assumed to be linear as long as water depth is much larger than the wave amplitude of the tsunami. Beyond this limit a non-linear scheme has to be employed with significantly higher algorithmic run times. PTHA considering far-field tsunami sources typically uses unit source simulations, and relies on the linearity of the process by later scaling and combining the wave fields of individual simulations to represent the intended earthquake magnitude and rupture area. Probabilistic assessments are typically made for locations offshore but close to the coast. Inundation is calculated only for significantly contributing events (de-aggregation). For local and regional tsunami it has been demonstrated that earthquake rupture complexity has a significant effect on the tsunami amplitude distribution offshore and also on inundation. In this case PTHA has to take variable slip distributions and non-linearity into account. A unit source approach cannot easily be applied. Rupture complexity is seen as an aleatory uncertainty and can be incorporated directly into the rate calculation. We have developed a framework that manages the large number of simulations required for local PTHA. As an initial case study the effect of rupture complexity on tsunami inundation and the statistics of the distribution of wave heights have been investigated for plate-interface earthquakes in the Hawke's Bay region in New Zealand. Assessing the probability that water levels will be in excess of a certain threshold requires the calculation of empirical cumulative distribution functions (ECDF). We compare our results with traditional estimates for tsunami inundation simulations that do not consider rupture complexity. De-aggregation based on moment magnitude alone might not be appropriate, because the hazard posed by any individual event can be underestimated locally if rupture complexity is ignored.

  2. Effects of Initial Geometric Imperfections On the Non-Linear Response of the Space Shuttle Superlightweight Liquid-Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H., Jr.

    2002-01-01

    The results of an analytical study of the elastic buckling and nonlinear behavior of the liquid-oxygen tank for the new Space Shuttle superlightweight external fuel tank are presented. Selected results that illustrate three distinctly different types of non-linear response phenomena for thin-walled shells which are subjected to combined mechanical and thermal loads are presented. These response phenomena consist of a bifurcation-type buckling response, a short-wavelength non-linear bending response and a non-linear collapse or "snap-through" response associated with a limit point. The effects of initial geometric imperfections on the response characteristics are emphasized. The results illustrate that the buckling and non-linear response of a geometrically imperfect shell structure subjected to complex loading conditions may not be adequately characterized by an elastic linear bifurcation buckling analysis, and that the traditional industry practice of applying a buckling-load knock-down factor can result in an ultraconservative design. Results are also presented that show that a fluid-filled shell can be highly sensitive to initial geometric imperfections, and that the use a buckling-load knock-down factor is needed for this case.

  3. Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III catalysis and hybridization chain reaction amplification.

    PubMed

    Ren, Wang; Gao, Zhong Feng; Li, Nian Bing; Luo, Hong Qun

    2015-01-15

    This work reported a novel, ultrasensitive, and selective platform for electrochemical detection of DNA, employing an integration of exonuclease III (Exo-III) assisted target recycling and hybridization chain reaction (HCR) for the dual signal amplification strategy. The hairpin capture probe DNA (C-DNA) with an Exo-III 3' overhang end was self-assembled on a gold electrode. In the presence of target DNA (T-DNA), C-DNA hybridized with the T-DNA to form a duplex region, exposing its 5' complementary sequence (initiator). Exo-III was applied to selectively digest duplex region from its 3-hydroxyl termini until the duplex was fully consumed, leaving the remnant initiator. The intact T-DNA spontaneously dissociated from the structure and then initiated the next hybridization process as a result of catalysis of the Exo-III. HCR event was triggered by the initiator and two hairpin helper signal probes labeled with methylene blue, facilitating the polymerization of oligonucleotides into a long nicked dsDNA molecule. The numerous exposed remnant initiators can trigger more HCR events. Because of integration of dual signal amplification and the specific HCR process reaction, the resultant sensor showed a high sensitivity for the detection of the target DNA in a linear range from 1.0 fM to 1.0 nM, and a detection limit as low as 0.2 fM. The proposed dual signal amplification strategy provides a powerful tool for detecting different sequences of target DNA by changing the sequence of capture probe and signal probes, holding a great potential for early diagnosis in gene-related diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Radiation reaction effect on laser driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particlemore » which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.« less

  5. Design of transportation and distribution Oil Palm Trunk of (OPT) in Indonesia

    NASA Astrophysics Data System (ADS)

    Norita, Defi; Arkeman, Yandra

    2018-03-01

    This research initiated from the area of oil palm plantations in Indonesia 13 million hectares, triggering consternation of abundance of oil palm trunk when garden regeneration is done. If 4 percent of the area is rehabilitated every year, almost 100 million cubic feet of oil palm will be trash. Biomass in the form of pellets can be processed from oil palm trunk. It is then disseminated back to the palm oil processing area into biomass. The amount of transportation cost of the used ships and trucks was defined as parameters. So the objective function determined the type and number of ship and truck trips that provide the minimum transportation cost. To optimize logistics transportation network in regional port cluster, combining hub-and-spoke transportation system among regional port with consolidation and dispersing transportation systems between ports and their own hinterlands, a nonlinear optimization model for two-stage logistics system in regional port cluster was introduced to simultaneously determine the following factors: the hinterlands serviced by individual ports and transportation capacity operated between each port and its hinterland, cargo transportation volume and corresponding transportation capacity allocated via a hub port from an original port to a destination port, cargo transportation volume and corresponding transportation capacity allocated directly from an original port to a destination port. Finally, a numerical example is given to demonstrate the application of the proposed model. It can be shown that the solution to the proposed non-linear model can be obtained by transforming it into linear programming models.

  6. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region.

    PubMed

    Anufriieva, Elena V; Shadrin, Nickolai V

    2015-11-18

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation.

  7. Study on the initial value for the exterior orientation of the mobile version

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-jing; Li, Shi-liang

    2011-10-01

    Single mobile vision coordinate measurement system is in the measurement site using a single camera body and a notebook computer to achieve three-dimensional coordinates. To obtain more accurate approximate values of exterior orientation calculation in the follow-up is very important in the measurement process. The problem is a typical one for the space resection, and now studies on this topic have been widely conducted in research. Single-phase space resection mainly focuses on two aspects: of co-angular constraint based on the method, its representatives are camera co-angular constraint pose estimation algorithm and the cone angle law; the other is a direct linear transformation (DLT). One common drawback for both methods is that the CCD lens distortion is not considered. When the initial value was calculated with the direct linear transformation method, the distribution and abundance of control points is required relatively high, the need that control points can not be distributed in the same plane must be met, and there are at least six non- coplanar control points. However, its usefulness is limited. Initial value will directly influence the convergence and convergence speed of the ways of calculation. This paper will make the nonlinear of the total linear equations linearized by using the total linear equations containing distorted items and Taylor series expansion, calculating the initial value of the camera exterior orientation. Finally, the initial value is proved to be better through experiments.

  8. The Vertical Linear Fractional Initialization Problem

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    1999-01-01

    This paper presents a solution to the initialization problem for a system of linear fractional-order differential equations. The scalar problem is considered first, and solutions are obtained both generally and for a specific initialization. Next the vector fractional order differential equation is considered. In this case, the solution is obtained in the form of matrix F-functions. Some control implications of the vector case are discussed. The suggested method of problem solution is shown via an example.

  9. Macroscopic Relationships among Latent Heating, Precipitation, Organized Convection and the Environment

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitchell W.; Liu, Changhai

    2002-01-01

    Three-dimensional Cloud Resolving Model (CRM) simulations were conducted to examine the squall line observed on 26 January, 1999 from the Tropical Rainfall Measuring Mission Large Scale Biosphere Atmosphere Experiment in Amazonia (TRMM-LBA) field campaign. The computational domain was 600 kilometers x 180 kilometers x 20 kilometers with a horizontal resolution of 1 kilometer and a vertical resolution of 200 meters. The CRM was initialized from the Abracos Hill and Rebio soundings. Convection was initiated by a surface-based and NW-SE oriented cold pool over a region 60 kilometers in the y-direction and 30 kilometers wide in the x-direction. The cold pool temperature perturbation is a maximum of -6K at the surface, decreasing linearly to zero at 3 kilometers. The simulated convection is in the form of a NW-SE band that moves toward the southwest at a speed of 8 meters per second, and is generally comparable to radar observations.

  10. A dynamic measure of controllability and observability for the placement of actuators and sensors on large space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.; Carignan, C. R.

    1982-01-01

    The degree of controllability of a large space structure is found by a four step procedure: (1) finding the minimum control energy for driving the system from a given initial state to the origin in the prescribed time; (2) finding the region of initial state which can be driven to the origin with constrained control energy and time using optimal control strategy; (3) scaling the axes so that a unit displacement in every direction is equally important to control; and (4) finding the linear measurement of the weighted "volume" of the ellipsoid in the equicontrol space. For observability, the error covariance must be reduced toward zero using measurements optimally, and the criterion must be standardized by the magnitude of tolerable errors. The results obtained using these methods are applied to the vibration modes of a free-free beam.

  11. Primordial inhomogeneities in the expanding universe. II - General features of spherical models at late times

    NASA Technical Reports Server (NTRS)

    Olson, D. W.; Silk, J.

    1979-01-01

    This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.

  12. A high-fidelity method to analyze perturbation evolution in turbulent flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, S., E-mail: sasidharannair.1@osu.edu; Gaitonde, Datta V., E-mail: gaitonde.3@osu.edu

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier–Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state,more » its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted “baseline” and “twin”) of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier–Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, “native” forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.« less

  13. A high-fidelity method to analyze perturbation evolution in turbulent flows

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, S.; Gaitonde, Datta V.

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier-Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state, its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted "baseline" and "twin") of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier-Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, "native" forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.

  14. How Well Do SiF And Other Vegetation Spectral Indices Track Temporal Variations of Canopy Photosynthesis in A Paddy Rice

    NASA Astrophysics Data System (ADS)

    Kaige, Y.; Ryu, Y.; Kimm, H.; Huang, Y.; Jiang, C.; Hwang, Y.; Kim, J.; Kang, M.

    2016-12-01

    Recent advancements in remote sensing of SiF opened new opportunities to directly estimate canopy photosynthesis at regional scales. Observing SiF at canopy scale in the field, however, is at very initial stage. In this study, we report SiF and hyperspectral reflectance (400-900 nm) data concurrently measured every 10 sec across the whole growing season in a paddy rice, South Korea. The study site experienced water management via irrigation and drainage and showed a peak LAI of 7. We test whether SiF and a range of different vegetation spectral indices (VIs) well capture half-hourly variations in canopy photosynthesis quantified from an eddy flux tower. During the growing season, we found that SiF showed tight linear relationship to APAR (r2=0.7), and moderate linear relationship to GPP (r2=0.5). Both NDVI, EVI and PRI showed logarithmic relationships to GPP (r2<0.5) and were all saturated at LAI>4. SiF showed linear relationship to GPP even at higher LAI. We conclude that SiF is a better index in predicting temporal variations in canopy photosynthesis than the other VIs in the paddy rice site.

  15. Linear instabilities near the DIII-D edge simulated in fluid models

    NASA Astrophysics Data System (ADS)

    Bass, Eric; Holland, Christopher

    2017-10-01

    The linear instability spectrum is reported near the DIII-D edge (within the separatrix) for L-mode and H-mode shots using the new eigenvalue solver FluTES (Fluid Toroidal Eigenvalue Solver). FluTES circumvents difficulties with convergence to clean linear eigenmodes (required for diagnosis of nonlinear simulations in codes such as BOUT++) often encountered with fluid initial-value solvers. FluTES is well-verified in analytic cases and against a BOUT++/ELITE benchmark toroidal case. We report results for both a 3-field, one-fluid model (the well-known ``elm-pb'' model) and a 5-field, two-fluid model. For the peeling-ballooning-dominated H-mode, the two solutions are qualitatively the same. In the driftwave-dominated L-mode edge, only the two-fluid solution gives robust instabilities which occur primarily at n > 50 . FluTES is optimized for this regime (near-flutelike limit, toroidally spectral). Cross-separatrix, coupled fluid and drift instabilities may play a role in explaining the gyrokinetic L-mode edge transport shortfall. Extension of FluTES into the open-field-line region is underway. Prepared by UCSD under Contract Number DE-FG02-06ER54871.

  16. Computational efficiency improvements for image colorization

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Sharma, Gaurav; Aly, Hussein

    2013-03-01

    We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.

  17. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool.

    PubMed

    Amoroso, N; Errico, R; Bruno, S; Chincarini, A; Garuccio, E; Sensi, F; Tangaro, S; Tateo, A; Bellotti, R

    2015-11-21

    In this study we present a novel fully automated Hippocampal Unified Multi-Atlas-Networks (HUMAN) algorithm for the segmentation of the hippocampus in structural magnetic resonance imaging. In multi-atlas approaches atlas selection is of crucial importance for the accuracy of the segmentation. Here we present an optimized method based on the definition of a small peri-hippocampal region to target the atlas learning with linear and non-linear embedded manifolds. All atlases were co-registered to a data driven template resulting in a computationally efficient method that requires only one test registration. The optimal atlases identified were used to train dedicated artificial neural networks whose labels were then propagated and fused to obtain the final segmentation. To quantify data heterogeneity and protocol inherent effects, HUMAN was tested on two independent data sets provided by the Alzheimer's Disease Neuroimaging Initiative and the Open Access Series of Imaging Studies. HUMAN is accurate and achieves state-of-the-art performance (Dice[Formula: see text] and Dice[Formula: see text]). It is also a robust method that remains stable when applied to the whole hippocampus or to sub-regions (patches). HUMAN also compares favorably with a basic multi-atlas approach and a benchmark segmentation tool such as FreeSurfer.

  18. Sedimentation rates in Atibaia River basin, São Paulo State, Brazil, using 210Pb as geochronometer.

    PubMed

    Sabaris, T P P; Bonotto, D M

    2011-01-01

    The constant initial concentration (CIC) of unsupported/excess (210)Pb model was successfully used to assess (210)Pb data of nine sediment cores from Atibaia River basin, São Paulo State, Brazil. The (210)Pb-based apparent sediment mass accumulation rates ranged from 47.7 to 782.4 mg/cm(2)yr, whereas the average linear sedimentation rates between 0.16 and 1.32 cm/yr, which are compatible with the calculated sediment mass fluxes, i.e. a higher sediment mass accumulation rate yielded a higher linear sedimentation rate. The higher long-term based accumulation rate tended to be found in topographically softer regions. This occurs because the sediments are preferentially transported in topographically steeper regions instead of being deposited. Anthropic activities like deforestation possibly interfered with the natural/normal sedimentation processes, which increased in accordance with modifications on the channel drainage. The radionuclide geochronology as described in this paper allows determination of sedimentation rates that are compatible with values estimated elsewhere. The adoption of an appropriate factor generated from previous laboratory experiments resulted in a successful correction for the (222)Rn-loss from the sediments, bringing the estimate of the parent-supported (in-situ produced) (210)Pb to reliable values required by the CIC model. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool

    NASA Astrophysics Data System (ADS)

    Amoroso, N.; Errico, R.; Bruno, S.; Chincarini, A.; Garuccio, E.; Sensi, F.; Tangaro, S.; Tateo, A.; Bellotti, R.; Alzheimers Disease Neuroimaging Initiative,the

    2015-11-01

    In this study we present a novel fully automated Hippocampal Unified Multi-Atlas-Networks (HUMAN) algorithm for the segmentation of the hippocampus in structural magnetic resonance imaging. In multi-atlas approaches atlas selection is of crucial importance for the accuracy of the segmentation. Here we present an optimized method based on the definition of a small peri-hippocampal region to target the atlas learning with linear and non-linear embedded manifolds. All atlases were co-registered to a data driven template resulting in a computationally efficient method that requires only one test registration. The optimal atlases identified were used to train dedicated artificial neural networks whose labels were then propagated and fused to obtain the final segmentation. To quantify data heterogeneity and protocol inherent effects, HUMAN was tested on two independent data sets provided by the Alzheimer’s Disease Neuroimaging Initiative and the Open Access Series of Imaging Studies. HUMAN is accurate and achieves state-of-the-art performance (Dice{{}\\text{ADNI}} =0.929+/- 0.003 and Dice{{}\\text{OASIS}} =0.869+/- 0.002 ). It is also a robust method that remains stable when applied to the whole hippocampus or to sub-regions (patches). HUMAN also compares favorably with a basic multi-atlas approach and a benchmark segmentation tool such as FreeSurfer.

  20. Electronic system for data acquisition to study radiation effects on operating MOSFET transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves de Oliveira, Juliano; Assis de Melo, Marco Antônio; Guazzelli da Silveira, Marcilei A.

    In this work we present the development of an acquisition system for characterizing transistors under X-ray radiation. The system is able to carry out the acquisition and to storage characteristic transistor curves. To test the acquisition system we have submitted polarized P channel MOS transistors under continuous 10-keV X-ray doses up to 1500 krad. The characterization system can operate in the saturation region or in the linear region in order to observe the behavior of the currents or voltages involved during the irradiation process. Initial tests consisted of placing the device under test (DUT) in front of the X-ray beammore » direction, while its drain current was constantly monitored through the prototype generated in this work, the data are stored continuously and system behavior was monitored during the test. In order to observe the behavior of the DUT during the radiation tests, we used an acquisition system that consists of an ultra-low consumption16-bit Texas Instruments MSP430 microprocessor. Preliminary results indicate linear behavior of the voltage as a function of the exposure time and fast recovery. These features may be favorable to use this device as a radiation dosimeter to monitor low rate X-ray.« less

  1. Wave reflection in a reaction-diffusion system: breathing patterns and attenuation of the echo.

    PubMed

    Tsyganov, M A; Ivanitsky, G R; Zemskov, E P

    2014-05-01

    Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).

  2. Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. A.; Ivanitsky, G. R.; Zemskov, E. P.

    2014-05-01

    Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).

  3. Determinants of weight evolution among HIV-positive patients initiating antiretroviral treatment in low resource settings

    PubMed Central

    Huis in ‘t Veld, D.; Balestre, E.; Buyze, J; Menten, J.; Jaquet, A.; Cooper, D.A.; Dabis, F.; Yiannoutsos, C. T.; Diero, L.; Mutevedzi, P.; Fox, M.P.; Messou, E.; Hoffmann, C.J.; Prozesky, H.W.; Egger, M.; Hemingway-Foday, J.J.; Colebunders, R.

    2015-01-01

    Background In resource limited settings clinical parameters, including body weight changes, are used to monitor clinical response. Therefore we studied body weight changes in patients on antiretroviral treatment (ART) in different regions of the world. Methods Data were extracted from the “International Epidemiologic Databases to Evaluate AIDS”, a network of ART programmes that prospectively collects routine clinical data. Adults on ART from the Southern-, East-, West- and Central African and the Asia-Pacific regions were selected from the database if baseline data on body weight, gender, ART regimen and CD4 count were available. Body weight change over the first two years and the probability of body weight loss in the second year were modelled using linear mixed models and logistic regression respectively. Results Data from 205,571 patients were analysed. Mean adjusted body weight change in the first 12 months was higher in patients started on tenofovir and/or efavirenz; in patients from Central, West and East Africa, in men, and in patients with a poorer clinical status. In the second year of ART it was greater in patients initiated on tenofovir and/or nevirapine, and for patients not on stavudine, in women, in Southern Africa and in patients with a better clinical status at initiation. Stavudine in the initial regimen was associated with a lower mean adjusted body weight change and with weight loss in the second treatment year. Conclusion Different ART regimens have different effects on body weight change. Body weight loss after one year of treatment in patients on stavudine might be associated with lipoatrophy. PMID:26375465

  4. Estimation of regions of attraction and ultimate boundedness for multiloop LQ regulators. [Linear Quadratic

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.

  5. Particle number dependence in the non-linear evolution of N-body self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Benhaiem, D.; Joyce, M.; Sylos Labini, F.; Worrakitpoonpon, T.

    2018-01-01

    Simulations of purely self-gravitating N-body systems are often used in astrophysics and cosmology to study the collisionless limit of such systems. Their results for macroscopic quantities should then converge well for sufficiently large N. Using a study of the evolution from a simple space of spherical initial conditions - including a region characterized by so-called 'radial orbit instability' - we illustrate that the values of N at which such convergence is obtained can vary enormously. In the family of initial conditions we study, good convergence can be obtained up to a few dynamical times with N ∼ 103 - just large enough to suppress two body relaxation - for certain initial conditions, while in other cases such convergence is not attained at this time even in our largest simulations with N ∼ 105. The qualitative difference is due to the stability properties of fluctuations introduced by the N-body discretisation, of which the initial amplitude depends on N. We discuss briefly why the crucial role which such fluctuations can potentially play in the evolution of the N body system could, in particular, constitute a serious problem in cosmological simulations of dark matter.

  6. High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kosovichev, Alexander; Levy, Doron

    2004-01-01

    We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.

  7. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PILAT,F.; CAMERON,P.; PTITSYN,V.

    2002-06-02

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less

  8. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  9. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  10. Development of Regional Supply Functions and a Least-Cost Model for Allocating Water Resources in Utah: A Parametric Linear Programming Approach.

    DTIC Science & Technology

    SYSTEMS ANALYSIS, * WATER SUPPLIES, MATHEMATICAL MODELS, OPTIMIZATION, ECONOMICS, LINEAR PROGRAMMING, HYDROLOGY, REGIONS, ALLOCATIONS, RESTRAINT, RIVERS, EVAPORATION, LAKES, UTAH, SALVAGE, MINES(EXCAVATIONS).

  11. Linear Transformation Method for Multinuclide Decay Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Yuan

    2010-12-29

    A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.

  12. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  13. Magnetic Field Amplification in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, Alex

    2017-12-01

    Based on the new findings on the turbulent dynamo in Xu & Lazarian, we examine the magnetic field amplification in the context of supernova remnants. Due to the strong ion-neutral collisional damping in the weakly ionized interstellar medium, the dynamo in the preshock turbulence remains in the damping kinematic regime, which leads to a linear-in-time growth of the magnetic field strength. The resultant magnetic field structure enables effective diffusion upstream and shock acceleration of cosmic rays to energies above the “knee.” Differently, the nonlinear dynamo in the postshock turbulence leads to a linear-in-time growth of the magnetic energy due to the turbulent magnetic diffusion. Given a weak initial field strength in the postshock region, the magnetic field saturates at a significant distance from the shock front as a result of the inefficiency of the nonlinear dynamo. This result is in a good agreement with existing numerical simulations and well explains the X-ray spots detected far behind the shock front.

  14. Linear and conformation specific antibodies in aged beagles after prolonged vaccination with aggregated Abeta

    PubMed Central

    Vasilevko, Vitaly; Pop, Viorela; Kim, Hyun Jin; Saing, Tommy; Glabe, Charles C.; Milton, Saskia; Barrett, Edward G.; Cotman, Carl W.; Cribbs, David H.; Head, Elizabeth

    2010-01-01

    Previously we showed that anti-Aβ peptide immunotherapy significantly attenuated Alzheimer’s-like amyloid deposition in the central nervous system of aged canines. In this report we have characterized the changes that occurred in the humoral immune response over 2.4 years in canines immunized repeatedly with aggregated Aβ1–42 (AN1792) formulated in alum adjuvant. We observed a rapid and robust induction of anti-Aβ antibody titers, which were associated with an anti-inflammatory T helper type 2 (Th2) response. The initial antibody response was against dominant linear epitope at the N-terminus region of the Aβ1–42 peptide, which is identical to the one in humans and vervet monkeys. After multiple immunizations the antibody response drifted toward the elevation of antibodies that recognized conformational epitopes of assembled forms of Aβ and other types of amyloid. Our findings indicate that prolonged immunization results in distinctive temporal changes in antibody profiles, which may be important for other experimental and clinical settings. PMID:20451612

  15. Relaxation and self-organization in two-dimensional plasma and neutral fluid flow systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Amita

    Extensive numerical studies in the framework of a simplified two-dimensional model for neutral and plasma fluid for a variety of initial configurations and for both decaying and driven cases are carried out to illustrate relaxation toward a self-organized state. The dynamical model equation constitutes a simple choice for this purpose, e.g., the vorticity equation of the Navier-Stokes dynamics for the incompressible neutral fluids and the Hasegawa-Mima equation for plasma fluid flow system. Scatter plots are employed to observe a development of functional relationship, if any, amidst the generalized vorticity and its Laplacian. It is seen that they do not satisfymore » a linear relationship as the well known variational approach of enstrophy minimization subject to constancy of the energy integral for the two-dimensional (2D) system suggests. The observed nonlinear functional relationship is understood by separating the contribution to the scatter plot from spatial regions with intense vorticity patches and those of the background flow region where the background vorticity is weak or absent altogether. It is shown that such a separation has close connection with the known exact analytical solutions of the system. The analytical solutions are typically obtained by assuming a finite source of vorticity for the inner core of the localized structure, which is then matched with the solution in the outer region where vorticity is chosen to be zero. The work also demonstrates that the seemingly ad hoc choice of the linear vorticity source function for the inner region is in fact consistent with the self-organization paradigm of the 2D systems.« less

  16. Physical activity is associated with changes in knee cartilage microstructure.

    PubMed

    Halilaj, E; Hastie, T J; Gold, G E; Delp, S L

    2018-06-01

    The purpose of this study was to determine if there is an association between objectively measured physical activity and longitudinal changes in knee cartilage microstructure. We used accelerometry and T 2 -weighted magnetic resonance imaging (MRI) data from the Osteoarthritis Initiative, restricting the analysis to men aged 45-60 years, with a body mass index (BMI) of 25-27 kg/m 2 and no radiographic evidence of knee osteoarthritis. After computing 4-year changes in mean T 2 relaxation time for six femoral cartilage regions and mean daily times spent in the sedentary, light, moderate, and vigorous activity ranges, we performed canonical correlation analysis (CCA) to find a linear combination of times spent in different activity intensity ranges (Activity Index) that was maximally correlated with a linear combination of regional changes in cartilage microstructure (Cartilage Microstructure Index). We used leave-one-out pre-validation to test the robustness of the model on new data. Nineteen subjects satisfied the inclusion criteria. CCA identified an Activity Index and a Cartilage Microstructure Index that were significantly correlated (r = .82, P < .0001 on test data). Higher levels of sedentary time and vigorous activity were associated with greater medial-lateral differences in longitudinal T 2 changes, whereas light activity was associated with smaller differences. Physical activity is better associated with an index that contrasts microstructural changes in different cartilage regions than it is with univariate or cumulative changes, likely because this index separates the effect of activity, which is greater in the medial loadbearing region, from that of patient-specific natural aging. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    NASA Astrophysics Data System (ADS)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  18. Survivability of Deterministic Dynamical Systems

    PubMed Central

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-01-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955

  19. A trust region approach with multivariate Padé model for optimal circuit design

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.

    2017-11-01

    Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.

  20. Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random.

    PubMed

    Tomasch, Jürgen; Wang, Hui; Hall, April T K; Patzelt, Diana; Preusse, Matthias; Petersen, Jörn; Brinkmann, Henner; Bunk, Boyke; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; Lang, Andrew S; Wagner-Döbler, Irene

    2018-01-01

    Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world's oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a "headful" type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random

    PubMed Central

    Wang, Hui; Hall, April T K; Patzelt, Diana; Preusse, Matthias; Petersen, Jörn; Brinkmann, Henner; Bunk, Boyke; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; Lang, Andrew S; Wagner-Döbler, Irene

    2018-01-01

    Abstract Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world’s oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a “headful” type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated. PMID:29325123

  2. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    PubMed

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All rights reserved.

  3. The effect of scale on the interpretation of geochemical anomalies

    USGS Publications Warehouse

    Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.

    1991-01-01

    The purpose of geochemical surveys changes with scale. Regional surveys identify areas where mineral deposits are most likely to occur, whereas intermediate surveys identify and prioritize specific targets. At detailed scales specific deposit models may be applied and deposits delineated. The interpretation of regional geochemical surveys must take into account scale-dependent difference in the nature and objectives of this type of survey. Overinterpretation of regional data should be resisted, as should recommendations to restrict intermediate or detailed follow-up surveys to the search for specific deposit types or to a too limited suite of elements. Regional surveys identify metallogenic provinces within which a variety of deposit types and metals are most likely to be found. At intermediate scale, these regional provinces often dissipate into discrete clusters of anomalous areas. At detailed scale, individual anomalous areas reflect local conditions of mineralization and may seem unrelated to each other. Four examples from arid environments illustrate the dramatic change in patterns of anomalies between regional and more detailed surveys. On the Arabian Shield, a broad regional anomaly reflects the distribution of highly differentiated anorogenic granites. A particularly prominent part of the regional anomaly includes, in addition to the usual elements related to the granites, the assemblage of Mo, W and Sn. Initial interpretation suggested potential for granite-related, stockwork Mo deposits. Detailed work identified three separate sources for the anomaly: a metal-rich granite, a silicified and stockwork-veined area with scheelite and molybdenite, and scheelite/powellite concentrations in skarn deposits adjacent to a ring-dike complex. Regional geochemical, geophysical and remote-sensing data in the Sonoran Desert, Mexico, define a series of linear features interpreted to reflect fundamental, northeast-trending fractures in the crust that served as the prime conduits for mineralizing fluids. At a larger scale, the linear, northeast-trending anomalies can be shown to result from a series of discrete mineralized systems with different ages and mineral assemblages. The linear pattern of anomalies disintegrates. A regional geochemical survey in the Sonoran Desert in southwestern Arizona displays a cluster of samples anomalous in Pb, Mo, Bi and W. In detail, the original regional anomaly separates into four discrete anomalous areas, each with its own distinctive suite of elements, geographic distribution and age of mineralization. A prominent regional gold anomaly in the Gobi Desert, Xinjiang, Peoples Republic of China, extends southeastward for 30 km from known lode gold deposits. Because the anomaly cuts both lithologic units and the structural grain, and because it parallels the prevailing direction of high-velocity winds, it was originally attributed to eolian dispersion. In detail, the regional anomaly consists of several east-west-trending anomalies, parallel to local lithology and structure that most likely reflect independent sources of lode gold. The regional anomaly results from smoothing of an en-echelon set of local anomalies. These examples emphasize that interpretation of regional anomalies must be tempered to consider regional-sized geologic features. Attempts to overinterpret anomalies by assigning deposit-scale attributes to regional anomalies can lead to confusion and incorrect interpretations. Potential targets that can be readily resolved only at intermediate or detailed scales of study may be overlooked. ?? 1991.

  4. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    NASA Astrophysics Data System (ADS)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared with the AUC of 0.77 using a single deep autoencoder approach.

  5. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons.

    PubMed

    Hochleitner, Gernot; Chen, Fei; Blum, Carina; Dalton, Paul D; Amsden, Brian; Groll, Jürgen

    2018-05-01

    Ligaments and tendons are comprised of aligned, crimped collagen fibrils that provide tissue-specific mechanical properties with non-linear extension behaviour, exhibiting low stress at initial strain (toe region behaviour). To approximate this behaviour, we report fibrous scaffolds with sinusoidal patterns by melt electrowriting (MEW) below the critical translation speed (CTS) by exploitation of the natural flow behaviour of the polymer melt. More specifically, we synthesised photopolymerizable poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (p(LLA-co-ε-CL-co-AC)) and poly(ε-caprolactone-co-acryloyl carbonate) (p(ε-CL-co-AC)) by ring-opening polymerization (ROP). Single fibre (fØ = 26.8 ± 1.9 µm) tensile testing revealed a customisable toe region with Young's Moduli ranging from E = 29 ± 17 MPa for the most crimped structures to E = 314 ± 157 MPa for straight fibres. This toe region extended to scaffolds containing multiple fibres, while the sinusoidal pattern could be influenced by printing speed. The synthesized polymers were cytocompatible and exhibited a tensile strength of σ = 26 ± 7 MPa after 10 4 cycles of preloading at 10% strain while retaining the distinct toe region commonly observed in native ligaments and tendon tissue. Damaged tendons and ligaments are serious and frequently occurring injuries worldwide. Recent therapies, including autologous grafts, still have severe disadvantages leading to a demand for synthetic alternatives. Materials envisioned to induce tendon and ligament regeneration should be degradable, cytocompatible and mimic the ultrastructural and mechanical properties of the native tissue. Specifically, we utilised photo-cross-linkable polymers for additive manufacturing (AM) with MEW. In this way, we were able to direct-write cytocompatible fibres of a few micrometres thickness into crimp-structured elastomer scaffolds that mimic the non-linear biomechanical behaviour of tendon and ligament tissue. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. The neural mechanisms of word order processing revisited: electrophysiological evidence from Japanese.

    PubMed

    Wolff, Susann; Schlesewsky, Matthias; Hirotani, Masako; Bornkessel-Schlesewsky, Ina

    2008-11-01

    We present two ERP studies on the processing of word order variations in Japanese, a language that is suited to shedding further light on the implications of word order freedom for neurocognitive approaches to sentence comprehension. Experiment 1 used auditory presentation and revealed that initial accusative objects elicit increased processing costs in comparison to initial subjects (in the form of a transient negativity) only when followed by a prosodic boundary. A similar effect was observed using visual presentation in Experiment 2, however only for accusative but not for dative objects. These results support a relational account of word order processing, in which the costs of comprehending an object-initial word order are determined by the linearization properties of the initial object in relation to the linearization properties of possible upcoming arguments. In the absence of a prosodic boundary, the possibility for subject omission in Japanese renders it likely that the initial accusative is the only argument in the clause. Hence, no upcoming arguments are expected and no linearization problem can arise. A prosodic boundary or visual segmentation, by contrast, indicate an object-before-subject word order, thereby leading to a mismatch between argument "prominence" (e.g. in terms of thematic roles) and linear order. This mismatch is alleviated when the initial object is highly prominent itself (e.g. in the case of a dative, which can bear the higher-ranking thematic role in a two argument relation). We argue that the processing mechanism at work here can be distinguished from more general aspects of "dependency processing" in object-initial sentences.

  7. Magneto-Rayleigh-Taylor instability in solid media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y. B.; School of Physical Science and Technology, Lanzhou University, Lanzhou 73000; University of Chinese Academy of Sciences, Beijing 100049

    2014-07-15

    A linear analysis of the magneto-Rayleigh-Taylor instability at the interface between a Newtonian fluid and an elastic-plastic solid is performed by considering a uniform magnetic B{sup →}, parallel to the interface, which has diffused into the fluid but not into the solid. It is found that the magnetic field attributes elastic properties to the viscous fluid which enhance the stability region by stabilizing all the perturbation wavelengths shorter than λ{sub 0}∝B{sup 2} for any initial perturbation amplitude. Longer wavelengths are stabilized by the mechanical properties of the solid provided that the initial perturbation wavelength is smaller than a threshold valuemore » determined by the yield strength and the shear modulus of the solid. Beyond this threshold, the amplitude grows initially with a growth rate reduced by the solid strength properties. However, such properties do not affect the asymptotic growth rate which is only determined by the magnetic field and the fluid viscosity. The described physical situation intends to resemble some of the features present in recent experiments involving the magnetic shockless acceleration of flyers plates.« less

  8. Competition Between Transients in the Rate of Approach to a Fixed Point

    NASA Astrophysics Data System (ADS)

    Day, Judy; Rubin, Jonathan E.; Chow, Carson C.

    2009-01-01

    The goal of this paper is to provide and apply tools for analyzing a specific aspect of transient dynamics not covered by previous theory. The question we address is whether one component of a perturbed solution to a system of differential equations can overtake the corresponding component of a reference solution as both converge to a stable node at the origin, given that the perturbed solution was initially farther away and that both solutions are nonnegative for all time. We call this phenomenon tolerance, for its relation to a biological effect. We show using geometric arguments that tolerance will exist in generic linear systems with a complete set of eigenvectors and in excitable nonlinear systems. We also define a notion of inhibition that may constrain the regions in phase space where the possibility of tolerance arises in general systems. However, these general existence theorems do not not yield an assessment of tolerance for specific initial conditions. To address that issue, we develop some analytical tools for determining if particular perturbed and reference solution initial conditions will exhibit tolerance.

  9. Spatial-temporal characteristics of lightning flash size in a supercell storm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  10. Analysis of Seasonal Chlorophyll-a Using An Adjoint Three-Dimensional Ocean Carbon Cycle Model

    NASA Astrophysics Data System (ADS)

    Tjiputra, J.; Winguth, A.; Polzin, D.

    2004-12-01

    The misfit between numerical ocean model and observations can be reduced using data assimilation. This can be achieved by optimizing the model parameter values using adjoint model. The adjoint model minimizes the model-data misfit by estimating the sensitivity or gradient of the cost function with respect to initial condition, boundary condition, or parameters. The adjoint technique was used to assimilate seasonal chlorophyll-a data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite to a marine biogeochemical model HAMOCC5.1. An Identical Twin Experiment (ITE) was conducted to test the robustness of the model and the non-linearity level of the forward model. The ITE experiment successfully recovered most of the perturbed parameter to their initial values, and identified the most sensitive ecosystem parameters, which contribute significantly to model-data bias. The regional assimilations of SeaWiFS chlorophyll-a data into the model were able to reduce the model-data misfit (i.e. the cost function) significantly. The cost function reduction mostly occurred in the high latitudes (e.g. the model-data misfit in the northern region during summer season was reduced by 54%). On the other hand, the equatorial regions appear to be relatively stable with no strong reduction in cost function. The optimized parameter set is used to forecast the carbon fluxes between marine ecosystem compartments (e.g. Phytoplankton, Zooplankton, Nutrients, Particulate Organic Carbon, and Dissolved Organic Carbon). The a posteriori model run using the regional best-fit parameterization yields approximately 36 PgC/yr of global net primary productions in the euphotic zone.

  11. Extended linear ion trap frequency standard apparatus

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor)

    1995-01-01

    A linear ion trap for frequency standard applications is provided with a plurality of trapping rods equally spaced and applied quadruple rf voltages for radial confinement of atomic ions and biased level pins at each end for axial confinement of the ions. The trapping rods are divided into two linear ion trap regions by a gap in each rod in a common radial plane to provide dc discontinuity, thus dc isolating one region from the other. A first region for ion-loading and preparation fluorescence is biased with a dc voltage to transport ions into a second region for resonance frequency comparison with a local oscillator derived frequency while the second region is held at zero voltage. The dc bias voltage of the regions is reversed for transporting the ions back into the first region for fluorescence measurement. The dual mode cycle is repeated continuously for comparison and feedback control of the local oscillator derived frequency. Only the second region requires magnetic shielding for the resonance function which is sensitive to any ambient magnetic fields.

  12. Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model

    NASA Astrophysics Data System (ADS)

    Mignot, Juliette; García-Serrano, Javier; Swingedouw, Didier; Germe, Agathe; Nguyen, Sébastien; Ortega, Pablo; Guilyardi, Eric; Ray, Sulagna

    2016-08-01

    Two decadal prediction ensembles, based on the same climate model (IPSL-CM5A-LR) and the same surface nudging initialization strategy are analyzed and compared with a focus on upper-ocean variables in different regions of the globe. One ensemble consists of 3-member hindcasts launched every year since 1961 while the other ensemble benefits from 9 members but with start dates only every 5 years. Analysis includes anomaly correlation coefficients and root mean square errors computed against several reanalysis and gridded observational fields, as well as against the nudged simulation used to produce the hindcasts initial conditions. The last skill measure gives an upper limit of the predictability horizon one can expect in the forecast system, while the comparison with different datasets highlights uncertainty when assessing the actual skill. Results provide a potential prediction skill (verification against the nudged simulation) beyond the linear trend of the order of 10 years ahead at the global scale, but essentially associated with non-linear radiative forcings, in particular from volcanoes. At regional scale, we obtain 1 year in the tropical band, 10 years at midlatitudes in the North Atlantic and North Pacific, and 5 years at tropical latitudes in the North Atlantic, for both sea surface temperature (SST) and upper-ocean heat content. Actual prediction skill (verified against observational or reanalysis data) is overall more limited and less robust. Even so, large actual skill is found in the extratropical North Atlantic for SST and in the tropical to subtropical North Pacific for upper-ocean heat content. Results are analyzed with respect to the specific dynamics of the model and the way it is influenced by the nudging. The interplay between initialization and internal modes of variability is also analyzed for sea surface salinity. The study illustrates the importance of two key ingredients both necessary for the success of future coordinated decadal prediction exercises, a high frequency of start dates is needed to achieve robust statistical significance, and a large ensemble size is required to increase the signal to noise ratio.

  13. A new approach to comprehensive quantification of linear landscape elements using biotope types on a regional scale

    NASA Astrophysics Data System (ADS)

    Hirt, Ulrike; Mewes, Melanie; Meyer, Burghard C.

    The structure of a landscape is highly relevant for research and planning (such as fulfilling the requirements of the Water Framework Directive - WFD - and for implementation of comprehensive catchment planning). There is a high potential for restoration of linear landscape elements in most European landscapes. By implementing the WFD in Germany, the restoration of linear landscape elements could be a valuable measure, for example to reduce nutrient input into rivers. Despite this importance of landscape structures for water and nutrients fluxes, biodiversity and the appearance of a landscape, specific studies of the linear elements are rare for larger catchment areas. Existing studies are limited because they either use remote sensing data, which does not adequately differentiate all types of linear landscape elements, or they focus only on a specific type of linear element. To address these limitations, we developed a framework allowing comprehensive quantification of linear landscape elements for catchment areas, using publicly available biotope type data. We analysed the dependence of landscape structures on natural regions and regional soil characteristics. Three data sets (differing in biotopes, soil parameters and natural regions) were generated for the catchment area of the middle Mulde River (2700 km 2) in Germany, using overlay processes in geographic information systems (GIS), followed by statistical evaluation. The linear landscape components of the total catchment area are divided into roads (55%), flowing water (21%), tree rows (14%), avenues (5%), and hedges (2%). The occurrence of these landscape components varies regionally among natural units and different soil regions. For example, the mixed deciduous stands (3.5 m/ha) are far more frequent in foothills (6 m/ha) than in hill country (0.9 m/ha). In contrast, fruit trees are more frequent in hill country (5.2 m/ha) than in the cooler foothills (0.5 m/ha). Some 70% of avenues, and 40% of tree rows, are discontinuous; in contrast, only 20% of hedges are discontinuous. Using our innovative framework, comprehensive information about landscape elements can now be obtained for regional applications. This approach can be applied to other regions and is highly relevant for landscape planning, erosion control, protection of waters and preservation of biotopes and species.

  14. A m-ary linear feedback shift register with binary logic

    NASA Technical Reports Server (NTRS)

    Perlman, M. (Inventor)

    1973-01-01

    A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.

  15. Assessment of Ethylene Vinyl-Acetato Copolymer (EVA) Samples Bombarded by Gamma Radiation via Linearity Analyses

    NASA Astrophysics Data System (ADS)

    de Oliveira, L. N.; do Nascimento, E. O.; Schimidt, F.; Antonio, P. L.; Caldas, L. V. E.

    2018-03-01

    Materials with the potential to become dosimeters are of interest in radiation physics. In this research, the materials were analyzed and compared in relation to their linearity ranges. Samples of ethylene vinyl-acetate copolymer (EVA) were irradiated with doses from 10 Gy to 10 kGy using a 60Co Gamma-Cell system 220 and evaluated with the FTIR technique. The linearity analyses were applied through two methodologies, searching for linear regions in their response. The results show that both applied analyses indicate linear regions in defined dose interval. The radiation detectors EVA can be useful for radiation dosimetry in intermediate and high doses.

  16. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  17. Flow instabilities of magnetic flux tubes. IV. Flux storage in the solar overshoot region

    NASA Astrophysics Data System (ADS)

    Işık, E.; Holzwarth, V.

    2009-12-01

    Context: Flow-induced instabilities of magnetic flux tubes are relevant to the storage of magnetic flux in the interiors of stars with outer convection zones. The stability of magnetic fields in stellar interiors is of importance to the generation and transport of solar and stellar magnetic fields. Aims: We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. Methods: We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. Results: The longitudinal flow instability induced by the aerodynamic drag force is nonlinear in the sense that the growth rate depends on the perturbation amplitude. This result is consistent with the predictions of linear theory. Numerical simulations without friction show that nonlinear Parker instability can be triggered below the linear threshold of the field strength, when the difference in superadiabaticity along the tube is sufficiently large. A localised downflow acting on a toroidal tube in the overshoot region leads to instability depending on the parameters describing the flow, as well as the magnetic field strength. We determined ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. Conclusions: The longitudinal flow instability driven by frictional interaction of a flux tube with its surroundings is relevant to determining the storage time of magnetic flux in the solar overshoot region. The residence time for magnetic flux tubes with 2 × 1021 Mx in the convective overshoot layer can be comparable to the dynamo amplification time, provided that the average speed and the duration of an external downflow do not exceed about 50 m s -1 and 100 days, respectively, and that the lateral extension of the flow is smaller than about 10°. Appendix C and movies are only available in electronic form at http://www.aanda.org

  18. Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (OAI)

    NASA Astrophysics Data System (ADS)

    Donoghue, C.; Rao, A.; Bull, A. M. J.; Rueckert, D.

    2011-03-01

    Osteoarthritis (OA) is a degenerative, debilitating disease with a large socio-economic impact. This study looks to manifold learning as an automatic approach to harness the plethora of data provided by the Osteoarthritis Initiative (OAI). We construct several Laplacian Eigenmap embeddings of articular cartilage appearance from MR images of the knee using multiple MR sequences. A region of interest (ROI) defined as the weight bearing medial femur is automatically located in all images through non-rigid registration. A pairwise intensity based similarity measure is computed between all images, resulting in a fully connected graph, where each vertex represents an image and the weight of edges is the similarity measure. Spectral analysis is then applied to these pairwise similarities, which acts to reduce the dimensionality non-linearly and embeds these images in a manifold representation. In the manifold space, images that are close to each other are considered to be more "similar" than those far away. In the experiment presented here we use manifold learning to automatically predict the morphological changes in the articular cartilage by using the co-ordinates of the images in the manifold as independent variables for multiple linear regression. In the study presented here five manifolds are generated from five sequences of 390 distinct knees. We find statistically significant correlations (up to R2 = 0.75), between our predictors and the results presented in the literature.

  19. Detecting nonlinear dynamics of functional connectivity

    NASA Astrophysics Data System (ADS)

    LaConte, Stephen M.; Peltier, Scott J.; Kadah, Yasser; Ngan, Shing-Chung; Deshpande, Gopikrishna; Hu, Xiaoping

    2004-04-01

    Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity. The application of fMRI to measure functional connectivity of related brain regions across hemispheres (e.g. left and right motor cortices) has great potential for revealing fundamental physiological brain processes. Primarily, functional connectivity has been characterized by linear correlations in resting-state data, which may not provide a complete description of its temporal properties. In this work, we broaden the measure of functional connectivity to study not only linear correlations, but also those arising from deterministic, non-linear dynamics. Here the delta-epsilon approach is extended and applied to fMRI time series. The method of delays is used to reconstruct the joint system defined by a reference pixel and a candidate pixel. The crux of this technique relies on determining whether the candidate pixel provides additional information concerning the time evolution of the reference. As in many correlation-based connectivity studies, we fix the reference pixel. Every brain location is then used as a candidate pixel to estimate the spatial pattern of deterministic coupling with the reference. Our results indicate that measured connectivity is often emphasized in the motor cortex contra-lateral to the reference pixel, demonstrating the suitability of this approach for functional connectivity studies. In addition, discrepancies with traditional correlation analysis provide initial evidence for non-linear dynamical properties of resting-state fMRI data. Consequently, the non-linear characterization provided from our approach may provide a more complete description of the underlying physiology and brain function measured by this type of data.

  20. Trends in CD4 cell count response to first-line antiretroviral treatment in HIV-positive patients from Asia, 2003-2013: TREAT Asia HIV Observational Database Low Intensity Transfer.

    PubMed

    De La Mata, Nicole L; Ly, Penh S; Ng, Oon T; Nguyen, Kinh V; Merati, Tuti P; Pham, Thuy T; Lee, Man P; Choi, Jun Y; Sohn, Annette H; Law, Matthew G; Kumarasamy, Nagalingeswaran

    2017-11-01

    Antiretroviral treatment (ART) guidelines have changed over the past decade, recommending earlier initiation and more tolerable regimens. The study objective was to examine the CD4 response to ART, depending on the year of ART initiation, in HIV-positive patients in the Asia-Pacific. We included HIV-positive adult patients who initiated ART between 2003 and 2013 in our regional cohort from eight urban referral centres in seven countries within Asia. We used mixed-effects linear regression models to evaluate differences in CD4 response by year of ART initiation during 36 months of follow-up, adjusted a priori for other covariates. Overall, 16,962 patients were included. Patients initiating in 2006-9 and 2010-13 had an estimated mean CD4 cell count increase of 8 and 15 cells/µl, respectively, at any given time during the 36-month follow-up, compared to those in 2003-5. The median CD4 cell count at ART initiation also increased from 96 cells/µl in 2003-5 to 173 cells/µl in 2010-13. Our results suggest that the CD4 response to ART is modestly higher for those initiating ART in more recent years. Moreover, fewer patients are presenting with lower absolute CD4 cell counts over time. This is likely to reduce their risk of opportunistic infections and future non-AIDS defining cancers.

  1. Regional robust stabilisation and domain-of-attraction estimation for MIMO uncertain nonlinear systems with input saturation

    NASA Astrophysics Data System (ADS)

    Azizi, S.; Torres, L. A. B.; Palhares, R. M.

    2018-01-01

    The regional robust stabilisation by means of linear time-invariant state feedback control for a class of uncertain MIMO nonlinear systems with parametric uncertainties and control input saturation is investigated. The nonlinear systems are described in a differential algebraic representation and the regional stability is handled considering the largest ellipsoidal domain-of-attraction (DOA) inside a given polytopic region in the state space. A novel set of sufficient Linear Matrix Inequality (LMI) conditions with new auxiliary decision variables are developed aiming to design less conservative linear state feedback controllers with corresponding larger DOAs, by considering the polytopic description of the saturated inputs. A few examples are presented showing favourable comparisons with recently published similar control design methodologies.

  2. STABILITY OF FMRI STRIATAL RESPONSE TO ALCOHOL CUES: A HIERARCHICAL LINEAR MODELING APPROACH

    PubMed Central

    Schacht, Joseph P.; Anton, Raymond F.; Randall, Patrick K.; Li, Xingbao; Henderson, Scott; Myrick, Hugh

    2011-01-01

    In functional magnetic resonance imaging (fMRI) studies of alcohol-dependent individuals, alcohol cues elicit activation of the ventral and dorsal aspects of the striatum (VS and DS), which are believed to underlie aspects of reward learning critical to the initiation and maintenance of alcohol dependence. Cue-elicited striatal activation may represent a biological substrate through which treatment efficacy may be measured. However, to be useful for this purpose, VS or DS activation must first demonstrate stability across time. Using hierarchical linear modeling (HLM), this study tested the stability of cue-elicited activation in anatomically and functionally defined regions of interest in bilateral VS and DS. Nine non-treatment-seeking alcohol-dependent participants twice completed an alcohol cue reactivity task during two fMRI scans separated by 14 days. HLM analyses demonstrated that, across all participants, alcohol cues elicited significant activation in each of the regions of interest. At the group level, these activations attenuated slightly between scans, but session-wise differences were not significant. Within-participants stability was best in the anatomically defined right VS and DS and in a functionally defined region that encompassed right caudate and putamen (intraclass correlation coefficients of .75, .81, and .76, respectively). Thus, within this small sample, alcohol cue-elicited fMRI activation had good reliability in the right striatum, though a larger sample is necessary to ensure generalizability and further evaluate stability. This study also demonstrates the utility of HLM analytic techniques for serial fMRI studies, in which separating within-participants variance (individual changes in activation) from between-participants factors (time or treatment) is critical. PMID:21316465

  3. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  4. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region

    PubMed Central

    ANUFRIIEVA, Elena V.; SHADRIN, Nickolai V.

    2015-01-01

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation. PMID:26646569

  5. Correlations among Brain Gray Matter Volumes, Age, Gender, and Hemisphere in Healthy Individuals

    PubMed Central

    Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Kawashima, Ryuta; Fukuda, Hiroshi

    2011-01-01

    To determine the relationship between age and gray matter structure and how interactions between gender and hemisphere impact this relationship, we examined correlations between global or regional gray matter volume and age, including interactions of gender and hemisphere, using a general linear model with voxel-based and region-of-interest analyses. Brain magnetic resonance images were collected from 1460 healthy individuals aged 20–69 years; the images were linearly normalized and segmented and restored to native space for analysis of global gray matter volume. Linearly normalized images were then non-linearly normalized and smoothed for analysis of regional gray matter volume. Analysis of global gray matter volume revealed a significant negative correlation between gray matter ratio (gray matter volume divided by intracranial volume) and age in both genders, and a significant interaction effect of age × gender on the gray matter ratio. In analyzing regional gray matter volume, the gray matter volume of all regions showed significant main effects of age, and most regions, with the exception of several including the inferior parietal lobule, showed a significant age × gender interaction. Additionally, the inferior temporal gyrus showed a significant age × gender × hemisphere interaction. No regional volumes showed significant age × hemisphere interactions. Our study may contribute to clarifying the mechanism(s) of normal brain aging in each brain region. PMID:21818377

  6. Colitis detection on abdominal CT scans by rich feature hierarchies

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lay, Nathan; Wei, Zhuoshi; Lu, Le; Kim, Lauren; Turkbey, Evrim; Summers, Ronald M.

    2016-03-01

    Colitis is inflammation of the colon due to neutropenia, inflammatory bowel disease (such as Crohn disease), infection and immune compromise. Colitis is often associated with thickening of the colon wall. The wall of a colon afflicted with colitis is much thicker than normal. For example, the mean wall thickness in Crohn disease is 11-13 mm compared to the wall of the normal colon that should measure less than 3 mm. Colitis can be debilitating or life threatening, and early detection is essential to initiate proper treatment. In this work, we apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals to detect potential colitis on CT scans. Our method first generates around 3000 category-independent region proposals for each slice of the input CT scan using selective search. Then, a fixed-length feature vector is extracted from each region proposal using a CNN. Finally, each region proposal is classified and assigned a confidence score with linear SVMs. We applied the detection method to 260 images from 26 CT scans of patients with colitis for evaluation. The detection system can achieve 0.85 sensitivity at 1 false positive per image.

  7. Azimuthal anisotropy distributions in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.

    2015-03-01

    Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of η / s ≃ 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η / s is robust against non-linear effects.

  8. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Comet 252P/LINEAR: Born (Almost) Dead?

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter G.; Wiegert, Paul A.

    2016-02-01

    Previous studies have revealed Jupiter-family comet 252P/LINEAR as a comet that was recently transported into the near-Earth object (NEO) region in ∼1800 AD yet only being weakly active. In this Letter, we examine the “formed (almost) dead” hypothesis for 252P/LINEAR using both dynamical and observational approaches. By statistically examining the dynamical evolution of 252P/LINEAR over a period of 107 years, we find the median elapsed residency in the NEO region to be 4 × 102 years, which highlights the likelihood of 252P/LINEAR as an (almost) first-time NEO. With available cometary and meteor observations, we find the dust production rate of 252P/LINEAR to be on the order of 106 kg per orbit since its entry to the NEO region. These two lines of evidence support the hypothesis that the comet was likely to have formed in a volatile-poor environment. Cometary and meteor observations during the comet's unprecedented close approach to the Earth around 2016 March 21 would be useful for understanding of the surface and evolutionary properties of this unique comet.

  10. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.

  11. Employment of Gibbs-Donnan-based concepts for interpretation of the properties of linear polyelectrolyte solutions

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1991-01-01

    Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.

  12. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease.

    PubMed

    Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis

    2009-10-01

    Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.

  13. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/ startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  14. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes Walter; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  15. Combustion stability analysis of preburners in liquid propellant rocket engines during shutdown

    NASA Technical Reports Server (NTRS)

    Lim, Kair-Chuan; George, Paul E., II

    1987-01-01

    A linearized one-dimensional lumped-parameter model capable of predicting the occurrence of the low frequency combustion instability (chugging) experienced during preburner shutdown in the Space Shuttle Main Engines is discussed, and predictions are compared with NASA experimental results. Results from a parametric study of parameters including chamber pressure, fuel and oxygen temperatures, and the effective bulk modulus of the liquid oxidizer suggest that chugging is probably affected by conditions at shutdown through the fuel and oxidizer temperatures. It is suggested that chugging is initiated when the fuel, oxidizer, and helium temperature and flow rates pass into an unstable region, and that chugging may be terminated by decaying pressures.

  16. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    NASA Astrophysics Data System (ADS)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  17. Earlier adolescent substance use onset predicts stronger connectivity between reward and cognitive control brain networks.

    PubMed

    Weissman, David G; Schriber, Roberta A; Fassbender, Catherine; Atherton, Olivia; Krafft, Cynthia; Robins, Richard W; Hastings, Paul D; Guyer, Amanda E

    2015-12-01

    Early adolescent onset of substance use is a robust predictor of future substance use disorders. We examined the relation between age of substance use initiation and resting state functional connectivity (RSFC) of the core reward processing (nucleus accumbens; NAcc) to cognitive control (prefrontal cortex; PFC) brain networks. Adolescents in a longitudinal study of Mexican-origin youth reported their substance use annually from ages 10 to 16 years. At age 16, 69 adolescents participated in a resting state functional magnetic resonance imaging scan. Seed-based correlational analyses were conducted using regions of interest in bilateral NAcc. The earlier that adolescents initiated substance use, the stronger the connectivity between bilateral NAcc and right dorsolateral PFC, right dorsomedial PFC, right pre-supplementary motor area, right inferior parietal lobule, and left medial temporal gyrus. The regions that demonstrated significant positive linear relationships between the number of adolescent years using substances and connectivity with NAcc are nodes in the right frontoparietal network, which is central to cognitive control. The coupling of reward and cognitive control networks may be a mechanism through which earlier onset of substance use is related to brain function over time, a trajectory that may be implicated in subsequent substance use disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian; Chang, Chau-Lyan

    2014-01-01

    Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.

  19. Near-optimal alternative generation using modified hit-and-run sampling for non-linear, non-convex problems

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Alafifi, A.

    2016-12-01

    Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one step to any point in the near-optimal region, and each iterate generates a new, feasible alternative. We use the method to generate alternatives that span the near-optimal regions of simple and more complicated water management problems and may be preferred to optimal solutions. We also discuss extensions to handle non-linear equity constraints.

  20. Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obbard, Rachel W.; Lieb-Lappen, Ross M.; Nordick, Katherine V.

    We describe the use of synchrotron-based X-ray fluorescence spectroscopy to examine the microstructural location of specific elements, primarily salts, in sea ice. This work was part of an investigation of the location of bromine in the sea ice-snowpack-blowing snow system, where it plays a part in the heterogeneous chemistry that contributes to tropospheric ozone depletion episodes. We analyzed samples at beamline 13-ID-E of the Advanced Photon Source at Argonne National Laboratory. Using an 18 keV incident energy beam, we produced elemental maps of salts for sea ice samples from the Ross Sea, Antarctica. The distribution of salts in sea icemore » depends on ice type. In our columnar ice samples, Br was located in parallel lines spaced roughly 0.5 mm apart, corresponding to the spacing of lamellae in the skeletal region during initial ice growth. The maps revealed concentrations of Br in linear features in samples from all but the topmost and bottommost depths. For those samples, the maps revealed rounded features. Calibration of the Br elemental maps showed bulk concentrations to be 5–10 g/m 3, with concentrations ten times larger in the linear features. Through comparison with horizontal thin sections, we could verify that these linear features were brine sheets or layers.« less

  1. Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice

    DOE PAGES

    Obbard, Rachel W.; Lieb-Lappen, Ross M.; Nordick, Katherine V.; ...

    2016-10-23

    We describe the use of synchrotron-based X-ray fluorescence spectroscopy to examine the microstructural location of specific elements, primarily salts, in sea ice. This work was part of an investigation of the location of bromine in the sea ice-snowpack-blowing snow system, where it plays a part in the heterogeneous chemistry that contributes to tropospheric ozone depletion episodes. We analyzed samples at beamline 13-ID-E of the Advanced Photon Source at Argonne National Laboratory. Using an 18 keV incident energy beam, we produced elemental maps of salts for sea ice samples from the Ross Sea, Antarctica. The distribution of salts in sea icemore » depends on ice type. In our columnar ice samples, Br was located in parallel lines spaced roughly 0.5 mm apart, corresponding to the spacing of lamellae in the skeletal region during initial ice growth. The maps revealed concentrations of Br in linear features in samples from all but the topmost and bottommost depths. For those samples, the maps revealed rounded features. Calibration of the Br elemental maps showed bulk concentrations to be 5–10 g/m 3, with concentrations ten times larger in the linear features. Through comparison with horizontal thin sections, we could verify that these linear features were brine sheets or layers.« less

  2. Well-posedness of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo; Trakhinin, Yuri

    2014-01-01

    We consider the free-boundary problem for the plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasma-vacuum system is not isolated from the outside world, because of a given surface current on the fixed boundary that forces oscillations. Under a suitable stability condition satisfied at each point of the initial interface, stating that the magnetic fields on either side of the interface are not collinear, we show the existence and uniqueness of the solution to the nonlinear plasma-vacuum interface problem in suitable anisotropic Sobolev spaces. The proof is based on the results proved in the companion paper (Secchi and Trakhinin 2013 Interfaces Free Boundaries 15 323-57), about the well-posedness of the homogeneous linearized problem and the proof of a basic a priori energy estimate. The proof of the resolution of the nonlinear problem given in the present paper follows from the analysis of the elliptic system for the vacuum magnetic field, a suitable tame estimate in Sobolev spaces for the full linearized equations, and a Nash-Moser iteration.

  3. Linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1988-01-01

    A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.

  4. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.

    PubMed

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  5. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  6. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  7. Estimation of sea surface temperature from remote measurements in the 11-13 micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Conrath, B. J.; Kunde, V. G.

    1972-01-01

    The Nimbus-4 IRIS data was examined in the spectral region 775 to 1250/cm (8-13 microns) for useful information to determine the sea surface temperature. The high spectral resolution data of IRIS was degraded to low resolution by averaging to simulate a multi-channel radiometer in the window region. These simulated data show that within the region 775-975/cm (12.9-10.25 microns) the brightness temperatures are linearly related to the absorption parameters. Such a linear relationship is observed over cloudy as well as clear regions and over a wide range of latitudes. From this linear relationship it is feasible to correct for the atmospheric attenuation and get the sea surface temperature, accurate to within 1 K, in a cloud free field of view. The information about the cloud cover is taken from the TV pictures and BUV albedo measurements on board the Nimbus-4 satellite.

  8. Methods of sequential estimation for determining initial data in numerical weather prediction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cohn, S. E.

    1982-01-01

    Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.

  9. Decomposition of fluctuating initial conditions and flow harmonics

    NASA Astrophysics Data System (ADS)

    Qian, Wei-Liang; Mota, Philipe; Andrade, Rone; Gardim, Fernando; Grassi, Frédérique; Hama, Yogiro; Kodama, Takeshi

    2014-01-01

    Collective flow observed in heavy-ion collisions is largely attributed to initial geometrical fluctuations, and it is the hydrodynamic evolution of the system that transforms those initial spatial irregularities into final state momentum anisotropies. Cumulant analysis provides a mathematical tool to decompose those initial fluctuations in terms of radial and azimuthal components. It is usually thought that a specified order of azimuthal cumulant, for the most part, linearly produces flow harmonics of the same order. In this work, by considering the most central collisions (0%-5%), we carry out a systematic study on the connection between cumulants and flow harmonics using a hydrodynamic code called NeXSPheRIO. We conduct three types of calculation, by explicitly decomposing the initial conditions into components corresponding to a given eccentricity and studying the out-coming flow through hydrodynamic evolution. It is found that for initial conditions deviating significantly from Gaussian, such as those from NeXuS, the linearity between eccentricities and flow harmonics partially breaks down. Combined with the effect of coupling between cumulants of different orders, it causes the production of extra flow harmonics of higher orders. We argue that these results can be seen as a natural consequence of the non-linear nature of hydrodynamics, and they can be understood intuitively in terms of the peripheral-tube model.

  10. Morphology and dynamics of tumor cell colonies propagating in epidermal growth factor supplemented media

    NASA Astrophysics Data System (ADS)

    Muzzio, N. E.; Carballido, M.; Pasquale, M. A.; González, P. H.; Azzaroni, O.; Arvia, A. J.

    2018-07-01

    The epidermal growth factor (EGF) plays a key role in physiological and pathological processes. This work reports on the influence of EGF concentration (c EGF) on the modulation of individual cell phenotype and cell colony kinetics with the aim of perturbing the colony front roughness fluctuations. For this purpose, HeLa cell colonies that remain confluent along the whole expansion process with initial quasi-radial geometry and different initial cell populations, as well as colonies with initial quasi-linear geometry and large cell population, are employed. Cell size and morphology as well as its adhesive characteristics depend on c EGF. Quasi-radial colonies (QRC) expansion kinetics in EGF-containing medium exhibits a complex behavior. Namely, at the first stages of growth, the average QRC radius evolution can be described by a t 1/2 diffusion term coupled with exponential growth kinetics up to a critical time, and afterwards a growth regime approaching constant velocity. The extension of each regime depends on c EGF and colony history. In the presence of EGF, the initial expansion of quasi-linear colonies (QLCs) also exhibits morphological changes at both the cell and the colony levels. In these cases, the cell density at the colony border region becomes smaller than in the absence of EGF and consequently, the extension of the effective rim where cell duplication and motility contribute to the colony expansion increases. QLC front displacement velocity increases with c EGF up to a maximum value in the 2–10 ng ml‑1 range. Individual cell velocity is increased by EGF, and an enhancement in both the persistence and the ballistic characteristics of cell trajectories can be distinguished. For an intermediate c EGF, collective cell displacements contribute to the roughening of the colony contours. This global dynamics becomes compatible with the standard Kardar–Parisi–Zhang growth model, although a faster colony roughness saturation in EGF-containing medium than in the control medium is observed.

  11. Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin

    NASA Astrophysics Data System (ADS)

    Campos Braga, Ramon; Rosenfeld, Daniel; Weigel, Ralf; Jurkat, Tina; Andreae, Meinrat O.; Wendisch, Manfred; Pöschl, Ulrich; Voigt, Christiane; Mahnke, Christoph; Borrmann, Stephan; Albrecht, Rachel I.; Molleker, Sergej; Vila, Daniel A.; Machado, Luiz A. T.; Grulich, Lucas

    2017-12-01

    We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON-CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm-3) nucleated at cloud base (Dr ≈ 5 ṡ Nd). Additional cloud processes associated with Dr, such as GCCN, cloud, and mixing with ambient air and other processes, produce deviations of ˜ 21 % in the linear relationship, but it does not mask the clear relationship between Dr and Nd, which was also found at different regions around the globe (e.g., Israel and India). When Nd exceeded values of about 1000 cm-3, Dr became greater than 5000 m, and the first observed precipitation particles were ice hydrometeors. Therefore, no liquid water raindrops were observed within growing convective cumulus during polluted conditions. Furthermore, the formation of ice particles also took place at higher altitudes in the clouds in polluted conditions because the resulting smaller cloud droplets froze at colder temperatures compared to the larger drops in the unpolluted cases. The measured vertical profiles of droplet effective radius (re) were close to those estimated by assuming adiabatic conditions (rea), supporting the hypothesis that the entrainment and mixing of air into convective clouds is nearly inhomogeneous. Additional CCN activation on aerosol particles from biomass burning and air pollution reduced re below rea, which further inhibited the formation of raindrops and ice particles and resulted in even higher altitudes for rain and ice initiation.

  12. Vortex creep and the internal temperature of neutron stars - Linear and nonlinear response to a glitch

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Cheng, K. S.; Pines, D.

    1989-01-01

    The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.

  13. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  14. Analysis and testing of axial compression in imperfect slender truss struts

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Georgiadis, Nicholas

    1990-01-01

    The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.

  15. Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun

    2014-05-15

    The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.

  16. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  17. Exponential Sensitivity and its Cost in Quantum Physics

    PubMed Central

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-01-01

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed. PMID:26861076

  18. Exponential Sensitivity and its Cost in Quantum Physics.

    PubMed

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-02-10

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed.

  19. The Boundary Function Method. Fundamentals

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  20. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior.

    PubMed

    Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo

    2009-07-07

    This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.

  1. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, X.; Xia, C.; Keppens, R.

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation ofmore » blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.« less

  3. Multidimensional Modeling of Coronal Rain Dynamics

    NASA Astrophysics Data System (ADS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-07-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  4. Deep convolutional networks for pancreas segmentation in CT imaging

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  5. Integration of a Finite Element Model with the DAP Bone Remodeling Model to Characterize Bone Response to Skeletal Loading

    NASA Technical Reports Server (NTRS)

    Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.

    2015-01-01

    NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.

  6. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  7. Linear entropy and collapse–revival phenomenon for a general formalism N-type four-level atom interacting with a single-mode field

    NASA Astrophysics Data System (ADS)

    Eied, A. A.

    2018-05-01

    In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.

  8. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    NASA Technical Reports Server (NTRS)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  9. VizieR Online Data Catalog: Post-merger cluster A2255 membership (Tyler+, 2014)

    NASA Astrophysics Data System (ADS)

    Tyler, K. D.; Bai, L.; Rieke, G. H.

    2017-04-01

    A2255 was initially chosen from the Popesso et al. (2007, J/A+A/461/397) sample because it is a large cluster with complete SDSS photometric and spectroscopic coverage out to ~3 r200. It has incomplete areal spectroscopic coverage from 3 r200<~rproj<~5 r200 - about half of this region is covered. The SDSS photometric survey provides a uniform data set to study galaxy properties in the cluster. The model magnitudes are the linear combinations of best-fit exponential and de Vaucouleurs profiles and are recommended as the best estimates of magnitude by SDSS. As such, we use the model magnitudes (except where explicitly stated otherwise) and correct them for Galactic extinction (O'Donnell, 1994ApJ...422..158O). We used these photometric data to estimate galactic stellar masses with the SDSS_KCORRECT routine within KCORRECT (v. 4.2; Blanton & Roweis 2007AJ....133..734B). KCORRECT uses different cosmological values and initial mass function, so we corrected the original stellar mass output to the cosmology and initial mass function (Kroupa, 2001MNRAS.322..231K) adopted in this paper. (1 data file).

  10. Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini

    2018-07-01

    This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.

  11. Skewness in large-scale structure and non-Gaussian initial conditions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Scherrer, Robert J.

    1994-01-01

    We compute the skewness of the galaxy distribution arising from the nonlinear evolution of arbitrary non-Gaussian intial conditions to second order in perturbation theory including the effects of nonlinear biasing. The result contains a term identical to that for a Gaussian initial distribution plus terms which depend on the skewness and kurtosis of the initial conditions. The results are model dependent; we present calculations for several toy models. At late times, the leading contribution from the initial skewness decays away relative to the other terms and becomes increasingly unimportant, but the contribution from initial kurtosis, previously overlooked, has the same time dependence as the Gaussian terms. Observations of a linear dependence of the normalized skewness on the rms density fluctuation therefore do not necessarily rule out initially non-Gaussian models. We also show that with non-Gaussian initial conditions the first correction to linear theory for the mean square density fluctuation is larger than for Gaussian models.

  12. Lack of anomalous diffusion in linear translationally-invariant systems determined by only one initial condition

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir; Fatollahi, Amir H.

    2012-01-01

    It is shown that as far as the linear diffusion equation meets both time- and space-translational invariance, the time dependence of a moment of degree α is a polynomial of degree at most equal to α, while all connected moments are at most linear functions of time. As a special case, the variance is an at most linear function of time.

  13. Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Havens, David; Shiyekar, Sandeep; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions.

  14. Lateralization of the Huggins pitch

    NASA Astrophysics Data System (ADS)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  15. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  16. Non-linear processing of a linear speech stream: The influence of morphological structure on the recognition of spoken Arabic words.

    PubMed

    Gwilliams, L; Marantz, A

    2015-08-01

    Although the significance of morphological structure is established in visual word processing, its role in auditory processing remains unclear. Using magnetoencephalography we probe the significance of the root morpheme for spoken Arabic words with two experimental manipulations. First we compare a model of auditory processing that calculates probable lexical outcomes based on whole-word competitors, versus a model that only considers the root as relevant to lexical identification. Second, we assess violations to the root-specific Obligatory Contour Principle (OCP), which disallows root-initial consonant gemination. Our results show root prediction to significantly correlate with neural activity in superior temporal regions, independent of predictions based on whole-word competitors. Furthermore, words that violated the OCP constraint were significantly easier to dismiss as valid words than probability-matched counterparts. The findings suggest that lexical auditory processing is dependent upon morphological structure, and that the root forms a principal unit through which spoken words are recognised. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Resonant activation in piecewise linear asymmetric potentials.

    PubMed

    Fiasconaro, Alessandro; Spagnolo, Bernardo

    2011-04-01

    This work analyzes numerically the role played by the asymmetry of a piecewise linear potential, in the presence of both a Gaussian white noise and a dichotomous noise, on the resonant activation phenomenon. The features of the asymmetry of the potential barrier arise by investigating the stochastic transitions far behind the potential maximum, from the initial well to the bottom of the adjacent potential well. Because of the asymmetry of the potential profile together with the random external force uniform in space, we find, for the different asymmetries: (1) an inversion of the curves of the mean first passage time in the resonant region of the correlation time τ of the dichotomous noise, for low thermal noise intensities; (2) a maximum of the mean velocity of the Brownian particle as a function of τ; and (3) an inversion of the curves of the mean velocity and a very weak current reversal in the miniratchet system obtained with the asymmetrical potential profiles investigated. An inversion of the mean first passage time curves is also observed by varying the amplitude of the dichotomous noise, behavior confirmed by recent experiments. ©2011 American Physical Society

  18. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.

  19. Optimal perturbations of a finite-width mixing layer near the trailing edge

    NASA Astrophysics Data System (ADS)

    Gumbart, James C.; Rabchuk, James

    2002-03-01

    The trailing edge of a surface separating two fluid flows can act as an efficient receptor for acoustic or other disturbances. The incident wave energy is converted by a linear mechanism into incipient flow instabilities which lead further downstream to the transition to turbulence. Understanding this process is essential for analyzing feedback loops and other resonances which can cause unwanted structural vibrations in the surface material or directed acoustic emissions from the mixing region. Previously, the modes of instability in a finite-width mixing layer near the trailing edge were studied as a function of frequency by assuming that vorticity was continually being introduced into the flow at the trailing edge by the forcing field. It was found that the initial amplitude of the growing instability mode was a sharply decreasing function of forcing frequency, and that the initial amplitude was a minimum for the frequency at which the rate of instability growth was a maximum^1. This result has led to a study of the adjoint equation for the perturbation stream function, whose eigensolutions are known to be associated with the optimal perturbation field for the frequency of forcing leading to the greatest instability growth downstream. We have obtained these solutions for a piecewise linear velocity profile near the trailing edge using group-theoretic techniques and have shown that they are indeed optimal. We have also analyzed the nature of the physical forcing field that might produce these optimal perturbations. ^1 Rabchuk, J.A., July 2000, Physics of Fluids.

  20. Computation of multi-dimensional viscous supersonic flow

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.

    1986-01-01

    A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  1. Robust estimation of thermodynamic parameters (ΔH, ΔS and ΔCp) for prediction of retention time in gas chromatography - Part I (Theoretical).

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-12-18

    An approach that is commonly used for calculating the retention time of a compound in GC departs from the thermodynamic properties ΔH, ΔS and ΔCp of phase change (from mobile to stationary). Such properties can be estimated by using experimental retention time data, which results in a non-linear regression problem for non-isothermal temperature programs. As shown in this work, the surface of the objective function (approximation error criterion) on the basis of thermodynamic parameters can be divided into three clearly defined regions, and solely in one of them there is a possibility for the global optimum to be found. The main contribution of this study was the development of an algorithm that distinguishes the different regions of the error surface and its use in the robust initialization of the estimation of parameters ΔH, ΔS and ΔCp. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid

    PubMed Central

    Kalstrup, Tanja; Blunck, Rikard

    2013-01-01

    Atomic-scale models on the gating mechanism of voltage-gated potassium channels (Kv) are based on linear interpolations between static structures of their initial and final state derived from crystallography and molecular dynamics simulations, and, thus, lack dynamic structural information. The lack of information on dynamics and intermediate states makes it difficult to associate the structural with the dynamic functional data obtained with electrophysiology. Although voltage-clamp fluorometry fills this gap, it is limited to sites extracellularly accessible, when the key region for gating is located at the cytosolic side of the channels. Here, we solved this problem by performing voltage-clamp fluorometry with a fluorescent unnatural amino acid. By using an orthogonal tRNA-synthetase pair, the fluorescent unnatural amino acid was incorporated in the Shaker voltage-gated potassium channel at key regions that were previously inaccessible. Thus, we defined which parts act independently and which parts act cooperatively and found pore opening to occur in two sequential transitions. PMID:23630265

  3. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  4. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; O''Brien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to nonlinear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending loads. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse flexbeam tip-displacement and flapping angle. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  5. Growth responses of young Douglas-fir and tanoak 11 years after various levels of hardwood removal and understory suppression in southwestern Oregon, USA

    USGS Publications Warehouse

    Harrington, T.B.; Tappeiner, John C.

    1997-01-01

    At two sites in southwestern Oregon, height, diameter, and crown width of young Douglas-fir (Pseudotsuga menziesii) and sprout-origin tanoak (Lithocarpus densiflorus) were measured 1–11 years after reducing the density of a 2-year-old tanoak stand to 0%, 25%, 50%, and 100% of its initial cover. Some plots also included suppression of understory vegetation. Tanoak cover developed linearly with time, with steepness of the growth trajectory increasing at a diminishing rate with increasing percentage of initial tanoak cover. Fifth-year cover of understory vegetation declined linearly with increasing percentage of initial tanoak cover (R2 = 0.29). Survival of Douglas-fir (96–100%) differed little among initial abundances of tanoak, while growth trajectories for its size became increasingly exponential with decreasing percentage of initial tanoak cover. Eleventh-year heights of Douglas-fir were similar for 0%, 25%, and 50% of initial tanoak cover; however, diameter increased linearly with decreasing percentage of initial tanoak cover (R2 = 0.73), and the slope of the relationship steepened with understory suppression. Our results indicate that young stands exhibiting a wide range of stand compositions and productivities can be established by early manipulations of tanoak and understory abundance. Complete removal of tanoak plus understory suppression are necessary to maximize Douglas-fir growth, while productive, mixed stands can be achieved by removing 50% or more of tanoak cover.

  6. Rare stress fracture: longitudinal fracture of the femur.

    PubMed

    Pérez González, M; Velázquez Fragua, P; López Miralles, E; Abad Moretón, M M

    42-year-old man with pain in the posterolateral region of the right knee that began while he was running. Initially, it was diagnosed by magnetic resonance (MR) as a possible aggressive process (osteosarcoma or Ewing's sarcoma) but with computed tomography it was noted a cortical hypodense linear longitudinal image with a continuous, homogeneous and solid periosteal reaction without clear soft tissue mass that in this patient suggest a longitudinal distal femoral fatigue stress fracture. This type of fracture at this location is very rare. Stress fractures are entities that can be confused with an agressive process. MR iscurrently the most sensitive and specific imaging method for its diagnosis. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. An Optical Actuation System and Curvature Sensor for a MR-compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Renaud, Pierre; Black, Richard J.; Daniel, Bruce L.; Cutkosky, Mark R.

    2015-01-01

    A side optical actuation method is presented for a slender MR-compatible active needle. The needle includes an active region with a shape memory alloy (SMA) wire actuator, where the wire generates a contraction force when optically heated by a laser delivered though optical fibers, producing needle tip bending. A prototype, with multiple side heating spots, demonstrates twice as fast an initial response compared to fiber tip heating when 0.8 W of optical power is applied. A single-ended optical sensor with a gold reflector is also presented to measure the curvature as a function of optical transmission loss. Preliminary tests with the sensor prototype demonstrate approximately linear response and a repeatable signal, independent of the bending history. PMID:26509099

  8. Filament cooling and condensation in a sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Van Hoven, Gerard

    1990-01-01

    Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.

  9. Saliency detection algorithm based on LSC-RC

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu

    2018-02-01

    Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.

  10. Streamflow droughts in major watershed regions of the conterminous U.S.: Understanding evolution of historic patterns

    NASA Astrophysics Data System (ADS)

    Pournasiri Poshtiri, M.; Pal, I.

    2015-12-01

    Climate non-stationarity affects regional hydrological extremes. This research looks into historic patterns of streamflow drought indicators and their evolution for major watershed regions in the conterminous U.S. (CONUS). The results indicate general linear and non-linear drying trends, particularly in the last four decades, as opposed to wetting trends reported in previous studies. Regional differences in the trends are notable, and echo the local climatic changes documented in the recent National Climate Assessment (NCA). A reversal of linear trends is seen for some northern regions after 1980s. Patterns in return periods and corresponding return values of the indicators are also examined, which suggests changing risk conditions that are important for water-resources decision-making. Persistent or flash drought conditions in a river can lead to chronic or short-term water scarcity—a main driver of societal and cross-boundary conflicts. Thus, this research identifies "hotspot" locations where suitable adaptive management measures are most needed.

  11. Arterial spin labeling reveals relationships between resting cerebral perfusion and motor learning in Parkinson's disease.

    PubMed

    Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L

    2018-05-09

    Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.

  12. Quantification of regional differences in aortic stiffness in the aging human

    PubMed Central

    Roccabianca, S.; Figueroa, C.A.; Tellides, G.; Humphrey, J.D.

    2013-01-01

    There has been a growing awareness over the past decade that stiffening of the aorta, and its attendant effects on hemodynamics, is both an indicator and initiator of diverse cardiovascular, neurovascular, and renovascular diseases. Although different clinical metrics of arterial stiffness have been proposed and found useful in particular situations, there remains a need to understand better the complex interactions between evolving aortic stiffness and the hemodynamics. Computational fluid–solid-interaction (FSI) models are amongst the most promising means to understand such interactions for one can parametrically examine effects of regional variations in material properties and arterial geometry on local and systemic blood pressure and flow. Such models will not only increase our understanding, they will also serve as important steps towards the development of fluid–solid-growth (FSG) models that can further examine interactions between the evolving wall mechanics and hemodynamics that lead to arterial adaptations or disease progression over long periods. In this paper, we present a consistent quantification and comparison of regional nonlinear biaxial mechanical properties of the human aorta based on 19 data sets available in the literature and we calculate associated values of linearized stiffness over the cardiac cycle that are useful for initial large-scale FSI and FSG simulations. It is shown, however, that there is considerable variability amongst the available data and consequently that there is a pressing need for more standardized biaxial testing of the human aorta to collect data as a function of both location and age, particularly for young healthy individuals who serve as essential controls. PMID:23499251

  13. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak [Increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) in the DIII-D tokamak

    DOE PAGES

    Sung, Choongki; Wang, G.; Rhodes, Terry L.; ...

    2017-11-16

    We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less

  14. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak [Increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Choongki; Wang, G.; Rhodes, Terry L.

    We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less

  15. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  16. Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.

    PubMed

    Liu, F; Jin, Z M; Hirt, F; Rieker, C; Roberts, P; Grigoris, P

    2005-09-01

    The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 microm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.

  17. zeldovich-PLT: Zel'dovich approximation initial conditions generator

    NASA Astrophysics Data System (ADS)

    Eisenstein, Daniel; Garrison, Lehman

    2016-05-01

    zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.

  18. 77 FR 6560 - Notice of a Project Waiver of the Buy American Requirement of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Section 1605 of ARRA. This action permits the purchase of the selected vertical linear motion mixers not...: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Regional Administrator of EPA Region 6 is... purchase of ten (10) vertical linear motion mixers for the Clean Water State Revolving Fund (CWSRF) Hornsby...

  19. Regions of attraction and ultimate boundedness for linear quadratic regulators with nonlinearities

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    The closed-loop stability of multivariable linear time-invariant systems controlled by optimal linear quadratic (LQ) regulators is investigated for the case when the feedback loops have nonlinearities N(sigma) that violate the standard stability condition, sigma N(sigma) or = 0.5 sigma(2). The violations of the condition are assumed to occur either (1) for values of sigma away from the origin (sigma = 0) or (2) for values of sigma in a neighborhood of the origin. It is proved that there exists a region of attraction for case (1) and a region of ultimate boundedness for case (2), and estimates are obtained for these regions. The results provide methods for selecting the performance function parameters to design LQ regulators with better tolerance to nonlinearities. The results are demonstrated by application to the problem of attitude and vibration control of a large, flexible space antenna in the presence of actuator nonlinearities.

  20. Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.

    2017-07-01

    Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain stable for the course of the simulation. The movie of the simulation is available at http://www.aanda.org

  1. Lack of efficacy of homeopathic therapy against post-calving clinical mastitis in dairy herds in the Waikato region of New Zealand.

    PubMed

    Williamson, J H; Lacy-Hulbert, S J

    2014-01-01

    To compare clinical and bacteriological cure rates of clinical mastitis following treatment with either antimicrobials or homeopathic preparations. Seven spring-calving herds from the Waikato region of New Zealand were used to source cases of clinical mastitis (n = 263 glands) during the first 90 days following calving. Duplicate milk samples were collected for bacteriology from each clinically infected gland at diagnosis and 25 (SD 5.3) days after initial treatment. Affected glands were treated with either an antimicrobial formulation or a homeopathic remedy. Generalised linear models with binomial error distribution and logit link were used to analyse the proportion of cows that were clinical treatment cures and the proportion of glands that were classified as bacteriological cures, based on initial and post-treatment milk samples. Mean cumulative incidence of clinical mastitis was 7% (range 2-13% across herds) of cows. Streptococcus uberis was the most common pathogen isolated from culture-positive samples from affected glands (140/209; 67%). The clinical cure rate was higher for cows treated with antimicrobials (107/113; 95%) than for cows treated with homeopathic remedies (72/114; 63%) (p < 0.001) based on the observance of clinical signs following initial treatment. Across all pathogen types bacteriological cure rate at gland level was higher for those cows treated with antimicrobials (75/102; 74%) than for those treated with a homeopathic preparation (39/107; 36%) (p < 0.001). Using herds located in the Waikato region of New Zealand, homeopathic remedies had significantly lower clinical and bacteriological cure rates compared with antimicrobials when used to treat post-calving clinical mastitis where S. uberis was the most common pathogen. The proportion of cows that needed retreatment was significantly higher for the homeopathic treated cows. This, combined with lower bacteriological cure rates, has implications for duration of infection, individual cow somatic cell count, costs associated with treatment and animal welfare.

  2. Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries

    NASA Astrophysics Data System (ADS)

    Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald

    2016-04-01

    Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.

  3. Remote and Local Influences in Forecasting Pacific SST: a Linear Inverse Model and a Multimodel Ensemble Study

    NASA Astrophysics Data System (ADS)

    Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.

    2017-12-01

    Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal scale interactions in improving predictability on decadal timescales. Hence, we show that LIMs are not only useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

  4. Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; van den Bosch, Frank C.

    2013-07-01

    Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current cold dark matter model and evolves through gravitational instabilities to the present-day density field in the local universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. Using a realistic mock Sloan Digital Sky Survey DR7, obtained by populating dark matter halos in the Millennium simulation (MS) with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use N-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the MS in the density range 0.3 \\lesssim \\rho /\\bar{\\rho } \\lesssim 20 without any significant bias. In particular, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of ~1 h Mpc-1, much smaller than the translinear scale, which corresponds to a wavenumber of ~0.15 h Mpc-1.

  5. 75 FR 17700 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... February 8, 2010, titled the Energy Efficient Building Systems Regional Innovation Cluster Initiative. A...

  6. Similarity of scattering rates in metals showing T-linear resistivity.

    PubMed

    Bruin, J A N; Sakai, H; Perry, R S; Mackenzie, A P

    2013-02-15

    Many exotic compounds, such as cuprate superconductors and heavy fermion materials, exhibit a linear in temperature (T) resistivity, the origin of which is not well understood. We found that the resistivity of the quantum critical metal Sr(3)Ru(2)O(7) is also T-linear at the critical magnetic field of 7.9 T. Using the precise existing data for the Fermi surface topography and quasiparticle velocities of Sr(3)Ru(2)O(7), we show that in the region of the T-linear resistivity, the scattering rate per kelvin is well approximated by the ratio of the Boltzmann constant to the Planck constant divided by 2π. Extending the analysis to a number of other materials reveals similar results in the T-linear region, in spite of large differences in the microscopic origins of the scattering.

  7. SU-F-T-164: Investigation of PRESAGE Formulation On Signal Quenching in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, M; Alqathami, M; Ibbott, G

    2016-06-15

    Purpose: The radiochromic polyurethane PRESAGE by Heuris Pharma has had limited applications with protons because of a dose response dependence on LET resulting in signal quenching in the Bragg peak. This is due to the radical initiator, a halocarbon, radically recombining in high-LET irradiations. This study investigated the use of alternative halocarbons at various chemical concentrations to determine their significance in signal quenching. Methods: PRESAGE was manufactured in-house and cast in small volume cuvettes (1×1×4cm^3). Several compositions were evaluated to determine the influence of the radical initiator component. Mixtures contained one of two halocarbons, chloroform or bromoform, at concentrations ofmore » 5%/10%/15%(w/w). A large volume, cylindrical PRESAGE dosimeter made following the mixture described by Heuris Pharma, 4cm(D)×8.5cm(H), was irradiated with 200-MeV protons to study regions of low- and high-LET along a 10cm spread out Bragg peak isodose profile. Depths corresponding to regions of low quenching (<3%) and high quenching (>20%) were determined. These depths were used for cuvette placement in a solid water phantom. Samples of each formulation were placed at each depth and irradiated to doses between 0 and 10Gy. Results: The cuvettes indicated different levels of quenching for different radical initiator types, concentrations, and total doses. Chloroform formulations showed reduced quenching from 29%(5%-w/w) to 21%(15%-w/w) while bromoform reduced quenching from 27%(5%-w/w) to 17%(15%-w/w). The reduction in quenching was found to be non-linear with concentration of radical initiator. A quenching dose-dependency was also found that changed with formulation. In all cases, quenching was relatively consistent from 0–5Gy but increased at 10Gy. The quenching decreased as concentrations of radical initiator increased. Conclusion: The radical initiator component in PRESAGE is correlated with the signal quenching observed in proton irradiations and formulation adjustments show promise as a method of reducing this quenching. Future work will further investigate concentration limits and optimize the formulation. Grant number 5RO1CA100835.« less

  8. High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim

    2017-11-01

    Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.

  9. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    NASA Astrophysics Data System (ADS)

    Walker, S. C.; Rachmeler, L.; Winebarger, A. R.; Champey, P. R.; Bethge, C.

    2017-12-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to shed light on the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in H Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Mg II h & k lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  10. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    NASA Technical Reports Server (NTRS)

    Walker, Salma C.; Rachmeler, Laurel; Winebarger, Amy; Champey, Patrick; Bethge, Christian

    2017-01-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to elucidate the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in Hydrogen Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this emission line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Magnesium II h & k emission lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  11. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    NASA Technical Reports Server (NTRS)

    Walker, Salma C.; Rachmeler, Laurel; Winebarger, Amy; Champey, Patrick; Bethge, Christian

    2018-01-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to elucidate the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in Hydrogen Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this emission line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Magnesium II h & k emission lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  12. Wide-Field CCD Photometry around Nine Open Clusters

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Pandey, A. K.; Ogura, K.; Mito, H.; Tarusawa, K.; Sagar, R.

    2006-10-01

    In this paper we study the evolution of the core and corona of nine open clusters using the projected radial density profiles derived from homogeneous CCD photometric data obtained with the 105 cm Kiso Schmidt telescope. The age and galactocentric distance of the target clusters vary from 16 to 2000 Myr and 9 to 10.8 kpc, respectively. Barring Be 62, which is a young open cluster, other clusters show a uniform reddening across the cluster region. The reddening in Be 62 varies from E(B-V)min=0.70 mag to E(B-V)max=1.00 mag. The coronae of six of the clusters in the present sample are found to be elongated; however, on the basis of the present sample it is not possible to establish any correlation between the age and shape of the core. The elongated core in the case of the young cluster Be 62 may reflect the initial conditions in the parental molecular cloud. The other results of the present study are as follows: (1) Core radius rc and corona size rcn/cluster radius rcl are linearly correlated. (2) The rc, rcn, and rcl are linearly correlated with the number of stars in that region. (3) In the age range 10-1000 Myr, the core and corona shrink with age. (4) We find that in the galactocentric distance range 9-10 kpc, the core and corona/cluster extent of the clusters increase with the galactocentric distance.

  13. Variation objective analyses for cyclone studies

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.; Kidder, S. Q.; Ochs, H. T.

    1985-01-01

    The objectives were to: (1) develop an objective analysis technique that will maximize the information content of data available from diverse sources, with particular emphasis on the incorporation of observations from satellites with those from more traditional immersion techniques; and (2) to develop a diagnosis of the state of the synoptic scale atmosphere on a much finer scale over a much broader region than is presently possible to permit studies of the interactions and energy transfers between global, synoptic and regional scale atmospheric processes. The variational objective analysis model consists of the two horizontal momentum equations, the hydrostatic equation, and the integrated continuity equation for a dry hydrostatic atmosphere. Preliminary tests of the model with the SESMAE I data set are underway for 12 GMT 10 April 1979. At this stage of purpose of the analysis is not the diagnosis of atmospheric structures but rather the validation of the model. Model runs for rawinsonde data and with the precision modulus weights set to force most of the adjustment of the wind field to the mass field have produced 90 to 95 percent reductions in the imbalance of the initial data after only 4-cycles through the Euler-Lagrange equations. Sensitivity tests for linear stability of the 11 Euler-Lagrange equations that make up the VASP Model 1 indicate that there will be a lower limit to the scales of motion that can be resolved by this method. Linear stability criteria are violated where there is large horizontal wind shear near the upper tropospheric jet.

  14. Linking interseismic deformation with coseismic slip using dynamic rupture simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.; He, B.; Weng, H.

    2017-12-01

    The largest earthquakes on earth occur at subduction zones, sometimes accompanied by devastating tsunamis. Reducing losses from megathrust earthquakes and tsunami demands accurate estimate of rupture scenarios for future earthquakes. Interseismic locking distribution derived from geodetic observations is often used to qualitatively evaluate future earthquake potential. However, how to quantitatively estimate the coseismic slip from the locking distribution remains challenging. Here we derive the coseismic rupture process of the 2012 Mw 7.6 Nicoya, Costa Rica, earthquake from interseismic locking distribution using spontaneous rupture simulation. We construct a three-dimensional elastic medium with a curved fault, which is governed by the linear slip-weakening law. The initial stress on the fault is set based on the build-up stress inferred from locking and the dynamic friction coefficient from fast-speed sliding experiments. Our numerical results of coseismic slip distribution, moment rate function and final earthquake moment are well consistent with those derived from seismic and geodetic observations. Furthermore, we find that the epicentral locations affect rupture scenarios and may lead to various sizes of earthquakes given the heterogeneous stress distribution. In the Nicoya region, less than half of rupture initiation regions where the locking degree is greater than 0.6 can develop into large earthquakes (Mw > 7.2). The results of location-dependent earthquake magnitudes underscore the necessity of conducting a large number of simulations to quantitatively evaluate seismic hazard from the interseismic locking models.

  15. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.« less

  16. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  17. Linearization correction of /sup 99m/Tc-labeled hexamethyl-propylene amine oxime (HM-PAO) image in terms of regional CBF distribution: comparison to C VO2 inhalation steady-state method measured by positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inugami, A.; Kanno, I.; Uemura, K.

    1988-12-01

    The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The linearization correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C VO2 inhalation steady state methodmore » and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET-CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the linearization correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the linearization correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic TTXe clearance method.« less

  18. Can mutational GC-pressure create new linear B-cell epitopes in herpes simplex virus type 1 glycoprotein B?

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ).

  19. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.

    PubMed

    Fan, Tingbo; Liu, Zhenbo; Chen, Tao; Li, Faqi; Zhang, Dong

    2011-09-01

    In this work, the authors propose a modeling approach to compute the nonlinear acoustic field generated by a flat piston transmitter with an attached aluminum lens. In this approach, the geometrical parameters (radius and focal length) of a virtual source are initially determined by Snell's refraction law and then adjusted based on the Rayleigh integral result in the linear case. Then, this virtual source is used with the nonlinear spheroidal beam equation (SBE) model to predict the nonlinear acoustic field in the focal region. To examine the validity of this approach, the calculated nonlinear result is compared with those from the Westervelt and (Khokhlov-Zabolotskaya-Kuznetsov) KZK equations for a focal intensity of 7 kW/cm(2). Results indicate that this approach could accurately describe the nonlinear acoustic field in the focal region with less computation time. The proposed modeling approach is shown to accurately describe the nonlinear acoustic field in the focal region. Compared with the Westervelt equation, the computation time of this approach is significantly reduced. It might also be applicable for the widely used concave focused transmitter with a large aperture angle.

  20. Coarse-grained description of cosmic structure from Szekeres models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Roberto A.; Gaspar, I. Delgado; Hidalgo, Juan Carlos, E-mail: sussman@nucleares.unam.mx, E-mail: ismael.delgadog@uaem.edu.mx, E-mail: hidalgo@fis.unam.mx

    2016-03-01

    We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ''pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities ofmore » structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10–20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.« less

  1. Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Huang, Shengzhi; Huang, Qiang; Huang, Guohe; Meng, Erhao; Luan, Jinkai

    2018-06-01

    In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant predictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient input selection technique is crucial for decreasing model data requirements. Then, the interconnection between global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional predictors to comprise information regarding ET0, which ought to be provided by meteorological data unavailable. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets. The teleconnection analysis identifies the correlation between Nino 1 + 2 and regional ET0, indicating influences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1 + 2 as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models (MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and incorporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting models suitable for data-scarce regions.

  2. Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys Polyactis) along the north coast of China.

    PubMed

    Ma, Qiuyun; Jiao, Yan; Ren, Yiping

    2017-01-01

    In this study, length-weight relationships and relative condition factors were analyzed for Yellow Croaker (Larimichthys polyactis) along the north coast of China. Data covered six regions from north to south: Yellow River Estuary, Coastal Waters of Northern Shandong, Jiaozhou Bay, Coastal Waters of Qingdao, Haizhou Bay, and South Yellow Sea. In total 3,275 individuals were collected during six years (2008, 2011-2015). One generalized linear model, two simply linear models and nine linear mixed effect models that applied the effects from regions and/or years to coefficient a and/or the exponent b were studied and compared. Among these twelve models, the linear mixed effect model with random effects from both regions and years fit the data best, with lowest Akaike information criterion value and mean absolute error. In this model, the estimated a was 0.0192, with 95% confidence interval 0.0178~0.0308, and the estimated exponent b was 2.917 with 95% confidence interval 2.731~2.945. Estimates for a and b with the random effects in intercept and coefficient from Region and Year, ranged from 0.013 to 0.023 and from 2.835 to 3.017, respectively. Both regions and years had effects on parameters a and b, while the effects from years were shown to be much larger than those from regions. Except for Coastal Waters of Northern Shandong, a decreased from north to south. Condition factors relative to reference years of 1960, 1986, 2005, 2007, 2008~2009 and 2010 revealed that the body shape of Yellow Croaker became thinner in recent years. Furthermore relative condition factors varied among months, years, regions and length. The values of a and relative condition factors decreased, when the environmental pollution became worse, therefore, length-weight relationships could be an indicator for the environment quality. Results from this study provided basic description of current condition of Yellow Croaker along the north coast of China.

  3. Symplectic evolution of Wigner functions in Markovian open systems.

    PubMed

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  4. Large deformation image classification using generalized locality-constrained linear coding.

    PubMed

    Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.

  5. Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task.

    PubMed

    Mitchell, Rachel L C

    2010-05-01

    Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.

  6. The Stability Region for Feedback Control of the Wake Behind Twin Oscillating Cylinders

    NASA Astrophysics Data System (ADS)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette

    2016-11-01

    Linear feedback control has the ability to stabilize vortex shedding behind twin cylinders where cylinder rotation is the actuation mechanism. Complete elimination of the wake is only possible for certain Reynolds numbers and cylinder spacing. This is related to the presence of asymmetric unstable modes in the linearized system. We investigate this region of parameter space using a number of closed-loop simulations that bound this region. We then consider the practical issue of designing feedback controls based on limited state measurements by building a nonlinear compensator using linear robust control theory with and incorporating the nonlinear terms in the compensator (e.g., using the extended Kalman filter). Interpolatory model reduction methods are applied to the large discretized, linearized Navier-Stokes system and used for computing the control laws and compensators. Preliminary closed-loop simulations of a three-dimensional version of this problem will also be presented. Supported in part by the National Science Foundation.

  7. A computational procedure to analyze metal matrix laminates with nonlinear lamination residual strains

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1974-01-01

    An approximate computational procedure is described for the analysis of angleplied laminates with residual nonlinear strains. The procedure consists of a combination of linear composite mechanics and incremental linear laminate theory. The procedure accounts for initial nonlinear strains, unloading, and in-situ matrix orthotropic nonlinear behavior. The results obtained in applying the procedure to boron/aluminum angleplied laminates show that this is a convenient means to accurately predict the initial tangent properties of angleplied laminates in which the matrix has been strained nonlinearly by the lamination residual stresses. The procedure predicted initial tangent properties results which were in good agreement with measured data obtained from boron/aluminum angleplied laminates.

  8. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  9. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.

    PubMed

    Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen

    2016-11-01

    Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.

  10. A new adaptively central-upwind sixth-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-03-01

    In this paper, we propose a new sixth-order WENO scheme for solving one dimensional hyperbolic conservation laws. The new WENO reconstruction has three properties: (1) it is central in smooth region for low dissipation, and is upwind near discontinuities for numerical stability; (2) it is a convex combination of four linear reconstructions, in which one linear reconstruction is sixth order, and the others are third order; (3) its linear weights can be any positive numbers with requirement that their sum equals one. Furthermore, we propose a simple smoothness indicator for the sixth-order linear reconstruction, this smooth indicator not only can distinguish the smooth region and discontinuities exactly, but also can reduce the computational cost, thus it is more efficient than the classical one.

  11. Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot

    NASA Astrophysics Data System (ADS)

    Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim

    2018-04-01

    A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.

  12. The Routine Fitting of Kinetic Data to Models

    PubMed Central

    Berman, Mones; Shahn, Ezra; Weiss, Marjory F.

    1962-01-01

    A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975

  13. STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer

    We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less

  14. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  15. Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.

  16. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  17. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  18. On the Feasibility of a Generalized Linear Program

    DTIC Science & Technology

    1989-03-01

    generealized linear program by applying the same algorithm to a "phase-one" problem without requiring that the initial basic feasible solution to the latter be non-degenerate. secUrMTY C.AMlIS CAYI S OP ?- PAeES( UII -W & ,

  19. The initial instability and finite-amplitude stability of alternate bars in straight channels

    USGS Publications Warehouse

    Nelson, J.M.

    1990-01-01

    The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.

  20. Waveguide coupling in the few-cycle regime

    NASA Astrophysics Data System (ADS)

    Leblond, Hervé; Terniche, Said

    2016-04-01

    We consider the coupling of two optical waveguides in the few-cycle regime. The analysis is performed in the frame of a generalized Kadomtsev-Petviashvili model. A set of two coupled modified Korteweg-de Vries equations is derived, and it is shown that three types of coupling can occur, involving the linear index, the dispersion, or the nonlinearity. The linear nondispersive coupling is investigated numerically, showing the formation of vector solitons. Separate pulses may be trapped together if they have not initially the same location, size, or phase, and even if their initial frequencies differ.

  1. Interior point techniques for LP and NLP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Y.

    By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.

  2. The case of escape probability as linear in short time

    NASA Astrophysics Data System (ADS)

    Marchewka, A.; Schuss, Z.

    2018-02-01

    We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.

  3. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    USGS Publications Warehouse

    Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.

    2016-01-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr− 1 shoreline retreat) compared with other regions (~ 30 cm yr− 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape evolution in the study area differs from that described from other thermokarst-affected regions; regional responses to future environmental change may be equally individualistic.

  4. Concentrating Solar Power Projects - Puerto Errado 2 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: April 26, 2013 Project Overview Project Name: Puerto Errado . (Novatec Biosol AG) (15%) Technology: Linear Fresnel reflector Turbine Capacity: Net: 30.0 MW Gross: 30.0 ? Background Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region

  5. The corrosion performance of high chromium stainless steels and titanium alloys at a reverse osmosis plant in Arabian Gulf seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Odwani, A.; Al-Tabatabaei, M.; Carew, J.

    1997-08-01

    Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion performance of four high chromium stainless steels and Grade 2 titanium in flowing Arabian Gulf natural seawater. The EIS provided information concerning the changes to the interfacial impedance as a function of exposure time for these alloys. The impedance spectra for all the alloys showed slight changes at the low frequency region over the exposure period. The open-circuit potentials (OCP) of these alloys were also monitored as a function of exposure time. The stainless steel alloys exhibited slight fluctuation in potential around the initial exposure potential. However, Grade 2 titaniummore » initial potential was more active and then gradually shifted towards the noble direction. The linear polarization resistance (LPR) method indicated that Grade 2 titanium exhibited the lowest corrosion rate with respect to the stainless steel alloys. The results of the EIS analysis and OCP indicated that Grade 2 titanium performed better than the four high chromium stainless steel alloys.« less

  6. The Impact of Quality Assurance Initiatives and Workplace Policies and Procedures on HIV/AIDS-Related Stigma Experienced by Patients and Nurses in Regions with High Prevalence of HIV/AIDS.

    PubMed

    Hewko, Sarah J; Cummings, Greta G; Pietrosanu, Matthew; Edwards, Nancy

    2018-02-23

    Stigma is commonly experienced by people living with HIV/AIDS and by those providing care to HIV/AIDS patients. Few intervention studies have explored the impact of workplace policies and/or quality improvement on stigma. We examine the contribution of health care workplace policies, procedures and quality assurance initiatives, and self- and peer-assessed individual nurse practices, to nurse-reported HIV/AIDS-stigma practices toward patients living with HIV/AIDS and nurses in health care settings. Our sample of survey respondents (n = 1157) included managers (n = 392) and registered/enrolled nurses (n = 765) from 29 facilities in 4 countries (South Africa, Uganda, Jamaica, Kenya). This is one of the first studies in LMIC countries to use hierarchical linear modeling to examine the contributions of organizational and individual factors to HIV/AIDS stigma. Based on our results, we argue that organizational interventions explicitly targeting HIV/AIDS stigma are required to reduce the incidence, prevalence and morbidity of HIV/AIDS.

  7. Regional variations in the observed morphology and activity of martian linear gullies

    NASA Astrophysics Data System (ADS)

    Morales, Kimberly Marie; Diniega, Serina; Austria, Mia; Ochoa, Vincent; HiRISE Science and Instrument Team

    2017-10-01

    The formation mechanism for martian linear gullies has been much debated, because they have been suggested as possible evidence of liquid water on Mars. This class of dune gullies is defined by long (up to 2 km), narrow channels that are relatively uniform in width, and range in sinuosity index. Unlike other gullies on Earth and Mars that end in depositional aprons, linear gullies end in circular depressions referred to as terminal pits. This particular morphological difference, along with the difficulty of identifying a source of water to form these features, has led to several ‘dry’ hypotheses. Recent observations on the morphology, distribution, and present-day activity of linear gullies suggests that they could be formed by subliming blocks of seasonal CO2 ice (“dry ice”) sliding downslope on dune faces. In our study, we aimed to further constrain the possible mechanism(s) responsible for the formation of linear gullies by using HiRISE images to collect morphological data and track seasonal activity within three regions in the southern hemisphere-Hellespontus (~45°S, 40°E), Aonia Terra (~50°S, 290°E), and Jeans (~70°S, 155°E) over the last four Mars years. General similarities in these observations were reflective of the proposed formation process (sliding CO2 blocks) while differences were correlated with regional environmental conditions related to the latitude or general geologic setting. This presentation describes the observed regional differences in linear gully morphology and activity, and investigates how environmental factors such as surface properties and local levels of frost may explain these variations while still supporting the proposed model. Determining the formation mechanism that forms these martian features can improve our understanding of both the climatic and geological processes that shape the Martian surface.

  8. Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites

    NASA Astrophysics Data System (ADS)

    Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong

    2014-03-01

    Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.

  9. Nonlinear effects of stretch on the flame front propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.

    2010-10-15

    In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperaturesmore » were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)« less

  10. Adhesion between plasma membrane and mitochondria with linking filaments in relation to migration of cytoplasmic droplet during epididymal maturation in guinea pig spermatozoa.

    PubMed

    Suzuki-Toyota, Fumie; Ito, Chizuru; Maekawa, Mamiko; Toyama, Yoshiro; Toshimori, Kiyotaka

    2010-09-01

    High-resolution microscopy has been used to investigate the mechanism of the migration of cytoplasmic droplets during epididymal maturation of guinea pig spermatozoa. On testicular spermatozoa, droplets are located at the neck and, after passage through the middle cauda epididymidis, migrate only as far as the center of the midpiece. Initially, the space between the plasma membrane and outer mitochondrial membranes outside the droplet is 30.8+/-11.0 nm, whereas on mature spermatozoa, it significantly (P<0.01) narrows to a more consistent 15.9+/-1.3 nm. This is accompanied by the appearance of thin filaments cross-linking the two membranes above and below the droplet. Changes also occur in the arrangement of intramembranous particles (IMPs) in the plasma membrane overlying the midpiece. At the spermatid stage, linear arrays of IMPs are absent but appear on immature spermatozoa, where they are short with an irregular orientation, in the epididymis. On mature spermatozoa, numerous parallel linear arrays are present at the region where the plasma membrane adheres to the mitochondria. The membrane adhesion process can thus be observed two-dimensionally. The initial migration of the droplet from the neck is probably attributable to diffusion, with the formation of cross-linking filaments between the two membranes in the proximal midpiece preventing any backward flow and squeezing the droplet distally until it is arrested at the central midpiece by the filaments formed in the distal midpiece. The filaments might also stabilize the flagellum against hypo-osmotic stress encountered during ejaculation and within the female tract.

  11. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  12. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    NASA Astrophysics Data System (ADS)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  13. Association Between Local Bipolar Voltage and Conduction Gap Along the Left Atrial Linear Ablation Lesion in Patients With Atrial Fibrillation.

    PubMed

    Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Mano, Toshiaki

    2017-08-01

    A bipolar voltage reflects a thick musculature where formation of a transmural lesion may be hard to achieve. The purpose of this study was to explore the association between local bipolar voltage and conduction gap in patients with persistent atrial fibrillation (AF) who underwent atrial roof or septal linear ablation. This prospective observational study included 42 and 36 consecutive patients with persistent AF who underwent roof or septal linear ablations, respectively. After pulmonary vein isolation, left atrial linear ablations were performed, and conduction gap sites were identified and ablated after first-touch radiofrequency application. Conduction gap(s) after the first-touch roof and septal linear ablation were observed in 13 (32%) and 19 patients (53%), respectively. Roof and septal area voltages were higher in patients with conduction gap(s) than in those without (roof, 1.23 ± 0.77 vs 0.73 ± 0.42 mV, p = 0.010; septal, 0.96 ± 0.43 vs 0.54 ± 0.18 mV, p = 0.001). Trisected regional analyses revealed that the voltage was higher at the region with a conduction gap than at the region without. Complete conduction block across the roof and septal lines was not achieved in 3 (7%) and 6 patients (17%), respectively. Patients in whom a linear conduction block could not be achieved demonstrated higher ablation area voltage than those with a successful conduction block (roof, 1.91 ± 0.74 vs 0.81 ± 0.51 mV, p = 0.001; septal, 1.15 ± 0.56 vs 0.69 ± 0.31 mV, p = 0.006). In conclusion, a high regional bipolar voltage predicts failure to achieve conduction block after left atrial roof or septal linear ablation. In addition, the conduction gap was located at the preserved voltage area. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  15. A new Hysteretic Nonlinear Energy Sink (HNES)

    NASA Astrophysics Data System (ADS)

    Tsiatas, George C.; Charalampakis, Aristotelis E.

    2018-07-01

    The behavior of a new Hysteretic Nonlinear Energy Sink (HNES) coupled to a linear primary oscillator is investigated in shock mitigation. Apart from a small mass and a nonlinear elastic spring of the Duffing oscillator, the HNES is also comprised of a purely hysteretic and a linear elastic spring of potentially negative stiffness, connected in parallel. The Bouc-Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. Coupling the primary oscillator with the HNES, three nonlinear equations of motion are derived in terms of the two displacements and the dimensionless hysteretic variable, which are integrated numerically using the analog equation method. The performance of the HNES is examined by quantifying the percentage of the initially induced energy in the primary system that is passively transferred and dissipated by the HNES. Remarkable results are achieved for a wide range of initial input energies. The great performance of the HNES is mostly evidenced when the linear spring stiffness takes on negative values.

  16. Effect of Initial Stress on the Dynamic Response of a Multi-Layered Plate-Strip Subjected to an Arbitrary Inclined Time-Harmonic Force

    NASA Astrophysics Data System (ADS)

    Daşdemir, A.

    2017-08-01

    The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.

  17. Computational modes and the Machenauer N.L.N.M.I. of the GLAS 4th order model. [NonLinear Normal Mode Initialization in numerical weather forecasting

    NASA Technical Reports Server (NTRS)

    Navon, I. M.; Bloom, S.; Takacs, L. L.

    1985-01-01

    An attempt was made to use the GLAS global 4th order shallow water equations to perform a Machenhauer nonlinear normal mode initialization (NLNMI) for the external vertical mode. A new algorithm was defined for identifying and filtering out computational modes which affect the convergence of the Machenhauer iterative procedure. The computational modes and zonal waves were linearly initialized and gravitational modes were nonlinearly initialized. The Machenhauer NLNMI was insensitive to the absence of high zonal wave numbers. The effects of the Machenhauer scheme were evaluated by performing 24 hr integrations with nondissipative and dissipative explicit time integration models. The NLNMI was found to be inferior to the Rasch (1984) pseudo-secant technique for obtaining convergence when the time scales of nonlinear forcing were much smaller than the time scales expected from the natural frequency of the mode.

  18. Parametric resonance in the early Universe—a fitting analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Daniel G.; Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanningmore » over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.« less

  19. A cross-field current instability for substorm expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lui, A.T.Y.; Chang, C.L.; Mankofsky, A.

    1991-07-01

    The authors investigate a cross-field current instability (CFCI) as a candidate for current disruption during substorm expansions. The numerical solution of the linear dispersion equation indicates that (1) the proposed instability can occur at the inner edge or the midsection of the neutral sheet just prior to the substorm expansion onset although the former environment is found more favorable at the same drift speed scaled to the ion thermal speed, (2) the computed growth time is comparable to the substorm onset time, and (3) the excited waves have a mixed polarization with frequencies near the ion gyrofrequency at the innermore » edge and near the lower hybrid frequency in the midtail region. On the basis of this analysis, they propose a substorm development scenario in which plasma sheet thinning during the substorm growth phase leads to an enhancement in the relative drift between ions and electrons. This results in the neutral sheet being susceptible to the CHCI and initiates the diversion of the cross-tail current through the ionosphere. Whether or not a substorm current wedge is ultimately formed is regulated by the ionospheric condition. A large number of substorm features can be readily understood with the proposed scheme. These include (1) precursory activities (pseudobreakups) prior to substorm onset, (2) substorm initiation region to be spatially localized, (3) three different solar wind conditions for substorm occurence, (4) skew towards evening local times for substorm onset locations, (5) different acceleration characteristics between ions and electrons, (6) tailward spreading of current disruption region after substorm onset, and (7) local time expansion of substorm current wedge with possible discrete westward jump for the evening expansion.« less

  20. Basins of attraction of the bistable region of time-delayed cutting dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  1. Analytical three-point Dixon method: With applications for spiral water-fat imaging.

    PubMed

    Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G

    2016-02-01

    The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.

  2. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    PubMed

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  3. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu

    2015-08-01

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  4. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8; Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  5. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, D. P., E-mail: dfulton@trialphaenergy.com; University of California, Irvine, California 92697; Lau, C. K.

    2016-05-15

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realisticmore » pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.« less

  6. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  7. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B.

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) duringmore » the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.« less

  9. On three dimensional object recognition and pose-determination: An abstraction based approach. Ph.D. Thesis - Michigan Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Quek, Kok How Francis

    1990-01-01

    A method of computing reliable Gaussian and mean curvature sign-map descriptors from the polynomial approximation of surfaces was demonstrated. Such descriptors which are invariant under perspective variation are suitable for hypothesis generation. A means for determining the pose of constructed geometric forms whose algebraic surface descriptors are nonlinear in terms of their orienting parameters was developed. This was done by means of linear functions which are capable of approximating nonlinear forms and determining their parameters. It was shown that biquadratic surfaces are suitable companion linear forms for cylindrical approximation and parameter estimation. The estimates provided the initial parametric approximations necessary for a nonlinear regression stage to fine tune the estimates by fitting the actual nonlinear form to the data. A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders and planes which merge smoothly into other surfaces was developed. It was shown that all split-merge algorithms are hypothesis-based. A finite-state algorithm for the extraction of the boundaries of run-length regions was developed. The computation takes advantage of the run list topology and boundary direction constraints implicit in the run-length encoding.

  10. Knowledge Driven Image Mining with Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels; which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper, we present the theory of Mercer Kernels, describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.

  11. Knowledge Driven Image Mining with Mixture Density Mercer Kernals

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper we present the theory of Mercer Kernels; describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.

  12. Near-infrared absorbing squarylium dyes with linearly extended π-conjugated structure for dye-sensitized solar cell applications.

    PubMed

    Maeda, Takeshi; Hamamura, Yuuto; Miyanaga, Kyohei; Shima, Naoki; Yagi, Shigeyuki; Nakazumi, Hiroyuki

    2011-11-18

    A novel class of near-infrared absorbing squarylium sensitizers with linearly extended π-conjugated structures, which were obtained by Pd-catalyzed cross-coupling reactions with stannylcyclobutenediones, has been developed for dye-sensitized solar cells. The cells based on these dyes exhibited a significant spectral response in the near-infrared region over 750 nm in addition to the visible region.

  13. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  14. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  15. Analyse des donnees gravimetriques en forage d'un gisement de sulfures massifs volcanogenes dans un contexte geologique complexe

    NASA Astrophysics Data System (ADS)

    Nackers, Gabrielle-Claudine

    A forward modeling and an inversion code have been developed to study the use of the borehole gravity method for exploration of volcanogenic massif sulphides (VMS) deposits in the Abitibi region of Quebec. Two problems are associated with the gravity method: acquiring data can be a long and costly method in the context where there is a limited quantity of boreholes and the separation of the response caused by the immediate or local geology and the response of deeper and farther formations called the regional. The principal objective of this master's project is to analyse those two major problems by modelling and inverting synthetic data. The specific objectives are the optimisation of the data acquisition settings and the regional-residual anomaly separation. The forward modeling method is based on the prismatic method described by Li and Chouteau (1998). A stochastic approach developed by Shamsipour et al. (2010) is chosen for the inversion and was adapted for borehole data. A density model of a typical VMS ore deposit was designed based on a number of well-known mines in the region of Rouyn-Noranda, Val-d'Or and Matagami. The data acquisition settings include the number of boreholes, their location and data collection sampling in the boreholes. Since the borehole gravity method is a costly geophysics method, it is best to know well the influence of the data acquisition settings to be able to optimise them. A minimum of three boreholes within appropriate distance from the target is required to locate any structure. When four boreholes situated at the detectability range of the deposit are used, it can be located with precision. In the scenario where the borehole gravity method is used to calculate the excess mass of a deposit and to define its structure, at least four boreholes should be used with one intercepting the deposit and fixed densities or gradient constraints must be applied. A 10m sampling interval is recommended. If the position of the deposit is known, a good compromise is to use a larger interval far from the deposit and use a 10m interval when the borehole is closer to the deposit. The regional-residual anomaly separation is a very important aspect of the data interpretation. Up to now no technic is effective in performing an optimal separation. Three different methods are used in this project; these methods are the vertical gradient, a non-linear filter and a wavelet filter. Once the data has been treated, the inverted density model is compared to the initial model. Though the different methods do not calculate the same residual, the results are fairly similar. All the methods can position the deposit well, but the shape differs from the initial model. Also, the excess mass calculated are similar to each other, but they are a bit underestimated compared to the real excess mass. Non-linear and wavelet filtering were proven to be the best methods to calculate results closest to the actual model. The vertical gradient grossly underestimates the density contrasts when no borehole intercepts the deposit. Furthermore, when the method is applied to evaluate the deposit, the shape is not recovered and the excess mass is underestimated even when constraints are used. Real borehole gravity data was acquired over and in the vicinity of the Virginia Gold's Coulon deposit (Quebec, Canada). A model was built using borehole electromagnetic data and geological data. This model is used to compare the inverted results. The three regional-residual anomaly separation methods were applied to the Bouguer anomaly of the Coulon data as well as the graphical method. Like for the synthetic data the residual calculated differed from method to method but the results resembled one another. The shapes of the structure calculated by the graphical, non-linear filtering and wavelet filtering methods were essentially the same. It was also observed that the excess masses calculated by graphical method and non-linear method were similar. Finally, the excess masses calculated by vertical gradient and wavelet filter were a bit lower.

  16. Design of linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.

    1990-01-01

    Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.

  17. Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor

    NASA Astrophysics Data System (ADS)

    Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo

    2017-12-01

    This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Bicknell, G. V., E-mail: parkin@mso.anu.edu.au

    Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions-perhaps triggered by the onset of turbulence-upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once themore » disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure <{alpha}{sub P}>bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).« less

  19. 75 FR 7464 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... Energy Efficient Building Systems Regional Innovation Cluster Initiative. A single proposal submitted by... systems design. The DOE funded Energy Efficient Building Systems Design Hub (the ``Hub'') will serve as a...

  20. Linear and nonlinear properties of the ULF waves driven by ring-beam distribution functions

    NASA Technical Reports Server (NTRS)

    Killen, K.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    The problem of the exitation of obliquely propagating magnetosonic waves which can steepen up (also known as shocklets) is considered. Shocklets have been observed upstream of the Earth's bow shock and at comets Giacobini-Zinner and Grigg-Skjellerup. Linear theory as well as two-dimensional (2-D) hybrid (fluid electrons, particle ions) simulations are used to determine the properties of waves generated by ring-beam velocity distributions in great detail. The effects of both proton and oxygen ring-beams are considered. The study of instabilities excited by a proton ring-beam is relevant to the region upstream of the Earth's bow shock, whereas the oxygen ring-beam corresponds to cometary ions picked up by the solar wind. Linear theory has shown that for a ring-beam, four instabilities are found, one on the nonresonant mode, one on the Alfven mode, and two along the magnetosonic/whistler branch. The relative growth rate of these instabilities is a sensitive function of parameters. Although one of the magnetosonic instabilities has maximum growth along the magnetic field, the other has maximum growth in oblique directions. We have studied the competition of these instabilities in the nonlinear regime using 2-D simulations. As in the linear limit, the nonlinear results are a function of beam density and distribution function. By performing the simulations as both initial value and driven systems, we have found that the outcome of the simulations can vary, suggesting that the latter type simulations is needed to address the observations. A general conclusion of the simulation results is that field-aligned beams do not result in the formation of shocklets, whereas ring-beam distributions can.

  1. Assessment of ERTS-1 imagery as a tool for regional geological analysis in New York State. [Lake Ontario

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W. (Principal Investigator); Fakundiny, R. H.; Forster, S. W.

    1974-01-01

    The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 26,500 km. Maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments. Multi-scale analysis of linears shows that single topographic linears at 1:2,500,000 may become dashed linears at 1:1,000,000 aligned zones of shorter parallel, en echelon, or conjugate linears at 1:5000,000, and shorter linears lacking any conspicuous zonal alignment at 1:250,000. Field work in the Catskills suggests that the prominent new NNE lineaments may be surface manifestations of dip slip faulting in the basement, and that it may become possible to map major joint sets over extensive plateau regions directly on the imagery. Most circular features found were explained away by U-2 airfoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines, sand plains, and end moraines.

  2. An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press

    PubMed Central

    Lockie, Robert G.; Callaghan, Samuel J.; Moreno, Matthew R.; Risso, Fabrice G.; Liu, Tricia M.; Stage, Alyssa A.; Birmingham-Babauta, Samantha A.; Stokes, John J.; Giuliano, Dominic V.; Lazar, Adrina; Davis, DeShaun L.; Orjalo, Ashley J.

    2017-01-01

    The close-grip bench press (CGBP) is a variation of the traditional bench press (TBP) that uses a narrower grip (~95% of biacromial distance (BAD)) and has potential application for athletes performing explosive arm actions from positions where the hands are held close to the torso. Limited research has investigated CGBP mechanics compared to the TBP. Twenty-seven resistance-trained individuals completed a one-repetition maximum TBP and CGBP. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% BAD. A linear position transducer measured lift distance and duration; peak and mean power, velocity, and force; distance and time when peak power occurred; and work. Pre-sticking region (PrSR), sticking region, and post-sticking region distance and duration for each lift was measured. A repeated measures ANOVA was used to derive differences between TBP and CGBP mechanics (p < 0.01); effect sizes (d) were also calculated. A greater load was lifted in the TBP, thus mean force was greater (d = 0.16–0.17). Peak power and velocity were higher in the CGBP, which had a longer PrSR distance (d = 0.49–1.32). The CGBP could emphasize power for athletes that initiate explosive upper-body actions with the hands positioned close to the torso.

  3. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  4. Dynamics of Nuclear Regions of Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1996-01-01

    Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.

  5. Nonlinear evolution of the coronal magnetic field under reconnective relaxation

    NASA Technical Reports Server (NTRS)

    Wolfson, R.; Vekstein, G. E.; Priest, E. R.

    1994-01-01

    Recently, Vekstein et al. (Vekstein, Priest, & Steele 1993) have developed a model for coronal heating in which the corona responds to photospheric footpoint motions by small-scale reconnection events that bring about a relaxed state while conserving magnetic helicity but not field-line connectivity. Vekstein et al. consider a partially open field configuration in which magnetic helicity is ejected to infinity on open field lines but retained in the closed-field region. Under this scheme, they describe the evolution of an initially potential field, in response to helicity injection, in the linear regime. The present work uses numerical calculations to extend the model of Vekstein et al. into the fully nonlinear regime. The results show a rise and bulging of the field lines of the closed-field region with increasing magnetic helicity, to a point where further solutions are impossible. We interpret these solution-sequence endpoints as indicating a possible loss of equilibrium, in the sense that a relaxed equilibrium state may no longer be available to the corona when sufficient helicity has been injected. The rise and bulging behavior is reminiscent of what is observed in a helmet streamer just before the start of a coronal mass ejection (CME), and so our model suggests that a catastrophic loss of magnetic equilibrium might be the initiation mechanism for CMEs. We also find that some choices of boundary conditions can result in qualitative changes in the magnetic topology, with the appearance of magnetic islands. Whether or not this behavior occurs depends on the relative strengths of the fields in the closed- and open-field regions; in particular, island formation is most likely when the open field (which is potential) is strong and thus acts to confine the force-free closed field. Finally, we show that the energy released through reconnective relaxation can be a substantial fraction of the magnetic energy injected into the corona through footpoint motions and may be sufficient for heating the corona above active regions.

  6. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  7. Application of iterative robust model-based optimal experimental design for the calibration of biocatalytic models.

    PubMed

    Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar

    2017-09-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.

  8. Interface behavior of a multi-layer fluid configuration subject to acceleration in a microgravity environment, supplement 1. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.

  9. A Smoluchowski model of crystallization dynamics of small colloidal clusters

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.

    2011-10-01

    We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.

  10. Segmentation of the glottal space from laryngeal images using the watershed transform.

    PubMed

    Osma-Ruiz, Víctor; Godino-Llorente, Juan I; Sáenz-Lechón, Nicolás; Fraile, Rubén

    2008-04-01

    The present work describes a new method for the automatic detection of the glottal space from laryngeal images obtained either with high speed or with conventional video cameras attached to a laryngoscope. The detection is based on the combination of several relevant techniques in the field of digital image processing. The image is segmented with a watershed transform followed by a region merging, while the final decision is taken using a simple linear predictor. This scheme has successfully segmented the glottal space in all the test images used. The method presented can be considered a generalist approach for the segmentation of the glottal space because, in contrast with other methods found in literature, this approach does not need either initialization or finding strict environmental conditions extracted from the images to be processed. Therefore, the main advantage is that the user does not have to outline the region of interest with a mouse click. In any case, some a priori knowledge about the glottal space is needed, but this a priori knowledge can be considered weak compared to the environmental conditions fixed in former works.

  11. Residential roof condition assessment system using deep learning

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong

    2018-01-01

    The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.

  12. Mortality trends due to chronic obstructive pulmonary disease in Brazil.

    PubMed

    Graudenz, Gustavo Silveira; Gazotto, Gabriel Pereira

    2014-01-01

    The purpose of this study was to update and analyze data on mortality trend due to chronic obstructive pulmonary disease (COPD) in Brazil. Initially, the specific COPD mortality rates were calculated from 1989 to 2009 using data collected from DATASUS (Departamento de Informática do SUS - Brazilian Health System Database). Then, the polynomial regression models from the observed functional relation were estimated based on mortality coefficients and study years. We verified that the general mortality rates due to COPD in Brazil showed an increasing trend from 1989 to 2004, and then decreased. Both genders showed the same increasing tendencies until 2004 and decreased thereafter. The age group under 35 years old showed a linear decreasing trend. All other age groups showed quadratic tendencies, with increases until the years of 1998-1999 and then decreasing. The South and Southeast regions showed the highest COPD mortality rates with increasing trends until the years 2001-2002 and then decreased. The North, Northeast and Central-West regions showed lower mortality rates but increasing trend. This is the first report of COPD mortality stabilization in Brazil since 1980.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence J.

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less

  14. Energy Accumulation and Emanation at Low Latitudes. Part II: Nonlinear Response to Strong Episodic Equatorial Forcing.

    NASA Astrophysics Data System (ADS)

    Chang, Hai-Ru; Webster, Peter J.

    1990-11-01

    A fully nonlinear model is used to reexamine the impact of a zonally varying basic state on the propagation characteristics of latitudinally equatorially trapped modes. Linear studies have shown that such modes are longitudinally trapped in regions of negative stretching deformation of the equatorial time-mean zonal flow (i.e., where Ux < 0) forming `accumulation' regions of wave action flux. Furthermore, the accumulation regions tend to act as local emanation regions to the extratropics. These physical communications between the tropics and extratropics are referred to as fast teleconnections due to their rapidity (periods of days to weeks) compared to the much slower climatological differences in the mean states such as occur between El Niño and La Niña. The latter form of communication between low and high latitudes, which is induced by very low frequency SST changes, is referred to as a slow teleconnection.It is generally found that accumulation and emanation regions are present in the nonlinear regime with much the same character as with the linear model. The similarity exists even when realistic forcing functions are used with amplitudes and temporal and spatial characteristics that correspond to impulsive convection in the western Pacific Ocean. A description of the convection is given. A diagnosis of the linear and nonlinear results shows that, in the tropics, the linear advection by the mean flow plays a dominant role and probably is the reason for the great similarity of the linear and nonlinear tropical atmosphere. However, there are some differences between the linear and nonlinear results. Nonlinear waves appear to propagate more rapidly through the maximum westerlies along the equator and with less difficulty than linear waves. The differences that do occur arise from the nonlinear changes in the tropical mass field, especially in the accumulation zone. Differences between linear and nonlinear responses in the midlatitude response to equatorial forcing appear to reflect changes in the tropics. Nonlinear maxima occur poleward of the region of tropical westerlies but only after accumulation has occurred along the equator.The results of the study are used to discuss the problem of why there is considerable similarity between simple linear models and more sophisticated nonlinear models. Such similarity would probably explain why the NMC and the NEPRF global models exhibit phase locked responses in the middle latitudes to imposed and impulsive tropical forcing. The role of fast teleconnenions in the longer term general circulation of the atmosphere is discussed, especially during El Niño and La Niña. Whereas an aggregate role for the fast teleconnections in producing very slowly evolving climate features remains obscure, it does appear that the accumulation-emanation theory may infer different routings for transient communications between the tropics and higher latitudes and vice vera depending upon the state of the basic flow.

  15. Testing and Life Prediction for Composite Rotor Hub Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2004-01-01

    A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.

  16. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    USGS Publications Warehouse

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  17. Application of linear array imaging techniques to the real-time inspection of airframe structures and substructures

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    Development and application of linear array imaging technologies to address specific aging-aircraft inspection issues is described. Real-time video-taped images were obtained from an unmodified commercial linear-array medical scanner of specimens constructed to simulate typical types of flaws encountered in the inspection of aircraft structures. Results suggest that information regarding the characteristics, location, and interface properties of specific types of flaws in materials and structures may be obtained from the images acquired with a linear array. Furthermore, linear array imaging may offer the advantage of being able to compare 'good' regions with 'flawed' regions simultaneously, and in real time. Real-time imaging permits the inspector to obtain image information from various views and provides the opportunity for observing the effects of introducing specific interventions. Observation of an image in real-time can offer the operator the ability to 'interact' with the inspection process, thus providing new capabilities, and perhaps, new approaches to nondestructive inspections.

  18. Seeking maximum linearity of transfer functions

    NASA Astrophysics Data System (ADS)

    Silva, Filipi N.; Comin, Cesar H.; Costa, Luciano da F.

    2016-12-01

    Linearity is an important and frequently sought property in electronics and instrumentation. Here, we report a method capable of, given a transfer function (theoretical or derived from some real system), identifying the respective most linear region of operation with a fixed width. This methodology, which is based on least squares regression and systematic consideration of all possible regions, has been illustrated with respect to both an analytical (sigmoid transfer function) and a simple situation involving experimental data of a low-power, one-stage class A transistor current amplifier. Such an approach, which has been addressed in terms of transfer functions derived from experimentally obtained characteristic surface, also yielded contributions such as the estimation of local constants of the device, as opposed to typically considered average values. The reported method and results pave the way to several further applications in other types of devices and systems, intelligent control operation, and other areas such as identifying regions of power law behavior.

  19. Kalman filter with a linear state model for PDR+WLAN positioning and its application to assisting a particle filter

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Nurminen, Henri; Piché, Robert

    2015-12-01

    Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models when the initial heading is not known, which is a common situation. The proposed method is computationally light and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and (re)initialization of a particle filter.

  20. Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States

    USGS Publications Warehouse

    Preston, T.M.; Sojda, R.S.; Gleason, R.A.

    2013-01-01

    Increased sedimentation and nutrient cycle changes in Prairie Pothole Region wetlands associated with agriculture threaten the permanence and ecological functionality of these important resources. To determine the effects of land use on sedimentation and nutrient cycling, soil cores were analyzed for cesium-137 (137Cs), lead-210 (210Pb), and potassium-40 (40K) activities; textural composition; organic and inorganic carbon (C); and total nitrogen (N) from twelve wetlands surrounded by cropland, Conservation Reserve Program (CRP) lands, or native prairie uplands. Separate soil cores from nine of these wetlands were also analyzed for phosphorus (P), nitrate (NO3), and ammonium (NH4) concentrations. Wetlands surrounded by cropland had significantly greater linear sediment accretion rates than wetlands surrounded by CRP or native prairie. Linear sediment accretion rates from wetlands surrounded by cropland were 2.7 and 6 times greater than wetlands surrounded by native prairie when calculated from the initial and peak occurrence of 137Cs, respectively, and 0.15 cm y−1 (0.06 in yr−1) greater when calculated from 210Pb. Relative to wetlands surrounded by CRP, linear sediment accretion rates for wetlands surrounded by cropland were 4.4 times greater when calculated from the peak occurrence of 137Cs. No significant differences existed between the linear sediment accretion rates between wetlands surrounded by native prairie or CRP uplands. Wetlands surrounded by cropland had increased clay, P, NO3, and NH4, and decreased total C and N concentrations compared to wetlands surrounded by native prairie. Wetlands surrounded by CRP had the lowest P and NO3 concentrations and had clay, NH4, C, and N concentrations between those of cropland and native prairie wetlands. We documented increased linear sediment accretion rates and changes in the textural and chemical properties of sediments in wetlands with cultivated uplands relative to wetlands with native prairie uplands. These findings demonstrate the value of the CRP at protecting wetland catchments to reduce sedimentation.

  1. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, itmore » transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.« less

  2. Geology and evolution of the Northern Kara Sea Shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, A.

    1991-08-01

    The interpretation of regional multichannel seismic reflection profiles collected during 1988-1987 yields the following features of the geology of the Northern Kara Sea Shelf (NKSS). Two regional deep sedimentary basins are clearly distinguished within the NKSS. They have rather complex inner structures and contain sediments 14.0-16.0 km thick. The basin are separated from each other by a relatively narrow, linear zone of basement high which extends from Uedineniya Island on the south to Vize Island on the north, where basement depth is 1.5-4.0 km. The sedimentary sections of the basins are composed of four lithological-stratigraphical sequences separated by unconformities whichmore » correlate well with regional unconformities in adjacent land areas. The initial stages of sedimentary basin development within the NKSS date back to the late Riphean-Vendian; probably they were associated with intracontinental rifting, when up to 4 km of sediments were deposited. During the most of the Phanerozoic, regional subsidence dominated; however, the rates of subsidence were different in the western and in the eastern basins, and varied in time for each basin. The subsidence was interrupted for relatively short periods when the region was affected by uplifts and erosion which resulted in formation of regional unconformities. The seismic data gave no evidence of Caledonian or any other Phanerozoic folding within the NKSS, which is in contrast with widespread assumptions. The results show that the geological structure and evolution of the NKSS differ greatly from those of adjacent Barents and Southern Kara Sea shelves.« less

  3. Electron spin resonance observation of charge carrier concentration in organic field-effect transistors during device operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Hirate, Masataka; Watanabe, Shun-ichiro; Kaneko, Kazuaki; Marumoto, Kazuhiro; Takenobu, Taishi; Iwasa, Yoshihiro; Kuroda, Shin-ichi

    2013-01-01

    Charge carrier concentration in operating organic field-effect transistors (OFETs) reflects the electric potential within the channel, acting as a key quantity to clarify the operation mechanism of the device. Here, we demonstrate a direct determination of charge carrier concentration in the operating devices of pentacene and poly(3-hexylthiophene) (P3HT) by field-induced electron spin resonance (FI-ESR) spectroscopy. This method sensitively detects polarons induced by applying gate voltage, giving a clear FI-ESR signal around g=2.003 in both devices. Upon applying drain-source voltage, carrier concentration decreases monotonically in the FET linear region, reaching about 70% of the initial value at the pinch-off point, and stayed constant in the saturation region. The observed results are reproduced well from the theoretical potential profile based on the gradual channel model. In particular, the carrier concentration at the pinch-off point is calculated to be β/(β+1) of the initial value, where β is the power exponent in the gate voltage (Vgs) dependence of the mobility (μ), expressed as μ∝Vgsβ-2, providing detailed information of charge transport. The present devices show β=2.6 for the pentacene and β=2.3 for the P3HT cases, consistent with those determined by transfer characteristics. The gate voltage dependence of the mobility, originating from the charge trapping at the device interface, is confirmed microscopically by the motional narrowing of the FI-ESR spectra.

  4. Formation and fate of alkyl nitrates from chlorine-initiated oxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Wang, D. S.; Hildebrandt Ruiz, L.

    2017-12-01

    Alkanes are a main source of anthropogenic volatile organic compounds (VOCs). Studies suggest that large alkanes, despite having high carbon mass, often do not significantly contribute to secondary organic aerosol (SOA) formation due to their low reactivity towards hydroxyl radicals. Chlorine radicals react much more quickly with alkanes; for example, the reaction of Cl with n-decane is about 50 times faster than the reaction of OH with n-decane. High reactive chlorine concentrations have been reported within continental regions as well as near coastal regions. The rapid oxidation of alkanes by chlorine radicals can therefore be a potentially significant, and overlooked source of alkylperoxy radicals and SOA formation. We present results from environmental chamber experiments on chlorine-initiated oxidation of C8, C10, and C12 linear and branched alkanes. Experiments were conducted under high NOx conditions to simulate highly polluted industrial environments. Formation of multigenerational gas-phase oxidation products were monitored using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (CIMS). High SOA formation was observed using an Aerosol Chemical Speciation Monitor (ACSM). Aerosol volatility was determined using a thermodenuder and a kinetic aerosol evaporation model. Particle-phase composition was investigated using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the CIMS, where dimer and oligomer formation were observed. Results from this study can be used to more accurately represent the fate of anthropogenic alkanes and SOA loadings in the atmosphere.

  5. Scarp degraded by linear diffusion: inverse solution for age.

    USGS Publications Warehouse

    Andrews, D.J.; Hanks, T.C.

    1985-01-01

    Under the assumption that landforms unaffected by drainage channels are degraded according to the linear diffusion equation, a procedure is developed to invert a scarp profile to find its 'diffusion age'. The inverse procedure applied to synthetic data yields the following rules of thumb. Evidence of initial scarp shape has been lost when apparent age reaches twice its initial value. A scarp that appears to have been formed by one event may have been formed by two with an interval between them as large as apparent age. The simplicity of scarp profile measurement and this inversion makes profile analysis attractive. -from Authors

  6. A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Goldberg, Hirsh; Nasrabadi, Nasser M.

    2007-04-01

    In this paper we implement various linear and nonlinear subspace-based anomaly detectors for hyperspectral imagery. First, a dual window technique is used to separate the local area around each pixel into two regions - an inner-window region (IWR) and an outer-window region (OWR). Pixel spectra from each region are projected onto a subspace which is defined by projection bases that can be generated in several ways. Here we use three common pattern classification techniques (Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST)) to generate projection vectors. In addition to these three algorithms, the well-known Reed-Xiaoli (RX) anomaly detector is also implemented. Each of the four linear methods is then implicitly defined in a high- (possibly infinite-) dimensional feature space by using a nonlinear mapping associated with a kernel function. Using a common machine-learning technique known as the kernel trick all dot products in the feature space are replaced with a Mercer kernel function defined in terms of the original input data space. To determine how anomalous a given pixel is, we then project the current test pixel spectra and the spectral mean vector of the OWR onto the linear and nonlinear projection vectors in order to exploit the statistical differences between the IWR and OWR pixels. Anomalies are detected if the separation of the projection of the current test pixel spectra and the OWR mean spectra are greater than a certain threshold. Comparisons are made using receiver operating characteristics (ROC) curves.

  7. Cosmic bubble and domain wall instabilities III: the role of oscillons in three-dimensional bubble collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J. Richard; Braden, Jonathan; Mersini-Houghton, Laura, E-mail: bond@cita.utoronto.ca, E-mail: j.braden@ucl.ac.uk, E-mail: mersini@physics.unc.edu

    2015-09-01

    We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strongmore » nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.« less

  8. Bibliography on Cold Regions Science and Technology. Volume 40, Part 1, 1986

    DTIC Science & Technology

    1986-12-01

    witer migration in an unaaturated frozen soil, morin clay, waa determined in horizontally cloaed »oil columns under linear temperature gradients...Peninsula At both ice fronts there is signiPcant tidal height energy in the first seven tidal species, indicating strong non- linear interaction, not all...dry soil weight, and increases with the increase in the molality linearly because of the linear freezing point depression. The curves of the

  9. Degradation of 4-n-nonylphenol under nitrate reducing conditions

    PubMed Central

    Viñas, Marc; Grotenhuis, Tim; Rijnaarts, Huub H. M.; Langenhoff, Alette A. M.

    2010-01-01

    Nonylphenol (NP) is an endocrine disruptor present as a pollutant in river sediment. Biodegradation of NP can reduce its toxicological risk. As sediments are mainly anaerobic, degradation of linear (4-n-NP) and branched nonylphenol (tNP) was studied under methanogenic, sulphate reducing and denitrifying conditions in NP polluted river sediment. Anaerobic bioconversion was observed only for linear NP under denitrifying conditions. The microbial population involved herein was further studied by enrichment and molecular characterization. The largest change in diversity was observed between the enrichments of the third and fourth generation, and further enrichment did not affect the diversity. This implies that different microorganisms are involved in the degradation of 4-n-NP in the sediment. The major degrading bacteria were most closely related to denitrifying hexadecane degraders and linear alkyl benzene sulphonate (LAS) degraders. The molecular structures of alkanes and LAS are similar to the linear chain of 4-n-NP, this might indicate that the biodegradation of linear NP under denitrifying conditions starts at the nonyl chain. Initiation of anaerobic NP degradation was further tested using phenol as a structure analogue. Phenol was chosen instead of an aliphatic analogue, because phenol is the common structure present in all NP isomers while the structure of the aliphatic chain differs per isomer. Phenol was degraded in all cases, but did not affect the linear NP degradation under denitrifying conditions and did not initiate the degradation of tNP and linear NP under the other tested conditions. PMID:20640878

  10. The Mid-Canada Radar Line and First Nations' people of the James Bay region, Canada: an evaluation using log-linear contingency modelling to analyze organochlorine frequency data.

    PubMed

    Tsuji, Leonard J S; Wainman, Bruce C; Martin, Ian D; Weber, Jean-Philippe; Sutherland, Celine; Elliott, J Richard; Nieboer, Evert

    2005-09-01

    Abandoned radar line stations in the North American arctic and sub-arctic regions are point sources of contamination, especially for PCBs. Few data exist with respect to human body burden of organochlorines (OCs) in residents of communities located in close proximity to these radar line sites. We compared plasma OC concentration (unadjusted for total lipids) frequency distribution data using log-linear contingency modelling for Fort Albany First Nation, the site of an abandoned Mid-Canada Radar Line station, and two comparison populations (the neighbouring community of Kashechewan First Nation without such a radar installation, and Hamilton, a city in southern Ontario, Canada). This type of analysis is important as it allows for an initial investigation of contaminant data without imputing any values. The two-state log-linear model (employing both non-detectable and detectable concentration frequencies and applicable to PCB congeners 28 and 105 and cis-nonachlor) and the four-state log-linear model (using quartile concentration frequencies for Aroclor 1260, PCB congeners [99,118,138,153,156,170,180,183,187], beta-HCH, p,p'-DDT +p,p'-DDE, HCB, mirex, oxychlordane, and trans-nonachlor) revealed that the effects of subject gender were inconsequential. Significant differences (p < 0.05) between the groups examined were attributable to the effect of location on the frequency of detection of OCs or on their differential distribution among the concentration quartiles. In general, people from Hamilton had higher frequencies of non-detections and of concentrations in the first quartile (p < 0.05) for most OCs compared to people from Fort Albany and Kashechewan (who consume a traditional diet of wild meats that does not include marine mammals). An unexpected finding was that, for Kashechewan males, the frequency of many OCs was significantly higher (p < 0.05) in the 4th concentration quartile than that predicted by the four-state log-linear model, but significantly lower than expected in the 1st quartile for beta-HCH. The levels of PCBs found for women in Fort Albany and Kashechewan were greater than those reported for Dene (First Nation people) and Métis (mixed heritage) of the western Northwest Territories (NWT) who did not consume marine mammals, and for Inuit living in the central NWT (occasional consumers of marine mammals). Moreover, the levels of total p,p'-DDT were greater for Fort Albany and Kashechewan women compared to these same aboriginal groups.

  11. Concentrating Solar Power Projects - Puerto Errado 1 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: September 7, 2011 Photo showing an aerial view at an angle ): Novatec Solar España S.L. (100%) Technology: Linear Fresnel reflector Turbine Capacity: Gross: 1.4 MW Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region: Murcia Lat

  12. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  13. Duloxetine Plasma Concentrations and Its Effectiveness in the Treatment of Nonorganic Chronic Pain in the Orofacial Region.

    PubMed

    Kobayashi, Yuka; Nagashima, Wataru; Tokura, Tatsuya; Yoshida, Keizo; Umemura, Eri; Miyauchi, Tomoya; Arao, Munetaka; Ito, Mikiko; Kimura, Hiroyuki; Kurita, Kenichi; Ozaki, Norio

    The purpose of this study was to examine the relationship between the pain-relieving effects of duloxetine and its plasma concentrations in patients with burning mouth syndrome and atypical odontalgia characterized by chronic nonorganic pain in the orofacial region. We administered duloxetine to 77 patients diagnosed as having burning mouth syndrome or atypical odontalgia for 12 weeks. The initial dose of duloxetine was established as 20 mg/d and was increased to 40 mg/d after week 2. We evaluated pain using the visual analog scale and depressive symptoms using the Structured Interview Guide for the Hamilton Depression Rating Scale at weeks 0, 2, 4, 6, 8, 10, and 12 and measured plasma concentrations of duloxetine 12 weeks after the start of its administration. Visual analog scale scores were significantly lower 12 weeks after than at the start of the administration of duloxetine (paired t test, t = 6.65, P < 0.0001). We examined the relationship between the rate of decreases in visual analog scale scores and plasma concentrations of duloxetine. There was no significant linear regression or quadratic regression. Duloxetine significantly relieved pain in patients with chronic nonorganic pain in the orofacial region. However, no relationship was observed between its pain-relieving effects and plasma concentrations.

  14. Model Capabilities | Regional Energy Deployment System Model | Energy

    Science.gov Websites

    representation of those effects throughout the scenario. Because those effects are highly non-linear and other models, limited foresight, price penalties for rapid growth, and other non-linear effects

  15. Are we there yet? Assessing achievement of vaccine-preventable disease goals in WHO's Western Pacific Region.

    PubMed

    Hennessey, Karen; Schluter, W William; Wang, Xiaojun; Boualam, Liliane; Jee, Youngmee; Mendoza-Aldana, Jorge; Roesel, Sigrun; Diorditsa, Sergey; Ehrenberg, John

    2014-07-23

    Accelerated disease control goals have long been appreciated for their role in galvanizing commitment and bringing a sense of urgency for disease prevention. WHO's Western Pacific Region has 14 on-going communicable disease reduction goals including 1 targeting eradication, 10 targeting elimination, and 3 control initiatives. These goals cover mother-to-child transmission of HIV, congenital syphilis, tuberculosis, leprosy, five parasitic diseases and four vaccine-preventable diseases (VPD). The initiatives have distinct objectives, approaches, and means in which to measure achievement of the goals. Given the long history and experience with VPD initiatives in the Western Pacific Region, this manuscript focuses on the Region's following initiatives: (1) smallpox eradication, (2) polio eradication, (3) measles elimination, (4) maternal and neonatal tetanus elimination (MNTE), and (5) hepatitis B control. There is good consistency across the Region's VPD initiatives yet a pattern of more robust and representative data requirements, stricter evaluation criteria, and more formal evaluation bodies are linked to the intensity of the goal - with eradication being the peak. On the other end of this spectrum, the Regional hepatitis B control initiative has established efficient and low-cost approaches for measuring impact and evaluating if the goals have been met. Even within the confines of VPD initiatives there are some deviations in use of terminology and comparisons across other disease control initiatives in the Region are provided. Copyright © 2014 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  16. Coronal Heating and the Increase of Coronal Luminosity with Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present the observed scaling of coronal luminosity with magnetic flux in a set of quiet regions. Comparison of this with the observed scaling found for active regions suggests an underlying difference between coronal heating in active regions and quiet regions. From SOHO/EIT coronal images and SOHO/MDI magnetograms of four similar large quiet regions, we measure L(sub corona) and Phi(sub total) in random subregions ranging in area from about four supergranules [(70,000 km)(exp 2)] to about 100 supergranules [(0.5 R(sub sun))(exp 2)], where L(sub corona) is the luminosity of the corona in a subregion and Phi(sub total) is the flux content of the magnetic network in the subregion. This sampling of our quiet regions yields a correlation plot of Log L(sub corona) vs Log Phi(sub total) appropriate for comparison with the corresponding plot for active regions. For our quiet regions, the mean values of L(sub corona) and Phi(sub total) both increase linearly with area (simply because each set of subregions of the same area has very nearly the same mean coronal luminosity per unit area and mean magnetic flux per unit area), and in each constant-area set the values of L(sub corona) and Phi(sub total) 'scatter' about their means for that area. This results in the linear least-squares fit to the Log ((L (sub corona)), vs Log ((Phi (sub total)) plot having a slope somewhat less than one. If active regions mimicked our quiet regions in that all large sets of same-area active regions had the same mean coronal luminosity per unit area and same mean magnetic flux per unit area, then the least-squares fit to their Log((L (sub corona)) vs Log((Phi (sub total)) plot would also have a slope of less than one. Instead, the slope for active regions is 1.2. Given the observed factor of three scatter about the least-squares linear fit, this slope is consistent with Phi(sub total) on average increasing linearly with area (A) as in quiet regions, but L(sub corona) on average increasing as the volume (A(exp 1.5)) of the active region instead of as the area. This possibility is reasonable if the heating in active regions is a burning down of previously-stored coronal magnetic energy rather than a steady dissipation of energy flux from below as expected in quiet regions.

  17. Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe

    NASA Astrophysics Data System (ADS)

    Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.

    2015-12-01

    The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.

  18. New Formulation for the Viscosity of n-Butane

    NASA Astrophysics Data System (ADS)

    Herrmann, Sebastian; Vogel, Eckhard

    2018-03-01

    A new viscosity formulation for n-butane, based on the residual quantity concept, uses the reference equation of state by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 929 (2006)] and is valid in the fluid region from the triple point to 650 K and to 100 MPa. The contributions for the zero-density viscosity and for the initial-density dependence were separately developed, whereas those for the critical enhancement and for the higher-density terms were pretreated. All contributions were given as a function of the reciprocal reduced temperature τ, while the last two contributions were correlated as a function of τ and of the reduced density δ. The different contributions were based on specific primary data sets, whose evaluation and choice were discussed in detail. The final formulation incorporates 13 coefficients derived employing a state-of-the-art linear optimization algorithm. The viscosity at low pressures p ≤ 0.2 MPa is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 293 ≤ T/K ≤ 626. The expanded uncertainty in the vapor phase at subcritical temperatures T ≥ 298 K as well as in the supercritical thermodynamic region T ≤ 448 K at pressures p ≤ 30 MPa is estimated to be 1.5%. It is raised to 4.0% in regions where only less reliable primary data sets are available and to 6.0% in ranges without any primary data, but in which the equation of state is valid. A weakness of the reference equation of state in the near-critical region prevents estimation of the expanded uncertainty in this region. Viscosity tables for the new formulation are presented in Appendix B for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.

  19. On the covariant gauge {alpha} of the linearized gravity in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheong, Lee Yen

    2012-09-26

    In previous work, we studied the linearized gravity with covariant gauge {beta}= 2/3 and {alpha}= 5/3. It was found that the sum of the source and initial contributions reproduces the correct field configuration over the whole de Sitter spacetime. In this paper, we extend this work to generalizing the linearized gravitational field in an arbitrary value of the gauge parameter {alpha} but the gauge parameter {beta} remains the same.

  20. A sequential linear optimization approach for controller design

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.; Junkins, J. L.

    1985-01-01

    A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.

  1. Annual Technical Report, Materials Research Laboratory, July 1, 1973-June 30, 1974

    DTIC Science & Technology

    1974-06-30

    Office, Durham (AROD) Picosecond Laser Research An Experimental study of the linear growth region of ultrashort pulse generation was made. The pulse ...Experimental Study of the Linear Growth Region of Ultrashort - Pulse Generation in a Mode-locked Nd:glass Laser ," Appl. Phys. Letters 24, 631 (1974...the loading pulse which may be incident from any direction, and the onset of fast fracture. The dependence of the delay time on the pulse intensity

  2. Conformally flat black hole initial data with one cylindrical end

    NASA Astrophysics Data System (ADS)

    Gabach Clément, María E.

    2010-06-01

    We give a complete analytical proof of the existence and uniqueness of extreme-like black hole initial data for Einstein equations, which possess a cylindrical end, analogous to extreme Kerr, extreme Reissner-Nördstrom and extreme Bowen-York's initial data. This extends and refines a previous result (Dain and Clement 2009 Class. Quantum Grav. 26 035020) to a general case of conformally flat, maximal initial data with angular momentum, linear momentum and matter.

  3. Vertical Distribution of Radiation Stress for Non-linear Shoaling Waves

    NASA Astrophysics Data System (ADS)

    Webb, B. M.; Slinn, D. N.

    2004-12-01

    The flux of momentum directed shoreward by an incident wave field, commonly referred to as the radiation stress, plays a significant role in nearshore circulation and, therefore, has a profound impact on the transport of pollutants, biota, and sediment in nearshore systems. Having received much attention since the seminal work of Longuet-Higgins and Stewart in the early 1960's, use of the radiation stress concept continues to be refined and evidence of its utility is widespread in literature pertaining to coastal and ocean science. A number of investigations, both numerical and analytical in nature, have used the concept of the radiation stress to derive appropriate forcing mechanisms that initiate cross-shore and longshore circulation, but typically in a depth-averaged sense due to a lack of information concerning the vertical distribution of the wave stresses. While depth-averaged nearshore circulation models are still widely used today, advancements in technology have permitted the adaptation of three-dimensional (3D) modeling techniques to study flow properties of complex nearshore circulation systems. It has been shown that the resulting circulation in these 3D models is very sensitive to the vertical distribution of the nearshore forcing, which have often been implemented as either depth-uniform or depth-linear distributions. Recently, analytical expressions describing the vertical structure of radiation stress components have appeared in the literature (see Mellor, 2003; Xia et al., 2004) but do not fully describe the magnitude and structure in the region bound by the trough and crest of non-linear, propagating waves. Utilizing a three-dimensional, non-linear, numerical model that resolves the time-dependent free surface, we present mean flow properties resulting from a simulation of Visser's (1984, 1991) laboratory experiment on uniform longshore currents. More specifically, we provide information regarding the vertical distribution of radiation stress components (Sxx and Sxy) resulting from obliquely incident, non-linear shoaling waves. Vertical profiles of the radiation stress components predicted by the numerical model are compared with published analytical solutions, expressions given by linear theory, and observations from an investigation employing second-order cnoidal wave theory.

  4. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  5. Nonlinearization and waves in bounded media: old wine in a new bottle

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; Seymour, Brian R.

    2017-02-01

    We consider problems such as a standing wave in a closed straight tube, a self-sustained oscillation, damped resonance, evolution of resonance and resonance between concentric spheres. These nonlinear problems, and other similar ones, have been solved by a variety of techniques when it is seen that linear theory fails. The unifying approach given here is to initially set up the appropriate linear difference equation, where the difference is the linear travel time. When the linear travel time is replaced by a corrected nonlinear travel time, the nonlinear difference equation yields the required solution.

  6. Rheological characterization of geopolymer binder modified by organic resins

    NASA Astrophysics Data System (ADS)

    Cekalová, M.; Kovárík, T.; Rieger, D.

    2017-01-01

    The purpose of this study is going to investigate properties of alkali-activated powder (calcined kaoilinitic clay and granulated blast furnace slag) prepared as a geopolymer paste and modified by various amount of organic resin. Hybrid organic-inorganic binders were prepared as a mix of organic resin and geopolymer inorganic paste under vacuum conditions. The process of solidification was investigated by measurements of storage (G’) and loss modulus ( G’) in torsion. The measurement was conducted in oscillatory mode by constant strain of 0.01 %. This strain is set in linear visco-elastic region for minimization influence of paste structure. The effect of organic resin is presented and determined by changes of viscosity (‘n*), modules in torsion and tangent of loss angle (tan 8). Results indicate that addition of organic resin significantly affects the initial viscosity and hardening kinetics.

  7. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    NASA Astrophysics Data System (ADS)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  8. Proposed algorithm for determining the delta intercept of a thermocouple psychrometer curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzmack, M.A.

    1993-07-01

    The USGS Hydrologic Investigations Program is currently developing instrumentation to study the unsaturated zone at Yucca Mountain in Nevada. Surface-based boreholes up to 2,500 feet in depth will be drilled, and then instrumented in order to define the water potential field within the unsaturated zone. Thermocouple psychrometers will be used to monitor the in-situ water potential. An algorithm is proposed for simply and efficiently reducing a six wire thermocouple psychrometer voltage output curve to a single value, the delta intercept. The algorithm identifies a plateau region in the psychrometer curve and extrapolates a linear regression back to the initial startmore » of relaxation. When properly conditioned for the measurements being made, the algorithm results in reasonable results even with incomplete or noisy psychrometer curves over a 1 to 60 bar range.« less

  9. Development of TMA-based imaging system for hyperspectral application

    NASA Astrophysics Data System (ADS)

    Choi, Young-Wan; Yang, Seung-Uk; Kang, Myung-Seok; Kim, Ee-Eul

    2017-11-01

    Funded by the Ministry of Commerce, Industry, and Energy of Korea, SI initiated the development of the prototype model of TMA-based electro-optical system as part of the national space research and development program. Its optical aperture diameter is 120 mm, the effective focal length is 462 mm, and its full field-of-view is 5.08 degrees. The dimension is of about 600 mm × 400 mm × 400 mm and the weight is less than 15 kg. To demonstrate its performance, hyper-spectral imaging based on linear spectral filter is selected for the application of the prototype. The spectral resolution will be less than 10 nm and the number of channels will be more than 40 in visible and nearinfrared region. In this paper, the progress made so far on the prototype development will be presented

  10. A Bearingless Switched-Reluctance Motor for High Specific Power Applications

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Siebert, Mark

    2006-01-01

    A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.

  11. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    PubMed

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  12. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension

    PubMed Central

    Smit, Judith J; Monteferrario, Davide; Noordermeer, Sylvie M; van Dijk, Willem J; van der Reijden, Bert A; Sixma, Titia K

    2012-01-01

    Activation of the NF-κB pathway requires the formation of Met1-linked ‘linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed ‘Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains. PMID:22863777

  13. Characterization of a signal recording system for accurate velocity estimation using a VISAR

    NASA Astrophysics Data System (ADS)

    Rav, Amit; Joshi, K. D.; Singh, Kulbhushan; Kaushik, T. C.

    2018-02-01

    The linearity of a signal recording system (SRS) in time as well as in amplitude are important for the accurate estimation of the free surface velocity history of a moving target during shock loading and unloading when measured using optical interferometers such as a velocity interferometer system for any reflector (VISAR). Signal recording being the first step in a long sequence of signal processes, the incorporation of errors due to nonlinearity, and low signal-to-noise ratio (SNR) affects the overall accuracy and precision of the estimation of velocity history. In shock experiments the small duration (a few µs) of loading/unloading, the reflectivity of moving target surface, and the properties of optical components, control the amount of input of light to the SRS of a VISAR and this in turn affects the linearity and SNR of the overall measurement. These factors make it essential to develop in situ procedures for (i) minimizing the effect of signal induced noise and (ii) determine the linear region of operation for the SRS. Here we report on a procedure for the optimization of SRS parameters such as photodetector gain, optical power, aperture etc, so as to achieve a linear region of operation with a high SNR. The linear region of operation so determined has been utilized successfully to estimate the temporal history of the free surface velocity of the moving target in shock experiments.

  14. Initial Human Response to Nuclear Radiation

    DTIC Science & Technology

    1982-04-01

    radiation from a linear accelerator . Victim A , age 31, received a dose of 100 rads; victim B, age 29... The radiation has always been in the million-electron- volt range, usually from a cobalt 60 source but sometimes using linear accelerators prouucing up...more recent medical experience, Appendix B presents comments by a radiation oncologist on the

  15. Subspace in Linear Algebra: Investigating Students' Concept Images and Interactions with the Formal Definition

    ERIC Educational Resources Information Center

    Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.

    2011-01-01

    This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…

  16. Local reduction of certain wave operators to one-dimensional form

    NASA Technical Reports Server (NTRS)

    Roe, Philip

    1994-01-01

    It is noted that certain common linear wave operators have the property that linear variation of the initial data gives rise to one-dimensional evolution in a plane defined by time and some direction in space. The analysis is given For operators arising in acoustics, electromagnetics, elastodynamics, and an abstract system.

  17. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE PAGES

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  18. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  19. Quantification of regional nonuniformity and paradoxical intramural mechanics in hypertrophic cardiomyopathy by high frame rate ultrasound myocardial strain mapping.

    PubMed

    Sengupta, Partho P; Mehta, Vimal; Arora, Ramesh; Mohan, Jagdish C; Khandheria, Bijoy K

    2005-07-01

    This study tested the hypothesis that linear mapping of regional myocardial strain comprehensively assesses variations in regional myocardial function in hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy is characterized by disorganized myocardial architecture that results in spatial and temporal nonuniformity of regional function. Left ventricular deformation was quantified in 20 patients with hypertrophic cardiomyopathy and compared with 25 age- and sex-matched control subjects. Abnormalities in subendocardial strain ranged from reduced longitudinal shortening to paradoxical systolic lengthening and delayed regional longitudinal contractions that were often located in small subsegmental areas. These variations were underestimated significantly by arbitrary measurements compared with linear mapping, in which a region of interest was moved across the longitudinal length of left ventricle (difference of peak and least strain, 10.7% +/- 5.1% vs 17% +/- 5.5%; P < .001). Echocardiographic assessment of variations in regional strain requires careful mapping and may be inappropriately assessed if left ventricular segments are sampled at arbitrary focal locations.

  20. Regional differences of maternal health care utilization in China.

    PubMed

    Tang, Mengsha; Wang, Debin; Hu, Hong; Wang, Guoping; Li, Rongjie

    2015-03-01

    To describe regional differences in maternal health care (MHC) utilization in China. Cross-sectional comparisons of 4 MHC utilization indicators, namely, early (13 weeks within pregnancy) examinations rate (EER), prenatal examination (>4 times) rate (PER), hospital delivery rate (HDR), and postnatal visit (>1 time) rate (PVR), using index of dissimilarity (ID), linear correlation analysis, and geographical mapping. Significant differences existed across regions in all the indicators (P < .01). All the IDs for rural areas were higher than that for urban areas. The IDs for major regions ranged from 0.01 to 0.27. Linear correlation coefficients between MHC utilization indicators by regions varied from 0.007 to 0.889 (in absolute value, P < .05). Characteristic formats of geographical distribution were found with PER, EER, HDR, and PVR being in "high-plateau," "low-plateau," and "shifting" patterns, respectively. There exist substantial regional discrepancies in MHC utilization in China and future MHC-related policies should take account regional context. © 2013 APJPH.

  1. Biomechanically based simulation of brain deformations for intraoperative image correction: coupling of elastic and fluid models

    NASA Astrophysics Data System (ADS)

    Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried

    2000-06-01

    In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.

  2. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  3. A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics

    NASA Astrophysics Data System (ADS)

    Rawy, E. K.

    2018-06-01

    We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.

  4. Analysis of a Linear System for Variable-Thrust Control in the Terminal Phase of Rendezvous

    NASA Technical Reports Server (NTRS)

    Hord, Richard A.; Durling, Barbara J.

    1961-01-01

    A linear system for applying thrust to a ferry vehicle in the 3 terminal phase of rendezvous with a satellite is analyzed. This system requires that the ferry thrust vector per unit mass be variable and equal to a suitable linear combination of the measured position and velocity vectors of the ferry relative to the satellite. The variations of the ferry position, speed, acceleration, and mass ratio are examined for several combinations of the initial conditions and two basic control parameters analogous to the undamped natural frequency and the fraction of critical damping. Upon making a desirable selection of one control parameter and requiring minimum fuel expenditure for given terminal-phase initial conditions, a simplified analysis in one dimension practically fixes the choice of the remaining control parameter. The system can be implemented by an automatic controller or by a pilot.

  5. Nuclear Modification of Neutral Pion Production at Low x in √s=200 GeV d+Au and p+p Collisions

    NASA Astrophysics Data System (ADS)

    Sedgwick, Kenneth Blair

    Nuclear modification factors quantify suppression in particle production due to nuclear effects. They are defined as a ratio of invariant yields, with a numerator derived from a given species of nuclear collision and a denominator derived from a hypothetically equivalent ensemble of independent proton-proton collisions. At large momentum transfer Q 2 and low momentum fraction x, the neutral pion nuclear modification factor Rd+Au for d+Au collisions is useful for investigating initial state gluon saturation. The large initial state gluon multiplicity of the Au nucleus causes saturation effects to occur at lower energies in d+Au collisions, as compared to p+p collisions, resulting in a relative suppression. Measuring the relative suppression R d+Au can therefore test the validity of competing models describing saturation, including the framework of a color glass condensate (CGC). Measurements at low x are of particular interest because in this region linear pQCD evolution equations begin to break down. The Froissart theorem places a robust theoretical upper limit on the behavior of hadronic cross sections: a cross section can increase at most like ln2 E. Equivalently, an hadronic structure function can increase at most like ln2(1/x). Adherence to this theorem is necessary to preserve S-matrix unitarity; no physical system should exhibit behavior to the contrary. However linear evolution equations, which dictate structure function behavior, predict an unchecked growth of low-x gluons, in violation of the theorem. For this reason, it is expected that gluon saturation, via non-linear evolution, will take place at low x to steer the gluon distribution function back within the limitations of the Froissart bound. Greater suppression is expected at lower Q2; however, at low x, regions of high Q 2 are more difficult to access experimentally. Pushing out to higher Q2 is important for discriminating between competing theoretical models. In practice, regions of low x and high Q 2 translate to measurements at, respectively, high rapidity eta and high transverse momentum p⊥. The high rapidity 3.1 < eta < 3.9 Muon Piston Calorimeter (MPC) detector at PHENIX is ideally suited for measurements of neutral pion R d+Au probing regions of low x. At √s = 200 GeV, a combinatoric analysis of neutral pion decay products in the MPC can obtain measurements of Rd+Au up to a transverse momentum of p⊥ = 2 GeV/c. However, at p ⊥ greater than 2 GeV/c, photons from neutral pion decay have insufficient spatial separation to be independently resolved in the detector. In this analysis the transverse momentum range of the detector, measuring R d+Au at √s = 200 GeV, is extended to p⊥ = 3.5 GeV/c by studying photon pairs from neutral pions that resolve in the MPC as a single cluster. Increased suppression is reproduced at low p⊥, in agreement with previous data. For p⊥ > 2 GeV/c Cronin enhancement is not observed, as anticipated by the CGC framework. However, the data can not rule out the possibility that the observed suppression is the result of extreme nuclear shadowing. Also presented are invariant neutral pion yields for p+p and d+Au collisions and the invariant neutral pion cross section for p+p collisions at √s = 200 GeV.

  6. Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1982-01-01

    Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.

  7. Stars and linear dunes on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Blumberg, Dan G.

    1994-01-01

    A field containing 11 star and incipient star dunes occurs on Mars at 8.8 deg S, 270.9 deg W. Examples of linear dunes are found in a crater at 59.4 deg S, 343 deg W. While rare, dune varieties that form in bi- and multidirectional wind regimes are not absent from the surface of Mars. The occurence of both of these dune fields offers new insight into the nature of martian wind conditions and sand supply. The linear dunes appears to have formed through modification of a formerly transverse aeolian deposit, suggesting a relatively recent change in local wind direction. The 11 dunes in the star dune locality show a progressive change from barchan to star form as each successive dune has traveled up into a valley, into a more complex wind regime. The star dunes corroborate the model of N. Lancaster (1989), for the formation of star dunes by projection of transverse dunes into a complex, topographically influenced wind regime. The star dunes have dark streaks emanating from them, providing evidence that the dunes were active at or near the time the relevant image was obtained by the Viking 1 orbiter in 1978. The star and linear dunes described here are located in different regions on the martian surface. Unlike most star and linear dunes on Earth, both martian examples are isolated occurrences; neither is part of a major sand sea. Previously published Mars general circulation model results suggest that the region in which the linear dune field occurs should be a bimodal wind regime, while the region in which the star dunes occur should be unimodal. The star dunes are probably the result of localized complication of the wind regime owing to topographic confinement of the dunes. Local topographic influence on wind regime is also evident in the linear dune field, as there are transverse dunes in close proximity to the linear dunes, and their occurrence is best explained by funneling of wind through a topographic gap in the upwind crater wall.

  8. On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds

    NASA Astrophysics Data System (ADS)

    Lupo, Umberto

    2018-04-01

    The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.

  9. A phase space approach to wave propagation with dispersion.

    PubMed

    Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J

    2015-08-01

    A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.

  10. 78 FR 48862 - Intent To Prepare an Environmental Impact Statement for the Gulf Regional Airspace Strategic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... DEPARTMENT OF DEFENSE Department of Air Force Intent To Prepare an Environmental Impact Statement for the Gulf Regional Airspace Strategic Initiative (GRASI) Landscape Initiative AGENCY: Department of... Airspace Strategic Initiative (GRASI) Landscape Initiative (GLI) is a U.S Air Force-led partnership with...

  11. Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Karen dos Santos; Winkler, Mirko S.; Benchimol-Barbosa, Paulo Roberto; de Hoogh, Kees; Artaxo, Paulo Eduardo; de Souza Hacon, Sandra; Schindler, Christian; Künzli, Nino

    2018-07-01

    Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5 concentrations, and thus provides an alternative method for producing knowledge regarding the level of pollution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2 based on results from linear regression and non-linear regression for six different models. The regression results for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 concentrations when considering the whole period studied. In the context of Amazonia, it was the first study predicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian Amazon Region.

  12. Study of high-performance canonical molecular orbitals calculation for proteins

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2017-11-01

    The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.

  13. Incorporating TPC observed parameters and QuikSCAT surface wind observations into hurricane initialization using 4D-VAR approaches

    NASA Astrophysics Data System (ADS)

    Park, Kyungjeen

    This study aims to develop an objective hurricane initialization scheme which incorporates not only forecast model constraints but also observed features such as the initial intensity and size. It is based on the four-dimensional variational (4D-Var) bogus data assimilation (BDA) scheme originally proposed by Zou and Xiao (1999). The 4D-Var BDA consists of two steps: (i) specifying a bogus sea level pressure (SLP) field based on parameters observed by the Tropical Prediction Center (TPC) and (ii) assimilating the bogus SLP field under a forecast model constraint to adjust all model variables. This research focuses on improving the specification of the bogus SLP indicated in the first step. Numerical experiments are carried out for Hurricane Bonnie (1998) and Hurricane Gordon (2000) to test the sensitivity of hurricane track and intensity forecasts to specification of initial vortex. Major results are listed below: (1) A linear regression model is developed for determining the size of initial vortex based on the TPC observed radius of 34kt. (2) A method is proposed to derive a radial profile of SLP from QuikSCAT surface winds. This profile is shown to be more realistic than ideal profiles derived from Fujita's and Holland's formulae. (3) It is found that it takes about 1 h for hurricane prediction model to develop a conceptually correct hurricane structure, featuring a dominant role of hydrostatic balance at the initial time and a dynamic adjustment in less than 30 minutes. (4) Numerical experiments suggest that track prediction is less sensitive to the specification of initial vortex structure than intensity forecast. (5) Hurricane initialization using QuikSCAT-derived initial vortex produced a reasonably good forecast for hurricane landfall, with a position error of 25 km and a 4-h delay at landfalling. (6) Numerical experiments using the linear regression model for the size specification considerably outperforms all the other formulations tested in terms of the intensity prediction for both Hurricanes. For examples, the maximum track error is less than 110 km during the entire three-day forecasts for both hurricanes. The simulated Hurricane Gordon using the linear regression model made a nearly perfect landfall, with no position error and only 1-h error in landfalling time. (7) Diagnosis of model output indicates that the initial vortex specified by the linear regression model produces larger surface fluxes of sensible heat, latent heat and moisture, as well as stronger downward angular momentum transport than all the other schemes do. These enhanced energy supplies offset the energy lost caused by friction and gravity wave propagation, allowing for the model to maintain a strong and realistic hurricane during the entire forward model integration.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie

    In this research, a weakly nonlinear (WN) model has been developed considering the growth of a small perturbation on a cylindrical interface between two incompressible fluids which is subject to arbitrary radial motion. We derive evolution equations for the perturbation amplitude up to third order, which can depict the linear growth of the fundamental mode, the generation of the second and third harmonics, and the third-order (second-order) feedback to the fundamental mode (zero-order). WN solutions are obtained for a special uniformly convergent case. WN analyses are performed to address the dependence of interface profiles, amplitudes of inward-going and outward-going parts,more » and saturation amplitudes of linear growth of the fundamental mode on the Atwood number, the mode number (m), and the initial perturbation. The difference of WN evolution in cylindrical geometry from that in planar geometry is discussed in some detail. It is shown that interface profiles are determined mainly by the inward and outward motions rather than bubbles and spikes. The amplitudes of inward-going and outward-going parts are strongly dependent on the Atwood number and the initial perturbation. For low-mode perturbations, the linear growth of fundamental mode cannot be saturated by the third-order feedback. For fixed Atwood numbers and initial perturbations, the linear growth of fundamental mode can be saturated with increasing m. The saturation amplitude of linear growth of the fundamental mode is typically 0.2λ–0.6λ for m < 100, with λ being the perturbation wavelength. Thus, it should be included in applications where Bell-Plesset [G. I. Bell, Los Alamos Scientific Laboratory Report No. LA-1321, 1951; M. S. Plesset, J. Appl. Phys. 25, 96 (1954)] converging geometry effects play a pivotal role, such as inertial confinement fusion implosions.« less

  15. Analysis of Interval Changes on Mammograms for Computer Aided Diagnosis

    DTIC Science & Technology

    2000-05-01

    tizer was calibrated so that the gray values were linearly and erage pixel values in the template and ROI, respectively. The inversely proportional to the...earlier for linearly and inversely proportional to the OD within the alignment of the breast regions, except that the regions to be range 0-4 OD...results versely proportional to the radial distance r from the nipple. in a decrease in the value of (to 20 mm. This decrease helps For the data set

  16. Measurement of IR optics with linear coupling's action-angle parametrization

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.

    2005-08-01

    Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  17. Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko

    2016-03-01

    Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.

  18. Thermodynamic output of single-atom quantum optical amplifiers and their phase-space fingerprint

    NASA Astrophysics Data System (ADS)

    Perl, Y.; Band, Y. B.; Boukobza, E.

    2017-05-01

    We analyze a resonant single-atom two-photon quantum optical amplifier both dynamically and thermodynamically. A detailed thermodynamic analysis shows that the nonlinear amplifier is thermodynamically equivalent to the linear amplifier. However, by calculating the Wigner quasiprobability distribution for various initial field states, we show that unique quantum features in optical phase space, absent in the linear amplifier, are retained for extended times, despite the fact that dissipation tends to wash out dynamical features observed at early evolution times. These features are related to the discrete nature of the two-photon matter-field interaction and fingerprint the initial field state at thermodynamic times.

  19. Miscible gravitational instability of initially stable horizontal interface in a porous medium: Non-monotonic density profiles

    NASA Astrophysics Data System (ADS)

    Kim, Min Chan

    2014-11-01

    To simulate a CO2 sequestration process, some researchers employed a water/propylene glycol (PPG) system which shows a non-monotonic density profile. Motivated by this fact, the stability of the diffusion layer of two miscible fluids saturated in a porous medium is analyzed. For a non-monotonic density profile system, linear stability equations are derived in a global domain, and then transformed into a system of ordinary differential equations in an infinite domain. Initial growth rate analysis is conducted without the quasi-steady state approximation (QSSA) and shows that initially the system is unconditionally stable for the least stable disturbance. For the time evolving case, the ordinary differential equations are solved applying the eigen-analysis and numerical shooting scheme with and without the QSSA. To support these theoretical results, direct numerical simulations are conducted using the Fourier spectral method. The results of theoretical linear stability analyses and numerical simulations validate one another. The present linear and nonlinear analyses show that the water/PPG system is more unstable than the CO2/brine one, and the flow characteristics of these two systems are quite different from each other.

  20. Thought suppression across time: Change in frequency and duration of thought recurrence.

    PubMed

    Lambert, Ann E; Hu, Yueqin; Magee, Joshua C; Beadel, Jessica R; Teachman, Bethany A

    2014-01-01

    Some studies have found that trying to suppress thoughts increases their long-term recurrence, a phenomenon associated with psychopathology, particularly obsessive-compulsive disorder. However, effect sizes in thought suppression studies have often been small and inconsistent. The present study sought to improve thought suppression conceptualization and measurement by examining two distinct dimensions of thought recurrence - frequency and duration of a thought's return - and how they evolve over time. After a thought focus period, 100 adults were assigned to either suppress or monitor the recurrence of an unpleasant thought for 4 min. Then, during a second four-minute period, all participants were asked to monitor the thought's recurrence. Hierarchical linear modeling indicated that thought frequency declined across time and the rate of decline slowed as time went on. Initially, the extent of thought duration remained short and stable for those asked to suppress, and increased linearly over time for those asked to monitor. Later, this pattern reversed. Duration increased linearly for those initially asked to suppress but was short and stable for those who initially monitored. Accounting for change over time and means of measuring recurrence (frequency vs. duration) may help elucidate past mixed findings, and improve thought suppression research methodology.

  1. Radio-frequency-assisted current startup in the fusion engineering device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.

    1984-01-01

    Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R{sub 0} = 4.8 m, a = 1.3 m, sigma = 1.6, B(R{sub 0}) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T {sub e} approx. = 100 eV, n {sub e} approx. = 10{supmore » 19} m{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a{sub 0} approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less

  2. Radio-frequency-assisted current startup in the Fusion Engineering Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowski, S.K.; Kammash, T.; Martin Peng, Y.K.

    1984-07-01

    Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R/sub 0/ = 4.8 m, a = 1.3 m, sigma = 1.6, B(R/sub 0/) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T /sub e/ approx. = 100 eV, n /sub e/ approx. = 10/supmore » 19/ m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a/sub 0/ approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less

  3. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe; Le Gal, Patrice

    2016-12-01

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense.

  4. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the onset of hierarchical clustering. This success is found at a considerable higher non-linearity than is usual for perturbation theory. Whether a truncation of the initial power-spectrum in hierarchical models retains this improvement will be analyzed in a forthcoming work.

  5. Starspots and active regions on IN Com: UBVRI photometry and linear polarization

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.

    2014-06-01

    The activity of the variable star IN Com is considered using the latest multicolor UBVRI photometry and linear polarimetric observations carried out during a decade. The photometric variability of the star is fully described using the zonal spottedness model developed at the Crimean Astrophysical Observatory (CrAO). Spotted regions cover up to 22% of the total stellar surface, with the difference in temperatures between the quiet photosphere and the spot umbra being 600 K. The spots are located at middle and low latitudes (40°-55°). The intrinsic broad-band linear polarization of IN Com and its rotational modulation in the U band due to local magnetic fields at the most spotted (active) stellar longitudes were detected for the first time.

  6. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  7. A growing degree-day model for determination of Fasciola hepatica infection risk in New Zealand with future predictions using climate change models.

    PubMed

    Haydock, L A J; Pomroy, W E; Stevenson, M A; Lawrence, K E

    2016-09-15

    Infections of ruminants with Fasciola hepatica are considered to be of regional importance within New Zealand but there is very little recent information on its prevalence or severity other than anecdotal reports. Generally they are considered to be of secondary importance compared to gastrointestinal nematode infections. Utilizing data from Virtual Climate Stations (n=11491) distributed on a 5km grid around New Zealand a growing degree-day model was used to describe the risk of infection with liver fluke from 1972 to 2012 and then to apply the predictions to estimate the risk of fluke infections within New Zealand for the years 2040 and 2090. The growing degree-day model was validated against the most recent survey of infection within New Zealand in 1984. A strong positive linear relationship for 1984 between F. hepatica prevalence in lambs and infection risk (p<0.001; R 2 =0.71) was found indicating the model was effective for New Zealand. A linear regression for risk values from 14 regions in New Zealand for 1972-2012 did not show any discernible change in risk of infection over this time period (p>0.05). Post-hoc comparisons indicate the risk in Westland was found to be substantially higher (p<0.05) than all other regions with Northland ranked second highest. Notable predicted changes in F. hepatica infection risk in 2040 and 2090 were detected although they did vary between different climate change scenarios. The highest average percentage changes in infection risk were found in regions with low initial risk values such as Canterbury and Otago; in these regions 2090 infection risk is expected to rise by an average of 186% and 184%, respectively. Despite the already high levels of infection risk in Westland, values are expected to rise by a further 76% by 2090. The model does show some areas with little change with Taranaki predicted to experience only very minor increases in infection risk with average 2040 and 2090 predicted changes of 0% and 29%, respectively. Overall, these results suggest the significance of F. hepatica in New Zealand farming systems is probably underestimated and that this risk will generally increase with global warming following climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system

    NASA Astrophysics Data System (ADS)

    Marchand, Belinda G.

    Multi-spacecraft formations, evolving near the vicinity of the libration points of the Sun-Earth/Moon system, have drawn increased interest for a variety of applications. This is particularly true for space based interferometry missions such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-Ray Imaging Mission (MAXIM). Recent studies in formation flight have focused, primarily, on the control of formations that evolve in the immediate vicinity of the Earth. However, the unique dynamical structure near the libration points requires that the effectiveness and feasibility of these methods be re-examined. The present study is divided into two main topics. First, a dynamical systems approach is employed to develop a better understanding of the natural uncontrolled formation dynamics in this region of space. The focus is formations that evolve near halo orbits and Lissajous trajectories, near the L1 and L2 libration points of the Sun-Earth/Moon system. This leads to the development of a Floquet controller designed to simplify the process of identifying naturally existing formations as well as the associated stable manifolds for deployment. The initial analysis is presented in the Circular Restricted Three-Body Problem, but the results are later transitioned into the more complete Ephemeris model. The next subject of interest in this investigation is non-natural formations. That is, formations that are not consistent with the natural dynamical flow near the libration points. Mathematically, precise formation keeping of a given nominal configuration requires continuous control. Hence, a detailed analysis is presented to contrast the effectiveness and issues associated with linear optimal control and feedback linearization methods. Of course, continuous operation of the thrusters, may not represent a feasible option for a particular mission. If discrete formation keeping is implemented, however, the formation keeping goal will be subject to increased tracking errors relative to the nominal path. With this in mind, the final phase of the analysis presented here is centered on discrete formation keeping. The initial analysis is devoted to both linear state and radial targeters. The results from these two methodologies are later employed as a starting solution for an optimal impulsive control algorithm.

  9. Sun Grant - Western Regional Center | | Oregon State University

    Science.gov Websites

    Services Make a Gift Search Field Search Sun Grant - Western Regional Center Home About Us Mission Western States News Sun Grant Initiative Contacts The Five Regional Centers Center Activities Competitive Grant Territories Sun Grant Initiative Contacts The Five Regional Centers Center Activities Competitive Grant

  10. [Analysis on the trend of long-term change of blood pressure in hypertensive patients treated with benazepril].

    PubMed

    Lu, Jun; Li, Li-Ming; He, Ping-Ping; Cao, Wei-Hua; Zhan, Si-Yan; Hu, Yong-Hua

    2004-06-01

    To introduce the application of mixed linear model in the analysis of secular trend of blood pressure under antihypertensive treatment. A community-based postmarketing surveillance of benazepril was conducted in 1831 essential hypertensive patients (age range from 35 to 88 years) in Shanghai. Data of blood pressure was analyzed every 3 months with mixed linear model to describe the secular trend of blood pressure and changes of age-specific and gender-specific. The changing trends of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were found to fit the curvilinear models. A piecewise model was fit for pulse pressure (PP), i.e., curvilinear model in the first 9 months and linear model after 9 months of taking medication. Both blood pressure and its velocity gradually slowed down. There were significant variation for the curve parameters of intercept, slope, and acceleration. Blood pressure in patients with higher initial levels was persistently declining in the 3-year-treatment. However blood pressures of patients with relatively low initial levels remained low when dropped down to some degree. Elderly patients showed high SBP but low DBP, so as with higher PP. The velocity and sizes of blood pressure reductions increased with the initial level of blood pressure. Mixed linear model is flexible and robust when applied to the analysis of longitudinal data but with missing values and can also make the maximum use of available information.

  11. Dose--response of initial G2-chromatid breaks induced in normal human fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Takai, N.; Wu, H.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2001-01-01

    PURPOSE: To investigate initial chromatid breaks in prematurely condensed G2 chromosomes following exposure to heavy ions of different LET. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (13 keV/ microm, 80 keV/microm), silicon (55 keV/microm) and iron (140 keV/microm, 185keV/microm, 440keV/microm) ions. Chromosomes were prematurely condensed using calyculin-A. Initial chromatid-type and isochromatid breaks in G2 cells were scored. RESULTS: The dose response curves for total chromatid breaks were linear regardless of radiation type. The relative biological effectiveness (RBE) showed a LET-dependent increase, peaking around 2.7 at 55-80keV/microm and decreasing at higher LET. The dose response curves for isochromatid-type breaks were linear for high-LET radiations, but linear-quadratic for gamma-rays and 13 keV/microm carbon ions. The RBE for the induction of isochromatid breaks obtained from linear components increased rapidly between 13keV/microm (about 7) and 80keV/microm carbon (about 71), and decreased gradually until 440 keV/microm iron ions (about 66). CONCLUSIONS: High-LET radiations are more effective at inducing isochromatid breaks, while low-LET radiations are more effective at inducing chromatid-type breaks. The densely ionizing track structures of heavy ions and the proximity of sister chromatids in G2 cells result in an increase in isochromatid breaks.

  12. Hierarchical structure in sharply divided phase space for the piecewise linear map

    NASA Astrophysics Data System (ADS)

    Akaishi, Akira; Aoki, Kazuki; Shudo, Akira

    2017-05-01

    We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.

  13. Regional 18F-Fluorodeoxyglucose Hypometabolism is Associated with Higher Apathy Scores Over Time in Early Alzheimer Disease.

    PubMed

    Gatchel, Jennifer R; Donovan, Nancy J; Locascio, Joseph J; Becker, J Alex; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad A

    2017-07-01

    Apathy is among the earliest and most pervasive neuropsychiatric symptoms in prodromal and mild Alzheimer disease (AD) dementia that correlates with functional impairment and disease progression. We investigated the association of apathy with regional 18F-fluorodeoxyglucose (FDG) metabolism in cognitively normal, mild cognitive impairment, and AD dementia subjects from the Alzheimer's Disease Neuroimaging Initiative database. Cross-sectional and longitudinal studies. 57 North American research sites. 402 community dwelling elders. Apathy was assessed using the Neuropsychiatric Inventory Questionnaire. Baseline FDG metabolism in five regions implicated in the neurobiology of apathy and AD was investigated in relationship to apathy at baseline (cross-sectional general linear model) and longitudinally (mixed random/fixed effect model). Covariates included age, sex, diagnosis, apolipoprotein E genotype, premorbid intelligence, cognition, and antidepressant use. Cross-sectional analysis revealed that posterior cingulate hypometabolism, diagnosis, male sex, and antidepressant use were associated with higher apathy scores. Longitudinal analysis revealed that the interaction of supramarginal hypometabolism and time, posterior cingulate hypometabolism, and antidepressant use were associated with higher apathy scores across time; only supramarginal hypometabolism was positively related to rate of increase of apathy. Results support an association of apathy with hypometabolism in parietal regions commonly affected in early stages of AD, rather than medial frontal regions implicated in the neurobiology of apathy in later stages. Further work is needed to substantiate whether this localization is specific to apathy rather than to disease stage, and to investigate the potential role of AD proteinopathies in the pathogenesis of apathy. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein.

    PubMed

    Yang, Zhen; Wang, Huanhuan; Guo, Pengfei; Ding, Yuanyuan; Lei, Chong; Luo, Yongsong

    2018-06-01

    Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.

  15. Density-functional theory study of the initial oxygen incorporation in Pd(111)

    NASA Astrophysics Data System (ADS)

    Todorova, Mira; Reuter, Karsten; Scheffler, Matthias

    2005-05-01

    Pd(111) has recently been shown to exhibit a propensity to form a subnanometer thin surface oxide film already well before a full monolayer coverage of adsorbed O atoms is reached on the surface. Aiming at an atomic-scale understanding of this finding, we study the initial oxygen incorporation into the Pd(111) surface using density-functional theory. We find that oxygen incorporation into the sub-surface region starts at essentially the same coverage as formation of the surface oxide. This implies that the role of sub-surface oxygen should be considered as that of a metastable precursor in the oxidation process of the surface. The mechanisms found to play a role towards the ensuing stabilization of an ordered oxidic structure with a mixed on-surface/sub-surface site occupation follow a clear trend over the late 4d transition metal series, as seen by comparing our data to previously published studies concerned with oxide formation at the basal surface of Ru, Rh, and Ag. The formation of a linearly aligned O-TM-O trilayered structure (TM=Ru,Rh,Pd,Ag) , together with an efficient coupling to the underlying substrate seem to be key ingredients in this respect.

  16. Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Meldi, Marcello; Sagaut, Pierre

    2018-05-01

    The emergence of anomalous fast decay regimes in homogeneous isotropic turbulence (HIT) decay is investigated via both theoretical analysis and eddy-damped quasi-normal Markovian simulations. The work provides new insight about a fundamental issue playing a role in HIT decay, namely the influence of non-standard shapes of the energy spectrum, in particular in the large energetic scale region. A detailed analysis of the kinetic energy spectrum E(k) and the non-linear energy transfer T(k) shows that anomalous decay regimes are associated with the relaxation of initial energy spectra which exhibit a bump at energetic scales. This feature induces an increase in the energy cascade rate, toward solutions with a smooth shape at the spectrum peak. Present results match observations reported in wind-tunnel experiments dealing with turbulence decay in the wake of grids and bluff bodies, including scaling laws for the dissipation parameter Cɛ. They also indicate that the ratio between the initial eddy turnover time and the advection time determines of how fast anomalous regimes relax toward classical turbulence free-decay. This parameter should be used for consistent data comparison and it opens perspectives for the control of multiscale effects in industrial applications.

  17. Magnon-phonon interconversion in a dynamically reconfigurable magnetic material

    NASA Astrophysics Data System (ADS)

    Guerreiro, Sergio C.; Rezende, Sergio M.

    2015-12-01

    The ferrimagnetic insulator yttrium iron garnet (YIG) is an important material in the field of magnon spintronics, mainly because of its low magnetic losses. YIG also has very low acoustic losses, and for this reason the conversion of a state of magnetic excitation (magnons) into a state of lattice vibration (phonons), or vice versa, broadens its possible applications in spintronics. Since the magnetic parameters can be varied by some external action, the magnon-phonon interconversion can be tuned to perform a desired function. We present a quantum theory of the interaction between magnons and phonons in a ferromagnetic material subject to a dynamic variation of the applied magnetic field. It is shown that when the field gradient at the magnetoelastic crossover region is much smaller than a critical value, an initial elastic excitation can be completely converted into a magnetic excitation, or vice versa. This occurs with conservation of linear momentum and spin angular momentum, implying that phonons created by the conversion of magnons have spin angular momentum and carry spin current. It is shown further that if the system is initially in a quantum coherent state, its coherence properties are maintained regardless of the time dependence of the field.

  18. Laser scattering method applied to determine the concentration of alfa 1-antitrypsin

    NASA Astrophysics Data System (ADS)

    Riquelme, Bibiana D.; Foresto, Patricia; Valverde, Juana R.; Rasia, Rodolfo J.

    2000-04-01

    An optical method has been developed to find (alpha) 1- antitrypsin unknown concentrations in human serum samples. This method applies light scattering properties exhibited by initially formed enzyme-inhibitor complexes and uses the curves of aggregation kinetics. It is independent of molecular hydrodynamics. Theoretical approaches showed that scattering properties of transient complexes obey the Rayleigh-Debie conditions. Experiments were performed on the Trypsin/(alpha) 1-antitrypsin system. Measurements were performed in newborn, adult and pregnant sera containing (alpha) 1-antitrypsin in the Trypsin excess region. The solution was excite by a He-Ne laser beam. SO, the particles formed during the reaction are scattering centers for the interacting light. The intensity of the scattered light at 90 degrees from incident beam depends on the nature of those scattering centers. Th rate of increase in scattered intensity depends on the variation in size and shape of the scatterers, being independent of its original size. Peak values of the first derivative linearly correlate with the concentration of (alpha) 1-antitrypsin originally present in the sample. Results are displayed 5 minutes after the initiation of the experimental process. Such speed is of great importance in the immuno-biochemistry determinations.

  19. Acculturation and Sun-Safe Behaviors Among US Latinos: Findings From the 2005 Health Information National Trends Survey

    PubMed Central

    Unger, Jennifer B.; Yaroch, Amy L.; Cockburn, Myles G.; Baezconde-Garbanati, Lourdes; Reynolds, Kim D.

    2009-01-01

    Objectives. We examined the relationship between acculturation and sun safety among US Latinos. Methods. We used linear regression models to analyze data from 496 Latino respondents to the 2005 Health Information National Trends Survey. Using sunscreen, seeking shade, and wearing protective clothing were the primary outcomes and were assessed by frequency scales. Acculturation was assessed with a composite index. Results. In bivariate models, acculturation was negatively associated with use of shade and protective clothing and positively associated with sunscreen use (all, P < .004). In adjusted models, acculturation was negatively associated with seeking shade and wearing protective clothing across gender and region of residence (all, P < .05). Conclusions. Our results demonstrated both adverse and beneficial effects of acculturation on Latinos’ risk behaviors relating to skin cancer. Education about sun safety is needed for all Latinos and should be tailored to different levels of acculturation. Initiatives for Latinos who are not yet acculturated could focus on reinforcing existing sun-safe behaviors and presenting new ones, such as use of sunscreen; initiatives for highly acculturated Latinos might require more resources because the objective is behavior modification. PMID:19150918

  20. Continuous electrocoagulation of cheese whey wastewater: an application of Response Surface Methodology.

    PubMed

    Tezcan Un, Umran; Kandemir, Ayse; Erginel, Nihal; Ocal, S Eren

    2014-12-15

    In this study, treatment of cheese whey wastewater was performed using a uniquely-designed continuous electrocoagulation reactor, not previously encountered in the literature. An iron horizontal rotating screw type anode was used in the continuous mode. An empirical model, in terms of effective operational factors, such as current density (40, 50, 60 mA/cm(2)), pH (3, 5, 7) and retention time (20, 40, 60 min), was developed through Response Surface Methodology. An optimal region characterized by low values of Chemical Oxygen Demand (COD) was determined. As a result of experiments, a linear effect in the removal efficiency of COD was obtained for current density and retention time, while the initial pH of the wastewater was found to have a quadratic effect in the removal efficiency of COD. The best fit nonlinear mathematical model, with a coefficient of determination value (R(2)) of 85%, was defined. An initial COD concentration of 15.500 mg/L was reduced to 2112 mg/L with a removal efficiency of 86.4%. In conclusion, it can be said that electrocoagulation was successfully applied for the treatment of cheese whey wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Human Capital--Economic Growth Nexus in the Former Soviet Bloc

    ERIC Educational Resources Information Center

    Osipian, Ararat L.

    2007-01-01

    This study analyses the role and impact of higher education on per capita economic growth in the Former Soviet Bloc. It attempts to estimate the significance of educational levels for initiating substantial economic growth that now takes place in these two countries. This study estimates a system of linear and log-linear equations that account for…

  2. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    NASA Astrophysics Data System (ADS)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  3. Linear and nonlinear mechanical properties of a series of epoxy resins

    NASA Technical Reports Server (NTRS)

    Curliss, D. B.; Caruthers, J. M.

    1987-01-01

    The linear viscoelastic properties have been measured for a series of bisphenol-A-based epoxy resins cured with the diamine DDS. The linear viscoelastic master curves were constructed via time-temperature superposition of frequency dependent G-prime and G-double-prime isotherms. The G-double-prime master curves exhibited two sub-Tg transitions. Superposition of isotherms in the glass-to-rubber transition (i.e., alpha) and the beta transition at -60 C was achieved by simple horizontal shifts in the log frequency axis; however, in the region between alpha and beta, superposition could not be effected by simple horizontal shifts along the log frequency axis. The different temperature dependency of the alpha and beta relaxation mechanisms causes a complex response of G-double-prime in the so called alpha-prime region. A novel numerical procedure has been developed to extract the complete relaxation spectra and its temperature dependence from the G-prime and G-double-prime isothermal data in the alpha-prime region.

  4. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    PubMed

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  5. On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Perinotto, M.

    The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.

  6. Estimating cost of large-fire suppression for three Forest Service regions

    Treesearch

    Eric L. Smith; Gonz& aacute; lez-Cab& aacute; n Armando

    1987-01-01

    The annual costs attributable to large fire suppression in three Forest Service Regions (1970-1981) were estimated as a function of fire perimeters using linear regression. Costs calculated on a per chain of perimeterbasis were highest for the Pacific Northwest Region, next highest for the Northern Region, and lowest for the Intermountain Region. Recent costs in real...

  7. Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Heiser, Mark

    1999-01-01

    A series of atmospheric general circulation model (AGCM) simulations, spanning a total of several thousand years, is used to assess the impact of land-surface and ocean boundary conditions on the seasonal-to-interannual variability and predictability of precipitation in a coupled modeling system. In the first half of the analysis, which focuses on precipitation variance, we show that the contributions of ocean, atmosphere, and land processes to this variance can be characterized, to first order, with a simple linear model. This allows a clean separation of the contributions, from which we find: (1) land and ocean processes have essentially different domains of influence, i.e., the amplification of precipitation variance by land-atmosphere feedback is most important outside of the regions (mainly in the tropics) that are most affected by sea surface temperatures; and (2) the strength of land-atmosphere feedback in a given region is largely controlled by the relative availability of energy and water there. In the second half of the analysis, the potential for seasonal-to-interannual predictability of precipitation is quantified under the assumption that all relevant surface boundary conditions (in the ocean and on land) are known perfectly into the future. We find that the chaotic nature of the atmospheric circulation imposes fundamental limits on predictability in many extratropical regions. Associated with this result is an indication that soil moisture initialization or assimilation in a seasonal-to-interannual forecasting system would be beneficial mainly in transition zones between dry and humid regions.

  8. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  9. Tropopause inversion layer formation and stratosphere-troposphere exchange during idealized baroclinic wave life cycle experiments

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Wirth, Volkmar; Hoor, Peter

    2014-05-01

    Recent simulations of baroclinic wave life cycles revealed that the tropopause inversion layer (TIL), commonly situated just above the thermal tropopause, is evident in such experiments and emerges after the onset of wave breaking. Furthermore, bidirectional stratosphere-troposphere exchange (STE) occurs during this non-linear stage of the wave evolution and might be affected by the appearance of the TIL. We study the evolution and the impact of the TIL on STE by using the COSMO model in an idealized mid-latitude channel geometry configuration without physical sub-grid scale parameterizations. We initialize the model with a geostrophically balanced upper level jet stream which is disturbed by an anomaly of potential vorticity to trigger the evolution of the baroclinic waves. Moreover, we use passive tracers of tropospheric or stratospheric origin to identify regions of potential STE. Our results show that the static stability is low in regions of stratosphere to troposphere exchange (STT), while it is high in regions dominated by exchange in the opposite direction (TST). Furthermore, inertia gravity waves, originating from regions with strong ageostrophic wind components, modulate the static stability as well as the vertical shear of the horizontal wind near and above the tropopause. While propagating away from their source, the inertia gravity waves lead to large values of the squared Brunt Vaisala frequency in regions which are simultaneously characterized by low bulk Richardson numbers. Thus, these regions are statically stable and turbulent at the same time and might be crucial for TST, thereby explaining tropospheric mixing ratio changes of e.g. CO across the tropopause which commonly change from tropospheric to stratospheric values a few hundred meters above the local thermal tropopause.

  10. Nonlinear and anisotropic tensile properties of graft materials used in soft tissue applications.

    PubMed

    Yoder, Jonathon H; Elliott, Dawn M

    2010-05-01

    The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. The degree of anisotropy and non-linearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. The Alloderm graft was anisotropic in both the toe- and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18MPa, and were nonlinear. OrthADAPT was anisotropic in the linear-region (131 MPA vs 47MPa in the toe-region) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Research notes : pavement markings using waterborne paint and Visibeads in Region 2.

    DOT National Transportation Integrated Search

    1995-01-01

    In order to address the problems associated with solvent-borne patins, ODOT Region 2 staff bought sufficient waterborne paint to place approximately 760 linear miles of stripes. This enabled the Region staff to evaluate state-of-the-art materials and...

  12. Relationship between tendon stiffness and failure: a metaanalysis

    PubMed Central

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Lakes, Roderic S.

    2013-01-01

    Tendon is a highly specialized, hierarchical tissue designed to transfer forces from muscle to bone; complex viscoelastic and anisotropic behaviors have been extensively characterized for specific subsets of tendons. Reported mechanical data consistently show a pseudoelastic, stress-vs.-strain behavior with a linear slope after an initial toe region. Many studies report a linear, elastic modulus, or Young's modulus (hereafter called elastic modulus) and ultimate stress for their tendon specimens. Individually, these studies are unable to provide a broader, interstudy understanding of tendon mechanical behavior. Herein we present a metaanalysis of pooled mechanical data from a representative sample of tendons from different species. These data include healthy tendons and those altered by injury and healing, genetic modification, allograft preparation, mechanical environment, and age. Fifty studies were selected and analyzed. Despite a wide range of mechanical properties between and within species, elastic modulus and ultimate stress are highly correlated (R2 = 0.785), suggesting that tendon failure is highly strain-dependent. Furthermore, this relationship was observed to be predictable over controlled ranges of elastic moduli, as would be typical of any individual species. With the knowledge gained through this metaanalysis, noninvasive tools could measure elastic modulus in vivo and reasonably predict ultimate stress (or structural compromise) for diseased or injured tendon. PMID:23599401

  13. Stabilization of miscible viscous fingering by a step-growth polymerization reaction

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.

  14. Effects of longitudinal asymmetry in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Raniwala, Rashmi; Raniwala, Sudhir; Loizides, Constantin

    2018-02-01

    In collisions of identical nuclei at a given impact parameter, the number of nucleons participating in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The asymmetry due to the unequal number of participating nucleons, referred to as longitudinal asymmetry, causes a shift in the center-of-mass rapidity of the participant zone. The information of the event asymmetry allows us to isolate and study the effect of longitudinal asymmetry on rapidity distribution of final state particles. In a Monte Carlo Glauber model the average rapidity shift is found to be almost linearly related to the asymmetry. Using toy models, as well as Monte Carlo data for Pb-Pb collisions at 2.76 TeV generated with hijing, two different versions of ampt and dpmjet models, we demonstrate that the effect of asymmetry on final state rapidity distribution can be quantitatively related to the average rapidity shift via a third-order polynomial with a dominantly linear term. The coefficients of the polynomial are proportional to the rapidity shift with the dependence being sensitive to the details of the rapidity distribution. Experimental estimates of the spectator asymmetry through the measurement of spectator nucleons in a zero-degree calorimeter may hence be used to further constrain the initial conditions in ultra-relativistic heavy-ion collisions.

  15. Initial study of thermal energy storage in unconfined aquifers. [UCATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haitjema, H.M.; Strack, O.D.L.

    1986-04-01

    Convective heat transport in unconfined aquifers is modeled in a semi-analytic way. The transient groundwater flow is modeled by superposition of analytic functions, whereby changes in the aquifer storage are represented by a network of triangles, each with a linearly varying sink distribution. This analytic formulation incorporates the nonlinearity of the differential equation for unconfined flow and eliminates numerical dispersion in modeling heat convection. The thermal losses through the aquifer base and vadose zone are modeled rather crudely. Only vertical heat conduction is considered in these boundaries, whereby a linearly varying temperature is assumed at all times. The latter assumptionmore » appears reasonable for thin aquifer boundaries. However, assuming such thin aquifer boundaries may lead to an overestimation of the thermal losses when the aquifer base is regarded as infinitely thick in reality. The approach is implemented in the computer program UCATES, which serves as a first step toward the development of a comprehensive screening tool for ATES systems in unconfined aquifers. In its present form, the program is capable of predicting the relative effects of regional flow on the efficiency of ATES systems. However, only after a more realistic heatloss mechanism is incorporated in UCATES will reliable predictions of absolute ATES efficiencies be possible.« less

  16. Analysis of facial motion patterns during speech using a matrix factorization algorithm

    PubMed Central

    Lucero, Jorge C.; Munhall, Kevin G.

    2008-01-01

    This paper presents an analysis of facial motion during speech to identify linearly independent kinematic regions. The data consists of three-dimensional displacement records of a set of markers located on a subject’s face while producing speech. A QR factorization with column pivoting algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis to fit the motion of the other facial markers, which determines facial regions of influence of each of the linearly independent markers. Those regions constitute kinematic “eigenregions” whose combined motion produces the total motion of the face. Facial animations may be generated by driving the independent markers with collected displacement records. PMID:19062866

  17. Micronucleus induction in Vicia faba roots. Part 1. Absence of dose-rate, fractionation, and oxygen effect at low doses of low LET radiations.

    PubMed

    Marshall, I; Bianchi, M

    1983-08-01

    Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.

  18. The Uncertainty of Long-term Linear Trend in Global SST Due to Internal Variation

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2016-04-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of local multi-scale internal variation. One can thus use the record of a specified period to arbitrarily determine the value and the sign of the long-term linear trend in regional SST, and further leading to controversial conclusions on how global SST responds to global warming in the recent history. Analyzing the linear trend coefficient estimated by the ordinary least-square method indicates that the linear trend consists of two parts: One related to the long-term change, and the other related to the multi-scale internal variation. The sign of the long-term change can be correctly reproduced only when the magnitude of the linear trend coefficient is greater than a theoretical threshold which scales the influence from the multi-scale internal variation. Otherwise, the sign of the linear trend coefficient will depend on the phase of the internal variation, or in the other words, the period being used. An improved least-square method is then proposed to reduce the theoretical threshold. When apply the new method to a global SST reconstruction from 1881 to 2013, we find that in a large part of Pacific, the southern Indian Ocean and North Atlantic, the influence from the multi-scale internal variation on the sign of the linear trend coefficient can-not be excluded. Therefore, the resulting warming or/and cooling linear trends in these regions can-not be fully assigned to global warming.

  19. Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array.

    PubMed

    Pardo, J; Roselló, J V; Sánchez-Doblado, F; Gómez, F

    2006-06-07

    A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the gamma test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the gamma test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one ( approximately 3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.

  20. Soft tissue strain measurement using an optical method

    NASA Astrophysics Data System (ADS)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  1. Non-Linear Cosmological Power Spectra in Real and Redshift Space

    NASA Technical Reports Server (NTRS)

    Taylor, A. N.; Hamilton, A. J. S.

    1996-01-01

    We present an expression for the non-linear evolution of the cosmological power spectrum based on Lagrangian trajectories. This is simplified using the Zel'dovich approximation to trace particle displacements, assuming Gaussian initial conditions. The model is found to exhibit the transfer of power from large to small scales expected in self-gravitating fields. Some exact solutions are found for power-law initial spectra. We have extended this analysis into red-shift space and found a solution for the non-linear, anisotropic redshift-space power spectrum in the limit of plane-parallel redshift distortions. The quadrupole-to-monopole ratio is calculated for the case of power-law initial spectra. We find that the shape of this ratio depends on the shape of the initial spectrum, but when scaled to linear theory depends only weakly on the redshift-space distortion parameter, beta. The point of zero-crossing of the quadrupole, kappa(sub o), is found to obey a simple scaling relation and we calculate this scale in the Zel'dovich approximation. This model is found to be in good agreement with a series of N-body simulations on scales down to the zero-crossing of the quadrupole, although the wavenumber at zero-crossing is underestimated. These results are applied to the quadrupole-to-monopole ratio found in the merged QDOT plus 1.2-Jy-IRAS redshift survey. Using a likelihood technique we have estimated that the distortion parameter is constrained to be beta greater than 0.5 at the 95 percent level. Our results are fairly insensitive to the local primordial spectral slope, but the likelihood analysis suggests n = -2 un the translinear regime. The zero-crossing scale of the quadrupole is k(sub 0) = 0.5 +/- 0.1 h Mpc(exp -1) and from this we infer that the amplitude of clustering is sigma(sub 8) = 0.7 +/- 0.05. We suggest that the success of this model is due to non-linear redshift-space effects arising from infall on to caustic and is not dominated by virialized cluster cores. The latter should start to dominate on scales below the zero-crossing of the quadrupole, where our model breaks down.

  2. National and regional analysis of road accidents in Spain.

    PubMed

    Tolón-Becerra, A; Lastra-Bravo, X; Flores-Parra, I

    2013-01-01

    In Spain, the absolute fatality figures decreased almost 50 percent between 1998 and 2009. Despite this great effort, road mortality is still of great concern to political authorities. Further progress requires efficient road safety policy based on an optimal set of measures and targets that consider the initial conditions and characteristics in each region. This study attempts to analyze road accidents in Spain and its provinces in time and space during 1998-2009. First, we analyzed daily, monthly, and nationwide (NUTS 0) development of road accidents, the correlation between logarithmic transformations of road accidents and territorial and socioeconomic variables, the causality by simple linear regression of road accidents and territorial and socioeconomic variables, and preliminary frequency by fast Fourier transform. Then we analyzed the annual trend in accidents in the Spanish provinces (NUTS 3) and found a correlation between the logarithmic transformations of the mortality rate, fatalities per fatal accident, and accidents resulting in injuries per inhabitant variables and population, population density, gross domestic product (GDP), length of road network, and area. Finally, causality was analyzed by simple linear regression. The most outstanding results were the negative correlation between mortality rate and population density in Spanish provinces, which has increased over time, and that road accidents in Spain have an approximate periodicity of 57 days. The fast Fourier transform analysis of road accident frequency in Spain was useful in identifying the periodic, harmonic components of accidents and casualties. The periodicity observed both for the period 1998-2009 and by year showed that the highest intensity in road accidents was bimonthly, despite the lower number of accidents and casualties in the spectra of amplitude and power and efforts to reduce the intensity and concentration during off-season travel (summer and December).

  3. Iterative reconstruction for CT perfusion with a prior-image induced hybrid nonlocal means regularization: Phantom studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Lyu, Qingwen; Ma, Jianhua

    2016-04-15

    Purpose: In computed tomography perfusion (CTP) imaging, an initial phase CT acquired with a high-dose protocol can be used to improve the image quality of later phase CT acquired with a low-dose protocol. For dynamic regions, signals in the later low-dose CT may not be completely recovered if the initial CT heavily regularizes the iterative reconstruction process. The authors propose a hybrid nonlocal means (hNLM) regularization model for iterative reconstruction of low-dose CTP to overcome the limitation of the conventional prior-image induced penalty. Methods: The hybrid penalty was constructed by combining the NLM of the initial phase high-dose CT inmore » the stationary region and later phase low-dose CT in the dynamic region. The stationary and dynamic regions were determined by the similarity between the initial high-dose scan and later low-dose scan. The similarity was defined as a Gaussian kernel-based distance between the patch-window of the same pixel in the two scans, and its measurement was then used to weigh the influence of the initial high-dose CT. For regions with high similarity (e.g., stationary region), initial high-dose CT played a dominant role for regularizing the solution. For regions with low similarity (e.g., dynamic region), the regularization relied on a low-dose scan itself. This new hNLM penalty was incorporated into the penalized weighted least-squares (PWLS) for CTP reconstruction. Digital and physical phantom studies were performed to evaluate the PWLS-hNLM algorithm. Results: Both phantom studies showed that the PWLS-hNLM algorithm is superior to the conventional prior-image induced penalty term without considering the signal changes within the dynamic region. In the dynamic region of the Catphan phantom, the reconstruction error measured by root mean square error was reduced by 42.9% in PWLS-hNLM reconstructed image. Conclusions: The PWLS-hNLM algorithm can effectively use the initial high-dose CT to reconstruct low-dose CTP in the stationary region while reducing its influence in the dynamic region.« less

  4. Non-Linear Association between Cerebral Amyloid Deposition and White Matter Microstructure in Cognitively Healthy Older Adults.

    PubMed

    Wolf, Dominik; Fischer, Florian U; Scheurich, Armin; Fellgiebel, Andreas

    2015-01-01

    Cerebral amyloid-β accumulation and changes in white matter (WM) microstructure are imaging characteristics in clinical Alzheimer's disease and have also been reported in cognitively healthy older adults. However, the relationship between amyloid deposition and WM microstructure is not well understood. Here, we investigated the impact of quantitative cerebral amyloid load on WM microstructure in a group of cognitively healthy older adults. AV45-positron emission tomography and diffusion tensor imaging (DTI) scans of forty-four participants (age-range: 60 to 89 years) from the Alzheimer's Disease Neuroimaging Initiative were analyzed. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), and axial diffusivity (DA) were calculated to characterize WM microstructure. Regression analyses demonstrated non-linear (quadratic) relationships between amyloid deposition and FA, MD, as well as RD in widespread WM regions. At low amyloid burden, higher deposition was associated with increased FA as well as decreased MD and DR. At higher amyloid burden, higher deposition was associated with decreased FA as well as increased MD and DR. Additional regression analyses demonstrated an interaction effect between amyloid load and global WM FA, MD, DR, and DA on cognition, suggesting that cognition is only affected when amyloid is increasing and WM integrity is decreasing. Thus, increases in FA and decreases in MD and RD with increasing amyloid load at low levels of amyloid burden may indicate compensatory processes that preserve cognitive functioning. Potential mechanisms underlying the observed non-linear association between amyloid deposition and DTI metrics of WM microstructure are discussed.

  5. Sorption of albendazole in sediments and soils: Isotherms and kinetics.

    PubMed

    Mutavdžić Pavlović, Dragana; Glavač, Antonija; Gluhak, Mihaela; Runje, Mislav

    2018-02-01

    Albendazole is a broad-spectrum anthelmintic drug effective against gastrointestinal parasites in humans and animals. Despite the fact that it has been detected in environment (water, sediment and soil), there is no information on its fate in the environment. So, in order to understand the sorption process of albendazole in environment, the sorption mechanism and kinetic properties were investigated through sorption equilibrium and sorption rate experiments. For that purpose, batch sorption of albendazole on five sediment samples and five soil samples from Croatia's region with different physico-chemical properties was investigated. Except physico-chemical properties of used environmental solid samples, the effects of various parameters such as contact time, initial concentration, ionic strength and pH on the albendazole sorption were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Langmuir sorption models were applied to describe the equilibrium isotherms. The estimated K d values varied from 29.438 to 104.43 mLg -1 at 0.01 M CaCl 2 and for natural pH value of albendazole solution (pH 6.6). Experimental data showed that the best agreement was obtained with the linear model (R 2  > 0.99), while the rate of albendazole sorption is the best described with the kinetic model of pseudo-second-order. Obtained results point to a medium or even strong sorption of albendazole for soil or sediment particles, which is particularly dependent on the proportion of organic matter, pH, copper and zinc in them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Linear Array Ambient Noise Adjoint Tomography Reveals Intense Crust-Mantle Interactions in North China Craton

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua

    2018-01-01

    We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.

  7. The non-linear, interactive effects of population density and climate drive the geographical patterns of waterfowl survival

    USGS Publications Warehouse

    Zhao, Qing; Boomer, G. Scott; Kendall, William L.

    2018-01-01

    On-going climate change has major impacts on ecological processes and patterns. Understanding the impacts of climate on the geographical patterns of survival can provide insights to how population dynamics respond to climate change and provide important information for the development of appropriate conservation strategies at regional scales. It is challenging to understand the impacts of climate on survival, however, due to the fact that the non-linear relationship between survival and climate can be modified by density-dependent processes. In this study we extended the Brownie model to partition hunting and non-hunting mortalities and linked non-hunting survival to covariates. We applied this model to four decades (1972–2014) of waterfowl band-recovery, breeding population survey, and precipitation and temperature data covering multiple ecological regions to examine the non-linear, interactive effects of population density and climate on waterfowl non-hunting survival at a regional scale. Our results showed that the non-linear effect of temperature on waterfowl non-hunting survival was modified by breeding population density. The concave relationship between non-hunting survival and temperature suggested that the effects of warming on waterfowl survival might be multifaceted. Furthermore, the relationship between non-hunting survival and temperature was stronger when population density was higher, suggesting that high-density populations may be less buffered against warming than low-density populations. Our study revealed distinct relationships between waterfowl non-hunting survival and climate across and within ecological regions, highlighting the importance of considering different conservation strategies according to region-specific population and climate conditions. Our findings and associated novel modelling approach have wide implications in conservation practice.

  8. Crystal Initiation Structures in Developing Enamel: Possible Implications for Caries Dissolution of Enamel Crystals

    PubMed Central

    Robinson, Colin; Connell, Simon D.

    2017-01-01

    Investigations of developing enamel crystals using Atomic and Chemical Force Microscopy (AFM, CFM) have revealed a subunit structure. Subunits were seen in height images as collinear swellings about 30 nM in diameter on crystal surfaces. In friction mode they were visible as positive regions. These were similar in size (30–50 nM) to collinear spherical structures, presumably mineral matrix complexes, seen in developing enamel using a freeze fracturing/freeze etching procedure. More detailed AFM studies on mature enamel suggested that the 30–50 nM structures were composed of smaller units, ~10–15 nM in diameter. These were clustered in hexagonal or perhaps a spiral arrangement. It was suggested that these could be the imprints of initiation sites for mineral precipitation. The investigation aimed at examining original freeze etched images at high resolution to see if the smaller subunits observed using AFM in mature enamel were also present in developing enamel i.e., before loss of the organic matrix. The method used was freeze etching. Briefly samples of developing rat enamel were rapidly frozen, fractured under vacuum, and ice sublimed from the fractured surface. The fractured surface was shadowed with platinum or gold and the metal replica subjected to high resolution TEM. For AFM studies high-resolution tapping mode imaging of human mature enamel sections was performed in air under ambient conditions at a point midway between the cusp and the cervical margin. Both AFM and freeze etch studies showed structures 30–50 nM in diameter. AFM indicated that these may be clusters of somewhat smaller structures ~10–15 nM maybe hexagonally or spirally arranged. High resolution freeze etching images of very early enamel showed ~30–50 nM spherical structures in a disordered arrangement. No smaller units at 10–15 nM were clearly seen. However, when linear arrangements of 30–50 nM units were visible the picture was more complex but also smaller units including ~10–15 nM units could be observed. Conclusions: Structures ~10–15 nM in diameter were detected in developing enamel. While the appearance was complex, these were most evident when the 30–5 nM structures were in linear arrays. Formation of linear arrays of subunits may be associated with the development of mineral initiation sites and attendant processing of matrix proteins. PMID:28670283

  9. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  10. Proceedings of the regional technical workshop on transportation and transit facilitation : regional initiative on transport integration, South Asia region, Bangkok, April 19-21, 1999, volume 1 : summary

    DOT National Transportation Integrated Search

    1999-01-01

    The World Bank in partnership with United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) sponsored the Regional Technical Workshop on Transport and Transit Facilitation under the Initiative. Participants included public and p...

  11. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  12. A framework to analyze cerebral mean diffusivity using surface guided diffusion mapping in diffusion tensor imaging

    PubMed Central

    Kwon, Oh-Hun; Park, Hyunjin; Seo, Sang-Won; Na, Duk L.; Lee, Jong-Min

    2015-01-01

    The mean diffusivity (MD) value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI) in cortical gray matter (GM). Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually sampled the MD value using the nearest-neighbor (NN) method or Linear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM) method to compensate for such geometric distortions. We compared our SGDM method with results using NN and Linear methods by investigating differences in the sampled MD value. We also projected the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and Linear methods. The MD values provided by the NN and Linear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and Linear methods assigned the MD value in the CSF region to the cortical midsurface (GM region). Our results suggest that the SGDM method is an effective way to correct such mapping errors. PMID:26236180

  13. High-Energy-Density LCA-Coupled Structural Energetic Materials for Counter WMD Applications

    DTIC Science & Technology

    2014-04-01

    reactive ( thermite ) fillers as high-energy-density structural energetic materials. The specific objectives include performing fundamental studies to...a) investigate mechanics of dynamic densification and reaction initiation in Ta+Fe2O3 and Ta+Bi2O3 thermite powder mixtures and to (b) design and...initiation in the thermite filler and allow controlled fragmentation. Linear Cellular A; counter WMDs; shock-compression and impact-initiated reactions

  14. Estimation of the reproduction number of dengue fever from spatial epidemic data.

    PubMed

    Chowell, G; Diaz-Dueñas, P; Miller, J C; Alcazar-Velazco, A; Hyman, J M; Fenimore, P W; Castillo-Chavez, C

    2007-08-01

    Dengue, a vector-borne disease, thrives in tropical and subtropical regions worldwide. A retrospective analysis of the 2002 dengue epidemic in Colima located on the Mexican central Pacific coast is carried out. We estimate the reproduction number from spatial epidemic data at the level of municipalities using two different methods: (1) Using a standard dengue epidemic model and assuming pure exponential initial epidemic growth and (2) Fitting a more realistic epidemic model to the initial phase of the dengue epidemic curve. Using Method I, we estimate an overall mean reproduction number of 3.09 (95% CI: 2.34,3.84) as well as local reproduction numbers whose values range from 1.24 (1.15,1.33) to 4.22 (2.90,5.54). Using Method II, the overall mean reproduction number is estimated to be 2.0 (1.75,2.23) and local reproduction numbers ranging from 0.49 (0.0,1.0) to 3.30 (1.63,4.97). Method I systematically overestimates the reproduction number relative to the refined Method II, and hence it would overestimate the intensity of interventions required for containment. Moreover, optimal intervention with defined resources demands different levels of locally tailored mitigation. Local epidemic peaks occur between the 24th and 35th week of the year, and correlate positively with the final local epidemic sizes (rho=0.92, P-value<0.001). Moreover, final local epidemic sizes are found to be linearly related to the local population size (P-value<0.001). This observation supports a roughly constant number of female mosquitoes per person across urban and rural regions.

  15. SU-E-T-515: Investigating the Linear Energy Transfer Dependency of Different PRESAGE Formulations in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, M; Alqathami, M; Blencowe, A

    Purpose Previous studies have reported an under-response of PRESAGE in a proton beam as a Result of the extremely high LET in the distal end of the spread out Bragg peak (SOBP). This work is a preliminary investigation to quantify the effect of the formulation, specifically the concentration of halocarbon radical initiator relative to leuco dye, on radical recombination resulting in LET dependence. Methods The traditional PRESAGE formulation developed by Heuris Pharma was altered to constitute radical initiator concentrations of 5, 15, and 30% (low, medium, and high) by weight with all other components balanced to maintain proportionality. Chloroform wasmore » specifically examined in this study and all dosimeters were made in-house. Cylindrical PRESAGE dosimeters (3.5cm diameter and 6cm length) were made for each formulation and irradiated by a 200-MeV proton beam to 500 cGy across a 2cm SOBP. Dosimeters were read out using the DMOS optical-CT scanner. The dose distributions were analyzed and dose profiles were used to compare the relative dose response to find the stability across the high-LET region of the SOBP. LET dependence was measured by the variation to ion chamber measurements for the final 25% of the SOBP (∼0.5cm) prior to the distal-90 of each profile. Results Relative to ion chamber data, all PRESAGE dosimeters showed an under-response at the distal end of the SOBP. The medium concentration formulation matched most closely with an average 8.3% under-response closely followed by the low concentration at 12.2% and then the high concentration at 22.8%. In all three cases, the highest points of discrepancy were in the distal most regions. Conclusion The radical initiator concentration in PRESAGE can be tailored to reduce the LET dependence in a proton beam. This warrants further study to quantify comprehensively the effect of concentration of different halocarbon radical initiators on LET dependency. Grant number 5RO1CA100835.« less

  16. The initial regime of drop coalescence

    NASA Astrophysics Data System (ADS)

    Anthony, Christopher; Harris, Michael; Basaran, Osman

    2017-11-01

    Drop coalescence plays a key role in both industry and nature. Consequently, study of the phenomenon has been the focus of numerous experimental, computational and theoretical works to date. In coalescence, two drops come into contact and a liquid bridge forms between them. As time advances, this bridge grows from microscopic to macroscopic scales. Despite the large volume of work dedicated to this problem, currently experiment, theory, and computation are not in perfect agreement with respect to the earliest times following the initial contact of the drops. Experiments report an initial regime where the radius of the connecting bridge grows linearly in time before a transition to either a Stokes regime or an inertial regime where either viscous or inertial forces balance capillary force. In the initial linear regime, referred to as the inertially-limited viscous regime, all three forces are thought to be important. This is in contrast to theory which predicts that all coalescence events begin in the Stokes regime. We use high accuracy numerical simulation to show that the existing discrepancy in the literature can be resolved by paying careful attention to the initial conditions that set the shape and size of the bridge connecting the two drops.

  17. Principles of proportional recovery after stroke generalize to neglect and aphasia.

    PubMed

    Marchi, N A; Ptak, R; Di Pietro, M; Schnider, A; Guggisberg, A G

    2017-08-01

    Motor recovery after stroke can be characterized into two different patterns. A majority of patients recover about 70% of initial impairment, whereas some patients with severe initial deficits show little or no improvement. Here, we investigated whether recovery from visuospatial neglect and aphasia is also separated into two different groups and whether similar proportions of recovery can be expected for the two cognitive functions. We assessed 35 patients with neglect and 14 patients with aphasia at 3 weeks and 3 months after stroke using standardized tests. Recovery patterns were classified with hierarchical clustering and the proportion of recovery was estimated from initial impairment using a linear regression analysis. Patients were reliably clustered into two different groups. For patients in the first cluster (n = 40), recovery followed a linear model where improvement was proportional to initial impairment and achieved 71% of maximal possible recovery for both cognitive deficits. Patients in the second cluster (n = 9) exhibited poor recovery (<25% of initial impairment). Our findings indicate that improvement from neglect or aphasia after stroke shows the same dichotomy and proportionality as observed in motor recovery. This is suggestive of common underlying principles of plasticity, which apply to motor and cognitive functions. © 2017 EAN.

  18. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  19. Linear-array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study

    PubMed Central

    Shin, Eun Ji; Topazian, Mark; Goggins, Michael G.; Syngal, Sapna; Saltzman, John R.; Lee, Jeffrey H.; Farrell, James J.; Canto, Marcia I.

    2015-01-01

    Background Studies comparing linear and radial EUS for the detection of pancreatic lesions in an asymptomatic population with increased risk for pancreatic cancer are lacking. Objectives To compare pancreatic lesion detection rates between radial and linear EUS and to determine the incremental diagnostic yield of a second EUS examination. Design Randomized controlled tandem study. Setting Five academic centers in the United States. Patients Asymptomatic high-risk individuals (HRIs) for pancreatic cancer undergoing screening EUS. Interventions Linear and radial EUS performed in randomized order. Main Outcome Measurements Pancreatic lesion detection rate by type of EUS, miss rate of 1 EUS examination, and incremental diagnostic yield of a second EUS examination (second-pass effect). Results Two hundred seventy-eight HRIs were enrolled, mean age 56 years (43.2%), and 90% were familial pancreatic cancer relatives. Two hundred twenty-four HRIs underwent tandem radial and linear EUS. When we used per-patient analysis, the overall prevalence of any pancreatic lesion was 45%. Overall, 16 of 224 HRIs (7.1%) had lesions missed during the initial EUS that were detected by the second EUS examination. The per-patient lesion miss rate was significantly greater for radial followed by linear EUS (9.8%) than for linear followed by radial EUS (4.5%) (P = .03). When we used per-lesion analysis, 73 of 109 lesions (67%) were detected by radial EUS and 99 of 120 lesions (82%) were detected by linear EUS (P < .001) during the first examination. The overall miss rate for a pancreatic lesion after 1 EUS examination was 47 of 229 (25%). The miss rate was significantly lower for linear EUS compared with radial EUS (17.5% vs 33.0%, P = .007). Limitations Most detected pancreatic lesions were not confirmed by pathology. Conclusion Linear EUS detects more pancreatic lesions than radial EUS. There was a “second-pass effect” with additional lesions detected with a second EUS examination. This effect was significantly greater when linear EUS was used after an initial radial EUS examination. PMID:25930097

  20. Linear-array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study.

    PubMed

    Shin, Eun Ji; Topazian, Mark; Goggins, Michael G; Syngal, Sapna; Saltzman, John R; Lee, Jeffrey H; Farrell, James J; Canto, Marcia I

    2015-11-01

    Studies comparing linear and radial EUS for the detection of pancreatic lesions in an asymptomatic population with increased risk for pancreatic cancer are lacking. To compare pancreatic lesion detection rates between radial and linear EUS and to determine the incremental diagnostic yield of a second EUS examination. Randomized controlled tandem study. Five academic centers in the United States. Asymptomatic high-risk individuals (HRIs) for pancreatic cancer undergoing screening EUS. Linear and radial EUS performed in randomized order. Pancreatic lesion detection rate by type of EUS, miss rate of 1 EUS examination, and incremental diagnostic yield of a second EUS examination (second-pass effect). Two hundred seventy-eight HRIs were enrolled, mean age 56 years (43.2%), and 90% were familial pancreatic cancer relatives. Two hundred twenty-four HRIs underwent tandem radial and linear EUS. When we used per-patient analysis, the overall prevalence of any pancreatic lesion was 45%. Overall, 16 of 224 HRIs (7.1%) had lesions missed during the initial EUS that were detected by the second EUS examination. The per-patient lesion miss rate was significantly greater for radial followed by linear EUS (9.8%) than for linear followed by radial EUS (4.5%) (P = .03). When we used per-lesion analysis, 73 of 109 lesions (67%) were detected by radial EUS and 99 of 120 lesions (82%) were detected by linear EUS (P < .001) during the first examination. The overall miss rate for a pancreatic lesion after 1 EUS examination was 47 of 229 (25%). The miss rate was significantly lower for linear EUS compared with radial EUS (17.5% vs 33.0%, P = .007). Most detected pancreatic lesions were not confirmed by pathology. Linear EUS detects more pancreatic lesions than radial EUS. There was a "second-pass effect" with additional lesions detected with a second EUS examination. This effect was significantly greater when linear EUS was used after an initial radial EUS examination. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

Top