A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas.
Hall, William J; Williams, Paul T
2006-08-01
The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.
Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin
2018-01-01
In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the senescing leaves of the esl mutant. Conversely, OsNox1, OsNox3, and OsFR07 were not associated with ABA-induced O2- generation during leaf senescence. PMID:29309410
Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin
2018-01-01
In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the senescing leaves of the esl mutant. Conversely, OsNox1, OsNox3, and OsFR07 were not associated with ABA-induced O2- generation during leaf senescence.
40 CFR 96.24 - Effective date of initial NOX Budget permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Effective date of initial NOX Budget... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.24 Effective date of initial NOX Budget permit. The initial NOX Budget permit...
Ozone Production and Control Strategies for Southern Taiwan
NASA Astrophysics Data System (ADS)
Shiu, C.; Liu, S.; Chang, C.; Chen, J.; Chou, C. C.; Lin, C.
2006-12-01
An observation-based modeling (OBM) approach is used to estimate the ozone production efficiency and production rate of O3 (P(O3)) in southern Taiwan. The approach can also provide an indirect estimate of the concentration of OH. Measured concentrations of two aromatic hydrocarbons, i.e. ethylbenzene/m,p-xylene, are used to estimate the degree of photochemical processing and the amounts of photochemically consumed NOx and NMHCs. In addition, a one-dimensional (1d) photochemical model is used to compare with the OBM results. The average ozone production efficiency during the field campaign in Kaohsiung-Pingtung area in Fall 2003 is found to be about 5, comparable to previous works. The relationship of P(O3) with NOx is examined in detail and compared to previous studies. The derived OH concentrations from this approach are in fair agreement with values calculated from the 1d photochemical model. The relationship of total oxidants (e.g. O3+NO2) versus initial NOx and NMHCs suggests that reducing NMHCs are more effective in controlling total oxidants than reducing NOx. For O3 control, reducing NMHC is even more effective than NOx due to the NO titration effect. This observation-based approach provides a good alternative for understanding the production of ozone and formulating ozone control strategy in urban and suburban environment without measurements of peroxy radicals.
40 CFR 97.71 - Initial certification and recertification procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Monitoring and Reporting § 97.71 Initial certification and recertification procedures. (a) The owner or... monitors, NOX concentration CEMS, or excepted monitoring systems under appendix E of part 75 of this... operator of such a unit that qualifies to use the low mass emissions excepted monitoring methodology under...
40 CFR 97.71 - Initial certification and recertification procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Monitoring and Reporting § 97.71 Initial certification and recertification procedures. (a) The owner or... monitors, NOX concentration CEMS, or excepted monitoring systems under appendix E of part 75 of this... operator of such a unit that qualifies to use the low mass emissions excepted monitoring methodology under...
NASA Astrophysics Data System (ADS)
Sayegh, Arwa; Tate, James E.; Ropkins, Karl
2016-02-01
Oxides of Nitrogen (NOx) is a major component of photochemical smog and its constituents are considered principal traffic-related pollutants affecting human health. This study investigates the influence of background concentrations of NOx, traffic density, and prevailing meteorological conditions on roadside concentrations of NOx at UK urban, open motorway, and motorway tunnel sites using the statistical approach Boosted Regression Trees (BRT). BRT models have been fitted using hourly concentration, traffic, and meteorological data for each site. The models predict, rank, and visualise the relationship between model variables and roadside NOx concentrations. A strong relationship between roadside NOx and monitored local background concentrations is demonstrated. Relationships between roadside NOx and other model variables have been shown to be strongly influenced by the quality and resolution of background concentrations of NOx, i.e. if it were based on monitored data or modelled prediction. The paper proposes a direct method of using site-specific fundamental diagrams for splitting traffic data into four traffic states: free-flow, busy-flow, congested, and severely congested. Using BRT models, the density of traffic (vehicles per kilometre) was observed to have a proportional influence on the concentrations of roadside NOx, with different fitted regression line slopes for the different traffic states. When other influences are conditioned out, the relationship between roadside concentrations and ambient air temperature suggests NOx concentrations reach a minimum at around 22 °C with high concentrations at low ambient air temperatures which could be associated to restricted atmospheric dispersion and/or to changes in road traffic exhaust emission characteristics at low ambient air temperatures. This paper uses BRT models to study how different critical factors, and their relative importance, influence the variation of roadside NOx concentrations. The paper highlights the importance of either setting up local background continuous monitors or improving the quality and resolution of modelled UK background maps and the need to further investigate the influence of ambient air temperature on NOx emissions and roadside NOx concentrations.
Bauer, Georg
2018-06-01
Tumor cells express NADPH oxidase-1 (NOX1) in their membrane and control NOX1-based intercellular reactive oxygen and nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling through membrane-associated catalase and superoxide dismutase. of tumor cells with high concentrations of H 2 O 2 , peroxnitrite, HOCl, or increasing the concentration of cell-derived NO causes initial generation of singlet oxygen and local inactivation of membrane-associated catalase. As a result, free peroxynitrite and H 2 O 2 interact and generate secondary singlet oxygen. Inactivation of further catalase molecules by secondary singlet oxygen leads to auto-amplification of singlet oxygen generation and catalase inactivation. This allows reactivation of intercellular ROS/RNS-signaling and selective apoptosis induction in tumor cells. The initial singlet oxygen generation seems to be the critical point in this complex biochemical multistep mechanism. Initial singlet oxygen generation requires the interaction between distinct tumor cell-derived ROS and RNS and may also depend on either the induction of NO synthase expression or NOX1 activation through the FAS receptor. FAS receptor activation can be achieved by singlet oxygen. Autoamplificatory generation of singlet oxygen through the interaction between peroxynitrite and hydrogen peroxide inherits a rich potential for the establishment of synergistic effects that may be instrumental for novel approaches of tumor therapy with high selectivity towards malignant cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Secondary organic aerosol formation from isoprene photooxidation
NASA Astrophysics Data System (ADS)
Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H.
2005-12-01
We report chamber studies of the formation of secondary organic aerosol (SOA) from the oxidation of isoprene (2-methyl-1,3-butadiene). Isoprene is the most abundant non-methane hydrocarbon emitted into the troposphere (source strength of ~500 Tg/year), so even small SOA yields may have a large impact on global SOA production. Reactions are carried out in Caltech's dual 28 m3 Teflon chambers, and aerosol growth is monitored by a differential mobility analyzer (DMA) and an Aerodyne time-of-flight aerosol mass spectrometer (AMS). Isoprene oxidation is initiated by the UV irradiation of isoprene in the presence of hydrogen peroxide, with NO added for high-NOx experiments. These conditions ensure that isoprene oxidation is initiated by reaction with the OH radical, with negligible interference from other oxidants (ozone, nitrate radicals, and O atoms). Aerosol growth is observed under both high-NOx and low-NOx conditions, at isoprene concentrations lower than measured in previous studies (down to 8 ppb). SOA yields are found to be in the range of 1-2%. Yields exhibit a complex dependence on NOx concentration, likely a result of changes in the chemistry of organic peroxy radicals. It is shown that condensable compounds are formed from further reactions of first-generation isoprene oxidation products; the rates and products of such gas-phase reactions are at present poorly understood. Additionally, measurements of SOA composition indicate that these products undergo reactions in the aerosol phase, leading to the formation of low-volatility oligomeric products.
Khairy, H; Wübbeler, J H; Steinbüchel, A
2016-12-01
The reduction of the disulphide bond is the initial catabolic step of the microbial degradation of the organic disulphide 4,4'-dithiodibutyric acid (DTDB). Previously, an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 designated as Nox MI2 , which belongs to the old yellow enzyme (OYE) family, was identified. In the present study, it was proven that Nox MI2 has the ability to cleave the sulphur-sulphur bond in DTDB. In silico analysis revealed high sequence similarities to proteins of the flavin mononucleotide (FMN) reductase family identified in many strains of R. erythropolis. Therefore, nox was heterologously expressed in the pET23a(+) expression system using Escherichia coli strain BL21(DE3) pLysS, which effectively produces soluble active Nox MI2 . Nox MI2 showed a maximum specific activity (V max ) of 3·36 μmol min -1 mg -1 corresponding to a k cat of 2·5 s -1 and an apparent substrate K m of 0·6 mmol l -1 , when different DTDB concentrations were applied. No metal cofactors were required. Moreover, Nox MI2 had very low activity with other sulphur-containing compounds like 3,3'-dithiodipropionic acid (8·0%), 3,3'-thiodipropionic acid (7·6%) and 5,5'-dithiobis(2-nitrobenzoic acid) (8·0%). The UV/VIS spectrum of Nox MI2 revealed the presence of the cofactor FMN. Based on results obtained, Nox MI2 adds a new physiological substrate and mode of action to OYE members. It was unequivocally demonstrated in this study that an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 (Nox MI2 ) is able to cleave the xenobiotic disulphide 4,4'-dithiodibutyric acid (DTDB) into two molecules of 4-mercaptobutyric acid (4MB) with concomitant consumption of NADH. Nox MI2 showed a high substrate specificity as well as high heat stability. This study provides the first detailed characterization of the initial cleavage of DTDB, which is considered as a promising polythioester precursor. © 2016 The Society for Applied Microbiology.
[Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].
Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi
2008-06-01
Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.
An SOA model for toluene oxidation in the presence of inorganic aerosols.
Cao, Gang; Jang, Myoseon
2010-01-15
A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene concentrations, compared to those with high initial toluene concentrations. On average, more than a 1-fold increase in OM(H) fraction is observed when the comparison is made between SOA experiments with 40 ppb toluene to those with 630 ppb toluene. Such an observation implies that heterogeneous reactions of the second-generation products of toluene oxidation can contribute considerably to the total SOA mass under atmospheric relevant conditions.
On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol
NASA Astrophysics Data System (ADS)
Pusede, S. E.; Duffey, K. C.; Shusterman, A. A.; Saleh, A.; Laughner, J. L.; Wooldridge, P. J.; Zhang, Q.; Parworth, C. L.; Kim, H.; Capps, S. L.; Valin, L. C.; Cappa, C. D.; Fried, A.; Walega, J.; Nowak, J. B.; Hoff, R. M.; Berkoff, T. A.; Beyersdorf, A. J.; Olson, J.; Crawford, J. H.; Cohen, R. C.
2015-10-01
Nitrogen oxides (NOx) have fallen steadily across the US over the last fifteen years. At the same time, due to patterns diesel truck activities, NOx concentrations decrease on weekends relative to weekdays, largely without co-occurring changes in other gas-phase emissions. These trends taken together provide two independent constraints on the role of NOx in the nonlinear chemistry of atmospheric oxidation. In this context, we interpret interannual trends in wintertime ammonium nitrate (NH4NO3) in the San Joaquin Valley of California, a location with the worst aerosol pollution in the US and where a large portion of aerosol mass is NH4NO3. Here, we show that NOx reductions have simultaneously decreased nighttime and increased daytime NH4NO3 production over the last decade. We find a substantial decrease in NH4NO3 since 2000 and conclude that this decrease is due to reduced nitrate radical-initiated production at night in residual layers that are decoupled from fresh emissions at the surface. Further reductions in NOx are imminent in California, and nationwide, and we make a quantitative prediction of the response of NH4NO3. We show that the combination of rapid chemical production and efficient NH4NO3 loss via deposition of gas-phase nitric acid implies high aerosol days in cities in the San Joaquin Valley air basin are responsive to local changes in NOx within those individual cities. Our calculations indicate that large decreases in NOx in the future will not only lower wintertime NH4NO3 concentrations, they will also cause a transition in the dominant NH4NO3 source from nighttime to daytime chemistry.
On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol
NASA Astrophysics Data System (ADS)
Pusede, S. E.; Duffey, K. C.; Shusterman, A. A.; Saleh, A.; Laughner, J. L.; Wooldridge, P. J.; Zhang, Q.; Parworth, C. L.; Kim, H.; Capps, S. L.; Valin, L. C.; Cappa, C. D.; Fried, A.; Walega, J.; Nowak, J. B.; Weinheimer, A. J.; Hoff, R. M.; Berkoff, T. A.; Beyersdorf, A. J.; Olson, J.; Crawford, J. H.; Cohen, R. C.
2016-03-01
Nitrogen oxides (NOx) have fallen steadily across the US over the last 15 years. At the same time, NOx concentrations decrease on weekends relative to weekdays, largely without co-occurring changes in other gas-phase emissions, due to patterns of diesel truck activities. These trends taken together provide two independent constraints on the role of NOx in the nonlinear chemistry of atmospheric oxidation. In this context, we interpret interannual trends in wintertime ammonium nitrate (NH4NO3) in the San Joaquin Valley of California, a location with the worst aerosol pollution in the US and where a large portion of aerosol mass is NH4NO3. Here, we show that NOx reductions have simultaneously decreased nighttime and increased daytime NH4NO3 production over the last decade. We find a substantial decrease in NH4NO3 since 2000 and conclude that this decrease is due to reduced nitrate radical-initiated production at night in residual layers that are decoupled from fresh emissions at the surface. Further reductions in NOx are imminent in California, and nationwide, and we make a quantitative prediction of the response of NH4NO3. We show that the combination of rapid chemical production and efficient NH4NO3 loss via deposition of gas-phase nitric acid implies that high aerosol days in cities in the San Joaquin Valley air basin are responsive to local changes in NOx within those individual cities. Our calculations indicate that large decreases in NOx in the future will not only lower wintertime NH4NO3 concentrations but also cause a transition in the dominant NH4NO3 source from nighttime to daytime chemistry.
Final Environmental Assessment for the Military Family Housing Privatization Initiative
2006-09-01
Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Appendix A Additional Materials Final...Environmental Assessment Page A-39 Military Family Housing Privatization Initiative Robins Air Force Base, Georgia Year 2010 and beyond: VOCE ...yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000 PM10 (tons/yr) = PM10E * DPYII/2000 CO (tons/yr) = COE * DPYII/2000 Where: Area of
40 CFR 60.4400 - How do I conduct the initial and subsequent performance tests, regarding NOX?
Code of Federal Regulations, 2010 CFR
2010-07-01
... subsequent performance tests, regarding NOX? 60.4400 Section 60.4400 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Performance Tests § 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX? (a) You must conduct an initial performance test...
40 CFR 60.4400 - How do I conduct the initial and subsequent performance tests, regarding NOX?
Code of Federal Regulations, 2013 CFR
2013-07-01
... subsequent performance tests, regarding NOX? 60.4400 Section 60.4400 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Performance Tests § 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX? (a) You must conduct an initial performance test...
40 CFR 60.4400 - How do I conduct the initial and subsequent performance tests, regarding NOX?
Code of Federal Regulations, 2011 CFR
2011-07-01
... subsequent performance tests, regarding NOX? 60.4400 Section 60.4400 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Performance Tests § 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX? (a) You must conduct an initial performance test...
40 CFR 60.4400 - How do I conduct the initial and subsequent performance tests, regarding NOX?
Code of Federal Regulations, 2012 CFR
2012-07-01
... subsequent performance tests, regarding NOX? 60.4400 Section 60.4400 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Performance Tests § 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX? (a) You must conduct an initial performance test...
40 CFR 60.4400 - How do I conduct the initial and subsequent performance tests, regarding NOX?
Code of Federal Regulations, 2014 CFR
2014-07-01
... subsequent performance tests, regarding NOX? 60.4400 Section 60.4400 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Performance Tests § 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX? (a) You must conduct an initial performance test...
Study on Decomposition of Indoor Air Contaminants by Pulsed Atmospheric Microplasma
Shimizu, Kazuo; Kuwabara, Tomoya; Blajan, Marius
2012-01-01
Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm) after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment. PMID:23202173
Suppression of new particle formation from monoterpene oxidation by NOx
NASA Astrophysics Data System (ADS)
Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.
2013-10-01
The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory set up. At high NOx conditions (BVOC/NOx < 7, NOx > 23 ppb) no new particles were formed. Instead photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. As soon as [NO] was reduced to below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF orders of magnitude slower than in analogous experiments at low NOx conditions (NOx ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF suggesting that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent of approximately -2. This exponent indicated that the overall peroxy radical concentration must have been the same whenever NPF appeared. Thus permutation reactions of first generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy radical like molecules limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was less sensitive to NOx concentrations, if at all. Only at very high NOx concentrations yields were reduced by about an order of magnitude.
Suppression of new particle formation from monoterpene oxidation by NOx
NASA Astrophysics Data System (ADS)
Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.
2014-03-01
The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.
NO sub X destruction by CO in NO sub X to NO converters of chemiluminescent NO analyzers
NASA Technical Reports Server (NTRS)
Summers, R. L.
1976-01-01
An instrument modification for chemiluminescent NO - NOx analyzers was developed which minimizes the NOx destruction in the NOx to NO converters of NO analyzers due to high concentrations of CO. This mechanism causes the NO analyzers to indicate incorrect NOx concentrations when the analyzers are operated in the NOx analysis mode. The modification is applicable to analyzers in which the detection chamber is evacuated.
Jiang, Xiu-Min; Wei, Li-Hong; Huang, Xiang-Yong; Zhang, Chao-Qun
2008-03-01
The combustion experiments of HG micronized coal have been conducted by combining DTG and GC-MS. The effects on NOx emission caused by particle size, oxygen concentration and heating rate were analyzed. The results show that under combustion condition that oxygen concentration is 20%, NOx precipitations of HG coal in difference sizes are single-peaked courses. Particle size impacts NOx emission from coal combustion significantly. Micro-pulverized coal reduces NOx emission. Under heating condition with 5 degrees C/min, 10 degrees C/min and 20 degrees C/min, precipitation of NO and NO2 is increased with heating rate rising, and temperature parallelized with maximum NO precipitation rate is increased with heating rate rising as well. With increasing of oxygen concentration in combustion, NOx precipitation increases correspondingly, and temperature parallelized with maximum NOx precipitation rate is reduced.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
NOx adsorber and method of regenerating same
Endicott, Dennis L [Peoria, IL; Verkiel, Maarten [Metamora, IL; Driscoll, James J [Dunlap, IL
2007-01-30
New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.
NASA Astrophysics Data System (ADS)
Slade, J. H., Jr.; Jayarathne, T.; Morales, A. C.; Shepson, P. B.
2017-12-01
Biogenic volatile organic compound (BVOC) oxidation represents a significant pathway in the production of secondary organic aerosol (SOA). BVOC oxidation products, including organic nitrates (ON), impact both the SOA burden and the oxidative capacity of the atmosphere by sequestering NOx. A recent field study in the mixed deciduous/coniferous forest of northern Michigan showed that concentrations of multifunctional monoterpene-derived hydroxy nitrates (MTN) and SOA can be greater in the above-canopy environment during daytime, but the source of MTN is unclear as model simulations cannot replicate the higher concentrations above canopy. Light-dependent monoterpenes, including the polyolefinic species, trans-ocimene, may be one such contributor to the higher measured ON and SOA above canopy as this compound has been predicted to be an important source of monoterpene-derived ON during daytime in this environment. However, there are currently no measurements of the ON (and SOA yields) from trans-ocimene oxidation by OH in the presence of NOx, the dominant pathway for daytime ON production. Here we conduct photochemical reaction chamber studies of the OH radical-initiated oxidation of authentic (E)- and (Z)-β-ocimene isomers in the presence of NOx to examine the total (gas and particle) ON, hydroxy nitrate, and SOA yields. The effects of variable chamber relative humidity and seed particle acidity on the ON and SOA yields are examined to better understand the role of hydrolysis on SOA formation and the lifetime of ocimene-derived ON in the particles. This work underscores the importance of light-dependent monoterpenes on mediating the oxidative capacity of the near canopy forest environment and has important implications for understanding NOx cycling and the formation of SOA in forests, which are not currently included in atmospheric models.
LOW-CONCENTRATION NOX EMISSIONS MEASUREMENT
The paper gives results of a recent series of low-concentration nitrogen oxides (NOx) emission measurements, made by Midwest Research Institute (MRI) during U.S. EPA-sponsored Environmental Technology Verification (ETV) test of a NOx control system called Xonon (TM) Cool Combust...
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2003-12-01
To address the problem of elevated O3 concentrations throughout the northeastern United States in summer, a NOx cap-and-trade program was implemented that reduced NOx emissions from large point sources by nearly 50%. To determine whether this program has been successful, we examine O3, NO and temperature measurements collected in the EPA-AIRS network prior to and after the cap-and-trade program went into effect in 1999. Ambient NO concentrations as measured in the EPA-AIRS network are lower in the post-cap period in all months except July. We find that the upper half of the distribution of O3 concentrations within the region is essentially unchanged (or slightly higher) in May and June, modestly reduced in July and August (except the highest concentrations which are larger in August), and significantly lower in September (ranging from 0-20 ppb lower between the mean and highest concentrations) in the 1999-2001 post-cap period relative to the 1995-1998 pre-cap period. Except for September, the frequency with which the 80ppb 8-hour NAAQS standard for O3 is exceeded has not decreased. Temperatures during the post-cap period were slightly higher in June, July and August, and slightly lower in September - likely contributing to reduced O3 levels during September in the post-cap period. To explore the possibility that trading, or selective emissions over the course of the summer, could influence regional O3 concentrations, we conduct chemical transport modeling experiments using the CAMx regional model. Even within May-September for a single year, demands for electrical power and hence NOx emissions are greater during hot than cool periods. We demonstrate that substantially more O3 is produced from identical NOx emissions from a single power plant on high temperature than on low temperature days in July 1995. Thus a lack of temporal restrictions on when in a single summer month NOx emissions may occur can result in higher O3 levels. We also demonstrate that identical NOx emissions in regions of high (low) isoprene emission result in greater (lesser) O3 production. This indicates that NOx trades from locations with low to high isoprene emissions likely result in increases in O3 production. Since the objective of reducing O3 concentrations is to reduce the impact elevated O3 has on human health and welfare, we examine the mortalities that result from the O3 produced from a fixed NOx emission in the two cases described above as well as in regions of high and low population. We estimate substantially higher mortality rates from a unit NOx emission as a result of elevated O3 concentrations for high temperature days, in regions of high isoprene emissions, and for emissions occurring upwind of large populations. We attempt to assign a monetary value to the loss of life resulting from the enhanced O3 concentrations that result from these NOx emissions. We propose, as an alternative to NOx emissions cap and trade programs, a system by which NOx emitters are charged for the marginal damage they cause as a result of the O3 produced from the NOx they emit. Rather than resulting in a reduction in total NOx emissions without necessarily reducing O3 concentrations (as a cap-and-trade program does), this alternative system provides a direct incentive to reduce NOx emissions at times and places where they cause the most harm.
Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi
2013-05-07
To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Peng; Liu, Jiumeng; Shilling, John E.
Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) dependmore » strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.« less
Gumanova, Nadezhda G; Deev, Alexander D; Klimushina, Marina V; Kots, Alexander Y; Shalnova, Svetlana A
2017-04-01
Nitric oxide and its metabolites, nitrate and nitrite, are important regulators linked to various diseases. We studied the association of fasting serum concentrations of nitrate and nitrite, combined as NOx, without special diet, with the prevalence of various chronic diseases. Fasting concentrations of NOx were assayed in a cohort of 1087 patients recruited to Stress Aging and Health in Russia study that represents male and female population in Moscow, Russia, over 55 years of age. Chronic diseases were recorded based on anamnesis and additional assays were run to characterize immune status and lipid and carbohydrate metabolism. Odds ratios were calculated to associate NOx concentrations with prevalence of chronic diseases in pooled deciles below or above borderline. NOx over 44.7 µM were associated with increased prevalence of various chronic diseases such as diabetes type II, hyperthyroidism, coronary heart disease, gout and thrombosis/stroke. NOx 65.3 µM and above were associated with lowered prevalence of osteoporosis. NOx levels of 74.6 µM and above were associated with significantly higher number of patients who abstain from consumption of alcoholic beverages. NOx were not associated with cancer. Thus, fasting concentrations of NOx in serum can be an important diagnostic parameter characteristic for specific chronic diseases.
Modeling of nitrogen oxides (NO(x)) concentrations resulting from ships at berth.
Abdul-Wahab, Sabah A; Elkamel, Ali; Al Balushi, Abdullah S; Al-Damkhi, Ali M; Siddiqui, Rafiq A
2008-12-01
Oxides of nitrogen (NO(x)) emissions from ships (marine vessels) contribute to poor air quality that negatively impacts public health and communities in coastal areas and far inland. These emissions often excessively harm human health, environment, wildlife habituates, and quality of life of communities and indigenous of people who live near ports. This study was conducted to assess the impact of NO(x) emissions origination from ships at berth on a nearby community. It was undertaken at Said Bin Sultan Naval base in Wullayat Al-Mussana (Sultanate of Oman) during the year 2005. The Industrial Source Complex Short Term (ISCST) model was adopted to determine the dispersion of NO(x) into port and beyond into surrounding urban areas. The hourly and monthly contours (isopleths) of NO(x) concentrations in and around the port were plotted. The results were analyzed to determine the affected area and the level of NO(x) concentrations. The highest concentration points in the studied area were also identified. The isopleths of NO(x) indicated that most shipping emissions of NO(x) occur at the port can be transported over land. The output results can help to derive advice of recommendations ships operators and environmentalists to take the correct decision to prevent workers and surrounded environment from pollution.
Nitrite/Nitrate responses to endotoxin in calves.
Hüsler, B R; Blum, J W
2001-10-01
Plasma concentrations and urinary excretions of nitrite plus nitrate (NOx) increase in heifers after endotoxin-induced nitric oxide synthase activation. The rise can be enhanced by administration of arginine, the substrate for the production of nitric oxide, whose effects may be modified by the iron status. In 10-week-old veal calves (six Simmental x Red Holstein) arginine (0.5 g/kg body weight for 6 h) was intravenously infused. At 2 h after the start of the infusions Escherichia coli endotoxin O26:B6 (2 microg/kg body weight) was intravenously injected. This caused a rise of rectal temperature, heart rate, respiration rate, and of urinary NOx excretion, but not of plasma NOx concentrations, in contrast to the experience with older cattle to which the same amounts of arginine were infused before and during endotoxin administration. In 8-week-old veal calves (18 Simmental x Red Holstein) the question of whether oral supplementation with arginine and iron modifies NOx responses to endotoxin (2 microg/kg) was also investigated. The calves were divided between three groups (GrA-, GirA+, GrC) and before endotoxin injections GrA- was fed 0.5 g arginine/kg for 4 days, GrA+ was fed 0.5 g arginine/kg for 4 days plus 80 mg iron/kg milk for 2 weeks, whereas GrC was not supplemented with arginine or iron. Iron supplementation increased plasma iron concentrations and arginine supplementation increased plasma arginine and urea concentrations and urinary urea excretion. Ensuing administration of endotoxin enhanced plasma tumour necrosis factor-alpha concentrations, rectal temperature, heart rate, and respiration rate, but not plasma NOx concentrations in GrC and GrA- and only transiently and slightly increased plasma NOx concentrations in GrA+ but did not affect urinary NOx excretions. In conclusion, the expected stimulation of NOx responses to endotoxin by intravenous arginine infusion appears to be much weaker in young veal calves than in older cattle. The NOx responses in young veal calves were not modified if arginine was orally administered and plasma NOx were barely enhanced by combined oral supplementation of arginine and iron.
NASA Technical Reports Server (NTRS)
Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena;
2018-01-01
Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.
Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions
NASA Technical Reports Server (NTRS)
Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.
2012-01-01
Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.
On-board ammonia generation and exhaust after treatment system using same
Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.
2010-03-30
Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian
2014-01-01
Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the furnace should be considered to improve the deep-air-staging combustion configuration.
NASA Astrophysics Data System (ADS)
Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Michoud, V.; Gilman, J. B.; Kuster, W. C.; Veres, P. R.; Graus, M.; de Gouw, J. A.; Roberts, J.; Young, C.; Washenfelder, R.; Brown, S. S.; Thalman, R.; Waxman, E.; Volkamer, R.; Tsai, C.; Stutz, J.; Flynn, J. H.; Grossberg, N.; Lefer, B.; Alvarez, S. L.; Rappenglueck, B.; Mielke, L. H.; Osthoff, H. D.; Stevens, P. S.
2016-04-01
Measurements of hydroxyl (OH) and hydroperoxy (HO2*) radical concentrations were made at the Pasadena ground site during the CalNex-LA 2010 campaign using the laser-induced fluorescence-fluorescence assay by gas expansion technique. The measured concentrations of OH and HO2* exhibited a distinct weekend effect, with higher radical concentrations observed on the weekends corresponding to lower levels of nitrogen oxides (NOx). The radical measurements were compared to results from a zero-dimensional model using the Regional Atmospheric Chemical Mechanism-2 constrained by NOx and other measured trace gases. The chemical model overpredicted measured OH concentrations during the weekends by a factor of approximately 1.4 ± 0.3 (1σ), but the agreement was better during the weekdays (ratio of 1.0 ± 0.2). Model predicted HO2* concentrations underpredicted by a factor of 1.3 ± 0.2 on the weekends, while measured weekday concentrations were underpredicted by a factor of 3.0 ± 0.5. However, increasing the modeled OH reactivity to match the measured total OH reactivity improved the overall agreement for both OH and HO2* on all days. A radical budget analysis suggests that photolysis of carbonyls and formaldehyde together accounted for approximately 40% of radical initiation with photolysis of nitrous acid accounting for 30% at the measurement height and ozone photolysis contributing less than 20%. An analysis of the ozone production sensitivity reveals that during the week, ozone production was limited by volatile organic compounds throughout the day during the campaign but NOx limited during the afternoon on the weekends.
Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.
Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung
2015-03-17
NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.
Characteristics of flow and reactive pollutant dispersion in urban street canyons
NASA Astrophysics Data System (ADS)
Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin
2015-05-01
In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases, resulting in less NO titration. In the deep street canyons, outward flow becomes weak and outward NOX flux decreases, resulting in an increase (decrease) in NOX (O3) concentration.
A hybrid plasma-chemical system for high-NOx flue gas treatment
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester
2018-03-01
The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.
Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying
2012-02-21
The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.
An investigation of the concentrations of nitrogen oxides (NOx) from an air quality model and observations at monitoring sites was performed to assess the changes in NOx levels attributable to changes in mobile emissions. This evaluation effort focused on weekday morning rush hou...
40 CFR 97.83 - Applying for NOX Budget opt-in permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applying for NOX Budget opt-in permit... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.83 Applying for NOX Budget opt-in permit. (a) Applying for initial NO X Budget opt...
Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.
Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi
2015-02-01
Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Javed, M. U.; Hens, K.; Martinez, M.; Kubistin, D.; Novelli, A.; Beygi, Z. H.; Axinte, R.; Nölscher, A. C.; Sinha, V.; Song, W.; Johnson, A. M.; Auld, J.; Bohn, B.; Sander, R.; Taraborrelli, D.; Williams, J.; Fischer, H.; Lelieveld, J.; Harder, H.
2016-12-01
Peroxy radicals play a key role in ozone (O3) production and hydroxyl (OH) recycling influencing the self-cleansing capacity and air quality. Organic peroxy radical (RO2) concentrations are estimated by three different approaches for a boreal forest, based on the field campaign HUMPPA-COPEC 2010 in Southern Finland. RO2 concentrations were simulated by a box model constrained by the comprehensive dataset from the campaign and cross-checked against the photostationary state (PSS) of NOx [= nitric oxide (NO) + nitrogen dioxide (NO2)] calculations. The model simulated RO2 concentrations appear too low to explain the measured PSS of NOx. As the atmospheric RO2 production is proportional to OH loss, the total OH loss rate frequency (total OH reactivity) in the model is underestimated compared to the measurements. The total OH reactivity of the model is tuned to match the observed total OH reactivity by increasing the biogenic volatile organic compound (BVOCs) concentrations for the model simulations. The new-found simulated RO2 concentrations based on the tuned OH reactivity explain the measured PSS of NOx reasonably well. Furthermore, the sensitivity of the NOx lifetime and the catalytic efficiency of NOx (CE) in O3 production, in the context of organic alkyl nitrate (RONO2) formation, was also investigated. Based on the campaign data, it was found that the lifetime of NOx and the CE are reduced and are sensitive to the RONO2 formation under low-NOx conditions, which matches a previous model-based study.
2005-05-03
daily trips are applied to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015...Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE...262 * Trips To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000 PM10 (tons/yr
NASA Astrophysics Data System (ADS)
Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn
2016-02-01
The annual NO2 concentrations in many European cities exceed the established air quality standard. This situation is mainly caused by Diesel cars whose NOx emissions are higher on the road than during type approval in the laboratory. Moreover, the fraction of NO2 in the NOx emissions of modern diesel cars appears to have increased as compared to previous models. In this paper, we assess 1) to which level the distance-specific NOx emissions of Diesel cars should be reduced to meet established air quality standards and 2) if it would be useful to introduce a complementary NO2 emissions limit. We develop a NO2 pollution model that accounts in an analysis of 9 emission scenarios for changes in both, the urban background NO2 concentrations and the local NO2 emissions at street level. We apply this model to the city of Antwerp, Belgium. The results suggest that a reduction in NOx emissions decreases the regional and urban NO2 background concentration; high NO2 fractions increase the ambient NO2 concentrations only in close spatial proximity to the emission source. In a busy access road to the city centre, the average NO2 concentration can be reduced by 23% if Diesel cars emitted 0.35 g NOx/km instead of the current 0.62 g NOx/km. Reductions of 45% are possible if the NOX emissions of Diesel cars decreased to the level of gasoline cars (0.03 g NOx/km). Our findings suggest that the Real-Driving Emissions (RDE) test procedure can solve the problem of NO2 exceedances in cities if it reduced the on-road NOx emissions of diesel cars to the permissible limit of 0.08 g/km. The implementation of a complementary NO2 emissions limit may then become superfluous. If Diesel cars continue to exceed by several factors their NOx emissions limit on the road, a shift of the vehicle fleet to gasoline cars may be necessary to solve persisting air quality problems.
The NOX Family of Proteins Is Also Present in Bacteria.
Hajjar, Christine; Cherrier, Mickaël V; Dias Mirandela, Gaëtan; Petit-Hartlein, Isabelle; Stasia, Marie José; Fontecilla-Camps, Juan C; Fieschi, Franck; Dupuy, Jérôme
2017-11-07
Transmembrane NADPH oxidase (NOX) enzymes have been so far only characterized in eukaryotes. In most of these organisms, they reduce molecular oxygen to superoxide and, depending on the presence of additional domains, are called NOX or dual oxidases (DUOX). Reactive oxygen species (ROS), including superoxide, have been traditionally considered accidental toxic by-products of aerobic metabolism. However, during the last decade it has become evident that both O 2 •- and H 2 O 2 are key players in complex signaling networks and defense. A well-studied example is the production of O 2 •- during the bactericidal respiratory burst of phagocytes; this production is catalyzed by NOX2. Here, we devised and applied a novel algorithm to search for additional NOX genes in genomic databases. This procedure allowed us to discover approximately 23% new sequences from bacteria (in relation to the number of NOX-related sequences identified by the authors) that we have added to the existing eukaryotic NOX family and have used to build an expanded phylogenetic tree. We cloned and overexpressed the identified nox gene from Streptococcus pneumoniae and confirmed that it codes for an NADPH oxidase. The membrane of the S. pneumoniae NOX protein (SpNOX) shares many properties with its eukaryotic counterparts, such as affinity for NADPH and flavin adenine dinucleotide, superoxide dismutase and diphenylene iodonium inhibition, cyanide resistance, oxygen consumption, and superoxide production. Traditionally, NOX enzymes in eukaryotes are related to functions linked to multicellularity. Thus, the discovery of a large family of NOX-related enzymes in the bacterial world brings up fascinating questions regarding their role in this new biological context. IMPORTANCE NADPH oxidase (NOX) enzymes have not yet been reported in bacteria. Here, we carried out computational and experimental studies to provide the first characterization of a prokaryotic NOX. Out of 996 prokaryotic proteins showing NOX signatures, we initially selected, cloned, and overexpressed four of them. Subsequently, and based on preliminary testing, we concentrated our efforts on Streptococcus SpNOX, which shares many biochemical characteristics with NOX2, the referent model of NOX enzymes. Our work makes possible, for the first time, the study of pure forms of this important family of enzymes, allowing for biophysical and molecular characterization in an unprecedented way. Similar advances regarding other membrane protein families have led to new structures, further mechanistic studies, and the improvement of inhibitors. In addition, biological functions of these newly described bacterial enzymes will be certainly discovered in the near future. Copyright © 2017 Hajjar et al.
Secondary organic aerosol formation from propylene irradiations in a chamber study
NASA Astrophysics Data System (ADS)
Ge, Shuangshuang; Xu, Yongfu; Jia, Long
2017-05-01
Some studies have shown that low-molecular-weight VOCs such as ethylene and acetylene can form SOA. However, so far propylene (C3H6) has not been studied. The current work systematically investigates irradiations of propylene in the presence of NOx (x = 1, 2) in a self-made indoor chamber. Only a small amount of secondary organic aerosols (SOA) was formed under 5% and 80% RH conditions without sodium chloride (NaCl) seed particles or in the presence of solid NaCl. When NaCl was in the form of droplets, liquid water content (LWC) increased from 34.5 to 169.8 μg m-3 under different initial NaCl concentrations, and correspondingly the amount of SOA linearly increased from 5.9 to 29.8 μg m-3 (SOA = 0.0164 × LWC+1.137, R2 = 0.97) at the C3H6/NOx ratio of 32.2-44.9 (ppbC/ppb). The initial C3H6/NOx concentration ratio considerably impacted the formation of SOA, in which the amount of SOA increased from 12.1 to 47.9 μg m-3 exponentially as the ratio decreased from 46.5 to 6.3 with an important point of the ratio value of 11. At the ratio of less than 11 in the regime under the control of C3H6, SOA concentrations decreased considerably with increasing ratio, whereas at the ratio value of larger than 11 in the NOx controlled regime, SOA slightly decreased with increasing ratio. From combination of the analysis of different functional groups of particles by IR spectra and ESI-Exactive-Orbitrap mass spectrometer, the constituents of SOA were identified to be hydroperoxides (e.g. HOCH2CCl(CH3)OOH), esters (e.g. CH2ClC(O)OCHClCHO), organic nitrates (e.g. HO2CH(CH2Cl)C(O)OCCl(CH2Cl)C(O)OCHClCH2ONO2), etc. Furthermore, a liquid-phase mechanism of SOA formation has been proposed in this study.
NASA Astrophysics Data System (ADS)
Mavroidis, I.; Ilia, M.
2012-12-01
This work presents a systematic analysis and evaluation of the historic and current levels of atmospheric pollution in the Athens metropolitan region, regarding nitrogen oxides (NOx = NO + NO2), ozone (O3) and the NO2/NOx and NO/NO2 concentration ratios. Hourly, daily, monthly, seasonal and annual pollutant variations are examined and compared, using the results of concentration time series from three different stations of the national network for air pollution monitoring, one urban-traffic, one urban-background and one suburban-background. Concentration data are also related to meteorological parameters. The results show that the traffic affected station of Patission Street presents the higher NOx values and the lower concentrations of O3, while it is the station with the highest number of NO2 limit exceedances. The monitoring data suggest, inter alia, that there is a change in the behaviour of the suburban-background station of Liossia at about year 2000, indicating that the exact location of this station may need to be reconsidered. Comparison of NOx concentrations in Athens with concentrations in urban areas of other countries reveal that the Patission urban-traffic station records very high NOx concentrations, while remarkably high is the ratio of NO2 concentrations recorded at the urban-traffic vs. the urban-background station in Athens, indicating the overarching role of vehicles and traffic congestion on NO2 formation. The NO2/NOx ratio in the urban-traffic station appears to be almost constant with time, while it has been increasing in other urban areas, such as London and Seoul, suggesting an increased effect of primary NO2 in these areas. Diesel passenger cars were only recently allowed in Athens and, therefore, NO2 trends should be carefully monitored since a possible increase in primary NO2 may affect compliance with NO2 air quality standards.
A new method and application for determining the nitrogen isotopic composition of NOx
NASA Astrophysics Data System (ADS)
Hastings, M. G.; Miller, D. J.; Wojtal, P.; O'Connor, M.
2015-12-01
Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry, air quality, and radiative forcing, and contribute to nitric acid deposition. Sources of NOx include both natural and anthropogenic emissions, which vary significantly in space and time. NOx isotopic signatures offer a potentially valuable tool to trace source impacts on atmospheric chemistry and regional acid deposition. Previous work on NOx isotopic signatures suggests large ranges in values, even from the same emission source, as well as overlapping ranges amongst different sources, making it difficult to use the isotopic composition as a quantitative tracer of source influences. These prior measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, and testing of some of these methods (including active and passive collections) reveal inconsistencies in efficiency of collection, as well as issues related to changes in conditions such as humidity, temperature, and NOx fluxes. A recently developed method allows for accurately measuring the nitrogen isotopic composition of NOx (NOx = NO + NO2) after capturing the NOx in a potassium permanganate/sodium hydroxide solution as nitrate (Fibiger et al., Anal. Chem., 2014). The method has been thoroughly tested in the laboratory and field, and efficiently collects NO and NO2 under a variety of conditions. There are several advantages to collecting NOx actively, including the ability to collect over minutes to hourly time scales, and the ability to collect in environments with highly variable NOx sources and concentrations. Challenges include a nitrate background present in potassium permanganate (solid and liquid forms), accurately deriving ambient NOx concentrations based upon flow rate and solution concentrations above this variable background, and potential interferences from other nitrogen species. This method was designed to collect NOx in environments with very different emission source loadings in an effort to isotopically characterize NOx sources. Results to date suggest very different values, and less variability than previous work, particularly for vehicle emissions. Ultimately, we aim to determine whether the influence of NOx sources can be quantitatively tracked in the environment.
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section, the NOX emission rate and NOX concentration values substituted for missing data under subpart D... report the NOX mass emissions data and heat input data for such unit, in an electronic quarterly report... emissions) for such unit for the entire year and report the NOX mass emissions data and heat input data for...
Numerical and Experimental Study on the Effect of Over Fire Air on NOx Distribution in Furnace
NASA Astrophysics Data System (ADS)
Wang, Qian; Deng, Yong-qiang; Xia, Yong-jun; Wu, Ying
2018-05-01
In this paper, a numerical investigation and experimental study was used to research the effect of a power plant 600MW supercritical four walls tangentially fired boiler furnace over fire air opening size on the inside furnace NOx concentration distribution and the results coincide. There are four cases in all. The influence and formation of NOx that was produced by pulverized coal furnace during combustion processes were analyzed. The research was proved that the over fire air has great effect on the concentration distribution of NOx in the furnance.
Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric.
Wang, Haiqiang; Wu, Zhongbiao; Zhao, Weirong; Guan, Baohong
2007-01-01
TiO2 loading on woven glass fabric is applied to treat nitrogen oxides (NOx) by photocatalytic oxidation (PCO). In this paper, the PCO behavior of NO at high concentrations was studied by PCO of NOx at source levels (20-168 ppm). The PCO efficiency reached 27% in this experiment, while the inlet NOx concentration was 168 ppm (147 ppm NO). The dependency of the reaction rate on several key influencing factors (relative humidity, space time, inlet concentration, oxygen percentage) was also studied. The results illustrate that the resulting hydroxyl radical and active oxide play an important role in the oxidation of NOx. The reactions are limited by the thermodynamic equilibrium after ca. 15s space time. A possible explanation for the catalyst deactivation is the accumulation of nitric acid and nitrous acid on the TiO2 surface during the PCO of NOx. However, the photocatalytic activity can be recovered with a simple heat treatment. The results from the study of the effect of the inlet concentration were described with the Langmuir-Hinshelwood model.
Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.
2011-01-01
Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less
NASA Astrophysics Data System (ADS)
Dusanter, S.; Vimal, D.; Stevens, P. S.; Volkamer, R.; Molina, L. T.
2007-12-01
The Mexico City Metropolitan Area (MCMA) field campaign, held in March 2006, was a unique opportunity to collect data in one of the most polluted megacities in the world. Such environments exhibit a complex oxidation chemistry involving a strong coupling between odd hydrogen radicals (HOX=OH+HO2) and nitrogen oxides species (NOX=NO+NO2). High levels of volatile organic compounds (VOCs) and NOX control the HOX budget and lead to elevated tropospheric ozone formation. The HOX-NOX coupling can be investigated by comparing measured and model-predicted HOx concentrations. Atmospheric HOX concentrations were measured by the Indiana University laser-induced fluorescence instrument and data were collected at the Instituto Mexicano del Petroleo between 14 and 31 March. Measured hydroxyl radical (OH) concentrations are comparable to that measured in less polluted urban environments and suggest that the OH concentrations are highly buffered under high NOX conditions. In contrast, hydroperoxy radical (HO2) concentrations are more sensitive to the NOX levels and are highly variable between different urban sites. Enhanced levels of OH and HO2 radicals were observed on several days between 9h30-11h00 AM and suggest an additional HOX source for the morning hours and/or a fast HOX cycling under the high NOX conditions of the MCMA. A preliminary investigation of the HOX chemistry occurring in the MCMA urban atmosphere was performed using a photochemical box model based on the Regional Atmospheric Chemistry Mechanism (RACM). Model comparisons will be presented and the agreement between measured and predicted HOX concentrations will be discussed.
Groß, Andrea; Beulertz, Gregor; Marr, Isabella; Kubinski, David J.; Visser, Jaco H.; Moos, Ralf
2012-01-01
The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements) is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed. PMID:22736980
Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions
NASA Astrophysics Data System (ADS)
Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.
2015-12-01
In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).
Automated, High-resolution Mobile Collection System for the Nitrogen Isotopic Analysis of NOx.
Wojtal, Paul K; Miller, David J; O'Conner, Mary; Clark, Sydney C; Hastings, Meredith G
2016-12-20
Nitrogen oxides (NOx = NO + NO2) are a family of atmospheric trace gases that have great impact on the environment. NOx concentrations directly influence the oxidizing capacity of the atmosphere through interactions with ozone and hydroxyl radicals. The main sink of NOx is the formation and deposition of nitric acid, a component of acid rain and a bioavailable nutrient. NOx is emitted from a mixture of natural and anthropogenic sources, which vary in space and time. The collocation of multiple sources and the short lifetime of NOx make it challenging to quantitatively constrain the influence of different emission sources and their impacts on the environment. Nitrogen isotopes of NOx have been suggested to vary amongst different sources, representing a potentially powerful tool to understand the sources and transport of NOx. However, previous methods of collecting atmospheric NOx integrate over long (week to month) time spans and are not validated for the efficient collection of NOx in relevant, diverse field conditions. We report on a new, highly efficient field-based system that collects atmospheric NOx for isotope analysis at a time resolution between 30 min and 2 hr. This method collects gaseous NOx in solution as nitrate with 100% efficiency under a variety of conditions. Protocols are presented for collecting air in urban settings under both stationary and mobile conditions. We detail the advantages and limitations of the method and demonstrate its application in the field. Data from several deployments are shown to 1) evaluate field-based collection efficiency by comparisons with in situ NOx concentration measurements, 2) test the stability of stored solutions before processing, 3) quantify in situ reproducibility in a variety of urban settings, and 4) demonstrate the range of N isotopes of NOx detected in ambient urban air and on heavily traveled roadways.
Factors associated with NO2 and NOX concentration gradients near a highway
NASA Astrophysics Data System (ADS)
Richmond-Bryant, J.; Snyder, M. G.; Owen, R. C.; Kimbrough, S.
2018-02-01
The objective of this research is to learn how the near-road gradient, in which NO2 and NOX (NO + NO2) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO2 and NOX were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dCNO2/dx and dCNOX/dx, respectively) characterize the size of the near-road zone where NO2 and NOX concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dCNO2/dx and dCNOX/dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NOX concentration upwind of the road, and O3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dCNO2/dx and dCNOX/dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O3 concentration comprised the largest proportion of variability in dCNO2/dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O3 concentration remained the largest contributor to variability in dCNO2/dx, but the relative contribution of variability in wind speed to variability in dCNO2/dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dCNOX/dx, with smaller contributions from hour of day and upwind NOX concentration. When only winds from the west were analyzed, variability in upwind NOX concentration, wind speed, hour of day, and traffic count all were associated with variability in dCNOX/dx. Increases in O3 concentration were associated with increased magnitude near-road dCNO2/dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dCNO2/dx and dCNOX/dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dCNO2/dx and dCNOX/dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O3 concentration.
Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L
2008-03-15
Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2013-08-01
As precursors for tropospheric ozone and nitrate aerosols, Nitrogen oxides (NOx) in present atmosphere and its transformation in responding to emission and climate perturbations are studied by CAM-Chem model and air quality measurements including National Emission Inventory (NEI), Clean Air Status and Trends Network (CASTNET) and Environmental Protection Agency Air Quality System (EPA AQS). It is found that not only the surface ozone formation but also the nitrate formation is associated with the relative emissions of NOx and volatile organic compounds (VOC). Due to the availability of VOC and associated NOx titration, ozone productions in industrial regions increase in warmer conditions and slightly decrease against NOx emission increase, which is converse to the response in farming region. The decrease or small increase in ozone concentrations over industrial regions result in the responded nitrate increasing rate staying above the increasing rate of NOx emissions. It is indicated that ozone concentration change is more directly affected by changes in climate and precursor emissions, while nitrate concentration change is also affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations on the historical emission and air quality records on typical pollution areas further confirm the conclusion drawn from modeling experiments.
Origin of tropospheric NO(x) over subarctic eastern Canada in summer
NASA Technical Reports Server (NTRS)
Fan, S.-M; Jacob, D. J.; Mauzerall, D. L.; Bradshaw, J. D.; Sandholm, S. T.; Blake, D. R.; Singh, H. B.; Talbot, R. W.; Gregory, G. L.; Sachse, G. W.
1994-01-01
The original of NO(X) in the summertime troposphere over subarctic eastern Canada is investigated by photochemical modeling of aircraft and ground-based measurements from the Arctic Boundary Layer Expedition (ABLE 3B). It is found that decomposition of peroxyacetyl nitrate (PAN) can account for most of the NO(X) observed between the surface and 6.2 km altitude (aircraft ceiling). Forest fires represent the principal source of PAN in the region, implying the same origin for NO(X). There is, however, evidence for an unidentified source of NO(X) in occasional air masses subsiding from the upper troposphere. Isoprene emissions from boreal forests maintain high NO(X) concentrations in the continental boundary layer over eastern Canada by scavenging OH and NO3, thus slowing down conversion of NO(X) to HNO3, both in the daytime and at night. This effect is partly compensated by the production of CH3CO3 radicals during isoprene oxidation, which slows down the decomposition of PAN subsiding from the free troposphere. The peroxy radical concentrations estimated from concurrent measurements of NO and NO2 concentrations during ABLE 3B are consistent with values computed from our photochemical model below 4 km, but model values are low at higher altitudes. The discrepancy may reflect either a missing radical source in the model or interferences in the NO2 measurement.
NASA Astrophysics Data System (ADS)
Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik
2017-06-01
Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.
Enhanced Oxidation Capacity from Photolytic HOx/NOx Recycling: Implications for CH4 Growth
NASA Astrophysics Data System (ADS)
Madronich, S.
2017-12-01
Oxidation by OH radicals converts many emitted compounds (CO, CH4, VOCs as well as NOx, SO2, HCFCs, and others) to more soluble forms that can be removed rapidly from the atmosphere, e.g., by deposition. In a chemically stable atmosphere (without runaway concentration growth) the rate of OH production must generally exceed the emission rates of the reduced compounds, but secondary chemistry complicates OH budgets. If emission rates (e.g., E for CH4) increase, OH concentrations can either decrease or increase depending on NOx conditions, causing a non-linear dependence of CH4 concentrations on its emissions, [CH4] Ef where f, the methane feedback factor, is currently estimated in global 3d models to be 1.3-1.4. This feature is robust among models, and can be reproduced in simpler box models with the canonical Ox-HOx-NOx chemistry, in which global OH is increased by NOx emissions and decreased by CO, CH4, and VOC emissions. Scenarios with lower NOx emissions but higher CH4 emissions point to substantially lower global oxidation capacity in the future. Several newly hypothesized processes have attracted attention in recent years, including the photolytic recycling of OH from biogenic VOCs, and the photolysis of particulate nitrates to regenerate NOx. The latter process could be particularly significant in regions far from NOx emissions, where low NOx levels are more efficient at generating O3 and OH. To the extent that these processes do occur, they may provide some buffering of global OH against CH4 variations (f nearer 1), and more generally against anthropogenic perturbations. However, critical measurements from both lab and field are needed to assess the importance of these proposed processes.
Research progress on catalytic denitrification technology in chemical industry
NASA Astrophysics Data System (ADS)
Jin, Yezhi
2017-12-01
In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.
Zhang, Qi; Anastasio, Cort
2003-08-15
Although organic nitrogen (ON) compounds are apparently ubiquitous in the troposphere, very little is known about their fate and transformations. As one step in addressing this issue, we have studied the transformations of bulk (uncharacterized) organic nitrogen in fogwaters and aerosol aqueous extracts during exposure to simulated sunlight and O3. Our results show that over the course of several hours of exposure a significant portion of condensed-phase organic nitrogen is transformed into ammonium, nitrite, nitrate, and NOx. For nitrite, there was both photochemical formation and destruction, resulting in a slow net loss. Ammonium and nitrate were formed at initial rates on the order of a few micromolar per hour in the bulk fogwaters, corresponding to formation rates of approximately 10 and 40 ng m(-3) h(-1), respectively, in ambient fog. The average initial formation rate (expressed as ng (m of air)(-3) h(-1)) of NH4+ in the aqueous extracts of fine particles (PM2.5) was approximately one-half of the corresponding fogwater value. Initial formation rates of NOx (i.e., NO + NO2) were equivalent to approximately 2-11 pptv h(-1) in the three fogwaters tested. Although the formation rates of ammonium and nitrate were relatively small as compared to their initial concentrations in fogwaters (approximately 200-2000 microM) and aerosol particles (approximately 400-1500 ng m(-3)), this photochemical mineralization and "renoxification" from condensed-phase organic N is a previously uncharacterized source of inorganic N in the atmosphere. This conversion also represents a new component in the biogeochemical cycle of nitrogen that might have significant influences on atmospheric composition, condensed-phase properties, and the ecological impacts of N deposition.
NASA Astrophysics Data System (ADS)
Sato, Kei; Nakashima, Yoshihiro; Morino, Yu; Imamura, Takashi; Kurokawa, Jun-ichi; Kajii, Yoshizumi
2017-12-01
The total OH reactivity of the secondary products formed from the OH-initiated oxidation of toluene, p-xylene, and 1,3,5-trimethylbenzene was directly measured in the presence of NOx using a laboratory environmental chamber in order to investigate unidentified reactive species in urban air. The total OH reactivity was also calculated from the concentrations of the reactants and products, which were monitored by Fourier-transform infrared spectroscopy. The difference between the measured and calculated OH reactivity, the so-called missing OH reactivity, comprised 58-81% of the total OH reactivity of the secondary products. These results suggest that the secondary products formed from the oxidation of aromatic hydrocarbons may be important candidates in accounting for the missing OH reactivity in the analyses of urban environments. The Master Chemical Mechanism (MCM) calculations were performed to predict the temporal variation in the total OH reactivity for the oxidation of aromatic hydrocarbons. The MCM calculations successfully reproduced the observed total OH reactivity when the particle and semi-volatile product concentrations were negligibly low. The MCM calculations were used to identify the missing secondary products. The results suggest that important components of the missing OH reactivity are unsaturated multifunctional products such as unsaturated dicarbonyls, unsaturated epoxydicarbonyls, and furanones.
Krzyzynska, Renata; Hutson, Nick D
2012-06-01
In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization scrubber.
Bentz, Brandon G; Hammer, Neal D; Radosevich, James A; Haines, G Kenneth
2004-01-01
Background Key steps crucial to the process of tumor progression are genomic instability and escape from apoptosis. Nitric oxide and its interrelated reactive intermediates (collectively denoted as NOX) have been implicated in DNA damage and mutational events leading to cancer development, while also being implicated in the inhibition of apoptosis through S-nitrosation of key apoptotic enzymes. The purpose of this study was to explore the interrelationship between NOX-mediated DNA strand breaks (DSBs) and apoptosis in cultured tumor cell lines. Methods Two well-characterized cell lines were exposed to increasing concentrations of exogenous NOX via donor compounds. Production of NOX was quantified by the Greiss reaction and spectrophotometery, and confirmed by nitrotyrosine immunostaining. DSBs were measured by the alkaline single-cell gel electrophoresis assay (the COMET assay), and correlated with cell viability by the MTT assay. Apoptosis was analyzed both by TUNEL staining and Annexin V/propidium iodine FACS. Finally, caspase enzymatic activity was measured using an in-vitro fluorogenic caspase assay. Results Increases in DNA strand breaks in our tumor cells, but not in control fibroblasts, correlated with the concentration as well as rate of release of exogenously administered NOX. This increase in DSBs did not correlate with an increase in cell death or apoptosis in our tumor cell line. Finally, this lack of apoptosis was found to correlate with inhibition of caspase activity upon exposure to thiol- but not NONOate-based NOX donor compounds. Conclusions Genotoxicity appears to be highly interrelated with both the concentration and kinetic delivery of NOX. Moreover, alterations in cell apoptosis can be seen as a consequence of the explicit mechanisms of NOX delivery. These findings lend credence to the hypothesis that NOX may play an important role in tumor progression, and underscores potential pitfalls which should be considered when developing NOX-based chemotherapeutic agents. PMID:15617570
Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.
Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz
2010-08-01
The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such as metallurgy and municipal waste incinerators are potential candidates for this technology application.
Karl, M; Svendby, T; Walker, S-E; Velken, A S; Castell, N; Solberg, S
2015-09-15
Carbon capture and storage (CCS) is a technological solution that can reduce the amount of carbon dioxide (CO2) emissions from the use of fossil fuel in power plants and other industries. A leading method today is amine based post-combustion capture, in which 2-aminoethanol (MEA) is one of the most studied absorption solvents. In this process, amines are released to the atmosphere through evaporation and entrainment from the CO2 absorber column. Modelling is a key instrument for simulating the atmospheric dispersion and chemical transformation of MEA, and for projections of ground-level air concentrations and deposition rates. In this study, the Weather Research and Forecasting model inline coupled with chemistry, WRF-Chem, was applied to quantify the impact of using a comprehensive MEA photo-oxidation sequence compared to using a simplified MEA scheme. Main discrepancies were found for iminoethanol (roughly doubled in the detailed scheme) and 2-nitro aminoethanol, short MEA-nitramine (reduced by factor of two in the detailed scheme). The study indicates that MEA emissions from a full-scale capture plant can modify regional background levels of isocyanic acid. Predicted atmospheric concentrations of isocyanic acid were however below the limit value of 1 ppbv for ambient exposure. The dependence of the formation of hazardous compounds in the OH-initiated oxidation of MEA on ambient level of nitrogen oxides (NOx) was studied in a scenario without NOx emissions from a refinery area in the vicinity of the capture plant. Hourly MEA-nitramine peak concentrations higher than 40 pg m(-3) did only occur when NOx mixing ratios were above 2 ppbv. Therefore, the spatial variability and temporal variability of levels of OH and NOx need to be taken into account in the health risk assessment. The health risk due to direct emissions of nitrosamines and nitramines from full-scale CO2 capture should be investigated in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan
2015-01-01
Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
NASA Astrophysics Data System (ADS)
Zou, Y.; Deng, X. J.; Zhu, D.; Gong, D. C.; Wang, H.; Li, F.; Tan, H. B.; Deng, T.; Mai, B. R.; Liu, X. T.; Wang, B. G.
2015-06-01
Guangzhou, one of China's megacities, is beset with frequent occurrence of high-concentration ozone events. In this study, online instruments were used to simultaneously monitor ozone, nitrogen oxides (NOx) and volatile organic compounds (VOCs) at GPACS (the Guangzhou Panyu Atmospheric Composition Station) of the China Meteorological Administration, from June 2011 to May 2012, in order to determine their characteristics, the effect of VOCs on ozone photochemical production and the relationship between VOC / NOx ratio and ozone formation. The results showed that during the observation period, the seasonal variation of ozone concentration was lower in spring and winter compared to summer and autumn, which is opposite that for VOCs and NOx. In terms of VOCs, aromatics had the largest ozone formation potential, among which toluene, xylenes, ethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were the most important species, with a total contribution of about 44%. As the VOC / NOx ratios were very high during high-concentration ozone events that occur all year round, we speculate ozone production was likely to be NOx-limited regime (12:00-16:00 LT) in Guangzhou. Further investigation based on numerical models is needed in the future to obtain more detailed and robust conclusions.
NASA Astrophysics Data System (ADS)
Chen, Shimon; Yuval; Broday, David M.
2018-01-01
The Optimized Dispersion Model (ODM) is uniquely capable of incorporating emission estimates, ambient air quality monitoring data and meteorology to provide reliable high-resolution (in both time and space) air quality estimates using non-linear regression. However, it was so far not capable of describing the effects of emissions from elevated sources. We formulated an additional term to extend the ODM such that these sources can be accounted for, and implemented it in modeling the fine spatiotemporal patterns of ambient NOx concentrations over the coastal plain of Israel. The diurnal and seasonal variation in the contribution of industry to the ambient NOx is presented, as well as its spatial features. Although industrial stacks are responsible for 88% of the NOx emissions in the study area, their contribution to ambient NOx levels is generally about 2% with a maximal upper bound of 27%. Meteorology has a major role in this source allocation, with the highest impact of industry in the summer months, when the wind is blowing inland past the coastal stacks and vertical mixing is substantial. The new Optimized Dispersion Model (ODM) out-performs both Inverse-Distance-Weighing (IDW) interpolation and a previous ODM version in predicting ambient NOx concentrations. The performance of the new model is thoroughly assessed.
NASA Astrophysics Data System (ADS)
Itahashi, Syuichi; Yumimoto, Keiya; Uno, Itsushi; Hayami, Hiroshi; Fujita, Shin-ichi; Pan, Yuepeng; Wang, Yuesi
2018-02-01
Acidifying species in precipitation can have severe impacts on ecosystems. The chemical composition of precipitation is directly related to the amount of precipitation; accordingly, it is difficult to identify long-term variation in chemical concentrations. The ratio of the nitrate (NO3-) to non-sea-salt sulfate (nss-SO42-) concentration in precipitation on an equivalent basis (hereinafter, Ratio) is a useful index to investigate the relative contributions of these acidifying species. To identify the long-term record of acidifying species in precipitation over East Asia, the region with the highest emissions worldwide, we compiled ground-based observations of the chemical composition of precipitation over China, Korea, and Japan from 2001 to 2015 based on the Acid Deposition Monitoring Network in East Asia (EANET). The spatial coverage was limited, but additional monitoring data for Japan, southern China, and northern China around Beijing were utilized. The period of analysis was divided into three phases: Phase I (2001-2005), Phase II (2006-2010), and Phase III (2011-2015). The behaviors of NO3- and nss-SO42- concentrations and hence the Ratio in precipitation were related to these precursors. The anthropogenic NOx and SO2 emissions and the NOx / SO2 emission ratio were analyzed. Further, satellite observations of the NO2 and SO2 column density to capture the variation in emissions were applied. We found that the long-term trend in the NO3- concentration in precipitation was not related to the variation in NOx emission and the NO2 column. In comparison, the nss-SO42- concentration in precipitation over China, Korea, and Japan was partially connected to the changes in SO2 emissions from China, but the trends were not significant. The long-term trends of Ratio over China, Korea, and Japan were nearly flat during Phase I, increased significantly during Phase II, and were essentially flat again during Phase III. This variation in Ratio in East Asia clearly corresponded to the NOx / SO2 emission ratio and the NO2 / SO2 column ratio in China. The initial flat trend during Phase I was due to increases in both NOx and SO2 emissions in China, the significantly increasing trend during Phase II was triggered by the increase in NOx emissions and decrease in SO2 emissions in China, and the return to a flat trend during Phase III was caused by declines in both NOx and SO2 emissions in China. These results suggest that emissions in China had a significant impact not only on China but also on downwind precipitation chemistry during the 15-year period of 2001-2015. In terms of wet deposition, the NO3- wet deposition over China, Korea, and Japan did not change dramatically, but the nss-SO42- wet deposition declined over China, Korea, and Japan from Phase II to III. These declines were caused by a strong decrease in the nss-SO42- concentration in precipitation accompanied by a reduction in SO2 emission from China, which counteracted the increase in precipitation. These findings indicated that the acidity of precipitation shifted from sulfur to nitrogen.
NASA Astrophysics Data System (ADS)
Valin, L. C.; Fiore, A. M.; Chance, K.; Nowlan, C. R.; Gonzalez Abad, G.; Browne, E. C.
2014-12-01
Reactions of OH with volatile organic compounds (VOC) such as CH4 and isoprene produce formaldehyde (CH2O). The concentration of OH and the chemistry of peroxy radicals, a reactive intermediate of VOC + OH reactions, depend strongly on the concentration of NOx. Here, we investigate the influence of NOx on the formation of CH2O in an isoprene-rich atmosphere (Martin Lake Power Plant, NE Texas) and in a "background" atmosphere (Navajo Power Plant, N Arizona) using conceptual models and the WRF-Chem regional chemistry-transport model alongside satellite-based (Aura-OMI) and flight-based (ARCTAS) measurements. In the conceptual model, the enhancement of CH2O in an NO2 plume is large and depends on the magnitude of the OH enhancement, the lifetime of the parent VOC, the concentration of intermediate oxidation products, and the impact of NOx on the branching ratios of peroxy radicals. Preliminary analysis of WRF-Chem results supports these findings. For a large point source of NOx in a low NOx-background, the enhancement of the CH2O concentration in the NOx plume is more than two times that of the surrounding region in both the isoprene-rich and the "background" WRF-Chem simulations. Furthermore, the spatial correlation of OH and CH2O in these simulated plumes suggests that simultaneous measurement of CH2O and NO2 offers the potential to better constrain the processes affecting the reaction of VOC with OH, and thus the factors controlling O3 production and the NOx lifetime. The precision of UV/Visible spectrometers planned for future geostationary missions, such as TEMPO, suggest that the routine measurement of these relationships will be possible.
Effects of retrofitting emission control systems on in-use heavy diesel vehicles.
Millstein, Dev E; Harley, Robert A
2010-07-01
Diesel engines are now the largest source of nitrogen oxides (NO(x)) and fine particulate black carbon (soot) emissions in California. The California Air Resources Board recently adopted a rule requiring that by 2014 all in-use heavy trucks and buses meet current (2007) exhaust particulate matter (PM) emission standards. Also by 2023 all in-use heavy-duty vehicles will have to meet current NO(x) emission standards, with significant progress in achieving the requirements for NO(x) control expected by 2014. This will require retrofit or replacement of older in-use engines. Diesel particle filters (DPF) reduce PM emissions but may increase the NO(2)/NO(x) emission ratio to approximately 35%, compared to approximately 5% typical of diesel engines without particle filters. Additionally, DPF with high oxidative capacity reduce CO and hydrocarbon emissions. We evaluate the effects of retrofitting trucks with DPF on air quality in southern California, using an Eulerian photochemical air quality model. Compared to a 2014 reference scenario without the retrofit program, black carbon concentrations decreased by 12 +/- 2% and 14 +/- 2% during summer and fall, respectively, with corresponding increases in ambient ozone concentrations of 3 +/- 2% and 7 +/- 3%. NO(2) concentrations decreased by 2-4% overall despite the increase in primary NO(2) emissions because total NO(x) emissions were reduced as part of the program to retrofit NO(x) control systems on in-use engines. However, in some cases NO(2) concentrations may increase at locations with high diesel truck traffic.
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
NASA Astrophysics Data System (ADS)
Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin
2016-04-01
Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.
NASA Astrophysics Data System (ADS)
Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun
2017-11-01
A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.
Xing, Yi; Li, Liuliu; Lu, Pei; Cui, Jiansheng; Li, Qianli; Yan, Bojun; Jiang, Bo; Wang, Mengsi
2018-03-01
Hg 0 , SO 2 , and NOx result in heavily global environmental pollution and serious health hazards. Up to now, how to efficiently remove mercury with SO 2 and NOx from flue gas is still a tough task. In this study, series of high oxidizing Fenton systems were employed to purify the pollutants. The experimental results showed that Fe 3+ /H 2 O 2 was more suitable to purify Hg 0 than Fe 2+ /H 2 O 2 and Cu 2+ /H 2 O 2. The optimal condition includes Fe 3+ concentration of 0.008 mol/L, Hg 0 inlet concentration of 40 μg/m 3 , solution temperature of 50 °C, pH of 3, H 2 O 2 concentration of 0.7 mol/L, and O 2 percentage of 6%. When SO 2 and NOx were taken into account under the optimal condition, Hg 0 removal efficiency could be enhanced to 91.11% while the removal efficiency of both NOx and SO 2 was slightly declined, which was consistent to the analysis of purifying mechanism. The removal efficiency of Hg 0 was stimulated by accelerating the conversion of Fe 2+ to Fe 3+ , which resulted from the existence of SO 2 and NOx. The results of this study suggested that simultaneously purifying Hg 0 , SO 2 , and NOx from flue gas is feasible.
A combined approach for the evaluation of a volatile organic compound emissions inventory.
Choi, Yu-Jin; Calabrese, Richard V; Ehrman, Sheryl H; Dickerson, Russell R; Stehr, Jeffrey W
2006-02-01
Emissions inventories significantly affect photochemical air quality model performance and the development of effective control strategies. However, there have been very few studies to evaluate their accuracy. Here, to evaluate a volatile organic compound (VOC) emissions inventory, we implemented a combined approach: comparing the ratios of carbon bond (CB)-IV VOC groups to nitrogen oxides (NOx) or carbon monoxide (CO) using an emission preprocessing model, comparing the ratios of VOC source contributions from a source apportionment technique to NOx or CO, and comparing ratios of CB-IV VOC groups to NOx or CO and the absolute concentrations of CB-IV VOC groups using an air quality model, with the corresponding ratios and concentrations observed at three sites (Maryland, Washington, DC, and New Jersey). The comparisons of the ethene/NOx ratio, the xylene group (XYL)/NOx ratio, and ethene and XYL concentrations between estimates and measurements showed some differences, depending on the comparison approach, at the Maryland and Washington, DC sites. On the other hand, consistent results at the New Jersey site were observed, implying a possible overestimation of vehicle exhaust. However, in the case of the toluene group (TOL), which is emitted mainly from surface coating and printing sources in the solvent utilization category, the ratios of TOL/ NOx or CO, as well as the absolute concentrations revealed an overestimate of these solvent sources by a factor of 1.5 to 3 at all three sites. In addition, the overestimate of these solvent sources agreed with the comparisons of surface coating and printing source contributions relative to NOx from a source apportionment technique to the corresponding value of estimates at the Maryland site. Other studies have also suggested an overestimate of solvent sources, implying a possibility of inaccurate emission factors in estimating VOC emissions from surface coating and printing sources. We tested the impact of these overestimates with a chemical transport model and found little change in ozone but substantial changes in calculated secondary organic aerosol concentrations.
Vijayaraghavan, Krish; DenBleyker, Allison; Ma, Lan; Lindhjem, Chris; Yarwood, Greg
2014-07-01
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995-2009 period despite an increase in total vehicle distance traveled. The CO and NO(x) emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO(x) in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001-2009. Although this trend coexists with the declining trends in on-road NO(x), VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NO(x) in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO(x) during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.
40 CFR 86.327-79 - Quench checks; NOX analyzer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new analyzer that has an ambient pressure or “soft vacuum” reaction chamber prior to initial use. Additionally...
40 CFR 86.327-79 - Quench checks; NOX analyzer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new analyzer that has an ambient pressure or “soft vacuum” reaction chamber prior to initial use. Additionally...
40 CFR 86.540-90 - Exhaust sample analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., if appropriate, NOX: (1) Zero the analyzers and obtain a stable zero reading. Recheck after tests. (2... actual concentrations on chart. (3) Check zeros; repeat the procedure in paragraphs (a) (1) and (2) of... appropriate, NOX. concentrations of samples. (6) Check zero and span points. If difference is greater than 2...
NASA Astrophysics Data System (ADS)
Matsumoto, J.
2013-12-01
Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0.1 ppbv for Ox and 0.5 ppbv for NOx (60-s integration, S/N = 3). The observation test in the suburbs of Tokyo was conducted in April 2013 at Tokorozawa Campus, Waseda University. During the campaign, 48 cases of ';NOx spikes', for which NOx levels significantly varied in the second time scale due to local NOx emission, were captured. NO2/NOx ratio in the exhaust gas was estimated as the slope of regression line between 1-s series data of Ox and those of NOx observed during each spike. The average of acquired NO2/NOx ratio was 0.10. Thus, as a result of observations of real atmosphere, the present NO2/NOx ratio in the exhaust gases in the suburbs of Tokyo was 0.10 as average, which was mainly due to exhausts of automobiles. However, when the individual cases were considered, NO2/NOx could vary from 0.00 to 0.30. Such a wide range of NO2/NOx ratio may be due to (1) difference of source types (eg. automobiles, power generator) and (2) difference of conditions of sources (eg. engines, filters of exhaust). For example, NO2/NOx ratio for hybrid electric vehicles may be different from those for conventional cars. When diffusion of such new model cars can change NOx emission in near future, the present method of simultaneous and real-time monitoring of Ox and NOx in the atmosphere can be useful and promising for characterization of NOx emission.
Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume
NASA Astrophysics Data System (ADS)
Lafranchi, B. W.; Cohen, R. C.
2009-12-01
We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent, and in the urban transect, ozone production is observed to increase as NOx concentrations decrease. This is attributed to the high NOx/VOC ratio that results from reduced biogenic emissions and strong local inputs of NOx, thus driving the chemical environment into a NOx-saturated regime. From these results, we give predictions of future ozone exceedences for various emissions and climate scenarios.
Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects.
Nagasaka, Hironori; Tsukahara, Hirokazu; Yorifuji, Tohru; Miida, Takashi; Murayama, Kei; Tsuruoka, Tomoko; Takatani, Tomozumi; Kanazawa, Masaki; Kobayashi, Kunihiko; Okano, Yoshiyuki; Takayanagi, Masaki
2009-03-01
Nitric oxide (NO) is synthesized from arginine and O(2) by nitric oxide synthase (NOS). Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by the 2 enzymes acting in the urea cycle: argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Although the complete urea cycle is expressed only in the liver, ASS and ASL are expressed in other organs including the kidney and vascular endothelium. To examine possible alterations of the NO pathway in urea cycle defects, we measured plasma concentrations of arginine and citrulline and serum concentrations of nitrite/nitrate (NOx(-), stable NO metabolites) and asymmetric dimethylarginine (ADMA, an endogenous NOS inhibitor) in patients with congenital urea cycle disorders of 3 types: ornithine transcarbamylase (OTC) deficiency, ASS deficiency, and ASL deficiency. All were receiving oral arginine replacement at the time of this study. The same parameters were also measured in healthy subjects, who participated as controls. The OTC-deficient patients had significantly high NOx(-) and nonsignificantly high ADMA concentrations. Their NOx(-) was significantly positively correlated with arginine. The ASS-deficient patients had significantly low NOx(-) and significantly high ADMA concentrations. The ASL-deficient patients had normal NOx(-) and nonsignificantly high ADMA concentrations. In ASS-deficient and ASL-deficient patients, the NOx(-) was significantly inversely correlated with citrulline. These results suggest that NO synthesis is enhanced in OTC-deficient patients while receiving arginine but that NO synthesis remains low in ASS-deficient patients despite receiving arginine. They also suggest that endogenous NO synthesis is negatively affected by citrulline and ADMA in ASS-deficient and ASL-deficient patients. Although the molecular mechanisms remain poorly understood, we infer that the NO pathway might play a role in the pathophysiology related to congenital urea cycle disorders.
NASA Astrophysics Data System (ADS)
Uttamang, P.; Aneja, V. P.; Hanna, A. F.
2017-12-01
Analysis of gaseous criteria pollutants in Bangkok Metropolitan Region (BMR), Thailand, during 2010 to 2014 reveals that the hourly concentrations of CO, SO2 and NO2 were mostly below the National Ambient Air Quality Standards (NAAQs) of Thailand. However, the hourly concentrations of Ozone (O3) exceeded the Thailand NAAQs. The maximum concentrations of O3 were from 120 to 190 ppb. On average, the number of hourly O3 exceedances were from 1 to 60 hours a year depending on monitoring station locations. The exceedances were found during the dry season in both summer and winter. Inter-conversion between O3, NO and NO2 indicates the crossover point between species occur when the concentration of NOx ([NOx = NO + NO2]) is about 60 ppb. When [NOx] < 60 ppb, O3 is the dominant species; conversely, NO dominates when [NOx] > 60 ppb. The calculated photochemical reaction rate during photostationary state ranges from 0.12 to 1.22 min-1. Linear regression analysis between the concentrations of Ox ([Ox = O3 + NO2]) and NOx provides the role of local and regional contributions to Ox. Both the local and regional Ox contributions play an important role in the increase of [Ox] and those values were about double during O3 episodes ([O3] > 100 ppb). Ratio analysis suggests that the major contributors of primary pollutants over BMR are mobile sources (CO/NOx = 19.8). However, this region may also be influenced by point sources, but they are not dominant. An analysis of the air quality showed that the air quality index (AQI) for BMR was predominantly between good to moderate; however, during episode conditions in the region, unhealthy O3 categories were also observed. Note the manuscript is under review by a publication
Maritime Evaluation of Aerosol Fire Knock Down Tools. Part 2: Toxicity and Corrosion Potential
2014-02-01
determined using paramagnetic sensor technology, while CO and CO2 concentrations were measured, respectively, via gas filter correlation and single...time response of each sensor in the unit. Since it is important to account for this delay in response during analysis and interpretation of measured...within, the compartment as well as confinement and extinguishment of the fire. 1 The initial response of the NOx analyzer and delay in sensor
NASA Astrophysics Data System (ADS)
Zhao, Defeng; Schmitt, Sebastian H.; Wang, Mingjin; Acir, Ismail-Hakki; Tillmann, Ralf; Tan, Zhaofeng; Novelli, Anna; Fuchs, Hendrik; Pullinen, Iida; Wegener, Robert; Rohrer, Franz; Wildt, Jürgen; Kiendler-Scharr, Astrid; Wahner, Andreas; Mentel, Thomas F.
2018-02-01
Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: < 1to 20 ppb, SO2: < 0.05 to 15 ppb). In these experiments, monoterpene oxidation was dominated by OH oxidation. We found that SO2 induced nucleation and enhanced SOA mass formation. NOx strongly suppressed not only new particle formation but also SOA mass yield. However, in the presence of SO2 which induced a high number concentration of particles after oxidation to H2SO4, the suppression of the mass yield of SOA by NOx was completely or partly compensated for. This indicates that the suppression of SOA yield by NOx was largely due to the suppressed new particle formation, leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57-77 %), even in low-NOx conditions (< ˜ 1 ppb). Organic nitrate contributed 7-26 % of total organics assuming a molecular weight of 200 g mol-1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H / C), compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the combining effect of SO2 and NOx may have an important influence on SOA formation affected by interactions of biogenic volatile organic compounds (VOCs) with anthropogenic emissions.
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2014-02-01
As precursors to tropospheric ozone and nitrate, nitrogen oxide (NOx) in the present atmosphere and its transformation in response to emission and climate perturbations are studied by using the CAM-Chem model and air quality measurements from the National Emissions Inventory (NEI), Clean Air Status and Trends Network (CASTNET), and Environmental Protection Agency Air Quality System (EPA AQS). It is found that NOx transformations in present atmospheric conditions show different sensitivities over industrial and non-industrial regions. As a result, the surface ozone and nitrate formations can be divided into several regimes associated with the dominant emission types and relative levels of NOx and volatile organic compounds (VOC). Ozone production in industrial regions (the main NOx emission source areas) increases in warmer conditions and slightly decreases following an increase in NOx emissions due to NOx titration, which is opposite to the response in non-industrial regions. The ozone decrease following a temperature increase in non-industrial regions indicates that ozone production in regions that lack NOx emission sources may be sensitive to NOx transformation in remote source regions. The increase in NO2 from NOx titration over industrial regions results in an increase rate of total nitrate that remains higher than the increase rate of NOx emissions. The presented findings indicate that a change in the ozone concentration is more directly affected by changes in climate and precursor emissions, while a change in the nitrate concentration is affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that a warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations of the historical emissions and air quality records of a typical NOx-limited area, such as Atlanta and a VOC-limited area, such as Los Angeles further confirm the conclusions drawn from the modeling experiments.
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.; Gregory, G. L.
1980-01-01
Data for one day of the 1977 southeastern Virginia urban plume study are compared with computer predictions from a traveling air parcel model using a contemporary photochemical mechanism with a minimal description of nonmethane hydrocarbon (NMHC) constitution and chemistry. With measured initial NOx and O3 concentrations and a current separate estimate of urban source loading input to the model, and for a variation of initial NMHC over a reasonable range, an ozone increase over the day is predicted from the photochemical simulation which is consistent with the flight path averaged airborne data.
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.;
2010-01-01
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.
Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.
Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg
2015-02-17
The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.
Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf
2013-01-01
An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366
NOx emissions from a Central California dairy
NASA Astrophysics Data System (ADS)
Hasson, Alam S.; Ogunjemiyo, Segun O.; Trabue, Steven; Ashkan, Shawn; Scoggin, Kenwood; Steele, Julie; Olea, Catalina; Middala, Srikar; Vu, Kennedy; Scruggs, Austen; Addala, Laxmi R.; Nana, Lucien
2013-05-01
Concentrations of NOx (NO + NO2) were monitored downwind from a Central California dairy facility during 2011 and 2012. NOx concentrations at the dairy were significantly higher than the background levels during August 2011 primarily due to the presence of elevated NO, but were indistinguishable from background concentrations during January and April 2012. A Gaussian plume model (AERMOD) and a Lagrangian back trajectory model (Wind Trax) were used to estimate the flux of NO from the dairy during August 2011 with the assumption that emissions were primarily from animal feed. NO emissions from silage were also directly measured from feed to provide additional insight into the sources. Isolation flux chamber measurements imply an NO flux from the feed of about 1.3 × 10-3 g m-2 h-1, but these relatively low fluxes are inconsistent with the elevated NO concentrations observed during August 2011. This implies that either the flux chamber method grossly underestimates the true NO emissions from feed, or that most of the ambient NO measured at the dairy is from other sources. Emissions from farm machinery may account for the NO concentrations observed. Animal feed thus appears to be a small contributor to NOx emissions within Central California.
Model results and measurements were analyzed to determine the extent of change in concentrations of nitrogen oxides (NOx) during morning weekday high traffic periods from different summer seasons that could be related to change in mobile source emissions. The dynamic evaluation ...
Yang, Xiaoyang; Wang, Xinhua; Yang, Wen; Xu, Jun; Ren, Lihong; He, Youjiang; Liu, Bing; Bai, Zhipeng; Meng, Fan; Hu, Min
2016-09-01
In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.
CO2, NOx, and particle emissions from aircraft and support activities at a regional airport.
Klapmeyer, Michael E; Marr, Linsey C
2012-10-16
The goal of this research was to quantify emissions of carbon dioxide (CO(2)), nitrogen oxides (NO(x)), particle number, and black carbon (BC) from in-use aircraft and related activity at a regional airport. Pollutant concentrations were measured adjacent to the airfield and passenger terminal at the Roanoke Regional Airport in Virginia. Observed NO(x) emission indices (EIs) for jet-powered, commuter aircraft were generally lower than those contained in the International Civil Aviation Organization databank for both taxi (same as idle) and takeoff engine settings. NO(x) EIs ranged from 1.9 to 3.7 g (kg fuel)(-1) across five types of aircraft during taxiing, whereas EIs were consistently higher, 8.8-20.6 g (kg fuel)(-1), during takeoff. Particle number EIs ranged from 1.4 × 10(16) to 7.1 × 10(16) (kg fuel)(-1) and were slightly higher in taxi mode than in takeoff mode for four of the five types of aircraft. Diurnal patterns in CO(2) and NO(x) concentrations were influenced mainly by atmospheric conditions, while patterns in particle number concentrations were attributable mainly to patterns in aircraft activity. CO(2) and NO(x) fluxes measured by eddy covariance were higher at the terminal than at the airfield and were lower than found in urban areas.
NASA Astrophysics Data System (ADS)
Anderson, D. C.; Dickerson, R. R.; Loughner, C.
2013-12-01
NOx and CO not only adversely impact human health, but they, along with associated VOCs, are also important precursors for O3 formation. While ambient NOx and CO concentrations have decreased dramatically over the past 10-20 years, O3 has remained a more recalcitrant problem, particularly in the Baltimore/Washington region. Reduction of O3 production requires that emissions inventories, such as the National Emissions Inventory (NEI), accurately capture total emissions of CO and NOx while also correctly apportioning them among different sectors. Previous evaluations of the NEI paint different pictures of its accuracy, with assertions that it overestimates either one or both of CO and NOx from anywhere between 25 percent to a factor of 2. These conflicting claims warrant further investigation. In this study, measurements of NOx and CO taken aboard the NOAA P3B airplane during the 2011 DISCOVER-AQ field campaign were used to determine the NOx/CO emissions ratio at 6 locations in the Washington/Baltimore region. An average molar emissions ratio of 12.8 × 1.2 CO/NOx was found by calculating the change in CO over the change in NOx from vertical concentration profiles in the planetary boundary layer. Ratios showed little variation with location. Observed values were approximately a factor of 1.35 - 1.75 times greater than that predicted by the annual, countywide emissions ratio from the 2008 NEI. When compared to a temporalized, gridded version of the inventory processed by SMOKE, ratio observations were greater than that predicted by inventories by up to a factor of 2. Comparison of the in situ measurements and remotely sensed observations from MOPITT of CO to the Community Multiscale Air Quality (CMAQ) model agree within 10-35 percent, with the model higher on average. Measurements of NOy by two separate analytical techniques, on the other hand, show that CMAQ consistently and significantly overestimates NOy concentrations. Combined with the CO observations, this indicates that the NEI overestimates NOx emissions by approximately a factor of 2. Comparison of the temporalized NEI to continuous monitoring of NOx emissions from point sources shows that, on average, agreement between observations and the NEI were within 5 percent. In a region where the NEI estimates on-road emissions can account for 50-75 percent of total NOx, the most likely source of error in the NOx inventory is in the on-road sector. Assumptions about the lifetime and efficacy of catalytic converters in the MOVES model should be investigated as a possible source of this error.
NASA Astrophysics Data System (ADS)
Guo, Yue; Du, Lei; Jiang, Long; Li, Qing; Zhao, Zhenning
2017-01-01
In this paper, the combustion and NOx emission characteristics of a 300 MW tangential boiler are simulated, we obtain the flue gas velocity field in the hearth, component concentration distribution of temperature field and combustion products, and the speed, temperature, concentration of oxygen and NOx emissions compared with the test results in the waisting air distribution conditions, found the simulation values coincide well with the test value, to verify the rationality of the model. At the same time, the flow field in the furnace, the combustion and the influence of NOx emission characteristics are simulated by different conditions, including compared with primary zone secondary waisting air distribution, uniform air distribution and pagodas go down air distribution, the results show that, waisting air distribution is useful to reduce NOx emissions.
NASA Astrophysics Data System (ADS)
Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H.
2015-11-01
Atmospheric ultrafine particles (UFP; diameter < 0.1 μm) represent a growing global health concern in urban environments and has a strong link to traffic related emissions. UFP is usually the dominating fraction of atmospheric particle number concentrations (PNC) despite being a minor part of total particle mass. The aim of this study was to empirically investigate the relationship between PNC and other air pollutants (NOX, NO2 and PM10) in the urban environment and their dependence on meteorology and weather type, using the Lamb Weather Type (LWT) classification scheme. The study was carried out in Gothenburg, Sweden, at an urban background site during April 2007-May 2008. It was found that daily average [PNC] correlated very well with [NOx] (R2 = 0.73) during inversion days, to a lesser extent with [NO2] (R2 = 0.58) and poorly with [PM10] (R2 = 0.07). Both PNC and NOx had similar response patterns to wind speed and to the strength of temperature inversions. PNC displayed two regimes, one strongly correlated to NOx and a second poorly correlated to NOx which was characterised by high wind speed. For concentration averages based on LWTs, the PNC-[NOx] relationship remained strong (R2 = 0.70) where the windy LWT W deviated noticeably. Exclusion of observations with wind speed >5 ms-1 or ΔT < 0 °C from LWTs produced more uniform and stronger relationships (R2 = 0.90; R2 = 0.93). Low wind speeds and positive vertical temperature gradients were most common during LWTs A, NW, N and NE. These weather types were also associated with the highest daily means of NOx (∼30 ppb) and PNC (∼10 000 # cm-3). A conclusion from this study is that NOx (but not PM10) is a good proxy for PNC especially during calm and stable conditions and that LWTs A, NW, N and NE are high risk weather types for elevated NOx and PNC.
40 CFR 97.71 - Initial certification and recertification procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator of a NOX Budget unit that is subject to an Acid Rain emissions limitation shall comply with the... section. (b) The owner or operator of a NOX Budget unit that is not subject to an Acid Rain emissions...) of this section. The owner or operator of a NOX Budget unit that is subject to an Acid Rain emissions...
40 CFR 97.71 - Initial certification and recertification procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator of a NOX Budget unit that is subject to an Acid Rain emissions limitation shall comply with the... section. (b) The owner or operator of a NOX Budget unit that is not subject to an Acid Rain emissions...) of this section. The owner or operator of a NOX Budget unit that is subject to an Acid Rain emissions...
40 CFR 97.71 - Initial certification and recertification procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator of a NOX Budget unit that is subject to an Acid Rain emissions limitation shall comply with the... section. (b) The owner or operator of a NOX Budget unit that is not subject to an Acid Rain emissions...) of this section. The owner or operator of a NOX Budget unit that is subject to an Acid Rain emissions...
[Occupational exposure to gases emitted in mild and stainless steel welding].
Matczak, W; Gromiec, J
2001-01-01
The objective of this work was to select optimal methods for determination of toxic gases (NOx, NO2, CO, CO2, O3) and to evaluate occupational exposure of welders to those gases. The survey covered workers employed in shipyards, and other metal product fabrication plants engaged in welding mild and stainless steel by different techniques (manual metal are, metal active gas, tungsten inert gas welding; gas, plasma, laser cutting and resistance welding). Personal and stationary air samples were collected to determine time weighted average (TWA) and short-term concentrations of gases. For determination of nitrogen oxides the following analytical techniques were employed: spectrophotometry with collection on liquid and solid sorbents and ion chromatography with collection on solid sorbents. All the gases were determined also by automatic or direct reading methods: flow or diffusion detector tubes and photometric and electrochemical analyzers. The determined TWA concentrations were below respective Maximum Allowable Concentrations (MAC) but exposure limits for short term exposure were exceeded in some cases. The average NO2 i NOx ratio was 1:4. According to Polish regulations regarding the MAC value for nitrogen oxides the analytical method should enable determination of total NOx by either direct or indirect simultaneous determination of both NO and NO2. The applicability of the spectrophotometric method of analysis of atmospheric NOx to determination of low NOx concentrations at welders working posts has been confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfefferle, L.D.
1989-09-01
Catalytically stabilized combustors can be designed to combine the high reaction rates of thermal combustors with low-NOx emissions. The objectives of the research are to understand why the CST burner has inherently low-NOx emissions and whether preexisting NOx can be reduced in-situ in the post-flame zone of a CST burner. Initial results indicate that reduced NOx emissions are, at least for some operating conditions, due to more than just the ability to stabilize combustion at low temperatures. The next phase of the investigation will focus on isothermal flow-tube kinetics studies to isolate catalytic and thermal effects.
NASA Astrophysics Data System (ADS)
Asher, E. C. C.; Caputi, D.; Conley, S. A.; Faloona, I. C.
2016-12-01
Nitric oxide (NOx) emissions contribute to the production of tropospheric ozone and the nutrient supply fueling primary production. Current global estimates indicate that biomass burning, including wildfires, and soil emissions represent 15 - 25 % of the total emissions. Yet estimates suggest that in North America during the summer, natural sources, including biomass burning, soil emissions and lightning, are responsible for nearly half of total emissions. Thus, as domestic air quality standards grow stricter and anthropogenic sources more regulated, constraining natural sources of NOx becomes critical. NOx concentrations in wildfire smoke differ based on the age of the plume, fire intensity and vegetation type. NOx soil emissions depend on soil moisture, soil temperature, soil porosity, and nitrogen storage. We present two years of NOx and ozone (O3) measurements from a remote mountaintop monitoring site located on Chews Ridge in the coastal mountains of Central California, airborne observations, and remotely sensed NO2 tropospheric columns retrieved using the Ozone Monitoring Instrument (OMI). We explore controls on NOx concentrations at Chews Ridge, in Monterey County, such as the age of wildfire smoke plumes and wildfire intensity (i.e. burning vs. smoldering), as well as soil moisture and precipitation, which can lead to pulsed NOx fluxes. Most recently our in situ observations fortuitously captured differing amounts of the active plume of the Soberanes wildfire, which to date has burned >45,000 acres and is expected to continue partially contained through August 2016. Implications of these episodic sources of NOx on the regional ozone budget will be discussed.
Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.
Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg
2015-10-06
The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.
Factors affecting pollutant concentrations in the near-road environment
NASA Astrophysics Data System (ADS)
Baldwin, Nichole; Gilani, Owais; Raja, Suresh; Batterman, Stuart; Ganguly, Rajiv; Hopke, Philip; Berrocal, Veronica; Robins, Thomas; Hoogterp, Sarah
2015-08-01
An improved understanding of traffic-related air pollutants is needed to estimate exposures and adverse health impacts in traffic corridors and near-road environments. In this study, concentrations of black carbon (BC), nitrogen oxides (NO, NO2, NOx), sulfur dioxide (SO2), and particulate matter (PM2.5, PM10, ultrafine particles, and accumulation mode particles, AMP) were measured using a mobile air pollutant laboratory along nine transects across major roads in Detroit, MI in winter 2012. Repeated measurements were taken during rush-hour periods at sites in residential neighborhoods located 50-500 m from both sides of the road. Concentration gradients attributable to on-road emissions were estimated by accounting for traffic volume and mix, wind speed, wind direction, and background concentrations. BC, NO, NOx, and UFP had the strongest gradients, and elevated concentrations of NOx, NO2, PM2.5 and PM10, as well as decreased particle size, were found at the 50 m sites compared to background levels. Exponential models incorporating effects of road size, wind speed, and up- and downwind distance explained from 31 to 53% of the variability in concentration gradients for BC, NO, NOx, UFP and particle size. The expected concentration increments 50 m from the study roads were 17.0 ppb for NO, 17.7 ppb for NOx, 2245 particles/cm3 for UFP, and 0.24 μg/m3 for BC, and the expected distance to decrease increments by half was 89-129 m in the downwind direction, and 14-20 m in the upwind direction. While accounting for portion of the temporal and spatial variability across transects and measurement periods, these results highlight the influence of road-to-road differences and other locally-varying factors important in urban and industrial settings. The study demonstrates a methodology to quantify near-road concentrations and influences on these concentrations while accounting for temporal and spatial variability, and it provides information useful for estimating exposures of traffic-related air pollutants in urban environments.
NASA Astrophysics Data System (ADS)
Verstraeten, Willem W.; Folkert Boersma, K.; Douros, John; Williams, Jason E.; Eskes, Henk H.; Delcloo, Andy
2017-04-01
High nitrogen oxides concentrations at the surface (NOX = NO + NO2) impact humans and ecosystem badly and play a key role in tropospheric chemistry. Surface NOX emissions drive major processes in regional and global chemistry transport models (CTM). NOX contributes to the formation of acid rain, act as aerosol precursors and is an important trace gas for the formation of tropospheric ozone (O3). Via tropospheric O3, NOX indirectly affects the production of the hydroxyl radical which controls the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. High NOX emissions are mainly observed in polluted regions produced by anthropogenic combustion from industrial, traffic and household activities typically observed in large and densely populated urban areas. Accurate NOX inventories are essential, but state-of the- art emission databases may vary substantially and uncertainties are high since reported emissions factors may differ in order of magnitude and more. To date, the modelled NO2 concentrations and lifetimes have large associated uncertainties due to the highly non-linear small-scale chemistry that occurs in urban areas and uncertainties in the reaction rate data, missing nitrogen (N) species and volatile organic compounds (VOC) emissions, and incomplete knowledge of nitrogen oxides chemistry. Any overestimation in the chemical lifetime may mask missing NOX chemistry in current CTM's. By simultaneously estimating both the NO2 lifetime and concentrations, for instance by using the Exponentially Modified Gaussian (EMG), a better surface NOX emission flux estimate can be obtained. Here we evaluate if the EMG methodology can reproduce the emissions input from the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM model. We apply the EMG methodology on LOTOS-EUROS simulated tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (surface wind speeds > 3 m s-1). We then compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the LOTOS-EUROS model as input to simulate the NO2 columns. We also apply the EMG methodology on OMI (Ozone Monitoring Instrument) tropospheric NO2 column data, providing us with real-time observation-based estimates of midday NO2 lifetime and NOX emissions over 21 European cities in 2013. Results indicate that the top-down derived NOX emissions from LOTOS-EUROS (respectively OMI) are comparable with the MACC-III inventory with a R2 of 0.99 (respectively R2 = 0.79). For St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.
NASA Astrophysics Data System (ADS)
Venkanna, R.; Nikhil, G. N.; Sinha, P. R.; Siva Rao, T.; Swamy, Y. V.
2016-08-01
The influence of lightning over surface-level trace gases was examined for pre-monsoon and monsoon seasons in the year 2012. Lightning events were measured using ground-based electric field monitor (EFM) and space-based lightning imaging sensor (LIS). The results showed that lightning frequency was higher during pre-monsoon period compared to monsoon, which is in good agreement with the satellite retrievals. The increase in concentration of NOx on lightning event led to a subsequent decrease in surface O3 due to the titration reaction. Source apportionment study of SO2/NOx (S/N) and CO/NOx (C/N) ratios and poor correlation of NOx vs CO and NOx vs SO2 on the lightning day confirmed the emission of NOx from dissimilar sources.
Measurement of NOx and CO Fluxes from a Tall Tower in Beijing.
NASA Astrophysics Data System (ADS)
Squires, F. A.; Drysdale, W. S.; Hamilton, J.; Lee, J. D.; Vaughan, A. R.; Wild, O.; Mullinger, N.; Nemitz, E.; Metzger, S.; Zhang, Q.
2017-12-01
China's air quality problems are well publicised; in 2010, 1.2 million premature deaths were attributed to outdoor air pollution in China. One of the major air quality issues is high concentrations of nitrogen oxides (NOx). China is the largest NOx emitter, contributing an estimated 18 % to global NOx emissions. Beijing itself is reported to have NO2 concentrations 42 % higher than the annual national standard. Given the high levels of pollution, increased focus has been placed on improving emissions estimates which are typically developed using a `bottom-up' approach where emissions are predicted from their sources. Emission inventories in China have large uncertainties and are rapidly changing with time in response to economic development, environmental regulation and new technologies. In fact, China is the largest contributor to the uncertainty in the source and the magnitude of air pollutants in air quality models. Recent studies have shown a discrepancy between NOx inventories and measured NOx emissions for UK cities, highlighting the limitations of bottom-up emissions inventories and the importance of accurate measurement data to improve the estimates. 5 Hz measurements of NOx and CO concentration were made as part of the Air Pollutants in Beijing (AIRPOLL-Beijing) project during two field campaigns in Nov-Dec 2016 and May-June 2017. Sampling took place from an inlet co-located with a sonic anemometer at 102 m on a meteorological tower in central Beijing. Analysis of the covariance between vertical wind speed and concentration enabled the calculation of emission flux, with an estimated footprint of between 2 - 5 km from the tower (which typically included some major ring roads and expressways). Fluxes were quantified using the continuous wavelet transformation (CWT) method, which enabled one minute resolved fluxes to be calculated. These data were compared to existing emissions estimates from the Multi-resolution Emission Inventory for China (MEIC). It is anticipated that this work will be used to evaluate the accuracy of emissions inventories for Beijing and to develop improved emissions estimates.
Caracterisation experimentale et numerique de la flamme de carburants synthetiques gazeux
NASA Astrophysics Data System (ADS)
Ouimette, Pascale
The goal of this research is to characterize experimentally and numerically laminar flames of syngas fuels made of hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). More specifically, the secondary objectives are: 1) to understand the effects of CO2 concentration and H2/CO ratio on NOx emissions, flame temperature, visible flame height, and flame appearance; 2) to analyze the influence of H2/CO ratio on the lame structure, and; 3) to compare and validate different H2/CO kinetic mechanisms used in a CFD (computational fluid dynamics) model over different H2/CO ratios. Thus, the present thesis is divided in three chapters, each one corresponding to a secondary objective. For the first part, experimentations enabled to conclude that adding CO2 diminishes flame temperature and EINOx for all equivalence ratios while increasing the H2/CO ratio has no influence on flame temperature but increases EINOx for equivalence ratios lower than 2. Concerning flame appearance, a low CO2 concentration in the fuel or a high H2/CO ratio gives the flame an orange color, which is explained by a high level of CO in the combustion by-products. The observed constant flame temperature with the addition of CO, which has a higher adiabatic flame temperature, is mainly due to the increased heat loss through radiation by CO2. Because NOx emissions of H2/CO/CO 2 flames are mainly a function of flame temperature, which is a function of the H2/CO ratio, the rest of the thesis concentrates on measuring and predicting species in the flame as a good prediction of species and heat release will enable to predict NOx emissions. Thus, for the second part, different H2/CO fuels are tested and major species are measured by Raman spectroscopy. Concerning major species, the maximal measured H 2O concentration decreases with addition of CO to the fuel, while the central CO2 concentration increases, as expected. However, at 20% of the visible flame height and for all fuels tested herein, the measured CO2 concentration is lower than its stoechiometric value while the measured H2O already reached its stoechiometric concentration. The slow chemical reactions necessary to produce CO2 compared to the ones forming H2O could explain this difference. For the third part, a numerical model is created for a partially premixed flame of 50% H 2 / 50% CO. This model compares different combustion mechanisms and shows that a reduced kinetic mechanism reduces simulation times while conserving the results quality of more complex kinetic schemes. This numerical model, which includes radiation heat losses, is also validated for a large range of fuels going from 100% H2 to 5% H2 / 95% CO. The most important recommendation of this work is to include a NOx mechanism to the numerical model in order to eventually determine an optimal fuel. It would also be necessary to validate the model over a wide range for different parameters such as equivalence ratio, initial temperature and initial pressure.
The capping of stationary source emissions of NOx in 22 states and the District of Columbia is federally mandated by the NOx SIP Call legislation with the intended purpose of reducing downwind ozone concentrations. Monitors for NO, NO2, and the reactive oxides of nitrogen into ...
Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor
2015-03-07
A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.
NASA Astrophysics Data System (ADS)
Wang, W.; Ganzeveld, L.; Helmig, D.; Hueber, J.; Rossabi, S.; Vogel, C. S.
2017-12-01
During the month-long PROPHET-AMOS campaign in July, 2016 we investigated NOx and ozone dynamics at the University of Michigan AmeriFlux Tower (US-UMB tower) and the PROPHET Tower research sites at the University of Michigan Biological Station (UMBS), using a multi-pronged experimental approach. The two sites are within 100 m of each other, located in a mixed forest on the northern lower peninsula of Michigan, USA. In a previous study, it was found that invoking a leaf-level compensation point for NOx uptake and emission provided better agreement between observed and model-simulated in- and above-canopy NOx concentrations in this forest. To further examine the role of foliar exchange relative to other in-canopy sources and sinks of NOx, we conducted detailed vertical gradient measurements of NOx and ozone at ten heights from the forest floor to above the canopy, along with micrometeorological conditions at the AmeriFlux Tower. In parallel, to investigate the leaf-level exchanges of NOx and ozone, we carried out branch enclosure experiments near the PROPHET tower on the dominant tree species of this forest. We combine these observations with micrometeorological data from the AmeriFlux Tower to constrain simulations with the Multi-Layer Canopy Chemical Exchange Model (MLC-CHEM) for investigation of sources, sinks, and dynamics that determine NOx concentrations, vertical gradients, and fluxes in this forest. We will compare our results with previous studies and other observations during the PHOPHET-AMOS campaign.
Detection of Lightning-produced NOx by Air Quality Monitoring Stations in Israel
NASA Astrophysics Data System (ADS)
Yair, Y.; Shalev, S.; Saaroni, H.; Ziv, B.
2011-12-01
Lightning is the largest natural source for the production of nitrogen oxides (LtNOx) in the troposphere. Since NOx are greenhouse gases, it is important to know the global production rate of LtNOx for climate studies (present estimates range from 2 to 8 Tg per year) and to model its vertical distribution (Ott et al., 2010). One of the key factors for such an estimate is the yield of a single lightning flash, namely the number of molecules produced for each Joule of energy deposited along the lightning channel. We used lightning stroke data from the Israel Lightning Location System (ILLS) together with NOx data obtained from the national network of air quality monitoring stations operated by the Israeli Ministry of Environmental Protection. Looking for the fingerprints of LtNOx in the general ambient concentrations, usually most affected by pollution from urban sources, we looked only for CG strokes occurring within a radius of 3 km from the location of an air-quality monitoring station. This lowered the number of relevant cases from 605,413 strokes detected in the 2004/5 through 2009/10 seasons to 1,897 strokes. We applied a threshold of > 60kA reducing the number of events to 35. The results showed that there was no consistent rising trend in the NOx concentrations in the hour following the lightning (the lifetime near the ground is expected to be a few hours; Zhang et al., 2003). However, when considering only those events when the prevailing wind was in the direction from the stroke location toward the sensor (7 cases), a clear increase of few ppb following the stroke was observed in 5 cases [see Fig.]. This increase is well correlated with the wind speed, suggesting an effective transport from the stroke location to the sensor. Weaker winds allow dilution and result in smaller observed increases of LtNOx. Separate analysis of additional 17 cases in which the strokes were located < 500 m from the monitoring station (with any peak current above 7 kA) showed no consistent trend. When excluding the 7 events that occurred during rush hour traffic, we found 6 (of 10) cases with an average increase in NOx concentrations of 16 ppb in the hour following the lightning. These results suggest a contribution of CG lightning strokes to the ground level concentrations of NOx. L. E. Ott, K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Ridley, R.F. Lin, S. Lang, and W.K. Tao (2010), Production of lightning NOx and its vertical distribution calculated from three dimensional cloud scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880
NASA Technical Reports Server (NTRS)
Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.
2012-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.
Issues related to aircraft take-off plumes in a mesoscale photochemical model.
Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V
2013-07-01
The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species. Copyright © 2013 Elsevier B.V. All rights reserved.
Sela, M; Tirza, G; Ravid, O; Volovitz, I; Solodeev, I; Friedman, O; Zipori, D; Gur, E; Krelin, Y; Shani, N
2015-01-01
Mesenchymal stromal cells (MSCs) are multipotent and can be derived from different adult tissues including fat. Our repeated attempts to produce long-term proliferative cultures of rat abdominal adipose stem cells (aASCs) under normal oxygen concentration (21%) were unsuccessful. We set to examine the events controlling this cytostasis of aASCs and found that it resulted from overproduction of reactive oxygen species (ROS) that led to apoptosis. ROS overproduction in aASCs was accompanied by increased expression of NOX1 but not of NOX2 or NOX4. NOX family members are an important source of intracellular ROS pointing to NOX1 involvement in ROS accumulation. This was verified when aASCs that were grown under 3% oxygen conditions expanded long term, displaying reduced NOX1 expression and decreased ROS accumulation. NOX1 involvement in aASC cytostasis was reaffirmed when cells that were expanded under normoxic conditions in the presence of a specific NOX1 inhibitor, ML171, demonstrated reduced ROS accumulation, reduced apoptosis and long-term expansion. aASC expansion arrest was accompanied also by a weak fat differentiation and migratory potential, which was enhanced by NOX1 inhibition. This suggests an inhibitory role for NOX1-induced ROS overproduction on aASCs, their fat differentiation and migratory potential. In contrast to aASCs, similar cells produced from subcutaneous fat were easily expanded in normoxic cultures, exhibiting low ROS concentrations, a low number of apoptotic cells and improved fat differentiation and migration. Taken together, our results show, for the first time, that NOX1-induced ROS accumulation halts ASC expansion and reduces their differentiation and migratory potential under normoxic conditions. Importantly, this phenotype comprises a tissue-specific signature as it was evident in aASCs but not in subcutaneous ASCs. NOX-induced ROS accumulation and cytokine production by fat are part of the metabolic syndrome. The similarity of this phenomenon to aASC phenotype may indicate that they arise from similar molecular mechanisms. PMID:25880095
Reconciling NOx emissions reductions and ozone trends in ...
Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in meteorological simulations, errors in emission magnitudes and changes, or inaccurate responses of simulated pollutant concentrations to emission changes. In this study, the Community Multiscale Air Quality (CMAQ) model is applied to simulate the ozone (O3) change after the NOx SIP Call and mobile emission controls substantially reduced nitrogen oxides (NOx) emissions in the eastern U.S. from 2002 to 2006. For both modeled and observed O3, changes in episode average daily maximal 8-h O3 were highly correlated (R2 = 0.89) with changes in the 95th percentile, although the magnitudes of reductions increased nonlinearly at high percentile O3 concentrations. Observed downward changes in mean NOx (−11.6 to −2.5 ppb) and 8-h O3 (−10.4 to −4.7 ppb) concentrations in metropolitan areas in the NOx SIP Call region were under-predicted by 31%–64% and 26%–66%, respectively. The under-predicted O3 improvements in the NOx SIP Call region could not be explained by adjusting for temperature biases in the meteorological input, or by considering uncertainties in the chemical reaction rate constants. However, the under-prediction in O3 improvements could be alleviated by 5%–31% by constraining NO
Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods
NASA Astrophysics Data System (ADS)
Fibiger, D.; Hastings, M.
2012-04-01
We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary predictably with collection efficiency. For example, prior measurements frequently utilized triethanolamine solution for collecting NOx, but the collection efficiency was found to drop quickly as the solution aged. The most promising method tested is a NaOH/KMnO4 solution (Margeson and Knoll, Anal. Chem., 1985) which can collect NOx quantitatively from the air. Laboratory tests of previously used methods, along with progress toward creating a suitable and verifiable field deployable collection method will be presented.
NO(x) Concentrations in the Upper Troposphere as a Result of Lightning
NASA Technical Reports Server (NTRS)
Penner, Joyce E.
1998-01-01
Upper tropospheric NO(x) controls, in part, the distribution of ozone in this greenhouse-sensitive region of the atmosphere. Many factors control NO(x) in this region. As a result it is difficult to assess uncertainties in anthropogenic perturbations to NO from aircraft, for example, without understanding the role of the other major NO(x) sources in the upper troposphere. These include in situ sources (lightning, aircraft), convection from the surface (biomass burning, fossil fuels, soils), stratospheric intrusions, and photochemical recycling from HNO3. This work examines the separate contribution to upper tropospheric "primary" NO(x) from each source category and uses two different chemical transport models (CTMS) to represent a range of possible atmospheric transport. Because aircraft emissions are tied to particular pressure altitudes, it is important to understand whether those emissions are placed in the model stratosphere or troposphere and to assess whether the models can adequately differentiate stratospheric air from tropospheric air. We examine these issues by defining a point-by-point "tracer tropopause" in order to differentiate stratosphere from troposphere in terms of NO(x) perturbations. Both models predict similar zonal average peak enhancements of primary NO(x) due to aircraft (approx. = 10-20 parts per trillion by volume (pptv) in both January and July); however, the placement of this peak is primarily in a region of large stratospheric influence in one model and centered near the level evaluated as the tracer tropopause in the second. Below the tracer tropopause, both models show negligible NO(x) derived directly from the stratospheric source. Also, they predict a typically low background of 1 - 20 pptv NO(x) when tropospheric HNO3 is constrained to be 100 pptv of HNO3. The two models calculate large differences in the total background NO(x) (defined as the source of NO(x) from lightning + stratosphere + surface + HNO3) when using identical loss frequencies for NO(x). This difference is primarily due to differing treatments of vertical transport. An improved diagnosis of this transport that is relevant to NO(x) requires either measurements of a surface-based tracer with a substantially shorter lifetime than Rn-222 or diagnosis and mapping of tracer correlations with different source signatures. Because of differences in transport by the two models we cannot constrain the source of NO(x) from lightning through comparison of average model concentrations with observations of NO(x).
Traffic-related air quality trends in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Pérez-Martínez, Pedro José; de Fátima Andrade, María.; de Miranda, Regina Maura
2015-06-01
The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs making a greater contribution during the 2000-2008 period, whereas HDVs made a greater contribution during the 2009-2013 period, and decreases in NOx emissions resulted in increases in O3 observations.
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1980-01-01
The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.
Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi
2011-04-15
Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.
The influence of model resolution on ozone in industrial volatile organic compound plumes.
Henderson, Barron H; Jeffries, Harvey E; Kim, Byeong-Uk; Vizuete, William G
2010-09-01
Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the authors suggest a need for quantitative metrics for horizontal grid resolution in future model guidance.
Agriculture is a major source of NOx pollution in California
Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z.
2018-01-01
Nitrogen oxides (NOx = NO + NO2) are a primary component of air pollution—a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NOx pollution, several of the United States’ worst–air quality districts remain in rural regions of the state. Site-based findings suggest that NOx emissions from California’s agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NOx pollution in California, with especially high soil NOx emissions from the state’s Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NOx emissions and (ii) top-down airborne observations of atmospheric NOx concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NOx source from cropland soil, which is estimated to increase the NOx budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NOx emissions from the soil. Our results highlight opportunities to limit NOx emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California. PMID:29399630
Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang
2016-05-20
Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.
Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.
Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.
Emissions of nitrogen oxides from an experimental hydrogen-fueled gas turbine combustor
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effect of operating variables of a hydrogen fueled combustor on exhaust concentrations of total oxides of nitrogen was determined at inlet-air temperature levels up to 810 K, pressure of 414,000N/sa m, and reference velocity of 21.3 m/sec. The combustor, which was originally designed for hydrocarbon fuel produced a NO(x) concentration of 380 ppm with hydrogen at 810 K inlet-air temperature. A reduction in NO(x) of about 30 % was obtained by modification to a lean or rich primary zone. The lowest NO(x) levels obtained with hydrogen were equivalent to those of the reference combustor burning hydrocarbon fuels.
NASA Technical Reports Server (NTRS)
Kanakidou, Maria; Crutzen, Paul J.; Zimmermann, Peter H.
1994-01-01
As a consequence of the non-linear behavior of the chemistry of the atmosphere and because of the short lifetime of nitrogen oxides (NO(x)), two-dimensional models do not give an adequate description of the production and destruction rates of NO(x) and their effects on the distributions of the concentration of ozone and hydroxyl radical. In this study, we use a three-dimensional model to evaluate the contribution of increasing NO(x) emissions from industrial activity and biomass burning to changes in the chemical composition of the troposphere. By comparing results obtained from longitudinally-uniform and longitudinally-varying emissions of NO(x), we demonstrate that the geographical representation of the NO(x) emissions is crucial in simulating tropospheric chemistry.
NASA Astrophysics Data System (ADS)
Kumar, Satheesh Mk; T, Nishanth; M, Praseeed K.
South India is a peninsular region surrounded by the three belts of Arabian Sea, Bay of Bengal and Indian Ocean. Usually, coastal regions experience relatively high air quality compared to that of the interior land masses owing to the abundance of OH over ocean surface which acts as detergent in the atmosphere. Kannur (11.9 N, 75.4E, 5 m AMSL) is a coastal location along the Arabian Sea which is located in the northern district of Kerala State with fairly low industrial activities. A continuous observation of surface ozone (O3), NOx and OX (NO2+ O3) which has been initiated at this coastal site since 2009 reveals the enhancement in the concentrations of these trace species quite significantly. It is observed that surface O3 mixing ratio is increased at a rate of 1.51 ± 0.5 ppbv/year during the four year period from 2009 at Kannur. The enhancement rate in the mixing ratios of NOx is 1.01 ± 0.4 ppbv/year and OX is 1.49±0.42 ppbv/year respectively. The increase of O3 may be attributed due to the increase in methane and non-methane organic emissions from the wet lands and vehicles may enhance O3 production and fairly low rate of change of NO concentration at this site. This paper describes the rate of changes of O3, NOx and OX during the period of observation in detail. Likewise, the increase in nighttime concentrations of O3 and PM10 observed during the festival occasions in the summer month of April in all years is explained. Being a weak industrialized location, the main source of pollution is by vehicular emissions and the increase in these trace gases in the context of rapid enhancement in the number of vehicles is well correlated. These results may be helpful for improving government policies to control the photochemical formation of secondary air pollutants in the rural coastal sites that has a significant influence on the onset of monsoon and the outcome of this study have significant relevance for gradual transformation of pristine locations into polluted sites.
Quantifying the contribution of individual vehicles to NO2 pollution in an urban area
NASA Astrophysics Data System (ADS)
Pöhler, Denis; Kanatschnig, Florian; Horbanski, Martin; Friedrich, Axel; Lampel, Johannes; Platt, Ulrich
2015-04-01
Nitrogen Dioxide (NOx) emissions by road vehicles are the mayor contributor for poor air quality in urban areas. High NOx concentrations, and especially NO2, are typically the most problematic pollutant in mega and other cities. However emissions vary significantly depending on the type of vehicle and its engine, the age and condition of the vehicle, driving properties and many more. Even if data of the manufacturer exists how much NOx different vehicle types emit, reliable data under real driving conditions are rare and often missing. Especially data showing the degree to which different cars contribute to observed NOx levels are missing. Significant reduction of NOx concentrations can be achieved by identifying the strong emitting vehicles and excluding / replacing these. As this is only a small amount of vehicles (typically less than 10% of the vehicles make 90% of the emissions), such a small investment can significantly improve air quality. In order to perform measurements of NOx we applied a high speed NO2 CE-DOAS (Cavity-Enhanced DOAS) instrument in a car which was modified for this application. It measured directly the NO2 concentration behind followed vehicles while driving, with a time resolution of 2 s and an accuracy of ~1ppb. Even if such observations depend on many parameters like mixing-in of ambient air, distance, solar radiation, ozone concentration, background concentration etc., it delivers valuable data under real driving conditions. The instrument was applied in the city of Mainz, Germany to investigate within 7 days (March / April 2014) the NOx emission of 728 vehicles and to quantify the main emitters. Therefore the measured NO2 concentration in comparison to the background concentrations was quantified. Observed vehicles were separated in 4 categories: cars, busses, trucks, and motorcycles. We observed NO2 levels from a few ppb (within the background variation) up to 7000ppb NO2 above the background level. Strong variations within the same vehicle category could be observed. NO2 levels above 500ppb are found only for 2,2% of all measured vehicles and these are mainly busses (especially older models) but also few cars and motorcycles. On average NO2 concentrations behind the vehicles were 222ppb above background level. This could be reduced by 45% by just excluding the strongest emitters (2,2% of all vehicles). Our study clearly shows which vehicles exhibit the strongest NO2 emissions under real driving conditions and which vehicles contribute most to urban NOx pollution. It demonstrates how such measurements at high temporal resolution on a mobile platform can give recommendations to policy makers to significantly improve air quality in mega and other cities at moderate cost. In the future our system will be expanded with a NO and O3 measurement system to quantify all relevant species.
NASA Astrophysics Data System (ADS)
Tan, Zhaofeng; Lu, Keding; Ma, Xuefei; Birger, Bohn; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Yuhan; Novelli, Anna; Rohrer, Franz; Shao, Min; Wang, Haichao; Wu, Yusheng; Zeng, Limin; Kiendler-Scharr, Astrid; Wahner, Andreas; Zhang, Yuanhang
2017-04-01
A comprehensive field campaign was carried out in winter 2016 in Huairou, a small town located 60 km northeast of Beijing downtown. Concentrations of OH, HO2and RO2 radicals were measured by a laser induced fluorescence instrument. Radical concentrations were smaller than during summer because of reduced solar radiation. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. Chemical modulation measurements were applied on a few days showing no significant OH interference for different chemical conditions. HONO and HCHO photolysis were found to be the most important primary source of ROx radicals. OH reactivity, the inverse of the OH radical lifetime, was also measured by a laser-photolysis and laser induced fluorescence instrument. In general, CO and NOx were the dominated OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations in the moderate NOx conditions but has difficulty in both the low and high NOx regimes. The underestimation of RO2 radical concentrations in the high NOx conditions indicate a missing RO2 source.
Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.
Nisimoto, Yukio; Jackson, Heather M; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J David
2010-03-23
NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM. The concentration of Nox4 in cell lysates was estimated using Western blotting and allowed calculation of a turnover of approximately 200 mol of H(2)O(2) min(-1) (mol of Nox4)(-1). A chimeric protein (Nox2/4) consisting of the Nox2 transmembrane (TM) domain and the Nox4 dehydrogenase (DH) domain showed H(2)O(2) production in the absence of cytosolic regulatory subunits. In contrast, chimera Nox4/2, consisting of the Nox4 TM and Nox2 DH domains, exhibited PMA-dependent activation that required coexpression of regulatory subunits. Nox DH domains from several Nox isoforms were purified and evaluated for their electron transferase activities. Nox1 DH, Nox2 DH, and Nox5 DH domains exhibited barely detectable activities toward artificial electron acceptors, while the Nox4 DH domain exhibited significant rates of reduction of cytochrome c (160 min(-1), largely superoxide dismutase-independent), ferricyanide (470 min(-1)), and other electron acceptors (artificial dyes and cytochrome b(5)). Rates were similar to those observed for H(2)O(2) production by the Nox4 holoenzyme in cell lysates. The activity required added FAD and was seen with NADPH but not NADH. These results indicate that the Nox4 DH domain exists in an intrinsically activated state and that electron transfer from NADPH to FAD is likely to be rate-limiting in the NADPH-dependent reduction of oxygen by holo-Nox4.
NASA Astrophysics Data System (ADS)
Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.
2015-12-01
Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.
Origin and Variability of Upper Tropospheric Nitrogen Oxides and Ozone at Northern Mid-Latitudes
NASA Technical Reports Server (NTRS)
Grewe, V.; Brunner, D.; Dameris, M.; Grenfell, J. L.; Hein, R.; Shindell, D.; Staehelin, J.
1999-01-01
Measurements of NO(x) and ozone performed during the NOXAR project are compared with results from the coupled chemistry-climate models ECHAM4.L39(DLR)/CHEM and GISS-model. The measurements are based on flights between Europe and the East coast of America and between Europe and the Far East in the latitude range 40 deg N to 65 deg N. The comparison concentrates on tropopause altitudes and reveals strong longitudinal variations of seasonal mean NO,, of 200 pptv. Either model reproduced strong variations 3 km below but not at the tropopause, indicating a strong missing NO(x) or NO(y) sink over remote areas, e.g. NO(x) to HNO3 conversion by OH from additional OH sources or HNO3 wash-out. Vertical profiles show maximum NO(x) values 2-3 km below the tropopause with a strong seasonal cycle. ECHAM4.L39(DLR)/CHEM reproduces a maximum, although located at the tropopause with a less pronounced seasonal cycle, whereas the GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NO(x) frequency distributions reveals that both models are capable of reproducing the observed variability, except that ECHAM4.L39(DLR)/CHEM shows no very high NO(x) mixing ratios. Ozone mean values, vertical profiles and frequency distributions are much better reproduced in either model, indicating that the NO(x) frequency distribution, namely the most frequent NO(x) mixing ratio, is more important for the tropospheric photochemical ozone production than its mean value. Both models show that among all sources, NO(x) from lightning contributes most to the seasonal cycle of NO(x) at tropopause altitudes. The impact of lightning in the upper troposphere on NO(x) does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. However, the models show significant differences in lightning induced NO(x) concentrations, especially in winter, which may be related to the different treatment of the lower stratospheric coupling between dynamics and chemistry.
An experimental study on effect of coke ratio on SO2 and NOx emissions in sintering process
NASA Astrophysics Data System (ADS)
Wang, Hui; Zhang, Pu; Yang, Jingling
2018-02-01
By using the sinter cup experiment, the effects of different coke ratios of 0%, 25%, 50%, 75%, and 100% on the formation and total emissions of SO2 and NOx in the sintering process were studied with the Testo350 flue gas analyzer. The experimental results show that the emissions of SO2 and NOx are closely related to sintering process. With the increase of the coke proportion, the sintering temperature changes and the maximum peak time appears earlier. SO2 concentration has a bimodal distribution and NOx concentration has a triple peak. Besides, the both maximum peaks appear at the end of sintering. In addition, due to the increasing of the S and N contents in the fuel with the coke ratios from 0% to 100%, the amounts of SO2 and NOx emissions are raised respectively at 10.82 mg, 11.42 mg, 13.84 mg, 13.69 mg, 20.36 mg and 3.11 mg, 3.39 mg, 4.44 mg, 4.31 mg, 6.16 mg.
Effects of temperature-dependent NOx emissions on continental ozone production
NASA Astrophysics Data System (ADS)
Romer, Paul S.; Duffey, Kaitlin C.; Wooldridge, Paul J.; Edgerton, Eric; Baumann, Karsten; Feiner, Philip A.; Miller, David O.; Brune, William H.; Koss, Abigail R.; de Gouw, Joost A.; Misztal, Pawel K.; Goldstein, Allen H.; Cohen, Ronald C.
2018-02-01
Surface ozone concentrations are observed to increase with rising temperatures, but the mechanisms responsible for this effect in rural and remote continental regions remain uncertain. Better understanding of the effects of temperature on ozone is crucial to understanding global air quality and how it may be affected by climate change. We combine measurements from a focused ground campaign in summer 2013 with a long-term record from a forested site in the rural southeastern United States, to examine how daily average temperature affects ozone production. We find that changes to local chemistry are key drivers of increased ozone concentrations on hotter days, with integrated daily ozone production increasing by 2.3 ppb °C-1. Nearly half of this increase is attributable to temperature-driven increases in emissions of nitrogen oxides (NOx), most likely by soil microbes. The increase of soil NOx emissions with temperature suggests that ozone will continue to increase with temperature in the future, even as direct anthropogenic NOx emissions decrease dramatically. The links between temperature, soil NOx, and ozone form a positive climate feedback.
NASA Technical Reports Server (NTRS)
Jeker, Dominique P.; Pfister, Lenny; Brunner, Dominik; Boccippio, Dennis J.; Pickering, Kenneth E.; Thompson, Anne M.; Wernli, Heini; Selkirk, Rennie B.; Kondo, Yutaka; Koike, Matoke
1997-01-01
In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 85 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO(x) concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x) enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, lightning observations from the U.S. National Lightning Detection Network (NLDN) and the Optical Transient Detector (OTD) satellite. We demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. We show that the number of lightning flashes in cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows. From the fact that in autumn the NO(x) maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are major sources for the regional upper tropospheric NO(x) budget in autumn.
An assessment of cruise NOx emissions of short-haul commercial flights
NASA Astrophysics Data System (ADS)
Turgut, Enis T.; Usanmaz, Oznur
2017-12-01
Cruise NOx emissions of aircraft are an important input parameter for studies investigating climate change due to their ability to alter the concentrations of certain trace gases, such as ozone, methane, and hydroxyl in the atmosphere, and to induce positive radiative forcing. Therefore, it is of importance to minimize estimation errors on NOx emitted from aircraft engines at high altitude. In this study, the cruise NOx emissions of a frequently-used narrow-bodied aircraft type operating domestic flights in Turkey, are quantified based on numerous actual flight, actual emissions and actual meteorological data. The overall average cruise NOx emissions index is found to be ∼10 g/kg fuel. In addition, newly-developed parameters of the aircraft cruise NOx footprint and NOx intensity are calculated to be 0.5 g/pa-NM and ∼60 g/NM, respectively. Regarding the effects of flight parameters on cruise NOx emissions, while there is a distinct increase in NOx parameters with an increase in aircraft mass, this may differ for altitude. The results reveal that the NOx emissions index tends to increase slightly by 1-2%, particularly above 28,000 ft, whereas NOx intensity decreases at a rate of 2.4-2.7% per 2000 ft of cruise altitude increase.
NASA Astrophysics Data System (ADS)
Tan, Z.; Lu, K.; Ma, X.; Bohn, B.; Hofzumahaus, A.; Broch, S.; Fuchs, H.; Holland, F.; Liu, Y.; Li, X.; Novelli, A.; Rohrer, F.; Wang, H.; Wu, Y.; Shao, M.; Zeng, L.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.
2017-12-01
A comprehensive field campaign was carried out in winter 2016 in the campus of UCAS (University of Chinese Academy of Science), located in a small town 60 km northeast of urban Beijing. Concentrations of OH, HO2 and RO2 radicals as well as the total OH reactivity were measured by a laser induced fluorescence instrument. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. These radical concentrations were smaller than those observed during summer because of the reduced solar radiation. A chemical modulation device to separate atmospheric OH radicals from any interfering species was applied for few days showing negligible interference for both clean and polluted air masses.HONO and HCHO photolysis were found to be the most important primary sources of ROx radicals. CO and NOx were the important OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary air products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations for moderate NOx conditions but larger discrepancies are observed for both low and high NOx regimes for the peroxy radical concentrations. The underestimation of RO2 radical concentrations for high NOx conditions is discussed in the context of recent campaigns.
Tracking nitrogen oxides, nitrous acid, and nitric acid from biomass burning
NASA Astrophysics Data System (ADS)
Chai, J.; Miller, D. J.; Scheuer, E. M.; Dibb, J. E.; Hastings, M. G.
2017-12-01
Biomass burning emissions are an important source of atmospheric nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO), which play important roles in atmosphere oxidation capacity (hydroxyl radical and ozone formation) and have severe impacts on air quality and climate in the presence of sunlight and volatile organic compounds. However, tracking NOx and HONO and their chemistry in the atmosphere based on concentration alone is challenging. Isotopic analysis provides a potential tracking tool. In this study, we measured the nitrogen isotopic composition (δ15N) of NOx (NO + NO2) and HONO, and soluble HONO and HNO3 during the Fire Influence on Regional and Global Environments Experiment (FIREX) laboratory experiments at the Missoula Fire Laboratory. Our newly developed and validated annular denuder system (ADS) enabled us to effectively trap HONO prior to a NOx collection system in series for isotopic analysis. In total we investigated 25 "stack" fires of various biomass materials where the emissions were measured within a few seconds of production by the fire. HONO concentration was measured in parallel using mist chamber/ion chromatography (MC/IC). The recovered mean HONO concentrations from ADS during the burn of each fire agree well with that measured via MC/IC. δ15N-NOx ranged from -4.3 ‰ to + 7.0 ‰ with a median of 0.7 ‰. Combined with a similar, recent study by our group [Fibiger et al., ES&T, 2017] the δ15N-NOx follows a linear relationship with δ15N-biomass (δ15N-NOx =0.94 x δ15N-biomass +1.98; R2=0.72). δ15N-HONO ranged from -5.3 to +8.3 ‰ with a median of 1.4 ‰. While both HONO and NOx are sourced from N in the biomass fuel, the secondary formation of HONO likely induces fractionation of the N that leads to the difference between δ15N-NOx and δ15N-HONO. We found a correlation of δ15N-HONO= 0.86 x δ15N-NOx + 0.52 (R2=0.55), which can potentially be used to track the chemistry of HONO formation following fire emissions. The methods used in this study will be further applied in field studies, to quantitatively track NOx and HONO in Western US wildfire plumes and their impact on the oxidation chemistry of the atmosphere.
Reducing secondary organic aerosol formation from gasoline vehicle exhaust
Zhao, Yunliang; Saleh, Rawad; Presto, Albert A.; Gordon, Timothy D.; Drozd, Greg T.; Goldstein, Allen H.; Robinson, Allen L.
2017-01-01
On-road gasoline vehicles are a major source of secondary organic aerosol (SOA) in urban areas. We investigated SOA formation by oxidizing dilute, ambient-level exhaust concentrations from a fleet of on-road gasoline vehicles in a smog chamber. We measured less SOA formation from newer vehicles meeting more stringent emissions standards. This suggests that the natural replacement of older vehicles with newer ones that meet more stringent emissions standards should reduce SOA levels in urban environments. However, SOA production depends on both precursor concentrations (emissions) and atmospheric chemistry (SOA yields). We found a strongly nonlinear relationship between SOA formation and the ratio of nonmethane organic gas to oxides of nitrogen (NOx) (NMOG:NOx), which affects the fate of peroxy radicals. For example, changing the NMOG:NOx from 4 to 10 ppbC/ppbNOx increased the SOA yield from dilute gasoline vehicle exhaust by a factor of 8. We investigated the implications of this relationship for the Los Angeles area. Although organic gas emissions from gasoline vehicles in Los Angeles are expected to fall by almost 80% over the next two decades, we predict no reduction in SOA production from these emissions due to the effects of rising NMOG:NOx on SOA yields. This highlights the importance of integrated emission control policies for NOx and organic gases. PMID:28630318
NASA Astrophysics Data System (ADS)
Xu, Shuang; Gao, Jun; Wang, Linlin; Kan, Kan; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying
2015-08-01
Establishing heterostructures, as a good strategy to improve gas sensing performance, has been studied extensively. In this research, In2O3-composite SnO2 nanorod (ICTOs) heterostructures have been prepared via electrospinning, followed by calcination. It is found that In2O3 can improve the carrier density and oxygen deficiency of SnO2. In particular, the 3ICTO (Sn : In atom ratio of 25 : 0.3) nanorods with special particle distributions show an excellent sensing response towards different concentrations of NOx at room temperature. The highest sensing response is up to 8.98 for 100 ppm NOx with a fast response time of 4.67 s, which is over 11 times higher than that of pristine SnO2 nanorods at room temperature and the lowest detection limit is down to 0.1 ppm. More significantly, it presents good stability after 30 days for NOx of low concentration (0.1 ppm and 0.5 ppm). In addition, the rational band structure model combined with the surface depletion model which describe the NOx gas sensing mechanism of 3ICTO are presented. The 3ICTO nanorods may be promising in the application of gas sensors.Establishing heterostructures, as a good strategy to improve gas sensing performance, has been studied extensively. In this research, In2O3-composite SnO2 nanorod (ICTOs) heterostructures have been prepared via electrospinning, followed by calcination. It is found that In2O3 can improve the carrier density and oxygen deficiency of SnO2. In particular, the 3ICTO (Sn : In atom ratio of 25 : 0.3) nanorods with special particle distributions show an excellent sensing response towards different concentrations of NOx at room temperature. The highest sensing response is up to 8.98 for 100 ppm NOx with a fast response time of 4.67 s, which is over 11 times higher than that of pristine SnO2 nanorods at room temperature and the lowest detection limit is down to 0.1 ppm. More significantly, it presents good stability after 30 days for NOx of low concentration (0.1 ppm and 0.5 ppm). In addition, the rational band structure model combined with the surface depletion model which describe the NOx gas sensing mechanism of 3ICTO are presented. The 3ICTO nanorods may be promising in the application of gas sensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03796d
EVALUATION OF SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGY
The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial ...
Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp.
Khairy, Heba; Wübbeler, Jan Hendrik
2015-01-01
Four Rhodococcus spp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). PMID:26407888
Hendrick, Elizabeth M; Tino, Vincent R; Hanna, Steven R; Egan, Bruce A
2013-07-01
The U.S. Environmental Protection Agency (EPA) plume volume molar ratio method (PVMRM) and the ozone limiting method (OLM) are in the AERMOD model to predict the 1-hr average NO2/NO(x) concentration ratio. These ratios are multiplied by the AERMOD predicted NO(x) concentration to predict the 1-hr average NO2 concentration. This paper first briefly reviews PVMRM and OLM and points out some scientific parameterizations that could be improved (such as specification of relative dispersion coefficients) and then discusses an evaluation of the PVMRM and OLM methods as implemented in AERMOD using a new data set. While AERMOD has undergone many model evaluation studies in its default mode, PVMRM and OLM are nondefault options, and to date only three NO2 field data sets have been used in their evaluations. Here AERMOD/PVMRM and AERMOD/OLM codes are evaluated with a new data set from a northern Alaskan village with a small power plant. Hourly pollutant concentrations (NO, NO2, ozone) as well as meteorological variables were measured at a single monitor 500 m from the plant. Power plant operating parameters and emissions were calculated based on hourly operator logs. Hourly observations covering 1 yr were considered, but the evaluations only used hours when the wind was in a 60 degrees sector including the monitor and when concentrations were above a threshold. PVMRM is found to have little bias in predictions of the C(NO2)/C(NO(x)) ratio, which mostly ranged from 0.2 to 0.4 at this site. OLM overpredicted the ratio. AERMOD overpredicts the maximum NO(x) concentration but has an underprediction bias for lower concentrations. AERMOD/PVMRM overpredicts the maximum C(NO2) by about 50%, while AERMOD/OLM overpredicts by a factor of 2. For 381 hours evaluated, there is a relative mean bias in C(NO2) predictions of near zero for AERMOD/PVMRM, while the relative mean bias reflects a factor of 2 overprediction for AERMOD/OLM. This study was initiated because the new stringent 1-hr NO2 NAAQS has prompted modelers to more widely use the PVMRM and OLM methods for conversion of NO(x) to NO2 in the AERMOD regulatory model. To date these methods have been evaluated with a limited number of data sets. This study identified a new data set of ambient pollutant and meteorological monitoring near an isolated power plant in Wainwright, Alaska. To supplement the existing evaluations, this new data were used to evaluate PVMRM and OLM. This new data set has been and will be made available to other scientists for future investigations.
Estimating NOx emissions and surface concentrations at high spatial resolution using OMI
NASA Astrophysics Data System (ADS)
Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.
2017-12-01
In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.
Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C
2016-04-01
This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Secondary Organic Aerosol Formation from the Photooxidation of Naphthalene
NASA Astrophysics Data System (ADS)
Zhou, S.; Chen, Y.; Wenger, J.
2009-04-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants that are released into the atmosphere as a by-product of combustion processes. The gas-phase PAHs can be chemically transformed via reaction with the hydroxyl radical to produce a range of oxidised organic compounds and other pollutants such as ozone and secondary organic aerosol (SOA). Epidemiological studies have established that exposure to this type of air pollution is associated with damaging effects on the respiratory and cardiovascular systems, and can lead to asthma, oxidative stress, health deterioration and even death. The major anthropogenic source of SOA in urban areas is believed to be aromatic hydrocarbons, which are present in automobile fuels and are used as solvents. As a result, research is currently being performed on the characterisation of SOA produced from aromatic hydrocarbons such as toluene, the xylenes and trimethylbenzenes. However, significant amounts of PAHs are also released into urban areas from automobile emissions and the combustion of fossil fuels for home heating. Naphthalene is regularly cited as the most abundant PAH in polluted urban air, with typical ambient air concentrations of 0.05 - 0.20 parts per billion (ppbV) in European cities, comparable to the xylenes. Since naphthalene reacts in an analogous manner to monocyclic aromatic compounds then it is also expected to make a significant contribution to ambient SOA. However, the yield and chemical composition of SOA produced from the atmospheric degradation of naphthalene is not well known. In this presentation, the effects of NOx level and relative humidity on the SOA formation from the phootooixdation of naphthalene will be presented. A series of experiments has been performed in a large atmospheric simulation chamber equipped with a gas chromatograph and analyzers for monitoring nitrogen oxides (NOx) and ozone. SOA formation from the photooxidation of naphthalene was measured using a scanning mobility particle sizer. The effect of NOx concentration on SOA formation was evaluated by varying the initial naphthalene and NOx concentrations. The results clearly show that a higher hydrocarbon to NOx ratio produces a higher yield of SOA. The SOA mass yields were also found to increase as the relative humidity was raised from 0 to 50%. A recently developed denuder-filter sampling technique was used to investigate the gas/particle partitioning behavior of the photooxidation products. This work is the first study of the formation of SOA from naphthalene and the results will be compared to those obtained from other aromatic compounds.
Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources
NASA Astrophysics Data System (ADS)
Walters, W.; Michalski, G. M.; Fang, H.
2015-12-01
Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various NOx sources to particular regions and will be helpful in evaluating the N isotopes in nitrate deposition studies.
Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki
2012-09-15
NO(x) emitted from a stationary diesel engine generator was treated with a hybrid system comprising NO(x) reduction by nonthermal plasma (NTP) and temperature swing adsorption (TSA) driven by engine waste heat. TSA produces a low-volume gas mixture of N(2) and highly concentrated NO(x), which is effectively reduced by NTP treatment. Improved treatment performance and efficiency are achieved by re-injecting the NTP-treated gas mixture into the engine intake. The system comprises two switchable adsorption chambers; the operation of this system was simulated by using a one-chamber system. The maximum energy efficiency for NO(x) treatment is 200 g(NO(2))/kWh. The respective contributions of NTP and injection of N(2) and NO(x) to the performance were theoretically analyzed. The analysis predicts that high energy efficiency and high NO(x)-removal efficiency can be simultaneously achieved with this system but miniaturization of the adsorption chambers will be a challenge. Copyright © 2012 Elsevier B.V. All rights reserved.
[Predicting low NOx combustion property of a coal-fired boiler].
Zhou, Hao; Mao, Jianbo; Chi, Zuohe; Jiang, Xiao; Wang, Zhenhua; Cen, Kefa
2002-03-01
More attention was paid to the low NOx combustion property of the high capacity tangential firing boiler, but the NOx emission and unburned carbon content in fly ash of coal burned boiler were complicated, they were affected by many factors, such as coal character, boiler's load, air distribution, boiler style, burner style, furnace temperature, excess air ratio, pulverized coal fineness and the uniformity of the air and coal distribution, etc. In this paper, the NOx emission property and unburned carbon content in fly ash of a 600 MW utility tangentially firing coal burned boiler was experimentally investigated, and taking advantage of the nonlinear dynamics characteristics and self-learning characteristics of artificial neural network, an artificial neural network model on low NOx combustion property of the high capacity boiler was developed and verified. The results illustrated that such a model can predicate the NOx emission concentration and unburned carbon content under various operating conditions, if combined with the optimization algorithm, the operator can find the best operation condition of the low NOx combustion.
REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM
The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...
The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad
2008-01-01
The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).
NASA Astrophysics Data System (ADS)
Valenzuela, Victor Hugo
Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.
Zago, Anderson Saranz; Kokubun, Eduardo; Fenty-Stewart, Nicola; Park, Joon-Young; Attipoe, Selasi; Hagberg, James; Brown, Michael
2010-10-01
the T-786C polymorphism of the gene for endothelial nitric oxide synthase (eNOS) and superoxide anion production may reduce production and bioavailability of nitric oxide, affecting the degree of vasodilation. This effect can be reversed by exercise. to investigate the influence of aerobic training and T-786C polymorphism in the concentrations of nitric oxide metabolites (NOx) in blood flow (BF) and blood pressure (BP). thirty-two elderly pre-hypertensive women (59 ± 6 years old) were divided into two groups according to the T-786C polymorphism (TT and TC + CC). We analyzed the concentrations of NOx (plasma) and blood flow by venous occlusion plethysmography at rest, 1, 2 and 3 minutes post-occlusion (BF-0, BF-1 BF-2 BF-3, respectively). Evaluations were performed before and after 6 months of a program of aerobic exercise. In the pre-training evaluations, NOx levels were lower in TC + CC group than in TT group. The TT group showed correlations between NOx and BF-0 (r = 0.6) and diastolic blood pressure (DBP) and BF-0 (r = -0.7), but no correlation was found in TC + CC group. In the post-training evaluations, there were correlations between NOx and BF-0 (r = 0.6) and the changes in NOx and DBP (r = -0.6) in TT group. There were also correlations between DBP and BF-1 (r = -0.8), DBP, and BF-2 (r = -0.6), DBP, and BF-3 (r = -0.6), in the changes between NOx and BF-1 (r = 0.8) and changes in NOx and DBP (r = -0.7) in TC + CC group. it was concluded that 6 months of aerobic exercise can increase the relationship between NO, BP and BF in elderly of allele C carriers.
NOx emission estimates during the 2014 Youth Olympic Games in Nanjing
NASA Astrophysics Data System (ADS)
Ding, J.; van der A, R. J.; Mijling, B.; Levelt, P. F.; Hao, N.
2015-08-01
The Nanjing Government applied temporary environmental regulations to guarantee good air quality during the Youth Olympic Games (YOG) in 2014. We study the effect of those regulations by applying the emission estimate algorithm DECSO (Daily Emission estimates Constrained by Satellite Observations) to measurements of the Ozone Monitoring Instrument (OMI). We improved DECSO by updating the chemical transport model CHIMERE from v2006 to v2013 and by adding an Observation minus Forecast (OmF) criterion to filter outlying satellite retrievals due to high aerosol concentrations. The comparison of model results with both ground and satellite observations indicates that CHIMERE v2013 is better performing than CHIMERE v2006. After filtering the satellite observations with high aerosol loads that were leading to large OmF values, unrealistic jumps in the emission estimates are removed. Despite the cloudy conditions during the YOG we could still see a decrease of tropospheric NO2 column concentrations of about 32 % in the OMI observations when compared to the average NO2 columns from 2005 to 2012. The results of the improved DECSO algorithm for NOx emissions show a reduction of at least 25 % during the YOG period and afterwards. This indicates that air quality regulations taken by the local government have an effect in reducing NOx emissions. The algorithm is also able to detect an emission reduction of 10 % during the Chinese Spring Festival. This study demonstrates the capacity of the DECSO algorithm to capture the change of NOx emissions on a monthly scale. We also show that the observed NO2 columns and the derived emissions show different patterns that provide complimentary information. For example, the Nanjing smog episode in December 2013 led to a strong increase in NO2 concentrations without an increase in NOx emissions. Furthermore, DECSO gives us important information on the non-trivial seasonal relation between NOx emissions and NO2 concentrations on a local scale.
NASA Astrophysics Data System (ADS)
Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.
2015-10-01
The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.
The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.
2009-01-01
We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
NASA Astrophysics Data System (ADS)
Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David
2017-08-01
Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.
HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison
NASA Astrophysics Data System (ADS)
Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.
2015-12-01
Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).
NASA Astrophysics Data System (ADS)
Felix, J.; Elliott, E. M.
2011-12-01
Reactive N emissions (NH3 and NOx) can reach the land surfaces via both wet (NH4+, NO3) and dry (NOx, HNO3, NH3, NH4+) depositional processes. Together, these reactive N compounds are important global contributors to air and water quality degradation. Although nitrate concentrations in wet deposition have decreased in the U.S. during the last two decades due to NOx emission regulations set forth by the Clean Air Act, ammonium concentrations in wet deposition have recently increased. In order to further decrease NOx emissions and decrease NH3 emissions, additional tools for reactive N source apportionment are essential. The stable isotopic composition of reactive N may be one such tool for characterizing source, transport, and fate of reactive N emissions. Here, we present results from a comprehensive inventory of the isotopic composition of reactive N emission sources, focusing mainly on agricultural and fossil fuel sources. We build on these inventory results by tracing reactive N emissions across multiple landscapes including: a dairy operation, a conventionally managed cornfield, a tallgrass prairie, and a concentrated animal feeding operation. We then use two examples to illustrate how reactive N isotopes can be used in a regional context. First, we illustrate how passive NH3 samplers deployed at nine U.S. monitoring sites reflect spatial variations in predominant NH3 sources. Secondly, we reconstruct the regional influence of agricultural NOx emissions to nitrate deposition recorded in an ice core from Summit, Greenland. These results reveal significant evidence that the trend in the N isotopic composition of 20th century nitrate deposition in Greenland was driven by increasing biogenic soil NOx emissions induced by fertilizer application in the US over the last century. Together, these studies demonstrate the isotopic composition of reactive N emissions can be an additional tool for investigators to source and trace reactive N emissions in both historical and modern contexts and across spatial scales.
NASA Astrophysics Data System (ADS)
Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva
2018-02-01
A new multi-scale model of urban air pollution is presented. This model combines a chemistry-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute the Street-in-Grid (SinG) model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above rooftops is performed with Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NOx) and ozone (O3) in a Paris suburb. Simulated concentrations are compared to NOx concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO2) concentrations. However, both SinG and MUNICH underestimate NOx. For the case study considered, the model performance for NOx concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO-NO2-O3 set of reactions is sufficient.
Decadal change in PAN & O3 and their precursors levels in Seoul during May and June
NASA Astrophysics Data System (ADS)
Kim, H.; Rhee, H.; Lee, M.; Lee, G.; Jang, J.; Shin, H. J.
2017-12-01
In Seoul, PAN and O3 concentrations were examined for the two months of May and June, when O3 concentration is the highest of the year. The measurement sets of PAN and O3 are available for 2004, 2005, 2015 and 2016. PAN was measured by a fast GC system coupled with Luminol chemiluminescence. The hourly maximum PAN and O3 concentrations were10 ppbv and 123 ppbv in 2004,8 ppbv and 141 ppbv in 2005, 4.4 ppbv and 143 ppbv in 2015, and 7.5 ppbv and 127 ppbv in 2016, respectively. The total concentrations of NOX and VOCs were evidently decreased but with different proportions in their subclasses. While alkans and aromatics were considerably decreased, biogenic VOC(BVOC) were increased about twice, leading to increased contribution of BVOC to OH reactivity. Although NOX was decreased by 35%, NO2/NOX ratio was increased for the decade. PAN levels were decreased over the years corresponding to decrease in precursor levels. However, the concentration of O3 was increased due to an increase in NO2 / NO ratio and BVOC.
NASA Astrophysics Data System (ADS)
Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn
2017-12-01
Residents of large European cities are exposed to NO2 concentrations that often exceed the established air quality standards. Diesel cars have been identified as a major contributor to this situation; yet, it remains unclear to which levels the NOX emissions of diesel cars have to decrease to effectively mitigate urban NO2 pollution across Europe. Here, we take a continental perspective and model urban NO2 pollution in a generic street canyon of 8 major European cities for various NOX emission scenarios. We find that a reduction in the on-road NOX emissions of diesel cars to the Euro 6 level can in general decrease the regional and urban NO2 concentrations and thereby the frequency of exceedances of the NO2 air quality standard. High NO2 fractions in the NOX emissions of diesel cars tend to increase the urban NO2 concentrations only in proximity of intense road traffic typically found on artery roads in large cities like Paris and London. In cities with a low share of diesel cars in the vehicle fleet such as Athens or a high contribution from the NO2 background to the urban NO2 pollution such as Krakow, measures addressing heavy-duty vehicles, and the manufacturing, energy, and mining industry are necessary to decrease urban air pollution. We regard our model results as robust albeit subject to uncertainty resulting from the application of a generic street layout. With small modifications in the input parameters, our model could be used to assess the impact of NOX emissions from road transport on NO2 air pollution in any European city.
Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation
NASA Astrophysics Data System (ADS)
Tasoglou, A.; Pandis, S. N.
2015-06-01
The secondary organic aerosol (SOA) production during the oxidation of β-caryophyllene by ozone (O3) and hydroxyl radicals (OH) and the subsequent chemical aging of the products during reactions with OH were investigated. Experiments were conducted with ozone and with hydroxyl radicals at low NOx (zero added NOx) and at high NOx (hundreds of parts per billion). The SOA mass yield at 10 μg m-3 of organic aerosol was 27% for the ozonolysis, 20% for the reaction with OH at low NOx, and 38% at high NOx under dry conditions, 20 °C, and ozone excess. Parameterizations of the fresh SOA yields have been developed. The average fresh SOA atomic O : C ratio varied from 0.24 to 0.34 depending on the oxidant and the NOx level, while the H : C ratio was close to 1.5 for all systems examined. An average density of 1.06 ± 0.1 μg m-3 of the β-caryophyllene SOA was estimated. The exposure to UV light had no effect on the β-caryophyllene SOA concentration and aerosol mass spectrometer (AMS) measurements. The chemical aging of the β-caryophyllene SOA produced was studied by exposing the fresh SOA to high concentrations (107 molecules cm-3) of OH for several hours. These additional reactions increased the SOA concentration by 15-40% and O : C by approximately 25%. A limited number of experiments suggested that there was a significant impact of the relative humidity on the chemical aging of the SOA. The evaporation rates of β-caryophyllene SOA were quantified by using a thermodenuder allowing us to estimate the corresponding volatility distributions and effective vaporization enthalpies.
do Vale, Gabriel T; Gonzaga, Natália A; Simplicio, Janaina A; Tirapelli, Carlos R
2017-03-15
We studied whether the β 1 -adrenergic antagonist nebivolol would prevent ethanol-induced reactive oxygen species generation and lipoperoxidation in the rat renal cortex. Male Wistar rats were treated with ethanol (20% v/v) for 2 weeks. Nebivolol (10mg/kg/day; p.o. gavage) prevented both the increase in superoxide anion (O 2 - ) generation and thiobarbituric acid reactive substances (TBARS) concentration induced by ethanol in the renal cortex. Ethanol decreased nitrate/nitrite (NOx) concentration in the renal cortex, and nebivolol prevented this response. Nebivolol did not affect the reduction of hydrogen peroxide (H 2 O 2 ) concentration induced by ethanol. Nebivolol prevented the ethanol-induced increase of catalase (CAT) activity. Both SOD activity and the levels of reduced glutathione (GSH) were not affected by treatment with nebivolol or ethanol. Neither ethanol nor nebivolol affected the expression of Nox1, Nox4, eNOS, nNOS, CAT, Nox organizer 1 (Noxo1), c-Src, p47 phox or superoxide dismutase (SOD) isoforms in the renal cortex. On the other hand, treatment with ethanol increased Nox2 expression, and nebivolol prevented this response. Finally, nebivolol reduced the expression of protein kinase (PK) Cδ and Rac1. The major finding of our study is that nebivolol prevented ethanol-induced reactive oxygen species generation and lipoperoxidation in the kidney by a mechanism that involves reduction on the expression of Nox2, a catalytic subunit of NADPH oxidase. Additionally, we demonstrated that nebivolol reduces NADPH oxidase-derived reactive oxygen species by decreasing the expression of PKCδ and Rac1, which are important activators of NADPH oxidase. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Passive Sampling to Asses Ozone Formation in Sparsely Monitored Areas
NASA Astrophysics Data System (ADS)
Crosby, C. M.; Mainord, J.; George, L. A.
2016-12-01
Tropospheric ozone (O3), a secondary pollutant, is detrimental to both human health and the environment. O3 is formed from nitrogen oxides (NOx) and volatile organic compounds, (VOC's) in the presence of sunlight. Hermiston is a low population rural city in Oregon (17,707), where O3 levels are expected to be minimal. However, Hermiston has recently experienced elevated O3 concentrations, approaching EPA levels of non-attainment. These levels were not predicted by airshed modeling of the region, suggesting that precursor emissions are not adequately represented in the model. Due to the limited monitoring in the area, there are no measurements of precursors in the region. In this study, passive Ogawa samplers were used to measure NOx and O3 levels at twenty sites in the area. The concentrations were then mapped in conjunction with wind trajectories derived from HYSPLIT and compared to NOx point sources attained from the National Emissions Inventory (NEI). The measurement campaign revealed areas of elevated NOx concentrations that were not accounted for in the airshed model. Further exploration is needed to identify these sources. This study lays groundwork for the use of passive sampling to ground-truth airshed models in the absence of monitoring networks.
NASA Astrophysics Data System (ADS)
Silvern, R. F.; Jacob, D. J.; Travis, K. R.; Sherwen, T.; Evans, M. J.; Cohen, R. C.; Laughner, J. L.; Hall, S. R.; Ullmann, K.; Crounse, J. D.; Wennberg, P. O.; Peischl, J.; Pollack, I. B.
2018-05-01
Observations from the SEAC4RS aircraft campaign over the southeast United States in August-September 2013 show NO/NO2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NOx reservoir species, presumably organic, decomposing thermally to NO2 in the instrument. The NO2 instrument corrects for this artifact from known labile HNO4 and CH3O2NO2 NOx reservoirs. To bridge the gap between measured and simulated NO2, additional unaccounted labile NOx reservoir species would have to be present at a mean concentration of 40 ppt for the SEAC4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low-temperature rate constant for the NO + O3 reaction (30% 1-σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO2 photolysis (20% 1-σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO2 columns.
Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar
2014-12-16
This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.
Cohen, Pninit; Potchter, Oded; Schnell, Izhak
2014-12-01
This study examines the influence of urban parks on air quality and noise in the city of Tel-Aviv, Israel, by investigation of an urban park, an urban square and a street canyon. Simultaneous monitoring of several air pollutants and noise levels were conducted. The results showed that urban parks can reduce NOx, CO and PM10 and increase O3 concentrations and that park's mitigation effect is greater at higher NOx and PM10 levels. During extreme events, mean values of 413 ppb NOx and 80 μG/m3 PM10 were measured in the street while mean values of 89 ppb NOx and 24 μG/m3 PM10 were measured in the park. Whereas summer highest O3 values of 84 ppb were measured in the street, 94 ppb were measured in the park. The benefit of the urban park in reducing NOx and PM10 concentrations is more significant than the disadvantage of increased O3 levels. Furthermore, urban parks can reduce noise by ∼5 dB(A). Copyright © 2014 Elsevier Ltd. All rights reserved.
Exner, Jörg; Albrecht, Gaby; Schönauer-Kamin, Daniela; Kita, Jaroslaw; Moos, Ralf
2017-01-01
The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NOx) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NOx. In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NOx sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NOx concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NOx. In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal ΔU of 50 mV and 75 mV for 3 ppm of NO and NO2, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance. PMID:28933736
NASA Astrophysics Data System (ADS)
Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.
2017-12-01
High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived NOX emissions from CTM and OMI with the MACC-III inventory. For cities where multiple sources of NOX are observed (e.g. Brussels, London), an adapted methodology is required. For some cities such as St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.
Multifuel evaluation of rich/quench/lean combustor
NASA Technical Reports Server (NTRS)
Notardonato, J. J.; Novick, A. S.; Troth, D. L.
1982-01-01
The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.
The preservation of long-range transported nitrate in snow at Summit, Greenland (Invited)
NASA Astrophysics Data System (ADS)
Hastings, M. G.
2013-12-01
Nitrate is one of the major anions found in polar and alpine snow, both today and in the past. Deposition of nitrate to snow surfaces results from reactions of nitrogen oxides (NOx) with oxidants in the atmosphere, resulting in the production of HNO3 that is incorporated into precipitation or reacts on the surface of particles. Several factors motivate studying nitrate concentration in ice cores including reconstructing past levels of NOx, tropospheric oxidant concentrations and natural variability in NOx sources. The link between the atmospheric concentration of NOx and nitrate concentration in ice core records is problematic because post-depositional processing, such as photolysis and evaporation, can impact the concentration of nitrate in snow. Recent work has shown that the isotopic ratios of nitrate (15N/14N, 18O/16O, 17O/16O) can be a powerful tool for tracing post-depositional loss of nitrate from surface snow. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e, NOx sources) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. Results from a number of studies at Summit, Greenland reveal limited loss of nitrate from surface snow during highly photoactive periods, and the oxygen isotopic signatures in snow nitrate appear to be representative of atmospheric deposition of nitrate from outside of Summit. Higher than expected oxygen isotope ratios (18O/16O, 17O/16O) found in Summit summertime nitrate were expected to be dependent upon local photochemistry in which nitrate in the snow is photolyzed to NOx that is then oxidized above the snow by BrO to reform nitrate (i.e., BrONO2). However, the oxygen isotopic composition of nitrate collected at high time resolution in surface snow does not show any link to local gas phase concentrations of a number of species, including BrO. Furthermore, the combination of nitrogen and oxygen isotope data reveals interesting insights into the contributions of nitrate sources to Summit. There are several important implications of this work including that nitrate at Summit appears to be largely preserved in surface snow during photoactive periods, and that nitrate in snow at Summit also appears to be representative of long-range transported nitrate/NOx. The surface snow work is further substantiated by relationships found between and among seasonally-resolved ice core measurements of the isotopic composition of nitrate, nitrate concentration and a suite of chemical and elemental tracers. The seasonality observed in 15N/14N ratios in an ice core representing accumulation since 1760 C.E. cannot be explained by diffusion or other processes occurring in the firn over time. A marked negative trend in 15N/14N since industrialization, parallels a nearly three-fold increase in nitrate concentration as well as pronounced increases in tracers such as excess lead and non-sea-salt sulfur. This, along with independent estimates of oil burning and transport studies, indicate that North American oil combustion is the primary driver of the modern negative trend in 15N/14N of nitrate. The high, positive 15N/14N ratios found in pre-industrial ice link to biomass burning based upon concentrations of black carbon and ammonium.
Measurement of NOx fluxes from a tall tower in Beijing
NASA Astrophysics Data System (ADS)
Squires, Freya; Dunmore, Rachel; Lewis, Alastair; Vaughan, Adam; Mullinger, Neil; Nemitz, Eiko; Wild, Oliver; Zhang, Qiang; Hamilton, Jacqueline; Lee, James; Fu, Pingqing
2017-04-01
Nitrogen Oxides (NOx, the sum of nitrogen monoxide (NO) and nitrogen dioxide (NO2)) are significant anthropogenic pollutants emitted from most combustion processes. NOx is a precursor species to the formation of O3 and secondary aerosols and, in high concentrations, NO2 can have adverse effects on human health through action as a respiratory irritant. For these reasons, there has been increased focus on improving NOx emissions inventories, typically developed using 'bottom-up' estimates of emissions from their sources, which are used to predict current and future air quality and to guide abatement strategy. Recent studies have shown a discrepancy between NOx inventories and measured NOx emissions for UK cities, highlighting the limitations of bottom-up emissions inventories and the importance of accurate measurement data to improve the estimates. Similarly, inventories in China are associated with large uncertainties and are rapidly changing with time in response to economic development and new environmental regulation. Here, we present data collected as part of the Air Pollutants in Beijing (AIRPOLL-Beijing) campaign from an urban site located at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, CAS) (39˚ 58'28"N, 116˚ 22'16"E) in central Beijing. NOx concentrations were measured using a state-of-the-art chemiluminescence instrument, sampling from an inlet at 100 metres on a meteorological tower. Measurements at 5 Hz coupled with wind vector data measured by a sonic anemometer located at the same height as the inlet allowed NOx emission fluxes to be calculated using the eddy covariance method. Measurements were made during the period 11/11/2016 - 10/12/2016 and compared to existing emission estimates from The Multi-resolution Emission Inventory for China (MEIC) inventory. It is anticipated that this work will be used to evaluate the accuracy of emissions inventories for Beijing, to develop improved emissions estimates and thus provide greater information about the sources of NOx in the city.
NASA Astrophysics Data System (ADS)
Takehana, Kotaro; Kuroki, Tomoyuki; Okubo, Masaaki
2018-05-01
Nitrogen oxides (NOx) emitted from power plants and combustion sources cause air pollution problems. Selective catalytic reduction technology is remarkably useful for NOx removal. However, there are several drawbacks such as preparation of reducing agents, usage of harmful heavy metals, and higher cost. On the other hand, trace NO is a vasodilator agent and employed in inhalation therapies for treating pulmonary hypertension in humans. Considering these factors, in the present study, a wet-type nonthermal plasma reactor, which can control NOx and nanoparticle emissions and generate NO, is investigated. The fundamental characteristics of the reactor are investigated. First, the experiment of nanoparticle removal is carried out. Collection efficiencies of over 99% are achieved for nanoparticles at 50 and 100 ml min‑1 of liquid flow rates. Second, experiments of NOx removal under air atmosphere and NOx generation under nitrogen atmosphere are carried out. NOx-removal efficiencies of over 95% under the air plasma are achieved in 50–200 ml min‑1 liquid flow rates. Moreover, under nitrogen plasma, NOx is generated, of which the major portion is NO. For example, NO concentration is 25 ppm, while NOx concentration is 31 ppm at 50 ml min‑1 liquid flow rate. Finally, experiments of NO generation under the nitrogen atmosphere with or without flowing water are carried out. When water flows on the inner surface of the reactor, approximately 14 ppm of NO is generated. Therefore, NO generation requires flowing water. It is considered that the reaction of N and OH, which is similar to the extended Zeldovich mechanism, could occur to induce NO formation. From these results, it is verified that the wet-type plasma reactor is useful for NOx removal and NO generation under nitrogen atmosphere with flowing water.
NASA Technical Reports Server (NTRS)
Hudman, Rynda C.; Jacob, Daniel J.; Turquety, Solene; Leinbensperger, E. M.; Murray, L. T.; Wu, Samuel; Gilliland, A. B.; Avery, Melody A.; Bertram, Timothy H.; Brune, W. H.;
2007-01-01
We use observations from two aircraft during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of the regional sources, chemical evolution, and export of nitrogen oxides. The boundary layer NO(x) data provide top-down verification of a 50% decrease in power plant and industry NO(x) emissions over the eastern United States between 1999 and 2004. Observed 8-12 8 km NO(x) concentrations in ICARTT were 0.55 +/- 36 ppbv, much larger than in previous United States aircraft campaigns (ELCHEM, SUCCESS, SONEX). We show that regional lightning was the dominant source of this NO(x) and increased upper tropospheric ozone by 10 ppbv. Simulating the ICARTT upper tropospheric NO(x) observations with GEOS-Chem require a factor of 4 increase in the model NO(x) yield per flash (to 500 mol/flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, and if correct would imply a broader lightning influence in the upper troposphere than presently thought.An NO(y)-CO correlation analysis of the fraction f of North American NO(x) emissions vented to the free troposphere as NO(y) (sum of NO(x) and its oxidation products PAN and HNO3) s shows observed f=16+/-10 percent and modeled f=14 +/- 8 percent, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NO(y) export efficiency and speciation, supporting previous model estimates of a large U.S. contribution to tropospheric ozone through NO(x) and PAN export.
[The utility boiler low NOx combustion optimization based on ANN and simulated annealing algorithm].
Zhou, Hao; Qian, Xinping; Zheng, Ligang; Weng, Anxin; Cen, Kefa
2003-11-01
With the developing restrict environmental protection demand, more attention was paid on the low NOx combustion optimizing technology for its cheap and easy property. In this work, field experiments on the NOx emissions characteristics of a 600 MW coal-fired boiler were carried out, on the base of the artificial neural network (ANN) modeling, the simulated annealing (SA) algorithm was employed to optimize the boiler combustion to achieve a low NOx emissions concentration, and the combustion scheme was obtained. Two sets of SA parameters were adopted to find a better SA scheme, the result show that the parameters of T0 = 50 K, alpha = 0.6 can lead to a better optimizing process. This work can give the foundation of the boiler low NOx combustion on-line control technology.
Measurements of the potential ozone production rate in a forest
NASA Astrophysics Data System (ADS)
Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.
2017-12-01
Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.
Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases.
Lu, Jiamo; Risbood, Prabhakar; Kane, Charles T; Hossain, Md Tafazzal; Anderson, Larry; Hill, Kimberly; Monks, Anne; Wu, Yongzhong; Antony, Smitha; Juhasz, Agnes; Liu, Han; Jiang, Guojian; Harris, Erik; Roy, Krishnendu; Meitzler, Jennifer L; Konaté, Mariam; Doroshow, James H
2017-11-01
The NADPH oxidases (NOXs) play a recognized role in the development and progression of inflammation-associated disorders, as well as cancer. To date, several NOX inhibitors have been developed, through either high throughput screening or targeted disruption of NOX interaction partners, although only a few have reached clinical trials. To improve the efficacy and bioavailability of the iodonium class NOX inhibitor diphenylene iodonium (DPI), we synthesized 36 analogs of DPI, focusing on improved solubility and functionalization. The inhibitory activity of the analogs was interrogated through cell viability and clonogenic studies with a colon cancer cell line (HT-29) that depends on NOX for its proliferative potential. Lack of altered cellular respiration at relevant iodonium analog concentrations was also demonstrated. Additionally, inhibition of ROS generation was evaluated with a luminescence assay for superoxide, or by Amplex Red® assay for H 2 O 2 production, in cell models expressing specific NOX isoforms. DPI and four analogs (NSCs 740104, 751140, 734428, 737392) strongly inhibited HT-29 cell growth and ROS production with nanomolar potency in a concentration-dependent manner. NSC 737392 and 734428, which both feature nitro functional groups at the meta position, had >10-fold higher activity against ROS production by cells that overexpress dual oxidase 2 (DUOX2) than the other compounds examined (IC 50 ≈200-400nM). Based on these results, we synthesized and tested NSC 780521 with optimized potency against DUOX2. Iodonium analogs with anticancer activity, including the first generation of targeted agents with improved specificity against DUOX2, may provide a novel therapeutic approach to NOX-driven tumors. Published by Elsevier Inc.
Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun
2014-01-01
Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1−/−), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose–response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91phox and inducing membrane translocation of the cytosolic subunits p47phox and p67phox. The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. PMID:25209287
Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models
NASA Astrophysics Data System (ADS)
Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.
2017-12-01
Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.
Oh, Kwang Seok; Woo, Seong Ihl
2011-01-01
A chemiluminescence-based analyzer of NOx gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NOx analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al2O3 substrate was tested for the efficiency of NOx removal using a home-built 64-channel parallel and sequential tubular reactor. The NOx concentrations measured by the NOx analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al2O3. Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NOx analyzer allowed to select Pt-Ce(X) (X=1–3) and Pt–Fe(2) as the optimal catalysts for NOx removal: 73% NOx conversion was achieved with the Pt–Fe(2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO. PMID:27877438
NASA Astrophysics Data System (ADS)
Labahn, Jeffrey William; Devaud, Cecile
2017-05-01
A Reynolds-Averaged Navier-Stokes (RANS) simulation of the semi-industrial International Flame Research Foundation (IFRF) furnace is performed using a non-adiabatic Conditional Source-term Estimation (CSE) formulation. This represents the first time that a CSE formulation, which accounts for the effect of radiation on the conditional reaction rates, has been applied to a large scale semi-industrial furnace. The objective of the current study is to assess the capabilities of CSE to accurately reproduce the velocity field, temperature, species concentration and nitrogen oxides (NOx) emission for the IFRF furnace. The flow field is solved using the standard k-ε turbulence model and detailed chemistry is included. NOx emissions are calculated using two different methods. Predicted velocity profiles are in good agreement with the experimental data. The predicted peak temperature occurs closer to the centreline, as compared to the experimental observations, suggesting that the mixing between the fuel jet and vitiated air jet may be overestimated. Good agreement between the species concentrations, including NOx, and the experimental data is observed near the burner exit. Farther downstream, the centreline oxygen concentration is found to be underpredicted. Predicted NOx concentrations are in good agreement with experimental data when calculated using the method of Peters and Weber. The current study indicates that RANS-CSE can accurately predict the main characteristics seen in a semi-industrial IFRF furnace.
Ultrafine particles and nitrogen oxides generated by gas and electric cooking.
Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A
2001-08-01
To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.
Explaining a Consistent Morning NOx Maximum in the Clean Air Forest Boundary Layer
NASA Astrophysics Data System (ADS)
Shepson, P. B.; Alaghmand, M.; Bertman, S. B.; Carroll, M.; Edburg, S. L.; Jobson, B. T.; Keutsch, F. N.; Lamb, B. K.; Starn, T.; Stevens, P. S.; Wallace, W.; Zhou, X.
2010-12-01
Measurements of nitrogen oxides (NOx) at continental surface sites have frequently revealed the presence of an early morning maximum in the NOx concentration. While this observation has most often been interpreted as the result of downward mixing associated with breakup of the nocturnal inversion, the morning NOx peak often occurs earlier than the NBL breakup. Given the importance of NOx to boundary layer photochemistry near forested environments, it is essential that this phenomenon be well understood. Here we examine a variety of measurements, including NOx measurements at various heights, during the 1998, 2001, 2008, and 2009 (CABINEX) summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), at the University of Michigan Biological Station in Northern Michigan. We will discuss the results, in terms of the extent to which the observations support/refute each of the potential drivers of the morning NOx peak: 1) downward mixing, 2) photochemistry on the various surfaces present, 3) soil emissions, and 4) local and long range transport of anthropogenic NOx, and we will report on our conclusions as to the predominant/likely explanation(s) for this phenomenon.
NASA Technical Reports Server (NTRS)
Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.
1999-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.
NASA Astrophysics Data System (ADS)
Chossiere, G.; Barrett, S. R. H.; Malina, R.; Dedoussi, I. C.; Eastham, S. D.; Ashok, A.
2016-12-01
In September 2015, the Volkswagen Group admitted the use of an illegal emissions control system that activates during vehicle testing for regulatory purposes. Globally, 11 million diesel cars sold between 2008 and 2015 are affected, including about 2.6 million in Germany and 480,000 in the United States. On-road tests suggest that NOx emissions for these cars amount to 0.85 g/km on average, over four times the applicable European limit of 0.18 g/km and more than 20 times the corresponding EPA standard. This study quantifies and compares the human health impacts and costs associated with excess emissions from VW cars driven in Germany and in the United States. A distribution of emissions factors built from existing on-road measurements is combined with sales data and a vehicle fleet model to estimate total excess NOx emissions in each country. In Europe, we used the GEOS-Chem chemistry-transport model to predict the increase in population exposure to fine particulate matter and ozone due to the excess NOx emissions in Germany. The corresponding quantities in the US case were obtained using an adjoint-based air pollution model derived from the GEOS-Chem model. A set of concentration-response functions allowed us to estimate mortality outcomes in terms of early deaths in the US and in Europe. Integrated over the sales period (2008 - 2015), we estimate median mortality impacts from VW excess emissions in Germany to be 1,100 (95% CI: 0 to 3,000) early deaths in Europe, corresponding to 3.9 billion EUR (95% CI: 0 to 10 billion) in associated costs. Another 59 (95% CI: 10 to 150) early deaths is expected in the US as a result of excess emissions released in the country, corresponding to 450 million USD in social costs. We find that excess NOx emissions in Europe have 5 times greater health impacts per kilogram than those in the US due to the higher population density and more NOx-sensitive background conditions in Europe. The gas ratios in the two regions support this finding and highlight the greater availability of free ammonia in Europe than in the US, resulting in more NOx being converted into ammonium nitrate aerosol, and greater concentrations of PM2.5. Conversely, increased NOx emissions result in a decrease in ozone concentrations over Europe, whereas increase in ozone concentration is a driver of early deaths in the US.
A NASA Lightning Parameterization for CMAQ
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard
2009-01-01
Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
NASA Astrophysics Data System (ADS)
Ruiz Suarez, L.; Garcia-Yee, J.; Torres-JArdon, R.; Barrera Huertas, H.; Torres-Jaramillo, A.; Ortinez, A.
2013-05-01
Varying levels of oxidants (Ox = O3 + NO2) with respect to NOx were registered at three sites in a mountain southeast of the Mexico City Metropolitan Area (MCMA) in February and March 2011. The Ox-NOx ratio was used to gain a better understanding of the photochemical and transport processes happening over this mountain pass. Relatively high concentrations of O3 (moving average concentrations of 8 hours) exceeded maximum levels of the World Health Organization, and the European Union. The cumulative exceedances above background level of O3 in the one month-long campaign also exceeded the three months accumulative UN-ECE AOT40 critical level for crop protection. It was observed that the level of Ox in the mountain gap sites consisted of two contributions: One, independent of NOx emissions, extremely dominant and considered equivalent to the regional background O3 concentration; the second and much smaller was dependent of NOx local concentrations. Evidence was found that the oxidation of NO provided the major contribution of NO2 to Ox, rather than direct NO2 emissions. The contribution of regional Ox dominated from midmorning to noon when the boundary layer height began to increase due to sunlight heating of the surface leading to the mixing of higher concentrations of O3 above the nighttime thermal inversion. After noon, when the ozone vertical distribution was uniform, the Ox and O3 concentrations reached their maximum; they were very similar with very low levels of NO2. The analysis of wind data collected at the monitoring sites showed that from mid-morning to early afternoon, a northerly weak flow was common. Afterwards stronger southerly winds became dominant bringing in O3 rich air parcels into the atmospheric basin where MCMA is located. The high regional ozone concentrations add evidence for the need of coordinated air quality management policies for the complete central part of Mexico. Keywords: mountain gap, oxidant, ground level ozone, Central Mexico
Indrehus, O; Vassbotn, P
2001-02-01
The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianping Jing; Zhengqi Li; Guangkui Liu
Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Squizzato, Stefania; Masiol, Mauro; Rich, David Q.; Hopke, Philip K.
2018-06-01
Over the past decades, mitigation strategies have been adopted both by federal and state agencies in the United States (US) to improve air quality. Between 2007 and 2009, the US faced a financial/economic crisis that lowered activity and reduced emissions. At the same time, changes in the prices of coal and natural gas drove a shift in fuels used for electricity generation. Seasonal patterns, diel cycles, spatial gradients, and trends in PM2.5 and gaseous pollutants concentrations (NOx, SO2, CO and O3) monitored in New York State (NYS) from 2005 to 2016 were examined. Relationships between ambient concentrations, changes in NYS emissions retrieved from the US EPA trends inventory, and economic indicators were studied. PM2.5 and primary gaseous pollutants concentrations decreased across NYS. By 2016, PM2.5 and SO2 attained relatively homogeneous concentrations across the state. PM2.5 concentrations decreased significantly at all sites. Similarly, SO2 concentrations declined at all sites within this period, with the highest slopes observed at the urban sites. Reductions in NOx emissions likely contributed to summertime average ozone reductions. NOx and VOCs controls reduced O3 peak concentrations as seen in significant relationships between the annual O3 4th-highest daily maximum 8-h concentrations and estimated NOx emissions at rural and suburban sites (r2 ∼ 0.7). Spring maxima were not reduced with most sites showing insignificant slopes or significant positive slopes (e.g., +2.6% y-1 and +2% y-1, at CCNY and PFI, respectively). Increases in autumn and winter ozone concentrations were found (e,g., 6.6 ± 0.4% y-1 on average in New York City). Significant relationships were observed between PM2.5, primary pollutants, and economic indicators. Overall, a decrease in electricity generation with coal, and the simultaneous increase in natural gas consumption for power generation, led to a decrease in PM2.5 and gaseous pollutants concentrations.
High winter ozone pollution from carbonyl photolysis in an oil and gas basin.
Edwards, Peter M; Brown, Steven S; Roberts, James M; Ahmadov, Ravan; Banta, Robert M; deGouw, Joost A; Dubé, William P; Field, Robert A; Flynn, James H; Gilman, Jessica B; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O; Lefer, Barry L; Lerner, Brian M; Li, Rui; Li, Shao-Meng; McKeen, Stuart A; Murphy, Shane M; Parrish, David D; Senff, Christoph J; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R; Trainer, Michael K; Tsai, Catalina; Veres, Patrick R; Washenfelder, Rebecca A; Warneke, Carsten; Wild, Robert J; Young, Cora J; Yuan, Bin; Zamora, Robert
2014-10-16
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
High winter ozone pollution from carbonyl photolysis in an oil and gas basin
NASA Astrophysics Data System (ADS)
Edwards, Peter M.; Brown, Steven S.; Roberts, James M.; Ahmadov, Ravan; Banta, Robert M.; Degouw, Joost A.; Dubé, William P.; Field, Robert A.; Flynn, James H.; Gilman, Jessica B.; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O.; Lefer, Barry L.; Lerner, Brian M.; Li, Rui; Li, Shao-Meng; McKeen, Stuart A.; Murphy, Shane M.; Parrish, David D.; Senff, Christoph J.; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R.; Trainer, Michael K.; Tsai, Catalina; Veres, Patrick R.; Washenfelder, Rebecca A.; Warneke, Carsten; Wild, Robert J.; Young, Cora J.; Yuan, Bin; Zamora, Robert
2014-10-01
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
Further developments in oxidation of methane traces with radiofrequency discharge
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J.
1977-01-01
The radiofrequency discharge, previously shown to oxidize trace levels of methane in oxygen, was studied with contaminated air at 50, 600, and 760 torr. As with oxygen, the concentration of methane traces could be reduced by several orders of magnitude, and no organic reaction products were detected in the effluent; however, substantial concentrations of NOx (0.1-6%) were formed during treatment. The concentration of NOx was decreased by using a large diameter electrode. There is evidence that the process will oxidize N2 and NO as well as organic impurities in oxygen or oxygen/inert gas atmospheres.
NASA Astrophysics Data System (ADS)
Vijlee, Shazib Z.
Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The differences in flame stabilization can be attributed to the rate at which these fuels are attacked and destroyed by radical species. The slow disintegration of the aromatic rings reduces the radical pool available for chain-initiating and chain-branching, which ultimately leads to an earlier blowout. The NOX study compares JP8, the aromatic additive, the synthetic fuels with and without an aromatic additive, and an aromatic surrogate (1,3,5-trimethylbenzene). A jet stirred reactor is used to try and isolate temperature and chemical effects. The reactor has a volume of 15.8 mL and a residence time of approximately 2.5 ms. The fuel flow rate (hence equivalence ratio) is adjusted to achieve nominally consistent temperatures of 1800, 1850, and 1900K. Small oscillations in fuel flow rate cause the data to appear in bands, which facilitated Arrhenius-type NOX-temperature correlations for direct comparison between fuels. The fuel comparisons are somewhat inconsistent, especially when the aromatic fuel is blended into the synthetic fuels. In general, the aromatic surrogate (1,3,5-trimethylbenzene) produces the most NOX, followed by JP8. The synthetic fuels (without aromatic additive) are always in the same ranking order for NOX production (HP Camelina > FT Coal > FT Natural Gas > HP Tallow). The aromatic additive ranks differently based on the temperature, which appears to indicate that some of the differences in NOX formation are due to the Zeldovich NOX formation pathway. The aromatic additive increases NOX for the HP Tallow and decreases NOX for the FT Coal. The aromatic additive causes increased NOX at low temperatures but decreases NOX at high temperatures for the HP Camelina and FT Natural Gas. A single perfectly stirred reactor model is used with several chemical kinetic mechanisms to study the effects of fuel (and fuel class) on NO X formation. The 27 unique NOX formation reactions from GRI 3.0 are added to published mechanisms for jet fuel surrogates. The investigation first looked at iso-octane and toluene and found that toluene produces more NOX because of a larger pool of O radical. The O radical concentration was lower for iso-octane because of an increased concentration of methyl (CH 3) radical that consumes O radical readily. Several surrogate fuels (iso-octane, toluene, propylcyclohexane, n-octane, and 1,3,5-trimethylbenzene) are modeled to look for differences in NOX production. The trend (increased CH3 → decreased O → decreased NOX) is consistently true for all surrogate fuels with multiple kinetic mechanisms. It appears that the manner in which the fuel disintegrates and creates methyl radical is an extremely important aspect of how much NOX a fuel will produce. (Abstract shortened by UMI.).
Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen
2010-02-01
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khodayari, Arezoo; Olsen, Seth C.; Wuebbles, Donald J.; Phoenix, Daniel B.
2015-07-01
Atmospheric chemistry-climate models are often used to calculate the effect of aviation NOx emissions on atmospheric ozone (O3) and methane (CH4). Due to the long (∼10 yr) atmospheric lifetime of methane, model simulations must be run for long time periods, typically for more than 40 simulation years, to reach steady-state if using CH4 emission fluxes. Because of the computational expense of such long runs, studies have traditionally used specified CH4 mixing ratio lower boundary conditions (BCs) and then applied a simple parameterization based on the change in CH4 lifetime between the control and NOx-perturbed simulations to estimate the change in CH4 concentration induced by NOx emissions. In this parameterization a feedback factor (typically a value of 1.4) is used to account for the feedback of CH4 concentrations on its lifetime. Modeling studies comparing simulations using CH4 surface fluxes and fixed mixing ratio BCs are used to examine the validity of this parameterization. The latest version of the Community Earth System Model (CESM), with the CAM5 atmospheric model, was used for this study. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions. Results show a 31.4 ppb change in CH4 concentration when estimated using the parameterization and a 1.4 feedback factor, and a 28.9 ppb change when the concentration was directly calculated in the CH4 flux simulations. The model calculated value for CH4 feedback on its own lifetime agrees well with the 1.4 feedback factor. Systematic comparisons between the separate runs indicated that the parameterization technique overestimates the CH4 concentration by 8.6%. Therefore, it is concluded that the estimation technique is good to within ∼10% and decreases the computational requirements in our simulations by nearly a factor of 8.
Optical and Electronic NOx Sensors for Applications in Mechatronics
Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario
2009-01-01
Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315
Basuroy, Shyamali; Tcheranova, Dilyara; Bhattacharya, Sujoy; Leffler, Charles W.
2011-01-01
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease. PMID:21123734
Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.
Khairy, Heba; Wübbeler, Jan Hendrik; Steinbüchel, Alexander
2015-12-01
Four Rhodococcus spp. exhibited the ability to use 4,4'-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Generation and Reduction of NOx on Air-Fed Ozonizers
NASA Astrophysics Data System (ADS)
Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki
A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.
NASA Astrophysics Data System (ADS)
Pusede, S. E.; Wooldridge, P. J.; Browne, E. C.; Russell, A. R.; Rollins, A.; Min, K.; Thomas, J.; Zhang, L.; Brune, W. H.; Henry, S. B.; DiGangi, J. P.; Keutsch, F. N.; Sanders, J. E.; Ren, X.; Weber, R.; Goldstein, A. H.; Cohen, R. C.
2011-12-01
We investigate the impact of NOx reductions on ozone production in the Southern San Joaquin Valley using a large suite of radical and trace gas measurements collected during CalNex-2010 in Bakersfield, California (May 15-June 28) combined with the historical record of O3, nitrogen oxides and temperature from CARB monitoring sites in the region. We calculate the instantaneous ozone production rate (PO3) by radical balance and investigate relationships between PO3 and NOx abundance; finding temperature to be a useful proxy for VOC reactivity. We show Bakersfield photochemistry is at peak PO3 and therefore at a minimum with respect to the effectiveness of NOx controls indicating: (1) more than 30% reductions from present day are required before sizable decreases in ozone will occur and (2) reduction from the lower weekend baseline NOx concentrations will result in weekend PO3 decreases with continued NOx controls at high temperatures when VOC reactivity is largest.
Lightning and Other Influences On Tropical Tropospheric Ozone: Empirical Studies of Covariation
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Guan, Hong; Hudson, Robert D.; Witte, Jacquelyne C.
2003-01-01
Tropical and subtropical tropospheric ozone are important radiatively active species, with particularly large effects in the upper third of the troposphere. Temporal variability of O3 has proved difficult to simulate day by day in process models. Thus, individual roles of lightning, biomass burning, and other pollution in providing precursor NO(x), radicals, and chain carriers (CO, hydrocarbons) remain unquantified by simulation, and it is theoretically reasonable that individual roles are magnified by a joint synergy. We use wavelet analysis and Burg-algorithm maximum entropy spectral analyses to describe time-scales and correlation of ozone with proxies for processes controlling its concentration. Our empirical studies link time variations apparent in several datasets: the SHADOZ (Southern Hemisphere Additional Ozonesondes) network stations (Nairobi, Fiji), and auxiliary series with power to explain ozone-determining processes, with some interpretation based on the TTO (Tropical Tropospheric Ozone) product derived from TOMS (the Total Ozone Mapping Spectrometer). The auxiliary series are The OTD/LIS(Optical Transient Detector/Lightning Imaging Sensor) measurements of the lightning NO(x) source, the OLR (Outgoing Longwave Radiation)measurement of high-topped clouds, and standard meteorological variables from the United States NCEP (National Centers for Environmental Prediction) and Data Assimilation Office analyses. Concentrating on equatorial ozone, we compare the statistical evidence on the variability of tropospheric ozone. Important variations occur on approximately two-week, two-month (Madden-Julian Oscillation) and annual scales, and relations with OLR suggest controls associated with continental clouds. Hence we are now using the Lightning Imaging Sensor data set to indicate NO(x) sources. We report initial results defining relative roles of the process mentioned affecting O3 using their covariance properties.
Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.
NASA Astrophysics Data System (ADS)
Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.
2007-12-01
Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Standard missing data procedures for... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, Hg, and flow rate. (a) Following initial...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...
Identification of the NADPH Oxidase 4 Inhibiting Principle of Lycopus europaeus.
Revoltella, Silvia; Baraldo, Giorgia; Waltenberger, Birgit; Schwaiger, Stefan; Kofler, Philipp; Moesslacher, Julia; Huber-Seidel, Astrid; Pagitz, Konrad; Kohl, Roland; Jansen-Duerr, Pidder; Stuppner, Hermann
2018-03-14
NADPH oxidase 4 (Nox4) has recently been implicated as driving force in cellular senescence. Thus, there is growing interest to develop Nox4 inhibitors, which might be valuable agents for cosmeceutical applications. Alpine plants represent a valuable source for the identification of novel bioactive natural products with anti-ageing effects, especially substances that protect plants against UV radiation, which is also known to contribute to the ageing of human skin. Therefore, the aim of this study was to identify novel Nox4 inhibitors from alpine plants. Within an initial screening of extracts of alpine plants on their ability to inhibit Nox4 activity in HEK cells, the methanolic extract of the subaerial parts of Lycopus europaeus showed a strong inhibition of Nox4 (81% chemiluminescence quenching) and a simultaneously high cell viability (91% vitality). Rosmarinic acid was isolated and identified as the major compound in this bioactive extract. It showed a dose dependent inhibitory activity on Nox4 with an IC 50 of 1 µM. Moreover, it also showed a significant inhibitory activity on Nox2 in the low micromolar range, whereas no inhibition of Nox5 was detected. Further investigations confirmed that the observed effects of rosmarinic acid on Nox2 and Nox4 are real inhibitory activities, and not due to ROS scavenging effects. Therefore, L. europaeus , which we demonstrated to be a good source of rosmarinic acid, has great potential for usage in cosmeceutical products with anti-ageing activity.
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1981-01-01
An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.
Modelling Nitrogen Oxides in Los Angeles Using a Hybrid Dispersion/Land Use Regression Model
NASA Astrophysics Data System (ADS)
Wilton, Darren C.
The goal of this dissertation is to develop models capable of predicting long term annual average NOx concentrations in urban areas. Predictions from simple meteorological dispersion models and seasonal proxies for NO2 oxidation were included as covariates in a land use regression (LUR) model for NOx in Los Angeles, CA. The NO x measurements were obtained from a comprehensive measurement campaign that is part of the Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air). Simple land use regression models were initially developed using a suite of GIS-derived land use variables developed from various buffer sizes (R²=0.15). Caline3, a simple steady-state Gaussian line source model, was initially incorporated into the land-use regression framework. The addition of this spatio-temporally varying Caline3 covariate improved the simple LUR model predictions. The extent of improvement was much more pronounced for models based solely on the summer measurements (simple LUR: R²=0.45; Caline3/LUR: R²=0.70), than it was for models based on all seasons (R²=0.20). We then used a Lagrangian dispersion model to convert static land use covariates for population density, commercial/industrial area into spatially and temporally varying covariates. The inclusion of these covariates resulted in significant improvement in model prediction (R²=0.57). In addition to the dispersion model covariates described above, a two-week average value of daily peak-hour ozone was included as a surrogate of the oxidation of NO2 during the different sampling periods. This additional covariate further improved overall model performance for all models. The best model by 10-fold cross validation (R²=0.73) contained the Caline3 prediction, a static covariate for length of A3 roads within 50 meters, the Calpuff-adjusted covariates derived from both population density and industrial/commercial land area, and the ozone covariate. This model was tested against annual average NOx concentrations from an independent data set from the EPA's Air Quality System (AQS) and MESA Air fixed site monitors, and performed very well (R²=0.82).
NASA Astrophysics Data System (ADS)
Tian, Hezhong; Qiu, Peipei; Cheng, Ke; Gao, Jiajia; Lu, Long; Liu, Kaiyun; Liu, Xingang
2013-04-01
In order to investigate the future trends of SO2 and NOx pollution in Guiyang city of China, the MM5/CALMET/CALPUFF modeling system is applied to assess the effects of air pollution improvement that would result from reduction targets for SO2 and NOx emissions during the 12th Five-Year Plan (2011-2015). Three scenarios are established for the objective year 2015 based on the reference emissions in base year 2010. Scenario analysis and modeling results show that emissions are projected to increase by 26.5% for SO2 and 138.0% for NOx in 2015 Business-As-Usual (BAU) relative to base year 2010, respectively, which will lead to a substantial worsening tendency of SO2 and NOx pollution. In comparison, both the 2015 Policy Reduction (PR) and 2015 Intensive Policy Reduction (IPR) scenarios would contribute to improve the urban air quality. Under 2015 PR scenario, the maximum annual average concentration of SO2 and NOx will reduce by 54.9% and 31.7%, respectively, relative to the year 2010, with only 2.1% of all individual gridded receptors exceed the national air quality standard limits; while the maximum annual average concentrations of SO2 and NOx can reduce further under 2015 IPR scenario and comply well with standards limits. In view of the technical feasibility and cost-effectiveness, the emission reduction targets set in the 2015 PR scenario are regarded as more reasonable in order to further improve the air quality in Guiyang during the 12th FYP period and a series of comprehensive countermeasures should be effectively implemented.
NOx Emissions from a Rotating Detonation-wave Engine
NASA Astrophysics Data System (ADS)
Kailasanath, Kazhikathra; Schwer, Douglas
2016-11-01
Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.
Elliott, E.M.; Kendall, C.; Wankel, Scott D.; Burns, Douglas A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J.
2007-01-01
Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (??15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in ??15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that ??15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO 42-, or NO3- concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO 3- deposition at sites in this study is strongly associated with NOx emissions from stationary sources. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in ??15N values are a robust indicator of stationary NOx contributions to wet NO3- deposition and hence a valuable complement to existing tools for assessing relationships between NO 3- deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. ?? 2007 American Chemical Society.
NASA Astrophysics Data System (ADS)
El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.
2018-01-01
Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.
Wang, Qingshan; Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun; Hong, Jau-Shyong
2014-09-10
Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. Copyright © 2014 the authors 0270-6474/14/3412490-14$15.00/0.
Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identif...
40 CFR 75.10 - General operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part, a flow monitoring system and a CO2 continuous emission monitoring system that uses an O2...) Primary Measurement Requirement. The owner or operator shall measure opacity, and all SO2, NOX, and CO2... continuous emission monitoring system (consisting of a NOX pollutant concentration monitor and an O2 or CO2...
40 CFR 75.10 - General operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... part, a flow monitoring system and a CO2 continuous emission monitoring system that uses an O2...) Primary Measurement Requirement. The owner or operator shall measure opacity, and all SO2, NOX, and CO2... continuous emission monitoring system (consisting of a NOX pollutant concentration monitor and an O2 or CO2...
40 CFR Table 2 to Subpart Jjjj of... - Requirements for Performance Tests
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements 1. Stationary SI internal combustion engine demonstrating compliance according to § 60.4244. a. limit the concentration of NOX in the stationary SI internal combustion engine exhaust. i. Select the...) Alternatively, for NOX, O2, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single...
40 CFR 89.317 - NOX converter check.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Figure 2 in appendix B of this subpart is a reference for the following paragraphs. (b) Follow good... most common operating range. (e) Introduce into the NOX generator analyzer-system an NO-in-nitrogen (N2) mixture with an NO concentration equal to approximately 80 percent of the most common operating range. The...
40 CFR 89.317 - NOX converter check.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Figure 2 in appendix B of this subpart is a reference for the following paragraphs. (b) Follow good... most common operating range. (e) Introduce into the NOX generator analyzer-system an NO-in-nitrogen (N2) mixture with an NO concentration equal to approximately 80 percent of the most common operating range. The...
40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...
40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...
40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Monitoring and Reporting § 96.76 Additional requirements... to monitor and report NOX Mass emissions using a NOX concentration system and a flow system shall... chapter for any source located in a state developing source allocations based upon heat input. (b) The...
Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan
2016-01-01
A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930
Optical and Electronic NO(x) Sensors for Applications in Mechatronics.
Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A; Wolter, Scott D; Brown, April; Ricco, Mario
2009-01-01
Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.
Gas measurements on Western Pacific in Mirai MR01-K02 cruise
NASA Astrophysics Data System (ADS)
KATO, S.; Matsumoto, J.; Kajii, Y.
2001-12-01
The Japanese investigation ship, Mirai, cruised in the Western Pacific in May 2001. The cruise is a part of ACE-ASIA project. During the cruise, we measured atmospheric gas components on the ship. CO, O3, NO, NOx, SO2 were measured continuously by commercial instruments, and 40 canisters were sampled for hydrocarbon measurements and were analyzed by GC-FID and GC-MS in the laboratory in Tokyo. Since the shipped area is located in the east of Japan main island, most of the air masses would be affected by the pollutants emitted in Japan. In May, the wind is mostly coming from the west, and long range transport of polluted air and aerosol would be observed. After leaving the port near Tokyo, the concentrations of CO, O3, SO2, NO and NOx decreased gradually as expected. NO and NOx are sensitive to the influence of the exhaust emitted from the ship itself. SO2 is also sensitive to the exhaust from the ship, but there are some small, and broad peaks which are not corresponding to the NO and NOx peaks. The concentration of O3 and hydrocarbons decreased drastically after the front passage. Westerly wind polluted in Japan was dominant in most case, but the clean maritime air came from east or south when low pressure passed. The backward trajectories explain the concentration changes of hydrocarbons well. When the air came quickly from Japan, high concentrations were observed. There are good correlation between O3 and hydrocarbons.
Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks
NASA Astrophysics Data System (ADS)
Millstein, D.; Harley, R. A.
2009-12-01
Diesel exhaust is now the largest source of nitrogen oxide (NOx) emissions nationally in the US, and contributes significantly to emissions of fine particulate black carbon (soot) as well. New national standards call for dramatically lower emissions of exhaust particulate matter (PM) and NOx from new diesel engines starting in 2007 and 2010, respectively. Unfortunately it will take decades for the cleaner new engines to replace those currently in service on existing heavy-duty trucks. The state of California recently adopted a rule to accelerate fleet turnover in the heavy-duty truck sector, requiring that all in-use trucks meet the new exhaust PM standards by 2014. This will entail retrofit of diesel particle filters or replacement for over a million existing diesel engines. Diesel particle filters can replace the muffler on existing trucks, and there is extensive experience with retrofit of this control equipment on public sector fleets such as diesel-powered transit buses. Nitrogen dioxide (NO2) is used as an oxidizing agent to remove carbon particles from the particle filter, to prevent it from becoming plugged. To create the needed NO2, NOx already present in engine exhaust as nitric oxide (NO) is deliberately oxidized to NO2 upstream of the particle filter using a platinum catalyst. The NO2/NOx ratio in exhaust emissions therefore increases to ~35% in comparison to much lower values (~5%) typical of older engines without particle filters. We evaluate the effects on air quality of increased use of diesel particle traps and NOx controls in southern California using the Community Multiscale Air Quality (CMAQ) model. Compared to a reference scenario without the retrofit program, we found black carbon concentrations decreased by ~20%, with small increases (4%) in ambient ozone concentrations. During summer, average NO2 concentrations decrease despite the increase in primary NO2 emissions - because total NOx emissions are reduced as part of a parallel but more gradual program to retrofit NOx control systems on in-use engines. During winter, NO2 concentrations increase by 1-2% at locations with high diesel truck traffic, and larger increases may occur if diesel trucks outfitted with particle traps do not meet the in-use NOx emission reduction requirements. Small changes to fine particulate nitrate are seen as well with increases over the Los Angeles area of 3 and 6% during the summer and fall, respectively. During the summer, but not the fall, downwind nitrate decreased by 2% east of Los Angeles near Riverside. Emissions reductions due to fleet turnover in the reference scenario (without retrofit) may be optimistic, and the air quality benefits of retrofits could therefore be understated, due to slow sales of new engines in recent years. In any case, significant changes in diesel engine emissions of NOx and PM are expected to occur over the next 5 years in California.
NASA Astrophysics Data System (ADS)
Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.
2017-12-01
Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas-fired boilers in Beijing.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.
2013-12-01
The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the basin. The model is then used diagnostically to assess first-order sensitivities of basin-wide ozone to NOx or VOC emissions, and how they depend on the environmental differences between the winters of 2012 and 2013.
Dispersion and photochemical evolution of reactive pollutants in street canyons
NASA Astrophysics Data System (ADS)
Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon
2013-05-01
Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.
Inverse Modeling of Texas NOx Emissions Using Space-Based and Ground-Based NO2 Observations
NASA Technical Reports Server (NTRS)
Tang, Wei; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.
2013-01-01
Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellitebased top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.
Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations
NASA Astrophysics Data System (ADS)
Tang, W.; Cohan, D. S.; Lamsal, L. N.; Xiao, X.; Zhou, W.
2013-11-01
Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite-observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with decoupled direct method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2-based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.
Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations
NASA Astrophysics Data System (ADS)
Tang, W.; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.
2013-07-01
Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.
NASA Astrophysics Data System (ADS)
Kimbrough, Sue; Chris Owen, R.; Snyder, Michelle; Richmond-Bryant, Jennifer
2017-09-01
The nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratio is an important surrogate for NO to NO2 chemistry in dispersion models when estimating NOX impacts in a near-road environment. Existing dispersion models use different techniques and assumptions to represent NO to NO2 conversion and do not fully characterize all of the important atmospheric chemical and mechanical processes. Thus, ;real-world; ambient measurements must be analyzed to assess the behavior of NO2/NOX ratios near roadways. An examination of NO2/NOX ratio data from a field study conducted in Las Vegas, Nevada (NV), from mid-December, 2008 through mid-December, 2009 provides insights into the appropriateness of assumptions about the NO2/NOX ratio included in dispersion models. Data analysis indicates multiple factors affect the downwind NO2/NOX ratio. These include spatial gradient, background ozone (O3), source emissions of NO and NO2, and background NO2/NOX ratio. Analysis of the NO2/NOX ratio spatial gradient indicates that under high O3 conditions, the change in the ratio is fairly constant once a certain O3 threshold (≥30 ppb) is reached. However, under low O3 conditions (<30 ppb), there are differences between weekdays and weekends, most likely due to a decline in O3 concentrations during the weekday morning hours, reducing the O3 available to titrate the emitted NO, allowing lower NO2/NOX ratios. These results suggest that under high O3 conditions, NOX chemistry is driving the NO2/NOX ratios whereas under low O3 conditions, atmospheric mixing is the driving factor.
Modelling NOx emissions of single droplet combustion
NASA Astrophysics Data System (ADS)
Moesl, Klaus G.; Schwing, Joachim E.; Sattelmayer, Thomas
2012-02-01
An approach for modelling and simulation of the generation of nitrogen oxide (NOx) in the gas phase surrounding single burning droplets is presented. Assuming spherical symmetry (no gravity, no forced convection), the governing equations are derived first. Then simplifications are introduced and it is proven that they are appropriate. The influences of the initial droplet diameter, the ambient conditions, and the droplet pre-vapourisation on NOx are investigated. The fuel of choice is n-decane (C10H22) as it resembles kerosene and diesel fuel best, and the complexity of the reaction mechanism is manageable. Combinations of C10H22 mechanisms and well-established NOx kinetics are evaluated in detail and validated for their applicability in the context of this work. The conducted simulations of droplet combustion in an atmosphere of hot exhaust gas show that NOx formation (by mass of fuel) increases linearly with the droplet diameter. There is a trade-off between available oxygen and ambient temperature. Increasing the equivalence ratio of the exhaust gas leads to higher NOx emissions in the very lean regime, but to lower emissions if the equivalence ratio exceeds 0.85. Pre-vapourisation of fuel at ambient conditions becomes beneficial with respect to NOx emissions only if the degree of vapourisation is above a minimum limit. If less fuel is vapourised before ignition, the NOx emissions remain almost unaffected.
NASA Astrophysics Data System (ADS)
Sánchez Jiménez, Araceli; Heal, Mathew R.; Beverland, Iain J.
2012-07-01
Particle number concentration (PNC) and transition metal content are implicated in the health effects of airborne particulate matter (PM) but they are difficult to measure so consequently their temporal and spatial variations are not well characterized. Daily concentrations of PNC and particle-bound water-soluble metals (V, Cr, Mn, Fe, Ni, Cu, As, Cd and Pb) were measured at background and kerbside sites in Glasgow and London to examine if other metrics of air pollution such as optical darkness (absorbance) of collected filter samples of PM, gravimetric PM, and NO, NO2 and CO gas concentrations, can be used as surrogates for the temporal and spatial variations of the former. NO2 and NOx exhibited a high degree of within-site correlation and with PNC and water-soluble metals (Fe, Cu, As, Cd, Pb) at background sites in both cities. There is therefore potential to use NO2 and NOx as surrogates for PNC and water-soluble metal at background sites. However, correlation was weaker in complex street canyon environments where pollutant concentrations are strongly affected by local sources and the small-scale variations in pollutant dispersion induced by the wind regimes within street canyons. The corollary of the high correlation between NO2 and PNC and water-soluble metals at the background sites is that the latter pollutants may act as confounders for health effects attributed to NO2 from such sites. Concentrations of CO cannot be used as a surrogate for PNC. Increments in daily NOx and NO2 concentrations between trafficked and background sites were shown to be a simple and novel surrogate for daily spatial variation of PNC; for example, increments in NOx explained 78-79% of the variance in PNC at the paired sites in both Glasgow and London, but relationships were city specific. The increments in NOx also explained 70% of the spatial variation in Cu and Ni in Glasgow but not in London. Weekly NO2 measurements derived from passive diffusion tubes were also shown to correlate well with increments in PNC. A high temporal correlation between PNC and 1,3-butadiene and benzene (which can also be measured by passive sampler) implies that passive sampler measurements may be a straightforward tool for deriving long-term spatial patterns in PNC.
NASA Astrophysics Data System (ADS)
Jambert, Corinne; Pacifico, Federica; Delon, Claire; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Derrien, Solene; Dione, Cheikh; Brosse, Fabien; Gabella, Omar; Pedruzzo Bagazgoitia, Xavier; Durand, Pierre
2017-04-01
Tropospheric oxidation of VOCs (Volatile Organic Compounds), including isoprene, in the presence of NOx and sunlight leads to the formation of O3 and Secondary Organic Aerosols (SOA). Changes in NO or VOCs sources will consequently modify their atmospheric concentrations and thus, the rate of O3 production and SOA formation. NOx have also an impact on the abundance of the hydroxyl radical (OH) which determines the lifetime of some pollutants and greenhouse gases. Anthropogenic emissions of pollutants from mega cities located on the Guinean coast in South West Africa are likely to increase in the next decades due to a strong anthropogenic pressure and to land use changes at the regional or continental scale. The consequences on regional air quality and on pollutant deposition onto surfaces may have some harmful effects on human and ecosystem health. Furthermore, the regional climate and water cycle are affected by changes in atmospheric chemistry. When transported northward on the African continent, polluted air masses meet biogenic emissions from rural areas which contributes to increase ozone and SOA production, in high temperature and solar radiation conditions, highly favourable to enhanced photochemistry. During the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) field campaign, we measured the atmospheric chemical composition and the exchanges of trace components in a hinterland area of Benin, at the Savé super-site (8°02'03" N, 2°29'11″ E). The observations, monitored in June and July 2016, in a rural mixed agricultural area, include near surface concentrations of ozone (O3), carbon monoxide (CO), nitrogen oxides (NOx) and isoprene, isoprene fluxes and meteorological parameters. We observed hourly average concentrations of O3 up to 50 ppb, low NOx concentrations (ca. 1 ppb and CO concentrations between 75 and 300 ppb. An 8 m tower was equipped with a Fast Isoprene Sensor and sonic anemometer to measure isoprene concentrations and determine isoprene fluxes with eddy-covariance technique over a mixed (patched maize, manioc and anacardium) agricultural plot. We discuss the influence of meteorological conditions on biogenic emissions (i.e. isoprene fluxes) and on ambient atmospheric chemistry (i.e. isoprene, NOx, O3 and CO concentrations observed on the site). We also studied the impact of remote anthropogenic emissions from cities on the Guinean southern coast on local chemistry.
Observations of interference between portable particle counters and NOx monitors
NASA Astrophysics Data System (ADS)
Bereznicki, Sarah D.; Kamal, Ali
2013-08-01
Studies in environmental exposure science have developed a preference for smaller devices that can be easily co-located without need for gas standards, such as those instruments utilized in the Near-road Exposures and Effects from Urban Air Pollutants Study (NEXUS). One observation from NEXUS was the potential for instrument interference from alcohol-based particle counters on photometric-based nitrogen oxide (NOx) monitors. This article reports the findings from laboratory tests replicating enclosed-shelter monitoring configurations and operation cycles for a common photometric-based NOx monitor and a widely used alcohol-based particle counter. These tests monitored the NOx response while the particle counter sampling interval and ambient airflow rate were varied to (1) confirm that proximity between the instruments induced interferences, (2) identify any dependencies in NOx monitor recovery on ambient airflow, and (3) determine the time needed for the NOx monitor to recover to pre-interference levels under different atmospheric conditions. During particle counter operations, NOx concentrations responded instantaneously with a several-fold jump above the measurement baseline. When the particle counter was operated for more than 10 min, this interference period also showed a marked decline in the NOx baseline. The overall recovery time of the NOx monitor depended less on the time of particle counter operation, and more on the speed of ambient airflow. If photometric-based NOx monitors need to be operated alongside alcohol-based particle counters, mechanisms must be employed to exhaust alcohol-based vapors from enclosed monitoring environments. Given the strong evidence for interference, however, it is recommended these devices not be operated within close proximity to one another.
NASA Astrophysics Data System (ADS)
Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.
2011-02-01
Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30% decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.
Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigel Clark; Gregory Thompson; Richard Atkinson
Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine.more » Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber suitable for a given engine. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passes over fresh sorbent material. This aspect of the research will continue into 2006, and the benefits and challenges of SNR will be compared with those of competing systems, such as Selective Catalytic Reduction. Chemical kinetic modeling using the CHEMKIN software package was extended in 2005 to the case of slightly rich burn with EGR. Simulations were performed at 10%, 20%, 30% and 40% of the intake air replaced with EGR. NOx decomposition efficiency was calculated at the point in time where 98% of fuel was consumed, which is believed to be a conservative approach. The modeling data show that reductions of over 70% are possible using the ''98% fuel burned'' assumption.« less
Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS
2001-01-01
At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.
40 CFR 60.45 - Emissions and fuel monitoring.
Code of Federal Regulations, 2014 CFR
2014-07-01
... oil) with potential SO2 emissions rates of 26 ng/J (0.060 lb/MMBtu) or less and that does not use post... of a CEMS for NOX may be delayed until after the initial performance tests under § 60.8 have been conducted. If the owner or operator demonstrates during the performance test that emissions of NOX are less...
40 CFR 60.45 - Emissions and fuel monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... oil) with potential SO2 emissions rates of 26 ng/J (0.060 lb/MMBtu) or less and that does not use post... of a CEMS for NOX may be delayed until after the initial performance tests under § 60.8 have been conducted. If the owner or operator demonstrates during the performance test that emissions of NOX are less...
40 CFR 60.45 - Emissions and fuel monitoring.
Code of Federal Regulations, 2012 CFR
2012-07-01
... oil) with potential SO2 emissions rates of 26 ng/J (0.060 lb/MMBtu) or less and that does not use post... of a CEMS for NOX may be delayed until after the initial performance tests under § 60.8 have been conducted. If the owner or operator demonstrates during the performance test that emissions of NOX are less...
40 CFR 96.283 - Applying for CAIR opt-in permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Opt-in Units § 96.283 Applying for CAIR opt-in permit. (a) Applying for initial CAIR opt-in permit. The CAIR designated representative of a unit meeting the requirements for a CAIR SO2 opt-in unit...
NASA Astrophysics Data System (ADS)
Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.
2017-12-01
Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant transport in the basin, temperature induced changes in photochemistry and aerosol phase partitioning, and changes to secondary organic aerosol.
Ultrafine particles and nitrogen oxides generated by gas and electric cooking
Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A
2001-01-01
OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable. Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045
NASA Astrophysics Data System (ADS)
Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin
2016-04-01
Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and the building geometries around an intersection for better air quality in a high-rise building area.
Reynolds, Steven D; Blanchard, Charles L; Ziman, Stephen D
2004-11-01
Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46-86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.
The role of isoprene oxidation in the tropospheric ozone budget in the tropics
NASA Technical Reports Server (NTRS)
Brewer, D. A.; Levine, J. S.
1985-01-01
A comprehensive chemical mechanism for the oxidation of isoprene (a hydrocarbon, C5H8 emitted primarily by vegetation) by OH and O3 in the troposphere was developed and incorporated into a one-dimensional steady-state photochemical model of the troposphere. Flux boundary conditions for NOx (NO + NO2), HNO3, O3, and CO were used to investigate the changes produced in the tropospheric concentrations and integrated column of ozone from including isoprene chemistry in the model. Two calculations were performed at 15 deg N latitude for annual conditions using identical flux boundary conditions for NOx, HNO3, O3, and CO; in one calculation, the chemistry describing isoprene oxidation was included while in the other it was not. Both sets of calculations included reactions describing the chemistry of anthropogenic nonmethane hydrocarbons. The calculations showed decreases in concentrations of ozone throughout the troposphere when isoprene chemistry was included. Concentrations of NOx and HNO3 increased in the lower troposphere and decreased in the upper troposphere while concentrations of CO and PAN increased throughout the troposphere when isoprene chemistry was included. Implications of this study to the budgets of these species in the tropics is discussed.
Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.
2014-12-01
Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
Sustained Low Temperature NOx Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Yuhui
Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oCmore » range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.« less
Zhao, Yun-Long; Zhou, Ting-Ting; Guo, Hui-Shan
2016-07-01
Verticillium dahliae is a phytopathogenic fungus obligate in root infection. A few hyphopodia differentiate from large numbers of hyphae after conidia germination on the root surface for further infection. However, the molecular features and role of hyphopodia in the pathogenicity of V. dahliae remain elusive. In this study, we found that the VdPls1, a tetraspanin, and the VdNoxB, a catalytic subunit of membrane-bound NADPH oxidases for reactive oxygen species (ROS) production, were specifically expressed in hyphopodia. VdPls1 and VdNoxB highly co-localize with the plasma membrane at the base of hyphopodia, where ROS and penetration pegs are generated. Mutant strains, VdΔnoxb and VdΔpls1, in which VdPls1 and VdNoxB were deleted, respectively, developed defective hyphpodia incapable of producing ROS and penetration pegs. Defective plasma membrane localization of VdNoxB in VdΔpls1 demonstrates that VdPls1 functions as an adaptor protein for the recruitment and activation of the VdNoxB. Furthermore, in VdΔnoxb and VdΔpls1, tip-high Ca2+ accumulation was impaired in hyphopodia, but not in vegetative hyphal tips. Moreover, nuclear targeting of VdCrz1 and activation of calcineurin-Crz1 signaling upon hyphopodium induction in wild-type V. dahliae was impaired in both knockout mutants, indicating that VdPls1/VdNoxB-dependent ROS was specifically required for tip-high Ca2+ elevation in hyphopodia to activate the transcription factor VdCrz1 in the regulation of penetration peg formation. Together with the loss of virulence of VdΔnoxb and VdΔpls1, which are unable to initiate colonization in cotton plants, our data demonstrate that VdNoxB/VdPls1-mediated ROS production activates VdCrz1 signaling through Ca2+ elevation in hyphopodia, infectious structures of V. dahliae, to regulate penetration peg formation during the initial colonization of cotton roots.
Traffic Related Air Quality Trends in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Perez-Martinez, P.; Andrade, M. D. F.
2014-12-01
An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines at the end (2008-2013).
Mechanisms and modeling of the effects of additives on the nitrogen oxides emission
NASA Technical Reports Server (NTRS)
Kundu, Krishna P.; Nguyen, Hung Lee; Kang, M. Paul
1991-01-01
A theoretical study on the emission of the oxides of nitrogen in the combustion of hydrocarbons is presented. The current understanding of the mechanisms and the rate parameters for gas phase reactions were used to calculate the NO(x) emission. The possible effects of different chemical species on thermal NO(x), on a long time scale were discussed. The mixing of these additives at various stages of combustion were considered and NO(x) concentrations were calculated; effects of temperatures were also considered. The chemicals such as hydrocarbons, H2, CH3OH, NH3, and other nitrogen species were chosen as additives in this discussion. Results of these calculations can be used to evaluate the effects of these additives on the NO(x) emission in the industrial combustion system.
Speed correlation and emission of truck vehicles on dynamic conditions
NASA Astrophysics Data System (ADS)
Lutfie, M.; Samang, L.; Adisasmita, S. A.; Ramli, M. I.
2018-04-01
Concentration of CO2, NOx, smoke, CO, and HC released from several truck vehicles taken emission and speed data every 5 second through measurements using the mobile emission analyzer as an emission test vehicle that absorbs the gas from exhaust of sample vehicles. Implementation in field is to put emission test equipment on the right side of truck, which will absorb 5 gas compounds for 5 - 20 minutes with a view to knowing truck emissions of moving conditions by considering load factors. The sample vehicles are diesel-fueled trucks. From the research on gas emissions, it is generally found that the tendency that arises is the faster the vehicle speed then the CO2, NOx, Smoke, CO, and HC gases released will be greater or will increase as the vehicle speed increases. Thus, the relationship of CO2, NOx, smoke, CO, and HC concentration with vehicle speed is a linear relationship.
Juhasz, Agnes; Markel, Susan; Gaur, Shikha; Liu, Han; Lu, Jiamo; Jiang, Guojian; Wu, Xiwei; Antony, Smitha; Wu, Yongzhong; Melillo, Giovanni; Meitzler, Jennifer L.; Haines, Diana C.; Butcher, Donna; Roy, Krishnendu; Doroshow, James H.
2017-01-01
Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2˙̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80–90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2–3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease. PMID:28330872
Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.
Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong
2013-10-01
Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.
Korek, Michal; Johansson, Christer; Svensson, Nina; Lind, Tomas; Beelen, Rob; Hoek, Gerard; Pershagen, Göran; Bellander, Tom
2017-01-01
Both dispersion modeling (DM) and land-use regression modeling (LUR) are often used for assessment of long-term air pollution exposure in epidemiological studies, but seldom in combination. We developed a hybrid DM–LUR model using 93 biweekly observations of NOx at 31 sites in greater Stockholm (Sweden). The DM was based on spatially resolved topographic, physiographic and emission data, and hourly meteorological data from a diagnostic wind model. Other data were from land use, meteorology and routine monitoring of NOx. We built a linear regression model for NOx, using a stepwise forward selection of covariates. The resulting model predicted observed NOx (R2=0.89) better than the DM without covariates (R2=0.68, P-interaction <0.001) and with minimal apparent bias. The model included (in descending order of importance) DM, traffic intensity on the nearest street, population (number of inhabitants) within 100 m radius, global radiation (direct sunlight plus diffuse or scattered light) and urban contribution to NOx levels (routine urban NOx, less routine rural NOx). Our results indicate that there is a potential for improving estimates of air pollutant concentrations based on DM, by incorporating further spatial characteristics of the immediate surroundings, possibly accounting for imperfections in the emission data. PMID:27485990
Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers
NASA Astrophysics Data System (ADS)
Phillippi, Ben
As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.
40 CFR 60.74 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... production rate, metric ton/hr (ton/hr) or 100 percent nitric acid. K=conversion factor, 1000 g/kg (1.0 lb/lb...=emission rate of NOX as NO2, kg/metric ton (lb/ton) of 100 percent nitric acid. Cs = concentration of NOX... over the production system shall be used to confirm the production rate. (c) The owner or operator may...
40 CFR 60.74 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... rate, metric ton/hr (ton/hr) or 100 percent nitric acid. K=conversion factor, 1000 g/kg (1.0 lb/lb). (2...=emission rate of NOX as NO2, kg/metric ton (lb/ton) of 100 percent nitric acid. Cs=concentration of NOX as... system shall be used to confirm the production rate. (c) The owner or operator may use the following as...
40 CFR 60.74 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... rate, metric ton/hr (ton/hr) or 100 percent nitric acid. K=conversion factor, 1000 g/kg (1.0 lb/lb). (2...=emission rate of NOX as NO2, kg/metric ton (lb/ton) of 100 percent nitric acid. Cs=concentration of NOX as... system shall be used to confirm the production rate. (c) The owner or operator may use the following as...
40 CFR 60.74 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... rate, metric ton/hr (ton/hr) or 100 percent nitric acid. K=conversion factor, 1000 g/kg (1.0 lb/lb). (2...=emission rate of NOX as NO2, kg/metric ton (lb/ton) of 100 percent nitric acid. Cs=concentration of NOX as... system shall be used to confirm the production rate. (c) The owner or operator may use the following as...
Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun
2008-02-11
The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.
NASA Astrophysics Data System (ADS)
Wang, Tianyang; Jerrett, Michael; Sinsheimer, Peter; Zhu, Yifang
2016-11-01
The Volkswagen Group of America (VW) was found by the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) to have installed "defeat devices" and emit more oxides of nitrogen (NOx) than permitted under current EPA standards. In this paper, we quantify the hidden NOx emissions from this so-called VW scandal and the resulting public health impacts in California. The NOx emissions are calculated based on VW road test data and the CARB Emission Factors (EMFAC) model. Cumulative hidden NOx emissions from 2009 to 2015 were estimated to be over 3500 tons. Adult mortality changes were estimated based on ambient fine particulate matter (PM2.5) change due to secondary nitrate formation and the related concentration-response functions. We estimated that hidden NOx emissions from 2009 to 2015 have resulted in a total of 12 PM2.5-associated adult mortality increases in California. Most of the mortality increase happened in metropolitan areas, due to their high population and vehicle density.
NOx profile around a signalized intersection of busy roadway
NASA Astrophysics Data System (ADS)
Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam
2014-11-01
The NOx pollution profile around a signalized intersection of a busy roadway was investigated to understand the effect of traffic control on urban air pollution. Traffic flow patterns were classified into three categories of quasi-cruising, a combination of deceleration and acceleration, and a combination of deceleration, idling, and acceleration. The spatial distribution of air pollution levels around an intersection could be represented as a quasi-normal distribution, whose peak height was aggravated by increased emissions due to transient driving patterns. The peak concentration of NOx around the signalized intersection for the deceleration, idling, and acceleration category was five times higher than that for the quasi-cruising category. Severe levels of NOx pollution tailed off approximately 400 m from the center of the intersection. Approximately 200-1000 ppb of additional NOx was observed when traffic was decelerating, idling, and accelerating within the intersection zone, resulting in high exposure levels for pedestrians around the intersection. We propose a fluctuating horizontal distribution of motor vehicle-induced air pollutants as a function of time.
Ozone response to emission reductions in the southeastern United States
NASA Astrophysics Data System (ADS)
Blanchard, Charles L.; Hidy, George M.
2018-06-01
Ozone (O3) formation in the southeastern US is studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s-2015) surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH) network, U.S. Environmental Protection Agency (EPA) O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET) nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p < 0.0001) linear correlations with annual NOx emissions in those states between 1996 and 2015. The annual fourth-highest daily peak 8 h O3 mixing ratios declined toward values of ˜ 45-50 ppbv and monthly O3 maxima decreased at rates averaging ˜ 1-1.5 ppbv yr-1. Mean annual total oxidized nitrogen (NOy) mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry) nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ˜ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3) concentrations. Observed relationships of O3 to NOz (NOy-NOx) support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and provides important information supporting strategies for reducing O3 mixing ratios.
Siqueira, Erika Rabelo Forte de; Pereira, Luciano Beltrao; Stefano, Jose Tadeu; Patente, Thiago; Cavaleiro, Ana Mercedes; Silva Vasconcelos, Luydson Richardson; Carmo, Rodrigo Feliciano; Moreira Beltrao Pereira, Leila Maria; Carrilho, Flair Jose; Corrêa-Giannella, Maria Lucia; Oliveira, Claudia P
2015-03-28
Given the important contribution of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system to the generation of reactive oxygen species induced by hepatitis C virus (HCV), we investigated two single nucleotide polymorphisms (SNPs) in the putative regulatory region of the genes encoding NADPH oxidase 4 catalytic subunit (NOX4) and its regulatory subunit p22phox (CYBA) and their relation with metabolic and histological variables in patients with HCV. One hundred seventy eight naïve HCV patients (49.3% male; 65% HCV genotype 1) with positive HCV RNA were genotyped using specific primers and fluorescent-labeled probes for SNPs rs3017887 in NOX4 and -675 T → A in CYBA. No association was found between the genotype frequencies of NOX4 and CYBA SNPs and inflammation scores or fibrosis stages in the overall population. The presence of the CA + AA genotypes of the NOX4 SNP was nominally associated with a lower alanine aminotransferase (ALT) concentration in the male population (CA + AA = 72.23 ± 6.34 U/L versus CC = 100.22 ± 9.85; mean ± SEM; P = 0.05). The TT genotype of the CYBA SNP was also nominally associated with a lower ALT concentration in the male population (TT = 84.01 ± 6.77 U/L versus TA + AA = 109.67 ± 18.37 U/L; mean ± SEM; P = 0.047). The minor A-allele of the NOX4 SNP was inversely associated with the frequency of metabolic syndrome (MS) in the male population (odds ratio (OR): 0.15; 95% confidence interval (CI): 0.03 to 0.79; P = 0.025). The results suggest that the evaluated NOX4 and CYBA SNPs are not direct genetic determinants of fibrosis in HCV patients, but nevertheless NOX4 rs3017887 SNP could indirectly influence fibrosis susceptibility due to its inverse association with MS in male patients.
NASA Astrophysics Data System (ADS)
Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.
2011-07-01
Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30 % between 2001 and 2008. Here we use an observation-based method to quantify net ozone (O3) production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions and other temperature-related effects can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-h O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30 % (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30 % decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.
NASA Astrophysics Data System (ADS)
Stirnweis, Lisa; Marcolli, Claudia; Dommen, Josef; Barmet, Peter; Frege, Carla; Platt, Stephen M.; Bruns, Emily A.; Krapf, Manuel; Slowik, Jay G.; Wolf, Robert; Prévôt, Andre S. H.; Baltensperger, Urs; El-Haddad, Imad
2017-04-01
Secondary organic aerosol (SOA) yields from the photo-oxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23-29 %) and high (60-69 %) relative humidity (RH), various NOx / VOC ratios (0.04-3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We used a Monte Carlo approach to parameterize smog chamber SOA yields as a function of the condensed phase absorptive mass, which includes the sum of OA and the corresponding bound liquid water content. High RH increased SOA yields by up to 6 times (1.5-6.4) compared to low RH. The yields at low NOx / VOC ratios were in general higher compared to yields at high NOx / VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as the basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields observed at high RH, when in addition to the α-pinene photo-oxidation products described in the literature, fragmentation products are added to the model mixtures. This increase is driven by both the increase in the absorptive mass and the solution non-ideality described by the compounds' activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with RH. This suggests that other processes, e.g. reactive uptake of semi-volatile species into the liquid phase, may occur and be enhanced at higher RH, especially for compounds formed under high NOx conditions, e.g. carbonyls.
Nitrogen transformations along a shallow subterranean estuary
NASA Astrophysics Data System (ADS)
Couturier, Mathilde; Tommi-Morin, Gwendoline; Sirois, Maude; Rao, Alexandra; Nozais, Christian; Chaillou, Gwénaëlle
2017-07-01
The transformations of chemical constituents in subterranean estuaries (STEs) control the delivery of nutrient loads from coastal aquifers to the ocean. It is important to determine the processes and sources that alter nutrient concentrations at a local scale in order to estimate accurate regional and global nutrient fluxes via submarine groundwater discharge (SGD), particularly in boreal environments, where data are still very scarce. Here, the biogeochemical transformations of nitrogen (N) species were examined within the STE of a boreal microtidal sandy beach located in the Magdalen Islands (Quebec, Canada). This study revealed the vertical and horizontal distribution of nitrate (NO3-), nitrite (NO2-), ammonia (NH4+), dissolved organic nitrogen (DON) and total dissolved nitrogen (TDN) measured in beach groundwater during four spring seasons (June 2011, 2012, 2013 and 2015) when aquifer recharge was maximal after snowmelt. Inland groundwater supplied high concentrations of NOx and DON to the STE, whereas inputs from seawater infiltration were very limited. Non-conservative behaviour was observed along the groundwater flow path, leading to low NOx and high NH4+ concentrations in the discharge zone. The long transit time of groundwater within the beach (˜ 166 days), coupled with oxygen-depleted conditions and high carbon concentrations, created a favourable environment for N transformations such as heterotrophic and autotrophic denitrification and ammonium production. Biogeochemical pathways led to a shift in nitrogen species along the flow path from NOx-rich to NOx-poor groundwater. An estimate of SGD fluxes of N was determined to account for biogeochemical transformations within the STE based on a N-species inventory and Darcy's flow. Fresh inland groundwater delivered 37 mol NOx yr-1 per metre of shoreline and 63 mol DON m-1 yr-1 to the STE, and NH4+ input was negligible. Near the discharge zone, the potential export of N species was estimated around 140, 1.5 and 33 mol yr-1 per metre of shoreline for NH4+, NOx and DON respectively. In contrast to the fresh inland groundwater, the N load of beach groundwater near the discharge zone was dominated by NH4+ and DON. Our study shows the importance of tidal sands in the biogeochemical transformation of the terrestrial N pool. This local export of bioavailable N probably supports benthic production and higher trophic levels leading to its rapid transformation in surface sediments and coastal waters.
Intake fraction of PM2.5 and NOX from vehicle emissions in Beijing based on personal exposure data
NASA Astrophysics Data System (ADS)
Du, Xuan; Wu, Ye; Fu, Lixin; Wang, Shuxiao; Zhang, Shaojun; Hao, Jiming
2012-09-01
The intake fraction (iF) is the portion of attributable population intake of a source emissions, and is used to link pollutant emissions and population exposure. This study is the first work that reported individual intake fraction of PM2.5 and NOX from vehicle emissions based on personal exposure data in China. We employed PM2.5 and NOX measurement data from 24-h personal exposure sampling and concentration monitoring in traffic environments in the urban area of Beijing to estimate the individual intake fraction (iFi). iFi distributions are presented in microenvironments (traffic, work, home) for adults and children. The individual results are used to calculate the intake fraction for the children group and the adults group in the urban area of Beijing. The iF of PM2.5 for the whole population of these two groups in Beijing is 153 per million, which is significantly higher than those estimates in the United States (1-50 per million) and Mexico (23-120 per million). The iF of NOX is 70 per million, among which the intake in the traffic micro-environment ranks first compared to the iF in the home and office due to a high accumulation of NOX concentration in vehicles. PM2.5 and NOX intake fraction values from vehicle emissions in this study are from at least several times to one order of magnitude higher than those from other industry sources in China. This strongly suggests the health risk from vehicle emissions is significantly higher. Therefore, to protect human health, especially for the large number of people living in the cities of China, controlling vehicle emissions should be the highest priority.
NASA Technical Reports Server (NTRS)
Jeker, Dominique; Pfister, Lenny; Brunner, Dominik; Boccippio, Dennis J.; Pickering, Kenneth E.; Thompson, Anne M.; Wernli, Heini; Selkirk, Rennie B.; Kondo, Yutaka; Koike, Matoke;
1999-01-01
In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn.
Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop
2017-01-01
Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496
Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop
2017-03-01
Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Brunner, Dominik; Staehelin, Johannes; Jeker, Dominique; Wernli, Heini; Schumann, Ulrich
2001-11-01
Measurements of nitrogen oxides (NO and NO2) and ozone (O3) were performed from a Swissair B-747 passenger aircraft in two extended time periods (May 1995 to May 1996, August to November 1997) in the framework of the Swiss NOXAR and the European POLINAT 2 project. The measurements were obtained on a total of 623 flights between Europe and destinations in the United States and the Far East. NO2 measurements were obtained only after December 1995 and were less precise than the NO measurements. Therefore daytime NO2 values were derived from measured NO and O3 concentrations assuming photostationary equilibrium. The completed NOx data set (measured NO, measured NO2 during night, and calculated NO2 during day) includes a complete annual cycle and is the most extensive and representative data set currently available for the upper troposphere (UT) and the lower stratosphere (LS) covering a significant proportion of the northern hemisphere between 15°N and 65°N. NOx concentrations in midlatitudes (30°-60°N) showed a marked seasonal variation both in the UT and the LS with a maximum in summer (median/mean values of 159/264 pptv in UT, 199/237 pptv in LS) and a minimum in winter (51/99 pptv in UT, 67/91 pptv in LS). Mean NOx concentrations were generally much higher than the respective median values, in particular in the UT, which reflects the important contribution from comparatively few very high concentrations observed in large-scale convection/lightning and small-scale aircraft plumes. Seasonal mean NOx concentrations in the UT were up to 3-4 times higher over continental regions than over the North Atlantic during summer. Lightning production of NO and convective vertical transport from the polluted boundary layer thus appear to have dominated the upper tropospheric NOx budget over these continental regions, particularly during summer. Ozone concentrations at aircraft cruising levels typically varied by an order of magnitude due to the strong vertical gradient in the LS. Seasonal mean values were dominated by large-scale dynamical processes controlling the altitude of the tropopause and the O3 abundance in the LS. O3 in the UT in midlatitudes showed a broad maximum between June and August, typical of observations in the free troposphere.
Torres-Jardón, Ricardo; García-Reynoso, J Agustín; Jazcilevich, Arón; Ruiz-Suárez, L Gerardo; Keener, Tim C
2009-10-01
The ozone (O3) sensitivity to nitrogen oxides (NOx, or nitric oxide [NO] + nitrogen dioxide [NO2]) versus volatile organic compounds (VOCs) in the Mexico City metropolitan area (MCMA) is a current issue of scientific controversy. To shed light on this issue, we compared measurements of the indicator species O3/NOy (where NOy represents the sum of NO + NO2 + nitric acid [HNO3] + peroxyacetyl nitrate [PAN] + others), NOy, and the semiempirically derived O3/NOz(surrogate) (where NOz(surrogate) is the derived surrogate NOz, and NOz represents NOx reaction products, or NOy - NOx) with results of numerical predictions reproducing the transition regimes between NOx and VOC sensitivities. Ambient air concentrations of O3, NOx, and NOy were measured from April 14 to 25, 2004 in one downwind receptor site of photochemically aged air masses within Mexico City. MCMA-derived transition values for an episode day occurring during the same monitoring period were obtained through a series of photochemical simulations using the Multiscale Climate and Chemistry Model (MCCM). The comparison between the measured indicator species and the simulated spatial distribution of the indicators O3/ NOy, O3/NOz(surrogate), and NOy in MCMA suggest that O3 in this megacity is likely VOC-sensitive. This is in opposition to past studies that, on the basis of the observed morning VOC/NOx ratios, have concluded that O3 in Mexico City is NOx-sensitive. Simulated MCMA-derived sensitive transition values for O3/NOy, hydrogen peroxide (H2O2)/HNO3, and NOy were found to be in agreement with threshold criteria proposed for other regions in North America and Europe, although the transition crossover for O3/NOz and O3/HNO3 was not consistent with values reported elsewhere. An additional empirical evaluation of weekend/weekday differences in average maximum O3 concentrations and 6:00- to 9:00-a.m. NOx and NO levels registered at the same site in April 2004 indirectly confirmed the above results. A preliminary conclusion is that additional reductions in NOx emissions in MCMA might cause an increase in presently high O3 levels.
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-10-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV fleet in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Ponnusamy, Senthil
2006-01-01
Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less
Variability of Ozone, OX and NOx in Rural and Urban Areas in Marmara Region of Turkey
NASA Astrophysics Data System (ADS)
Kasparoǧlu, Sabin; İncecik, Selahattin; Topçu, H. Sema
2017-04-01
Marmara region is located in northwest of Turkey and it is bordered by Greece and the Aegean Sea to the west, and Bulgaria, the Black Sea to the north covers about 11,000 km2. Sea of Marmara is located at the center of the region. The region has the largest population in Turkey with about 23 million inhabitants. It is Turkey's main industrial region and It is the territory which is provided by a quarter of the Turkish economy. Moreover, the region is economically the most developed area of Turkey. Its agricultural potential is very rich. For example, about 73% of the sunflower production and 30 % of corn production of Turkey is done in this region. The aim of the study is to assess the spatial and temporal variations in O3, NO, and NO2 in Marmara region of Turkey based on the analysis of hourly concentrations collected at 22 monitoring stations (7 rural and 15 urban) over three years (2013-2016). This is the first study in the region. In this way possible reasons of the results will be useful in the design of control strategies for photochemical pollution in this region. For this purpose, diurnal variations of NOx, O3 and OX were examined for rural and urban sites. The total levels of oxidant (OX) which are considered to be sum of O3 and NO2 were determined. In rural sites, NOx concentrations are generally lower than at urban and polluted sites of Marmara region. We found that usually O3 peak time in rural areas are occurred at around 15:00 LST while mean peak values vary between 70-85 µg/m3. The highest mean concentrations of NO were also observed at 09:00 LST around 35-50 µg/m3 in rural areas while varies at the highest at around 75-85 µg/m3 in polluted sites. Due to the NOx -dependent contribution corresponds to local production of ozone and the NOx -independent contribution corresponds to regional concentrations, we examined OX versus NOx for daytime (10:00-18:00LST) and nighttime (19:00-09:00LST)periods to understand the contaminants of NOx from local sources or regional contribution in the region. We found that total OX appears to increase linearly with NOx in rural sites. Moreover, 3-day isentropic HYSPLIT back-trajectory analysis ending at 500m agl for ozone season are analyzed for the ozone season (1st May to 30th September). In the presented study, the prevailing mesoscale meteorological conditions occurring during ozone season over the Marmara region are examined from the reanalysis data of NOAA ESRL. Finally, AOT40 index under EU ozone Directive are examined for vegetation and forest areas in Marmara region.
NASA Astrophysics Data System (ADS)
Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos
2018-02-01
The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.
NASA Astrophysics Data System (ADS)
Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.
2013-12-01
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimer esters. A total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimer esters was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a~factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimer esters correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimer esters. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.
NASA Astrophysics Data System (ADS)
Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.
2014-04-01
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high-NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimers. A total of eight carboxylic acids and four dimers were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimers was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimers correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimers. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimers. The results support the formation of the high-molecular weight dimers through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimers formed in the gas phase may explain increased particle number concentration as a result of homogenous nucleation. Since three of these dimers (i.e. pinyl-diaterpenyl dimer (MW 358), pinyl-diaterebyl dimer (MW 344) and pinonyl-pinyl dimer (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimers observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility dimers result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.
Bauer, Georg; Zarkovic, Neven
2015-04-01
Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments. Copyright © 2015 Elsevier Inc. All rights reserved.
40 CFR 86.123-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the NOX converted by substituting the concentrations obtained into the following equation: Percent Efficiency = [1 + (a − b)/(c − d)] × 100 where: a = concentration obtained in step (8). b = concentration obtained in step (9). c = concentration obtained in step (6). d = concentration obtained in step (7). If...
40 CFR 86.123-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the NOX converted by substituting the concentrations obtained into the following equation: Percent Efficiency = [1 + (a − b)/(c − d)] × 100 where: a = concentration obtained in step (8). b = concentration obtained in step (9). c = concentration obtained in step (6). d = concentration obtained in step (7). If...
40 CFR 86.1323-84 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (11) Calculate the efficiency of the NOX converter by substituting the concentrations obtained into the following equation: ER06OC93.212 Where: a = concentration obtained in paragraph (a)(8), b = concentration obtained in paragraph (a)(9), c = concentration obtained in paragraph (a)(6), d = concentration...
40 CFR 86.1323-84 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (11) Calculate the efficiency of the NOX converter by substituting the concentrations obtained into the following equation: ER06OC93.212 Where: a = concentration obtained in paragraph (a)(8), b = concentration obtained in paragraph (a)(9), c = concentration obtained in paragraph (a)(6), d = concentration...
NASA Astrophysics Data System (ADS)
Engelhard, M.; Hansen, R. F.; Raff, J. D.
2017-12-01
Molecular level investigation of compositional changes due to heterogeneous reactions of nitrogen oxides (NOx, NOy) with soil organic matter (SOM) is important to develop a fundamental scientific understanding of the soil/atmosphere interface. In addition, interactions between NOx reservoir species and SOM play a more important role in NOx and NOy recycling than previously realized. Despite the importance of soil to the global terrestrial-atmospheric cycling of nitrogen, interactions of N2O5 with SOM are not well understood. Uncertainty in these processes is problematic because it means that NOy is not properly represented in the Earth-systems models used for prediction and regulation. The ultimate objective of this study is to investigate the production of NOy from the reaction of N2O5 with SOM and elucidate the mechanisms that return NOy back to the atmosphere, where NOy can contribute to aerosol and O3 formation. In the initial phase of this study, we reacted SOM standards with NO2+ (produced from concentrated HNO3), which is an intermediate in the heterogeneous reaction of N2O5 with SOM. We then characterized these reaction products using X-ray photoelectron spectroscopy (XPS). XPS was used to measure the nitrogen chemistry before and after reaction of SOM with NO2+. These results will be discussed along with the pros and cons using XPS to characterize SOM chemistry.
On the Effects of NOx Emission Control and Drought on an Ozone-Polluted Ecosystem
NASA Astrophysics Data System (ADS)
Pusede, S.; Geddes, J.; Buysse, C. E.; Esperanza, A.; Najacht, E.; Anderson, J. F.; Bailey, C. B.; Munyan, J.
2017-12-01
Regulatory emission controls are typically designed to reduce ozone when ozone is highest. However, high ozone concentrations are often asynchronous with periods of the greatest ozone harm to plants and ecosystems, particularly during drought. Because ozone production chemistry is nonlinear, emissions reductions designed to be effective in polluted cities may have a range of effects on downwind ecosystems. Here, we investigate the influence of regional NOx emission controls on ozone pollution in Sequoia National Park (SNP). First, we show that steep declines in NOx throughout the region have had smaller impacts in SNP than in cities upwind, and that these reductions have been least effective at times of day and year when plants are most sensitive to ozone. Second, in recent years (2012-2015), California experienced the worst drought in recorded history. We present observational evidence of the ozone response in SNP to drought conditions, finding that the drought altered the chemical sensitivity of local ozone production to NOx emissions and, hence, the effectiveness of NOx emission controls. We show that drought impacts on the ozone sensitivity to NOx have persisted at least two years since the drought ended.
Estimation of NOx Production from Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Liu, N.; Mailyan, B.; Rassoul, H.; Dwyer, J. R.
2016-12-01
The motivation of this work is to understand the effects of TGFs on the ozone layer. One of the main ozone-destroying mechanisms is the production of NOx in the stratospheric region. We first review the mechanisms for NOx production in this region, specifically looking at the global rate produced by lightning. Terrestrial Gamma-ray Flashes, with runaway electron avalanches and the subsequent bremsstrahlung gamma rays, produce atmospheric ionization at all altitudes of the atmosphere. TGFs might have a greater impact on the ozone concentration in the stratosphere since they directly produce ionization and thus NOx in the ozone layer. In order to study the effect from TGFs, we use the runaway electron avalanche model (REAM) to simulate a typical TGF. The photons are then transported through Earth's atmosphere, where they deposit some of their energy as ionization in the ozone layer. We then calculate the number of NOx molecules produced by considering the average energy required to produce one electron-ion pair (W = 35 eV). The W factor has been experimentally quantified and is constant for various types of radiation and over large energy ranges and electric fields. Finally, the effect of TGF NOx production is estimated using the global annual rate of TGFs.
Low NO sub x heavy fuel combustor concept program phase 1A gas tests
NASA Technical Reports Server (NTRS)
Cutrone, M. B.; Beebe, K. W.; Cutrone, M. B.
1982-01-01
The emissions performance of a rich lean combustor (developed for liquid fuels) for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf were assessed. The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. Although meeting NOx goals for the 167 Btu/scf gas, NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx generation from NH3 was significant at ammonia concentrations significantly less tha 0.5%. These levels occur depending on fuel gas cleanup system design, However, NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher.
NASA Technical Reports Server (NTRS)
Morre, D. James
2002-01-01
The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.
The jet engine design that can drastically reduce oxides of nitrogen
NASA Technical Reports Server (NTRS)
Ferri, A.; Agnone, A.
1977-01-01
The NOx pollution problem of hydrogen fueled turbojets and supersonic combustion ramjets (scramjets) was investigated to determine means of substantially alleviating the problem. Since the NOx reaction rates are much slower than the energy producing reactions, the NOx production depends mainly on the maximum local temperatures in the combustor and the NOx concentration is far from equilibrium at the end of a typical combustor (L approximately 1 ft). In diffusion flames, as used in present turbojets and scramjets combustor designs, the maximum local temperature occurs at the flame and is equal to the stoichiometric value. Whereas, in the heat conduction flames, wherein the flame propagates due to a heat conduction process away from the flame to the cooler oncoming premixed unburnt gases, the maximum temperature is lower than in the diffusion flame. Hence the corresponding pollution index is also lower.
NASA Technical Reports Server (NTRS)
Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka
2016-01-01
Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.
A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor
NASA Astrophysics Data System (ADS)
Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan
2016-11-01
NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NOx detector or sensor. Herein, a novel amperometric solid-state NOx sensor was developed using perovskite-type oxide Gd1-xCaxAlO3-δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles.
Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L
2009-05-15
Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further research with control optimization, urea distribution and possible use of oxidation catalysts is recommended to improve the NOx reduction capabilities while minimizing ammonia slip.
The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light
NASA Technical Reports Server (NTRS)
Morre, D. James; Penel, Claude; Greppin, Hubert; Morre, Dorothy M.
2002-01-01
The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.
Integrated Science Assessment (ISA) for Oxides of Nitrogen ...
EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Environmental Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA's decision on retaining or revising the current secondary standards for NO2 and SO2. The current secondary NAAQS for SOX, set in 1973, is a 3-h average 0.5 ppm of SO2, not to be exceeded more than once per year. The secondary NOX NAAQS is identical to the primary standard set in 1971: 0.053 ppm NO2 as an annual average. These secondary standards are intended to protect against direct damage to vegetation by exposure to gas-phase NOX or SOX. Acute and chronic exposures to SO2 can have phytotoxic effects on vegetation, such as foliar injury, decreased photosynthesis and decreased growth. Similarly, exposure to sufficient concentrations of NO2, NO, PAN, and HNO3 can cause foliar injury, decreased photosynthesis and decreased growth. In addition, these gas-phase NOX may contribute to N saturation in some areas of the U.S. There is little new evidence overall for direct effects of exposure to gas-phase NOX or SOX on vegetation at current concentrations. However, there is some evidence that vegetation in regions with high concentrations of photochemical oxidants may be affected by HN
High surface O3 episodes in Seoul under different meteorological regimes during KORUS-AQ campaign.
NASA Astrophysics Data System (ADS)
Kim, H.; Lee, M.; Jung, J.; Cho, S.; Shin, H.; Lee, G.; Park, M.; Hong, J.
2017-12-01
To examine chemical characteristics of ozone (O3) formation in Seoul Metropolitan Area (SMA), H2O2, PAN, and HONO were measured in conjunction with O3 and its precursors. The experiment was conducted at Olympic Park in Seoul during May 12 June 15, 2016. For the entire experiment period, the high O3 episodes of hourly mean concentration over 100 ppbv occurred on May 20, 23, 25, 29, and 30 and June 10 and 14. These episodes were different in meteorological conditions, precursor strengths, and chemical characteristics. The local influence was dominant under stagnant condition on May 20, 23 and June 10. When stagnant conditions developed over the Korean peninsula, the PBL (Planetary Boundary Layer) height often changed rapidly, leading to abrupt change in O3 and NOx. Particularly the nighttime concentrations of reactive gases such as O3 and NOx were sensitive to the change in PBL height. It is thought to be driven by land-sea breeze circulation. During May 25 28 when air was coming from the Eastern China, O3 was enhanced with aerosols and high SO2 and CO but low NOx concentration. Odd-Oxygen (O3+NO2, OX) ratio indicates the different chemical regimes, particularly at night(8PM - 7AM). O3/OX ratio was close to zero when local influence was dominant due to O3-titration by NOx. In contrast, this ratio was high over 0.6 in Chinese outflow plumes.
Nagasaka, Hironori; Yorifuji, Tohru; Egawa, Hiroto; Inui, Ayano; Fujisawa, Tomoo; Komatsu, Haruki; Tsukahara, Hirokazu; Uemoto, Shinji; Inomata, Yukihiro
2013-07-01
Urea cycle deficient patients with prominent hyperammonemic often exhibit abnormal production of nitric oxide (NO), which reduces vascular tone, along with amino acid abnormalities. However, information related to the metabolic changes in heterozygotes of ornithine transcarbamylase deficiency (OTCD) lacking overt hyperammonemia is quite limited. We examined vascular mediators and amino acids in non-hyperammonemic heterozygotes. Twenty-four heterozygous OTCD adult females without hyperammonemic bouts, defined as non-hyperammonemic carriers, were enrolled. We measured blood amino acids constituting urea cycle and nitric oxide (NO) cycle. Blood concentrations of nitrate/nitrite (NOx) as stable NO-metabolites, asymmetric dimethylarginine (ADMA) inhibiting NO synthesis, and endothelin-1 (ET-1) raising vascular tone were also determined. NOx concentrations were significantly lower in non-hyperammonemic carriers (p < 0.01). However, ADMA and ET-1 levels in this group were comparable to those in the age-matched control group. Arginine and citrulline levels were also significantly lower in non-hyperammonemic carriers than in controls (p < 0.01). Of the 24 non-hyperammonemic carriers, 10 often developed headaches. Their daily NOx and arginine levels were significantly lower than those in headache-free carriers (p < 0.05). In three carriers receiving oral l-arginine, blood NOx concentrations were significantly higher. In two of those three, the occurrence of headaches was decreased. These results suggest that NO cycle coupling with the urea cycle is altered substantially even in non-hyperammonemic OTCD carriers, predisposing them to headaches. Copyright © 2013 Elsevier Inc. All rights reserved.
Silica particles cause NADPH oxidase–independent ROS generation and transient phagolysosomal leakage
Joshi, Gaurav N.; Goetjen, Alexandra M.; Knecht, David A.
2015-01-01
Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis. PMID:26202463
NASA Astrophysics Data System (ADS)
Kuik, Friderike; Kerschbaumer, Andreas; Lauer, Axel; Lupascu, Aurelia; von Schneidemesser, Erika; Butler, Tim M.
2018-06-01
With NO2 limit values being frequently exceeded in European cities, complying with the European air quality regulations still poses a problem for many cities. Traffic is typically a major source of NOx emissions in urban areas. High-resolution chemistry transport modelling can help to assess the impact of high urban NOx emissions on air quality inside and outside of urban areas. However, many modelling studies report an underestimation of modelled NOx and NO2 compared with observations. Part of this model bias has been attributed to an underestimation of NOx emissions, particularly in urban areas. This is consistent with recent measurement studies quantifying underestimations of urban NOx emissions by current emission inventories, identifying the largest discrepancies when the contribution of traffic NOx emissions is high. This study applies a high-resolution chemistry transport model in combination with ambient measurements in order to assess the potential underestimation of traffic NOx emissions in a frequently used emission inventory. The emission inventory is based on officially reported values and the Berlin-Brandenburg area in Germany is used as a case study. The WRF-Chem model is used at a 3 km × 3 km horizontal resolution, simulating the whole year of 2014. The emission data are downscaled from an original resolution of ca. 7 km × 7 km to a resolution of 1 km × 1 km. An in-depth model evaluation including spectral decomposition of observed and modelled time series and error apportionment suggests that an underestimation in traffic emissions is likely one of the main causes of the bias in modelled NO2 concentrations in the urban background, where NO2 concentrations are underestimated by ca. 8 µg m-3 (-30 %) on average over the whole year. Furthermore, a diurnal cycle of the bias in modelled NO2 suggests that a more realistic treatment of the diurnal cycle of traffic emissions might be needed. Model problems in simulating the correct mixing in the urban planetary boundary layer probably play an important role in contributing to the model bias, particularly in summer. Also taking into account this and other possible sources of model bias, a correction factor for traffic NOx emissions of ca. 3 is estimated for weekday daytime traffic emissions in the core urban area, which corresponds to an overall underestimation of traffic NOx emissions in the core urban area of ca. 50 %. Sensitivity simulations for the months of January and July using the calculated correction factor show that the weekday model bias can be improved from -8.8 µg m-3 (-26 %) to -5.4 µg m-3 (-16 %) in January on average in the urban background, and -10.3 µg m-3 (-46 %) to -7.6 µg m-3 (-34 %) in July. In addition, the negative bias of weekday NO2 concentrations downwind of the city in the rural and suburban background can be reduced from -3.4 µg m-3 (-12 %) to -1.2 µg m-3 (-4 %) in January and from -3.0 µg m-3 (-22 %) to -1.9 µg m-3 (-14 %) in July. The results and their consistency with findings from other studies suggest that more research is needed in order to more accurately understand the spatial and temporal variability in real-world NOx emissions from traffic, and apply this understanding to the inventories used in high-resolution chemical transport models.
Msallem, J. Abou; Chalhoub, H.; Al-Hariri, M.; Saad, L.; Jaffa, M. A.; Ziyadeh, F. N.
2015-01-01
Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies. PMID:26447218
Advection fog formation and aerosols produced by combustion-originated air pollution
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.
1980-01-01
The way in which pollutants produced by the photochemical reaction of NO(X) and SO(X) affect the quality of the human environment through such phenomena as the formation of advection fog is considered. These pollutants provide the major source of condensation nuclei for the formation of fog in highways, airports and seaports. Results based on the monodisperse, multicomponent aerosol model show that: (1) condensation nuclei can grow and form a dense fog without the air having attained supersaturation; (2) the mass concentration range for NO(X) is one-third that of SO(X); and (3) the greater the mass concentration, the particle concentration, and the radius of condensation nuclei, the denser the fog that is formed.
Application of the WRF-Chem model for the simulation of air quality over Cyprus
NASA Astrophysics Data System (ADS)
Kushta, Jonilda; Proestos, Yiannis; Georgiou, George; Christoudias, Theodoros; Lelieveld, Jos
2017-04-01
The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Cyprus. Cyprus is an island country with complex topography, located in the eastern corner of East Mediterranean region, affected year-long by local, regional and long range transported pollution. An extensive sensitivity analysis of the model performance has been performed over the area of interest with three domains of respective grid spacing of 40, 8 and 2 km. Different configurations have been deployed regarding horizontal resolution, simulation timestep, boundary conditions, NOx emissions and speciation method of emitted NMVOCs (Non Methane Volatile Organic Compounds). The WRF-Chem model simulated hourly concentrations of air pollutants for a month-long period (July 2014) during which measurements are available over 13 stations (4 of which background stations, 1 industrial and 8 urban/traffic stations). The model was initialized with meteorological initial and boundary conditions (ICBC) using NCAR-NCEP's F Global Forecast System output (GFS) at a 1o x1o spatial resolution. The ICBC for the chemical species are derived from the MOZART global model results (2.5o x 2.5o). Both ICBCs datasets are updated every 6 hours. The emission inventory used in the study is the EDGAR-HTAP v2 dataset with a horizontal grid resolution of 0.1o × 0.1o, while an additional dataset with speciated NMVOCs (instead of summed volatile species) is also tested. The diurnal cycle of the atmospheric concentrations of ozone averaged over the island, exhibits a maximum of 114 μg/m3 when the boundary conditions are derived from MOZART and 94 μg/m3 when the boundary conditions are not included (local background and production), suggesting a constant inflow of ozone from long range transport of about 20 μg/m3. The contribution of pollution from regional sources is more pronounced at the western border due to the characteristic summer time north-northeasterly etesian flow that brings southward the pollution produced or accumulated over Eastern Europe, the Black sea and major upwind megacities (Istanbul, Athens etc). Ozone concentrations are overestimated in all stations indicating a possible overestimation of ozone from the global model (MOZART) that has also been discussed in other studies over neighbouring countries, or an excess of ozone production in the parent domain that includes all Eastern Mediterranean. Model results are influenced by the speciation of NMVOCs with the pre-speciated emission dataset resulting in lower ozone values by an average of 5 μg/m3. Lowering NOx emission brings ozone levels closer to observations; however this does not account for the overestimation of ozone since the respective comparison of NOx levels reveals strong underestimation of NOx (both NO and NO2) even before reducing them. Horizontal, vertical and temporal resolutions show smaller impact on changing the modelled patterns of ozone concentrations. The discrepancies between modelled and observed ozone over the main Cypriot urban areas point at the need for more detailed emission inventories, either in terms of spatial resolution and/or validation of absolute emitted values, and adjustments in the use of boundary conditions from global models.
[Correlation between acidic materials and acid deposition in Beijing during 1997-2011].
Chen, Yuan-yuan; Tian, He-zhong; Yang, Dong-yan; Zou, Ben-dong; Lu, Hai-feng; Lin, An-guo
2013-05-01
Based on the environment monitoring data and the ambient air quality data during the period of 1997-2011 from Beijing municipal environmental monitoring center, the correlations between primary pre-cursors of acid deposition, acidic materials and precipitation in Beijing area were analyzed in detail by taking economic development and energy mix into account. These results will be helpful for assessing the performance of environment quality improvement, as well as supplying scientific supporting information to make policies for national and local environment protection authorities. The main findings included as follows: there are significant correlations between the concentrations of NO2, NOx, and SO2 in the atmosphere, which indicated that both N and S in ambient air of Beijing came from fossil fuels combustion; acidic pollutants in the air are mainly discharged from local emission sources in Beijing, while there is no obvious correlation between S and N in wet deposition and concentrations of SO2, NO2 and NOx in the atmosphere, which demonstrated that concentrations of different ions in the acid deposition were influenced by both local sources as well as the inputs from other surrounding districts. Besides, the concentration of NO3- appeared to be correlative with the amount of motor vehicles, implying that the NOx from motor vehicles have contributed the increase of NO3- concentration of substantially.
The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light
NASA Technical Reports Server (NTRS)
Morre, D. James; Morre, Dorothy M.
2003-01-01
NADH oxidases of the external plasma membrane surface (ECTO-NOX proteins) are characterized by oscillations in activity with a regular period length of 24 min. Explants of mouse skin exhibit the oscillatory activity as estimated from the decrease in A(340) suggesting that individual ECTO-NOX molecules must somehow be induced to function synchronously. Transfer of explants of mouse skin from darkness to blue light (495 nm, 2 min, 50 micromol m(-1) s(-1)) resulted in initiation of a new activity maximum (entrainment) with a midpoint 36 min after light exposure followed by maxima every 24 min thereafter. Addition of melatonin resulted in a new maximum 24 min after melatonin addition. The findings suggest that the ECTO-NOX proteins play a central role in the entrainment of the biological clock both by light and by melatonin.
Agus, Emily L; Young, David T; Lingard, Justin J N; Smalley, Robert J; Tate, James E; Goodman, Paul S; Tomlin, Alison S
2007-11-01
Measurements of urban particle number concentrations and size distributions in the range 5-1000 nm were taken at elevated (roof-level) and roadside sampling sites on Narborough Road in Leicester, UK, along with simultaneous measurements of traffic, NO(x), CO and 1,3-butadiene concentrations and meteorological parameters. A fitting program was used to determine the characteristics of up to five modal groups present in the particle size distributions. All particle modal concentrations peaked during the morning and evening rush hours. Additional events associated with the smallest mode, that were not observed to be connected to primary emissions, were also present suggesting that this mode consisted of newly formed secondary particles. These events included peaks in concentration which coincided with peaks in solar radiation, and lower concentrations of the larger modes. Investigation into the relationships between traffic flow and occupancy indicated three flow regimes; free-flow, unstable and congested. During free-flow conditions, positive linear relationships existed between traffic flow and particle modal number concentrations. However, during unstable and congested periods, this relationship was shown to break-down. Similar trends were observed for concentrations of the gas phase pollutants NO(x), CO and 1,3-butadiene. Strong linear relationships existed between NO(x), CO, 1,3-butadiene concentrations, nucleation and Aitken mode concentrations at both sampling locations, indicating a local traffic related emission source. At the roadside, both nucleation and Aitken mode are best represented by a decreasing exponential function with wind speed, whereas at the roof-level this relationship only occurred for Aitken mode particles. The differing relationships at the two sampling locations are most likely due to a combination of meteorological factors and distance from the local emission source.
Eriksson, Anders S; Häggström, Jens; Pedersen, Henrik Duelund; Hansson, Kerstin; Järvinen, Anna-Kaisa; Haukka, Jari; Kvart, Clarence
2014-09-01
To evaluate the predictive value of plasma N-terminal pro-atrial natriuretic peptide (NT-proANP) and nitric oxide end-products (NOx) as markers for progression of mitral regurgitation caused by myxomatous mitral valve disease. Seventy-eight privately owned Cavalier King Charles spaniels with naturally occurring myxomatous mitral valve disease. Prospective longitudinal study comprising 312 measurements over a 4.5 year period. Clinical values were recorded, NT-proANP concentrations were measured by radioimmunoassay, and NOx were analyzed colorimetrically. To predict congestive heart failure (CHF), Cox proportional hazards models with time-varying covariates were constructed. The hazard ratio for NT-proANP (per 1000 pmol/l increase) to predict future CHF was 6.7 (95% confidence interval, 3.6-12.5; p < 0.001). The median time to CHF for dogs with NT-proANP levels >1000 pmol/l was 11 months (95% confidence interval, 5.6-12.6 months), compared to 54 months (46 - infinity) for dogs with concentrations ≤ 1000 pmol/l (p < 0.001). Due to intra- and inter-individual variability, most corresponding analyses for NOx were insignificant but dogs reaching CHF had a lower mean NOx concentration than dogs not reaching CHF (23 vs. 28 μmol/l, p = 0.016). Risk of CHF increased with increase in heart rate (>130 beats per minute) and grade of murmur (≥ 3/6). The risk of CHF due to mitral regurgitation is increased in dogs with blood NT-proANP concentrations above 1000 pmol/l. Measurement of NT-proANP can be a valuable tool to identify dogs that may develop CHF within months. Copyright © 2014 Elsevier B.V. All rights reserved.
City-level variations in NOx emissions derived from hourly monitoring data in Chicago
NASA Astrophysics Data System (ADS)
de Foy, Benjamin
2018-03-01
Control on emissions of nitrogen oxides (NOx) in the United States of America have led to reductions in concentrations in urban areas by up to a factor of two in the last decade. The Air Quality System monitoring network provides surface measurements of concentrations at hourly resolution over multiple years, revealing variations at the annual, seasonal, day of week and diurnal time scales. A multiple linear regression model was used to estimate the temporal profiles in the NOx concentrations as well as the impact of meteorology, ozone concentrations, and boundary layer heights. The model is applied to data from 2005 to 2016 available at 6 sites in Chicago, Illinois. Results confirm the 50% decrease in NOx over the length of the time series. The weekend effect is found to be stronger in more commercial areas, with 32% reductions on Saturdays and 45% on Sundays and holidays; and weaker in more residential areas with 20% reductions on Saturdays and 30% reductions on Sundays. Weekday diurnal profiles follow a double hump with emission peaks during the morning and afternoon rush hours, but only a shallow drop during the middle day. Difference in profiles from the 6 sites suggest that there are different emission profiles within the urban area. Diurnal profiles on Saturdays have less variation throughout the day and more emissions in the evening. Sundays are very different from both weekdays and Saturdays with a gradual increase until the early evening. The results suggest that in addition to vehicle type and vehicle miles traveled, vehicle speed and congestion must be taken into account to correctly quantify morning rush hour emissions and the weekend effect.
NASA Astrophysics Data System (ADS)
Samy, Shahryar (Shar)
The study of atmospheric chemistry and chemical transformations, which are relevant to conditions in the ambient atmosphere require the investigation of complex mixtures. In the atmosphere, complex mixtures (e.g. diesel emissions) are continually evolving as a result of physical and chemical transformations. This dissertation examines the transformations of modern diesel emissions (DE) in a series of experiments conducted at the European Outdoor Simulation Chamber (EUPHORE) in Valencia, Spain. Experimental design challenges are addressed, and the development of a NOx removal technology (denuder) is described with results from the application of the newly developed NOx denuder in the most recent EUPHORE campaign (2006). In addition, the data from an ambient aerosol study that examines atmospheric transformation products is presented and discussed. Atmospheric transformations of DE and associated secondary organic aerosol (SOA) production, along with chemical characterization of polar organic compounds (POC) in the EUPHORE experiments, provides a valuable insight on the tranformations of modern DE in environmentally relevant atmospheres. The greatest SOA production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N2O5 (for NO3 radical production) experiments. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The production of diacids (as a compound group) demonstrates a consistent indicator for photochemical transformation in relation to studies in the ambient atmosphere. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in relation to toluene) of 5.3+/-1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NO x]o on SOA production in more simplified mixtures. Characterization of nitrated polycyclic aromatic hydrocarbons (NPAH, nitroarenes), which have been shown to be mutagenic and/or carcinogenic, was performed on time-intergrated samples from the EUPHORE experiments. NPAH concentrations indicated significant formation and/or degradation was taking place. An inter-experimental comparison showed that distinct gas (2-nitronaphthalene) and particle (2-nitrofluoranthene, 4-nitropyrene) phase NPAH production resulted in light versus dark experiments, and degradation most likely due to photolysis was observed for one of the most abundant NPAH (1-nitropyrene) in the ambient atmosphere. The evaluation of dark experiments in high and low NOx conditions, revealed a significantly higher concentration of gas phase NPAH (mostly due to 1-nitronaphthalene) in high NOx experiments. Electrophilic nitration on chamber surfaces or sampling media can not be ruled out as a possible mechanism for the elevated NPAH concentrations. Chapter 5 presents results from an aerosol sampling study at the Storm Peak Laboratory (SPL) (3210 MSL, 40.45° N, 106.74° W) in the winter of 2007. The unique geographical character of SPL allows for extended observations/sampling of the free tropospheric interface. Of 84 analytes included in the GC-MS method, over 50 individual water extractable POC were present at concentrations greater than 0.1 ngm-3. Diurnal averages over the sampling period revealed a higher total concentration of POC at night, 211 ngm-3 (105-265 ngm-3), versus day, 160 ngm-3 (137-205 ngm -3), which suggests a more aged nighttime aerosol character. During a snow event (Jan. 11-13, 2007), the concentrations of daytime dicarboxylic acids, which may be considered as atmospheric transformation products, were reduced. Lower actinic flux, reduced transport distance, and ice crystal scavenging may explain this variability. Further evaluation of compound ratios (e.g. diacids to monoacids/levoglucosan) and the sampling period dynamics was performed to delineate diurnal aerosol character.
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-07-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet in the future.
NASA Technical Reports Server (NTRS)
Roselle, Shawn J.; Schere, Kenneth L.; Chu, Shao-Hang
1994-01-01
There is increasing recognition that controls on NO(x) emissions may be necessary, in addition to existing and future Volatile Organic Compounds (VOC) controls, for the abatement of ozone (O3) over portions of the United States. This study compares various combinations of anthropogenic NO(x) and VOC emission reductions through a series of model simulations. A total of 6 simulations were performed with the Regional Oxidant Model (ROM) for a 9-day period in July 1988. Each simulation reduced anthropogenic NO(x) and VOC emissions across-the-board by different amounts. Maximum O3 concentrations for the period were compared between the simulations. Comparison of the simulations suggests that: (1) NO(x) controls may be more effective than VOC controls in reducing peak O3 over most of the eastern United States; (2) VOC controls are most effective in urban areas having large sources of emissions; (3) NO(x) controls may increase O3 near large point sources; and (4) the benefit gained from increasing the amount of VOC controls may lessen as the amount of NO(x) control is increased. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
NASA Astrophysics Data System (ADS)
Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.
2013-03-01
A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.
NASA Astrophysics Data System (ADS)
Tsai, J.; Pikelnaya, O.; Hurlock, S. C.; Wong, K.; Cheung, R.; Haman, C. L.; Lefer, B. L.; Stutz, J.
2010-12-01
Nocturnal chemistry, through the conversion and removal of air pollutants, plays an important role in determining the initial condition for photochemistry during the following day. In the stable nocturnal boundary layer (NBL) the interplay between suppressed vertical mixing and surface emissions of NOx and VOCs can result in pronounced vertical trace gas profiles. The resulting altitude dependence of nocturnal chemistry makes the interpretation of ground observations challenging. In particular, the quantification of the nocturnal loss of NOx, due to NO3 and N2O5 chemistry, requires observations throughout the entire vertical extent of the NBL. The formation of daytime radical precursors, such as HONO, is also altitude dependent. An accurate assessment of their impact on daytime chemistry requires measurements of their profiles during the night and morning. Here we present observations from the CalNex-LA experiment, which took place from May 15 to June 15, 2010 on the east side of the Los Angeles Basin, CA. A Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) was set up on the roof of the Millikan library (265 m asl, 35m agl) on the campus of the California Institute of Technology. Four retroreflector arrays were mounted about 5 -7 km North-East of the instrument at 310m, 353m, 487m and 788 m asl. The vertical profiles of NO3, HONO, NO2, O3, HCHO, and SO2 were retrieved at altitude intervals of 35-78m, 78-121m, 121-255m and 255-556m above the ground. During many nights vertical gradients were observed, with elevated NO2 and HONO concentrations near the surface and larger ozone and NO3 concentrations aloft. Simultaneous ceilometer observations of the NBL structure show the impact of meteorology on the vertical trace gas distributions. We will discuss the consequences of trace gases gradients on the nocturnal NOx budget.
NASA Astrophysics Data System (ADS)
Jin, Xiaomeng; Fiore, Arlene M.; Murray, Lee T.; Valin, Lukas C.; Lamsal, Lok N.; Duncan, Bryan; Folkert Boersma, K.; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S.
2017-10-01
Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NOx-limited versus NOx-saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NOx-limited and NOx-saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NOx-limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NOx sensitivity implies that NOx emission controls will improve O3 air quality more now than it would have a decade ago.
40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (11) Calculate the efficiency of the NOX converter by substituting the concentrations obtained into... obtained in step (8). b = concentration obtained in step (9). c = concentration obtained in step (6). d = concentration obtained in step (7). If converter efficiency is not greater than 90 percent corrective action...
40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (11) Calculate the efficiency of the NOX converter by substituting the concentrations obtained into... obtained in step (8). b = concentration obtained in step (9). c = concentration obtained in step (6). d = concentration obtained in step (7). If converter efficiency is not greater than 90 percent corrective action...
Kim, Donghoon; You, Byunghyun; Jo, Eun-Kyeong; Han, Sang-Kyou; Simon, Melvin I.; Lee, Sung Joong
2010-01-01
Increasing evidence supports the notion that spinal cord microglia activation plays a causal role in the development of neuropathic pain after peripheral nerve injury; yet the mechanisms for microglia activation remain elusive. Here, we provide evidence that NADPH oxidase 2 (Nox2)-derived ROS production plays a critical role in nerve injury-induced spinal cord microglia activation and subsequent pain hypersensitivity. Nox2 expression was induced in dorsal horn microglia immediately after L5 spinal nerve transection (SNT). Studies using Nox2-deficient mice show that Nox2 is required for SNT-induced ROS generation, microglia activation, and proinflammatory cytokine expression in the spinal cord. SNT-induced mechanical allodynia and thermal hyperalgesia were similarly attenuated in Nox2-deficient mice. In addition, reducing microglial ROS level via intrathecal sulforaphane administration attenuated mechanical allodynia and thermal hyperalgesia in SNT-injured mice. Sulforaphane also inhibited SNT-induced proinflammatory gene expression in microglia, and studies using primary microglia indicate that ROS generation is required for proinflammatory gene expression in microglia. These studies delineate a pathway involving nerve damage leading to microglial Nox2-generated ROS, resulting in the expression of proinflammatory cytokines that are involved in the initiation of neuropathic pain. PMID:20679217
NOx reduction in combustion with concentrated coal streams and oxygen injection
Kobayashi, Hisashi; Bool, III, Lawrence E.; Snyder, William J.
2004-03-02
NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.
Flexible NO(x) abatement from power plants in the eastern United States.
Sun, Lin; Webster, Mort; McGaughey, Gary; McDonald-Buller, Elena C; Thompson, Tammy; Prinn, Ronald; Ellerman, A Denny; Allen, David T
2012-05-15
Emission controls that provide incentives for maximizing reductions in emissions of ozone precursors on days when ozone concentrations are highest have the potential to be cost-effective ozone management strategies. Conventional prescriptive emissions controls or cap-and-trade programs consider all emissions similarly regardless of when they occur, despite the fact that contributions to ozone formation may vary. In contrast, a time-differentiated approach targets emissions reductions on forecasted high ozone days without imposition of additional costs on lower ozone days. This work examines simulations of such dynamic air quality management strategies for NO(x) emissions from electric generating units. Results from a model of day-specific NO(x) pricing applied to the Pennsylvania-New Jersey-Maryland (PJM) portion of the northeastern U.S. electrical grid demonstrate (i) that sufficient flexibility in electricity generation is available to allow power production to be switched from high to low NO(x) emitting facilities, (ii) that the emission price required to induce EGUs to change their strategies for power generation are competitive with other control costs, (iii) that dispatching strategies, which can change the spatial and temporal distribution of emissions, lead to ozone concentration reductions comparable to other control technologies, and (iv) that air quality forecasting is sufficiently accurate to allow EGUs to adapt their power generation strategies.
NASA Astrophysics Data System (ADS)
Omidvarborna, Hamid; Kumar, Ashok; Kim, Dong-Shik
2017-03-01
A stochastic simulation algorithm (SSA) approach is implemented with the components of a simplified biodiesel surrogate to predict NOx (NO and NO2) emission concentrations from the combustion of biodiesel. The main reaction pathways were obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND was added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The MD/MD5D/ND surrogate model was also equipped with H2/CO/C1 formation mechanisms and a simplified NOx formation mechanism. The predicted model results are in good agreement with a limited number of experimental data at low-temperature combustion (LTC) conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The root mean square errors (RMSEs) of predicted values are 0.0020, 0.0018, and 0.0025 for soybean methyl ester (SME), waste cooking oil (WCO), and tallow oil (TO), respectively. The SSA model showed the potential to predict NOx emission concentrations, when the peak combustion temperature increased through the addition of ultra-low sulphur diesel (ULSD) to biodiesel. The SSA method used in this study demonstrates the possibility of reducing the computational complexity in biodiesel emissions modelling.
Sasaki, Yasuko; Horiuchi, Hiroshi; Kawashima, Hiroko; Mukai, Takao; Yamamoto, Yuji
2014-01-01
We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk.
SASAKI, Yasuko; HORIUCHI, Hiroshi; KAWASHIMA, Hiroko; MUKAI, Takao; YAMAMOTO, Yuji
2014-01-01
We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk. PMID:24936380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toops, Todd J; Pihl, Josh A
2008-01-01
Exposure of Pt/K/Al{sub 2}O{sub 3} to 15 ppm SO{sub 2} reduces the NOx activity at 200, 300, and 400 C at significantly different rates--1.5, 8.5, and 18.0 {micro}mol NOx/(h g{sub cat}), respectively. During the initial sulfation, NOx conversion is directly linked to lean phase storage capacity, and sulfation does not impact the reduction kinetics since the amount of unconverted NOx was constant or decreased with increasing sulfation time. A portion of sulfur stored at 200 C desorbs upon mild heating to 400 C while cycling between lean and rich conditions. This apparently is a result of sulfur being released frommore » Al{sub 2}O{sub 3}; however, performance is not significantly recovered as much of the sulfur is re-adsorbed on the K-phase. This is apparent from analysis of the NOx storage and release profiles. Additional analysis of these profiles suggests that SO{sub 2} initially adsorbs near Pt before interacting with other sites further away from Pt at 300 C. At 400 C, it appears that SO{sub 2} either preferentially adsorbs near Pt and then quickly diffuses along the surface to other less proximal sites, or it directly adsorbs on sites further away from Pt. De-sulfurization up to 800 C using a temperature programmed reduction (TPR) procedure and rich conditions with both CO{sub 2} and H{sub 2}O restored 73=94% of the LNT performance at 300 and 400 C. However, the recovered performance measured at 200 C was only 34-49% of the original NOx reduction activity. H{sub 2}S and SO{sub 2} were the primary de-sulfurization products with H{sub 2}S having a maximum release between 690 and 755 C, while SO{sub 2} had a peak release between 770 and 785 C. The sulfation temperature does not have a significant impact on the recovered performance, the de-sulfurization products or the sulfur release temperature.« less
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
2001-2012 trends on air quality in Spain.
Querol, X; Alastuey, A; Pandolfi, M; Reche, C; Pérez, N; Minguillón, M C; Moreno, T; Viana, M; Escudero, M; Orio, A; Pallarés, M; Reina, F
2014-08-15
This study aims at interpreting the 2001-2012 trends of major air pollutants in Spain, with a major focus on evaluating their relationship with those of the national emission inventories (NEI) and policy actions. Marked downward concentration trends were evidenced for PM10, PM2.5 and CO. Concentrations of NO2 and NOx also declined but in a lesser proportion at rural and traffic sites. At rural sites O3 has been kept constant, whereas it clearly increased at urban and industrial sites. Comparison of the air quality trends and major inflection points with those from NEIs, the National Energy Consumption and the calendar of the implementation of major policy actions allowed us to clearly identify major benefits of European directives on power generation and industrial sources (such as the Large Combustion Plants and the Integrated Pollution Prevention and Control Directives). This, together with a sharp 2007-2008 decrease of coal consumption has probably caused the marked parallel decline of SO2, NOx and for PM2.5 concentrations. Also the effect of the EURO 4 and 5 vehicle emission standards on decreasing emissions of PM and CO from vehicles is noticeable. The smooth decline in NO2-NOx levels is mostly attributed to the low efficiency of EURO 4 and 5 standards in reducing real life urban driving NO2 emissions. The low NOx decrease together with the complexity of the reactions of O3 formation is responsible for the constant O3 concentrations, or even the urban increase. The financial crisis has also contributed to the decrease of the ambient concentration of pollutants; however this caused a major reduction of the primary energy consumption from 2008 to 2009, and not from 2007 to 2008 when ambient air PM and SO2 sharply decreased. The meteorological influence was characterized by a 2008-2012 period favorable to the dispersion of pollutants when compared to the 2001-2007. Copyright © 2014. Published by Elsevier B.V.
Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B
2010-05-01
Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.
NASA Astrophysics Data System (ADS)
Zhang, Xueying; Craft, Elena; Zhang, Kai
2017-07-01
Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.
Production of NOx by Lightning and its Effects on Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.
2009-01-01
Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.
Worldwide biogenic soil NOx emission estimates from OMI NO2 observations and the GEOS-Chem model
NASA Astrophysics Data System (ADS)
Vinken, Geert; Boersma, Folkert; Maasakkers, Bram; Martin, Randall
2014-05-01
Bacteria in soils are an important source of biogenic nitrogen oxides (NOx = NO + NO2), which are important precursors for ozone (O3) formation. Furthermore NOx emissions contribute to increased nitrogen deposition and particulate matter formation. Bottom-up estimates of global soil NOx emissions range from 4 to 27 Tg N / yr, reflecting our incomplete knowledge of emission factors and processes driving these emissions. In this study we used, for the first time, OMI NO2 columns on all continents to reduce the uncertainty in soil NOx emissions. Regions and months dominated by soil NOx emissions were identified using a filtering scheme in the GEOS-Chem chemistry transport model. Consequently, we compared OMI observed NO2 observed columns to GEOS-Chem simulated columns and provide constraints for these months in 11 regions. This allows us to provide a top-down emission inventory for 2005 for soil NOx emissions from all continents. Our total global soil NOx emission inventory amounts to 10 Tg N / yr. Our estimate is 4% higher than the GEOS-Chem a priori (Hudman et al., 2012), but substantial regional differences exist (e.g. +20% for Sahel and India; and -40% for mid-USA). We furthermore observed a stronger seasonal cycle in the Sahel region, indicating directions for possible future improvements to the parameterization currently used in GEOS-Chem. We validated NO2 concentrations simulated with this new top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. On the whole, we conclude that simulations with our new top-down inventory better agree with measurements. Our work shows that satellite retrieved NO2 columns can improve estimates of soil NOx emissions over sparsely monitored remote rural areas. We show that the range in previous estimates of soil NOx emissions is too large, and global emissions are most likely around 10 Tg N/yr, in agreement with the most recent parameterizations.
Sources and distribution of NO(x) in the upper troposphere at northern midlatitudes
NASA Technical Reports Server (NTRS)
Rohrer, Franz; Ehhalt, Dieter H.; Wahner, Andreas
1994-01-01
A simple quasi 2-D model is used to study the zonal distribution of NO(x). The model includes vertical transport in form of eddy diffusion and deep convection, zonal transport by a vertically uniform wind, and a simplified chemistry of NO, NO2 and HNO3. The NO(x) sources considered are surface emissions (mostly from the combustion of fossil fuel), lightning, aircraft emissions, and downward transport from the stratosphere. The model is applied to the latitude band of 40 deg N to 50 deg N during the month of June; the contributions to the zonal NO(x) distribution from the individual sources and transport processes are investigated. The model predicted NO(x) concentration in the upper troposphere is dominated by air lofted from the polluted planetary boundary layer over the large industrial areas of Eastern North America and Europe. Aircraft emissions are also important and contribute on average 30 percent. Stratospheric input is minor about 10 percent, less even than that by lightning. The model provides a clear indication of intercontinental transport of NO(x) and HNO3 in the upper troposphere. Comparison of the modelled NO profiles over the Western Atlantic with those measured during STRATOZ 3 in 1984 shows good agreement at all altitudes.
Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels.
Maggos, Th; Plassais, A; Bartzis, J G; Vasilakos, Ch; Moussiopoulos, N; Bonafous, L
2008-01-01
Titanium dioxide is the most important photocatalysts used for purifying applications. If a TiO2- containing material is left outdoors as a form of flat panels, it is activated by sunlight to remove harmful NOx gases during the day. The photocatalytic efficiency of a TiO2-treated mortar for removal of NOx was investigated in the frame of this work. For this purpose a fully equipped monitoring system was designed at a pilot site. This system allows the in situ evaluation of the de-polluting properties of a photocatalytic material by taking into account the climatologic phenomena in street canyons, accurate measurements of pollution level and full registration of meteorological data The pilot site involved three artificial canyon streets, a pollution source, continuous NOx measurements inside the canyons and the source as well as background and meteorological measurements. Significant differences on the NOx concentration level were observed between the TiO2 treated and the reference canyon. NOx values in TiO2 canyon were 36.7 to 82.0% lower than the ones observed in the reference one. Data arising from this study could be used to assess the impact of the photocatalytic material on the purification of the urban environment.
NASA Astrophysics Data System (ADS)
Pusede, S. E.; Zhang, Q.; Parworth, C.; Kim, H.; Shusterman, A.; Saleh, A.; Duffey, K.; Wooldridge, P. J.; Valin, L. C.; Fried, A.; Nowak, J. B.; Crawford, J. H.; Cohen, R. C.
2014-12-01
Nitrogen oxide (NOx) abundances across the U.S. have fallen steadily over the last fifteen years. Patterns in anthropogenic sources result in 2-fold lower NOx on weekends than weekdays largely without co-occurring changes in other emissions. These trends taken together provide a near perfect NOx constraint on the nonlinear chemistry of ozone, on the key oxidants nitrate radical (NO3) and hydroxyl radical (OH), and on secondary aerosol formation. We use this NOx constraint to interpret trends in wintertime PM2.5 over the last decade in San Joaquin Valley, California, a location with severe aerosol pollution and where a large portion of the total aerosol mass is ammonium nitrate (NH4NO3). We combine the 12-year routine monitoring record and the air- and ground-based DISCOVER-AQ-2013 datasets to quantify the impact of NOx emission controls on the frequency of wintertime exceedances of the national PM2.5 standard. Nitrate ion (NO3-) is the oxidation product of NO2 and is formed by distinct daytime and nighttime pathways, both of which are nonlinear functions of the NO2 abundance. We present observationally derived decadal trends in both pathways and show that NOx reductions have worked to simultaneously increase daytime and decrease nighttime NH4NO3 production over the last 15 years. The net effect has been a substantial decrease in NH4NO3 via decreased NO3-radical initiated production in the nocturnal residual layer, a layer largely separated from nighttime emissions at the surface. Whereas NO3- production in the nocturnal residual layer drove NH4NO3 chemistry over the last decade, OH-initiated chemistry at the surface is poised to be the most important source of NH4NO3 in the next decade.
NASA Technical Reports Server (NTRS)
Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.;
2016-01-01
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate 42 on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.
NASA Astrophysics Data System (ADS)
Geddes, J. A.; Murphy, J. G.
2012-12-01
Human impacts on the global nitrogen cycle have led to many environmental problems including tropospheric ozone and aerosol production, acidification, and eutrophication. However, accelerated nitrogen deposition may also be fertilizing carbon uptake by the world's forests, reducing the impact of global climate change. The observations presented here are part of a long-term interdisciplinary collaboration investigating carbon and nitrogen cycling at a mid-latitude mixed hardwood forest in central Ontario subject to high nitrogen deposition. This project focused on estimating dry deposition rates of reactive nitrogen oxides, as well as the chemical and meteorological controls on their fluxes. Measurements of NOx (= NO + NO2) and NOy (= NOx + NO3 + HNO3 + HONO + volatile p-NO3- + organic nitrates…) were made by a two-channel chemiluminescent analyzer (Air Quality Design, Inc.), where conversion of NO2 to NO was achieved by blue LED converter, and NOy to NO by a heated molybdenum tube. The inlet system was co-located with eddy covariance instrumentation for flux calculations on the top of a 30 m tower extending about 8 m above the forest canopy. The measurements were conducted between July 21 and October 9, 2011. The site is fairly removed from major NOx sources, with campaign average NOx mixing ratio of 550 ppt, although they reached above 2-3 ppb during more polluted events. Average NOy mixing ratios were 1500 ppt. Using meteorological data and back trajectories, we show that airflow from the south brought the highest concentrations of reactive nitrogen, and significant increases in dry deposition to the forest canopy. The magnitude of dry deposition was found to be proportional to NOy mixing ratios, with a small number of high concentration days contributing disproportionately to campaign-long dry deposition. Overall, dry deposition was estimated to contribute approximately 10% of total nitrate deposition to the forest. Diurnal patterns in the fluxes of air with high NOx/NOy compared to air with low NOx/NOy reveal differences in the mechanisms driving the measured fluxes in the two populations. The downward vertical velocity of NOy on days with low NOx/NOy ratios was found to be proportional to the magnitude of turbulent mixing as diagnosed by u*. Early morning NOx pulses not explained by photochemistry led to high NOx/NOy ratios, and often co-occurred with the transition from stable to unstable atmosphere as determined by the Monin-Obhukov length scale (z / L). These events are postulated to be due to entrainment of unprocessed NOx-rich air in the residual layer during nocturnal boundary layer break-up, which end up being measured as deposition events.
Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study.
Maggos, Th; Bartzis, J G; Liakou, M; Gobin, C
2007-07-31
An indoor car park was appropriately equipped in order to test the de-polluting efficiency of a TiO(2)-containing paint in an indoor polluted environment, under real scale configuration. Depollution tests were performed in an artificially closed area of the parking, which was polluted by a car exhaust during the testing period. The ceiling surface of the car park was covered with white acrylic TiO(2)-containing paint (PP), which was developed in the frame of the EU project 'PICADA' (Photocatalytic Innovative Coverings Application for Depollution Assessment). The closed area was fed with car exhaust gases. As soon as the system reached steady state, the UV lamps were turned on for 5h. The difference between the final and the initial steady state concentration indicates the removal of the pollutants due to both the photocatalytic paint and car emission reduction. Results showed a significant photocatalytic oxidation of NO(x) gases. The photocatalytic removal of NO and NO(2) was calculated to 19% and 20%, respectively, while the photocatalytic rate (microgm(-2)s(-1)) ranged between 0.05 and 0.13 for NO and between 0.09 and 0.16 for NO(2).
NASA Technical Reports Server (NTRS)
Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.
1982-01-01
The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.
Nitric oxide as an indicator for severity of injury in polytrauma.
Beitl, E; Banasova, A; Vlcek, M; Mikova, D; Hampl, V
2016-01-01
Patients with injuries to multiple organs or organ systems are in a serious risk of shock, multiorgan failure and death. Although there are scoring systems available to assess the extent of polytrauma and guide the prognosis, their usefulness is limited by their considerably subjective nature. As the production of nitric oxide (NO) by many cell types is elevated in tissue injury, we hypothesized that serum concentration of NO (and its oxidation products, NOx) represents a suitable marker of polytrauma correlating with prognosis. We wanted to prove that nitric oxide could serve as an indicator for severity of injury in polytrauma. We measured serum NOx and standard biochemical parameters in 93 patients with various degrees of polytrauma, 15 patients with minor injuries and 20 healthy volunteers. On admission, serum NOx was higher in patients with moderate polytrauma than both in controls and patients with minor injury, and it was even higher in patients with severe polytrauma. Surprisingly, NOx on admission was normal in the group of patients that required cardiopulmonary resuscitation or died within 48 hours after admission. In the groups, where it was elevated on admission, serum NOx dropped to normal values within 12 hours. Blood lactate levels on admission were elevated in proportion to the severity of subsequent clinical course. Elevated serum NOx and blood lactate in patients with polytrauma are markers of serious clinical course, while normal NOx combined with a very high lactate may signal a fatal prognosis (Fig. 4, Ref. 8).
DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cygan, David
Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely usedmore » together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu/h, to 49 vppm. CO emissions fluctuated with the oxygen content and remained below 135 vppm during all tests. The boiler’s maximum output was not achieved due to a limitation dictated by the host site natural gas supply. The FIR burner benefits the public by simultaneously addressing the problems of air pollution and energy conservation through a low-NOx combustion technology that does not increase energy consumption. Continuing activities include the negotiation of a license with Hamworthy Peabody Combustion, Incorporated (Hamworthy Peabody) to commercialize the FIR burner for steel industry applications. Hamworthy Peabody is one of the largest U.S. manufacturers of combustion equipment for boilers in the Steel Industry, and has stated their intention to commercialize the FIR burner.« less
Thom, Stephen R.; Bhopale, Veena M.; Yang, Ming
2014-01-01
This investigation was to elucidate the mechanism for microparticle (MP) formation triggered by exposures to high pressure inert gases. Human neutrophils generate MPs at a threshold of ∼186 kilopascals with exposures of 30 min or more. Murine cells are similar, but MP production occurs at a slower rate and continues for ∼4 h, whether or not cells remain under pressure. Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs according to the potency series: argon ≃ nitrogen > helium. Following a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and immunoprecipitation studies indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H+/K+ ATPase β (flippase), the hematopoietic cell multidrug resistance protein ABC transporter (floppase), and protein-disulfide isomerase in proximity to short actin filaments. Using chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive species generation, actin polymerization, and MP production. These effects were also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated cysteine residues and by co-incubations with the antioxidant ebselen or cytochalasin D. The autocatalytic cycle of protein activation is initiated by inert gas-mediated singlet O2 production. PMID:24867949
Emissions Reduction Policies and Recent Trends in Southern California’s Ambient Air Quality
Lurmann, Fred; Gilliland, Frank
2017-01-01
To assess accountability and effectiveness of air regulatory policies, we reviewed over 20 years of monitoring data, emissions estimates, and regulatory policies across several Southern California communities participating in a long-term study of children’s health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower-pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, was generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. PMID:25947128
NASA Technical Reports Server (NTRS)
Jacob, D. J.; Heikes, B. G.; Fan, S.-M.; Logan, J. A.; Mauzerall, D. L.; Bradshaw, J. D.; Singh, H. B.; Gregory, G. L.; Talbot, R. W.; Blake, D. R.;
1996-01-01
The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics.
Spatially Resolved Emissions of NOx and VOCs and Comparison to Inventories.
NASA Astrophysics Data System (ADS)
Vaughan, A. R.; Lee, J. D.; Lewis, A. C.; Shaw, M.; Purvis, R.; Carslaw, D.; Hewitt, C. N.; Misztal, P. K.; Metzger, S.; Beevers, S.; Goldstein, A. H.; Karl, T.; Davison, B.
2015-12-01
Recent trends in ambient concentrations of NOx in the UK (and other European countries) have shown a general decrease over the period 1990 to 2002, followed by largely static concentrations from 2004 - present. This is not in line with the decreases predicted based on bottom up emission inventories and has lead to widespread non-compliance with EU Air Quality Directives. We present a method to quantify the geographic variability of emission of NOx and selected VOCs at a city scale (London) using an aircraft platform. High frequency observations of NOx and VOCs (10 Hz and 2 Hz, respectively) were made using low altitude flights across London and combined with 20 Hz micro-meteorological data to provide an emission flux using the aircraft eddy covariance technique. A continuous wavelet transformation was used to produce instantaneous fluxes along the flight transect and a parameterisation of a backward Lagrangian model used to calculate the flux footprint, attributing emission rates to specific areas in Greater London (see figure). The observed flux was compared to the UK National Atmospheric Emission Inventory (NAEI), which takes a "bottom up" approach to calculating emissions, involving estimates from different source sectors to produce yearly emission estimates. These were then modified using factors specific to each source to reflect the actual month, day and time of the flight, to provide a more meaningful comparison to the observation. A significant underestimation in the inventory NOx was observed ranging from 150-200% in outer London, to 300% in the central area. Potential reasons for this are discussed, including the poor treatment of real world emissions of NOx from diesel vehicles in the inventory. We also compare measurements to the London Atmospheric Emissions Inventory (LAEI), which provides a more explicit treatment of the traffic emissions specific to London and which shows better agreement with the measurements.
NASA Astrophysics Data System (ADS)
Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2004-12-01
The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
NASA Technical Reports Server (NTRS)
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.;
2016-01-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 deg. x 0.3125 deg. horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a 15 regression of ozone and NOx oxidation products. However, the model is still biased high by 8 +/- 13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
Why do models overestimate surface ozone in the Southeast United States?
NASA Astrophysics Data System (ADS)
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St. Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang
2016-11-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
NASA Astrophysics Data System (ADS)
Choi, Y.; Eldering, A.; Osterman, G.; Wang, Y.; Cunnold, D.; Yang, Q.; Bucsela, E.; Pickering, K.
2008-12-01
We use the Regional chEmical trAnsport Model (REAM) to analyze the contributions of lightning and anthropogenic NOx on ozone concentrations over the U.S. and the western North Atlantic Ocean from June to August 2005. Tropospheric NO2 columns from OMI, tropospheric O3 columns derived from OMI and MLS measurements, and vertical O3 profiles from TES over the region are used in the analysis. With a 50% reduction in the industrial and electrical power generation NOx emissions in the 23 eastern states over the U.S. from 1999 EPA NEI and a parameterization of lightning-produced NOx based on concurrent NLDN, CAPE, and cloud mass flux data, REAM generally captures the spatial distribution of lightning flash rates and OMI NO2 and OMI-MLS O3 column enhancements with high correlation coefficients (0.6-0.9). The model results show that over the U.S., the contribution of surface NOx emissions to summertime tropospheric O3 declines from 47% to 41% due to the reduced emissions. The contribution of surface NOx emissions becomes similar to that of stratospheric transport over the U.S., with the additional being the dramatic reduction in the relative impact of fossil-fuel NOx emissions over continental outflow regions. In the convective outflow regions over the Gulf of Mexico and the western North Atlantic, the contribution of lightning NOx production on tropospheric O3 in the summer is larger than that of anthropogenic NOx emissions with mean differences of 5% to 25%. The impact of NOx produced by lightning is becoming larger as fossil-fuel combustion NOx emissions decrease. After the onset of the North American monsoon, lightning-derived upper tropospheric O3 enhancements in July and August are shown over the convective outflow regions from REAM simulated and TES measured O3 vertical profiles. This result suggests that TES measurements have a potential to constrain lightning-derived tropospheric O3 enhancements, which may play a critical role in controlling climate.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang
2018-01-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer. PMID:29619045
Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.
Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi
2016-09-01
The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Donahue, Neil M; Hartz, Kara E Huff; Chuong, Bao; Presto, Albert A; Stanier, Charles O; Rosenhørn, Thomas; Robinson, Allen L; Pandis, Spyros N
2005-01-01
A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don't know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the alpha-pinene + ozone are highly sensitive to NOx, and that SOA yields from beta-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.
Quan, Jiannong; Liu, Yangang; Liu, Quan; ...
2015-09-30
In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM 2.5), nitrate (NO 3), sulfate (SO 4), ammonium (NH 4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO 2), and ozone (O 3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (N ratio) andmore » S from SO 2 to sulfate (S ratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO 2 to their corresponding particle phases in the late haze period. Further analysis shows that N ratio and S ratio increased with increasing RH, with N ratio and S ratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of N ratio and S ratio to O 3: the conversion ratios increase with decreasing O 3 concentration when O 3 concentration is lower than <15 ppb but increased with increasing O 3 when O 3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO 2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM 2.5 concentration.« less
Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.
2010-01-01
The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.
Angular distributions for the inelastic scattering of NO(X2Π ) with O2(X3Σg-)
NASA Astrophysics Data System (ADS)
Brouard, M.; Gordon, S. D. S.; Nichols, B.; Squires, E.; Walpole, V.; Aoiz, F. J.; Stolte, S.
2017-05-01
The inelastic scattering of NO(X2Π ) by O2(X3Σg-) was studied at a mean collision energy of 550 cm-1 using velocity-map ion imaging. The initial quantum state of the NO(X2Π , v = 0, j = 0.5, Ω =0.5 , 𝜖 = -1 , f) molecule was selected using a hexapole electric field, and specific Λ-doublet levels of scattered NO were probed using (1 +1' ) resonantly enhanced multiphoton ionization. A modified "onion-peeling" algorithm was employed to extract angular scattering information from the series of "pancaked," nested Newton spheres arising as a consequence of the rotational excitation of the molecular oxygen collision partner. The extracted differential cross sections for NO(X) f →f and f →e Λ-doublet resolved, spin-orbit conserving transitions, partially resolved in the oxygen co-product rotational quantum state, are reported, along with O2 fragment pair-correlated rotational state population. The inelastic scattering of NO with O2 is shown to share many similarities with the scattering of NO(X) with the rare gases. However, subtle differences in the angular distributions between the two collision partners are observed.
NASA Astrophysics Data System (ADS)
Cui, Y.; Brioude, J. F.; Angevine, W. M.; McKeen, S. A.; Henze, D. K.; Bousserez, N.; Liu, Z.; McDonald, B.; Peischl, J.; Ryerson, T. B.; Frost, G. J.; Trainer, M.
2016-12-01
Production of unconventional natural gas grew rapidly during the past ten years in the US which led to an increase in emissions of methane (CH4) and, depending on the shale region, nitrogen oxides (NOx). In terms of radiative forcing, CH4 is the second most important greenhouse gas after CO2. NOx is a precursor of ozone (O3) in the troposphere and nitrate particles, both of which are regulated by the US Clean Air Act. Emission estimates of CH4 and NOx from the shale regions are still highly uncertain. We present top-down estimates of CH4 and NOx surface fluxes from the Haynesville and Fayetteville shale production regions using aircraft data collected during the Southeast Nexus of Climate Change and Air Quality (SENEX) field campaign (June-July, 2013) and the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign (March-May, 2015) within a mesoscale inversion framework. The inversion method is based on a mesoscale Bayesian inversion system using multiple transport models. EPA's 2011 National CH4 and NOx Emission Inventories are used as prior information to optimize CH4 and NOx emissions. Furthermore, the posterior CH4 emission estimates are used to constrain NOx emission estimates using a flux ratio inversion technique. Sensitivity of the posterior estimates to the use of off-diagonal terms in the error covariance matrices, the transport models, and prior estimates is discussed. Compared to the ground-based in-situ observations, the optimized CH4 and NOx inventories improve ground level CH4 and O3 concentrations calculated by the Weather Research and Forecasting mesoscale model coupled with chemistry (WRF-Chem).
NASA Astrophysics Data System (ADS)
Cooper, M.; Martin, R.; Wespes, C.; Coheur, P. F.; Clerbaux, C.; Murray, L. T.
2014-12-01
Nitrogen oxides (NOx ≡ NO + NO2) in the free troposphere largely control the production of ozone (O3), an important greenhouse gas and atmospheric oxidant. As HNO3 is the dominant sink of tropospheric NOx, improved understanding of its production and loss mechanisms can help to better constrain NOx emissions, and in turn improve understanding of ozone production and its effect on climate. However, this understanding is inhibited by the scarcity of direct measurements of free tropospheric HNO3, particularly in the tropics. We interpret tropical tropospheric nitric acid columns from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). Overall GEOS-Chem generally agrees with IASI, however we find that the simulation underestimates IASI nitric acid over Southeast Asia by a factor of two. The bias is confirmed by comparing the GEOS-Chem simulation with additional satellite (HIRDLS, ACE-FTS) and aircraft (PEM-Tropics A and PEM-West B) observations of the middle and upper troposphere. We show that this bias can be explained by the parameterization of lightning NOx emissions, primarily from the misrepresentation of concentrated subgrid lightning NOx plumes. We tested a subgrid lightning plume parameterization and found that an additional 0.5 Tg N with an ozone production efficiency of 15 mol/mol would reduce the regional nitric acid bias from 92% to 6% without perturbing the rest of the tropics. Other sensitivity studies such as modified NOx yield per flash, increased altitude of lightning NOx emissions, or changes to convective mass flux or wet deposition of nitric acid required unrealistic changes to reduce the bias. This work demonstrates the importance of a comprehensive lightning parameterization to constraining NOx emissions.
SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.
Chen, H; Chen, D Z; Fan, S; Hong, L; Wang, D
2016-10-01
In this research, urea-spiked hydrazine hydrate solutions are used as reductants for the Selective Non-Catalytic Reduction (SNCR) De-NOx process below 650 °C. The urea concentration in the urea/hydrazine hydrate solutions is chosen through experimental and theoretical studies. To determine the mechanism of the De-NOx process, thermogravimetric analysis (TGA) of the urea/hydrazine hydrate solutions and their thermal decomposition in air and nitrogen atmospheres were studied to understand their decomposition behaviours and redox characteristics. Then a plug flow reactor (PFR) model was adopted to simulate the De-NOx processes in a pilot scale tubular reactor, and the calculated De-NOx efficiency vs. temperature profiles were compared with experimental results to support the mechanism and choose the proper reductant and its reaction temperature. Both the experimental and calculated results show that when the urea is spiked into hydrazine hydrate solution to make the urea-N content approximately 16.7%-25% of the total N content in the solution, better De-NOx efficiencies can be obtained in the temperature range of 550-650 °C, under which NH3 is inactive in reducing NOx. And it is also proved that for these urea-spiked hydrazine hydrate solutions, the hydrazine decomposition through the pathway N2H4 + M = N2H3 + H + M is enhanced to provide radical H, which is active to reduce NO. Finally, the reaction routes for SNCR De-NOx process based on urea-spiked hydrazine hydrate at the proper temperature are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yue, Tao; Gao, Xiang; Gao, Jiajia; Tong, Yali; Wang, Kun; Zuo, Penglai; Zhang, Xiaoxi; Tong, Li; Wang, Chenlong; Xue, Yifeng
2018-07-01
In the past decade, due to the management policies and coal combustion controls in Beijing, the consumption of natural gas has increased gradually. Nevertheless, the research on the emission characteristics of gaseous pollutants emitted from gas-fired industrial boilers, especially considering the influence of low nitrogen (low-NOx) retrofit policy of gas boilers, is scarcely. In this study, based on literature and field investigations, onsite measurements of NOx, CO, NH3 and VOCs (Volatile Organic Compounds) emissions from gas-fired industrial boilers as well as the key factors that affected the emission of gaseous pollutants were discussed. Category-specific emission factors (EFs) of NOx, CO, NH3 and VOCs were obtained from the field measurements of 1107 "low-NOx" retrofitted and unabated gas-fired industrial boilers. Our results showed that operating load and control measures were the two key factors affecting the formation of gaseous pollutants. The EFs of NOx (EFNOx) and CO (EFCO) of atmospheric combustion boilers (ACBs) were much higher than the EFs of chamber combustion boilers (CCBs). The total emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing in the year of 2015 were estimated at 10489.6 t, 3272.8 t, 196.4 t and 235.4 t, respectively. Alkanes, BTEX, oxygenated VOCs and non-reactive organic matter were the four main chemical components of VOCs. As for the spatial distributions, the emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing were predominantly concentrated in central six urban districts. In the future, more detailed investigation and field tests for all kinds of gas-fired industrial boilers are still greatly needed to achieve more reliable estimations of atmospheric pollutants from gas-fired industrial boilers.
A Summary of the NASA Lightning Nitrogen Oxides Model (LNOM) and Recent Results
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harld
2011-01-01
The NASA Marshall Space Flight Center introduced the Lightning Nitrogen Oxides Model (LNOM) a couple of years ago to combine routine state-of-the-art measurements of lightning with empirical laboratory results of lightning NOx production. The routine measurements included VHF lightning source data [such as from the North Alabama Lightning Mapping Array (LMA)], and ground flash location, peak current, and stroke multiplicity data from the National Lightning Detection Network(TradeMark) (NLDN). Following these initial runs of LNOM, the model was updated to include several non-return stroke lightning NOx production mechanisms, and provided the impact of lightning NOx on an August 2006 run of CMAQ. In this study, we review the evolution of the LNOM in greater detail and discuss the model?s latest upgrades and applications. Whereas previous applications were limited to five summer months of data for North Alabama thunderstorms, the most recent LNOM analyses cover several years. The latest statistics of ground and cloud flash NOx production are provided.
Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C. (Technical Monitor)
2004-01-01
This report provides the first high level look at system design, airplane performance, maintenance, and cost implications of using water misting and water injection technology in aircraft engines for takeoff and climb-out NOx emissions reduction. With an engine compressor inlet water misting rate of 2.2 percent water-to-air ratio, a 47 percent NOx reduction was calculated. Combustor water injection could achieve greater reductions of about 85 percent, but with some performance penalties. For the water misting system on days above 59 F, a fuel efficiency benefit of about 3.5 percent would be experienced. Reductions of up to 436 F in turbine inlet temperature were also estimated, which could lead to increased hot section life. A 0.61 db noise reduction will occur. A nominal airplane weight penalty of less than 360 lb (no water) was estimated for a 305 passenger airplane. The airplane system cost is initially estimated at $40.92 per takeoff giving an attractive NOx emissions reduction cost/benefit ratio of about $1,663/ton.
NASA Technical Reports Server (NTRS)
Cooper, C. David
1997-01-01
Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Wang, Rui
2012-01-01
Surface-modified carbon nanotubes (CNTs) and nano-Ce-Zr mixed oxides (CZO) were prepared and employed initially as supports of H3PW12O40 (HPW) for NOx adsorption-decomposition. Both CNTs and nano-CZO are favorable supports for HPW. After loading with HPW, the NOx adsorption efficiency increases, especially for HPW/CZO in which the highest adsorption efficiency can achieve 98% at the HPW loading of 70%, much higher than that of single HPW. NOx adsorption efficiency can be influenced considerably by catalyst preparing conditions, in particularly, ethyl alcohol is superior to water as solvent for HPW loading onto CNTs; the -OH containing CNTs shows better promotion effect on the adsorption of NOx than that containing -COOH when using absolute ethyl alcohol as solvent; mechanical grinding method is superior to incipient impregnation method in loading HPW onto the support of CZO. For both catalysts of HPW/CNTs and HPW/CZO, with the increase of HPW loading, the NOx adsorption efficiency tends to reach a peak value before dropping down. Heated from 150°C to 450°C at a rate of 50°C/min, the adsorbed NO was found to decompose into N2, O2 and N2O, and yields of N2 being 21.8% and 27.3%, respectively for HPW/CNTs and HPW/CZO were obtained.
NASA Astrophysics Data System (ADS)
Elliott, E. M.; Kendall, C.; Harlin, K.; Butler, T.; Carlton, R.; Wankel, S.
2004-12-01
Atmospheric deposition of N is a universally important pathway by which ecosystems receive fixed, bioavailable N. Since the 1880s, atmospheric deposition of N has become increasingly important, as NOx emissions from fossil fuel combustion have steadily increased. In particular, the Northeastern and Mid-Atlantic U.S. receive some of the highest rates of nitrate wet deposition in the country, causing a cascade of detrimental effects. In order to effectively mediate the impacts of nitrate deposition, it is critical to understand the dynamics among NOx sources, atmospheric chemical transformations and transport, and the characteristics of the nitrate that is ultimately deposited. To address this need, this research takes advantage of recent methodological improvements, coupled with national networks (NADP, AIRMoN) of archived precipitation, to characterize N and O isotopic composition of nitrate in precipitation across the Northeastern and Mid-Atlantic U.S. We investigate the critical question of whether variations in \\delta15N and \\delta18O of nitrate wet deposition are mainly a function of atmospheric processes (e.g., seasonal variations in reaction pathways) or variable NOx source contributions (e.g., power plant emissions, vehicle exhaust). Spatial and seasonal variability of \\delta15N and \\delta18O is investigated using bimonthly archived samples from 2000. Furthermore, a high resolution record of daily precipitation from a single site is used to highlight within-season isotopic variability. Potential correlations between isotopic values and major NOx sources are explored using EPA datasets for monthly county-level emissions from two major NOx sources, electric generating units and on-road vehicles. Analysis of samples for \\Delta17O is in progress. A key concern regarding analysis of archived samples is nitrate preservation. We tested the stability of nitrate concentrations, and hence potential isotopic fractionations, by reanalyzing filtered, refrigerated, archived NADP samples with a range of nitrate and ammonium concentrations. We found highly significant correlations (R2=0.9995, p<0.001, n=28) between nitrate concentrations measured in 2000 and 2003, indicating that no major alterations had occurred. With regard to spatial patterns, preliminary isotopic analyses indicate that \\delta15N of precipitation nitrate varies considerably among states. Moreover, initial data corroborate previously reported seasonal trends in both \\delta15N and \\delta18O, with higher values in the colder months. Seasonal trends in \\delta15N are remarkably consistent, with up to an 8 \\permil difference between winter and summer months. \\delta18O values of nitrate are generally higher and have a smaller range than previously reported for precipitation, with values ranging from +60 to +90 \\permil. In addition, archived daily precipitation collected during 2000 from a single AIRMoN site give insight into the seasonal and within-season variability of \\delta15N and \\delta18O of precipitation nitrate. Back-trajectory analyses are used to examine the geographic source of air masses for individual events, and seasonal frontal patterns are discussed.
Particle and Gas Emissions from an In Situ Burn of Crude Oil on the Ocean.
Hobbs, John L Ross Ronald J Ferek And Peter V
1996-03-01
Burning is a very effective way of removing oil spills from the ocean; the tradeoff is the potential for significant air pollution. Airborne measurements are described for particles and gases from two test burns of crude oil offshore of St. Johns, Newfoundland during the Newfoundland Offshore Burn Experiment (NOBE). The smoke plumes from the burns initially rose 200-400 m into the air and then continued to rise and disperse laterally downwind. The concentrations of accumulation-mode particles in the smoke were ~45,000 cm -3 at 1.5 km from the fires, and they remained as high as ~4,000 cm -3 after an hour or more of travel time downwind. Total particle mass loadings in the plumes were over 1000 µg m -3 near the fires, but decreased to ~100 µg m -3 at 25 km downwind. For each kilogram of fuel consumed, ~770 g of carbon was released in the form of CO2, ~13 g of carbon as CO, -5 g as volatile organic compounds (VOCs), and -87 g as particles with diameters <3.5 µm, of which ~66 g was elemental carbon and ~7 g condensed organic carbon. Also, ~3 g of SO2 was released per kilogram of fuel burned. A relatively low combustion efficiency was indicated by the average molar ratio of the concentration of CO to excess CO2 of 0.017. The molar ratio of NOX to excess CO2 typically varied from 0.3 x 10 -3 to 0.4 x 10 -3 , implying little fixation of atmospheric nitrogen and low concentrations of NOX. For comparison, the total smoke particle production rate in the NOBE burns was about the same as that for a nineacre slash burn.
NASA Astrophysics Data System (ADS)
Walters, Wendell W.; Fang, Huan; Michalski, Greg
2018-04-01
The nitrogen and oxygen stable isotopes (δ15N & δ18O) of nitrogen oxides (NOx = nitric oxide (NO) + nitrogen dioxide (NO2)) may be a useful tool for partitioning NOx emission sources and for evaluating NOx photochemical cycling, but few measurements of in situ NOx exist. In this study, we have collected and characterized the diurnal variability in δ15N and δ18O of NO2 from ambient air at a small Midwestern city (West Lafayette, IN, USA, 40.426° N, 86.908° W) between July 7 to August 5, 2016, using an active sampling technique. Large variations were observed in both δ15N(NO2) and δ18O(NO2) that ranged from -31.4 to 0.4‰ and 41.5-112.5‰, respectively. Daytime averages were -9.2 ± 5.7‰ (x̅ ± 1σ) and 86.5 ± 14.1‰ (n = 11), while nighttime averages were -13.4 ± 7.3‰ and 56.3 ± 7.1‰ (n = 12) for δ15N(NO2) and δ18O(NO2), respectively. The large variability observed in δ15N(NO2) is predicted to be driven by changing contributions of local NOx emission sources, as calculated isotope effects predict a minor impact on δ15N(NO2) relative to δ15N(NOx) that is generally less than 2.5‰ under the sample collection conditions of high ozone concentration ([O3]) relative to [NOx]. A statistical δ15N mass-balance model suggests that traffic-derived NOx is the main contributor to the sampling site (0.52 ± 0.22) with higher relative contribution during the daytime (0.58 ± 0.19) likely due to higher traffic volume than during the nighttime (0.47 ± 0.22). The diurnal cycle observed in δ18O(NO2) is hypothesized to be a result of the photochemical cycling of NOx that elevates δ18O(NO2) during the daytime relative to the nighttime. Overall, this data suggests the potential to use δ15N(NO2) for NOx source partitioning under environmental conditions of high [O3] relative to [NOx] and δ18O(NO2) for evaluating VOC-NOx-O3 chemistry.
How partial nitrification could improve reclaimed wastewater transport in long pipes.
Delgado, S; Alvarez, M; Rodríguez-Gómez, L E; Elmaleh, S; Aguiar, E
2001-01-01
Reclaimed wastewater transport is studied in a concrete-lined cast iron pipe, where a nitrification-denitrification process occurs. The pipe is part of the Reuse System of Reclaimed Wastewater of South Tenerife (Spain), 0.6 m in diameter and 61 km long. In order to improve wastewater quality, at 10 km from the inlet there is injection of fresh water saturated in dissolved oxygen (DO), after which a fast nitrification process usually appears (less than two hours of space time). The amount of oxidized nitrogen compounds produced varies between 0.8 and 4.4 mg/l NOx(-)-N. When DO has disappeared, a denitrification process begins. The removal of nitrite is complete at the end of the pipe, whereas the nitrate does not disappear completely, leaving a concentration of about 0.4-0.5 mg/l. For a COD/NOx(-)-N ratio higher than 5, a first order nitrification rate in NOx(-)-N has resulted, with the constant k20 = 0.079 h-1, for a NOx(-)-N concentration range of 0.8-4.4 mg/l. Finally the following temperature dependency for the first order denitrification rate constant has been found: k = k20 x 1 x 15T-20. Although nitrogen could be used as nutrient in the agricultural reuse, its removal from reclaimed wastewater could be useful in order to diminish the chlorine needs for reclaimed wastewater disinfection.
Seasonal behavior of NO2 in the winter stratosphere - Inferred NO(x)
NASA Astrophysics Data System (ADS)
Zawodny, J. M.; Rusch, D. W.
1986-04-01
An analysis is performed of Solar Mesosphere Explorer (SME) data for the first 90 days of 1982, when a trend of increasing NO2 content in the stratosphere near the 10 mbar pressure level was detected. A photochemical-dynamical model is developed to account for the observed densities, which were also detected with ground-based instrumentation. The model calculations indicated that partitioning of the NO(x) family from N2O5 to NO2 was responsible for the trend. The new partitioning requires a lowering of the mixing ratio of NO(x), which was also observed. Finally, the SME data also confirmed that the enhanced NO2 concentrations were dependent on the solar zenith angle.
Vehicle Real Driving Emissions of Nitrogen Oxides in an Urban Area from a large Vehicle Fleet
NASA Astrophysics Data System (ADS)
Pöhler, Denis; Horbanski, Martin; Oesterle, Tobias; Adler, Tim; Reh, Miriam; Tirpitz, Lukas; Kanatschnig, Florian; Lampel, Joahnnes; Platt, Ulrich
2016-04-01
Nitrogen Oxide (NOx=NO +NO2) emissions by road vehicles are the major contributor for poor air quality in urban areas. High NOx concentrations, and especially NO2, are typically the most problematic pollution in cities. However, emissions vary significantly depending on the type of vehicle, its engine, the age, condition of the vehicle, driving properties, modifications and many more. Even if official NOx emission data of the manufacturer exist, they are only valid for new vehicles and the current vehicle emission scandal shows clearly that these data are often wrong. Thus, real driving emissions (RDE) of the current vehicle fleet is required. With such data the contribution of individual vehicles to the NO2 and NOx levels in urban areas can be estimated. Significant reduction of NOx concentrations can be achieved by identifying the strong emitting vehicles and excluding, replace or modify them. We developed a precise and fast ICAD (Iterative CAvity DOAS) NO2 instrument which can measure the concentration within the emission plume of vehicles under real driving conditions. The sampling was performed with an inlet at the front of a car which was following the investigated vehicles. The instrument measure NO2 and additionally CO2 with a time resolution of 2 seconds. With the observed NO2 values already strong emitters can easily be identified. With the use of known CO2 emissions, more reliable emissions for NO2 can be calculated for each vehicle. Currently the system is expanded with a NOx channel to derive the total nitrogen oxide emissions. The system was successfully applied in several studies over the last two years to investigate NO2 RDE. More than thousand vehicles were investigated. We observed that several vehicles from various brands show much higher emissions than allowed (more than a factor of 5). Highest emissions correlate for trucks and busses typically to older vehicles, what is not the case for cars. A large variability between different cars was found which could often make up a factor of 10 or more. Often new Diesel cars are one of the strongest emitters, which agree well with other findings. However, older busses and trucks feature regularly the highest emissions, but also here strong variability between different vehicle types with different exhaust treatment and modification is observed. This is especially a problem with busses from the public transport which significantly contribute to urban air pollution. Identifying first the strongest emitting busses, which should be replaced first, can help to faster improve urban air quality. New busses and trucks, beside from few exceptions, show surprisingly relatively low emissions. The exceptions indicate potentially broken NOx exhaust treatment. All these findings show that regular RDE are necessary for the whole vehicle fleet to identify strongest NOx emitters and develop strategies to reduce their emissions. They also allow to provide more accurate model calculations on total emissions in urban areas.
Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui
2010-08-15
Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio.
Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang
2014-09-02
NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.
The Influence of Nitrogen Oxides on Chlorine Chemistry in Barrow, Alaska
NASA Astrophysics Data System (ADS)
McNamara, S. M.; Raso, A. R. W.; Wang, S.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.
2016-12-01
Active chlorine chemistry in the springtime Arctic boundary layer impacts the fate of atmospheric pollutants and greenhouse gases. Recent field studies have reported high amounts of molecular chlorine (Cl2), up to 400 parts per trillion (ppt), as well as the presence of chlorinated hydrocarbon oxidation products. However, our knowledge of Arctic chlorine chemistry is limited by a paucity of observations. The presence of nitrogen oxides (NOx) may influence the chlorine chemistry in this region. Here, we report chemical ionization mass spectrometry measurements of Cl2, chlorine monoxide (ClO), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5), and NOx measurements at Barrow, AK during March-May 2016. To our knowledge, these data represent the first observations of ClNO2 in the Arctic. While the main source of NOx in a pristine Arctic environment is irradiated snow surfaces, anthropogenic sources can significantly enhance local NOx concentrations. The role of NOx in the activation and temporal trends of the reactive chlorine species are examined using a 0-D photochemical model. The prevalence of chlorine chemistry under elevated nitrogen oxide conditions may have significant impacts on the atmospheric composition in an increasingly polluted Arctic.
Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.
Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan
2016-09-01
The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kadam, Vaibhav
The heavy-duty diesel (HDD) engines use the diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and urea injection based selective catalytic reduction (SCR) systems in sequential combination, to meet the US EPA 2010 PM and NOx emission standards. The SCR along with a NH 3 slip control catalyst (AMOX) offer NOx reduction >90 % with NH3 slip <20 ppm. However, there is a strong desire to further improve the NOx reduction performance of such systems, to meet the California Optional Low NOx Standard implemented since 2015. Integrating SCR functionality into a diesel particulate filter (DPF), by coating the SCR catalyst on the DPF, offers potential to reduce the system cost and packaging weight/ volume. It also provides opportunity to increases the SCR volume without affecting the overall packaging, to achieve NO x reduction efficiencies >95 %. In this research, the NOx reduction and NH3 storage performance of a Cu-zeolite SCR and Cu-zeolite SCR catalyst on DPF (SCRFRTM) were experimentally investigated based on the engine experimental data at steady state conditions. The experimental data for the production-2013-SCR and the SCRFRTM were collected (with and without PM loading in the SCRFRTM) on a Cummins ISB 2013 engine, at varying inlet temperatures, space velocities, inlet NOx concentrations and NO2/NOx ratios, to evaluate the NOx reduction, NH3 storage and NH 3 slip characteristics of the SCR catalyst. The SCRFRTM was loaded with 2 and 4 g/L of PM prior to the NOx reduction tests to study the effect of PM loading on the NOx reduction and NH3 storage performance of the SCRFRTM. The experimental setup and test procedures for evaluation of NOx reduction performance of the SCRFRTM, with and without PM loading in the SCRFRTM are described. The 1-D SCR model developed at MTU was calibrated to the engine experimental data obtained from the seven NOx reduction tests conducted with the production-2013-SCR. The performance of the 1-D SCR model was validated by comparing the simulation and experimental data for NO, NO2 and NH3 concentrations at the outlet of the SCR. The NO and NO 2 concentrations were calibrated to +/-20 ppm and NH3 was calibrated to +/-20 ppm. The experimental results for the production-2013-SCR indicate that the NOx reduction of 80 - 85% can be achieved for the inlet temperatures below 250°C and above 450°C and NO x reduction of 90 - 95% can be achieved for the inlet temperatures between 300 - 350°C, at ammonia to NO2 ratio (ANR) 1.0, while the NH3 slip out of the SCR was <75 ppm. Conversely, the SCRFRTM showed 90 - 95 % NOx reduction at ANR of 1.0, while the NH3 slip out of the SCRFRTM was >50 ppm, with and without PM loading in the SCRFRTM, for the inlet temperature range of 200 - 450 °C, space velocity in the range of 13 to 48 k/hr and inlet NO 2/NOx in the range of 0.2 to 0.5. The NOx reduction in the SCRFRTM increases to >98 % at ANR 1.2. However, the NH3 slip out of the SCRFRTM increases significantly at ANR 1.2. The effect of PM loading at 2 and 4 g/L on the NOx reduction performance of the SCRFRTM was negligible below 300 °C. However, with PM loading in the SCRFRTM, the NO2 reduction decreased by 3 - 5% when compared to the clean SCRFRTM, for inlet temperature >350 °C. Experimental data were also collected by reference [1] to investigate the NO2 assisted PM oxidation in the SCRFRTM for the inlet temperature range of 260 - 370 °C, with and without urea injection and thermal oxidation of PM in the SCRFRTM for the inlet temperature range of 500 - 600 °C, without urea injection by reference [1]. The experimental data obtained from this study and [1] will be used to develop and calibrate the SCR-F model at Michigan Tech. The NH3 storage for the production-2013-SCR and the SCRFRTM (with and without PM loading) were determined from the steady state engine experimental data. The NH3 storage for the production-2013-SCR and the SCRFRTM (without PM loading) were within +/-5 gmol/m 3 of the substrate, with maximum NH3 storage of 75 - 80 gmol/m3 of the substrate, at the SCR/SCRFRTM inlet temperature of 200°C. The NH3 storage in the SCRFRTM, with 2 g/L PM loading, decreased by 30%, when compared to the NH3 storage in the SCRFRTM, without PM loading. The further increase in the PM loading in the SCRFRTM, from 2 to 4 g/L, had negligible effect on NH 3 storage.
NASA Astrophysics Data System (ADS)
Jonson, J. E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C.
2017-09-01
Diesel cars have been emitting four to seven times more NOx in on-road driving than in type approval tests. These ‘excess emissions’ are a consequence of deliberate design of the vehicle’s after-treatment system, as investigations during the ‘Dieselgate’ scandal have revealed. Here we calculate health and environmental impacts of these excess NOx emissions in all European countries for the year 2013. We use national emissions reported officially under the UNECE Convention for Long-range Transport of Atmospheric Pollutants and employ the EMEP MSC-W Chemistry Transport Model and the GAINS Integrated Assessment Model to determine atmospheric concentrations and resulting impacts. We compare with impacts from hypothetical emissions where light duty diesel vehicles are assumed to emit only as much as their respective type approval limit value or as little as petrol cars of the same age. Excess NO2 concentrations can also have direct health impacts, but these overlap with the impacts from particulate matter (PM) and are not included here. We estimate that almost 10 000 premature deaths from PM2.5 and ozone in the adult population (age >30 years) can be attributed to the NOx emissions from diesel cars and light commercial vehicles in EU28 plus Norway and Switzerland in 2013. About 50% of these could have been avoided if diesel limits had been achieved also in on-road driving; and had diesel cars emitted as little NOx as petrol cars, 80% of these premature deaths could have been avoided. Ecosystem eutrophication impacts (critical load exceedances) from the same diesel vehicles would also have been reduced at similar rates as for the health effects.
NASA Astrophysics Data System (ADS)
Mielke, L. H.; Stutz, J.; Tsai, C.; Hurlock, S. C.; Roberts, J. M.; Veres, P. R.; Froyd, K. D.; Hayes, P. L.; Cubison, M. J.; Jimenez, J. L.; Washenfelder, R. A.; Young, C. J.; Gilman, J. B.; de Gouw, J. A.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Liu, J.; Weber, R. J.; Osthoff, H. D.
2013-09-01
nocturnal conversion of dinitrogen pentoxide (N2O5) to nitryl chloride (ClNO2) on chloride-containing aerosol can be a regionally important NOx (= NO + NO2) recycling and halogen activation pathway that affects oxidant photochemistry the following day. Here we present a comprehensive measurement data set acquired at Pasadena, California, during the CalNex-LA campaign 2010 that included measurements of odd nitrogen and its major components (NOy = NOx + NO3 + 2N2O5 + ClNO2 + HNO3 + HONO + peroxyacyl, alkyl, and aerosol nitrates) and aerosol size distribution and composition. Nitryl chloride was present during every night of the study (median mixing ratio at sunrise 800 pptv) and was usually a more significant nocturnal NOx and odd oxygen (Ox = O3 + NO2 + 3N2O5 + ClNO2) reservoir species than N2O5 (whose concentrations were calculated from its equilibrium with NO2 and NO3). At sunrise, ClNO2 accounted for 21% of NOz (=NOy - NOx), 4% of NOy, and 2.5% of Ox, respectively (median values). Kinetic parameters for the N2O5 to ClNO2 conversion were estimated by relating ClNO2 concentrations to their time-integrated heterogeneous production from N2O5 and were highly variable between nights. Production of ClNO2 required conversion of N2O5 on submicron aerosol with average yield (φ) and N2O5 reactive uptake probability (γ) of γφ = 0.008 (maximum 0.04), scaled with submicron aerosol chloride content, and was suppressed by aerosol organic matter and liquid water content. Not all of the observed variability of ClNO2 production efficiency could be rationalized using current literature parameterizations.
NASA Astrophysics Data System (ADS)
Roy, Chaitri; Fadnavis, Suvarna; Müller, Rolf; Ayantika, D. C.; Ploeger, Felix; Rap, Alexandru
2017-01-01
The Asian summer monsoon (ASM) anticyclone is the most pronounced circulation pattern in the upper troposphere and lower stratosphere (UTLS) during northern hemispheric summer. ASM convection plays an important role in efficient vertical transport from the surface to the upper-level anticyclone. In this paper we investigate the potential impact of enhanced anthropogenic nitrogen oxide (NOx) emissions on the distribution of ozone in the UTLS using the fully coupled aerosol-chemistry-climate model, ECHAM5-HAMMOZ. Ozone in the UTLS is influenced both by the convective uplift of ozone precursors and by the uplift of enhanced-NOx-induced tropospheric ozone anomalies. We performed anthropogenic NOx emission sensitivity experiments over India and China. In these simulations, covering the years 2000-2010, anthropogenic NOx emissions have been increased by 38 % over India and by 73 % over China with respect to the emission base year 2000. These emission increases are comparable to the observed linear trends of 3.8 % per year over India and 7.3 % per year over China during the period 2000 to 2010. Enhanced NOx emissions over India by 38 % and China by 73 % increase the ozone radiative forcing in the ASM anticyclone (15-40° N, 60-120° E) by 16.3 and 78.5 mW m-2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China) results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone.
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.
Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P
2013-10-29
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer
Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.
2013-01-01
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201
NASA Astrophysics Data System (ADS)
Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji
2007-05-01
There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.
Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R
2012-07-07
A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.
Update of NOx emission temporal profiles using CMAQ-HDDM
NASA Astrophysics Data System (ADS)
Bae, C.; Lee, J. B.; Kim, H. C.; Kim, B. U.; Kim, S.
2017-12-01
This study demonstrates the impact of revised temporal profiles of NOx emissions on air quality simulations in the Seoul Metropolitan Area (SMA), South Korea. Air pollutants such as ozone and nitrogen oxides can be harmful to the human body even with short-term exposure. Since most of air quality models use predefined temporal profiles which are often outdated or taken from different chemical environment, providing accurate temporal variation of emissions are challenging in prediction of correct local air quality. Considering secondary formation of pollutants are important in mega cities and temporal variations of emissions are not coincident with those of resultant concentrations, we utilized CMAQ-HDDM to link emissions and consequential concentrations from different time steps. Base simulations were conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 and CAPSS 2013 emissions inventories for East Asia and South Korea, respectively. With current modeling system, modeled NOx concentrations underestimate 4% in the daytime (10-16 LST), but overestimate 30% in the nighttime during May to August 2015. Applying revised temporal profiles based on HDDM sensitivities, model performance was improved significantly. We conclude that the proposed temporal allocation method can be useful to reduce the model-observation discrepancies when the activity data for emission sources are difficult to obtain with a bottom-up approach.
Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole
2016-06-01
Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.
Possible Catalytic Effects of Ice Particles on the Production of NOx by Lightning Discharges
NASA Technical Reports Server (NTRS)
2010-01-01
One mechanism by which NO(x) is produced in the atmosphere is heating in lightning discharge channels. Since most viable proposed electrification mechanisms involve ice crystals, it is reasonable to assume that lightning discharge channels frequently pass through fields of ice particles of various kinds. We address the question of whether ice crystals may serve as catalysts for the production of NO(x) by lightning discharges. If so, and if the effect is large, it would need to be taken into account in estimates of global NO(x) production by lightning. In this study, we make a series of plausible assumptions about the temperature and concentration of reactant species in the environment of discharges and we postulate a mechanism by which ice crystals are able to adsorb nitrogen atoms. We then compare production rates between uncatalyzed and catalytic reactions at 2000 K, 3000 K, and 4000 K. Catalyzed NO production rates are greater at 2000 K, whereas uncatalyzed production occurs most rapidly at 4000 K. 2010
Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing
2010-05-15
A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.; Vieno, M.; Monks, P. S.
2014-01-01
Ground-level ozone is recognized to be a threat to human health (WHO, 2003), have a deleterious impact on vegetation (Fowler et al., 2009), is also an important greenhouse gas (IPCC, 2007) and key to the oxidative ability of the atmosphere (Monks et al., 2009). Owing to its harmful effect on health, much policy and mitigation effort has been put into reducing its precursors - the nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOCs). The non-linear chemistry of tropospheric ozone formation, dependent mainly on NOx and NMVOC concentrations in the atmosphere, makes controlling tropospheric ozone complex. Furthermore, the concentration of ozone at any given point is a complex superimposition of in-situ produced or destroyed ozone and transported ozone on the regional and hemispheric-scale. In order to effectively address ozone, a more detailed understanding of its origins is needed. Here we show that roughly half (5 μg m-3) of the observed increase in urban (London) ozone (10 μg m-3) in the UK from 1998 to 2008 is owing to factors of local origin, in particular, the change in NO : NO2 ratio, NMVOC : NOx balance, NMVOC speciation, and emission reductions (including NOx titration). In areas with previously higher large concentrations of nitrogen oxides, ozone that was previously suppressed by high concentrations of NO has now been "unmasked", as in London and other urban areas of the UK. The remaining half (approximately 5 μg m-3) of the observed ozone increase is attributed to non-local factors such as long-term transport of ozone, changes in background ozone, and meteorological variability. These results show that a two-pronged approach, local action and regional-to-hemispheric cooperation, is needed to reduce ozone and thereby population exposure, which is especially important for urban ozone.
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Dubé, William P.; Karamchandani, Prakash; Yarwood, Greg; Peischl, Jeff; Ryerson, Thomas B.; Neuman, J. Andrew; Nowak, John B.; Holloway, John S.; Washenfelder, Rebecca A.; Brock, Charles A.; Frost, Gregory J.; Trainer, Michael; Parrish, David D.; Fehsenfeld, Frederick C.; Ravishankara, A. R.
2012-04-01
Coal-fired electric power plants produce a large fraction of total U.S. NOx emissions, but NOx from this sector has been declining in the last decade owing to installation of control technology. Nighttime aircraft intercepts of plumes from two different Texas power plants (Oklaunion near Wichita Falls and W. A. Parish near Houston) with different control technologies demonstrate the effect of these reductions on nighttime NOxoxidation rates. The analysis shows that the spatial extent of nighttime-emitted plumes to be quite limited and that mixing of highly concentrated plume NOx with ambient ozone is a determining factor for its nighttime oxidation. The plume from the uncontrolled plant had full titration of ozone through 74 km/2.4 h of downwind transport that suppressed nighttime oxidation of NO2 to higher oxides of nitrogen across the majority of the plume. The plume from the controlled plant did not have sufficient NOx to titrate background ozone, which led to rapid nighttime oxidation of NO2 during downwind transport. A plume model that includes horizontal mixing and nighttime chemistry reproduces the observed structures of the nitrogen species in the plumes from the two plants. The model shows that NOx controls not only reduce the emissions directly but also lead to an additional overnight NOx loss of 36-44% on average. The maximum reduction for 12 h of transport in darkness was 73%. The results imply that power plant NOxemissions controls may produce a larger than linear reduction in next-day, downwind ozone production following nighttime transport.
Ozone production in the New York City urban plume
NASA Astrophysics Data System (ADS)
Kleinman, Lawrence I.; Daum, Peter H.; Imre, Dan G.; Lee, Jai H.; Lee, Yin-Nan; Nunnermacker, Linda J.; Springston, Stephen R.; Weinstein-Lloyd, Judith; Newman, Leonard
2000-06-01
In the summer of 1996 the Department of Energy G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the causes of elevated O3 levels in the northeastern United States. Measurements of O3, O3 precursors, and other photochemically active trace gases were made upwind and downwind of New York City with the objective of characterizing the O3 formation process and its dependence on ambient levels of NOx and volatile organic compounds (VOCs). Four flights are discussed in detail. On two of these flights, winds were from the W-SW, which is the typical direction for an O3 episode. On the other two flights, winds were from the NW, which puts a cleaner area upwind of the city. The data presented include plume and background values of O3, CO, NOx, and NOy concentration and VOC reactivity. On the W-SW flow days O3 reached 110 ppb. According to surface observations the G-1 intercepted the plume close to the region where maximum O3 occurred. At this point the ratio NOx/NOy was 20-30%, indicating an aged plume. Plume values of CO/NOy agree to within 20% with emission estimates from the core of the New York City metropolitan area. Steady state photochemical calculations were performed using observed or estimated trace gas concentrations as constraints. According to these calculations the local rate of O3 production P(O3) in all four plumes is VOC sensitive, sometimes strongly so. The local sensitivity calculations show that a specified fractional decrease in VOC concentration yields a similar magnitude fractional decrease in P(O3). Imposing a decrease in NOx, however, causes P(O3) to increase. The question of primary interest from a regulatory point of view is the sensitivity of O3 concentration to changes in emissions of NOx and VOCs. A qualitative argument is given that suggests that the total O3 formed in the plume, which depends on the entire time evolution of the plume, is also VOC sensitive. Indicator ratios O3/NOz and H2O2/NOz mainly support the conclusion that plume O3 is VOC sensitive.
Modeling the Dynamic Change of Air Quality and its Response to Emission Trends
NASA Astrophysics Data System (ADS)
Zhou, Wei
This thesis focuses on evaluating atmospheric chemistry and transport models' capability in simulating the chemistry and dynamics of power plant plumes, evaluating their strengths and weaknesses in predicting air quality trends at regional scales, and exploring air quality trends in an urban area. First, the Community Mutlti-scale Air Quality (CMAQ) model is applied to simulate the physical and chemical evolution of power plant plumes (PPPs) during the second Texas Air Quality Study (TexAQS) in 2006. SO2 and NOy were observed to be rapidly removed from PPPs on cloudy days but not on cloud-free days, indicating efficient aqueous processing of these compounds in clouds, while the model fails to capture the rapid loss of SO2 and NOy in some plumes on the cloudy day. Adjustments to cloud liquid water content (QC) and the default metal concentrations in the cloud module could explain some of the SO 2 loss while NOy in the model was insensitive to QC. Second, CMAQ is applied to simulate the ozone (O3) change after the NO x SIP Call and mobile emission controls in the eastern U.S. from 2002 to 2006. Observed downward changes in 8-hour O3 concentrations in the NOx SIP Call region were under-predicted by 26%--66%. The under-prediction in O3 improvements could be alleviated by 5%--31% by constraining NOx emissions in each year based on observed NOx concentrations while temperature biases or uncertainties in chemical reactions had minor impact on simulated O3 trends. Third, changes in ozone production in the Houston area is assessed with airborne measurements from TexAQS 2000 and 2006. Simultaneous declines in nitrogen oxides (NOx=NO+NO2) and highly reactive Volatile Organic Compounds (HRVOCs) were observed in the Houston Ship Channel (HSC). The reduction in HRVOCs led to the decline in total radical concentration by 20-50%. Rapid ozone production rates in the Houston area declined by 40-50% from 2000 to 2006, to which the reduction in NOx and HRVOCs had the similar contribution. Houston petrochemical and urban plumes largely remained in a strong VOC-sensitive regime of ozone formation and maintained high Ozone Production Efficiency (OPE: 5-15).
Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad
2018-01-01
The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.
NASA Astrophysics Data System (ADS)
Aleksankina, Ksenia; Heal, Mathew R.; Dore, Anthony J.; Van Oijen, Marcel; Reis, Stefan
2018-04-01
Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions and non-linearities in input-output relationships may not be revealed through the local one-at-a-time sensitivity analysis typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, using as an example the FRAME model, which is extensively employed in the UK to generate source-receptor matrices for the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design was used to construct model runs within ±40 % variation range for the UK emissions of SO2, NOx, and NH3, from which regression coefficients for each input-output combination and each model grid ( > 10 000 across the UK) were calculated. Surface concentrations of SO2, NOx, and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO42-, NO3-, and NH4+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of SO2, NOx, and NH3 (±4, ±10, and ±20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4+, NO3-, SO42-, and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and uncertainty analyses of other ACTMs.
NASA Technical Reports Server (NTRS)
Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.;
2012-01-01
Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights.
Air pollution dispersion models for human exposure predictions in London.
Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C
2013-01-01
The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground.
NASA Astrophysics Data System (ADS)
Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko
2016-04-01
To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤ 1 µm), mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne), and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67). The photochemical age of the pollutants, t[OH] (the reaction time × the mean concentration of OH radical during the atmospheric transport), was calculated from both the NOx / NOy concentration ratio (NOx / NOy clock) and the toluene / ethyne concentration ratio (hydrocarbon clock). It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx / NOy clock ranged from 2.9 × 105 to 1.3 × 108 h molecule cm-3 and were compared with the fractional contribution of the m/z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids) and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA) formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03) × 10-9 × [OH] h-1, which is comparable to the background-corrected increase rate observed during the New England Air Quality Study in summer 2002. The similarity may imply the production of similar SOA component, possibly humic-like substances. Meanwhile, the comparison of t[OH] with O3 mixing ratio showed that there was a strong proportional relationship between O3 mixing ratio and t[OH]. A first approximation gave the increasing rate and background mixing ratio of ozone as (3.48 ± 0.06) × 10-7 × [OH] ppbv h-1 and 30.7 ppbv, respectively. The information given here can be used for prediction of secondary pollution magnitude in the outflow from the Asian continent.
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Young, C. J.; Aikin, K.; deGouw, J.; Dubé, W. P.; Geiger, F.; Gilman, J.; Helmig, D.; Holloway, J. S.; Kercher, J.; Lerner, B.; Martin, R.; McLaren, R.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J.; Warneke, C.; Williams, E. J.; Brown, S. S.
2013-09-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009-2010 and 2010-2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011-2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the near-explicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day-1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010-2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
Alizadeh, Mohammad; Safaeiyan, Abdolrasoul; Ostadrahimi, Alireza; Estakhri, Rassul; Daneghian, Sevana; Ghaffari, Aida; Gargari, Bahram Pourghassem
2012-01-01
We aimed to discover if L-arginine and selenium alone or together can increase the effect of a hypocaloric diet enriched in legumes (HDEL) on central obesity and cardiovascular risk factors in women with central obesity. This randomized, double-blind, placebo-controlled trial was undertaken in 84 premenopausal women with central obesity. After a 2-week run-in period on an isocaloric diet, participants were randomly assigned to a control diet (HDEL), L-arginine (5 g/day) and HDEL, selenium (200 μg/day) and HDEL or L-arginine, selenium and HDEL for 6 weeks. Cardiovascular risk factors were assessed before intervention and 3 and 6 weeks afterwards. After 6 weeks, L-arginine had significantly reduced waist circumference (WC); selenium had significantly lowered fasting concentrations of serum insulin and the homeostasis model assessment of insulin resistance index; the interaction between L-arginine and selenium significantly reduced the fasting concentration of nitric oxides (NO(x)), and HDEL lowered triglycerides (TG) and WC and significantly increased the fasting concentration of NO(x). HDEL reduced high-sensitivity C-reactive protein levels in the first half of the study and returned them to basal levels in the second half. These data indicate the beneficial effects of L-arginine on central obesity, selenium on insulin resistance and HDEL on serum concentrations of NO(x) and TG. Copyright © 2012 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Jeon, Wonbae
2017-09-01
A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the impact of horizontal spatial resolution on simulated nitrogen oxides (NOx) and ozone (O3) in the Greater Houston area (a non-attainment area for O3). We employed an approach recommended by the United States Environmental Protection Agency to allocate county-based emissions to model grid cells in 1 km and 4 km horizontal grid resolutions. The CMAQ Integrated Process Rate analyses showed a substantial difference in emissions contributions between 1 and 4 km grids but similar NOx and O3 concentrations over urban and industrial locations. For example, the peak NOx emissions at an industrial and urban site differed by a factor of 20 for the 1 km and 8 for the 4 km grid, but simulated NOx concentrations changed only by a factor of 1.2 in both cases. Hence, due to the interplay of the atmospheric processes, we cannot expect a similar level of reduction of the gas-phase air pollutants as the reduction of emissions. Both simulations reproduced the variability of NASA P-3B aircraft measurements of NOy and O3 in the lower atmosphere (from 90 m to 4.5 km). Both simulations provided similar reasonable predictions at surface, while 1 km case depicted more detailed features of emissions and concentrations in heavily polluted areas, such as highways, airports, and industrial regions, which are useful in understanding the major causes of O3 pollution in such regions, and to quantify transport of O3 to populated communities in urban areas. The Integrated Reaction Rate analyses indicated a distinctive difference of chemistry processes between the model surface layer and upper layers, implying that correcting the meteorological conditions at the surface may not help to enhance the O3 predictions. The model-observation O3 bias in our studies (e.g., large over-prediction during the nighttime or along Gulf of Mexico coastline), were due to uncertainties in meteorology, chemistry or other processes. Horizontal grid resolution is unlikely the major contributor to these biases.
Cai, Chenxia; Kelly, James T; Avise, Jeremy C; Kaduwela, Ajith P; Stockwell, William R
2011-05-01
An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment. Therefore, additional study is required to evaluate the full regulatory implications of upgrading air quality models to SAPRC07.
78 FR 27374 - Workshop To Review Initial Draft Materials for the Nitrogen Oxides (NOX
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... materials that will inform the development of the NO X Integrated Science Assessment (ISA) for health... ENVIRONMENTAL PROTECTION AGENCY [FRL-9812-6] Workshop To Review Initial Draft Materials for the Nitrogen Oxides (NO X ) Integrated Science Assessment (ISA) for Health Effects AGENCY: Environmental...
Hybrid vehicle system studies and optimized hydrogen engine design
NASA Astrophysics Data System (ADS)
Smith, J. R.; Aceves, S.
1995-04-01
We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.
Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections
NASA Astrophysics Data System (ADS)
Grange, Stuart K.; Lewis, Alastair C.; Moller, Sarah J.; Carslaw, David C.
2017-12-01
Many European countries do not meet legal air quality standards for ambient nitrogen dioxide (NO2) near roads; a problem that has been forecasted to persist to 2030. Although European air quality standards regulate NO2 concentrations, emissions standards for new vehicles instead set limits for NOx—the combination of nitric oxide (NO) and NO2. From around 1990 onwards, the total emissions of NOx declined significantly in Europe, but roadside concentrations of NO2—a regulated species—declined much less than expected. This discrepancy has been attributed largely to the increasing usage of diesel vehicles in Europe and more directly emitted tailpipe NO2. Here we apply a data-filtering technique to 130 million hourly measurements of NOx, NO2 and ozone (O3) from roadside monitoring stations across 61 urban areas in Europe over the period 1990-2015 to estimate the continent-wide trends of directly emitted NO2. We find that the ratio of NO2 to NOx emissions increased from 1995 to around 2010 but has since stabilized at a level that is substantially lower than is assumed in some key emissions inventories. The proportion of NOx now being emitted directly from road transport as NO2 is up to a factor of two smaller than the estimates used in policy projections. We therefore conclude that there may be a faster attainment of roadside NO2 air quality standards across Europe than is currently expected.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2004-12-01
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O3) produced from nitrogen oxides (NOx = NO + NO2) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air Quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NOx emitted from individual sources can have on the downwind concentration of surface O3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting ozone-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NOx regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NOx emissions from one place or time to another could result in large changes in the health effects due to ozone formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NOx emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.
1977-01-01
An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.
Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase
Pick, Edgar
2014-01-01
The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b558 (a heterodimer of Nox2 and p22phox) and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67phox playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67phox; (5) Induction of a conformational change in p67phox, promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general. PMID:24598074
Middle atmosphere NO/x/ production due to ion propulsion induced radiation belt proton precipitation
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Jackman, C. H.
1980-01-01
The suggestion that keV Ar(+) resulting from ion propulsion operations during solar power satellite construction could cause energetic proton precipitation from the inner radiation belt is examined to determine if such precipitation could cause significant increases in middle atmosphere nitric oxide concentrations thereby adversely affecting stratospheric ozone. It is found that the initial production rate of NO (mole/cu cm-sec) at 50 km is 130 times that due to nitrous oxide reacting with excited oxygen. However, since the time required to empty the inner belt of protons is about 1 sec and short compared to the replenishment time due to neutron decay, precipitation of inner radiation belt protons will have no adverse atmospheric environmental effect.
NASA Astrophysics Data System (ADS)
Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.
2018-03-01
We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model to under-predict concentrations near the road in the mornings and over-predict concentrations in the evenings.
Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.
Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K
2002-03-01
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.
Congruence between PM H+-ATPase and NADPH oxidase during root growth: a necessary probability.
Majumdar, Arkajo; Kar, Rup Kumar
2018-07-01
Plasma membrane (PM) H + -ATPase and NADPH oxidase (NOX) are two key enzymes responsible for cell wall relaxation during elongation growth through apoplastic acidification and production of ˙OH radical via O 2 ˙ - , respectively. Our experiments revealed a putative feed-forward loop between these enzymes in growing roots of Vigna radiata (L.) Wilczek seedlings. Thus, NOX activity was found to be dependent on proton gradient generated across PM by H + -ATPase as evident from pharmacological experiments using carbonyl cyanide m-chlorophenylhydrazone (CCCP; protonophore) and sodium ortho-vanadate (PM H + -ATPase inhibitor). Conversely, H + -ATPase activity retarded in response to different ROS scavengers [CuCl 2 , N, N' -dimethylthiourea (DMTU) and catalase] and NOX inhibitors [ZnCl 2 and diphenyleneiodonium (DPI)], while H 2 O 2 promoted PM H + -ATPase activity at lower concentrations. Repressing effects of Ca +2 antagonists (La +3 and EGTA) on the activity of both the enzymes indicate its possible mediation. Since, unlike animal NOX, the plant versions do not possess proton channel activity, harmonized functioning of PM H + -ATPase and NOX appears to be justified. Plasma membrane NADPH oxidase and H + -ATPase are functionally synchronized and they work cooperatively to maintain the membrane electrical balance while mediating plant cell growth through wall relaxation.
Formaldehyde Production from Isoprene Oxidation Across NOx Regimes
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.;
2015-01-01
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= 27 NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9), while background HCHO increases by more than a factor of 2 (from 1.5 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D chemical box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Moreover, we find that the total organic peroxy radical production rate is essentially independent of NOx, as the increase in oxidizing capacity with NOx is largely balanced by a decrease in VOC reactivity. Thus, the observed NOx dependence of HCHO mainly reflects the changing fate of organic peroxy radicals.
Derr, Adam M.; Faustoferri, Roberta C.; Betzenhauser, Matthew J.; Gonzalez, Kaisha; Marquis, Robert E.
2012-01-01
NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929–936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites. PMID:22179247
Biosphere-Atmosphere Exchange of NOx, CH4, and O3 in Central Amazon
NASA Astrophysics Data System (ADS)
Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Budney, J.; Rizzo, L. V.; Campos, K.; Rocha, H.; Freitas, H.
2016-12-01
Oxidation by OH is the dominant pathway for removing important trace gases such as CH4, CO, CH3Br, and HCFCs. The primary source of atmospheric OH is the photolysis of O3 in the presence of water vapor, and NOx are the main precursors of O3 and OH. Thus, in NOx-rich environments that have both high humidity and high solar radiation, OH concentrations are enhanced, and therefore, tropical forests dominate global oxidation of long-lived gases. The Amazon rain forest has a unique combination of vegetation with diverse characteristics, climate, and a dynamic land use, factors that altogether govern the emission and fate of trace-gases and control particle formation and atmospheric chemistry. Understanding the interactions among the mechanisms that govern local precursor emissions will lead to a better description of the local atmospheric chemistry, which have global impacts. As part of the GoAmazon project, an array of complementary measurements was conducted in a research site in central Amazon, southeast of Santarem (PA, Brazil), situated inside the Tapajos National Forest. The site where the measurements were taken is surrounded by intact rain forest in a 6 km radius, and a 45 m closed canopy. In the east side out of this radius (upwind), some settlements are distributed in a stripe along a road, which were cleared for agriculture and are sparsely populated. The 67 m tower was assembled in the site in 2001 for flux measurements (CO2 and H2O), and included CO in order to assess local and regional biomass burning. In mid 2014 additional instrumentation were added, measuring NOx, O3, CH4, and SO2 fluxes and profiles. The SO2 measurements (until early 2015) showed concentrations up to 0.1 ppb during the peak of the dry season, and a small vertical gradient, suggesting the predominance of biogenic sources. Preliminary results show no significant seasonality in the daytime and nighttime O3 vertical profiles. Occasionally, nighttime profiles showed high concentrations for levels below canopy, even near the ground. It is possibly caused by the breaking of nocturnal atmospheric stability, causing the concentrations of O3 to increase significantly in all profile levels. NO soil emissions are indicated by concentrations in the ppb range for lower profile levels, and concentrations decreasing to a few hundreds ppt above the canopy.
Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs
2017-10-01
The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3 h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2 = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4 M -1 s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially to reach a maximum concentration followed by a decrease of their concentrations for longer contact times. For the studied conditions, the TP's concentrations at the outlet of the reactors ranged from 0 to 61% of the initial parent compound concentration, CTZ being a more persistent TP against further oxidation than TRA-NOX. Finally, it was demonstrated in both reactors that the formation of bromate (BrO 3 - ), a potentially carcinogenic oxidation by-product, could be controlled by H 2 O 2 addition with a general improvement on micropollutant abatement. Post-treatment by granular activated carbon (GAC) filtration enabled the reduction of micropollutants and TPs concentrations but no changes in bromate were observed. The combined algae assay showed that water quality was significantly improved after oxidation and GAC post-treatment, driven by the abatement of the spiked pesticides (diuron and atrazine). Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiumeng; D’Ambro, Emma L.; Lee, Ben H.
2016-09-20
With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are a subject of intense research because particles affect Earth’s climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2, or more, higher than those typically used in coupled chemistry-climate models.more » SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 10 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the pre-industrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest a more complex representation of NOx dependent SOA yields may be important in models.« less
Why do Models Overestimate Surface Ozone in the Southeastern United States?
NASA Astrophysics Data System (ADS)
Travis, K.; Jacob, D.; Fisher, J. A.; Kim, S.; Marais, E. A.; Zhu, L.; Yu, K.; Miller, C. E.; Yantosca, R.; Payer Sulprizio, M.; Thompson, A. M.; Wennberg, P. O.; Crounse, J.; St Clair, J. M.; Cohen, R. C.; Laughner, J.; Dibb, J. E.; Hall, S. R.; Ullmann, K.; Wolfe, G.; Pollack, I. B.; Peischl, J.; Neuman, J. A.; Zhou, X.
2016-12-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high in the Southeast and nationally by a factor of 2. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Upper tropospheric NO2 from lightning makes a large contribution to the satellite observations that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This may be caused by excessively dry conditions in the model, representing another factor important in the simulation of surface ozone.
NASA Astrophysics Data System (ADS)
Qu, Z.; Henze, D. K.; Wang, J.; Xu, X.; Wang, Y.
2017-12-01
Quantifying emissions trends of nitrogen oxides (NOx) and sulfur dioxide (SO2) is important for improving understanding of air pollution and the effectiveness of emission control strategies. We estimate long-term (2005-2016) global (2° x 2.5° resolution) and regional (North America and East Asia at 0.5° x 0.667° resolution) NOx emissions using a recently developed hybrid (mass-balance / 4D-Var) method with GEOS-Chem. NASA standard product and DOMINO retrievals of NO2 column are both used to constrain emissions; comparison of these results provides insight into regions where trends are most robust with respect to retrieval uncertainties, and highlights regions where seemingly significant trends are retrieval-specific. To incorporate chemical interactions among species, we extend our hybrid method to assimilate NO2 and SO2 observations and optimize NOx and SO2 emissions simultaneously. Due to chemical interactions, inclusion of SO2 observations leads to 30% grid-scale differences in posterior NOx emissions compared to those constrained only by NO2 observations. When assimilating and optimizing both species in pseudo observation tests, the sum of the normalized mean squared error (compared to the true emissions) of NOx and SO2 posterior emissions are 54-63% smaller than when observing/constraining a single species. NOx and SO2 emissions are also correlated through the amount of fuel combustion. To incorporate this correlation into the inversion, we optimize seven sector-specific emission scaling factors, including industry, energy, residential, aviation, transportation, shipping and agriculture. We compare posterior emissions from inversions optimizing only species' emissions, only sector-based emissions, and both species' and sector-based emissions. In situ measurements of NOx and SO2 are applied to evaluate the performance of these inversions. The impacts of the inversion on PM2.5 and O3 concentrations and premature deaths are also evaluated.
NASA Astrophysics Data System (ADS)
Li, Weihua; Cocker, David R.
2018-07-01
Diesel fuel is a complex mixture of intermediate volatility organic compounds (IVOCs). Previous studies focused on secondary organic aerosol (SOA) and ozone formation from photo-oxidation of organic vapor from diesel exhaust and their components such as aromatics and heavy alkanes. However, there are few studies on atmospheric behavior of unburnt diesel. Therefore, in this study, ten unburnt #2 commercial diesel samples and one FACE9A research diesel fuel were photo-oxidized in the University of California Riverside, College of Engineering-Center for Environmental Research & Technology dual environmental chambers to investigate their SOA and ozone production potential. Photochemical aging rapidly produced significant SOA (yield ∼20.3-37.7%) in the presence of a surrogate reactive organic gas (ROG) mixture used to mimic urban atmospheric reactivity. SOA yields were consistent with n-Heptadecane yields under similar conditions. Doubling NOx concentrations within relevant urban concentration levels enhanced SOA formation by 33% and ozone formation by 48%. SOA formation in this study was approximately fourteen times higher than previously reported for very high NOx conditions. An SOA experiment designed to mimic the previous work achieved similar yields to the earlier work. SOA formed under urban relevant NOx concentrations were consistent with semi-volatile-oxygenated organic aerosol (SV-OOA) and underwent little further chemical processing once produced.
The gradient of meteorological and chemical variables across the tropopause
NASA Technical Reports Server (NTRS)
Dickerson, Russell R.; Doddridge, Bruce G.; Poulida, Olga; Owens, Melody A.
1994-01-01
The downward transport of air through the tropopause can bring substantial amounts of ozone and reactive nitrogen into the upper troposphere. In this cold region of the atmosphere, O3 is particularly effective as a greenhouse gas. As part of the North Dakota Thunderstorm Project in June 1989, the NCAR Sabreliner made five flights through the tropopause. We measured ozone, nitric oxide (NO), total reactive nitrogen (NO(y)), carbon monoxide (CO), and water vapor (H2)), and took grab samples for hydrocarbon (HC) analysis. Hydrocarbons, CO, and H2O, species with sources primarily at the earth's surface, showed a strong concentration decrease with increasing altitude, while O3 and NO(y), species with a source in the stratosphere, showed a strong concentration increase with increasing altitude. Stratospheric concentrations of NO(x), NO(y), and H2O were all high relative to winter observations made during NASA's AASE. We suggest that midlatitude thunderstorms may inject wet, NO-rich air into the lower stratosphere. Calculation based on measured ratios of NO(x) and NO(y) to O3 yield a total flux of reactive nitrogen from the Northern Hemisphere stratosphere into the troposphere of 1 to 2 Tg(N) yr(exp -1) with about 8 percent in the form of NO(x). This value is higher than reported estimates of total stratospheric nitrogen fixation.
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-05-01
There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.
Marullo, Rossella; Werner, Erica; Zhang, Hongzheng; Chen, Georgia Z.; Shin, Dong M.; Doetsch, Paul W.
2015-01-01
Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity. PMID:26354779
40 CFR Table 2 to Subpart Jjjj of... - Requirements for Performance Tests
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements 1. Stationary SI internal combustion engine demonstrating compliance according to § 60.4244 a. limit the concentration of NOX in the stationary SI internal combustion engine exhaust i. Select the... the outlet of the control device. ii. Determine the O2 concentration of the stationary internal...
Tropospheric Trace Gas Interactions with Aerosols
NASA Technical Reports Server (NTRS)
Penner, Joyce E.; Maddrea, George L., Jr. (Technical Monitor)
2002-01-01
Tropospheric aerosols are of considerable environmental importance. They modify the radiative budget of Earth by scattering and absorbing radiation, and by providing nuclei for cloud formation. Additionally, they provide surfaces for heterogeneous and multiphase reactions that affect tropospheric chemistry. For example, Dentener and Crutzen (1993) showed that reactions of N2O5 and NO3 with sulfate aerosols may significantly alter the tropospheric concentrations of NO(x), O3, and OH by converting NOx to HNO3 which is rapidly removed by precipitation. Zhang et al. (1994) assumed these same reactions would occur on dust aerosols and showed that dust outbreaks may reduce NO(x) levels by up to 50%. Dentener et al. (1996) studied the possible effect of reactions on dust on sulfate, nitrate, and O3 concentration. Heterogeneous and multiphase reactions on aerosols may also perturb the sulfur cycle the chlorine cycle and the bromine cycle. Because these reactions can release free chlorine and free bromine they might lead to the destruction of ozone in the marine boundary layer that may be important to include in models of tropospheric chemistry. The goal of our proposed work is to examine the role of heterogeneous and multiphase reactions in the tropospheric cycles of reactive nitrogen and sulfur.
Influence of environmental factors on removal of oxides of nitrogen by a photocatalytic coating.
Cros, Clement J; Terpeluk, Alexandra L; Crain, Neil E; Juenger, Maria C G; Corsi, Richard L
2015-08-01
Nitrogen oxides (NOx) emitted from combustion processes have elevated concentrations in large urban areas. They cause a range of adverse health effects, acid rain, and are precursors to formation of other atmospheric pollutants, such as ozone, peroxyacetyl nitrate, and inorganic aerosols. Photocatalytic materials containing a semi-conductor that can be activated by sunlight, such as titanium dioxide, have been studied for their ability to remove NOx. The study presented herein aims to elucidate the environmental parameters that most influence the NOx removal efficiency of photocatalytic coatings in hot and humid climate conditions. Concrete samples coated with a commercially available photocatalytic coating (a stucco) and an uncoated sample have been tested in a reactor simulating reasonable summertime outdoor sunlight, relative humidity and temperature conditions in southeast Texas. Two-level full factorial experiments were completed on each sample for five parameters. It was found that contact time, relative humidity and temperature significantly influenced both NO and NO₂removal. Elevated concentrations of organic pollutants reduced NO removal by the coating. Ultra-violet light intensity did not significantly influence removal of NO or NO₂, however, ultra-violet light intensity was involved in a two-factor interaction that significantly influenced removal of both NO and NO₂.
NASA Astrophysics Data System (ADS)
Goncalves, M.; Jimenez, P.; Baldasano, J.
2007-12-01
The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per cent (-6 μg m-3 on average). The urban areas are VOC-controlled, therefore the reduction on NOx emissions involves a minor increase on tropospheric O3 concentration (Jiménez and Baldasano, 2004), up to 1.5 per cent at some points. Nevertheless, the O3 precursors reduction has positive effects in the downwind areas affected by the urban plume, slightly reducing the O3 levels, but at the regional scale the reduction applied on urban traffic emissions has negligible effects. Both scenarios tested are very similar in terms of emissions reductions and air quality changes, which means that the NOx/NMVOCs ratio do not involve an O3-sensitivity regime variation among scenarios. The HEC scenario is more effective in reducing NO2 levels in urban areas than the NGC scenario (with maximum reductions affecting a larger area) and involves a larger increase in urban O3 concentration.
Cells redox environment modulates BRCA1 expression and DNA homologous recombination repair.
Wilson, Aaron; Yakovlev, Vasily A
2016-12-01
Cancer development and progression have been linked to oxidative stress, a condition characterized by unbalanced increase in ROS and RNS production. The main endogenous initiators of the redox imbalance in cancer cells are defective mitochondria, elevated NOX activity, and uncoupled NOS3. Traditionally, most attention has been paid to direct oxidative damage to DNA by certain ROS. However, increase in oxidative DNA lesions does not always lead to malignancy. Hence, additional ROS-dependent, pro-carcinogenic mechanisms must be important. Our recent study demonstrated that Tyr nitration of PP2A stimulates its activity and leads to downregulation of BRCA1 expression. This provides a mechanism for chromosomal instability essential for tumor progression. In the present work, we demonstrated that inhibition of ROS production by generating mitochondrial-electron-transport-deficient cell lines (ρ 0 cells) or by inhibition of NOX activity with a selective peptide inhibitor significantly reduced PP2A Tyr nitration and its activity in different cancer cell lines. As a result of the decreased PP2A activity, BRCA1 expression was restored along with a significantly enhanced level of DNA HRR. We used TCGA database to analyze the correlation between expressions of the NOX regulatory subunits, NOS isoforms, and BRCA1 in the 3 cancer research studies: breast invasive carcinoma, ovarian cystadenocarcinoma, and lung adenocarcinoma. TCGA database analysis demonstrated that the high expression levels of most of the NOX regulatory subunits responsible for stimulation of NOX1-NOX4 were associated with significant downregulation of BRCA1 expression. Copyright © 2016. Published by Elsevier Inc.
[Oxidative stress and vascular function].
Urbański, Karol; Nowak, Michal; Guzik, Tomasz J
2013-01-01
The maintenance of blood vessel homeostasis is closely associated with Reactive Oxygen and Nitrogen Species (ROS and RNS) production in the blood vessel wall. The main molecules taking part in this process are nitric oxide (NO), superoxide anion (O2*-), hydrogen peroxide (H2O2) and their derivatives. The production of these factors occurs in health and disease, however the increased ROS release is often referred to as oxidative stress. While initially oxidative stress was considered systemically, recent data indicate that it occurs locally in subcellular spaces and may be a result of dysfunction of individual enzyme systems. Oxidative stress induces inflammation, proliferation and migration of vascular smooth muscle cells, may regulate apoptosis and the function of the cells of vascular wall, finally leading to dysfunction of endothelium, media and adventitia, leading to cardiovascular diseases such as atherosclerosis, hypertension or heart failure. It is believed that a family of NADPH oxidases is the main source of ROS in the vessel wall, but also in other organs and tissues. It consists of seven known and quite precisely characterized homologues (NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) which often have very distinct activity and cellular localization and function. Besides harmful actions, we are beginning to understand the protective effects of ROS and RNS. They have many functions regulating redox-sensitive gene expression and influencing a proper function of cells and vessels. NOX4 has been particularly well characterized in this respect. Thus, the maintenance of the right homeostasis depends not only on ROS removing capabilities, but especially on preserving the adequate level of ROS production.
Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep
2011-06-30
Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less
Health Effects of Air Pollution: A Historical Review and Present Status.
Shima, Masayuki
2017-01-01
During the 1960s, the concentrations of air pollutants, particularly that of sulfur dioxide (SO 2 ), were extremely high in many industrial cities in Japan, and the prevalence of bronchial asthma and chronic bronchitis increased among residents living in the cities. To evaluate the effects of air pollution on respiratory diseases, many epidemiological studies were conducted, and the findings played an important role in the regulatory control of air pollution. After 1970, the concentration of SO 2 has decreased markedly, and its adverse health effects have been minimized. On the other hand, the increasing automobile traffic in Japan has caused considerable increases in concentrations of air pollutants, such as nitrogen oxides (NOx) and particulate matter (PM). The large-scale epidemiological studies conducted in Japan showed that traffic-related air pollution was associated with the development of asthma in school children and the persistence of asthmatic symptoms in preschool children. In recent years, however, the concentrations of NOx and PM have gradually decreased, since control measures based on the Automobile NOx/PM law were enforced in 2001. At present, the adverse health effects of airborne fine particulate matter (PM 2.5 ) and photochemical oxidants have become a major concern. These air pollutants consist of not only emissions from primary sources but also secondary formations in air, and have spread worldwide. Both short- and long-term exposure to these air pollutants are reported to increase the risk of respiratory and cardiovascular diseases in the population. Therefore, global efforts are necessary to reduce the health risk of these air pollutants.
Biosphere-Atmosphere Exchange of NOx and O3 in Central Amazon
NASA Astrophysics Data System (ADS)
Wiedemann, K. T.; Swofsy, S. C.; Munger, J. W.; Saleska, S. R.; Rizzo, L. V.; Silva Campos, K.
2017-12-01
The primary source of atmospheric OH is the photolysis of O3 in the presence of water vapor. NOx gases are the main precursors of O3 and OH. In NOx-rich environments that have both high humidity and high solar radiation, OH concentrations are enhanced, making tropical forests dominant in global oxidation of long lived gases. The Amazon rain forest has a unique combination of vegetation with diverse characteristics, climate, and a dynamic land use, factors that altogether govern the emission and fate of trace gases, particle formation and atmospheric chemistry. Understanding the interactions among the mechanisms that govern local precursor emissions will lead to a better description of the local atmospheric chemistry and its global impacts. As part of the GoAmazon project, an array of complementary measurements was conducted in a research site in central Amazon, near Santarem (PA, Brazil), inside the Tapajos National Forest. The research site is surrounded by intact rain forest in a 6km radius, and a 45m canopy. The 67m tower was assembled in the site in 2001 for flux measurements (CO2 and H2O). In mid 2014 additional instrumentation were added, measuring NOx, O3, CH4, and SO2 fluxes and profiles. The low concentrations of SO2 (up to 0.1ppb during the peak of the dry season), and a small vertical gradient, suggest the predominance of biogenic sources. O3 show no significant seasonality between the daytime and nighttime vertical profiles, but occasional nighttime high concentrations for levels below canopy were observed. Hourly ozone fluxes suggest a production of O3 under canopy. NO soil emissions are indicated by concentrations in the ppb range for lower profile levels, decreasing to a few hundreds ppt above the canopy, and emission rates of NO from Amazonian soils may be higher than expected from earlier measurements. Daytime data indicate that not all of this NOx escapes to the atmosphere, however. Fluxes of NO average 133x109 molec cm-2 s-1, a factor of 4 higher than previously observed in white sand soils in the Amazon[1], and a factor of 3 to 14 higher than fluxes observed for yellow clay soils[2], while Fluxes of NO2 average 0.84x109 molec cm-2 s-1.[1] Kaplan, W.A., Wofsy, S.C., Keller, M., and da Costa, J.M. J of Geophys Res, Vol 93, D2, 1389, 1988. [2] Bakwin, P.S., Wofsy, S.C., and Fan, S.M. J. of Geophys Res, Vol 95, D10, 16765, 1990.
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2005-01-01
A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.
NASA Technical Reports Server (NTRS)
Marek, C. John; Molnar, Melissa
2005-01-01
A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.
Zago, Anderson Saranz; Park, Joon-Young; Fenty-Stewart, Nicola; Silveira, Leonardo Reis; Kokubun, Eduardo; Brown, Michael D
2010-11-01
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 ± 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 ± 1 μM) and G4 (14.2 ± 0.6 μM) and between G2 (20.1 ± 1.7 μM) and G4 (14.2 ± 0.6 μM). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 ± 1.2 μM) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Study on ammonia slip detection in the harsh combustion environments using diode laser spectroscopy
NASA Astrophysics Data System (ADS)
You, Kun; Zhang, Yu-jun; Li, Hong-bin; He, Yin; Gao, Yan-wei; Wang, Li-ming; Liu, Wen-qing
2016-10-01
The emissions of NOX from Cement plant or Coal-fired power plant have serious pollution to the environment. In recent years, Selective Catalytic Reduction (SCR) is an effective means of reducing the emissions of NOX by injecting ammonia into the combustion flue gas, which ideally reacts with the NOX to produce harmless components (H2O and N2). The efficiency of SCR is determined by monitoring the ammonia slip of the flue exhaust outlet, excess ammonia injection can cause ammonia slip, which not only destroy the plant, but also increase the operating costs. In addition, ammonia is also pollution gases as NOX. The flue gas at the measurement point is high temperature, vibrate and high particle density processes in Cement plant primarily, such harsh conditions coupled with the highly reactive nature of ammonia, so it is difficult to reliable extractive low level analysis. The paper describes an in-situ Tunable Diode Laser analyzer for measuring ammonia slip in the combustion flue gas after SCR in Cement Plant or Coal-fired power plant. A correlation filtering algorithm is developed to select high-quality spectral absorption signal, which improve the accuracy of concentration inversion of analyzer. The paper also includes field test data on an actual Cement plant all day, and we compare the ammonia slip and NOX emissions of flue gas during actual production process, the results indicate that the measured values of the ammonia slip and NOX emissions present a good correlation and comply with the principle of SCR.
Oudin, Anna; Strömberg, Ulf; Jakobsson, Kristina; Stroh, Emilie; Lindgren, Arne G; Norrving, Bo; Pessah-Rasmussen, Hélène; Engström, Gunnar; Björk, Jonas
2011-01-01
The aim was to investigate whether the effects of major risk factors for ischemic stroke were modified by long-term exposure to air pollution in Scania, southern Sweden. Cases were defined as first-ever ischemic strokes in patients born between 1923 and 1965 during 2001-2006 (n = 7,244). Data were collected from The Swedish National Stroke Register (Riks-stroke) and the Malmö and Lund Stroke Registers. Population controls were matched on age and sex. Modeled outdoor annual mean NO(x) concentrations were used as proxy for long-term exposure to air pollution. Heterogeneity across NO(x) categories was tested for smoking, hypertension, diabetes mellitus, atrial fibrillation and physical inactivity. Data were analyzed as case-control data and to some extent as case-only data, with logistic regression analysis. The case-control odds ratios for ischemic stroke in association with diabetes were 1.3 [95% confidence interval (CI): 1.1-1.6] and 2.0 (95% CI: 1.2-3.4) in the lowest and highest NO(x) category, respectively (p value for testing heterogeneity across the categories = 0.056). The case-only approach gave further support for the risk associated with diabetes to increase with NO(x) (p for trend = 0.033). We observed no main effect of mean NO(x) or any conclusive effect modifications between NO(x) and smoking, hypertension, atrial fibrillation or physical inactivity. In a low-level air pollution area, the risk for ischemic stroke associated with diabetes seemed to increase with long-term exposure to air pollution. Copyright © 2010 S. Karger AG, Basel.
Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Eric; Krejci, Michael; Mathieu, Olivier
2014-01-24
This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times andmore » species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.« less
Gonzalez, Daniel R.; Treuer, Adriana V.; Lamirault, Guillaume; Mayo, Vera; Cao, Yenong; Dulce, Raul A.
2014-01-01
Duchenne muscular dystrophy may affect cardiac muscle, producing a dystrophic cardiomyopathy in humans and the mdx mouse. We tested the hypothesis that oxidative stress participates in disrupting calcium handling and contractility in the mdx mouse with established cardiomyopathy. We found increased expression (fivefold) of the NADPH oxidase (NOX) 2 in the mdx hearts compared with wild type, along with increased superoxide production. Next, we tested the impact of NOX2 inhibition on contractility and calcium handling in isolated cardiomyocytes. Contractility was decreased in mdx myocytes compared with wild type, and this was restored toward normal by pretreating with apocynin. In addition, the amplitude of evoked intracellular Ca2+ concentration transients that was diminished in mdx myocytes was also restored with NOX2 inhibition. Total sarcoplasmic reticulum (SR) Ca2+ content was reduced in mdx hearts and normalized by apocynin treatment. Additionally, NOX2 inhibition decreased the production of spontaneous diastolic calcium release events and decreased the SR calcium leak in mdx myocytes. In addition, nitric oxide (NO) synthase 1 (NOS-1) expression was increased eightfold in mdx hearts compared with wild type. Nevertheless, cardiac NO production was reduced. To test whether this paradox implied NOS-1 uncoupling, we treated cardiac myocytes with exogenous tetrahydrobioterin, along with the NOX inhibitor VAS2870. These agents restored NO production and phospholamban phosphorylation in mdx toward normal. Together, these results demonstrate that, in mdx hearts, NOX2 inhibition improves the SR calcium handling and contractility, partially by recoupling NOS-1. These findings reveal a new layer of nitroso-redox imbalance in dystrophic cardiomyopathy. PMID:25015966
NASA Astrophysics Data System (ADS)
Liao, Kuo-Jen; Hou, Xiangting; Baker, Debra Ratterman
2014-02-01
The impacts of interstate transport of anthropogenic nitrogen oxides (NOx) and volatile organic compound (VOC) emissions on peak ozone formation in four nonattainment areas (i.e., Baltimore, Philadelphia-Wilmington-Atlantic City, Pittsburgh-Beaver Valley and Washington, DC) in the Mid-Atlantic U.S. were quantified in this study. Regional air quality and sensitivities of ground-level ozone to emissions from four regions in the eastern U.S. were simulated for three summer months (June, July and August) in 2007 using the U.S. EPA's Community Multiscale Air Quality model with the decoupled direct method 3D. The emissions inventory used in this study was the 2007 Mid-Atlantic Regional Air Management Association Level 2 inventory, developed for State Implementation Plan screening modeling for the Ozone Transport Commission region. The modeling results show that responses of peak ozone levels at specific locations to emissions from EGU (i.e., electric generating unit) and non-EGU sources could be different. Therefore, emissions from EGU and non-EGU sources should be considered as two different control categories when developing regional air pollution mitigation strategies. Based on the emission inventories used in this study, reductions in anthropogenic NOx emissions (including those from EGU and non-EGU sources) from the Great Lake region as well as northeastern and southeastern U.S. would be effective for decreasing area-mean peak ozone concentrations during the summer of 2007 in the Mid-Atlantic ozone air quality nonattainment areas. The results also show that reductions in anthropogenic VOC emissions from the northeastern U.S. would also be effective for decreasing area-mean peak ozone concentrations over the Mid-Atlantic U.S. In some cases, reductions in anthropogenic NOx emissions from the Great Lake and northeastern U.S. could slightly increase area-mean peak ozone concentrations at some ozone monitors in the Pittsburgh-Beaver Valley and Washington, DC areas. However, the disbenefit of the slight increase in ozone concentrations attributed to the NOx emission controls was far outweighed by the overall ozone air quality benefits over the Mid-Atlantic region.
Environmentally Persistent Free Radicals and Their Lifetimes in PM2.5
Gehling, William; Dellinger, Barry
2015-01-01
For the first time, an expansive study into the concentration and extended decay behavior of environmentally persistent free radicals in PM2.5 was performed. Results from this study revealed three types of radical decay—a fast decay, slow decay, and no decay—following one of four decay patterns: a relatively fast decay exhibiting a 1/e lifetime of 1–21 days accompanied by a slow decay with a 1/e lifetime of 21–5028 days (47% of samples); a single slow decay including a 1/e lifetime of 4–2083 days (24% of samples); no decay (18% of samples); and a relatively fast decay displaying an average 1/e lifetime of 0.25–21 days followed by no decay (11% of samples). Phenol correlated well with the initial radical concentration and fast decay rate. Other correlations for common atmospheric pollutants (ozone, NOx, SO2, etc.) as well as meteorological conditions suggested photochemical processes impact the initial radical concentration and fast decay rate. The radical signal in PM2.5 was remarkably similar to semiquinones in cigarette smoke. Accordingly, radicals inhaled from PM2.5 were related to the radicals inhaled from smoking cigarettes, expressed as the number of equivalent cigarettes smoked. This calculated to 0.4–0.9 cigarettes per day for nonextreme air quality in the United States. PMID:23844657
Chemical processes related to net ozone tendencies in the free troposphere
NASA Astrophysics Data System (ADS)
Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst
2017-09-01
Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dill, J.W.; Sowa, W.A.; Samuelsen, G.S.
1996-06-30
Phase I of this project focused on the creation of a spatial emissions map of the plume effluent in the exhaust stream directly behind the engine in a jet engine test cell (JETC). Both afterburning TF30-P111+ and non-after-burning TF33-P9 engines were tested. Measurements were taken in conjunction with actual engine tests for validity of the data. Temperature, oxides of nitrogen (NOx), carbon monoxide (CO) concentration, and velocity were among the characteristics measured radially and axially in the plume for each engine type. The main focus of this study was on NOx, consisting of nitric oxide (NO) and nitrogen dioxide (NO2).more » Measurements in the P111+ plume reveal levels of NOx above 300 ppm along the centerline of the effluent. A dip in the NOx emissions at afterburner shows signs of a reburning and/or dilution effect by the atmospheric combustion in the effluent. Significant amounts of NO2 are present in the effluent over the entire power range. Temperatures at military power reach 1100 deg F along the centerline, and CO values are below 80 ppm. Carbon monoxide concentrations decrease from idle to military power (full power, no afterburner), then rise sharply in afterburner. The CO peaks shift outward from centerline as do the temperatures due to the radial geometry of the afterburner combustion (over 10 percent CO at 2850 deg F).« less
NASA Astrophysics Data System (ADS)
Huang, Yaoxian; Hickman, Jonathan E.; Wu, Shiliang
2018-05-01
Fertilizer-induced nitrogen oxides (NOx) emissions in sub-Saharan Africa are expected to increase substantially in the coming decades, driven by increasing application of fertilizers to increase crop yields in an effort to attain food security across the continent. In many parts of sub-Saharan Africa, surface ozone (O3) is sensitive to increasing atmospheric concentrations of NOx. In this study, we employ the GEOS-Chem chemical transport model to conduct a preliminary investigation of the impacts on O3 air quality and the consequential crop damage associated with increasing fertilizer-induced NOx emissions in sub-Saharan Africa. Our simulation results, constrained by field NO flux measurements for the years 2011 and 2012 in response to a variety of fertilizer application rates in western Kenya, show that the enhancements in NO flux with fertilizer application rate of 150 kg N ha-1 can increase surface NOx and O3 concentrations by up to 0.36 and 2.8 ppbv respectively during the growing season. At the same time, accumulated O3 exposure during the crop growing season (expressed as AOT40 values) could increase by up to 496 ppb h, leading to crop yield decline of about 0.8% for O3-sensitive crops. Our results suggest that, when accounting for the consequential impacts on surface O3 air quality and crop damage over sub-Saharan Africa, agricultural intensification is possible without substantial impacts on crop productivity because the relatively small decline of crop yield resulting from O3 damage appears unlikely to outweigh the gain in crop yield from fertilization.
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2005-01-01
A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.
Meteorological air quality forecasting using the WRF-Chem model during the LMOS2017 field campaign
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Abdioskouei, M.; Carmichael, G. R.; Christiansen, M.; Sobhani, N.
2017-12-01
The Lake Michigan Ozone Study (LMOS 2017) occurred during May and June 2017 to address the high ozone episodes in coastal communities surrounding Lake Michigan. Aircraft, ship, mobile lab, and ground-based stations were used in this campaign to build an extensive dataset regarding ozone, its precursors, and particulate matter. The University of Iowa produced high-resolution (4x4 km2 horizontal resolution and 53 vertical levels) forecast products using the WRF-Chem modeling system in support of experimental planning during LMOS 2017. The base forecast system used WRF-Chem 3.6.1 and updated National Emission Inventory (NEI-2011v2). In the updated NEI-2011v2, we reduced the NOx emissions by 28% based on EPA's estimated NOx trends from 2011 to 2017. We ran another daily forecast (perturbed forecast) with 50% reduced NOx emission to capture the sensitivity of ozone to NOx emission and account for the impact of weekend emissions on ozone values. Preliminary in-field evaluation of model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. The model captured the variability of O3 well, but underpredicted peak ozone during high O3 episodes. In post-campaign WRF-Chem simulations, we investigated the sensitivity of the model to the hydrocarbon emission.
NASA Astrophysics Data System (ADS)
Sosnin, Eduard A.; Didenko, Maria V.; Panarin, Victor A.; Skakun, Victor S.; Tarasenko, Victor F.; Liu, Dongping P.; Song, Ying
2018-04-01
The decomposition products of atmospheric pressure plasma of repetitive pulsed discharge in apokamp and corona modes were determined by optical and chemical methods. It is shown, that the decomposition products contain mainly nitrogen oxides NOx. A brief review of the plasma- and thermochemical reactions in the pulsed discharges was made. The review and experimental data allow us to explain the reactive oxygen species formation mechanisms in a potential discharge channel with apokamp. The possible applications of this plasma source for treatment of seeds of agricultural crops are discussed.
40 CFR Table 2 to Subpart Jjjj of... - Requirements for Performance Tests
Code of Federal Regulations, 2013 CFR
2013-07-01
... following requirements 1. Stationary SI internal combustion engine demonstrating compliance according to § 60.4244. a. limit the concentration of NOX in the stationary SI internal combustion engine exhaust i... must be located at the outlet of the control device. ii. Determine the O2 concentration of the...
Active control of one or more EGR loops
Ruth, Michael J.; Cunningham, Michael J.; Henry, Cary A.
2017-08-08
Active control of one or more exhaust gas recirculation loops is provided to manage and EGR fraction in the charge flow to produce desired operating conditions and/or provide diagnostics in response to at least one of an oxygen concentration and a NOx concentration in the charge flow and in the exhaust flow.
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Young, C. J.; Aikin, K.; deGouw, J. A.; Dubé, W. P.; Geiger, F.; Gilman, J. B.; Helmig, D.; Holloway, J. S.; Kercher, J.; Lerner, B.; Martin, R.; McLaren, R.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J.; Warneke, C.; Williams, E. J.; Brown, S. S.
2013-03-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009-2010 and 2010-2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snowcovered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011-2012, the comprehensive set of observations tests of our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the explicit Master Chemical Mechanism (MCM) V3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited. Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day-1, 8% of the total primary radical source on average. Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
NASA Astrophysics Data System (ADS)
Cortinovis, J.; Solmon, F.; Personne, E.; Serça, D.; Rosset, R.
2003-04-01
Concentrations of nitrogen oxides (NOx = NO+NO2) and volatile organic compounds (VOCs) play a crucial role in the atmospheric chemistry through the production-destruction of tropospheric O3. In rural areas, NOx concentrations are much lower than in urban areas, whereas VOCs emissions can be relatively high. This is due to a relative longer residence time of VOCs, and to the substantial contribution of Biogenic VOCs (BVOCs) representing more than 85% of all the VOCs emitted at the Earth surface (half of it being isoprene). For these reasons, O3 production in rural areas is most of the time NOx-limited. Taking into account biogenic emissions of isoprene in global scale atmospheric chemistry modeling adds from 10 to 40% to the ozone produced when compared to the same simulation without isoprene. This suggests that BVOCs and NOx emissions must be accounted for in models of atmospheric pollution forecasting at local and regional scales. In this study, we present a sensitivity analysis on the impact of the isoprene and nitrogen oxides emissions at the local and the regional scale. This study is done from data collected during the ESCOMPTE campaign which took place in June and July 2001 in the Marseille region (Southwest France) characterized by both strong natural and anthropogenic sources of trace gases. Isoprene emission experimental data from a Quercus Pubescens Mediterranean forest are used to constrain the 1Dz Soil-Vegetation-Atmospheric-Transfer ISBA model. This SVAT is used in the 3D MESO-NH-Chemistry model to simulate scenarios of pollution at the regional scale including the measured biogenic source for isoprene, and GENEMIS anthropogenic sources for other trace gases. To focus on the chemistry aspect of these simulations, the atmospheric dynamics are set to an "ideal" configuration. We have investigated the impact of the relative position and distance between the biogenic and anthropogenic sources on the O3 budget. According to this, and to the intensity of the anthropogenic sources, isoprene emissions impact can become relatively significant in terms of O3 concentrations. O3 production is clearly linked with the different photochemical regime, with limitations for high COV:NOx (>20 -NOx limited) and low (<4 -COV limited) ratios. We performed an other sensitivity analysis on biogenic NOx emissions from crops, and their impact on O3 budget using a 1Dz model SURFATM. This model is based on an approach describing atmospheric exchanges with resistances (Choudhury and Monteith, 1988 ; Nemitz, 1998). Similarly to the ISBA scheme, SURFATM simulates the surface energy budget and the atmosphere-biosphere exchange of chemical species. We developed the model by including the basic NOx-O3 chemistry above and below the canopy. Ozone fluxes were simulated by the model constrained with ESCOMPTE experimental data performed in a maize field. The more detailed description of vegetation, and the inclusion of the chemistry scheme allowed us to have a better representation of ozone fluxes at the canopy scale. SURFATM will then be used in MESO-NH-Chemistry to simulate the interaction between a rural and an urban (or industrial) plume, as we did for isoprene. The last step will be to include the biogenic sources for isoprene and nitrogen oxides, and to perform new scenarios of pollution at the local or regional scale.
Adjoint estimation of ozone climate penalties
NASA Astrophysics Data System (ADS)
Zhao, Shunliu; Pappin, Amanda J.; Morteza Mesbah, S.; Joyce Zhang, J. Y.; MacDonald, Nicole L.; Hakami, Amir
2013-10-01
adjoint of a regional chemical transport model is used to calculate location-specific temperature influences (climate penalties) on two policy-relevant ozone metrics: concentrations in polluted regions (>65 ppb) and short-term mortality in Canada and the U.S. Temperature influences through changes in chemical reaction rates, atmospheric moisture content, and biogenic emissions exhibit significant spatial variability. In particular, high-NOx, polluted regions are prominently distinguished by substantial climate penalties (up to 6.2 ppb/K in major urban areas) as a result of large temperature influences through increased biogenic emissions and nonnegative water vapor sensitivities. Temperature influences on ozone mortality, when integrated across the domain, result in 369 excess deaths/K in Canada and the U.S. over a summer season—an impact comparable to a 5% change in anthropogenic NOx emissions. As such, we suggest that NOx control can be also regarded as a climate change adaptation strategy with regard to ozone air quality.
Impact of Propene on Secondary Organic Aerosol Formation from m-Xylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chen; Na, Kwangsam; Warren, Bethany
2007-10-15
Propene is widely used in smog chamber experiments to increase the hydroxyl radical (OH) level based on the assumption that the formation of secondary organic aerosol (SOA) from parent hydrocarbon is unaffected. A series ofm-xylene/NOx photooxidation experiments were conducted in the presence of propene in the University of California CECERT atmospheric chamber facility. The experimental data are compared with previousm-xylene/NOx photooxidation work performed in the same chamber facility in the absence of propene (Song et al. Environ. Sci. Technol. 2005, 39, 3143-3149). The result shows that, for similar initial conditions, experiments with propene have lower reaction rates of m-xylene thanmore » those without propene, which indicates that propene reduces OH in the system. Furthermore, experiments with propene showed more than 15% reduction in SOA yield compared to experiments in the absence of propene. Additional experiments ofm-xylene/NOx with CO showed similar trends of suppressing OH and SOA formation. These results indicate that SOA from m-xylene/NOx photooxidation is strongly dependent on the OH level present, which provides evidence for the critical role of OH in SOA formation from aromatic hydrocarbons.« less
NASA Technical Reports Server (NTRS)
Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.
2012-01-01
Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.
Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.
Air quality status of an open pit mining area in India.
Chaulya, S K
2005-06-01
This investigation presents the assessment of ambient air quality carried out at an open pit coal mining area in Orissa state of India. The 24-h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM, particles of less than 10 microm aerodynamic diameter), sulphur dioxide (SO2) and oxides of nitrogen (NO(x)) were determined at regular interval throughout one year at 13 monitoring stations in residential area and four stations in mining/industrial area. During the study period, the 24-h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian ambient air quality standard (NAAQS) protocol in most of the residential and industrial areas. However, the 24-h and annual average concentrations of SO2 and NO(x) were well within the prescribed limit of the NAAQS in both residential and industrial areas. A management strategy is formulated for effective control of particulate matter at source and other mitigative measures are recommended including implementation of green belts around the sensitive areas.
Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini
2014-07-01
Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small. PMID:29408924
DeForest Hauser, Cindy; Buckley, Alexandra; Porter, Juliana
2015-08-01
Charlotte, in Mecklenburg County, North Carolina, was ranked in the top ten cities with the worst air quality for ozone in the United States by the American Lung Association from 2009 to 2011. Nearby counties that may experience similar air quality do not have state or county monitors. This study utilized NOx and ozone Ogawa passive samplers and community scientists to monitor air quality in five counties surrounding Charlotte and increase public engagement in air quality issues. Community scientists deployed samplers weekly at a residential site within each county. Samples were analyzed using spectrophotometry and ion chromatography. Elevated NOx concentrations were observed in four of the five counties relative to those with existing monitors. Ozone concentrations showed little county to county variation, except Iredell and Cabarrus which had higher concentrations than Rowan. Community involvement in this work led to an increase in local dissemination of the results, thus increasing air quality awareness. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van der Zee, Saskia C.; Dijkema, Marieke B. A.; van der Laan, Jorrit; Hoek, Gerard
2012-08-01
In Amsterdam, many inhabitants reside in proximity to inland waters. The aim of this study was to assess the impact of passing inland ships and recreational boats, including touring boats, on the air quality near houses close to the water. A measurement campaign was performed at five sites in Amsterdam. Two sites were located along the inland waterways used by cargo ships and recreational boats. The other three sites were located along the canals in the historical city centre, used by touring boats and private recreational boats. At each site, measurements were performed at the waterside and at the facade of houses. Nitrogen oxides (NO and NO2) and ultrafine particles (particle number (PN) concentration), were measured continuously during one afternoon per site, while time and type of passing ships and road traffic was registered. Linear regression analysis was used to analyze the association between passing ships and concentration, adjusted for passing road traffic. There was substantial variation in the impact of passing ships on concentrations at each measuring site, as well as between sites. On average, cargo ships contributed 5 and 4 μg m-3 to NO and NO2, respectively, and 3000 particles cm-3 to PN concentration near houses during the sampling period. Peak concentrations were occasionally substantially higher. Emissions from touring boats had a small but significant impact on NO concentration near houses but not on NO2, with the exception of one site located near the edge of two canals, where boats use extra power to travel around the bent. At this site, touring boats contributed 5 μg m-3 to the local NO2 concentration. No consistent impact of touring boats on PN concentration was observed. Emissions from private recreational boats were not consistently associated with increased NOx or PN concentration. Road traffic intensity was low at the selected measurement sites. Nevertheless, a significant impact of passing diesel-operated delivery vans on house adjacent concentrations of both NOx and PN concentrations was found. On average, mopeds had a small but significant impact on PN concentration by 1100 particles cm-3 In conclusion, this study provides evidence that ship exhausts has an impact on air quality near houses along waterways.
NASA Astrophysics Data System (ADS)
Xing, Jia; Ding, Dian; Wang, Shuxiao; Zhao, Bin; Jang, Carey; Wu, Wenjing; Zhang, Fenfen; Zhu, Yun; Hao, Jiming
2018-06-01
As one common precursor for both PM2.5 and O3 pollution, NOx gains great attention because its controls can be beneficial for reducing both PM2.5 and O3. However, the effectiveness of NOx controls for reducing PM2.5 and O3 are largely influenced by the ambient levels of NH3 and VOC, exhibiting strong nonlinearities characterized as NH3-limited/NH3-poor and NOx-/VOC-limited conditions, respectively. Quantification of such nonlinearities is a prerequisite for making suitable policy decisions but limitations of existing methods were recognized. In this study, a new method was developed by fitting multiple simulations of a chemical transport model (i.e., Community Multiscale Air Quality Modeling System, CMAQ) with a set of polynomial functions (denoted as pf-RSM
) to quantify responses of ambient PM2.5 and O3 concentrations to changes in precursor emissions. The accuracy of the pf-RSM is carefully examined to meet the criteria of a mean normalized error within 2 % and a maximal normalized error within 10 % by using 40 training samples with marginal processing. An advantage of the pf-RSM method is that the nonlinearity in PM2.5 and O3 responses to precursor emission changes can be characterized by quantitative indicators, including (1) a peak ratio (denoted as PR) representing VOC-limited or NOx-limited conditions, (2) a suggested ratio of VOC reduction to NOx reduction to avoid increasing O3 under VOC-limited conditions, (3) a flex ratio (denoted as FR) representing NH3-poor or NH3-rich conditions, and (4) enhanced benefits in PM2.5 reductions from simultaneous reduction of NH3 with the same reduction rate of NOx. A case study in the Beijing-Tianjin-Hebei region suggested that most urban areas present strong VOC-limited conditions with a PR from 0.4 to 0.8 in July, implying that the NOx emission reduction rate needs to be greater than 20-60 % to pass the transition from VOC-limited to NOx-limited conditions. A simultaneous VOC control (the ratio of VOC reduction to NOx reduction is about 0.5-1.2) can avoid increasing O3 during the transition. For PM2.5, most urban areas present strong NH3-rich conditions with a PR from 0.75 to 0.95, implying that NH3 is sufficiently abundant to neutralize extra nitric acid produced by an additional 5-35 % of NOx emissions. Enhanced benefits in PM2.5 reductions from simultaneous reduction of NH3 were estimated to be 0.04-0.15 µg m-3 PM2.5 per 1 % reduction of NH3 along with NOx, with greater benefits in July when the NH3-rich conditions are not as strong as in January. Thus, the newly developed pf-RSM model has successfully quantified the enhanced effectiveness of NOx control, and simultaneous reduction of VOC and NH3 with NOx can assure the control effectiveness of PM2.5 and O3.
40 CFR 86.540-90 - Exhaust sample analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for... appropriate, NOX. concentrations of samples. (6) Check zero and span points. If difference is greater than 2...
40 CFR 86.540-90 - Exhaust sample analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for... appropriate, NOX. concentrations of samples. (6) Check zero and span points. If difference is greater than 2...
40 CFR 1042.110 - Recording reductant use and other diagnostic functions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The onboard computer log must record in nonvolatile computer memory all incidents of engine operation... such operation in nonvolatile computer memory. You are not required to monitor NOX concentrations...
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2010-01-15
The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.
Comparison of Highly Resolved Model-Based Exposure ...
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co
Chemistry of sprite discharges through ion-neutral reactions
NASA Astrophysics Data System (ADS)
Hiraki, Y.; Kasai, Y.; Fukunishi, H.
2008-02-01
We estimate the concentration changes, caused by a single streamer in sprites, of ozone and related minor species as odd nitrogen (NOx) and hydrogen (HOx) families in the upper stratosphere and mesosphere. The streamer has an intense electric field and high electron density at its head where a large number of chemically-radical ions and atoms are produced through electron impact on neutral molecules. After propagation of the streamer, the densities of minor species can be perturbed through ion-neutral chemical reactions initiated by the relaxation of these radical products. We evaluate the production rates of ions and atoms using electron kinetics model and assuming the electric field and electron density in the streamer head. We calculate the density variations mainly for NOx, Ox, and HOx species using a one-dimensional model of the neutral and ion composition of the middle atmosphere, including the effect of the sprite streamer. Results at the nighttime condition show that the densities of NO, O3, H, and OH increase suddenly through reactions triggered by firstly produced atomic nitrogen and oxygen, and electrons just after streamer initiation. It is shown that NO and NO2 still remain for 1 h by a certain order of increase with their source-sink balance predominantly around 60 km; for other species, increases in O3, OH, HO2, and H2O2 still remain in the range of 40-70 km. From this affirmative result of long time behavior previously not presented, we emphasize that sprites would have a power to impact on local chemistry at night. We also discuss comparison with previous studies and suggestion for satellite observations.
Chemistry of sprite discharges through ion-neutral reactions
NASA Astrophysics Data System (ADS)
Hiraki, Y.; Kasai, Y.; Fukunishi, H.
2008-07-01
We estimate the concentration changes, caused by streamer discharge in sprites, of ozone and related minor species as odd nitrogen (NOx) and hydrogen (HOx) families in the upper stratosphere and mesosphere. The streamer has an intense electric field and high electron density at its head, where a large number of chemically-radical ions and atoms are produced through electron impact on neutral molecules. After its propagation, densities of minor species can be perturbed through ion-neutral chemical reactions initiated by the relaxation of these radical products. We evaluate the production rates of ions and atoms using an electron kinetics model and by assuming that the electric field and electron density are in the head region. We calculate the density variations mainly for NOx, Ox, and HOx species using a one-dimensional model of the neutral and ion composition of the middle atmosphere, including the effect of the sprite streamer. Results at the nighttime condition show that the densities of NO, O3, H, and OH increase suddenly through reactions triggered by the first atomic nitrogen and oxygen product, and electrons just after streamer initiation. It is shown that NO and NO2 still remain for 1 h by a certain order of increase with their source-sink balance, predominantly around 60 km; for other species, increases in O3, OH, HO2, and H2O2 still remain in the range of 40 70 km. From this affirmative result of long-time behavior previously not presented, we emphasize that sprites would have the power to impact local chemistry at night. We also discuss the consistency with previous theoretical and observational studies, along with future suggestions.
Quantifying emissions of CO and NOx using observations from MOPITT, OMI, TES, and OSIRIS
NASA Astrophysics Data System (ADS)
Zhang, X.; Jones, D. B. A.; Keller, M.; Walker, T. W.; Jiang, Z.; Henze, D. K.; Bourassa, A. E.; Degenstein, D. A.; Rochon, Y. J.
2016-12-01
We use the GEOS-Chem four-dimensional variational (4D-var) data assimilation with satellite observations of multiple chemical species to estimate emissions of CO and NOx, as well as the tropospheric concentrations of O3. In doing so, we utilize CO retrievals from The Measurements of Pollution In The Troposphere (MOPITT), O3 retrievals from the Tropospheric Emission Spectrometer (TES), O3 retrievals from the Optical Spectrograph and InfraRed Imager System (OSIRIS), and NO2 columns from the Ozone Monitoring Instrument (OMI). By integrating these data in the 4D-Var scheme, we obtain a chemical state in the model that is consistent with all of the data over the assimilation period. In this context, for example, we find that combining TES and OSIRIS improves O3, particularly in the tropical upper troposphere (by 10-20%), which leads to a reduction in the uncertainty of the NOx emission estimates. However, although assimilating multiple chemical species provides a stronger constraint on the chemical, state, there are still large uncertainties on the CO and NOx emission estimates, due to the dependence of the results on the selection of the assimilation window and how the datasets are weighted in the cost function.
NASA Astrophysics Data System (ADS)
Ren, X.; Mazzuca, G.; Loughner, C.; Estes, M. J.; Crawford, J. H.; Weinheimer, A. J.; Pickering, K. E.; Dickerson, R. R.
2016-12-01
An observation-constrained box model based on the Carbon Bond mechanism, Version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA DISCOVER-AQ campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and VOCs were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlation of these results with other parameters, such as radical sources and NOx mixing ratio, was also evaluated. It was generally found that O3 production tends to be more VOC sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx sensitive with some exceptions. O3 production at near major emissions sources such as Deer Park was mostly VOC sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston, but led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial.
NASA Astrophysics Data System (ADS)
Mazzuca, Gina M.; Ren, Xinrong; Loughner, Christopher P.; Estes, Mark; Crawford, James H.; Pickering, Kenneth E.; Weinheimer, Andrew J.; Dickerson, Russell R.
2016-11-01
An observation-constrained box model based on the Carbon Bond mechanism, version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and volatile organic compounds (VOCs) were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlations of these results with other parameters, such as radical sources and NOx mixing ratio, were also evaluated. It was generally found that O3 production tends to be more VOC-sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx-sensitive with some exceptions. O3 production near major emissions sources such as Deer Park was mostly VOC-sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC-sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx-sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston but has led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial.
Dreessen, Joel; Sullivan, John; Delgado, Ruben
2016-09-01
Canadian wildfire smoke impacted air quality across the northern Mid-Atlantic (MA) of the United States during June 9-12, 2015. A multiday exceedance of the new 2015 70-ppb National Ambient Air Quality Standard (NAAQS) for ozone (O3) followed, resulting in Maryland being incompliant with the Environmental Protection Agency's (EPA) revised 2015 O3 NAAQS. Surface in situ, balloon-borne, and remote sensing observations monitored the impact of the wildfire smoke at Maryland air quality monitoring sites. At peak smoke concentrations in Maryland, wildfire-attributable volatile organic compounds (VOCs) more than doubled, while non-NOx oxides of nitrogen (NOz) tripled, suggesting long range transport of NOx within the smoke plume. Peak daily average PM2.5 was 32.5 µg m(-3) with large fractions coming from black carbon (BC) and organic carbon (OC), with a synonymous increase in carbon monoxide (CO) concentrations. Measurements indicate that smoke tracers at the surface were spatially and temporally correlated with maximum 8-hr O3 concentrations in the MA, all which peaked on June 11. Despite initial smoke arrival late on June 9, 2015, O3 production was inhibited due to ultraviolet (UV) light attenuation, lower temperatures, and nonoptimal surface layer composition. Comparison of Community Multiscale Air Quality (CMAQ) model surface O3 forecasts to observations suggests 14 ppb additional O3 due to smoke influences in northern Maryland. Despite polluted conditions, observations of a nocturnal low-level jet (NLLJ) and Chesapeake Bay Breeze (BB) were associated with decreases in O3 in this case. While infrequent in the MA, wildfire smoke may be an increasing fractional contribution to high-O3 days, particularly in light of increased wildfire frequency in a changing climate, lower regional emissions, and tighter air quality standards. The presented event demonstrates how a single wildfire event associated with an ozone exceedance of the NAAQS can prevent the Baltimore region from complying with lower ozone standards. This relatively new problem in Maryland is due to regional reductions in NOx emissions that led to record low numbers of ozone NAAQS violations in the last 3 years. This case demonstrates the need for adequate means to quantify and justify ozone impacts from wildfires, which can only be done through the use of observationally based models. The data presented may also improve future air quality forecast models.
NASA Astrophysics Data System (ADS)
Wang, T.; Wang, W.; Yun, H.; Tham, Y. J.; Xia, M.; Yu, C.; Wang, Z.; Zhang, N.; Cui, L.; Poon, S.; Lee, S.; Ou, Y.; Yue, D.; Zhai, Y.
2017-12-01
In the past decade, heterogeneous uptake of dinitrogen pentoxide (N2O5) on aerosol and subsequent production of nitryl chloride (ClNO2) have been found to impact the oxidative capacity, NOx fate, and the formation of aerosol nitrate and photochemical ozone. However, the detailed processes and effects are not completely understand for diverse environments of the globe. Our previous measurements at a mountain top (957 m a.s.l) in Hong Kong in winter 2013 revealed elevated concentrations of N2O5 (up to 7.7 ppb) and ClNO2 (up to 4.7 ppb) and that the polluted air masses originated from inland urban areas of the Pearl River delta (PRD). To understand the detailed uptake processes, an intensive measurement campaign was conducted at the same site (Tai Mo Shan, TMS) during October-December 2016 and at a semi-rural site (Heshan) in the center of the PRD in January 2017. Key parameters related to N2O5 and ClNO2 processes, including aerosol ionic composition, aerosol number and size, volatile organic compounds as well as ozone, NOx and NOy, were measured during the two campaigns. Elevated (up to 3.4 ppb) ClNO2 concentrations were observed at the mountain site on many nights a few hours after sunset, and extremely high levels of ClNO2 (up to 8.3 ppb) were measured in the inland site during a heavy pollution event. The meteorological conditions and variations of ClNO2 will be examined with concurrently measured parameters to elucidate factors determining N2O5 uptake and ClNO2 production. The 2016 results at TMS will be compared with those from 2013.
Operational prediction of air quality for the United States: applications of satellite observations
NASA Astrophysics Data System (ADS)
Stajner, Ivanka; Lee, Pius; Tong, Daniel; Pan, Li; McQueen, Jeff; Huang, Jianping; Huang, Ho-Chun; Draxler, Roland; Kondragunta, Shobha; Upadhayay, Sikchya
2015-04-01
Operational predictions of ozone and wildfire smoke over United States (U.S.) and predictions of airborne dust over the contiguous 48 states are provided by NOAA at http://airquality.weather.gov/. North American Mesoscale (NAM) weather predictions with inventory based emissions estimates from the U.S. Environmental Protection Agency (EPA) and chemical processes within the Community Multiscale Air Quality (CMAQ) model are combined together to produce ozone predictions. Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is used to predict wildfire smoke and dust storm predictions. Routine verification of ozone predictions relies on AIRNow compilation of observations from surface monitors. Retrievals of smoke column integrals from GOES satellites and dust column integrals from MODIS satellite instruments are used for verification of smoke and dust predictions. Recent updates of NOAA's operational air quality predictions have focused on mobile emissions using the projections of mobile sources for 2012. Since emission inventories are complex and take years to assemble and evaluate causing a lag of information, we recently began combing inventory information with projections of mobile sources. In order to evaluate this emission update, these changes in projected NOx emissions from 2005-2012 were compared with observed changes in Ozone Monitoring Instrument (OMI) NO2 observations and NOx measured by surface monitors over large U.S. cities over the same period. Comparisons indicate that projected decreases in NOx emissions from 2005 to 2012 are similar, but not as strong as the decreases in the observed NOx concentrations and in OMI NO2 retrievals. Nevertheless, the use of projected mobile NOx emissions in the predictions reduced biases in predicted NOx concentrations, with the largest improvement in the urban areas. Ozone biases are reduced as well, with the largest improvement seen in rural areas. Recent testing of PM2.5 predictions is relying on emissions inventories augmented by real time sources from wildfires and dust storms. The evaluation of these test predictions relies on surface monitor data, but efforts are in progress to include comparisons with satellite observed aerosol optical depth (AOD) products. Testing of PM2.5 predictions continues to exhibit seasonal biases: overprediction in the winter and underprediction in the summer. The current efforts focus on bias correction and development of linkages with global atmospheric composition predictions.
Farhi, Adel; Boyko, Valentina; Almagor, Jonatan; Benenson, Itzhak; Segre, Enrico; Rudich, Yinon; Stern, Eli; Lerner-Geva, Liat
2014-11-01
Over the last decade, there is growing evidence that exposure to air pollution may be associated with increased risk for congenital malformations. To evaluate the possible association between exposures to air pollution during pregnancy and congenital malformations among infants born following spontaneously conceived (SC) pregnancies and assisted reproductive technology (ART) pregnancies. This is an historical cohort study comprising 216,730 infants: 207,825 SC infants and 8905 ART conceived infants, during the periods 1997-2004. Air pollution data including sulfur dioxide (SO2), particulate matter <10 µm (PM10), nitrogen oxides (NOx) and ozone (O3) were obtained from air monitoring stations database for the study period. Using a geographic information system (GIS) and the Kriging procedure, exposure to air pollution during the first trimester and the entire pregnancy was assessed for each woman according to her residential location. Logistic regression models with generalized estimating equation (GEE) approach were used to evaluate the adjusted risk for congenital malformations. In the study cohort increased concentrations of PM10 and NOx pollutants in the entire pregnancy were associated with slightly increased risk for congenital malformations: OR 1.06(95% CI, 1.01-1.11) for 10 µg/m(3) increase in PM10 and OR 1.03(95% CI, 1.01-1.04) for 10 ppb increase in NOx. Specific malformations were evident in the circulatory system (for PM10 and NOx exposure) and genital organs (for NOx exposure). SO2 and O3 pollutants were not significantly associated with increased risk for congenital malformations. In the ART group higher concentrations of SO2 and O3 in entire pregnancy were associated (although not significantly) with an increased risk for congenital malformations: OR 1.06(95% CI, 0.96-1.17) for 1 ppb increase in SO2 and OR 1.15(95% CI, 0.69-1.91) for 10 ppb increase in O3. Exposure to higher levels of PM10 and NOx during pregnancy was associated with an increased risk for congenital malformations. Specific malformations were evident in the circulatory system and genital organs. Among ART pregnancies possible adverse association of SO2 and O3 exposure was also observed. Further studies are warranted, including more accurate exposure assessment and a larger sample size for ART pregnancies, in order to confirm these findings. Copyright © 2014 Elsevier Inc. All rights reserved.
Fisher, J. A.; Jacob, D. J.; Travis, K. R.; Kim, P. S.; Marais, E. A.; Miller, C. Chan; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Mao, J.; Wennberg, P. O.; Crounse, J. D.; Teng, A. P.; Nguyen, T. B.; St. Clair, J. M.; Cohen, R. C.; Romer, P.; Nault, B. A.; Wooldridge, P. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Shepson, P. B.; Xiong, F.; Blake, D. R.; Goldstein, A. H.; Misztal, P. K.; Hanisco, T. F.; Wolfe, G. M.; Ryerson, T. B.; Wisthaler, A.; Mikoviny, T.
2018-01-01
Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ∼25 × 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO2 in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20% by photolysis to recycle NOx and 15% by dry deposition. RONO2 production accounts for 20% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline. PMID:29681921
Role of plant-generated water vapor and VOC fluxes in shoot chamber measurements of O3 and NOx
NASA Astrophysics Data System (ADS)
Joensuu, J.; Altimir, N.; Raivonen, M.; Kolari, P.; Keronen, P.; Vesala, T.; Bäck, J.; Hari, P.; Järvinen, E.; Nikinmaa, E.
2012-04-01
One of the processes underlying the atmospheric balance of O3 and NOx is their interaction with vegetation. Both are removed, absorbed, and NOx potentially also emitted by foliage. Uncertainties remain on relevant factors controlling O3 and NOx interactions with foliage as well as on including them in large-scale models. One reason for the uncertainty is that chamber measurements of O3 and NOx fluxes are complicated. These reactive gases are adsorbed and desorbed on the chamber walls, depending on the conditions (i.e. humidity). These artefact gas fluxes (chamber blank) must also be quantified and taken into account in the data analysis. Their importance increases when measuring in clean air, where the fluxes are generally small. At near-zero concentrations, the fluxes may not pass the detection limit of the instrumentation, which usually means it is not possible to separate the plant-related fluxes from the chamber blank. The long-term field measurements at the SMEAR II station in Hyytiälä, Southern Finland, have provided valuable insights into O3 and NOx exchange (i.e. Raivonen & al. 2009, Altimir & al. 2006). This project builds up on the expertise and conclusions from these works. The aim of this study was to improve the reliability of the measuring system by checking the role of potential measuring artefact(s). A live shoot, enclosed in a chamber, creates a water vapor in the chamber flux by transpiring. There are also biogenic VOC emissions from the shoot. In principle, these may affect the reactions of O3 and possibly NOx in the chamber. The potential interference of these fluxes created naturally during chamber closure is a main concern. Their effect on the O3 and NOx flux measurements has been tested with field calibrations in 2010-2011. In these calibrations, a controlled water vapor /VOC flux was fed into an empty shoot measurement chamber, and the H2O, CO2, O3 and NOx fluxes created in the chamber were measured. The created water vapor flux pattern was modified to either simulate shoot transpiration or to break the close connection of natural daily variation in transpiration, radiation and temperature. We will present results of this experiment. The project is funded by the Maj and Tor Nessling Foundation and the Ella and Georg Ehnrooth Foundation.
Ellison, Michael A; Thurman, Gail; Gearheart, Christy M; Seewald, Ryan H; Porter, Christopher C; Ambruso, Daniel R
2015-01-01
The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox proteins. Our findings indicate that interferon-γ has complex effects on phox protein expression and that these are different in cells undergoing terminal differentiation. Understanding these changes may indicate additional therapeutic uses for this cytokine in human disorders.
NASA Astrophysics Data System (ADS)
Wang, Litao; Zhang, Yang; Wang, Kai; Zheng, Bo; Zhang, Qiang; Wei, Wei
2016-01-01
An extremely severe and persistent haze event occurred over the middle and eastern China in January 2013, with the record-breaking high concentrations of fine particulate matter (PM2.5). In this study, an online-coupled meteorology-air quality model, the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied to simulate this pollution episode over East Asia and northern China at 36- and 12-km grid resolutions. A number of simulations are conducted to examine the sensitivities of the model predictions to various physical schemes. The results show that all simulations give similar predictions for temperature, wind speed, wind direction, and humidity, but large variations exist in the prediction for precipitation. The concentrations of PM2.5, particulate matter with aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are overpredicted partially due to the lack of wet scavenging by the chemistry-aerosol option with the 1999 version of the Statewide Air Pollution Research Center (SAPRC-99) mechanism with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and the Volatility Basis Set (VBS) for secondary organic aerosol formation. The optimal set of configurations with the best performance is the simulation with the Gorddard shortwave and RRTM longwave radiation schemes, the Purdue Lin microphysics scheme, the Kain-Fritsch cumulus scheme, and a nudging coefficient of 1 × 10-5 for water vapor mixing ratio. The emission sensitivity simulations show that the PM2.5 concentrations are most sensitive to nitrogen oxide (NOx) and SO2 emissions in northern China, but to NOx and ammonia (NH3) emissions in southern China. 30% NOx emission reductions may result in an increase in PM2.5 concentrations in northern China because of the NH3-rich and volatile organic compound (VOC) limited conditions over this area. VOC emission reductions will lead to a decrease in PM2.5 concentrations in eastern China. However, 30% reductions in the emissions of SO2, NOx, NH3, and VOC, individually or collectively, are insufficient to effectively mitigate the severe pollution over northern China. More aggressive emission controls, which needs to be identified in further studies, are needed in this area to reach the objective of 25% PM2.5 concentration reduction in 2017 proposed in the Action Plan for Air Pollution Prevention and Control by the State Council in 2013.
Potential impacts of electric vehicles on air quality in Taiwan.
Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May
2016-10-01
The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.
Inorganic aerosols responses to emission changes in Yangtze River Delta, China.
Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun
2014-05-15
The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols. Copyright © 2014 Elsevier B.V. All rights reserved.