R & D GTDS SST: Code Flowcharts and Input
1995-01-01
trajectory from a given set of initial conditions Typical output is in the form of a printer le of Cartesian coordinates and Keplerian orbital ... orbiting the Earth The input data specied for an EPHEM run are i Initial elements and epoch ii Orbit generator selection iii Conversion of osculating...discussed ELEMENT sets coordinate system reference central body and rst components of initial state ELEMENT sets the second
Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction
2014-09-01
sets usually are classical orbital elements , or Keplerian elements illustrated in Fig. 3. Fig. 3. Orbital elements ... elements in Table 2, for 10 orbits . Orbit of the objects is simulated by equation (3.9) and set the initial equation in Table 2. Gravitational...depending upon the parameters selected and the orbit to be propagated. For this reason, other sets of elements were defined and used in the
A simple method to design non-collision relative orbits for close spacecraft formation flying
NASA Astrophysics Data System (ADS)
Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco
2018-05-01
A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.
Satellite Orbit Theory for a Small Computer.
1983-12-15
them across the pass. . Both sets of interpolating polynomials are finally used to provide osculating orbital elements at arbitrary times during the...polyno-iials are established for themt across the mass. Both sets of inter- polating polynomials are finally used to provide osculating orbital elements ...high Drecisicn orbital elements at epoch, a correspond ing set of initial mean eleme-nts must be determined for the samianalytical model. It is importan
NASA Technical Reports Server (NTRS)
Axelrad, Penina; Speed, Eden; Leitner, Jesse A. (Technical Monitor)
2002-01-01
This report summarizes the efforts to date in processing GPS measurements in High Earth Orbit (HEO) applications by the Colorado Center for Astrodynamics Research (CCAR). Two specific projects were conducted; initialization of the orbit propagation software, GEODE, using nominal orbital elements for the IMEX orbit, and processing of actual and simulated GPS data from the AMSAT satellite using a Doppler-only batch filter. CCAR has investigated a number of approaches for initialization of the GEODE orbit estimator with little a priori information. This document describes a batch solution approach that uses pseudorange or Doppler measurements collected over an orbital arc to compute an epoch state estimate. The algorithm is based on limited orbital element knowledge from which a coarse estimate of satellite position and velocity can be determined and used to initialize GEODE. This algorithm assumes knowledge of nominal orbital elements, (a, e, i, omega, omega) and uses a search on time of perigee passage (tau(sub p)) to estimate the host satellite position within the orbit and the approximate receiver clock bias. Results of the method are shown for a simulation including large orbital uncertainties and measurement errors. In addition, CCAR has attempted to process GPS data from the AMSAT satellite to obtain an initial estimation of the orbit. Limited GPS data have been received to date, with few satellites tracked and no computed point solutions. Unknown variables in the received data have made computations of a precise orbit using the recovered pseudorange difficult. This document describes the Doppler-only batch approach used to compute the AMSAT orbit. Both actual flight data from AMSAT, and simulated data generated using the Satellite Tool Kit and Goddard Space Flight Center's Flight Simulator, were processed. Results for each case and conclusion are presented.
A Comparison of Nonlinear Filters for Orbit Determination and Estimation
1986-06-01
Com- mand uses a nonlinear least squares filter for element set maintenance for all objects orbiting the Earth (3). These objects, including active...initial state vector is the singularly averaged classical orbital element set provided by SPACECOM/DOA. The state vector in this research consists of...GSF (G) - - 26.0 36.7 GSF(A) 32.1 77.4 38.8 59.6 The Air Force Space Command is responsible for main- taining current orbital element sets for about
NASA Astrophysics Data System (ADS)
Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.; Baturin, A. P.
2011-07-01
The analysis various systems of initial orbital elements of comet Herschel-Rigollet defined in bases on different sample of observations was given. In spite of slight quantity of first appearance observations the introduction of weighting coefficients and the new rejection algorithm is allowed to define the most precise system of orbital elements with the least value of volume confidence region.
Scalable Track Initiation for Optical Space Surveillance
2012-09-01
orbital elements. Descartes ’ rule of signs tells us the number of positive real roots. If the third coefficient in the quadratic form (3) is...specified intervals of the orbital elements. Assuming that we have real roots in equation (8), we use Descartes ’ rule of signs to determine the number
A Method for Calculating the Mean Orbits of Meteor Streams
NASA Astrophysics Data System (ADS)
Voloshchuk, Yu. I.; Kashcheev, B. L.
An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.
Simple control laws for low-thrust orbit transfers
NASA Technical Reports Server (NTRS)
Petropoulos, Anastassios E.
2003-01-01
Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.
Numerical model of the evolution of asteroid orbits at the 2:5 resonance
NASA Astrophysics Data System (ADS)
Ipatov, S. I.
1992-12-01
The interrelations of the variations in the orbital elements of asteroids at the 2:5 resonance and in its vicinity are investigated.. These investigations are based on the numerical integration of the complete equations of motion of the three-body problem (sun-Jupiter-asteroid) for 500 model asteroids. The time interval under consideration for most versions of the calculations equaled 10(4) orbital periods of Jupiter. The limits of the variations in the orbital elements and the regions of initial data corresponding to different types of interrelations of the variations in the eccentricity and longitude of perihelion are examined. It is shown that thr 2:5 gap may play a larger role than other gaps in the replenishment of the Apollo and Amor groups. The time over which the argument of perihelion changed by 360 degrees was usually equal to two periods of variation in the orbital inclination. When this interrelation was not found, the time over which the longitude of the ascending node changed by 360 degrees was equal, as a rule, to one period of variation in this inclination. For some asteroids moving along orbits of small eccentricity and inclination, interrelations were found between the periods of variation in four orbital elements: eccentricity, inclination, argument of perihelion, and longitude of the ascending node. For initial inclinations i° = 40° of asteroid orbits, the maximum values of inclinations of some model asteroids reached 160 degrees. Such asteroids could reach the sun or nearly parabolic orbits.
2001 Mars Odyssey Project report
NASA Technical Reports Server (NTRS)
Spencer, D. A.; Gibbs, R. G.; Mase, R. A.; Plaut, J. J.; Saunders, R. S.
2002-01-01
The Mars Odyssey orbiter was launched on April 7, 2001, and arrived at Mars on October 24, 2001. The orbiter carries scientific instruments that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future surface missions. This paper will present an overview of the Odyssey project, including the key elements of the spacecraft design, mission design and navigation, mission operations, and the science approach. The project's risk management process will be described. Initial findings of the science team will be summarized.
Accretional evolution of a planetesimal swarm. I - A new simulation
NASA Technical Reports Server (NTRS)
Spaute, Dominique; Weidenschilling, Stuart J.; Davis, Donald R.; Marzari, Francesco
1991-01-01
This novel simulation of planetary accretion simultaneously treats many interacting heliocentric distance zones and characterizes planetesimals via Keplerian elements. The numerical code employed, in addition to following the size distribution and the orbit-element distribution of a planetesimal swarm from arbitrary size and orbit distributions, treats a small number of the largest bodies as discrete objects with individual orbits. The accretion algorithm used yields good agreement with the analytic solutions; agreement is also obtained with the results of Weatherill and Stewart (1989) for gravitational accretion of planetesimals having equivalent initial conditions.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
A spreadsheet that calculates meteor orbits
NASA Astrophysics Data System (ADS)
Langbroek, M.
2004-08-01
The author has written an MS Excel spreadsheet application called Metorb08.xls which calculates a meteor's orbital elements from its apparent radiant position and initial speed. It can be downloaded from URL http://home.wanadoo.nl/marco.langbroek along with a suite of other meteor-related Excel applications.
On the long-period evolution of the sun-synchronous orbits
NASA Astrophysics Data System (ADS)
Kuznetsov, E. D.; Jasim, A. T.
2016-05-01
The dynamic evolution of sun-synchronous orbits at a time interval of 20 years is considered. The numerical motion simulation has been carried out using the Celestial Mechanics software package developed at the Institute of Astronomy of the University of Bern. The dependence of the dynamic evolution on the initial value of the ascending node longitude is examined for two families of sun-synchronous orbits with altitudes of 751 and 1191 km. Variations of the semimajor axis and orbit inclination are obtained depending on the initial value of the ascending node longitude. Recommendations on the selection of orbits, in which spent sun-synchronous satellites can be moved, are formulated. Minimal changes of elements over a time interval of 20 years have been observed for orbits in which at the initial time the angle between the orbit ascending node and the direction of the Sun measured along the equator have been close to 90° or 270°. In this case, the semimajor axis of the orbit is not experiencing secular perturbations arising from the satellite's passage through the Earth's shadow.
On non-coplanar Hohmann transfer using angles as parameters
NASA Astrophysics Data System (ADS)
Rincón, Ángel; Rojo, Patricio; Lacruz, Elvis; Abellán, Gabriel; Díaz, Sttiwuer
2015-09-01
We study a more complex case of Hohmann orbital transfer of a satellite by considering non-coplanar and elliptical orbits, instead of planar and circular orbits. We use as parameter the angle between the initial and transference planes that minimizes the energy, and therefore the fuel of a satellite, through the application of two non-tangential impulses for all possible cases. We found an analytical expression that minimizes the energy for each configuration. Some reasonable physical constraints are used: we apply impulses at perigee or apogee of the orbit, we consider the duration of the impulse to be short compared to the duration of the trip, we take the nodal line of three orbits to be coincident and the three semimajor axes to lie in the same plane. We study the only four possible cases but assuming non-coplanar elliptic orbits. In addition, we validate our method through a numerical solution obtained by using some of the actual orbital elements of Sputnik I and Vanguard I satellites. For these orbits, we found that the most fuel-efficient transfer is obtained by applying the initial impulse at apocenter and keeping the transfer orbit aligned with the initial orbit.
Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases
NASA Technical Reports Server (NTRS)
FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre
2007-01-01
This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2012-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
IUS/TUG orbital operations and mission support study. Volume 5: Cost estimates
NASA Technical Reports Server (NTRS)
1975-01-01
The costing approach, methodology, and rationale utilized for generating cost data for composite IUS and space tug orbital operations are discussed. Summary cost estimates are given along with cost data initially derived for the IUS program and space tug program individually, and cost estimates for each work breakdown structure element.
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
Oort's cloud evolution under the influence of the galactic field.
NASA Astrophysics Data System (ADS)
Kiryushenkova, N. V.; Chepurova, V. M.; Shershkina, S. L.
By numerical integration (Everhart's method) of the differential equations of cometary movement in Oort's cloud an attempt was made to observe how the galactic gravitational field changes the orbital elements of these comets during three solar revolutions in the Galaxy. It is shown that the cometary orbits are more elongated, even the initially circular orbits become strongly elliptical, in the outer layers of Oort's cloud it is possible for comets to turn into hyperbolic orbits and to leave the solar system. The boundaries of the solar system have been precised.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2013-05-01
Abstract (2,250 Maximum Characters): The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
Boundaries on Range-Range Constrained Admissible Regions for Optical Space Surveillance
NASA Astrophysics Data System (ADS)
Gaebler, J. A.; Axelrad, P.; Schumacher, P. W., Jr.
We propose a new type of admissible-region analysis for track initiation in multi-satellite problems when apparent angles measured at known stations are the only observable. The goal is to create an efficient and parallelizable algorithm for computing initial candidate orbits for a large number of new targets. It takes at least three angles-only observations to establish an orbit by traditional means. Thus one is faced with a problem that requires N-choose-3 sets of calculations to test every possible combination of the N observations. An alternative approach is to reduce the number of combinations by making hypotheses of the range to a target along the observed line-of-sight. If realistic bounds on the range are imposed, consistent with a given partition of the space of orbital elements, a pair of range possibilities can be evaluated via Lambert’s method to find candidate orbits for that that partition, which then requires Nchoose- 2 times M-choose-2 combinations, where M is the average number of range hypotheses per observation. The contribution of this work is a set of constraints that establish bounds on the range-range hypothesis region for a given element-space partition, thereby minimizing M. Two effective constraints were identified, which together, constrain the hypothesis region in range-range space to nearly that of the true admissible region based on an orbital partition. The first constraint is based on the geometry of the vacant orbital focus. The second constraint is based on time-of-flight and Lagrange’s form of Kepler’s equation. A complete and efficient parallelization of the problem is possible on this approach because the element partitions can be arbitrary and can be handled independently of each other.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
Orbital evolution of some Centaurs
NASA Astrophysics Data System (ADS)
Kovalenko, Nataliya; Babenko, Yuri; Churyumov, Klim
2002-11-01
In this work we investigated the dynamical evolution of Centaurs objects 2060 (Chiron), 5145 (Pholus), 7066 (Nessus), 8405 (Asbolus), 10199 (Chariklo), 10370 (Hylonome), and Scattered-Disk object 15874. We have carried out orbital integration of test particles with initial orbits similar to those of these objects. Calculations were produced for +/-600kyr-10Myr starting at epoch and using the implicit single sequence Everhart methods. 12 variational orbits for each of selected Centaurs also have been numerically integrated for +/-200 kyr toward the past and the future. The most probable paths were traced up to +/-1 Myr. The character of orbital elements changes and peculiarities of close approaches to giant planets are discussed.
Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission
NASA Astrophysics Data System (ADS)
Subramanian, B.; Vighnesam, N. V.
INSAT-3C is the second in the third generation of ISRO's INSAT series of satellites that was launched by ARIANE-SPACE on 23 January 2002 at 23 h 46 m 57 s (lift off time in U.T). The ARIANE-4 Flight Nr.147 took off from Kourou in French Guyana and injected the 2750-kg communications satellite in a geostationary transfer orbit of (571 X 35935) km with an inclination of 4.007 deg at 00 h 07 m 48 s U.T on 24 January 2002 (1252 s after lift off). The satellite was successfully guided into its intended geostationary position of 74 deg E longitude by 09 February 2002 after a series of four firings of its Liquid Apogee Motor (LAM) and four station acquisition (STAQ) maneuvers. Six distinct phases of the mission were categorized based on the orbit characteristics of the INSAT- 3C mission, namely, the pre-launch phase, the launch phase, transfer orbit phase, intermediate orbit phase, drift orbit phase and synchronous orbit phase. The orbit with a perigee height of 571 km at injection of the satellite, was gradually raised to higher orbits with perigee height increasing to 9346 km after Apogee Motor Firing #1 (AMF #1), 18335 km after AMF #2, 32448 km after AMF #3 and 35493 km after AMF #4. The North and South solar panels and the reflectors were deployed at this stage of the mission and the attitude of the satellite with respect to the three axes was stabilized. The Orbit Determination System (ODS) that was used in the initial phase of the mission played a crucial role in realizing the objectives of the mission. This system which consisted of Tracking Data Pre-Processing (TDPP) software, Ephemeris Generation (EPHGEN) software and the Orbit Determination (OD) software, performed rigorously and its results were used for planning the AMF and STAQ strategies with a greater degree of accuracy. This paper reports the results of evaluation of the performance of the apogee-motor firings employed to place the satellite in its intended position where it is collocated with INSAT-1D satellite. The orbit of the satellite had to be determined continuously at each stage of the initial phase of the mission at a brisk pace and this study shows that the ODS provided consistent results to meet the stringent requirements of the mission operations. At each stage of the mission the orbit was determined using tracking data obtained over varying periods of time. The orbit solutions obtained from short arc OD's are compared with that obtained using the longest arc OD of each stage of the initial phase of the mission. The results of this study have been tabled in this paper. The performance of the ODS in calibrating the ARIANE-4 launch vehicle has been analyzed. A comparison of the orbit elements obtained from the mission operational ODS with the injection parameters provided by CNES, Centre Spatial Guyanais has been made in this paper which shows that the satellite was injected well within the 1 dispersions quoted by ARIANE-SPACE. A comparison has also been shown between the determined transfer orbit elements with pre-launch nominal orbit elements. For the initial phase of this mission ranging support was provided by Hassan earth station at India and INMARSAT network of stations at LakeCowichan (Canada), Fucino (Italy) and Beijing (China). The performance of the tracking systems employed by these stations has been studied. The quality of tracking data obtained from these stations has also been assessed.
An algorithm for targeting finite burn maneuvers
NASA Technical Reports Server (NTRS)
Barbieri, R. W.; Wyatt, G. H.
1972-01-01
An algorithm was developed to solve the following problem: given the characteristics of the engine to be used to make a finite burn maneuver and given the desired orbit, when must the engine be ignited and what must be the orientation of the thrust vector so as to obtain the desired orbit? The desired orbit is characterized by classical elements and functions of these elements whereas the control parameters are characterized by the time to initiate the maneuver and three direction cosines which locate the thrust vector. The algorithm was built with a Monte Carlo capability whereby samples are taken from the distribution of errors associated with the estimate of the state and from the distribution of errors associated with the engine to be used to make the maneuver.
SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites
NASA Technical Reports Server (NTRS)
Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.
1993-01-01
An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.
2004-06-01
equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital
Implementing a 50x50 Gravity Field Model in an Orbit Determination System
1993-06-01
orbital element set , sometimes better known as the Keplerian orbital element set . Another set is the equinoctial element set , which removes singularity...Conference. San Diego, California. August 1976. [8] Cefola, Paul. Equinoctial Orbit Elements - Application to Artificial Satellite Orbits . AIAA Paper...251 A.2 Classical Orbital Elements ......................................................... 251 A.3
Orbital theory in terms of KS elements with luni-solar perturbations
NASA Astrophysics Data System (ADS)
Sellamuthu, Harishkumar; Sharma, Ram
2016-07-01
Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.
Orbits of the inner satellites of Neptune
NASA Astrophysics Data System (ADS)
Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack
2018-04-01
We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.
How useful is the `mean stream' in discussing meteoroid stream evolution?
NASA Astrophysics Data System (ADS)
Williams, I. P.; Jones, D. C.
2007-02-01
The current model for meteoroid formation involves particles being ejected from parent objects, usually comets and sometimes asteroids. The orbital speed of any body in the Solar system is much larger than any potential ejection speed of small particles from the body, hence the initial orbit of any meteoroid is fairly similar to that of the parent. However, with the passage of time the effects of gravitational perturbations from the planets and solar radiation will cause the orbits of the meteoroids to evolve away from the parent's orbit. Initially this may cause a meteor shower to occur, but eventually will lead to the dissipation of the stream. When modelling meteoroid streams, it is usually more convenient to use the average orbital elements of all the meteoroids to study their evolution. In this paper, we consider the evolution of the orbits of several sets of meteoroids comparing the effectiveness of using the mean and median values for a stream when modelling the overall evolution. We conclude that although both mean and median provide a good match to the evolution of the real meteoroids for most of the time interval studied, the mean orbit remains more consistently close to the stream.
Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica
ERIC Educational Resources Information Center
Acosta, César R.; Tapia, J. Alejandro; Cab, César
2014-01-01
Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…
Development and evaluation of a hybrid averaged orbit generator
NASA Technical Reports Server (NTRS)
Mcclain, W. D.; Long, A. C.; Early, L. W.
1978-01-01
A rapid orbit generator based on a first-order application of the Generalized Method of Averaging has been developed for the Research and Development (R&D) version of the Goddard Trajectory Determination System (GTDS). The evaluation of the averaged equations of motion can use both numerically averaged and recursively evaluated, analytically averaged perturbation models. These equations are numerically integrated to obtain the secular and long-period motion. Factors affecting efficient orbit prediction are discussed and guidelines are presented for treatment of each major perturbation. Guidelines for obtaining initial mean elements compatible with the theory are presented. An overview of the orbit generator is presented and comparisons with high precision methods are given.
Migration of Dust Particles and Their Collisions with the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.
2004-01-01
Our review of previously published papers on dust migration can be found in [1], where we also present different distributions of migrating dust particles. We considered a different set of initial orbits for the dust particles than those in the previous papers. Below we pay the main attention to the collisional probabilities of migrating dust particles with the planets based on a set of orbital elements during their evolution. Such probabilities were not calculated earlier.
Migration of comets to near-Earth space
NASA Astrophysics Data System (ADS)
Ipatov, S. I.
The orbital evolution of more than 21000 Jupiter-crossing objects under the gravitational influence of planets was investigated. For orbits close to that of Comet 2P, the mean collision probabilities of Jupiter-crossing objects with the terrestrial planets were greater by two orders of magnitude than for some other comets. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects (<0.1%) got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Some of them even got inner-Earth orbits (Q<0.983 AU) and Aten orbits for millions of years. Most former trans-Neptunian objects that have typical near-Earth object orbits moved in such orbits for millions of years, so during most of this time they were extinct comets or disintegrated into mini-comets.
Kim, Ghangho; Kim, Chongwon; Kee, Changdon
2015-04-01
A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite's state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.
Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements
Kim, Ghangho; Kim, Chongwon; Kee, Changdon
2015-01-01
A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299
NASA Astrophysics Data System (ADS)
Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada
2010-07-01
The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.
On initial orbit determination
NASA Technical Reports Server (NTRS)
Taff, L. G.
1984-01-01
The classical methods of initial orbit determination are brought together within a larger viewpoint. This new synthesis stresses that all such techniques follow one of three approaches. Either they seek to compute the orbital element set, or its equivalent, by attacking the differential equations of motion (Laplace), the first integrals of the equations of motion (Taff), or the solution itself (Gauss). The particular technique pursued within a given type of approach should depend upon the nature of the observational data, the amount of a priori information one is willing to presume, and the object of the exercise. This might be a binary star system, a moon, a minor planet, or an artificial satellite. The efficacy of some algorithms for each approach is discussed briefly. Unfortunately, none of them work very well. Extensions of these techniques to radars or laser radars are trivial and have provided no new insights into the overall problem.
Accessibility, stabilizability, and feedback control of continuous orbital transfer.
Gurfil, Pini
2004-05-01
This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy
NASA Astrophysics Data System (ADS)
Muñoz-Gutiérrez, M. A.; Reyes-Ruiz, M.; Pichardo, B.
2015-03-01
The orbital elements of Comet Halley are known to a very high precision, suggesting that the calculation of its future dynamical evolution is straightforward. In this paper we seek to characterize the chaotic nature of the present day orbit of Comet Halley and to quantify the time-scale over which its motion can be predicted confidently. In addition, we attempt to determine the time-scale over which its present day orbit will remain stable. Numerical simulations of the dynamics of test particles in orbits similar to that of Comet Halley are carried out with the MERCURY 6.2 code. On the basis of these we construct survival time maps to assess the absolute stability of Halley's orbit, frequency analysis maps to study the variability of the orbit, and we calculate the Lyapunov exponent for the orbit for variations in initial conditions at the level of the present day uncertainties in our knowledge of its orbital parameters. On the basis of our calculations of the Lyapunov exponent for Comet Halley, the chaotic nature of its motion is demonstrated. The e-folding time-scale for the divergence of initially very similar orbits is approximately 70 yr. The sensitivity of the dynamics on initial conditions is also evident in the self-similarity character of the survival time and frequency analysis maps in the vicinity of Halley's orbit, which indicates that, on average, it is unstable on a time-scale of hundreds of thousands of years. The chaotic nature of Halley's present day orbit implies that a precise determination of its motion, at the level of the present-day observational uncertainty, is difficult to predict on a time-scale of approximately 100 yr. Furthermore, we also find that the ejection of Halley from the Solar system or its collision with another body could occur on a time-scale as short as 10 000 yr.
Structures and mechanisms - Streamlining for fuel economy
NASA Technical Reports Server (NTRS)
Card, M. F.
1983-01-01
The design of prospective NASA space station components which inherently possess the means for structural growth without compromising initial system characteristics is considered. In structural design terms, space station growth can be achieved by increasing design safety factors, introducing dynamic isolators to prevent loads from reaching the initial components, or preplanning the refurbishment of the original structure with stronger elements. Design tradeoffs will be based on the definition of on-orbit loads, including docking and maneuvering, whose derived load spectra will allow the estimation of fatigue life. Improvements must be made in structural materials selection in order to reduce contamination, slow degradation, and extend the life of coatings. To minimize on-orbit maintenance, long service life lubrication systems with advanced sealing devices must be developed.
Post-aerocapture orbit selection and maintenance for the Aerofast mission to Mars
NASA Astrophysics Data System (ADS)
Pontani, Mauro; Teofilatto, Paolo
2012-10-01
Aerofast is the abbreviation of “aerocapture for future space transportation” and represents a project aimed at developing aerocapture techniques with regard to an interplanetary mission to Mars, in the context of the 7th Framework Program, with the financial support of the European Union. This paper describes the fundamental characteristics of the operational orbit after aerocapture for the mission of interest, as well as the related maintenance strategy. The final orbit selection depends on the desired lighting conditions, maximum revisit time of specific target regions, and feasibility of the orbit maintenance strategy. A sunsynchronous, frozen, repeating-ground-track orbit is chosen. First, the period of repetition is such that adjacent ascending node crossings (over the Mars surface) have a separation compatible with the swath of the optical payload. Secondly, the sunsynchronism condition ensures that a given latitude is periodically visited at the same local time, which condition is essential for comparing images of the same region at different epochs. Lastly, the fulfillment of the frozen condition guarantees improved orbit stability with respect to perturbations due to the zonal harmonics of Mars gravitational field. These three fundamental features of the operational orbit lead to determining its mean orbital elements. The evaluation of short and long period effects (e.g., those due to the sectorial harmonics of the gravitational field or to the aerodynamic drag) requires the determination of the osculating orbital elements at an initial reference time. This research describes a simple and accurate approach that leads to numerically determining these initial values, without employing complicated analytical developments. Numerical simulations demonstrate the long-period stability of the orbit when a significant number of harmonics of the gravitational field are taken into account. However, aerodynamic drag produces a relatively slow orbital decay at the altitudes considered for the mission. This circumstance implies the progressive loss of the sunsynchronism condition, and therefore corrective maneuvers are to be performed. This work proves that actually only in-plane maneuvers are necessary, evaluates the overall delta-v budget needed in the period of repetition (85 Martian nodal days), and proposes a simple maintenance strategy, making reference to the worst-case scenario, which corresponds to the highest seasonal values of the atmospheric density and to the maximum value of the ballistic coefficient of the spacecraft.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.
Optimal Orbit Maneuvers with Electrodynamic Tethers
2006-06-01
orbital elements , which completely describe a unique orbit ; equinoctial elements are not employed but left for future iterations of the formulation...periods in the maneuver. Follow on work, uch as the transformation of this state vector from classical orbital elements to the quinoctial set of...
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
Trajectory Optimization for Spacecraft Collision Avoidance
2013-09-01
Modified Set of Equinoctial Orbit Elements . AAS/AIAA 91-524," in Astrodynamics Specialist Conference, Durango, CO, 1991. [18] D. E. Kirk...these singularities, the COE are not necessarily the best set of states for numerical analysis. 2.3.3 Equinoctial Orbital Elements A third method of...completely defining an orbit is by the use of the Equinoctial Orbital Elements . This element set maintains the
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The status of the initial testing of the modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is reported. The modeling technique utilizes a linear current element representation of the large scale space-current system.
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
1999-01-01
The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.
NASA Astrophysics Data System (ADS)
Sokova, I. A.; Sokov, E. N.; Roschina, E. A.; Rastegaev, D. A.; Kiselev, A. A.; Balega, Yu. Yu.; Gorshanov, D. L.; Malogolovets, E. V.; Dyachenko, V. V.; Maksimov, A. F.
2014-07-01
In this paper we present the orbital elements of Linus satellite of 22 Kalliope asteroid. Orbital element determination is based on the speckle interferometry data obtained with the 6-m BTA telescope operated by SAO RAS. We processed 9 accurate positions of Linus orbiting around the main component of 22 Kalliope between 10 and 16 December, 2011. In order to determine the orbital elements of the Linus we have applied the direct geometric method. The formal errors are about 5 mas. This accuracy makes it possible to study the variations of the Linus orbital elements influenced by different perturbations over the course of time. Estimates of six classical orbital elements, such as the semi-major axis of the Linus orbit a = 1109 ± 6 km, eccentricity e = 0.016 ± 0.004, inclination i = 101° ± 1° to the ecliptic plane and others, are presented in this work.
NASA Astrophysics Data System (ADS)
Bennett, J.; Gehly, S.
2016-09-01
This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).
Trajectory Control and Optimization for Responsive Spacecraft
2012-03-22
Orbital Elements and Local-Vertical-Local-Horizontal Frame 10 2.3 Equinoctial Frame with respect to ECI Frame [17] . . . . . . . . . 14 3.1...position and velocity, classical orbital elements , and equinoctial elements . These methods are detailed in the following sections. 2.1.1 Inertial Position...trajectory. However, if the singularities are unavoidable equinoctial orbital elements could be used. 2.1.3 Equinoctial Elements . Equinoctial
1987-01-01
for highly eccentric orbits . The real data is in the form of North American Defense Command (NORAD) element sets and actual observa- tions. Data are...the performance of the Semianalytical Satellite Theory for high eccentricity orbits . When elements sets were used as inputs to the DC, comparisons...Operational Orbit Elements ...................... 54 2.* NSSC 9829 Element Set Edits.................. .. .......... . 55 3. Force Models Used for NSSC
A Survey of Uncontrolled Satellite reentry and Impact Prediction
1993-09-23
NORAD produces " element sets " which are mean values of the orbital elements that have been obtained by removing the periodic orbital variations in a...Final Element Set --a listing of the final orbit parameters. The eccentricity and mean motion data from the listing were used in the investigation...yielded altitude and orbital elements as a function of time. Computer run results for these simulations were extremely long and therefore the decision was
NASA Technical Reports Server (NTRS)
Mendell, W. W.
1991-01-01
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.
Comet and Asteroid Hazard to the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)
2002-01-01
We made computer simulations of orbital evolution for intervals of at least 5-10 Myr of N=2000 Jupiter-crossing objects (JCOs) with initial orbits close to those of real comets with period P less than 10 yr, 500 objects with orbits close to that of Comet 10P, and the asteroids initially located at the 3:1 and 5:2 resonances with Jupiter at initial eccentricity e(sub 0)=0.15 and initial inclination i(sub 0)=10(sup 0). The gravitational influence of all planets, except for Mercury and Pluto, was taken into account (without dissipative factors). We calculated the probabilities of collisions of bodies with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all bodies, obtaining, the total probability Psigma of collisions with a planet and the total time interval Tsigma during which perihelion distance q of bodies was less than a semimajor axis of the planet. The values of p(sub r) =10(exp 6)Psigma/N and T(sub r)=T/1000 yr (where T=Tsigma/N) are presented in a table together with the ratio r of the total time interval when orbits were of Apollo type (at a greater than 1 AU, q less than 1.017 AU, e less than 0.999) to that of Amor type (1.017 less than q less than 1.33 AU), r(sub 2) is the same as r but for Apollo objects with e less than 0.9. For asteroids we present only results obtained by direct integration, as a symplectic method can give large errors for these resonances.
Solar Sail Topology Variations Due to On-Orbit Thermal Effects
NASA Technical Reports Server (NTRS)
Banik, Jeremy A.; Lively, Peter S.; Taleghani, Barmac K.; Jenkins, Chrostopher H.
2006-01-01
The objective of this research was to predict the influence of non-uniform temperature distribution on solar sail topology and the effect of such topology variations on sail performance (thrust, torque). Specifically considered were the thermal effects due to on orbit attitude control maneuvers. Such maneuvers are expected to advance the sail to a position off-normal to the sun by as much as 35 degrees; a solar sail initially deformed by typical pre-tension and solar pressure loads may suffer significant thermally induced strains due to the non-uniform heating caused by these maneuvers. This on-orbit scenario was investigated through development of an automated analytical shape model that iterates many times between sail shape and sail temperature distribution before converging on a final coupled thermal structural affected sail topology. This model utilizes a validated geometrically non-linear finite element model and a thermal radiation subroutine. It was discovered that temperature gradients were deterministic for the off-normal solar angle cases as were thermally induced strains. Performance effects were found to be moderately significant but not as large as initially suspected. A roll torque was detected, and the sail center of pressure shifted by a distance that may influence on-orbit sail control stability.
2007-11-01
Keywords Orbital elements · Osculating elements · Mars · Natural satellites · Natural satellites’ orbits · Deimos · Equinoctial precession · The...theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of...solar-gravity-perturbed satellite orbiting an oblate planet subject to nonuniform equinoctial precession. This nonuniformity of precession is caused by
Shuttle Return To Flight Experimental Results: Protuberance Effects on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Horvath, Thomas J.
2006-01-01
The effect of isolated roughness elements on the windward boundary layer of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamic Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental effort was initiated to provide a roughness effects database for developing transition criteria to support on-orbit decisions to repair damage to the thermal protection system. Boundary layer transition results were obtained using trips of varying heights and locations along the centerline and attachment lines of 0.0075-scale models. Global heat transfer images using phosphor thermography of the Orbiter windward surface and the corresponding heating distributions were used to infer the state of the boundary layer (laminar, transitional, or turbulent). The database contained within this report will be used to formulate protuberance-induced transition correlations using predicted boundary layer edge parameters.
The Initial Nine Space Settlements
NASA Astrophysics Data System (ADS)
Gale, Anita E.; Edwards, Richard P.
2003-01-01
The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.
Short- and Long-Term Propagation of Spacecraft Orbits
NASA Technical Reports Server (NTRS)
Smith, John C., Jr.; Sweetser, Theodore; Chung, Min-Kun; Yen, Chen-Wan L.; Roncoli, Ralph B.; Kwok, Johnny H.; Vincent, Mark A.
2008-01-01
The Planetary Observer Planning Software (POPS) comprises four computer programs for use in designing orbits of spacecraft about planets. These programs are the Planetary Observer High Precision Orbit Propagator (POHOP), the Planetary Observer Long-Term Orbit Predictor (POLOP), the Planetary Observer Post Processor (POPP), and the Planetary Observer Plotting (POPLOT) program. POHOP and POLOP integrate the equations of motion to propagate an initial set of classical orbit elements to a future epoch. POHOP models shortterm (one revolution) orbital motion; POLOP averages out the short-term behavior but requires far less processing time than do older programs that perform long-term orbit propagations. POPP postprocesses the spacecraft ephemeris created by POHOP or POLOP (or optionally can use a less accurate internal ephemeris) to search for trajectory-related geometric events including, for example, rising or setting of a spacecraft as observed from a ground site. For each such event, POPP puts out such user-specified data as the time, elevation, and azimuth. POPLOT is a graphics program that plots data generated by POPP. POPLOT can plot orbit ground tracks on a world map and can produce a variety of summaries and generic ordinate-vs.-abscissa plots of any POPP data.
Formation metrology and control for large separated optics space telescopes
NASA Technical Reports Server (NTRS)
Mettler, E.; Quadrelli, M.; Breckenridge, W.
2002-01-01
In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.
The First Row Anomaly and Recoupled Pair Bonding in the Halides of the Late p-Block Elements
2012-01-01
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N–F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF5 and SF6 and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF2. Recoupled pair bonding also causes the Fn–1X–F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF3 and PF2H, but not PH2F and PH3) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH3)2S + F2. Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row. PMID:23151313
The first row anomaly and recoupled pair bonding in the halides of the late p-block elements.
Dunning, Thom H; Woon, David E; Leiding, Jeff; Chen, Lina
2013-02-19
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N-F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF(5) and SF(6) and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF(2). Recoupled pair bonding also causes the F(n-1)X-F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF(3) and PF(2)H, but not PH(2)F and PH(3)) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH(3))(2)S + F(2). Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row.
On Universal Elements, and Conversion Procedures to and from Position and Velocity
1989-07-01
Abstract. An element set is advocated that is familiar (in traditional terms), and yet applicable to all types of orbit without loss of ,: ... accuracy...A Set of Universally Applicable Elements We seek to define a set of universally applicable elements for motion in unperturbed orbits about a centre...respect to 4 , and denote it by , If a particular element set can be chosen that covers every type of orbit , then in principle we regard these elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Fuente Marcos, R.; De la Fuente Marcos, C., E-mail: raul@galaxy.suffolk.e
2010-08-10
The properties of the candidate binary star cluster population in the Magellanic Clouds and Milky Way are similar. The fraction of candidate binaries is {approx}10% and the pair separation histogram exhibits a bimodal distribution commonly attributed to their transient nature. However, if primordial pairs cannot survive for long as recognizable bound systems, how are they ending up? Here, we use simulations to confirm that merging, extreme tidal distortion, and ionization are possible depending on the initial orbital elements and mass ratio of the cluster pair. Merging is observed for initially close pairs but also for wider systems in nearly parabolicmore » orbits. Its characteristic timescale depends on the initial orbital semi-major axis, eccentricity, and cluster pair mass ratio, becoming shorter for closer, more eccentric equal mass pairs. Shredding of the less massive cluster and subsequent separation is observed in all pairs with appreciably different masses. Wide pairs evolve into separated twins characterized by the presence of tidal bridges and separations of 200-500 pc after one Galactic orbit. Most observed binary candidates appear to be following this evolutionary path which translates into the dominant peak (25-30 pc) in the observed pair separation distribution. The secondary peak at smaller separations (10-15 pc) can be explained as due to close pairs in almost circular orbits and/or undergoing merging. Merged clusters exhibit both peculiar radial density and velocity dispersion profiles shaped by synchronization and gravogyro instabilities. Simulations and observations show that long-term binary open cluster stability is unlikely.« less
Dissociative recombination of O2(+), NO(+) and N2(+)
NASA Technical Reports Server (NTRS)
Guberman, S. L.
1983-01-01
A new L(2) approach for the calculation of the threshold molecular capture width needed for the determination of DR cross sections was developed. The widths are calculated with Fermi's golden rule by substituting Rydberg orbitals for the free electron continuum coulomb orbital. It is shown that the calculated width converges exponentially as the effective principal quantum number of the Rydberg orbital increases. The threshold capture width is then easily obtained. Since atmospheric recombination involves very low energy electrons, the threshold capture widths are essential to the calculation of DR cross sections for the atmospheric species studied here. The approach described makes use of bound state computer codes already in use. A program that collects width matrix elements over CI wavefunctions for the initial and final states is described.
NASA Astrophysics Data System (ADS)
Deleflie, Florent; Wailliez, Sébastien; Portmann, Christophe; Gilles, M.; Vienne, Alain; Berthier, J.; Valk, St; Hautesserres, Denis; Martin, Thierry; Fraysse, Hubert
To perform an orbit modelling accurate enough to provide a good estimate of the lifetime of a satellite, or to ensure the stability of a disposal orbit through centuries, we built a new orbit propagator based on the theory of mean orbital motion. It is named SECS-SD2 , for Simplified and Extended CODIOR Software -Space Debris Dedicated . The CODIOR software propagates numerically averaged equations of motion, with a typical integration step size on the order of a few hours, and was originally written in classical orbital elements. The so-called Space Debris -dedicated version is written in orbital elements suitable for orbits with small eccentricities and inclinations, so as to characterize the main dynamic properties of the motion within the LEO, MEO, and GEO regions. The orbital modelling accounts for the very first terms of the geopotential, the perturbations induced by the luni-solar attraction, the solar radiation pressure, and the atmospheric drag (using classical models). The new software was designed so as to ensure short computation times, even over periods of decades or centuries. This paper aims first at describing and validating the main functionalities of the software: we explain how the simplified averaged equations of motion were built, we show how we get sim-plified luni-solar ephemerides without using any huge file for orbit propagations over centuries, and we show how we averaged and simulated the solar flux. We show as well how we expressed short periodic terms to be added to the mean equations of motion, in order to get orbital ele-ments comparable to those deduced from the classical numerical integration of the oscultating equations of motion. The second part of the paper sheds light on some dynamical properties of space debris flying in the LEO and GEO regions, which were obtained from the new software. Knowing that each satellite in the LEO region is now supposed to re-enter the atmosphere within a period of 25 years, we estimated in various dynamical configurations the lifetime of LEO objects depending on their initial conditions of motion, on the solar flux models applied through decades, and on the atmospheric density models and also the satellite area-to-mass ratio. In the GEO region, we investigated the dynamical reasons that can cause space debris re-entering the GEO-protected region after the passivation of a disposal spacecraft.
NASA Technical Reports Server (NTRS)
Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.
1990-01-01
NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.
Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.
Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.
1980-02-12
planet across the limb of the Sun at the end of a transit. Elements of an Orbit - See orbital elements . Elevation - The height of a point on the...That component of libration due to variations in the geometric position of the Earth relative to the Moon. 71 ś" Orbital Elements - The quantities which...completely describe the size, shape, and orientation of an object’s orbit as well as its location in it. The classical set consists of the semi-major
Spacecraft Pointing and Position Control,
1981-11-01
GEOSTATIONARY ELEMENTS As the classical set of Keplerian elements (a,e,i,a,Q, M ) is inappropriate for geosta- tionary orbits because the angular...instead of E., the set E + AE (34) - a - -LP(t 0 is obtained. Since the orbital element vector has to be computed for each measurement time, a simple orbit ...depends on the stiffness terms effected by kinematic coupling with the orbit rate 0o and the set gain K The x-component of the disturbance torque, this
Recovering Neptune 170 Years After its Initial Discovery
NASA Astrophysics Data System (ADS)
Myles, Justin
2017-01-01
Recent work by Trujillo and Shephard (2014) and Batygin and Brown (2016) has shown an as-yet unexplained clustering of the periapse vectors of the most distant Kuiper Belt objects. This unusual clustering has motivated the search for an unseen perturbing planet that is responsible for maintaining the alignment. As a proof of concept of a technique for locating unseen solar system planets, we use dynamical N-body integrations to simulate the orbital dynamics of distant Kuiper Belt objects, with the aim of determining the orbital parameters of Neptune (which, for the sake of exercise, we assume is, as-yet, undiscovered). In this poster, we determine the accuracy with which the perturbing planet’s orbital elements and sky location can be determined, and we show how the lessons learned can improve the search strategy for potentially undiscovered trans-Neptunian planets.
On the accuracy of ERS-1 orbit predictions
NASA Technical Reports Server (NTRS)
Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.
1993-01-01
Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
2006-03-01
Owens J. “A Set of Modified Equinoctial Orbit Elements ,” Celestial Mechanics, 36 :409–419 (1985). 35. Wie B. Space Vehicle Dynamics and Control...14 MEE modified equinoctial elements . . . . . . . . . . . . . . . . . . . . . . . 14 TLE two-line element set ...satellite [32]. Vallado’s model will be incorporated into this thesis. 2.3.3 Modified Equinoctial Orbital Elements . For most astrodynamics problems, one of
NASA Astrophysics Data System (ADS)
Parvathi, S. P.; Ramanan, R. V.
2018-06-01
An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.
Semianalytic Satellite Theory (SST): Mathematical Algorithms
1994-01-01
orbital state of a satellite with an equinoctial element set (a,,. •a 6...applied to a wide variety of orbit element sets . The equinoctial elements were chosen for SST because the variational equations for the equinoctial ...Shaver, 1980]. 2.1.1 Definition of the Equinoctial Elements There are six elements in the equinoctial element set : a, = a sernimajor axis a2 = h a3 =
Options for Staging Orbits in Cis-Lunar Space
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Martinez, Roland
2015-01-01
NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. First, a set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Second, the ability to support potential lunar surface activities is considered. Finally, deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include potential for uninterrupted communication with deployed assets, thermal, communications, and other operational implications. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key attributes that favor a variety of mission classes to meet multiple, sometimes competing, constraints.
Options for Staging Orbits in Cis-Lunar Space
NASA Technical Reports Server (NTRS)
Martinez, Roland; Whitley, Ryan
2016-01-01
NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key attributes that favor a variety of mission classes to meet multiple, sometimes competing, constraints.
Transforming Mean and Osculating Elements Using Numerical Methods
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
1988-12-01
Conversion of the Geopotential into the Modified Orbital Elements 83 Appendix C: Useful Derivatives for the Geopotential Calculations 87 Appendix D...replaced by two equinoctial elements , h and k (from a coordinate system with singularities at i = x and for rectilinear orbits ). Also, for long term 3...0. 10 and 0.55 i 15.5) a more well behaved set of variables will be used: two of the equinoctial elements , h and k. These elements eliminate the
NASA Astrophysics Data System (ADS)
Kawana, Kojiro; Tanikawa, Ataru; Yoshida, Naoki
2018-03-01
We run a suite of hydrodynamics simulations of tidal disruption events (TDEs) of a white dwarf (WD) by a black hole (BH) with a wide range of WD/BH masses and orbital parameters. We implement nuclear reactions to study nucleosynthesis and its dynamical effect through release of nuclear energy. The released nuclear energy effectively increases the fraction of unbound ejecta. This effect is weaker for a heavy WD with 1.2 M⊙, because the specific orbital energy distribution of the debris is predominantly determined by the tidal force, rather than by the explosive reactions. The elemental yield of a TDE depends critically on the initial composition of a WD, while the BH mass and the orbital parameters also affect the total amount of synthesized elements. Tanikawa et al. (2017) find that simulations of WD-BH TDEs with low resolution suffer from spurious heating and inaccurate nuclear reaction results. In order to examine the validity of our calculations, we compare the amounts of the synthesized elements with the upper limits of them derived in a way where we can avoid uncertainties due to low resolution. The results are largely consistent, and thus support our findings. We find particular TDEs where early self-intersection of a WD occurs during the first pericenter passage, promoting formation of an accretion disk. We expect that relativistic jets and/or winds would form in these cases because accretion rates would be super-Eddington. The WD-BH TDEs result in a variety of events depending on the WD/BH mass and pericenter radius of the orbit.
NASA Astrophysics Data System (ADS)
Kawana, Kojiro; Tanikawa, Ataru; Yoshida, Naoki
2018-07-01
We run a suite of hydrodynamic simulations of tidal disruption events (TDEs) of a white dwarf (WD) by a black hole (BH) with a wide range of WD/BH masses and orbital parameters. We implement nuclear reactions to study nucleosynthesis and its dynamical effect through release of nuclear energy. The released nuclear energy effectively increases the fraction of unbound ejecta. This effect is weaker for a heavy WD with 1.2 M⊙, because the specific orbital energy distribution of the debris is predominantly determined by the tidal force, rather than by the explosive reactions. The elemental yield of a TDE depends critically on the initial composition of a WD, while the BH mass and the orbital parameters also affect the total amount of synthesized elements. Tanikawa et al. (2017) find that simulations of WD-BH TDEs with low resolution suffer from spurious heating and inaccurate nuclear reaction results. In order to examine the validity of our calculations, we compare the amounts of the synthesized elements with the upper limits of them derived in a way where we can avoid uncertainties due to low resolution. The results are largely consistent, and thus support our findings. We find particular TDEs where early self-intersection of a WD occurs during the first pericentre passage, promoting formation of an accretion disc. We expect that relativistic jets and/or winds would form in these cases because accretion rates would be super-Eddington. The WD-BH TDEs result in a variety of events depending on the WD/BH mass and pericentre radius of the orbit.
Low cost booster and high performance orbit injection propulsion extended abstract
NASA Technical Reports Server (NTRS)
Sackheim, R. L.
1994-01-01
Space transportation is currently a major element of cost for communications satellite systems. For every dollar spent in manufacturing the satellite, somewhere between 1 and 3 dollars must be spent to launch the satellite into its initial operational orbit. This also makes the weight of the satellite a very critical cost factor because it is important to maximize the useful payload that is placed into orbit to maximize the return on the original investment. It seems apparent then, that tremendous economic advantage for satellite communications systems can be gained from improvements in two key highly leveraged propulsion areas. The first and most important economic improvement can be achieved by significantly lowering the cost of today's launch vehicles. The second gain that would greatly benefit the communications satellite business position is to increase both the useful (payload) weight placed into the orbit and the revenue generating lifetime of the satellite on-orbit. The point of this paper is to first explain that these two goals can best be achieved by cost reduction and performance increasing advancements in rocket propulsion for both the launch vehicle and for the satellite on-board apogee insertion and on-orbit velocity control systems.
Gunina, Anastasia O.; Krylov, Anna I.
2016-11-14
We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethylether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter themore » expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. As a result, we also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.« less
Gamma Ray and Neutron Spectrometer for the Lunar Resource Mapper
NASA Technical Reports Server (NTRS)
Moss, C. E.; Byrd, R. C.; Drake, D. M.; Feldman, W. C.; Martin, R. A.; Merrigan, M. A.; Reedy, R. C.
1992-01-01
One of the early Space Exploration Initiatives will be a lunar orbiter to map the elemental composition of the Moon. This mission will support further lunar exploration and habitation and will provide a valuable dataset for understanding lunar geological processes. The proposed payload will consist of the gamma ray and neutron spectrometers which are discussed, an x ray fluorescence imager, and possibly one or two other instruments.
Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions
NASA Astrophysics Data System (ADS)
Greenspon, J.
Project Outpost is a manned Earth-Sol/Mars-Sol platform that enables permanent occupation in deep space. In order to develop the program elements for this complex mission, Project Outpost will rely primarily on existing/nearterm technology and hardware for the construction of its components. For the purposes of this study, four mission requirements are considered: 1. Outpost - Man's 1st purpose-produced effort of space engineering, in which astructure is developed/constructed in an environment completely alien to currentpractices for EVA guidelines. 2. Newton - a concept study developed at StarGate Research, for the development ofa modified Hohmann personnel orbital transport operating between Earth andMars. Newton would serve as the primary crew delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization. 3. Cruis - a concept study developed at StarGate Research, for the development of amodified Hohmann cargo orbital transport operating between Earth and Mars.Cruis would serve as the primary equipment delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization, and 4. Ares/Diana - a more conventional space platform configuration for Lunar andMars orbit is included as a construction baseline. The operations of these assetsare supported, and used for the support, of the outpost. Outpost would be constructed over a 27-year period of launch opportunities into Earth-Sol or Mars-Sol Lagrange orbit (E-S/M-S L1, 4 or 5). The outpost consists of an operations core with a self-contained power generation ability, a docking and maintenance structure, a Scientific Research complex and a Habitation Section. After achieving initial activation, the core will provide the support and energy required to operate the outpost in a 365 day orbit - with a resupply schedule of 120 days. The initial power grid, based on the ISS's solar array, provides energy during the initial start-up phases. The Operations Core serves as the backbone of the outpost, providing a centrally defined structural brace for other elements. After placement, the core is energized through the deployment of 2 ISS solar wings. Gravitation via rotation will occur approximately 450 days later, with the completion of the habitat elements, when the main reaction control engines are fired to provide an artificial gravity of 8.77 m/s. Station operations begin with deployment of the solar arrays and charging of the battery systems. Newton and Cruis assist in the transporting of supplies and personnel from Earth to Mars via the Outpost, and serve as a crucial component to a long term space exploration/colonization initiative. The cycling spacecraft means of travel has advantages in that it is readily repeatable, immediately demonstrating a long term commitment. The cycling spacecraft, however, represent a less than mature technology. The transportation system between Earth - Outpost - Mars will be perpetually on a duplicate development track with it's "stops". Ares/Diana is advantageous in that they are completely conventional mission profiles with modules and knowledge imported from the International Space Station. While Diana represents a logical next step from Earth, Ares will undoubtedly be developed alongside the Outpost itself.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy; Muramoto, Kyle M.
1990-01-01
Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.
Near-Earth asteroids orbits using Gaia and ground-based observations
NASA Astrophysics Data System (ADS)
Bancelin, D.; Hestroffer, D.; Thuillot, W.
2011-05-01
Potentially Hazardous Asteroids (PHAs) are Near-Earth Asteroids caraterised by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0.05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.The Gaia mission is an astrometric mission that will be launched in 2012 and will observe a large number of Solar System Objects down to magnitude V≤20. During the 5-year mission, Gaia will continuously scan the sky with a specific strategy: objects will be observed from two lines of sight separated with a constant basic angle. Five constants already fixed determinate the nominal scanning law of Gaia: The inertial spin rate (1°/min) that describe the rotation of the spacecraft around an axis perpendicular to those of the two fields of view, the solar-aspect angle (45°) that is the angle between the Sun and the spacecraft rotation axis, the precession period (63.12 days) which is the precession of the spin axis around the Sun-Earth direction. Two other constants are still free parameters: the initial spin phase, and the initial precession angle that will be fixed at the start of the nominal science operations. These latter are constraint by scientific outcome (e.g. possibility of performing test of fundamental physics) together with operational requirements (downlink to Earth windows). Several sets of observations of specific NEOs will hence be provided according to the initial precession angle. The purpose here is to study the statistical impact of the initial precession angle on the error propagation and on the collision probability, especially for PHAs. We will also analyse the advantage of combining space-based to ground-based observation over long term, as well as in short term from observations in alert.
Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals
NASA Astrophysics Data System (ADS)
Szolnoki, L.; Kiss, A.; Forró, L.; Simon, F.
2014-03-01
Monod and Beuneu [P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979), 10.1103/PhysRevB.19.911] established the validity of the Elliott-Yafet theory for elemental metals through correlating the experimental electron spin resonance linewidth with the so-called spin-orbit admixture coefficients and the momentum-relaxation theory. The spin-orbit admixture coefficients data were based on atomic spin-orbit splitting. We highlight two shortcomings of the previous description: (i) the momentum-relaxation involves the Debye temperature and the electron-phonon coupling whose variation among the elemental metals was neglected, (ii) the Elliott-Yafet theory involves matrix elements of the spin-orbit coupling (SOC), which are however not identical to the SOC induced energy splitting of the atomic levels, even though the two have similar magnitudes. We obtain the empirical spin-orbit admixture parameters for the alkali metals by considering the proper description of the momentum relaxation theory. In addition we present a model calculation, which highlights the difference between the SOC matrix element and energy splitting.
First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.
2013-08-01
We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.
Exact Analytic Solution for a Ballistic Orbiting Wind
NASA Astrophysics Data System (ADS)
Wilkin, Francis P.; Hausner, Harry
2017-07-01
Much theoretical and observational work has been done on stellar winds within binary systems. We present a new solution for a ballistic wind launched from a source in a circular orbit. The solution is that of a single wind—no second wind is included in the system and the shocks that arise are those due to the orbiting wind interacting with itself. Our method emphasizes the curved streamlines in the corotating frame, where the flow is steady-state, allowing us to obtain an exact solution for the mass density at all pre-shock locations. Assuming an initially isotropic wind, fluid elements launched from the interior hemisphere of the wind will be the first to cross other streamlines, resulting in a spiral structure bounded by two shock surfaces. Streamlines from the outer wind hemisphere later intersect these shocks as well. An analytic solution is obtained for the geometry of the two shock surfaces. Although the inner and outer shock surfaces asymptotically trace Archimedean spirals, our tail solution suggests many crossings where the shocks overlap, beyond which the analytic solution cannot be continued. Our solution can be readily extended to an initially anisotropic wind.
Non-numeric computation for high eccentricity orbits. [Earth satellite orbit perturbation
NASA Technical Reports Server (NTRS)
Sridharan, R.; Renard, M. L.
1975-01-01
Geocentric orbits of large eccentricity (e = 0.9 to 0.95) are significantly perturbed in cislunar space by the sun and moon. The time-history of the height of perigee, subsequent to launch, is particularly critical. The determination of 'launch windows' is mostly concerned with preventing the height of perigee from falling below its low initial value before the mission lifetime has elapsed. Between the extremes of high accuracy digital integration of the equations of motion and of using an approximate, but very fast, stability criteria method, this paper is concerned with the developement of a method of intermediate complexity using non-numeric computation. The computer is used as the theory generator to generalize Lidov's theory using six osculating elements. Symbolic integration is completely automatized and the output is a set of condensed formulae well suited for repeated applications in launch window analysis. Examples of applications are given.
Element Material Exposure Experiment by EFFU
NASA Technical Reports Server (NTRS)
Hashimoto, Yoshihiro; Ito, Masaaki; Ishii, Masahiro
1992-01-01
The National Space Development Agency of Japan (NASDA) is planning to perform an 'Element Material Exposure Experiment' using the Exposed Facility Flyer Unit (EFFU). This paper presents an initial design of experiments proposed for this project by our company. The EFFU is installed on the Space Flyer Unit (SFU) as a partial model of the Space Station JEM exposed facility. The SFU is scheduled to be launched by H-2 rocket in January or February of 1994, then various tests will be performed for three months, on orbit of 500 km altitude, and it will be retrieved by the U.S. Space Shuttle and returned to the ground. The mission sequence is shown.
NASA Astrophysics Data System (ADS)
Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng
2017-08-01
Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.
Observer's Interface for Solar System Target Specification
NASA Astrophysics Data System (ADS)
Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.
2016-10-01
When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.
Observer's Interface for Solar System Target Specification
NASA Astrophysics Data System (ADS)
Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.
2016-01-01
When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.
Mission analysis data for inclined geosynchronous orbits, part 1
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Wang, K. C.
1980-01-01
Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.
2014-05-01
A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 392.
1977-03-15
evaluation of the parameters of the observed field. It is proposed that for models formed from a set of elements as described that the problem of...the differential energy spectra for protons during the time of large flares on the sun. [303] IMPROVEMENT OF AES ORBITAL ELEMENTS Moscow...Leningrad, ULUSHSHENIYE ORBITAL’NYKH ELEMENTOV ISZ (Improvement in the Orbital Elements of an Artificial Earth Satellite), Leningrad Forestry Academy
1987-08-01
take place in both contractor and government facilities. The on-orbit evaluation could utilize modified launch facilities depending on the launch...technological issues : o Telescope Optics: Verify that the distortions associated vith large optical elements satisfy detection and tracking requirements; verify...Validation program vould be car- ried out at contractor facilities that 1’ave not been identified and at six government facilities (Arnold Engineering
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter
NASA Astrophysics Data System (ADS)
Emel'yanenko, N. Yu.
2018-03-01
We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.
Joint NASA-ESA Outer Planet Mission study overview
NASA Astrophysics Data System (ADS)
Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.
2009-04-01
In 2008, ESA and NASA performed joint studies of two highly capable scientific missions to the outer planets: the Europa Jupiter System Mission (EJSM) and the Titan Saturn System Mission (TSSM). Joint Science Definition Teams (JSDTs) were formed with U.S. and European membership to guide study activities that were conducted collaboratively by engineering teams working on both sides of the Atlantic. EJSM comprises the Jupiter Europa Orbiter (JEO) that would be provided by NASA and the Jupiter Ganymede Orbiter (JGO) that would be provided by ESA. Both spacecraft would be launched independently in 2020, and arrive 6 years later for a 3-4 year mission within the Jupiter System. Both orbiters would explore Jupiter's system on trajectories that include flybys of Io (JEO only), Europa (JEO only), Ganymede and Callisto. The operation of JEO would culminate in orbit around Europa while that of JGO would culminate in orbit around Ganymede. Synergistic and coordinated observations would be planned. The Titan Saturn System Mission (TSSM) comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the lake lander. The mission would launch in 2020 and arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfière would last at least 6-12 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a ~2-year orbit around Titan. Synergistic and coordinated observations would be planned between the orbiter and in situ elements. The ESA contribution to this joint endeavor will be implemented as the first Cosmic Vision Large-class (L1) mission; the NASA contribution will be implemented as the Outer Planet Flagship Mission. The contribution to each mission is being reviewed and evaluated by each agency between November 2008 and January 2009, and a joint decision as to which destination has been selected is expected to be announced in February 2009. The ESA Cosmic Vision selection process includes two additional competitive steps (that include two competing astronomy missions) before its contribution to the selected Outer Planet Mission is confirmed in 2012. NASA expects to proceed with the initial implementation of the mission in FY2009, while full implementation will start in FY2013, in line with ESA Cosmic Vision schedule. Should ESA select an astronomy mission instead, NASA would proceed in 2013 with the implementation of a NASA-only mission concept. This presentation will provide an overview of the selected Outer Planet Mission and outline the next steps towards its implementation.
1993-04-01
are so close together, there is a great deal of mistagged metric data from the SPACETRACK sensors on these objects. The resulting orbital element sets ...including an attempt to combine U.S. Space Command element sets for each Lageos-2 related object in orbit with DSN angle data to determine the actual...Predict error at next observation -Maintain track to minimize reacquistion load -Estimate orbital element sets -Update time for next observation
Tidal Dissipation in a Homogeneous Spherical Body. 1. Methods
2014-11-01
r∗, λ∗, φ∗), a trigonometric transformation (developed by Kaula 1961) enables one to switch to the perturber’s orbital elements r ∗ = (a∗, e∗, i∗,Ω...acquire an asterisk when it appears in a linear combination vlmpq − mθ with the orbital elements of a test body subject to the additional tidal...by Kaula (1964) and marked with asterisk the orbital elements of the tide-raising body. Kaula introduced this notation because within his model he
1988-03-23
observations more often. Using this updated satellite orbital element set , a more accurate space surveillance product is generated by ensuring the time span...position were more accurate, observations could be required less frequently by the spacetrack network, the satellite orbital element set would not need to...of the orbit , one that includes the best model of atmospheric drag, will give the best, or most accurate, element set for a satellite. By maintaining
An Automated Optical Fiber Puller for Use in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Smith, W. Scott (Technical Monitor)
2002-01-01
With the slowdown in space station construction, limiting astronaut time for scientific experiments, an effort is being made to automate certain experiments. One such experiment is production of heavy metal fluoride fibers in the microgravity environment. Previous work by this author and others have shown that microgravity inhibits crystallization of ZBLAN glass. Thus an automated experiment has been designed. This experiment will consist of several elements, one which includes the use of an autonomous robot to initiate fiber pulling. The first element will be to melt the preform to eliminate crystals. The preform tip will then be heated to the viscosity necessary for fiber drawing. The robot will initiate the draw and attach the fiber end to the take-up reel. Once fiber pulling has commenced, sensors will be used to detect a fiber break, whereupon the robot can re-initiate the pulling process. The fiber will be coated with a polymer and the polymer cured with ultraviolet light. A laser micrometer will be used to monitor fiber diameter. The experiment is designed so that up to 10 preforms can be pulled into fiber during one flight. The apparatus will be mounted on a free-flying carrier which will be placed into low-earth orbit from the cargo bay of the space shuttle by the shuttle robot arm. The experiment can be started by a signal from the shuttle or from the ground via telescience. The experiment will proceed automatically using specially designed algorithms and will be monitored from the ground. The carrier will be picked up by the shuttle before return to earth.
Human exploration of space and power development
NASA Technical Reports Server (NTRS)
Cohen, Aaron
1991-01-01
Reasons for mounting the Space Exploration Initiative, the variables facing U.S. planners, and the developmental technologies that will be needed to support this initiative are discussed. The three more advanced technological approaches in the field of power generation described include a lunar-based solar power system, a geosynchronous-based earth orbit solar power satellite system, and the utilization of helium-3/deuterium fusion reaction to create a nuclear fuel cycle. It is noted that the major elements of the SEI will include a heavy-lift launch vehicle, a transfer vehicle and a descent/ascent vehicle for use on lunar missions and adaptable to Mars exploration.
Human Mars Ascent Vehicle Performance Sensitivities
NASA Technical Reports Server (NTRS)
Polsgrove, Tara P.; Thomas, Herbert D.
2016-01-01
Human Mars mission architecture studies have shown that the ascent vehicle mass drives performance requirements for the descent and in-space transportation elements. Understanding the sensitivity of Mars ascent vehicle (MAV) mass to various mission and vehicle design choices enables overall transportation system optimization. This paper presents the results of a variety of sensitivity trades affecting MAV performance including: landing site latitude, target orbit, initial thrust to weight ratio, staging options, specific impulse, propellant type and engine design.
Migration of small bodies and dust to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Mather, John C.
2005-02-01
We integrated the orbital evolution of 30,000 Jupiter-family comets, 1300 resonant asteroids, and 7000 asteroidal, trans-Neptunian, and cometary dust particles. For initial orbital elements of bodies close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three objects (from 2P and 10P runs) even got inner-Earth orbits (with aphelion distance Q<0.983 AU) and Aten orbits for Myrs. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside the solar system can be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits for millions of years disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes. The probability of a collision of an asteroidal or cometary particle during its lifetime with the Earth was maximum at diameter d˜ 100 mum. At d<10 mum such probability for trans-Neptunian particles was less than that for asteroidal particles by less than an order of magnitude, so the fraction of trans-Neptunian particles with such diameter near Earth can be considerable.
The VLBI time delay function for synchronous orbits
NASA Technical Reports Server (NTRS)
Rosenbaum, B.
1972-01-01
The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.
Reachable Sets for Multiple Asteroid Sample Return Missions
2005-12-01
reduce the number of feasible asteroid targets. Reachable sets are defined in a reduced classical orbital element space. The boundary of this...Reachable sets are defined in a reduced classical orbital element space. The boundary of this reduced space is obtained by extremizing a family of...aliasing problems. Other coordinate elements , such as equinoctial elements , can provide a set of singularity-free slowly changing variables, but
Elliptical multi-sun-synchronous orbits for Mars exploration
NASA Astrophysics Data System (ADS)
Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Ulivieri, Carlo
2012-11-01
The multi-sun-synchronous orbits allow cycles of observation of the same area in which solar illumination repetitively changes according to the value of the orbit elements and returns to the initial condition after a temporal interval multiple of the repetition of observation. This paper generalizes the concept of multi-sun-synchronous orbits, whose classical sun-synchronous orbits represent particular solutions, taking into consideration the elliptical case. The feasibility of using this typology of orbits, referred to as elliptical periodic multi-sun-synchronous orbits, has been investigated for the exploration of Mars and particular solutions have been selected. Such solutions considerably reduce the manoeuvre of velocity variation at the end of the interplanetary transfer with respect to the case of a target circular orbit around Mars. They are based on the use of quasi-critical inclinations in order to minimize the apsidal line motion and thus reduce orbit maintenance costs. Moreover, in the case of high eccentricities, the argument of pericentre may be set in order to obtain, around the apocentre, a condition of quasi-synchronism with the planet (the footprint of the probe on the surface presents a small shift with respect to a fixed point on the Martian surface). The low altitude of pericentre allows observation of the planet at a higher spatial resolution, while the orbit arc around the apocentre may be used to observe Mars with a wide spatial coverage in quasi-stationary conditions. This latter characteristic is useful for analysing atmospheric and meteorological phenomena and it allows for most of the orbital period a link between a rover on the surface of Mars and a probe orbiting around the planet.
An advanced analysis method of initial orbit determination with too short arc data
NASA Astrophysics Data System (ADS)
Li, Binzhe; Fang, Li
2018-02-01
This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures
NASA Astrophysics Data System (ADS)
Carroll-Nellenback, Jonathan; Frank, Adam; Liu, Baowei; Quillen, Alice C.; Blackman, Eric G.; Dobbs-Dixon, Ian
2017-04-01
Signatures of 'evaporative' winds from exoplanets on short (hot) orbits around their host star have been observed in a number of systems. In this paper, we present global adaptive mesh refinement simulations that track the launching of the winds, their expansion through the circumstellar environment, and their interaction with a stellar wind. We focus on purely hydrodynamic flows including the anisotropy of the wind launching and explore the orbital/fluid dynamics of the resulting flows in detail. In particular, we find that a combination of the tidal and Coriolis forces strongly distorts the planetary 'Parker' wind creating 'up-orbit' and 'down-orbit' streams. We characterize the flows in terms of their orbital elements that change depending on their launch position on the planet. We find that the anisotropy in the atmospheric temperature leads to significant backflow on to the planet. The planetary wind interacts strongly with the stellar wind creating instabilities that may cause eventual deposition of planetary gas on to the star. We present synthetic observations of both transit and absorption line-structure for our simulations. For our initial conditions, we find that the orbiting wind material produces absorption signatures at significant distances from the planet and substantial orbit-to-orbit variability. Lyα absorption shows red- and blueshifted features out to 70 km s-1. Finally, using semi-analytic models we constrain the effect of radiation pressure, given the approximation of uniform stellar absorption.
Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites
NASA Astrophysics Data System (ADS)
Vashkovyaka, M. A.; Zaslavskii, G. S.
2016-09-01
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.
On the Milankovitch orbital elements for perturbed Keplerian motion
NASA Astrophysics Data System (ADS)
Rosengren, Aaron J.; Scheeres, Daniel J.
2014-03-01
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.
Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Skrutskie, Michael F.
2000-12-01
Infrared radial velocities have been used to determine orbital elements for the cool giants of five well-known symbiotic systems, Z And, AG Dra, V443 Her, AX Per, and FG Ser, all of which have orbital periods near the two-year mean period for S-type symbiotics. The new orbits are in general agreement with previous orbits derived from optical velocities. From the combined optical and infrared velocities, improved orbital elements for the five systems have been determined. Each of the orbital periods has been determined solely from the radial-velocity data. The orbits are circular and have quite small mass functions of 0.001-0.03 Msolar. The infrared velocities of AG Dra do not show the large orbital velocity residuals found for its optical radial velocities.
Calculation of precision satellite orbits with nonsingular elements /VOP formulation/
NASA Technical Reports Server (NTRS)
Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.
1974-01-01
Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Expansion of the gravitational potential with computerized Poisson series
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
The paper describes a recursive formulation for the expansion of the gravitational potential valid for both the tesseral and zonal harmonics. The expansion is primarily in rectangular coordinates, but the classical orbit elements or equinoctial orbit elements can be easily substituted. The equations of motion for the zonal harmonics in both classical and equinoctial orbital elements are described in a form which will result in closed-form expressions for the first-order perturbations. In order to achieve this result, the true longitude or true anomaly have to be used as independent variables.
The Behavior of Regular Satellites during the Nice Model's Planetary Close Encounters
NASA Astrophysics Data System (ADS)
Nogueira, E. C.; Gomes, R. S.; Brasser, R.
2014-10-01
In order to explain the behavior of the regular satellites of the ice planets during the instability phase of the Nice model, we used numerical simulations to investigate the evolution of the satellite systems when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a jumping Jupiter scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and we obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter. If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and its orbit was circularized by tides during the 500 million years before the LHB.
Warsaw Catalogue of cometary orbits: 119 near-parabolic comets
NASA Astrophysics Data System (ADS)
Królikowska, Małgorzata
2014-07-01
Context. The dynamical evolution of near-parabolic comets strongly depends on the starting values of the orbital elements derived from the positional observations. In addition, when drawing conclusions about the origin of these objects, it is crucial to control the uncertainties of orbital elements at each stage of the dynamical evolution. Aims: I apply a completely homogeneous approach to determine the cometary orbits and their uncertainties. The resulting catalogue is suitable for the investigation of the origin and future of near-parabolic comets. Methods: First, osculating orbits were determined on the basis of positional data. Second, the dynamical calculations were performed backwards and forwards up to 250 au from the Sun to derive original and future barycentric orbits for each comet. In the present investigation of dynamical evolution, the numerical calculations for a given object start from the swarm of virtual comets constructed using the previously determined osculating (nominal) orbit. In this way, the uncertainties of orbital elements were derived at the end of numerical calculations. Results: Homogeneous sets of orbital elements for osculating, original and future orbits are given. The catalogue of 119 cometary orbits constitutes about 70 per cent of all the first class so-called Oort spike comets discovered during the period 1801-2010 and about 90 per cent of those discovered in 1951-2010, for which observations were completed at the end of 2013. Non-gravitational (NG) orbits are derived for 45 comets, including asymmetric NG solution for six of them. Additionally, the new method for cometary orbit-quality assessment is applied for all these objects. The catalogue is available at http://ssdp.cbk.waw.pl/LPCs and also at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A126
The Resurrection of Laplace’s Method of Initial Orbit Determination
1983-01-17
and retrograde, at least one-third of that of a main belt asteroid. Presumably it was the strange motion that kept the Minor Planet Center from...main- belt minor planets. For an Earth-approaching asteroid one needs an element set for next month. Both 1982HS and 1982SA were discovered by our...pseudo-observations good to 1". A. 1982HS and 1982SA Both of these are inner main- belt , high inclination, high eccen- tricity minor planets. Since
Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter
NASA Technical Reports Server (NTRS)
Pinson, L. D.
1975-01-01
Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.
Collisional and dynamical processes in moon and planet formation
NASA Technical Reports Server (NTRS)
1979-01-01
The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.
2013-07-11
The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility prepare the Unity connecting module for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility prepare the hatch of the Unity connecting module for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
NASA Technical Reports Server (NTRS)
Lo, C. John; Klein, Kerry; Jones, William R., Jr.; Jansen, Mark J.; Wemhoner, Jens
2009-01-01
A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.
Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna
NASA Technical Reports Server (NTRS)
Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James
1987-01-01
In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despotopulos, J D; Sudowe, R
2012-02-21
Studies of the chemical properties of superheavy elements (SHE) pose interesting challenges due to their short half-lives and low production rates. Chemical systems must have extremely fast kinetics, fast enough kinetics to be able to examine the chemical properties of interest before the SHE decays to another nuclide. To achieve chemistry on such time scales, the chemical system must also be easily automated. Most importantly however, a chemical system must be developed which provides suitable separation and kinetics before an on-line study of a SHE can be performed. Relativistic effects make studying the chemical properties of SHEs interesting due tomore » the impact these effects could have on the SHEs chemical properties. Relativistic effects arise when the velocity of the s orbital electrons approach the speed of light. As this velocity increases, the Bohr radius of the inner electron orbitals decreases and there is an increase in the particles mass. This contraction results in a destabilization of the energy of the outer d and f electron orbitals (5f and 6d in the case of SHE), which can cause these to expand due to their increased shielding from the nuclear charge. Another relativistic effect is the spin-orbit splitting for p, d, and f orbitals into j = 1 {+-} 1/2 states. This can lead most interestingly to a possible increased stability of element 114, which due to large spin-orbit splitting of the 7p orbital and the relativistically stabilized 7p{sub 1/2} and 7s orbital gives rise to a closed shell ground state of 7s{sup 2}7p{sub 1/2}{sup 2}. The homologs of element 105, dubnium (Db), Ta and Nb and the pseudo-homolog Pa, are well known to hydrolyze and form both neutral and non-neutral monoatomic and polyatomic species that may cause issues with extraction from a given chemical system. Early ion-exchange and solvent-extraction studies show mixed results for the behavior of Db. Some studies show Db behaving most similar to Ta, while others show it behaving somewhere between Nb and Pa. Much more recent studies have examined the properties of Db from HNO{sub 3}/HF matrices, and suggest Db forms complexes similar to those of Pa. Very little experimental work into the behavior of element 114 has been performed. Thermochromatography experiments of three atoms of element 114 indicate that the element 114 is at least as volatile as Hg, At, and element 112. Lead was shown to deposit on gold at temperatures about 1000 C higher than the atoms of element 114. Results indicate a substantially increased stability of element 114. No liquid phase studies of element 114 or its homologs (Pb, Sn, Ge) or pseudo-homologs (Hg, Cd) have been performed. Theoretical predictions indicate that element 114 is should have a much more stable +2 oxidation state and neutral state than Pb, which would result in element 114 being less reactive and less metallic than Pb. The relativistic effects on the 7p{sub 1/2} electrons are predicted to cause a diagonal relationship to be introduced into the periodic table. Therefore, 114{sup 2+} is expected to behave as if it were somewhere between Hg{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}. In this work two commercially available extraction chromatography resins are evaluated, one for the separation of Db homologs and pseudo?homologs from each other as well as from potential interfering elements such as Group IV Rf homologs and actinides, and the other for separation of element 114 homologs. One resin, Eichrom's DGA resin, contains a N,N,N',N'-tetra-n-octyldiglycolamide extractant, which separates analytes based on both size and charge characteristics of the solvated metal species, coated on an inert support. The DGA resin was examined for Db chemical systems, and shows a high degree of selectivity for tri-, tetra-, and hexavalent metal ions in multiple acid matrices with fast kinetics. The other resin, Eichrom's Pb resin, contains a di-t-butylcyclohexano 18-crown-6 extractant with isodecanol solvent, which separates analytes based on steric interactions between the cavity of the crown ether and electrostatic interactions between the oxygen's of the ether and cations in the mobile phase. This particular resin has been shown to have an extremely high uptake affinity for Pb, a direct homolog of element 114, and is thus a good initial extractant to examine for a potential element 114 chemical system. Figure 1.1 shows the respective extractant molecules from the DGA and Pb resins. Batch uptake experiments were conducted to examine the uptake behavior of Ta on the DGA resin. Batch uptake experiments were also conducted to examine the uptake behavior of Ge on the Pb resin. Column experiments were designed based on batch uptake experiments of Ta, Am, Pa, Np, Zr, and Nb to establish a sequential extraction of Group IV/V homologs as well as Am for potential use as a Db chemical system.« less
Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution
NASA Technical Reports Server (NTRS)
Stromgren, Chel; Cates, Grant; Cirillo, William
2009-01-01
The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability of a second launch not occurring in a timely fashion (i.e., before the assets waiting in LEO expire). An overview of the launch strategy evaluation process is presented, along with results of specific cases that were analyzed. A high-level comparison of options is then presented, along with the conclusion derived from the analysis.
An independent determination of Fomalhaut b's orbit and the dynamical effects on the outer dust belt
NASA Astrophysics Data System (ADS)
Beust, H.; Augereau, J.-C.; Bonsor, A.; Graham, J. R.; Kalas, P.; Lebreton, J.; Lagrange, A.-M.; Ertel, S.; Faramaz, V.; Thébault, P.
2014-01-01
Context. The nearby star Fomalhaut harbors a cold, moderately eccentric (e ~ 0.1) dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion, Fomalhaut b (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit (e = 0.8 ± 0.1) that appears to cross the belt in the sky plane projection. Aims: We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible. Methods: We used a dedicated MCMC code to derive the statistical distributions of the orbital elements of Fom b. Then we used symplectic N-body integration to investigate the dynamics of the dust belt, as perturbed by a single planet. Different attempts were made assuming different masses for Fom b. We also performed a semi-analytical study to explain our results. Results: Our results are in good agreement with others regarding the orbit of Fom b. We find that the orbit is highly eccentric, is close to apsidally aligned with the belt, and has a mutual inclination relative to the belt plane of <29° (67% confidence). If coplanar, this orbit crosses the disk. Our dynamical study then reveals that the observed planet could sculpt a transient belt configuration with a similar eccentricity to what is observed, but it would not be simultaneously apsidally aligned with the planet. This transient configuration only occurs a short time after the planet is placed on such an orbit (assuming an initially circular disk), a time that is inversely proportional to the planet's mass, and that is in any case much less than the 440 Myr age of the star. Conclusions: We constrain how long the observed dust belt could have survived with Fom b on its current orbit, as a function of its possible mass. This analysis leads us to conclude that Fom b is likely to have low mass, that it is unlikely to be responsible for the sculpting of the belt, and that it supports the hypothesis of a more massive, less eccentric planet companion Fomalhaut c.
Concept for A Mission to Titan, Saturn System and Enceladus
NASA Astrophysics Data System (ADS)
Reh, K.; Beauchamp, P.; Elliott, J.
2008-09-01
A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its 1.5 year Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit. The next phase would utilize concurrent aerosampling and aerobraking (to a depth of 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit that initiates in the 10 AM orbit plane and would move ~ 40º towards the 8 AM orbit plane. At completion of the mission, a disposal phase would be initiated by simply letting the spacecraft decay under the influence of Saturn perturbations and Titan's atmospheric drag. The Titan Saturn System Mission is enabled by proven flight systems, launch capabilities, and wellunderstood trajectory options. The concept relies on traditional chemical propulsion (similar to Cassini and Galileo), a power source consisting of five Multi- Mission Radioisotope Thermoelectric Generators (MMRTGs) and a robust data downlink. The Titan Saturn System Mission maps well to NASA and ESA scientific objectives. This concept builds on a considerable basis of previous work and indicates that a flagship-class Titan mission is ready to enter Phase A and could be launched in the 2016-18 timeframe, requiring no new technologies. Furthermore, this mission includes accommodations to deliver and support ESA provided in situ elements (e.g., Montgolfiere balloon system and capable lander) should they be available. Alternative concepts (abiet higher cost) have been identified that provide benefits to the mission of reduced trip time to Saturn, higher delivered mass, enhanced resources for in situ accommodation and mission flexibility. These options, taken with the baseline described herein, provide NASA and ESA with a robust trade space for implementing a Titan Saturn System Mission.
Towards a global model of spin-orbit coupling in the halocarbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu
We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less
Near-Earth Asteroids Astrometry with Gaia
NASA Astrophysics Data System (ADS)
Bancelin, D.; Hestroffer, D.; Thuillot, W.
2011-05-01
Potentially Hazardous Asteroids (PHAs) are Near-Earth Asteroids caraterised by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0.05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.The Gaia mission is an astrometric mission that will be launched in 2012 and will observe a large number of Solar System Objects down to magnitude V≤20. During the 5-year mission, Gaia will continuously scan the sky with a specific strategy: objects will be observed from two lines of sight separated with a constant basic angle. Five constants already fixed determinate the nominal scanning law of Gaia: The inertial spin rate (1°/min) that describe the rotation of the spacecraft around an axis perpendicular to those of the two fields of view, the solar-aspect angle (45°) that is the angle between the Sun and the spacecraft rotation axis, the precession period (63.12 days) which is the precession of the spin axis around the Sun-Earth direction. Two other constants are still free parameters: the initial spin phase, and the initial precession angle that will be fixed at the start of the nominal science operations. These latter are constraint by scientific outcome (e.g. possibility of performing test of fundamental physics) together with operational requirements (downlink to Earth windows). Several sets of observations of specific NEOs will hence be provided according to the initial precession angle. The purpose here is to study the statistical impact of the initial precession angle on the error propagation and on the collision probability, especially for PHAs. We will also analyse the advantage of combining space-based to ground-based observation over long term, as well as in short term from observations in alert.
Baseline antenna design for space exploration initiative
NASA Technical Reports Server (NTRS)
Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz
1993-01-01
A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.
Orbital operations study. Volume 1: Mission analysis
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.
1972-01-01
The final report of the orbital operations study and a summary of the 25 elements in the study inventory are presented. Fourteen interfacing activities are defined. Eleven mission models encompassing all potential interfacing element pairs and interfacing activities are included.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
OSMEAN - OSCULATING/MEAN CLASSICAL ORBIT ELEMENTS CONVERSION (HP9000/7XX VERSION)
NASA Technical Reports Server (NTRS)
Guinn, J. R.
1994-01-01
OSMEAN is a sophisticated FORTRAN algorithm that converts between osculating and mean classical orbit elements. Mean orbit elements are advantageous for trajectory design and maneuver planning since they can be propagated very quickly; however, mean elements cannot describe the exact orbit at any given time. Osculating elements will enable the engineer to give an exact description of an orbit; however, computation costs are significantly higher due to the numerical integration procedure required for propagation. By calculating accurate conversions between osculating and mean orbit elements, OSMEAN allows the engineer to exploit the advantages of each approach for the design and planning of orbital trajectories and maneuver planning. OSMEAN is capable of converting mean elements to osculating elements or vice versa. The conversion is based on modelling of all first order aspherical and lunar-solar gravitation perturbations as well as a second-order aspherical term based on the second degree central body zonal perturbation. OSMEAN is written in FORTRAN 77 for HP 9000 series computers running HP-UX (NPO-18796) and DEC VAX series computers running VMS (NPO-18741). The HP version requires 388K of RAM for execution and the DEC VAX version requires 254K of RAM for execution. Sample input and output are listed in the documentation. Sample input is also provided on the distribution medium. The standard distribution medium for the HP 9000 series version is a .25 inch streaming magnetic IOTAMAT tape cartridge in UNIX tar format. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the DEC VAX version is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. OSMEAN was developed on a VAX 6410 in 1989, and was ported to the HP 9000 series platform in 1991. It is a copyrighted work with all copyright vested in NASA.
OSMEAN - OSCULATING/MEAN CLASSICAL ORBIT ELEMENTS CONVERSION (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Guinn, J. R.
1994-01-01
OSMEAN is a sophisticated FORTRAN algorithm that converts between osculating and mean classical orbit elements. Mean orbit elements are advantageous for trajectory design and maneuver planning since they can be propagated very quickly; however, mean elements cannot describe the exact orbit at any given time. Osculating elements will enable the engineer to give an exact description of an orbit; however, computation costs are significantly higher due to the numerical integration procedure required for propagation. By calculating accurate conversions between osculating and mean orbit elements, OSMEAN allows the engineer to exploit the advantages of each approach for the design and planning of orbital trajectories and maneuver planning. OSMEAN is capable of converting mean elements to osculating elements or vice versa. The conversion is based on modelling of all first order aspherical and lunar-solar gravitation perturbations as well as a second-order aspherical term based on the second degree central body zonal perturbation. OSMEAN is written in FORTRAN 77 for HP 9000 series computers running HP-UX (NPO-18796) and DEC VAX series computers running VMS (NPO-18741). The HP version requires 388K of RAM for execution and the DEC VAX version requires 254K of RAM for execution. Sample input and output are listed in the documentation. Sample input is also provided on the distribution medium. The standard distribution medium for the HP 9000 series version is a .25 inch streaming magnetic IOTAMAT tape cartridge in UNIX tar format. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the DEC VAX version is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. OSMEAN was developed on a VAX 6410 in 1989, and was ported to the HP 9000 series platform in 1991. It is a copyrighted work with all copyright vested in NASA.
Efficient Trajectory Propagation for Orbit Determination Problems
NASA Technical Reports Server (NTRS)
Roa, Javier; Pelaez, Jesus
2015-01-01
Regularized formulations of orbital motion apply a series of techniques to improve the numerical integration of the orbit. Despite their advantages and potential applications little attention has been paid to the propagation of the partial derivatives of the corresponding set of elements or coordinates, required in many orbit-determination scenarios and optimization problems. This paper fills this gap by presenting the general procedure for integrating the state-transition matrix of the system together with the nominal trajectory using regularized formulations and different sets of elements. The main difficulty comes from introducing an independent variable different from time, because the solution needs to be synchronized. The correction of the time delay is treated from a generic perspective not focused on any particular formulation. The synchronization using time-elements is also discussed. Numerical examples include strongly-perturbed orbits in the Pluto system, motivated by the recent flyby of the New Horizons spacecraft, together with a geocentric flyby of the NEAR spacecraft.
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Exospheric perturbations by radiation pressure. II - Solution for orbits in the ecliptic plane
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1980-01-01
A previous study (Chamberlain, 1979) gave solutions for the mean time rates of change of orbital elements of satellite atoms in an exosphere influenced by solar radiation pressure; each element was assumed to behave independently. In the present paper, the instantaneous rates of changes for three elements (e, Omega, and phi = omega + Omega) are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tighly bound to the planet, and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms perturbed in earth orbit by radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to form a broad fan-shaped tail and to deteriorate into the earth's atmosphere.
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.; Patrick, J. W.; Galvin, D. M.; Turkel, S. H.
1972-01-01
The findings of the support operations activity group of the orbital operations study are presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) crew transfer, (2) cargo transfer, (3) propellant transfer, (4) attached element operations, and (5) attached element transport.
Modelling of charged satellite motion in Earth's gravitational and magnetic fields
NASA Astrophysics Data System (ADS)
Abd El-Bar, S. E.; Abd El-Salam, F. A.
2018-05-01
In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).
Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack
2016-01-01
Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.
14 CFR 417.3 - Definitions and acronyms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...
14 CFR 417.3 - Definitions and acronyms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...
14 CFR 417.3 - Definitions and acronyms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...
14 CFR 417.3 - Definitions and acronyms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...
14 CFR 417.3 - Definitions and acronyms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...
Flight mechanics applications for tethers in space: Cooperative Italian-US programs
NASA Technical Reports Server (NTRS)
Bevilacqua, Franco; Merlina, Pietro; Anderson, John L.
1990-01-01
Since the 1974 proposal by Giuseppe Colombo to fly a tethered subsatellite from the Shuttle Orbiter, the creative thinking of many scientists and engineers from Italy and U.S. has generated a broad range of potential tether applications in space. Many of these applications have promise for enabling innovative research and operational activities relating to flight mechanics in earth orbit and at suborbital altitudes. From a flight mechanics standpoint the most interesting of the currently proposed flight demonstrations are: the second Tethered Satellite System experiment which offers both the potential for aerothermodynamics and hypersonics research and for atmospheric science research; the Tethered Initiated Space Recovery System which would enable orbital deboost and recovery of a re-entry vehicle and waste removal from a space station; and the Tether Elevator/Crawler System which would provide a variable microgravity environment and space station center of mass management. The outer atmospheric and orbital flight mechanics characteristics of these proposed tether flight demonstrations are described. The second Tethered Satellite System mission will deploy the tethered satellite earthward and will bring it as low as 130 km from ground and thus into the transition region between the atmosphere (non-ionized) and the partially ionized ionosphere. The atmospheric flight mechanics of the tethered satellite is discussed and simulation results are presented. The Tether Initiated Space Recovery System experiment will demonstrate the ability of a simple tether system to deboost and recover a reentry vehicle. The main feature of this demonstration is the utilization of a Small Expendable Deployment System (SEDS) and the low-tension deployment assumed to separate the reentry vehicle from the Shuttle. This low-tension deployment maneuver is discussed and its criticalities are outlined. The Tether Elevator/Crawler System is a new space element able to move in a controlled way between the ends of a deployed tethered system. A Shuttle test of an Elevator model is planned to demonstrate the unique capability of this element as a microgravity facility and to test the transfer motion control. The basic dynamical features of the Elevator system are presented and a preliminary assessment of the Elevator-induced tether vibrations is discussed.
Potential Jupiter-Family comet contamination of the main asteroid belt
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Haghighipour, Nader
2016-10-01
We present the results of "snapshot" numerical integrations of test particles representing comet-like and asteroid-like objects in the inner Solar System aimed at investigating the short-term dynamical evolution of objects close to the dynamical boundary between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, TJ (i.e., TJ = 3). As expected, we find that TJ for individual test particles is not always a reliable indicator of initial orbit types. Furthermore, we find that a few percent of test particles with comet-like starting elements (i.e., similar to those of Jupiter-family comets) reach main-belt-like orbits (at least temporarily) during our 2 Myr integrations, even without the inclusion of non-gravitational forces, apparently via a combination of gravitational interactions with the terrestrial planets and temporary trapping by mean-motion resonances with Jupiter. We estimate that the fraction of real Jupiter-family comets occasionally reaching main-belt-like orbits on Myr timescales could be on the order of ∼ 0.1-1%, although the fraction that remain on such orbits for appreciable lengths of time is certainly far lower. For this reason, the number of JFC-like interlopers in the main-belt population at any given time is likely to be small, but still non-zero, a finding with significant implications for efforts to use apparently icy yet dynamically asteroidal main-belt comets as tracers of the primordial distribution of volatile material in the inner Solar System. The test particles with comet-like starting orbital elements that transition onto main-belt-like orbits in our integrations appear to be largely prevented from reaching low eccentricity, low inclination orbits, suggesting that the real-world population of main-belt objects with both low eccentricities and inclinations may be largely free of this potential occasional Jupiter-family comet contamination. We therefore find that low-eccentricity, low-inclination main-belt comets may provide a more reliable means for tracing the primordial ice content of the main asteroid belt than the main-belt comet population as a whole.
Design of Optimal Cyclers Using Solar Sails
2002-12-01
more perturbations are desired in the dynamics model (in this case, more nodes should be used). Equinoctial elements provide a set of singularity...the time to complete the whole EME double rendezvous. Setting the intermediate destination at the Mars orbit and the final destination with Earth...it is necessary to know the relative orbital shapes and orientations of the departure and destination planets. The orbital elements of Earth and Mars
Hubble Space Telescope Astrometry of the Procyon System
NASA Technical Reports Server (NTRS)
Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.
2015-01-01
The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
Stability of Multi-Planet Systems Orbiting in the Alpha Centauri AB System
NASA Astrophysics Data System (ADS)
Lissauer, Jack
2018-04-01
We evaluate how closely-spaced planetary orbits in multiple planet systems can be and still survive for billion-year timescales within the alpha Centauri AB system. Although individual planets on nearly circular, coplanar orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of such planets in multi-planet systems must be significantly larger than the spacing of similar systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon circumstellar planets, stable orbits with small initial eccentricities aligned with the binary orbit are possible to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to the appropriate forced eccentricity can have a much larger affect on how closely planetary orbits can be spaced, on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
A Southern Hemisphere radar meteor orbit survey
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Steel, Duncan I.; Taylor, Andrew D.
1992-01-01
A meteor radar system has been operated on a routine basis near Christchurch, New Zealand, to determine the orbits of Earth-impacting interplanetary dust and meteoroids. The system sensitivity is +13 visual magnitude, corresponding to approximately 100 micron sized meteoroids. With an orbital precision of 2 degrees in angular elements and 10 percent in orbital energy (1/a), the operation yields an average of 1500 orbits daily with a total to date in excess of 10(exp 5). The use of pc's and automated data reduction permit the large orbital data sets we collect to be routinely reduced. Some illustrative examples are presented of the signal formats/processing and the results of data reduction, giving the individual orbital elements and hence the overall distributions. Current studies include the distribution of dust in the inner solar system; the influx of meteoroids associated with near-Earth asteroids; and the orbital structure existing in comet-produced streams.
SPECTROSCOPIC ORBITS FOR 15 LATE-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willmarth, Daryl W.; Abt, Helmut A.; Fekel, Francis C.
2016-08-01
Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their massmore » functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.« less
Speckle and spectroscopic orbits of the early A-type triple system Eta Virginis
NASA Technical Reports Server (NTRS)
Hartkopf, William I.; Mcalister, Harold A.; Yang, Xinxing; Fekel, Francis C.
1992-01-01
Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum.
Dynamical evolution of a fictitious population of binary Neptune Trojans
NASA Astrophysics Data System (ADS)
Brunini, Adrián
2018-03-01
We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.
Space Vehicle Guidance, Navigation, Control, and Estimation Operations Technologies
2018-03-29
angular position around the ellipse, and the out-of-place amplitude and angular position. These elements are explicitly relatable to the six rectangular...quasi) second order relative orbital elements are explored. One theory uses the expanded solution form and introduces several instantaneous ellipses...In each case, the theory quantifies distortion of the first order relative orbital elements when including second order effects. The new variables are
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
Averaged model to study long-term dynamics of a probe about Mercury
NASA Astrophysics Data System (ADS)
Tresaco, Eva; Carvalho, Jean Paulo S.; Prado, Antonio F. B. A.; Elipe, Antonio; de Moraes, Rodolpho Vilhena
2018-02-01
This paper provides a method for finding initial conditions of frozen orbits for a probe around Mercury. Frozen orbits are those whose orbital elements remain constant on average. Thus, at the same point in each orbit, the satellite always passes at the same altitude. This is very interesting for scientific missions that require close inspection of any celestial body. The orbital dynamics of an artificial satellite about Mercury is governed by the potential attraction of the main body. Besides the Keplerian attraction, we consider the inhomogeneities of the potential of the central body. We include secondary terms of Mercury gravity field from J_2 up to J_6, and the tesseral harmonics \\overline{C}_{22} that is of the same magnitude than zonal J_2. In the case of science missions about Mercury, it is also important to consider third-body perturbation (Sun). Circular restricted three body problem can not be applied to Mercury-Sun system due to its non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury's gravitational potential, and the Sun gravitational perturbation, our average model also includes Solar acceleration pressure. This simplified model captures the majority of the dynamics of low and high orbits about Mercury. In order to capture the dominant characteristics of the dynamics, short-period terms of the system are removed applying a double-averaging technique. This algorithm is a two-fold process which firstly averages over the period of the satellite, and secondly averages with respect to the period of the third body. This simplified Hamiltonian model is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semimajor axis, eccentricity and inclination. We find frozen orbits for an average altitude of 400 and 1000 km, which are the predicted values for the BepiColombo mission. Finally, the paper delves into the orbital stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.
NASA Technical Reports Server (NTRS)
Mallasch, Paul G.; Babic, Slavoljub
1994-01-01
The United States Air Force (USAF) provides NASA Lewis Research Center with monthly reports containing the Synchronous Satellite Catalog and the associated Two Line Mean Element Sets. The USAF Synchronous Satellite Catalog supplies satellite orbital parameters collected by an automated monitoring system and provided to Lewis Research Center as text files on magnetic tape. Software was developed to facilitate automated formatting, data normalization, cross-referencing, and error correction of Synchronous Satellite Catalog files before loading into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). This document contains the User's Guide and Software Maintenance Manual with information necessary for installation, initialization, start-up, operation, error recovery, and termination of the software application. It also contains implementation details, modification aids, and software source code adaptations for use in future revisions.
Charge Transfer in Collisions of S^4+ with H.
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-05-01
Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.
1991-01-01
The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Haynes, Davy A.; Taylor, Terry L.; Hall, Robert M.; Pamadi, Bandu N.; Seaford, C. Mark
2006-01-01
Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented.
NASA Astrophysics Data System (ADS)
Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.
2018-02-01
The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.
NASA's Space Launch System Program Update
NASA Technical Reports Server (NTRS)
May, Todd; Lyles, Garry
2015-01-01
Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in the past year, including firing tests of both main propulsion elements, manufacturing of flight hardware, and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons (t) (154,000 pounds) of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 t (286,000 pounds) to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware, including flight hardware for Exploration Mission 1 (EM-1). This paper will provide an overview of the progress made over the past year and provide a glimpse of upcoming milestones on the way to a 2018 launch readiness date.
NASA Astrophysics Data System (ADS)
Carruba, V.; Roig, F.; Michtchenko, T. A.; Ferraz-Mello, S.; Nesvorný, D.
2007-04-01
Context: Nearly all members of the Vesta family cross the orbits of (4) Vesta, one of the most massive asteroids in the main belt, and some of them approach it closely. When mutual velocities during such close encounters are low, the trajectory of the small body can be gravitationally deflected, consequently changing its heliocentric orbital elements. While the effect of a single close encounter may be small, repeated close encounters may significantly change the proper element distribution of members of asteroid families. Aims: We develop a model of the long-term effect of close encounters with massive asteroids, so as to be able to predict how far former members of the Vesta family could have drifted away from the family. Methods: We first developed a new symplectic integrator that simulates both the effects of close encounters and the Yarkovsky effect. We analyzed the results of a simulation involving a fictitious Vesta family, and propagated the asteroid proper element distribution using the probability density function (pdf hereafter), i.e. the function that describes the probability of having an encounter that modifies a proper element x by Δx, for all the possible values of Δx. Given any asteroids' proper element distribution at time t, the distribution at time t+T may be predicted if the pdf is known (Bachelier 1900, Théorie de la spéculation; Hughes 1995, Random Walks and Random Environments, Vol. I). Results: We applied our new method to the problem of V-type asteroids outside the Vesta family (i.e., the 31 currently known asteroids in the inner asteroid belt that have the same spectral type of members as the Vesta family, but that are outside the limits of the dynamical family) and determined that at least ten objects have a significant diffusion probability over the minimum estimated age of the Vesta family of 1.2 Gyr (Carruba et al. 2005, A&A, 441, 819). These objects can therefore be explained in the framework of diffusion via repeated close encounters with (4) Vesta of asteroids originally closer to the parent body. Conclusions: We computed diffusion probabilities at the location of four of these asteroids for various initial conditions, parametrized by values of initial ejection velocity V_ej. Based on our results, we believe the Vesta family age is (1200 ± 700) Myr old, with an initial ejection velocity of (240 ± 60) m/s. Appendices are only available in electronic form at http://www.aanda.org
Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
2010-07-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less
Satellite disintegration dynamics
NASA Technical Reports Server (NTRS)
Dasenbrock, R. R.; Kaufman, B.; Heard, W. B.
1975-01-01
The subject of satellite disintegration is examined in detail. Elements of the orbits of individual fragments, determined by DOD space surveillance systems, are used to accurately predict the time and place of fragmentation. Dual time independent and time dependent analyses are performed for simulated and real breakups. Methods of statistical mechanics are used to study the evolution of the fragment clouds. The fragments are treated as an ensemble of non-interacting particles. A solution of Liouville's equation is obtained which enables the spatial density to be calculated as a function of position, time and initial velocity distribution.
Performance analysis and simulation of the SPS reference phase control system
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Chie, C. M.
1980-01-01
The major elements required in the operation of an SPS which employs retrodirectivity as a means of pointing the beam to Earth include the spacetenna, the rectenna, and the pilot signal transmitter. The phase control system is faced with several problems: (1) path delay variations due to imperfect SPS circular orbits; (2) ionospheric effects; (3) initial phase beam forming; (4) beam pointing; (5) beam safing; (6) high power phase noise effects; and (7) interference. The use of SOLARISM, a computer program to select pilot signal parameters and evaluate SPS performance is described.
NASA Technical Reports Server (NTRS)
Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.
1992-01-01
The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.
1992-06-01
The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.
Stability of Multi-Planet Systems in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2017-01-01
We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales (Quarles & Lissauer 2016, Astron. J. 151, 111), as well as how closely-spaced planetary orbits can be within those regions in which individual planets can survive. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of planets in multi-planet systems within the habitable zones of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star, appropriately-aligned circumstellar orbits with small initial eccentricities are stable to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to forced eccentricities can have a much larger affect on how closely planetary orbits can be spaced, and therefore on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
Exploration planning in the context of human exploration and development of the Moon
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Morrison, Donald A.
1993-01-01
It is widely believed that the next step beyond low Earth orbit in attaining the United States' stated goal of 'Expanding human presence beyond the Earth' should be to reestablish a lunar capability, building on the Apollo program, and preparing the way for eventual human missions to Mars. The Moon offers important questions in planetary and Earth science, can provide a unique platform for making astronomical observations of high resolution and sensitivity, and can be in the development path for unlocking resources of the inner solar system to support space activities and return benefits to Earth. NASA's Office of Exploration has undertaken the planning of future lunar exploration missions with the assistance of the Solar System Exploration Division in matters dealing with the quality of scientific data and the manner in which it will be made available to the scientific community. The initial elements of the proposed program include the Lunar Scout missions, which consist of two small identical spacecraft in polar orbit around the Moon, which can accomplish most of the objectives associated with previous proposals for Lunar Polar Orbiters. These missions would be followed by 'Artemis' landers, capable of emplacing up to 200 kg payloads anywhere on the Moon. In addition, the exploration program must incorporate data obtained from other missions, including the Galileo lunar flybys, the Clementine high orbital observations, and Japanese penetrator missions. In the past year, a rather detailed plan for a 'First Lunar Outpost (FLO)' which would place 4 astronauts on the lunar surface for 45 days has been developed as a possible initial step of a renewed human exploration program. In the coming year, the FLO concept will be reviewed and evolved to become more highly integrated with planning for the initial human exploration of Mars, which could come perhaps 5 years after the reestablishment of lunar capability. Both programs could benefit from the common development of systems and subsystems, where that is sensible from a performance perspective.
Strategic Defense Initiative Organization adaptive structures program overview
NASA Astrophysics Data System (ADS)
Obal, Michael; Sater, Janet M.
In the currently envisioned architecture none of the Strategic Defense System (SDS) elements to be deployed will receive scheduled maintenance. Assessments of performance capability due to changes caused by the uncertain effects of environments will be difficult, at best. In addition, the system will have limited ability to adjust in order to maintain its required performance levels. The Materials and Structures Office of the Strategic Defense Initiative Organization (SDIO) has begun to address solutions to these potential difficulties via an adaptive structures technology program that combines health and environment monitoring with static and dynamic structural control. Conceivable system benefits include improved target tracking and hit-to-kill performance, on-orbit system health monitoring and reporting, and threat attack warning and assessment.
NASA Technical Reports Server (NTRS)
Haber, Benjamin M.; Green, Joseph J.
2010-01-01
The GOATS Orbitology Component software was developed to specifically address the concerns presented by orbit analysis tools that are often written as stand-alone applications. These applications do not easily interface with standard JPL first-principles analysis tools, and have a steep learning curve due to their complicated nature. This toolset is written as a series of MATLAB functions, allowing seamless integration into existing JPL optical systems engineering modeling and analysis modules. The functions are completely open, and allow for advanced users to delve into and modify the underlying physics being modeled. Additionally, this software module fills an analysis gap, allowing for quick, high-level mission analysis trades without the need for detailed and complicated orbit analysis using commercial stand-alone tools. This software consists of a series of MATLAB functions to provide for geometric orbit-related analysis. This includes propagation of orbits to varying levels of generalization. In the simplest case, geosynchronous orbits can be modeled by specifying a subset of three orbit elements. The next case is a circular orbit, which can be specified by a subset of four orbit elements. The most general case is an arbitrary elliptical orbit specified by all six orbit elements. These orbits are all solved geometrically, under the basic problem of an object in circular (or elliptical) orbit around a rotating spheroid. The orbit functions output time series ground tracks, which serve as the basis for more detailed orbit analysis. This software module also includes functions to track the positions of the Sun, Moon, and arbitrary celestial bodies specified by right ascension and declination. Also included are functions to calculate line-of-sight geometries to ground-based targets, angular rotations and decompositions, and other line-of-site calculations. The toolset allows for the rapid execution of orbit trade studies at the level of detail required for the early stage of mission concept development.
Mid- and long-term debris environment projections using the EVOLVE and CHAIN models
NASA Astrophysics Data System (ADS)
Eichler, Peter; Reynolds, Robert C.
1995-06-01
Results of debris environment projections are of great importance for the evaluation of the necessity and effectiveness of debris mitigation measures. EVOLVE and CHAIN are two models for debris environment projections that have been developed independently using different conceptual approaches. A comparison of results from these two models therefore provides a means of validating debris environment projections which they have made. EVOLVE is a model that requires mission model projections to describe future space operation; these projections include launch date, mission orbit altitude and inclimation, mission duration, vehicle size and mass, and classification as an object capable of experiencing breakup from on-board stored energy. EVOLVE describes the orbital debris environment by the orbital elements of the objects in the environment. CHAIN is an analytic model that bins the debris environemnt in size and altitude rather than following the orbit evolution of individual debris fragments. The altitude/size bins are coupled by the initial spreading of fragments by collisions and the following orbital decay behavior. A set of test cases covering a variety of space usage scenarios have been defined for the two models. In this paper, a comparison of the results will be presented and sources of disagreement identified and discussed. One major finding is that despite differences in the results of the two models, the basic tendencies of the environment projections are independent of modeled uncertainties, leading to the demand of debris mitigation measures--explosion suppression and de-orbit of rocket bodies and payloads after mission completion.
Yarkovsky-Schach effect on space debris motion
NASA Astrophysics Data System (ADS)
Murawiecka, M.; Lemaitre, A.
2018-02-01
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.
Analytical method for the effects of the asteroid belt on planetary orbits
NASA Technical Reports Server (NTRS)
Mayo, A. P.
1979-01-01
Analytic expressions are derived for the perturbation of planetary orbits due to a thick constant-density asteroid belt. The derivations include extensions and adaptations of Plakhov's (1968) analytic expressions for the perturbations in five of the orbital elements for closed orbits around Saturn's rings. The equations of Plakhov are modified to include the effect of ring thickness, and additional equations are derived for the perturbations in the sixth orbital element, the mean anomaly. The gravitational potential and orbital perturbations are derived for the asteroid belt with and without thickness, and for a hoop approximation to the belt. The procedures are also applicable to Saturn's rings and the newly discovered rings of Uranus. The effects of the asteroid belt thickness on the gravitational potential coefficients and the orbital motions are demonstrated. Comparisons between the Mars orbital perturbations obtained by using the analytic expressions and those obtained by numerical integration are discussed. The effects of the asteroid belt on earth-based ranging to Mars are also demonstrated.
NASA Astrophysics Data System (ADS)
Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.
2007-12-01
We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.
2011-09-01
by a single mean equinoctial element set . EGP Orbit Determination Test Cases Rev 25 14 All of the EGP test cases employ the same observation...the non-singular equinoctial mean elements is more linear and this has positive implications for orbit determination processes based on the semi...by a single mean equinoctial element set . 5. CONCLUSIONS The GTDS Semi-analytical Satellite Theory (DSST) architecture has been extended to
Test and Analysis Correlation of High Speed Impacts of Ice Cylinders
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris
2006-01-01
During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter s wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time-histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.
Dynamic Crush Characterization of Ice
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris
2006-01-01
During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter's wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility hold part of the equipment to close the hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility close the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility make final preparations for closing the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility work in the doorway of the Unity connecting module preparing it for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
SOLARIS: Software for planet formation and orbital integrations
NASA Astrophysics Data System (ADS)
Süli software, Á.
2013-11-01
I present SOLARIS a general purpose software package for doing N-body and planet formation simulations. SOLARIS is capable to (i) to follow the orbital evolution of the solar system's major planets and minor bodies, (ii) to study the dynamics of exoplanetary systems, and (iii) to study the early and later phases of planetary formation. The process to bring bodies with different epochs to one common epoch, i.e. synchronization is implemented. Apart from the Newtonian gravitational forces, aerodynamic drag force, and type I and II migration forces are also implemented. The code also includes a nebula model. To speed up the computation, SOLARIS treats particles with different interaction properties. Several two-body events are monitored, such as collision, ejection etc. Arbitrary chemical composition can be assigned to massive bodies and during collisions the new body's composition is based on the mergers. The input is given in XML to define the parameters in a well-structured and flexible way. SOLARIS is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian orbital elements.
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Forbidden tangential orbit transfers between intersecting Keplerian orbits
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1990-01-01
The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.
NASA Technical Reports Server (NTRS)
Castiel, David
1991-01-01
On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.
Cooperative angle-only orbit initialization via fusion of admissible areas
NASA Astrophysics Data System (ADS)
Jia, Bin; Pham, Khanh; Blasch, Erik; Chen, Genshe; Shen, Dan; Wang, Zhonghai
2017-05-01
For the short-arc angle only orbit initialization problem, the admissible area is often used. However, the accuracy using a single sensor is often limited. For high value space objects, it is desired to achieve more accurate results. Fortunately, multiple sensors, which are dedicated to space situational awareness, are available. The work in this paper uses multiple sensors' information to cooperatively initialize the orbit based on the fusion of multiple admissible areas. Both the centralized fusion and decentralized fusion are discussed. Simulation results verify the expectation that the orbit initialization accuracy is improved by using information from multiple sensors.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
1989-01-01
This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
Proper motion and secular variations of Keplerian orbital elements
NASA Astrophysics Data System (ADS)
Butkevich, Alexey G.
2018-05-01
High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.
Over a thousand new periodic orbits of a planar three-body system with unequal masses
NASA Astrophysics Data System (ADS)
Li, Xiaoming; Jing, Yipeng; Liao, Shijun
2018-05-01
The three-body problem is common in astronomy, examples of which are the solar system, exoplanets, and stellar systems. Due to its chaotic characteristic, discovered by Poincaré, only three families of periodic three-body orbits were found in 300 years, until 2013 when Šuvakov and Dmitrašinović (2013, Phys. Rev. Lett., 110, 114301) found 13 new periodic orbits of a Newtonian planar three-body problem with equal mass. Recently, more than 600 new families of periodic orbits of triple systems with equal mass were found by Li and Liao (2017, Sci. China-Phys. Mech. Astron., 60, 129511). Here, we report 1349 new families of planar periodic orbits of the triple system where two bodies have the same mass and the other has a different mass. None of the families have ever been reported, except the famous "figure-eight" family. In particular, 1223 among these 1349 families are entirely new, i.e., with newly found "free group elements" that have been never reported, even for three-body systems with equal mass. It has been traditionally believed that triple systems are often unstable if they are non-hierarchical. However, all of our new periodic orbits are in non-hierarchical configurations, but many of them are either linearly or marginally stable. This might inspire the long-term astronomical observation of stable non-hierarchical triple systems in practice. In addition, using these new periodic orbits as initial guesses, new periodic orbits of triple systems with three unequal masses can be found by means of the continuation method, which is more general and thus should have practical meaning from an astronomical viewpoint.
On the Determination of the Orbits of Comets
NASA Astrophysics Data System (ADS)
Englefield, Henry
2013-06-01
Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.
Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit
NASA Technical Reports Server (NTRS)
Barry, B. F.; Pimm, R. S.; Rowe, C. K.
1971-01-01
In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Remote X-ray fluorescence experiments for future missions to Mercury
NASA Astrophysics Data System (ADS)
Clark, P. E.; Trombka, J. I.
1997-01-01
To date, the only deep space mission to Mercury, Mariner 10, as well as ground-based observations have failed to provide direct measurements of that planet's composition. Such measurements are fundamental for the understanding of Mercury's origin and the inner solar system's history. The spin-stabilized Mercury Orbiter proposed for launch in the first or second decade of the twenty-first century as part of the ESA's Horizon 2000-plus plan could address this problem by including the X-ray spectrometer proposed here. X-ray spectrometers act as detectors for the X-ray emission induced by the solar flux incident on planetary surfaces. This emission is strongly dependent on the chemical composition of the surface as well as on the solar spectrum. Characteristic fluorescent lines, the most prominent being the K-alpha lines, are of sufficient intensity for major elements (Mg, Al, Si, Ca, Fe) to allow orbital measurement by remote X-ray detectors. The X-ray spectrometers described here will all have established heritage for space missions by 2000. These instruments have previously flown, are being flown as part of the NASA NEAR (Near Earth Asteroid Rendezvous) or Clark SSTI (Small Science and Technology Initiative) missions, or are now under development as part of NASA Facility Instrument Development Program. The instrument package would probably consist of an array of solid state detectors for surface measurements, as well as one which would act as a solar monitor. Calculations of anticipated results have been done for a variety of orbital and instrument configurations, and a variety of lunar soil compositions which could be analogous: anorthositie gabbro bearing soils from lunar highlands (Apollo 16), high-Mg basalt-rich soils from a KREEP-bearing area (Apollo 15), and mare basalt bearing soils (Apollo 12). The mission being considered here should result in maps of abundances of major elements, including Mg, Al, Si, Ca, and Fe, for much of Mercury's surface, with resolutions ranging from tens to hundreds of kilometers depending on the element, the orbital eccentricity and altitude of the spacecraft.
NASA Technical Reports Server (NTRS)
Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond
2012-01-01
The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or autonomously. The primary structure of each element was assembled and verified by teams of responsible structural engineers within and among their respective agencies and agency contractors.
Electron capture in collisions of S4+ with atomic hydrogen
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-06-01
Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.
International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.
2008-01-01
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.
TLE uncertainty estimation using robust weighted differencing
NASA Astrophysics Data System (ADS)
Geul, Jacco; Mooij, Erwin; Noomen, Ron
2017-05-01
Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).
NASA Astrophysics Data System (ADS)
Ehricke, Krafft A.
This first of several study papers, based on a fundamental paper presented in 1972, provides an independent conceptual analysis and evaluation of the lunar environment as industrial base and habitat. A selenosphere system strategy is outlined. The underlying concept is that of one or several lunar industrial zones for resource extraction and on-surface processing, integrated with a circumlunar zero-g processing capability, serving markets in geolunar space. A classification of lunar elements by utilization category is presented. Lunar oxygen is a prime candidate for being an initial economic "drawing card", because of its value for fast transportation in geolunar space, requiring significantly fewer ships for equal transfer capability per unit time than electric transports which, however, have value, especially between geosynchronous and lunar orbit. The reduced development difficulties of controlled fusion outside the atmosphere and its advantages for extracting oxygen and other elements in quantity are summarized. Examples of lunar cycle management as fundamental exoindustrial requirement for economic resource enhancement are presented. The principal initial socio-economic value of lunar industry lies in the use of lunar resources for exoindustrial products and operations designed to accelerate, intensify and diversify Earth-related benefits. In the longer run, lunar settlements are a highly suitable proving ground for studying and testing the complex matrix of technological, biological, cultural, social and psychological aspects that must be understood and manageable before large settlements beyond Earth can have a realistic basis for viability. The lunar environment is more suitable for experimentation and comparatively more "forgiving" in case of failures than is orbital space.
On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Black, D. C.
2001-01-01
We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.
NASA Technical Reports Server (NTRS)
Bjorkman, W. S.; Uphoff, C. W.
1973-01-01
This Parameter Estimation Supplement describes the PEST computer program and gives instructions for its use in determination of lunar gravitation field coefficients. PEST was developed for use in the RAE-B lunar orbiting mission as a means of lunar field recovery. The observations processed by PEST are short-arc osculating orbital elements. These observations are the end product of an orbit determination process obtained with another program. PEST's end product it a set of harmonic coefficients to be used in long-term prediction of the lunar orbit. PEST employs some novel techniques in its estimation process, notably a square batch estimator and linear variational equations in the orbital elements (both osculating and mean) for measurement sensitivities. The program's capabilities are described, and operating instructions and input/output examples are given. PEST utilizes MAESTRO routines for its trajectory propagation. PEST's program structure and subroutines which are not common to MAESTRO are described. Some of the theoretical background information for the estimation process, and a derivation of linear variational equations for the Method 7 elements are included.
Orbits for eight Hipparcos double stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetković, Z.; Pavlović, R.; Ninković, S., E-mail: zcvetkovic@aob.bg.ac.rs
In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321–1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389–1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161–0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. Wemore » found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O – C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.« less
A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka
NASA Technical Reports Server (NTRS)
Mikkola, Seppo; Innanen, Kimmo; Muinonen, Karri; Bowell, Edward
1994-01-01
Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the pertubations due to other planets.
Effects of solar radiation on the orbits of small particles
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1976-01-01
A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.
An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
The origin of Halley-type comets: probing the inner Oort cloud
NASA Astrophysics Data System (ADS)
Levison, H.; Dones, L.; Duncan, M.
2000-10-01
We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.
NASA Technical Reports Server (NTRS)
Mehrbach, E.; Turkel, S. H.
1972-01-01
A summary of the findings of the data management group of the orbital operations study is presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are described. The following interfacing activities are considered: (1) communications, (2) rendezvous, (3) stationkeeping, and (4) detached element operations.
Orbital Applications of Electrodynamic Propulsion
1993-12-01
Constraint function 4 Greenwich equatorial frame Nt Amp2 .m2/kg 2 Minimize function W Amp2 r-m2 /kg 2 Constrained minimize function h Equinoctial element ...studies will be how a force, besides the two body force, changes the orbital elements . For this, we turn to the force form of Lagrange’s planetary...singularity in e of Equa- tion (10). To do this we introduce two of the equinoctial elements (18:22): h = esinw k = ecosw 11 Note we easily recover e
NASA Astrophysics Data System (ADS)
Heintz, W. D.
1981-04-01
Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.
Space station needs, attributes and architectural options: Architectural options and selection
NASA Technical Reports Server (NTRS)
Nelson, W. G.
1983-01-01
The approach, study results, and recommendations for defining and selecting space station architectural options are described. Space station system architecture is defined as the arrangement of elements (manned and unmanned on-orbit facilities, shuttle vehicles, orbital transfer vehicles, etc.), the number of these elements, their location (orbital inclination and altitude, and their functional performance capability, power, volume, crew, etc.). Architectural options are evaluated based on the degree of mission capture versus cost and required funding rate. Mission capture refers to the number of missions accommodated by the particular architecture.
Satellite Orbit Under Influence of a Drag - Analytical Approach
NASA Astrophysics Data System (ADS)
Martinović, M. M.; Šegan, S. D.
2017-12-01
The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason
Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we presentmore » 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.« less
Orbital Metastasis: Rare Initial Presentation of an Occult Gall Bladder Carcinoma.
Jain, Tarun Kumar; Parihar, Ashwin Singh; Sood, Ashwani; Basher, Rajender Kumar; Bollampally, Neeraja; Shekhawat, Amit Singh; Mittal, Bhagwant Rai
2018-03-01
Orbital metastases are known to arise from primary breast carcinoma followed by prostate, malignant melanoma, and lung carcinoma. We report a case of orbital metastasis as the initial presentation of an occult primary gall bladder carcinoma. The FDG PET/CT helped in localizing the occult distant primary site, which previously escaped detection, and also enabled the evaluation of orbital metastasis.
NASA Technical Reports Server (NTRS)
Quast, Peter; Tung, Frank; West, Mark; Wider, John
2000-01-01
The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.
Status, Plans and Initial Results for Ares I Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Hall, Robert M.; Haynes, Davy A.; Pamadi, Bandu N.; Taylor, Terry L.; Seaford, C. Mark
2008-01-01
Following the completion of NASA s Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Ares Projects Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented. Keywords: Ares I Crew Launch Vehicle, aerodynamics, wind tunnel testing, computational fluid dynamics
NASA Technical Reports Server (NTRS)
1983-01-01
Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.
Development and verification of ground-based tele-robotics operations concept for Dextre
NASA Astrophysics Data System (ADS)
Aziz, Sarmad
2013-05-01
The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Efforts in support of the development of a model of the magnetic fields due to ionospheric and magnetospheric electrical currents are discussed. Specifically, progress made in reading MAGSAT tapes and plotting the deviation of the measured magnetic field components with respect to a spherical harmonic model of the main geomagnetic field is reported. Initial tests of the modeling procedure developed to compute the ionosphere/magnetosphere-induced fields at satellite orbit are also described. The modeling technique utilizes a liner current element representation of the large scale current system.
The Prediction of the Motion of Atens, Apollos and Amors over Long Intervals of Time
NASA Astrophysics Data System (ADS)
Wlodarczyk, I.
2002-01-01
Equations of motion of 930 Atens, Apollos and Amors (AAA) were integrated 300,000 years forward using RA15 Everhart method (Everhart, 1974). The Osterwinter model of Solar System was used (Osterwinter and Cohen, 1972). The differences in mean anomaly between unchanged and changed orbits were calculated. The changed orbits were constructed by adding or subtracting to the starting orbital elements one after the other errors of determination of orbital elements. When the differences in mean anomaly were greater than 360 deg. then computations were stopped. In almost all cases after about 1000 years in forwards or backwards integrations differences in mean anomaly between neighbors orbits growth rapidly. It denotes that it is impossible to predict behavior of asteroids outside this time. This time I have called time of stability.
NASA Astrophysics Data System (ADS)
Gurfil, Pini; Lainey, Valéry; Efroimsky, Michael
2007-12-01
Construction of an accurate theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here we continue this line of research by combining that analytical machinery with numerical tools. Our model includes three factors: the J 2 of the planet, its nonuniform equinoctial precession described by the Colombo formalism, and the gravitational pull of the Sun. This semianalytical and seminumerical theory, based on the Lagrange planetary equations for the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion years). In parallel with the said semianalytical theory for the Keplerian elements defined in the co-precessing equatorial frame, we have also carried out a completely independent, purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within fractions of a percent, thus demonstrating the applicability of our semianalytical model over long timescales. Another goal of this work was to make an independent check of whether the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could have been sufficient to repel its moons away from the equator. An answer to this question, in combination with our knowledge of the current position of Phobos and Deimos, will help us to understand whether the Martian obliquity could have undergone the large changes ensuing from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993), or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has turned out that, for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform equinoctial precession given by the Colombo model, of an old result obtained by Goldreich (1965) for the case of uniform precession and a low initial inclination. However, near-polar initial inclinations may exhibit considerable variations for up to ±10 deg in magnitude. This result is accentuated when the obliquity is large. Nevertheless, the analysis confirms that an oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds of millions of years, without repelling its near-equatorial satellites away from the equator of date: the satellite inclination oscillates but does not show a secular increase. Nor does it show secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination capture of Phobos and Deimos.
Mercury - A New Software Package for Orbital Integrations
NASA Astrophysics Data System (ADS)
Chambers, J. E.; Migliorini, F.
1997-07-01
We present Mercury: a new general-purpose software package for carrying out orbital integrations for problems in solar-system dynamics. Suitable applications include studying the long-term stability of the planetary system, investigating the orbital evolution of comets, asteroids or meteoroids, and simulating planetary accretion. Mercury is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian elements in ``cometary'' or ``asteroidal'' format, with different epochs of osculation for different objects. Output from an integration consists of either osculating or averaged (``proper'') elements, written in a machine-independent compressed format, which allows the results of a calculation performed on one platform to be transferred (e.g. via FTP) and decoded on another. Mercury itself is platform independent, and can be run on machines using DEC Unix, Open VMS, HP Unix, Solaris, Linux or DOS. During an integration, Mercury monitors and records details of close encounters, sungrazing events, ejections and collisions between objects. The effects of non-gravitational forces on comets can also be modelled. Additional effects such as Poynting-Robertson drag, post-Newtonian corrections, oblateness of the primary, and the galactic potential will be incorporated in future. The package currently supports integrations using a mixed-variable symplectic routine, the Bulirsch-Stoer method, and a hybrid code for planetary accretion calculations; with Everhart's popular RADAU algorithm and a symmetric multistep routine to be added shortly. Our presentation will include a demonstration of the latest version of Mercury, with the explicit aim of getting feedback from potential users and incorporating these suggestions into a final version that will be made available to everybody.
NASA Astrophysics Data System (ADS)
Quarles, B.; Lissauer, Jack J.
2018-03-01
We perform long-term simulations, up to ten billion years, of closely spaced configurations of 2–6 planets, each as massive as the Earth, traveling on nested orbits about either stellar component in α Centauri AB. The innermost planet initially orbits at either the inner edge of its star’s empirical habitable zone (HZ) or the inner edge of its star’s conservative HZ. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the HZs of both stars, perturbations from the companion star require that the minimum spacing of planets in multi-planet systems within the HZs of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. The binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star. Planets on appropriately phased circumstellar orbits with initial eccentricities equal to their forced eccentricities can survive on more closely spaced orbits than those with initially circular orbits, although the required spacing remains higher than for planets orbiting single stars. A total of up to nine planets on nested prograde orbits can survive for the current age of the system within the empirical HZs of the two stars, with five of these orbiting α Centauri B and four orbiting α Centauri A.
Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
NASA Astrophysics Data System (ADS)
Rabotin, C. B.
Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work does not include any optimal trajectory design. For this research, a highly configurable orbit propagation software with SPICE ephemerides was developed from scratch in Go, a modern compiled computer language. The outcome of this research is that simple orbital element control laws do not lead to more efficient or faster interplanetary transfers. In addition, spiraling out of Earth's gravity wells requires a substantial amount of time despite starting from a highly elliptical orbit, and even with clustered high thrust engines like the VASIMR VX-200. Further investigation should look into hybrid solutions with a chemical engine for departing Earth; outbound spirals from Mars take a more reasonable amount of time.
Three Orbital Burns to Molniya Orbit Via Shuttle_Centaur G Upper Stage
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2015-01-01
An unclassified analytical trajectory design, performance, and mission study was done for the 1982 to 1986 joint National Aeronautics and Space Administration (NASA)-United States Air Force (USAF) Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37 deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57 deg inclined orbit: 9,545 versus 9,552 lb of separated spacecraft weight, respectively. There was a significant reduction in the need for propellant launch time reserve for a 1 hr window: only 78 lb for the three burn transfer versus 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three versus two burn transfer (12 vs. 1-1/4 hr), but could be accommodated by modest modifications to Centaur systems. Future applications were discussed. The three burn transfer was found to be a viable, arguably preferable, alternative to the two burn transfer.
Three Orbital Burns to Molniya Orbit via Shuttle Centaur G Upper Stage
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2014-01-01
An unclassified analytical trajectory design, performance, and mission study was done for the 1982-86 joint NASA-USAF Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57deg inclined orbit: 9,545 lb vs. 9,552 lb of separated spacecraft weight respectively. There was a significant reduction in the need for propellant launch time reserve for a one hour window: only 78 lb for the three burn transfer vs. 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three vs. two burn transfer (12 vs. 11/4 hrs), but could be accommodated by modest modifications to Centaur systems. Future applications were discussed. The three burn transfer was found to be a viable, arguably preferable, alternative to the two burn transfer.
Dynamical lifetimes of asteroids in retrograde orbits
NASA Astrophysics Data System (ADS)
Kankiewicz, Paweł; Włodarczyk, Ireneusz
2017-07-01
The population of known minor bodies in retrograde orbits (I > 90°) that are classified as asteroids is still growing. The aim of our study was to estimate the dynamical lifetimes of these bodies using the latest observational data, including astrometry and physical properties. We selected 25 asteroids with the best-determined orbital elements. We studied their dynamical evolution in the past and future for ±100 Myr (±1 Gyr for three particular cases). We first used orbit determination and cloning to produce swarms of test particles. These swarms were then input into long-term numerical integrations, and the orbital elements were averaged. Next, we collected the available thermal properties of our objects and we used them in an enhanced dynamical model with Yarkovsky forces. We also used a gravitational model for comparison. Finally, we estimated the median lifetimes of 25 asteroids. We found three objects whose retrograde orbits were stable with a dynamical lifetime τ ˜ 10-100 Myr. A large portion of the objects studied displayed smaller values of τ (τ ˜ 1 Myr). In addition, we studied the possible influence of the Yarkovsky effect on our results. We found that the Yarkovsky effect can have a significant influence on the lifetimes of asteroids in retrograde orbits. Because of the presence of this effect, it is possible that the median lifetimes of these objects are extended. Additionally, the changes in orbital elements, caused by Yarkovsky forces, appear to depend on the integration direction. To explain this more precisely, the same model based on new physical parameters, determined from future observations, will be required.
Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae
NASA Astrophysics Data System (ADS)
Calabrò, Emanuele
2014-03-01
We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.
Orbital transfer vehicle launch operations study. Volume 2: Detailed summary
NASA Technical Reports Server (NTRS)
1986-01-01
A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.
ASAP- ARTIFICIAL SATELLITE ANALYSIS PROGRAM
NASA Technical Reports Server (NTRS)
Kwok, J.
1994-01-01
The Artificial Satellite Analysis Program (ASAP) is a general orbit prediction program which incorporates sufficient orbit modeling accuracy for mission design, maneuver analysis, and mission planning. ASAP is suitable for studying planetary orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. ASAP uses Cowell's method in the numerical integration of the equations of motion. The orbital mechanics calculation contains perturbations due to non-sphericity (up to a 40 X 40 field) of the planet, lunar and solar effects, and drag and solar radiation pressure. An 8th order Runge-Kutta integration scheme with variable step size control is used for efficient propagation. The input includes the classical osculating elements, orbital elements of the sun relative to the planet, reference time and dates, drag coefficient, gravitational constants, and planet radius, rotation rate, etc. The printed output contains Cartesian coordinates, velocity, equinoctial elements, and classical elements for each time step or event step. At each step, selected output is added to a plot file. The ASAP package includes a program for sorting this plot file. LOTUS 1-2-3 is used in the supplied examples to graph the results, but any graphics software package could be used to process the plot file. ASAP is not written to be mission-specific. Instead, it is intended to be used for most planetary orbiting missions. As a consequence, the user has to have some basic understanding of orbital mechanics to provide the correct input and interpret the subsequent output. ASAP is written in FORTRAN 77 for batch execution and has been implemented on an IBM PC compatible computer operating under MS-DOS. The ASAP package requires a math coprocessor and a minimum of 256K RAM. This program was last updated in 1988 with version 2.03. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
LOP- LONG-TERM ORBIT PREDICTOR
NASA Technical Reports Server (NTRS)
Kwok, J. H.
1994-01-01
The Long-Term Orbit Predictor (LOP) trajectory propagation program is a useful tool in lifetime analysis of orbiting spacecraft. LOP is suitable for studying planetary orbit missions with reconnaissance (flyby) and exploratory (mapping) trajectories. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. LOP uses the variation-of-parameters method in formulating the equations of motion. Terms involving the mean anomaly are removed from numerical integrations so that large step sizes, on the order of days, are possible. Consequently, LOP executes much faster than programs based on Cowell's method, such as the companion program ASAP (the Artificial Satellite Analysis Program, NPO-17522, also available through COSMIC). The program uses a force model with a gravity field of up to 21 by 21, lunisolar perturbation, drag, and solar radiation pressure. The input includes classical orbital elements (either mean or oscillating), orbital elements of the sun relative to the planet, reference time and dates, drag coefficients, gravitational constants, planet radius, rotation rate. The printed output contains the classical elements for each time step or event step, and additional orbital data such as true anomaly, eccentric anomaly, latitude, longitude, periapsis altitude, and the rate of change per day of certain elements. Selected output is additionally written to a plot file for postprocessing by the user. LOP is written in FORTRAN 77 for batch execution on IBM PC compatibles running MS-DOS with a minimum of 256K RAM. Recompiling the source requires the Lahey F77 v2.2 compiler. The LOP package includes examples that use LOTUS 1-2-3 for graphical displays, but any graphics software package should be able to handle the ASCII plot file. The program is available on two 5.25 inch 360K MS-DOS format diskettes. The program was written in 1986 and last updated in 1989. LOP is a copyrighted work with all copyright vested in NASA. IBM PC is a registered trademark of International Business Machines Corporation. Lotus 1-2-3 is a registered trademark of Lotus Development Corporation. MS-DOS is a trademark of Microsoft Corporation.
Orbital evolution of 95/P Chiron, 39P/Oterma, 29P/Shwassmann-Wachmann 1, and of 33 Centaurs
NASA Astrophysics Data System (ADS)
Kovalenko, N. S.; Churyumov, K. I.; Babenko, Yu. G.
2011-12-01
The paper is devoted to numerical modeling of orbital evolution of 34 Centaurs, and 2 distant Jupiter-family comets - 39P/Oterma and 29P/Shwassmann-Wachmann 1. As a result the evolutionary tracks of orbital elements of 33 Centaurs and 3 comets (95/P Chiron (2060), 39P/Oterma and 29P/Shwassmann-Wachmann 1) are obtained. The integrations were produced for 1 Myr back and forth in time starting at epoch and using the implicit single sequence Everhart methods. The statistical analysis of numerical integrations results was done, trends in changes of Centaurs' orbital elements in the past and in the future are revealed. The part of Centaurs that are potential comets is defined by the values of perihelia distributions for modeled orbits. It is shown that Centaurs may transits into orbits typical for Jupiter-family comets, and vice versa. Centaurs represent one of possible sources for replenishment of JFCs population, but other sources are also necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurice, Rémi, E-mail: remi.maurice@subatech.in2p3.fr; Montavon, Gilles; Réal, Florent
2015-03-07
The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin–orbit wave functions resulting from spin–orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin–orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I{sub 2}, At{sub 2}, IO{sup +}, and AtO{sup +} species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin–orbit coupling weakensmore » the covalent character of the bond in At{sub 2} even more than electron correlation, making the consideration of spin–orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.« less
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
The Importance of Semi-Major Axis Knowledge in the Determination of Near-Circular Orbits
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.
1998-01-01
Modem orbit determination has mostly been accomplished using Cartesian coordinates. This usage has carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented positioning accuracy of GPS has tended to focus attention more on the system's capability to locate the spacecraft's location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit adjustment maneuvers. For the quite common case of near-circular orbits, the degree to which position and velocity estimates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly produce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are the following: (1) downrange position error grows at the per orbit rate of 3(pi) times the SMA error; (2) a velocity change imparted to the orbit will have an error of (pi) divided by the orbit period times the SMA error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequential orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construction of the initial covariance accomplishes half of this objective, by specifying the partition of the covariance corresponding to down-track position and radial velocity errors. The remainder of the in-plane covariance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illustrates the effect of properly and not properly initializing a covariance. This figure was produced by propagating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial position coordinates, of about half of the lower subplot, whose initial covariance was based on other considerations.
Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...
2017-01-09
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
Chandrayaan-2: India's First Soft-landing Mission to Moon
NASA Astrophysics Data System (ADS)
Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.
2012-07-01
The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries. Mission Elements:, On board segment of Chandrayaan-2 mission consists of a lunar Orbiter and a lunar Lander-Rover. The orbiter for Chandrayaan-2 mission is similar to that of Chandrayaan-1 from structural and propulsion aspects. Based on a study of various mission management and trajectory options, such as, separation of the Lander-Rover module in Earth Parking Orbit (EPO) or in lunar transfer trajectory (LTT) or in lunar polar orbit (LPO), the option of separating of this module at LTT, after required midcourse corrections, was selected as this offers an optimum mass and overall mission management advantage. The orbiter propulsion system will be used to transfer Orbiter-Lander-Rover composite from EPO to LTT. On reaching LTT, the Lander-Rover module will be separated from the orbiter module. The Lander-Rover and Orbiter modules are configured with individual propulsion and housekeeping systems. The indigenously developed Geostationary Satellite Launch Vehicle GSLV (Mk-II) will be used for this mission. The most critical aspect of its feasibility was an accurate evaluation of the scope for taking a 3200kg lift off mass into EPO. A Lander-Rover mass of 1270kg (including the propellant for soft landing) will provide sufficient margin for such a lift off within the capability of flight proven GSLV (Mk-II) for the EPO. Mission Scenario: ,GSLV (Mk-II) will launch the Lunar Orbiter coupled to the Lunar Lander-Rover into EPO (170 x 16980 km) following which the Orbiter will boost the orbit from EPO to LTT where the two modules will be separated. Both of them will make their independent journey towards moon and reach lunar polar orbit independently. The orbiter module will be initially placed in a circular polar orbit (200km) and the Lander-Rover module descends towards the lunar surface. After landing, a motorized rover with robotic arm and scientific instruments would be released on to the lunar surface. Although the exact landing location is yet to be finalized, a high latitude location is preferred from scientific interest. Multiple communication links involving Rover-Lander-Earth, Orbiter-Earth and Rover-Orbiter will be implemented. Scientific Payloads:, The scientific payloads on orbiter include a Terrain Mapping Camera (TMC-2), an Imaging Infra-Red Spectrometer (IIRS), a Dual Band (L&S-Band) Synthetic Aperture Radar (SAR), a Collimated Large Area Soft x-ray Spectrometer (CLASS), and a Chandra's Atmospheric Composition Explorer(ChACE-2). TMC with two cameras will provide 3D imaging and DEM, while the IIRS will cover the 0.8-5 micron region at high spectral resolution using a grating spectrograph coupled to an active cooler based MCT array detector. It will provide information on mineral composition and detect OH and H2O and also measure thermal emission from the lunar surface. CLASS is an improved version of C1XS flown on Chandrayaan-1 and will employ swept charge detector (SCD) for detection of X-rays from lunar surface during solar flares.ChACE-2 is a modified version of ChACE-1, one of the instruments on Moon Impact Probe (MIP) that provided hints for the presence of water molecule in lunar exosphere. The Synthetic Aperture Radar will include both L (1.25 GHz) and S (2.5 GHz) bands with selectable resolution of up to a few meters. A radiating patch arrangement is designed for the integrated L-band and S-band antenna. There will be two payloads on the Rover: an Alpha Particle induced X-ray Spectrometer (APXS) and a Laser Induced Breakdown Spectroscopy (LIBS) for studies of chemical composition and volatiles present in lunar surface material near the landing site. The Lander Craft will have suite of instruments to study both physical and chemical properties of the landing site. It will have direct communication link to Earth Stations. The Lander will also act as the relay for communication with the Rover. The design and development of the various mission elements as well as of the scientific payloads are currently in progress both in India and Russia. Preliminary Design Reviews of the Mission elements are also completed.
NASA Technical Reports Server (NTRS)
Roberts, Barney B.; Vonputtkamer, Jesco
1992-01-01
This assumed program was developed from several sources of information and is extrapolated over future decades using a set of reasonable assumptions based on incremental growth. The assumptions for the NASA baseline program are as follows: balanced emphasis in four domains; a constant level of activity; low to moderate real budget growth; maximum use of commonality; and realistic and practical technology development. The first domain is low Earth Orbit (LEO). Activities there are concentrated on the space station but extend on one side to Earth-pointing sensors for unmanned platforms and on the other to the launch and staging of unmanned solar system exploration missions. The second domain is geosynchronous Earth orbit (GEO) and cislunar space. Activities here include all GEO missions and operations, both unmanned and manned, and all transport of materials and crews between LEO and the vicinity of the Moon. The third domain is the Moon itself. Lunar activities are to include both orbiting and landing missions; the landings may be either unmanned or manned. The last domain is Mars. Missions to Mars will initially be unmanned but they will eventually be manned. Program elements and descriptions are discussed as are critiques of the NASA baseline.
Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation
NASA Technical Reports Server (NTRS)
Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.
1995-01-01
Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be used in February of 2001. The initial attitude and spin rate of Eros, as well as estimates of reference landmark locations, are obtained from images of the asteroid. These initial estimates are used as a priori values for a more precise refinement of these parameters by the orbit determination software which combines optical measurements with Doppler tracking data to obtain solutions for the required parameters. As the spacecraft is maneuvered; closer to the asteroid, estimates of spacecraft state, asteroid attitude, solar pressure, landmark locations and Eros physical parameters including mass, moments of inertia and gravity harmonics are determined with increasing precision. The determination of the elements of the inertia tensor of the asteroid is critical to spacecraft orbit determination and prediction of the asteroid attitude. The moments of inertia about the principal axes are also of scientific interest since they provide some insight into the internal mass distribution. Determination of the principal axes moments of inertia will depend on observing free precession in the asteroid's attitude dynamics. Gravity harmonics are in themselves of interest to science. When compared with the asteroid shape, some insight may be obtained into Eros' internal structure. The location of the center of mass derived from the first degree harmonic coefficients give a direct indication of overall mass distribution. The second degree harmonic coefficients relate to the radial distribution of mass. Higher degree harmonics may be compared with surface features to gain additional insight into mass distribution. In this paper, estimates of Eros physical parameters obtained from the December 23,1998 flyby will be presented. This new knowledge will be applied to simplification of Eros orbital operations in February of 2001. The resulting revision to the orbit determination strategy will also be discussed.
Space Situational Awareness of Large Numbers of Payloads From a Single Deployment
NASA Astrophysics Data System (ADS)
Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.
2014-09-01
The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft, examining current methods. Potential new approaches are discussed, including simulations to evaluate their utility. Acknowledgement: This work was supported by the Office of the Assistant Secretary of Defense for R&E, via the Data-to-Decisions program.
NASA Technical Reports Server (NTRS)
Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.
2006-01-01
Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. The question to be addressed: are the UCTs detected by MODEST in this inclination/RAAN region related to the Titan 3C-4 breakup? Discussion will include the observational biases in attempting to detect a specific, uncontrolled target during given observing session. These restrictions include: (1) the length of the observing session which is 8 hours or less at any given date or declination; (2) the assumption of ACO elements for detected object when the breakup model predicts debris with non-zero eccentricities; (3) the size and illumination or brightness of the debris predicted by the model and the telescope/sky limiting magnitude.
NASA Astrophysics Data System (ADS)
Klumpar, D. M.; Gunderson, A.
2014-12-01
A 10-satellite constellation placed in Low Earth Orbit (LEO) will carry high geometric factor omnidirectional integrating energetic particle detectors responsive to electrons greater than ~500 keV to characterize the near-Earth distribution of Van Allen Belt electrons precipitating or mirroring at altitudes between ~350 and ~500 km. The full constellation will be constructed by two deployments of identical 1.5U CubeSats into LEO. The first launch will deploy eight satellites into a polar sun-synchronous orbit from the Island of Kauai in the Hawaiian Islands to form the NASA/Ames Research Center "Edison Demonstration of Smallsat Networks" (EDSN) swarm of satellites. The on-board Energetic Particle Integrating Space Environment Monitor (EPISEM) instrument built by the Space Science and Engineering Laboratory at Montana State University consists of a cylindrical 12 cm*2-ster omnidirectional Geiger counter sensitive to electrons above about 500 keV. The eight EDSN satellites are expected to deploy in late November 2014 into an 410 x 485 km orbit at ~92 degrees inclination forming two slowly-separating groups of four measurement platforms each to set up the initial 8-satellite swarm. Separately, two additional copies of the EDSN satellites will deploy from the International Space Station as elements of the NODES mission into a 52 degree inclination orbit at about 375 km altitude. Together the 10 satellites will characterize the distribution of low altitude penetrating electrons over spatial scales from 10's to thousands of km. The paper will describe the mission concept, the implementation of the spacecraft, and the unusual operations concept that allows stored science data to be collected from all eight satellites of the EDSN swarm through an intersatellite communications link and transferred to the ground by a single member of the swarm. The EDSN satellites operate completely autonomously without ground uplink. The paper will also include early scientific results if available by mid-December, 2014.
Orbital operations study. Appendix B: Operational procedures
NASA Technical Reports Server (NTRS)
Galvin, D. M.; Mattson, H. L.; True, D. M.; Anderson, N. R.; Mehrbach, E.; Gianformaggio, A.; Steinwachs, W. L.; Turkel, S. H.
1972-01-01
Operational procedures for each alternate approach for each interfacing activity of the orbital operations study are presented. The applicability of the procedures to interfacing element pairs is identified.
Systems Integration Processes for NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Taylor, James L.; Reuter, James L.; Sexton, Jeffrey D.
2006-01-01
NASA's Exploration Initiative will require development of many new elements to constitute a robust system of systems. New launch vehicles are needed to place cargo and crew in stable Low Earth Orbit (LEO). This paper examines the systems integration processes NASA is utilizing to ensure integration and control of propulsion and nonpropulsion elements within NASA's Crew Launch Vehicle (CLV), now known as the Ares I. The objective of the Ares I is to provide the transportation capabilities to meet the Constellation Program requirements for delivering a Crew Exploration Vehicle (CEV) or other payload to LEO in support of the lunar and Mars missions. The Ares I must successfully provide this capability within cost and schedule, and with an acceptable risk approach. This paper will describe the systems engineering management processes that will be applied to assure Ares I Project success through complete and efficient technical integration. Discussion of technical review and management processes for requirements development and verification, integrated design and analysis, integrated simulation and testing, and the integration of reliability, maintainability and supportability (RMS) into the design will also be included. The Ares I Project is logically divided into elements by the major hardware groupings, and associated management, system engineering, and integration functions. The processes to be described herein are designed to integrate within these Ares I elements and among the other Constellation projects. Also discussed is launch vehicle stack integration (Ares I to CEV, and Ground and Flight Operations integration) throughout the life cycle, including integrated vehicle performance through orbital insertion, recovery of the first stage, and reentry of the upper stage. The processes for decomposing requirements to the elements and ensuring that requirements have been correctly validated, decomposed, and allocated, and that the verification requirements are properly defined to ensure that the system design meets requirements, will be discussed.
Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics
Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.
2012-01-01
Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
Introducing the Moon's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2014-01-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a…
The Behavior of Regular Satellites During the Planetary Migration
NASA Astrophysics Data System (ADS)
Nogueira, Erica Cristina; Gomes, R. S.; Brasser, R.
2013-05-01
Abstract (2,250 Maximum Characters): The behavior of the regular satellites of the giant planets during the instability phase of the Nice model needs to be better understood. In order to explain this behavior, we used numerical simulations to investigate the evolution of the regular satellite systems of the ice giants when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a ‘jumping Jupiter’ scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and cloned simulations by slightly modifying the Hybrid integrator changeover parameter. We obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. These integrations ran for 1000 years. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter (if any). If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits around the planet. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and its orbit was circularized by tides during the ~500 million years before the LHB. References: Agnor & Hamilton 2006, Nature 441, 192 Brasser et al. 2009, A&A 507, 1053 Chambers 1999, Mon. Not. R. Astron. Soc. 304, 793 Nogueira et al. 2011, Icarus 214, 113
Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4
NASA Technical Reports Server (NTRS)
1971-01-01
Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.
Orbital operations study. Appendix A: Interactivity analysis
NASA Technical Reports Server (NTRS)
1972-01-01
Supplemental analyses conducted to verify that safe, feasible, design concepts exist for accomplishing the attendant interface activities of the orbital operations mission are presented. The data are primarily concerned with functions and concepts common to more than one of the interfacing activities or elements. Specific consideration is given to state vector update, payload deployment, communications links, jet plume impingement, attached element operations, docking and structural interface assessment, and propellant transfer.
Potential SPOT-1 R/B-Cosmos 1680 R/B collision
NASA Technical Reports Server (NTRS)
Henize, Karl G.; Rast, Richard H.
1989-01-01
Detailed NORAD data have revealed updated orbital elements for the Ariane third-stage rocket body that underwent breakup on November 13, 1986, as well as for the Cosmos 1680 rocket body. Applying the maximum expected error due to the extrapolation of orbital elements to the date of the possible collision between the two bodies shows the smallest possible distance between bodies to have been 380 km, thereby precluding collision.
Optimal thrust level for orbit insertion
NASA Astrophysics Data System (ADS)
Cerf, Max
2017-07-01
The minimum-fuel orbital transfer is analyzed in the case of a launcher upper stage using a constantly thrusting engine. The thrust level is assumed to be constant and its value is optimized together with the thrust direction. A closed-loop solution for the thrust direction is derived from the extremal analysis for a planar orbital transfer. The optimal control problem reduces to two unknowns, namely the thrust level and the final time. Guessing and propagating the costates is no longer necessary and the optimal trajectory is easily found from a rough initialization. On the other hand the initial costates are assessed analytically from the initial conditions and they can be used as initial guess for transfers at different thrust levels. The method is exemplified on a launcher upper stage targeting a geostationary transfer orbit.
Kota, V K B; Chavda, N D; Sahu, R
2006-04-01
Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.
Initial '80s Development of Inflated Antennas
NASA Technical Reports Server (NTRS)
Friese, G. J.; Bilyeu, G. D.; Thomas, M.
1983-01-01
State of the art technology was considered in the definition and documentation of a membrane surface suitable for use in a space reflector system for long durations in orbit. Requirements for a metal foil-plastic laminate structural element were determined and a laboratory model of a rigidized element to test for strength characteristics was constructed. Characteristics of antennas ranging from 10 meters to 1000 meters were determined. The basic antenna configuration studied consists of (1) a thin film reflector, (2) a thin film cone, (3) a self-rigidizing structural torus at the interface of the cone and reflector; and (4) an inflation system. The reflector is metallized and, when inflated, has a parabolic shape. The cone not only completes the enclosure of the inflatant, but also holds the antenna feed at its apex. The torus keeps the inflated cone-reflector from collapsing inward. Laser test equipment determined the accuracy of the inflated paraboloids.
NASA Technical Reports Server (NTRS)
Westrup, R. W.
1972-01-01
Investigations of fatigue life, and safe-life and fail-safe design concepts as applied to space shuttle structure are summarized. The results are evaluated to select recommended structural design criteria to provide assurance that premature failure due to propagation of undetected crack-like defects will not occur during shuttle operational service. The space shuttle booster, GDC configuration B-9U, is selected as the reference vehicle. Structural elements used as basis of detail analyses include wing spar caps, vertical stabilizer skins, crew compartment skin, orbiter support frame, and propellant tank shell structure. Fatigue life analyses of structural elements are performed to define potential problem areas and establish upper limits of operating stresses. Flaw growth analyses are summarized in parametric form over a range of initial flaw types and sizes, operating stresses and service life requirements. Service life of 100 to 500 missions is considered.
Configuration-shape-size optimization of space structures by material redistribution
NASA Technical Reports Server (NTRS)
Vandenbelt, D. N.; Crivelli, L. A.; Felippa, C. A.
1993-01-01
This project investigates the configuration-shape-size optimization (CSSO) of orbiting and planetary space structures. The project embodies three phases. In the first one the material-removal CSSO method introduced by Kikuchi and Bendsoe (KB) is further developed to gain understanding of finite element homogenization techniques as well as associated constrained optimization algorithms that must carry along a very large number (thousands) of design variables. In the CSSO-KB method an optimal structure is 'carved out' of a design domain initially filled with finite elements, by allowing perforations (microholes) to develop, grow and merge. The second phase involves 'materialization' of space structures from the void, thus reversing the carving process. The third phase involves analysis of these structures for construction and operational constraints, with emphasis in packaging and deployment. The present paper describes progress in selected areas of the first project phase and the start of the second one.
Thermal design concept for a high resolution UV spectrometer
NASA Technical Reports Server (NTRS)
Caruso, P.; Stipandic, E.
1979-01-01
The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.
NASA Technical Reports Server (NTRS)
King, J. C.
1976-01-01
The generation of satellite coverage patterns is facilitated by three basic strategies: use of a simplified physical model, permitting rapid closed-form calculation; separation of earth rotation and nodal precession from initial geometric analyses; and use of symmetries to construct traces of indefinite length by repetitive transposition of basic one-quadrant elements. The complete coverage patterns generated consist of a basic nadir trace plus a number of associated off-nadir traces, one for each sensor swath edge to be delineated. Each trace is generated by transposing one or two of the basic quadrant elements into a circle on a nonrotating earth model sphere, after which the circle is expanded into the actual 'helical' pattern by adding rotational displacements to the longitude coordinates. The procedure adapts to the important periodic coverage cases by direct insertion of the characteristic integers N and R (days and orbital revolutions, respectively, per coverage period).
Thersites: a `jumping' Trojan?
NASA Astrophysics Data System (ADS)
Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.
2000-02-01
In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!
Orbit of the mercury-manganese binary 41 Eridani
NASA Astrophysics Data System (ADS)
Hummel, C. A.; Schöller, M.; Duvert, G.; Hubrig, S.
2017-04-01
Context. Mercury-manganese (HgMn) stars are a class of slowly rotating chemically peculiar main-sequence late B-type stars. More than two-thirds of the HgMn stars are known to belong to spectroscopic binaries. Aims: By determining orbital solutions for binary HgMn stars, we will be able to obtain the masses for both components and the distance to the system. Consequently, we can establish the position of both components in the Hertzsprung-Russell diagram and confront the chemical peculiarities of the HgMn stars with their age and evolutionary history. Methods: We initiated a program to identify interferometric binaries in a sample of HgMn stars, using the PIONIER near-infrared interferometer at the VLTI on Cerro Paranal, Chile. For the detected systems, we intend to obtain full orbital solutions in conjunction with spectroscopic data. Results: The data obtained for the SB2 system 41 Eridani allowed the determination of the orbital elements with a period of just five days and a semi-major axis of under 2 mas. Including published radial velocity measurements, we derived almost identical masses of 3.17 ± 0.07 M⊙ for the primary and 3.07 ± 0.07 M⊙ for the secondary. The measured magnitude difference is less than 0.1 mag. The orbital parallax is 18.05 ± 0.17 mas, which is in good agreement with the Hipparcos trigonometric parallax of 18.33 ± 0.15 mas. The stellar diameters are resolved as well at 0.39 ± 0.03 mas. The spin rate is synchronized with the orbital rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0111, 189.C-0644, 090.D-0291, and 090.D-0917.
DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions
NASA Astrophysics Data System (ADS)
Giorgini, Jon D.; Chamberlin, Alan B.
2014-11-01
A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.
Satellite Power System (SPS) concept definition study (exhibit C)
NASA Technical Reports Server (NTRS)
Haley, G. M.
1979-01-01
The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.
NASA Technical Reports Server (NTRS)
Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert
1991-01-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
1989-01-01
In this 1989 artist's concept, the Shuttle-C floats in space with its cargo bay doors open. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Oribiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay length of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
NASA Astrophysics Data System (ADS)
Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert
1991-09-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1974-01-01
An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing
2013-05-01
A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.
Mars Ascent Vehicle Gross Lift-off Mass Sensitivities for Robotic Mars Sample Return
NASA Technical Reports Server (NTRS)
Dux, Ian J.; Huwaldt, Joseph A.; McKamey, R. Steve; Dankanich, John W.
2011-01-01
The Mars ascent vehicle is a critical element of the robotic Mars Sample Return (MSR) mission. The Mars ascent vehicle must be developed to survive a variety of conditions including the trans-Mars journey, descent through the Martian atmosphere and the harsh Martian surface environments while maintaining the ability to deliver its payload to a low Mars orbit. The primary technology challenge of developing the Mars ascent vehicle system is designing for all conditions while ensuring the mass limitations of the entry descent and landing system are not exceeded. The NASA In-Space Propulsion technology project has initiated the development of Mars ascent vehicle technologies with propulsion system performance and launch environments yet to be defined. To support the project s evaluation and development of various technology options the sensitivity of the Mars ascent vehicle gross lift-off mass to engine performance, inert mass, target orbits, and launch conditions has been completed with the results presented herein.
NASA Astrophysics Data System (ADS)
Gambi, J. M.; García del Pino, M. L.; Gschwindl, J.; Weinmüller, E. B.
2017-12-01
This paper deals with the problem of throwing middle-sized low Earth orbit debris objects into the atmosphere via laser ablation. The post-Newtonian equations here provided allow (hypothetical) space-based acquisition, pointing and tracking systems endowed with very narrow laser beams to reach the pointing accuracy presently prescribed. In fact, whatever the orbital elements of these objects may be, these equations will allow the operators to account for the corrections needed to balance the deviations of the line of sight directions due to the curvature of the paths the laser beams are to travel along. To minimize the respective corrections, the systems will have to perform initial positioning manoeuvres, and the shooting point-ahead angles will have to be adapted in real time. The enclosed numerical experiments suggest that neglecting these measures will cause fatal errors, due to differences in the actual locations of the objects comparable to their size.
Orbit on demand - Structural analysis finds vertical launchers weigh less
NASA Technical Reports Server (NTRS)
Taylor, A. H.; Cruz, C. I.; Jackson, L. R.; Naftel, J. C.; Wurster, K. E.; Cerro, J. A.
1985-01-01
Structural considerations arising from favored design concepts for the next generation on-demand launch vehicles are explored. The two emerging concepts are a two stage fully reusable vertical take-off vehicle (V-2) and a horizontal take-off, two stage subsonic boost launch vehicle (H-2-Sub). Both designs have an 1100 n. mi. cross-range capability, with the V-2 orbiter having small wings with winglets for hypersonic trim and the H-2-Sub requiring larger, swept wings. The rockets would be cryogenic, while airbreathing initial boosters would be either turbofans, turbojets and/or ramjets. Dynamic loading is lower in the launch of a V-2. The TPS is a critical factor due to thinner leading edges than on the Shuttle and may require heat-pipe cooling. Airframe structures made of metal matrix composites have passed finite element simulations of projected loads and can now undergo proof-of-concept tests, although whisker-reinforced materials may be superior once long-whisker technology is developed.
A Personnel Launch System for safe and efficient manned operations
NASA Astrophysics Data System (ADS)
Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.
1990-10-01
Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.
Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions
NASA Technical Reports Server (NTRS)
Dill, D.; Starace, A. F.; Manson, S. T.
1974-01-01
The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.
The ENABLER - Based on proven NERVA technology
NASA Astrophysics Data System (ADS)
Livingston, Julie M.; Pierce, Bill L.
The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.
Space station: Cost and benefits
NASA Technical Reports Server (NTRS)
1983-01-01
Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.
Solar electric geocentric transfer with attitude constraints: Analysis
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Malchow, H. L.; Delbaum, T. N.
1975-01-01
A time optimal or nearly time optimal trajectory program was developed for solar electric geocentric transfer with or without attitude constraints and with an optional initial high thrust stage. The method of averaging reduces computation time. A nonsingular set of orbital elements is used. The constraints, which are those of one of the SERT-C designs, introduce complexities into the analysis and the solution yields possible discontinuous changes in thrust direction. The power degradation due to VanAllen radiation is modeled analytically. A wide range of solar cell characteristics is assumed. Effects such as oblateness and shadowing are included. The analysis and the results of many example runs are included.
NASA Technical Reports Server (NTRS)
Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl
1989-01-01
NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.
NASA Technical Reports Server (NTRS)
McCurdy, David R.; Roche, Joseph M.
2004-01-01
In support of NASA's Next Generation Launch Technology (NGLT) program, the Andrews Gryphon booster was studied. The Andrews Gryphon concept is a horizontal lift-off, two-stage-to-orbit, reusable launch vehicle that uses an air collection and enrichment system (ACES). The purpose of the ACES is to collect atmospheric oxygen during a subsonic flight loiter phase and cool it to cryogenic temperature, ultimately resulting in a reduced initial take-off weight To study the performance and size of an air-collection based booster, an initial airplane like shape was established as a baseline and modeled in a vehicle sizing code. The code, SIZER, contains a general series of volume, surface area, and fuel fraction relationships that tie engine and ACES performance with propellant requirements and volumetric constraints in order to establish vehicle closure for the given mission. A key element of system level weight optimization is the use of the SIZER program that provides rapid convergence and a great deal of flexibility for different tank architectures and material suites in order to study their impact on gross lift-off weight. This paper discusses important elements of the sizing code architecture followed by highlights of the baseline booster study.
The Double Star Orbit Initial Value Problem
NASA Astrophysics Data System (ADS)
Hensley, Hagan
2018-04-01
Many precise algorithms exist to find a best-fit orbital solution for a double star system given a good enough initial value. Desmos is an online graphing calculator tool with extensive capabilities to support animations and defining functions. It can provide a useful visual means of analyzing double star data to arrive at a best guess approximation of the orbital solution. This is a necessary requirement before using a gradient-descent algorithm to find the best-fit orbital solution for a binary system.
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
Space Based Satellite Tracking and Characterization Utilizing Non-Imaging Passive Sensors
2008-03-01
vary from only slightly here. The classical orbital elements are: a - The Semimajor Axis e - Eccentricity i - Inclination Ω - Right Ascension of the...Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ~h Axis normal to orbital plane . . . . . . . . . . . . . . . . . 7 Ω Right ascension of...transistion matrix . . . . . . . . . . . . . . . . . . . 27 i Orbital inclination . . . . . . . . . . . . . . . . . . . . . . 28 Ẑ Unit vector in ECI frame
A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations
ERIC Educational Resources Information Center
Petersson, T.; Hellsing, B.
2010-01-01
A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…
NASA Astrophysics Data System (ADS)
Gonçalves, L. D.; Rocco, E. M.; de Moraes, R. V.
2013-10-01
A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time.
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
NASA Astrophysics Data System (ADS)
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
The Actual Mass of the Object Orbiting Epsilon Eridani
NASA Astrophysics Data System (ADS)
Gatewood, G.
2000-10-01
We have tested our 112 Multichannel Astrometric Photometer (MAP) (Gatewood 1987, AJ 94, 213) observations (beginning in 1988) of Epsilon Eridani against the orbital elements provided to us by W. Cochran (private communication). The reduction algorithm is detailed most recently by Gatewood, Han, and Black (2000 ApJ Letters, in press). The seven year period is clearly shown in a variance vs trial periods plot. Although it is near the limit of the current instrument, the astrometric orbital motion is apparent in the residuals to a standard derivation of the star's proper motion and parallax. The astrometric orbital parameters derived by forcing the spectroscopic elements are: semimajor axis = 1.51 +/- 0.44 mas, node of the orbit on the sky = 120 +/- 28 deg, inclination out of the plane of the sky = 46 +/- 17 deg, actual mass = 1.2 +/- 0.33 times that of Jupiter. Our study confirms this object (this is not a minimum mass) as the nearest extrasolar Jupiter mass companion to our solar system. In view of its large orbital eccentricity, however, its exact nature remains unclear.
KAM Torus Frequency Generation from Two-Line Element Sets
2011-03-01
satellite from occupying or crossing that orbital plane . This is demon- strated by Figure 3 which shows the debris train as of December 2007 created by...expressed in terms of Poincare variables which are the canonical variable counterparts to the equinoctial orbital elements and therefore contain...or one- half the rotational period of Earth. The other difficulty was seen when analyzing data from the oldest GPS satellite which uses only 3 reaction
How Sedna and family were captured in a close encounter with a solar sibling
NASA Astrophysics Data System (ADS)
Jílková, Lucie; Portegies Zwart, Simon; Pijloo, Tjibaria; Hammer, Michael
2015-11-01
The discovery of 2012 VP113 initiated the debate on the origin of the Sedna family of planetesimals in orbit around the Sun. Sednitos roam the outer regions of the Solar system between the Egeworth-Kuiper belt and the Oort Cloud, in extraordinary wide (a > 150 au) orbits with a large perihelion distance of q > 30 au compared to the Earth's (a ≡ 1 au and eccentricity e ≡ (1 - q/a) ≃ 0.0167 or q ≃ 1 au). This population is composed of a dozen objects, which we consider a family because they have similar perihelion distance and inclination with respect to the ecliptic i = 10°-30°. They also have similar argument of perihelion ω = 340° ± 55°. There is no ready explanation for their origin. Here we show that these orbital parameters are typical for a captured population from the planetesimal disc of another star. Assuming that the orbital elements of Sednitos have not changed since they acquired their orbits, we reconstruct the encounter that led to their capture. We conclude that they might have been captured in a near miss with a 1.8 M⊙ star that impacted the Sun at ≃ 340 au at an inclination with respect to the ecliptic of 17°-34° with a relative velocity at infinity of ˜4.3 km s-1. We predict that the Sednitos region is populated by 930 planetesimals and the inner Oort Cloud acquired ˜440 planetesimals through the same encounter.
Collisionless encounters and the origin of the lunar inclination.
Pahlevan, Kaveh; Morbidelli, Alessandro
2015-11-26
The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.
Asteroid families in the Cybele and Hungaria groups
NASA Astrophysics Data System (ADS)
Vinogradova, T.; Shor, V.
2014-07-01
Asteroid families are fragments of some disrupted parent bodies. Planetary perturbations force the primarily close orbits to evolve. One of the main features of the orbit evolution is the long-period variation of the osculating elements, such as the inclination and eccentricity. Proper elements are computed by elimination of short- and long-period perturbations, and, practically, they do not change with time. Therefore, proper elements are important for family-identification procedures. The techniques of proper-element computation have improved over time. More and more accurate dynamical theories are developed. Contrastingly, in this work, an empirical method is proposed for proper-element calculations. The long-term variations of osculating elements manifest themselves very clearly in the distributions of pairs: inclination and longitude of ascending node; eccentricity and longitude of perihelion in the corresponding planes. Both of these dependencies have a nearly sinusoidal form for most asteroid orbits with regular motion of node and perihelion. If these angular parameters librate, then the sinusoids transform to some closed curve. Hence, it is possible to obtain forced elements, as parameters of curves specified above. The proper elements can be calculated by an elimination of the forced ones. The method allows to obtain the proper elements in any region, if there is a sufficient number of asteroids. This fact and the simplicity of the calculations are advantages of the empirical method. The derived proper elements include the short-period perturbations, but their accuracy is sufficient to search for asteroid families. The special techniques have been developed for the identification of the families, but over a long time large discrepancies took place between the lists of families derived by different authors. As late as 1980, a list of 30 reliable families was formed. And now the list by D. Nesvorny includes about 80 robust families. To date, only two families have been found in the most outer part of the main asteroid belt or the Cybele group: Sylvia and Ulla. And the Hungaria group in the most inner part of the belt has always been considered as one family. In this work, the proper elements were calculated by the empirical method for all multi-opposition asteroids in these two zones. As the source of the initial osculating elements, the MPC catalogue (version Feb. 2014) was used. Due to the large set of proper elements used in our work, the families are apparent more clearly. An approach similar to the hierarchical clustering method (HCM) was used for the identification of the families. As a result, five additional families have been found in the Cybele region, associated with (121) Hermione, (643) Scheherezade, (1028) Lydina, (3141) Buchar, and (522) Helga. The small Helga family, including 15 members, is the family in the main belt (3.6--3.7 au) most distant from the Sun. Due to the isolation of this family, its identification is very reliable. As to the Hungaria region, two low-density families have been found additionally: (1453) Fennia and (3854) George. They have inclinations slightly greater than that of the Hungaria family (from 24 to 26 degrees). In contradiction to the predominant C-type of the Hungaria family asteroids, the taxonomy of these families is represented mainly by the S and L types. Most likely, these families are two parts of a single ancient family.
GNSS Ephemeris with Graceful Degradation and Measurement Fusion
NASA Technical Reports Server (NTRS)
Garrison, James Levi (Inventor); Walker, Michael Allen (Inventor)
2015-01-01
A method for providing an extended propagation ephemeris model for a satellite in Earth orbit, the method includes obtaining a satellite's orbital position over a first period of time, applying a least square estimation filter to determine coefficients defining osculating Keplarian orbital elements and harmonic perturbation parameters associated with a coordinate system defining an extended propagation ephemeris model that can be used to estimate the satellite's position during the first period, wherein the osculating Keplarian orbital elements include semi-major axis of the satellite (a), eccentricity of the satellite (e), inclination of the satellite (i), right ascension of ascending node of the satellite (.OMEGA.), true anomaly (.theta.*), and argument of periapsis (.omega.), applying the least square estimation filter to determine a dominant frequency of the true anomaly, and applying a Fourier transform to determine dominant frequencies of the harmonic perturbation parameters.
Reducing orbital eccentricity of precessing black-hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonanno, Alessandra; Taracchini, Andrea; Kidder, Lawrence E.
2011-05-15
Building initial conditions for generic binary black-hole evolutions which are not affected by initial spurious eccentricity remains a challenge for numerical-relativity simulations. This problem can be overcome by applying an eccentricity-removal procedure which consists of evolving the binary black hole for a couple of orbits, estimating the resulting eccentricity, and then restarting the simulation with corrected initial conditions. The presence of spins can complicate this procedure. As predicted by post-Newtonian theory, spin-spin interactions and precession prevent the binary from moving along an adiabatic sequence of spherical orbits, inducing oscillations in the radial separation and in the orbital frequency. For single-spinmore » binary black holes these oscillations are a direct consequence of monopole-quadrupole interactions. However, spin-induced oscillations occur at approximately twice the orbital frequency, and therefore can be distinguished and disentangled from the initial spurious eccentricity which occurs at approximately the orbital frequency. Taking this into account, we develop a new eccentricity-removal procedure based on the derivative of the orbital frequency and find that it is rather successful in reducing the eccentricity measured in the orbital frequency to values less than 10{sup -4} when moderate spins are present. We test this new procedure using numerical-relativity simulations of binary black holes with mass ratios 1.5 and 3, spin magnitude 0.5, and various spin orientations. The numerical simulations exhibit spin-induced oscillations in the dynamics at approximately twice the orbital frequency. Oscillations of similar frequency are also visible in the gravitational-wave phase and frequency of the dominant l=2, m=2 mode.« less
Simulating correction of adjustable optics for an x-ray telescope
NASA Astrophysics Data System (ADS)
Aldcroft, Thomas L.; Schwartz, Daniel A.; Reid, Paul B.; Cotroneo, Vincenzo; Davis, William N.
2012-10-01
The next generation of large X-ray telescopes with sub-arcsecond resolution will require very thin, highly nested grazing incidence optics. To correct the low order figure errors resulting from initial manufacture, the mounting process, and the effects of going from 1 g during ground alignment to zero g on-orbit, we plan to adjust the shapes via piezoelectric "cells" deposited on the backs of the reflecting surfaces. This presentation investigates how well the corrections might be made. We take a benchmark conical glass element, 410×205 mm, with a 20×20 array of piezoelectric cells 19×9 mm in size. We use finite element analysis to calculate the influence function of each cell. We then simulate the correction via pseudo matrix inversion to calculate the stress to be applied by each cell, considering distortion due to gravity as calculated by finite element analysis, and by putative low order manufacturing distortions described by Legendre polynomials. We describe our algorithm and its performance, and the implications for the sensitivity of the resulting slope errors to the optimization strategy.
The management of orbital cysts associated with congenital microphthalmos and anophthalmos
McLean, C J; Ragge, N K; Jones, R B; Collin, J R O
2003-01-01
Aims: To study the management of the orbital cysts present in a group of patients with anophthalmos and microphthalmos. Methods: A retrospective study of 34 patients (40 orbits) treated for orbital cyst associated with microphthalmos and anophthalmos. Results: The two largest treatment groups comprised 17 orbits (42.5%) where the cyst was removed surgically and 17 orbits (42.5%) where the cyst was retained and conformers were used. The remaining cases comprised two orbits (5%) where the cyst was aspirated initially; two orbits (5%) with large cysts which will need to be excised after further orbital growth; one orbit (2.5%) in which a silicone expander was used initially, and one orbit (2.5%) in which a mildly microphthalmic eye had some vision and was monitored but required no surgery. Conclusion: In this study 33 out of 34 patients had a good cosmetic result which illustrates that the orbital cyst in microphthalmos or anophthalmos performs a useful role in socket expansion and that the majority of patients with this condition can expect a good cosmetic outcome. PMID:12812886
Cao, Zhanli; Li, Zhendong; Wang, Fan; Liu, Wenjian
2017-02-01
The spin-separated exact two-component (X2C) relativistic Hamiltonian [sf-X2C+so-DKHn, J. Chem. Phys., 2012, 137, 154114] is combined with the equation-of-motion coupled-cluster method with singles and doubles (EOM-CCSD) for the treatment of spin-orbit splittings of open-shell molecular systems. Scalar relativistic effects are treated to infinite order from the outset via the spin-free part of the X2C Hamiltonian (sf-X2C), whereas the spin-orbit couplings (SOC) are handled at the CC level via the first-order Douglas-Kroll-Hess (DKH) type of spin-orbit operator (so-DKH1). Since the exponential of single excitations, i.e., exp(T 1 ), introduces sufficient spin orbital relaxations, the inclusion of SOC at the CC level is essentially the same in accuracy as the inclusion of SOC from the outset in terms of the two-component spinors determined variationally by the sf-X2C+so-DKH1 Hamiltonian, but is computationally more efficient. Therefore, such an approach (denoted as sf-X2C-EOM-CCSD(SOC)) can achieve uniform accuracy for the spin-orbit splittings of both light and heavy elements. For light elements, the treatment of SOC can even be postponed until the EOM step (denoted as sf-X2C-EOM(SOC)-CCSD), so as to further reduce the computational cost. To reveal the efficacy of sf-X2C-EOM-CCSD(SOC) and sf-X2C-EOM(SOC)-CCSD, the spin-orbit splittings of the 2 Π states of monohydrides up to the sixth row of the periodic table are investigated. The results show that sf-X2C-EOM-CCSD(SOC) predicts very accurate results (within 5%) for elements up to the fifth row, whereas sf-X2C-EOM(SOC)-CCSD is useful only for light elements (up to the third row but with some exceptions). For comparison, the sf-X2C-S-TD-DFT-SOC approach [spin-adapted open-shell time-dependent density functional theory, Mol. Phys., 2013, 111, 3741] is applied to the same systems. The overall accuracy (1-10%) is satisfactory.
Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)
NASA Technical Reports Server (NTRS)
Newhouse, M.; Guffin, O. T.
1994-01-01
Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.
Systems Engineering for Space Exploration Medical Capabilities
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey;
2017-01-01
Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
Study on galloping behavior of iced eight bundle conductor transmission lines
NASA Astrophysics Data System (ADS)
Zhou, Linshu; Yan, Bo; Zhang, Liang; Zhou, Song
2016-02-01
Wind tunnel test was carried out to obtain the aerodynamic coefficients of an eight bundle conductor accreted with crescent-shaped ice. A user-defined cable element with torsional degree of freedom is developed in ABAQUS software to capture the torsional deformation of the iced conductors during galloping. By means of the user-defined cable element, different damping ratios in in-plane, out-of-plane and torsional directions of the conductors can be defined and the aerodynamic forces varying with their motion status can be exerted on the conductors conveniently when ABAQUS is used to simulate galloping of transmission lines. A wind tunnel test to model galloping of an iced eight bundle conductor segment was carried out, and the validity of the numerical simulation method is demonstrated by the agreement of the galloping orbit of the bundle conductor segment model recorded in the test and that by the numerical simulation. Furthermore, galloping behavior, including dynamic responses, galloping orbits, frequencies, vibration modes and amplitudes, of typical iced eight bundle conductor transmission lines in the cases of different span lengths, initial tensions in sub-conductors, wind velocities, angles of wind attack and damping ratios is studied, and the galloping behavior of the lines with internal resonance conditions is discussed. The obtained results may provide a fundamental tool for the development of anti-galloping techniques of eight bundle conductor transmission lines.
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Valsecchi, Giovanni B.; Asher, David; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie
2017-06-01
One of the greatest successes of Einstein's General Theory of Relativity (GR) was the correct prediction of the perihelion precession of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of argument of pericentre. Numerical integrations were done with the MERCURY package incorporating GR code to test the same effects. A numerical approach showed the same interesting relationship (as shown by analytical theory) between values of argument of pericentre and the peaks or dips in MOID values. There is an overall agreement between both analytical and numerical methods.We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements) when long term impact risk possibilities are considered. Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of small bodies where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.
Results and Analysis of the ESA SSA Radar Tracking Campaigns
NASA Astrophysics Data System (ADS)
Fontdecaba Baig, Jordi; Martinerie, Francis; Sutter, Moise; Martinot, Vincent; Ameline, Patrick; Blazejczak, Eric; Fletcher, Emmet
2013-08-01
Following the decision at the Ministerial Council 2008 to initiate a Preparatory Programme on Space Situational Awareness (SSA), the European Space Agency started a series of activities together with industry, implementing both classical design approaches: bottom-up and top-down. For the Space Surveillance and Tracking segment of the programme, the bottom-up approach was initially addressed through various activities to evaluate the potential performance of contemporary European resources. One element of this investigation was the assessment of the existing European assets that can be used to generate tracking data on Earth orbiting objects at all altitudes between LEO and the GEO graveyard orbits. The study addressed both the technical performances of the assets and the identification of the operational constraints characteristic for each sensor. In this context, a paper was presented at the 2011 European Space Surveillance Conference in Madrid, Spain that discussed the results obtained using two existing European radars: EISCAT and Chilbolton. The emphasis of this new paper is to analyse the results obtained from a third asset: the BEM Monge, a measurement and test vessel of the French Navy operated for the French Direction Générale de l'Armement (DGA). The Monge's three primary radars were designed with the specific mission to detect and characterise the trajectory of missiles as part of France's national missile defence programme, however the radar on-board the Monge are also able to detect and track Earth-orbiting objects. Even though this role is not the primary one for the system, the achieved accuracy of the orbital tracks and resulting orbit determination is several orders of magnitude better than radars that have been developed for other uses. The evaluation carried out in the frame of the SSA programme helped demonstrate that the systems provided by the Monge are able to perform orbital tracking within the performance requirements of a federated SSA system. During the campaigns, the radars on the Monge were used to track several known satellites, pre-selected so as to cover a wide range of altitudes and inclinations in the LEO region. Several separate campaigns were done to track the satellites. Upon receipts of the resulting tracking data, orbit restitution was performed in order to characterise the significance and influence of the distinct observation parameters and to indicate the optimum procedure to improve the orbit estimation performance with a single asset or with a combination of the different assets used within the study. This paper describes the preparation of the campaigns as well as the results obtained. The campaigns were mainly driven by the availability of radar assets and the visibilities of the satellites. The precise orbit determination enabled the comparison of the performance of the different assets.
Migration of comets to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Mather, John C.
2007-05-01
The orbital evolution of 30,000 objects with initial orbits close to those of Jupiter-family comets (JFCs) and also of 15,000 dust particles was integrated [1-3]. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU, or even got inner-Earth (Q<0.983 AU), Aten, or typical asteroidal orbits, and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Most of former trans-Neptunian objects that have typical near-Earth object (NEO) orbits moved in such orbits for Myrs, so during most of this time they were extinct comets. From a dynamical point of view, the fraction of extinct comets among NEOs can exceed several tens of percent, but, probably, many extinct comets disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes were large. The probability of the collision of Comet 10P with the Earth during a dynamical lifetime of the comet was P[E]≈1.4•10-4, but 80% of this mean probability was due only to one object among 2600 considered objects with orbits close to that of Comet 10P. For runs for Comet 2P, P[E]≈(1-5)•10-4. For most other considered JFCs, 10-6 < P[E] < 10-5. For Comets 22P and 39P, P[E]≈ (1-2)•10-6; and for Comets 9P, 28P and 44P, P[E]≈(2-5)•10-6. For all considered JFCs, P[E]>4•10-6. The Bulirsh-Stoer method of integration and a symplectic method gave similar results. In our runs the probability of a collision of one object with the Earth could be greater than the sum of probabilities for thousands of other objects. The ratios of probabilities of collisions of JFCs with Venus and Mars to the mass of a planet usually were not smaller than that for Earth. For dust particles started from comets and asteroids, P[E ]was maximum for diameters d~100 μm. These maximum values of P [E] were usually (exclusive for 2P) greater at least by an order of magnitude than the values for parent comets. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sci., v. 1017, 46-65. [2] Ipatov S.I. et al. (2004) Annals of the New York Acad. of Sci., v. 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Adv. in Space Res., v. 37, N 1, 126-137.
Orbital operations study. Appendix C: Data sources and vehicle descriptions
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.
1972-01-01
A bibliography of published documents referred to throughout the orbital operations study is presented. A brief description of all of the space program elements included in the study vehicle inventory is developed.
NASA Technical Reports Server (NTRS)
Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.
1992-01-01
The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.
Lunar gravity derived from long-period satellite motion, a proposed method
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method was devised to determine the spherical harmonic coefficients of the lunar gravity field. The method consists of a two-step data reduction and estimation process. Pseudo-Doppler data were generated simulating two different lunar orbits. The analysis included the perturbing effects of the L1 lunar gravity field, the earth, the sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements were obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of the experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.
Compilation on the use of the stroboscopic method in orbital dynamics
NASA Astrophysics Data System (ADS)
Lecohier, G.
In this paper, the application of the stroboscopic method to orbital dynamics is described. As opposed to averaging methods, the stroboscopic solutions of the perturbed Lagrangian system are derived explicitly in the osculating elements which eases greatly their utilization in practical cases. Using this semi-analytical method, the first order solutions of the Lagrange equations including the perturbations by central body gravity field, the third-bodies, the radiation pressure and by the air-drag are derived. In a next step, the accuracy of the first order solution derived for the classical and equinoctial elements is assessed for the long-term prediction of highly eccentric, low altitude, polar and geostationary orbits is estimated.
Averaged changes in the orbital elements of meteoroids due to Yarkovsky-Radzievskij force
NASA Astrophysics Data System (ADS)
Ryabova, Galina O.
2014-07-01
Yarkovsky-Radzievskij effect exceeds the Poynting-Robertson effect in the perturbing action on particles larger than 100 μm. We obtained formulae for averaged changes in a meteoroid's Keplerian orbital elements and used them to estimate dispersion in the Geminid meteoroid stream. It was found that dispersion in semi-major axis of the model shower increased nearly three times on condition that meteoroids rotation is fast, and the rotation axis is stable.
Alabugin, Igor V; Bresch, Stefan; Manoharan, Mariappan
2014-05-22
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Orbit correction in a linear nonscaling fixed field alternating gradient accelerator
Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...
2014-11-20
In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.
NASA Astrophysics Data System (ADS)
Asada, Hideki
2006-11-01
There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.
Status of the French Mars Exploration Program
NASA Astrophysics Data System (ADS)
Bonneville, R.; Counil, J.-L.; Rocard, F.
2002-01-01
The French Mars exploration initiative named PREMIER (Programme de Retour d'Echantillons Martiens et Installation d'Expériences en Réseau) is a long term, multiform co- operative program including as its two main components : - the development with a consortium of European partners (Finland, Germany, Belgium) and the deployment of a network of 4 small Mars ground stations for performing geophysical measurements (NetLander project) ; - a participation to the future Mars Sample Return mission (MSR) in cooperation with NASA including the development and the operation of the orbiter vehicle of this mission. Its additional elements are : - instrument contributions to ESA's Mars Express mission ; - payload contributions to the orbiters and landers &rovers of the future missions to Mars, and especially to NASA's "smart lander" mission dedicated to in situ investigations. This program wants to ensure the complementarity between its three poles : (i) global investigations from the orbit, (ii) landed science with both network science (NetLanders) and in situ investigations, and (iii) sample return. A major step in the PREMIER program will be the 2007 orbiter mission ; this precursor vehicle developed by CNES and launched by Ariane 5 in September 2007 will first deliver the 4 NetLanders at Mars and then will be inserted in Mars orbit. This orbiter will perform technological tests aiming at preparing the future Mars Sample Return mission, it will ensure a telecommunication relay function for the NetLanders and it will be used for an additional orbital science mission. While the NetLanders will study the internal structure of Mars and its climate, with the goal to operate a full Martian year, the primary objectives of the orbital science mission will be complementary of those of the NetLanders, with an emphasis on the study of the Martian atmosphere. In a first phase, the orbiter will be on a 500 km x 500 km circular, near polar, Sun-synchronous orbit around 12 am local time, which is optimal for the NetLander relay. In a second phase, the orbit will be lowered around 350 km for the benefit of the orbital science. A very low periapsis phase (170 km x 1000 km) is foreseen for some experiments. The nominal mission will end in September 2011, with the hope of an extended mission beyond this date.
NASA Technical Reports Server (NTRS)
Mattson, H. L.; Gianformaggio, A.; Anderson, N. R.
1972-01-01
The activities of the structural and mechanical activity group of the orbital operations study project are discussed. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) mating, (2) orbital assembly, (3) separation, EOS payload deployment, and EOS payload retraction.
NASA Technical Reports Server (NTRS)
1979-01-01
User power, duration, and orbit requirements, which were the prime factors influencing power extension package (PEP) design, are discussed. A representative configuration of the PEP concept is presented and the major elements of the system are described as well as the PEP-to-Orbiter and remote manipulator interface provisions.
Wind Prelaunch Mission Operations Report (MOR)
NASA Technical Reports Server (NTRS)
1994-01-01
The National Aeronautics and Space Administration (NASA) Wind mission is the first mission of the Global Geospace Science (GGS) initiative. The Wind laboratory will study the properties of particles and waves in the region between the Earth and the Sun. Using the Moon s gravity to save fuel, dual lunar swing-by orbits enable the spacecraft to sample regions close to and far from the Earth. During the three year mission, Wind will pass through the bow shock of Earth's magnetosphere to begin a thorough investigation of the solar wind. Mission objectives require spacecraft measurements in two orbits: lunar swing- by ellipses out to distances of 250 Earth radii (RE) and a small orbit around the Lagrangian point L-l that remains between the Earth and the Sun. Wind will be placed into an initial orbit for approximately 2 years. It will then be maneuvered into a transition orbit and ultimately into a halo orbit at the Earth-Sun L-l point where it will operate for the remainder of its lifetime. The Wind satellite development was managed by NASA's Goddard Space Flight Center with the Martin Marietta Corporation, Astro-Space Division serving as the prime contractor. Overall programmatic direction was provided by NASA Headquarters, Office of Space Science. The spacecraft will be launched under a launch service contract with the McDonnell Douglas Corporation on a Delta II Expendable Launch Vehicle (ELV) within a November l-l4, 1994 launch window. The Wind spacecraft carries six U.S. instruments, one French instrument, and the first Russian instrument ever to fly on an American satellite. The Wind and Polar missions are the two components of the GGS Program. Wind is also the second mission of the International Solar Terrestrial Physics (ISTP) Program. The first ISTP mission, Geotail, is a joint project of the Institute of Space and Astronautical Science of Japan and NASA which launched in 1992. The Wind mission is planned to overlap Geotail by six months and Polar by one year. The Wind and Polar missions, together with the Geotail mission (launched on July 24, 1992) and supporting equatorial measurements, will provide simultaneous data to enable the study of solar wind input to the magnetosphere and key elements of the magnetospheric response: ring current energy storage, geomagnetic tail energy storage, and ionospheric energy input.
Optimal reentry prediction of space objects from LEO using RSM and GA
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
2012-07-01
The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient
Orbit error characteristic and distribution of TLE using CHAMP orbit data
NASA Astrophysics Data System (ADS)
Xu, Xiao-li; Xiong, Yong-qing
2018-02-01
Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...
2018-01-31
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
NASA Astrophysics Data System (ADS)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold
2018-02-01
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Ukrainian network of Optical Stations for man-made space objects observation
NASA Astrophysics Data System (ADS)
Sybiryakova, Yevgeniya
2016-07-01
The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.
The relationship between orbital, earth-based, and sample data for lunar landing sites
NASA Technical Reports Server (NTRS)
Clark, P. E.; Hawke, B. R.; Basu, A.
1990-01-01
Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.
A Methodology for Training International Space Station Crews to Respond to On-Orbit Emergencies
NASA Technical Reports Server (NTRS)
Balmain, Clinton; Fleming, Mark
2009-01-01
Most spaceflight crewmembers agree that emergency training is among the most important training they receive. If an emergency event occurs on-orbit crewmembers want to be able to rely on a thorough and proficient knowledge of emergency operations and procedures. The inherent complexity of ISS and the international nature of the onboard operations have resulted in emergency procedures that are complex by any measure; as a result, a very robust apparatus has been developed to give crewmembers initial training on emergency procedures and ensure proficiency up to (and even after) launch. One of the most important aspects of complex onboard operations in general, and emergency operations specifically, is learning how to coordinate roles and responsibilities with fellow crewmembers. A primary goal of NASA s emergency training program is to allow the crewmembers who will actually be together on-orbit to practice executing the emergency responses together before they fly. As with any operation that includes the use of software and hardware, the fidelity of the simulation environment is a critical element to successful training. The NASA training division has spent considerable time and effort to develop a simulator that addresses the most important aspects of emergency response, working within very difficult space and budgetary constraints.
NMR Shielding in Metals Using the Augmented Plane Wave Method
2015-01-01
We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148
Evolution of the Quadrantid meteor stream
NASA Technical Reports Server (NTRS)
Jones, James; Jones, William
1992-01-01
According to previous orbital calculations, the last close approach of the Quadrantid stream with Jupiter occurred 3200 years ago at which time the parent comet of the stream may have been captured into its present short-period orbit. If this is the case the stream may only be a few thousand years old. We have modeled the evolution of the stream to determine if such a short time scale is consistent with the observed features of the Quadrantid/ delta- Aquarid/Arietid/Ursid complex. A detailed modeling of a stream consisting of 500 test particles released 4000 yr ago and which included the effects of the gravitational perturbations of 6 planets as well as the likely spread in the initial orbital elements resulting from the ejection of the grains from the comet was carried out. Our calculations indicate that an intense shower should be seen a few days before the Quadrantid shower, and that, 4000 yr is too short a period for the branch corresponding to the D-Arietid branch to appear. We have considered the quasi-constants of motion 1/a and J, the Tisserand quantity, and find that the Ursids and the D-Arietids are unlikely to be members of the complex, and that, the complex is probably be less than 4000 yr old.
Orbital-resolved nonadiabatic tunneling ionization
NASA Astrophysics Data System (ADS)
Zhang, Qingbin; Basnayake, Gihan; Winney, Alexander; Lin, Yun Fei; Debrah, Duke; Lee, Suk Kyoung; Li, Wen
2017-08-01
In this theoretical work, we show that both the orbital helicity (p+ vs p-) and the adiabaticity of tunneling have a significant effect on the initial conditions of tunneling ionization. We developed a hybrid quantum (numerical solution of the time-dependent Schrödinger equation) and classical (back propagation of trajectories) approach to extract orbital-specific initial conditions of electrons at the tunneling exit. Clear physical insight connecting these initial conditions with the final momentum and deflection angles of electrons are presented. Moreover, the adiabaticity of tunneling ionization is characterized by comparing the initial conditions with those with a static field. Significant nonadiabatic tunneling is found to persist beyond a Keldysh parameter of less than 0.5.
Tsuneda, Takao; Singh, Raman Kumar; Chattaraj, Pratim Kumar
2018-05-15
Reactive orbital energy diagrams are presented as a tool for comprehensively performing orbital-based reaction analyses. The diagrams rest on the reactive orbital energy theory, which is the expansion of conceptual density functional theory (DFT) to an orbital energy-based theory. The orbital energies on the intrinsic reaction coordinates of fundamental reactions are calculated by long-range corrected DFT, which is confirmed to provide accurate orbital energies of small molecules, combining with a van der Waals (vdW) correlation functional, in order to examine the vdW effect on the orbital energies. By analysing the reactions based on the reactive orbital energy theory using these accurate orbital energies, it is found that vdW interactions significantly affect the orbital energies in the initial reaction processes and that more than 70% of reactions are determined to be initially driven by charge transfer, while the remaining structural deformation (dynamics)-driven reactions are classified into identity, cyclization and ring-opening, unimolecular dissociation, and H2 reactions. The reactive orbital energy diagrams, which are constructed using these results, reveal that reactions progress so as to delocalize the occupied reactive orbitals, which are determined as contributing orbitals and are usually not HOMOs, by hybridizing the unoccupied reactive orbitals, which are usually not LUMOs. These diagrams also raise questions about conventional orbital-based diagrams such as frontier molecular orbital diagrams, even for the well-established interpretation of Diels-Alder reactions.
Bottom boundary layer spectral dissipation estimates in the presence of wave motions
NASA Astrophysics Data System (ADS)
Gross, T. F.; Williams, A. J.; Terray, E. A.
1994-08-01
Turbulence measurements are an essential element of the Sediment TRansport Events on Shelves and Slopes experiment (STRESS). Sediment transport under waves is initiated within the wave boundary layer at the seabed, at most a few tens of centimeters deep. The suspended load is carried by turbulent diffusion above the wave boundary layer. Quantification of the turbulent diffusion active above the wave boundary layer requires estimates of shear stress or energy dissipation in the presence of oscillating flows. Measurements by Benthic Acoustic Stress Sensors of velocity fluctuations were used to derive the dissipation rate from the energy level of the spectral inertial range (the -5/3 spectrum). When the wave orbital velocity is of similar magnitude to the mean flow, kinematic effects on the estimation techniques of stress and dissipation must be included. Throughout the STRESS experiment there was always significant wave energy affecting the turbulent bottom boundary layer. LUMLEY and TERRAY [(1983) Journal of Physical Oceanography, 13, 2000-2007] presented a theory describing the effect of orbital motions on kinetic energy spectra. Their model is used here with observations of spectra taken within a turbulent boundary layer which is affected by wave motion. While their method was an explicit solution for circular wave orbits aligned with mean current we extrapolated it to the case of near bed horizontal motions, not aligned with the current. The necessity of accounting for wave orbital motion is demonstrated, but variability within the field setting limited our certainty of the improvement in accuracy the corrections afforded.
Feasibility study of a single, elliptical heliocentric Earth-Mars trajectory
NASA Technical Reports Server (NTRS)
Blake, M.; Fulgham, K.; Westrup, S.
1989-01-01
The initial intent of this design project was to evaluate the existence and feasibility of a single elliptical heliocentric Earth/Mars trajectory. This trajectory was constrained to encounter Mars twice in its orbit, within a time interval of 15 to 180 Earth days between encounters. The single ellipse restriction was soon found to be prohibitive for reasons shown later. Therefore, the approach taken in the design of the round-trip mission to Mars was to construct single-leg trajectories which connected two planets on two prescribed dates. Three methods of trajectory design were developed. Method 1 is an eclectic approach and employs Gaussian Orbit Determination (Method 1A) and Lambert-Euler Preliminary Orbit Determination (Method 1B) in conjunction with each other. Method 2 is an additional version of Lambert's Solution to orbit determination, and both a coplanar and a noncoplanar solution were developed within Method 2. In each of these methods, the fundamental variables are two position vectors and the time between the position vectors. In all methods, the motion was considered Keplerian motion and the reference frame origin was located at the sun. Perturbative effects were not considered in Method 1. The feasibility study of round-trip Earth/Mars trajectories maintains generality by considering only heliocentric trajectory parameters and planetary approach conditions. The coordinates and velocity components of the planets, for the standard epoch J2000, were computed from an approximate set of osculating elements by the procedure outlined in an ephemeris of coordinates.
Optimal transfers between unstable periodic orbits using invariant manifolds
NASA Astrophysics Data System (ADS)
Davis, Kathryn E.; Anderson, Rodney L.; Scheeres, Daniel J.; Born, George H.
2011-03-01
This paper presents a method to construct optimal transfers between unstable periodic orbits of differing energies using invariant manifolds. The transfers constructed in this method asymptotically depart the initial orbit on a trajectory contained within the unstable manifold of the initial orbit and later, asymptotically arrive at the final orbit on a trajectory contained within the stable manifold of the final orbit. Primer vector theory is applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connects the unstable and stable manifold trajectories. Transfers are constructed between unstable periodic orbits in the Sun-Earth, Earth-Moon, and Jupiter-Europa three-body systems. Multiple solutions are found between the same initial and final orbits, where certain solutions retrace interior portions of the trajectory. All transfers created satisfy the conditions for optimality. The costs of transfers constructed using manifolds are compared to the costs of transfers constructed without the use of manifolds. In all cases, the total cost of the transfer is significantly lower when invariant manifolds are used in the transfer construction. In many cases, the transfers that employ invariant manifolds are three times more efficient, in terms of fuel expenditure, than the transfer that do not. The decrease in transfer cost is accompanied by an increase in transfer time of flight.
An approach for finding long period elliptical orbits for precursor SEI missions
NASA Technical Reports Server (NTRS)
Fraietta, Michael F.; Bond, Victor R.
1993-01-01
Precursors for Solar System Exploration Initiative (SEI) missions may require long period elliptical orbits about a planet. These orbits will typically have periods on the order of tens to hundreds of days. Some potential uses for these orbits may include the following: studying the effects of galactic cosmic radiation, parking orbits for engineering and operational test of systems, and ferrying orbits between libration points and low altitude orbits. This report presents an approach that can be used to find these orbits. The approach consists of three major steps. First, it uses a restricted three-body targeting algorithm to determine the initial conditions which satisfy certain desired final conditions in a system of two massive primaries. Then the initial conditions are transformed to an inertial coordinate system for use by a special perturbation method. Finally, using the special perturbation method, other perturbations (e.g., sun third body and solar radiation pressure) can be easily incorporated to determine their effects on the nominal trajectory. An algorithm potentially suitable for on-board guidance will also be discussed. This algorithm uses an analytic method relying on Chebyshev polynomials to compute the desired position and velocity of the satellite as a function of time. Together with navigation updates, this algorithm can be implemented to predict the size and timing for AV corrections.
COTS Initiative Panel Discussion
2013-11-13
NASA Administrator Charles Bolden delivers remarks before a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
COTS Initiative Panel Discussion
2013-11-13
Gwynne Shotwell, President of SpaceX, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
Periodic orbits of the integrable swinging Atwood's machine
NASA Astrophysics Data System (ADS)
Nunes, Ana; Casasayas, Josefina; Tufillaro, Nicholas
1995-02-01
We identify all the periodic orbits of the integrable swinging Atwood's machine by calculating the rotation number of each orbit on its invariant tori in phase space, and also providing explicit formulas for the initial conditions needed to generate each orbit.
Simple satellite orbit propagator
NASA Astrophysics Data System (ADS)
Gurfil, P.
2008-06-01
An increasing number of space missions require on-board autonomous orbit determination. The purpose of this paper is to develop a simple orbit propagator (SOP) for such missions. Since most satellites are limited by the available processing power, it is important to develop an orbit propagator that will use limited computational and memory resources. In this work, we show how to choose state variables for propagation using the simplest numerical integration scheme available-the explicit Euler integrator. The new state variables are derived by the following rationale: Apply a variation-of-parameters not on the gravity-affected orbit, but rather on the gravity-free orbit, and teart the gravity as a generalized force. This ultimately leads to a state vector comprising the inertial velocity and a modified position vector, wherein the product of velocity and time is subtracted from the inertial position. It is shown that the explicit Euler integrator, applied on the new state variables, becomes a symplectic integrator, preserving the Hamiltonian and the angular momentum (or a component thereof in the case of oblateness perturbations). The main application of the proposed propagator is estimation of mean orbital elements. It is shown that the SOP is capable of estimating the mean elements with an accuracy that is comparable to a high-order integrator that consumes an order-of-magnitude more computational time than the SOP.
Search for and Study of Nearly Periodic Orbits in the Plane Problem of Three Equal-Mass Bodies
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.
2005-09-01
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.
Introduction to Astrodynamic Reentry
2009-09-09
be used in most instances throughout this text. Two elements (semimajor axis a and eccentricity e ) describe the size and shape of the orbit ...Figure 2-3 already shows how the semimajor axis defines the size or the orbit . The eccentricity describes the shape: 0e is circular, 0 1e is...elliptical, 1e is parabolic, and 1e is hyperbolic. Orbital inclination i and right ascension of the ascending node define how the orbit
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
Ancient heliocentrists, Ptolemy, and the equant
NASA Astrophysics Data System (ADS)
Rawlins, Dennis
1987-03-01
Evidence is presented suggesting an ancient heliocentrist origin for geocentrist C. Ptolemy's planetary orbit elements and the equant. Pliny's data for Venus are shown to be inconsistent with geocentricity, and a heliocentric period-relation is found to be the basis of Ptolemy's previously unexplained and astonishingly accurate tables of the mean motion of Mars, the very planet whose orbit produced the equant. The admirable correctness of his adopted Mars elements is patently inconsistent with the ordmag 1° inaccuracy of Ptolemy's geocentric model and of his alleged empirical production.
Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran
2009-01-01
The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.
Spacecraft formation control using analytical finite-duration approaches
NASA Astrophysics Data System (ADS)
Ben Larbi, Mohamed Khalil; Stoll, Enrico
2018-03-01
This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.
Significance of large Neptune-crossing objects for terrestrial catastrophism
NASA Astrophysics Data System (ADS)
Steel, D.
2014-07-01
Over the past few decades a substantial number of objects have been discovered on orbits beyond Neptune (i.e. transneptunian objects, in various sub-classes), crossing Neptune's orbit (here: the Neptune-crossers of interest), and also others crossing the orbits of any or all of the jovian planets (i.e. Centaurs). These range in size from tens of kilometres across to hundreds of kilometres and more. Although formally classified as minor planets/asteroids, plus a few dwarf planets, the physical reality of these objects is that they are giant comets. That is, they seem to be composed largely of ices and if they were to enter the inner solar system then they would demonstrate the commonly-observed behaviour of comets such as outgassing, and the formation of ion and dust tails. Commonly-observed cometary behaviour, however, also includes fragmentation events and sometimes complete disintegration for no apparent cause (such as tidal disruption or thermal stresses). One might therefore wonder what the implications would be for life on Earth and terrestrial catastrophism if and when one of these objects, say 100 to 500 kilometres in size, dropped into a short-period orbit with perihelion distance (q) less than 1 au; or even q ˜ 5 au, given what Jupiter's gravity might do to it. How often might such events occur? One way to address that question would be to conduct numerical integrations of suitable test orbits and identify how often small-q orbits result, but this comes up against the problem of identifying very-infrequent events (with annual probabilities per object perhaps of order 10^{-12}-10^{-10}. For example, Emel'yanenko et al. [1] recently followed test orbits for approximately 5 × 10^{14} particle-years (8,925 objects with 200 clones of each, for 300 Myr) but because these were selected on the basis of initial values of q only below 36 (rather than ˜30) au many were not immediately Neptune-crossers; however, many test particles did eventually migrate into small-q orbits, including falling into the Sun. Instead of the demanding computational requirements of numerical integrations I have instead employed a statistical technique which involves: (i) The probability of some test orbit encountering a perturbing planet (Neptune, here); and (ii) The relative probabilities of new orbital elements (in particular q<1 au or q<5 au) resulting from such encounters. This technique I introduced in a paper presented at ACM III in Uppsala in 1989 [2] but I have not used it much in the quarter-century since then. I have presented elsewhere [3] some initial results from running this technique on a handful of known Neptune-crossing orbits, the results justifying the probabilities of order 10^{-12}-10^{-10} per annum that I mentioned above. Here I extend the range of computations and the variety of test orbits sampled in order to try to build a picture of how often the inner solar system might be subject to an incursion by a gigantic fragmenting comet, with obvious repercussions for all the terrestrial planets but especially for the evolution of life on Earth.
NASA Technical Reports Server (NTRS)
Fuchs, A. J. (Editor)
1979-01-01
Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.
Geometric Approach to Orbital Formation Mission Design
2004-03-01
limitations, several individuals have used their resources to im- prove upon the Clohessy and Wiltshire model. First order oblateness affects are added to... Clohessy and Wiltshire solutions by Schaub and Alfriend [21] who de- scribe the relative orbit using Delaunay [7] orbital elements. Further perturbation...a methodology using a sliding mode framework. Irvin [11] investigated minimal fuel reconfiguration techniques using the Clohessy and Wiltshire
Space webs based on rotating tethered formations
NASA Astrophysics Data System (ADS)
Palmerini, Giovanni B.; Sgubini, Silvano; Sabatini, Marco
2009-07-01
Several on-going studies indicate the interest for large, light orbiting structures, shaped as fish nets or webs: along the ropes of the web small spacecraft can move like spiders to position and re-locate, at will, pieces of hardware devoted to specific missions. The concept could be considered as an intermediate solution between the large monolithic structure, heavy and expensive to realize, but easy to control, and the formations of satellites, where all system members are completely free and should manoeuvre in order to acquire a desired configuration. Instead, the advantage of having a "hard-but-light" link among the different grids lays in the partition of the tasks among system components and in a possible overall reduction of the control system complexity and cost. Unfortunately, there is no stable configuration for an orbiting, two-dimensional web made by light, flexible tethers which cannot support compression forces. A possible solution is to make use of centrifugal forces to pull the net, with a reduced number of simple thrusters located at the tips of the tethers to initially acquire the required spin. In this paper a dynamic analysis of a simplified rotating web is performed, in order to evaluate the spinning velocity able to satisfy the requirement for the stability of the system. The model adopted overlaps simpler elements, each of them given by a tether (made up of a number of linear finite elements) connecting two extreme bodies accommodating the spinning thrusters. The combination of these "diameter-like" elements provides the web, shaped according to the specific requirements. The net is primarily considered as subjected to Keplerian attraction and J2 and drag perturbations only, but its behaviour under thermal inputs is also investigated.
Orbiter active thermal control system description
NASA Technical Reports Server (NTRS)
Laubach, G. E.
1975-01-01
A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.
Regions of stability of asteroids
NASA Technical Reports Server (NTRS)
Szebehely, V.; Lundberg, J.; Vicente, R.
1983-01-01
Using Hill's modified stability criterion, regions of orbital elements are established for conditions of stability. The model of the three-dimensional restricted problem of three bodies is used with the sun and Jupiter as the primaries. Four different cases are studied: direct and retrograde, outside and inside asteroidal orbits. The directions of the asteroidal orbits refer to the synodical reference frame and the positions refer to Jupiter's orbit. The orbital parameters of the asteroids are the semi-major axis (a), the eccentricity (e), and the inclination from Jupiter's orbital plane (i). The argument of the perihelion and the longitude of the ascending node are fixed at Omega = omega = 90 deg and the time of perihelion passage is T = 0 for all orbits.
How to Maneuver Around in Eccentricity Vector Space
NASA Technical Reports Server (NTRS)
Sweetser, Theodore H.
2010-01-01
The GRAIL mission to the Moon will be the first time that two separate robotic orbiters will be placed into formation in orbit around a body other than Earth. The need to design an efficient series of maneuvers to shape the orbits and phasing of the two orbiters after arrival presents a significant challenge to mission designers. This paper presents a simple geometric method for relating in-plane impulsive maneuvers to changes in the eccentricity vector, which determines the shape and orientation of an orbit in the orbit plane. Examples then show how such maneuvers can accommodate desired changes to other orbital elements such as period, incination, and longitude of the ascending node.
Orbit Design Based on the Global Maps of Telecom Metrics
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming; Edwards, Chad; Noreen, Gary K.; Vaisnys, Arvydas
2004-01-01
In this paper we describe an orbit design aide tool, called Telecom Orbit Analysis and Simulation Tool(TOAST). Although it can be used for studying and selecting orbits for any planet, we solely concentrate on its use for Mars. By specifying the six orbital elements for an orbit, a time frame of interest, a horizon mask angle, and some telecom parameters such as the transmitting power, frequency, antenna gains, antenna losses, link margin, received threshold powers for the rates, etc. this tool enables the user to view the animation of the orbit in two and three-dimensional different telecom metrics at any point on the Mars, namely the global planetary map.
Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system
NASA Astrophysics Data System (ADS)
Yuan, Jianping; Gao, Chen; Zhang, Junhua
2018-02-01
In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.
On-orbit spacecraft reliability
NASA Technical Reports Server (NTRS)
Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.
1978-01-01
Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.
The ENABLER—based on proven NERVA technology
NASA Astrophysics Data System (ADS)
Livingston, Julie M.; Pierce, Bill L.
1991-01-01
The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.
Composites for Advanced Space Transportation Systems (CASTS)
NASA Technical Reports Server (NTRS)
Davis, J. G., Jr. (Compiler)
1979-01-01
A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.
CONSTRUCTION OF A SMALL AUTOMATED CORONAGRAPH FOR OBSERVATIONS OF THE LUNAR Na EXOSPHERE
NASA Astrophysics Data System (ADS)
Tucker, Roy; Morgan, T. H.; Killen, R. M.
2013-10-01
We report on the final optical and mechanical design and the construction and initial testing of a small coronagraph at the Winer Observatory, near Sonoita, Arizona. The coronagraph includes a narrow band filter and low-light level camera to observe lunar exospheric sodium in the resonance lines of that element near 590 nm. Without the use of a coronagraph, the signal from sodium would be lost against light scattered by the Earth’s atmosphere and scattered light in the telescope. The design uses Commercial Off the Shelf Technology (COTS), and our goal is to obtain observations while the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is still in orbit.
Pathfinder autonomous rendezvous and docking project
NASA Technical Reports Server (NTRS)
Lamkin, Stephen (Editor); Mccandless, Wayne (Editor)
1990-01-01
Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements.
COTS Initiative Panel Discussion
2013-11-13
Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program at NASA, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
COTS Initiative Panel Discussion
2013-11-13
Phil McAlister, Director of Commercial Spaceflight Development at NASA, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
COTS Initiative Panel Discussion
2013-11-13
Frank Slazer, Vice President of Space Systems, Aerospace Industries Association, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
COTS Initiative Panel Discussion
2013-11-13
NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to (L-R) Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group,at NASA Headquarters in Washington on Thursday, November 13, 2013. Culbertson received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Robert A., E-mail: rbrown@stsci.edu
We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness,more » image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. For the coronagraphs, WFIRST-C and EXO-C, the most likely number of good estimators of true mass is currently zero. For the star shades, EXO-S and WFIRST-S, the most likely numbers of good estimators are three and four, respectively, including GJ 676 A b and 16 Cyg B b. We expect that uncertain orbital elements currently undermine all potential programs of direct imaging and spectroscopy of RV exoplanets.« less
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Dudzinski, Leonard A.
1996-01-01
The feasibility of returning humans to the Moon by 2004, the 35th anniversary of the Apollo 11 landing, is examined assuming the use of existing launch vehicles (the Space Shuttle and Titan 4B), a near term, advanced technology space transportation system, and extraterrestrial propellant--specifically 'lunar-derived' liquid oxygen or LUNOX. The lunar transportation system (LTS) elements consist of an expendable, nuclear thermal rocket (NTR)-powered translunar injection (TLI) stage and a combination lunar lander/Earth return vehicle (LERV) using cryogenic liquid oxygen and hydrogen (LOX/LH2) chemical propulsion. The 'wet' LERV, carrying a crew of 2, is configured to fit within the Shuttle orbiter cargo bay and requires only modest assembly in low Earth orbit. After Earth orbit rendezvous and docking of the LERV with the Titan 4B-launched NTR TLI stage, the initial mass in low Earth orbit (IMLEO) is approx. 40 t. To maximize mission performance at minimum mass, the LERV carries no return LOX but uses approx. 7 t of LUNOX to 'reoxidize' itself for a 'direct return' flight to Earth followed by an 'Apollo-style' capsule recovery. Without LUNOX, mission capability is constrained and the total LTS mass approaches the combined Shuttle-Titan 4B IMLEO limit of approx. 45 t even with enhanced NTR and chemical engine performance. Key technologies are discussed, lunar mission scenarios described, and LTS vehicle designs and characteristics are presented. Mission versatility provided by using a small 'all LH2' NTR engine or a 'LOX-augmented' derivative, either individually or in clusters, for outer planet robotic orbiter, small Mars cargo, lunar 'commuter', and human Mars exploration class missions is also briefly discussed.
Rotation state of 495 Eulalia and its implication
NASA Astrophysics Data System (ADS)
Vokrouhlický, D.; Ďurech, J.; Pravec, P.; Oey, J.; Vraštil, J.; Hornoch, K.; Kušnirák, P.; Groom, R.; Warner, B. D.; Bottke, W. F.
2016-01-01
Context. The low-albedo part of the Nysa-Polana-Hertha asteroid complex has recently been found to consist of at least two families. The larger of them has been associated with asteroid 495 Eulalia, hereafter named the Eulalia family. The unstable location of this body very close to Jupiter's 3:1 mean motion resonance (J3/1 resonance) at the periphery of the associated family in the space of proper orbital elements makes this case peculiar. Aims: We consider the possibility that 495 Eulalia was originally positioned farther from the J3/1 resonance when the family formed via a catastrophic impact than it is today. It was then transported to its current orbit by the Yarkovsky thermal forces over hundreds of millions of years. This requires that 495 Eulalia had a prograde rotation state. Methods: We use photometric observations and lightcurve inversion methods to determine the rotation pole of 495 Eulalia. Numerical simulation accounting for perturbations from the Yarkovsky effect then reveals the possible pathways of Eulalia orbital evolution. Results: We find that both of the possible pole solutions are prograde, in accordance with our initial hypothesis. In studying the long-term evolution of Eulalia's spin state, we show that the obliquity can oscillate over a large interval of values yet always remain <90°. We estimate that Eulalia could have migrated by as much as ~0.007 au toward the J3/1 resonance within the past 1 Gyr. Our numerical runs show that it could have originated in the orbital zone well aligned with other family members in proper eccentricity, whichafter it gained its current orbit by chaotic evolution along the J3/1 resonance.
Evolution of asteroidal orbits with high inclinations
NASA Astrophysics Data System (ADS)
Solovaya, Nina A.; Pittich, Eduard M.
1993-10-01
The 20,000 years orbital evolution of massless fictitious asteroid located at a border of the Hill's gravitational sphere has been investigated. The eleven orbits with the eccentricities from 0.0 to 0.4 in five groups of inclinations from 40 deg to 80 deg were numerically integrated with planetary perturbations of six major planets, using the numerical integration n-body program with the Everhart's integrator RA 15. For each group time evolution of orbital elements of the asteroids is presented.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2009-01-01
This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with approximately 50 kW(sub e) of electrical power in Mars orbit for crew life support and spacecraft subsystem needs. Vehicle assembly involves autonomous Earth orbit rendezvous and docking between the propulsion stages, in-line propellant tanks and payload elements. Nine Ares-V launches -- five for the two cargo MTVs and four for the crewed MTV -- deliver the key components for the three MTVs. Details on mission, payload, engine and vehicle characteristics and requirements are presented and the results of key trade studies are discussed.
Metrics in Keplerian orbits quotient spaces
NASA Astrophysics Data System (ADS)
Milanov, Danila V.
2018-03-01
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.
Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit
NASA Astrophysics Data System (ADS)
Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.
2017-05-01
Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.
User assembly and servicing system for Space Station, an evolving architecture approach
NASA Technical Reports Server (NTRS)
Lavigna, Thomas A.; Cline, Helmut P.
1988-01-01
On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.
Chromospherically Active Stars. XXV. HD 144110=EV Draconis, a Double-lined Dwarf Binary
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Lewis, Ceteka
2005-08-01
New spectroscopic and photometric observations of HD 144110 have been used to obtain an improved orbital element solution and determine some basic properties of the system. This chromospherically active, double-lined spectroscopic binary has an orbital period of 1.6714012 days and a circular orbit. We classify the components as G5 V and K0 V and suggest that they are slightly metal-rich. The photometric observations indicate that the rotation of HD 144110 is synchronous with the orbital period. Despite the short orbital period, no evidence of eclipses is seen in our photometry.
NASA Technical Reports Server (NTRS)
Chin, M. M.; Goad, C. C.; Martin, T. V.
1972-01-01
A computer program for the estimation of orbit and geodetic parameters is presented. The areas in which the program is operational are defined. The specific uses of the program are given as: (1) determination of definitive orbits, (2) tracking instrument calibration, (3) satellite operational predictions, and (4) geodetic parameter estimation. The relationship between the various elements in the solution of the orbit and geodetic parameter estimation problem is analyzed. The solution of the problems corresponds to the orbit generation mode in the first case and to the data reduction mode in the second case.
Strategies for the return of science data from in situ vehicles at Titan
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Reh, K. R.; Erd, C.; Elliott, J. O.; Mohr, D.; Strange, N. J.
2009-04-01
Collaborative studies of the Titan Saturn System Mission (TSSM) in 2008 by ESA and NASA have included examination of strategies for optimizing the science return from that mission concept's proposed in situ elements. The current baselined mission concept calls for an orbiter provided and launched by NASA that would deliver to Titan and support two ESA-provided in situ elements, a lake lander whose science mission duration would be about nine hours, and a montgolfière (hot-air balloon) that would operate at ~10 km altitude in Titan's lower atmosphere for 6-12 months. This architecture has much in common with the highly successful Cassini-Huygens mission. The short-lived lake lander in particular would have a mission profile very similar to that of the Huygens probe, with all science data communications occurring while the NASA orbiter is relatively near Titan. Practical mission profile options for the montgolfière include extended periods when the NASA orbiter is farther from Titan, reducing data rates. Over long periods of time the montgolfière cannot be considered fixed over one location on Titan's surface, and in fact is expected to circumnavigate Titan in less than six months. Thus the schedule of communications windows between the in situ elements and the orbiter cannot be precisely determined far in advance, varying as the balloon literally "rides the wind". Other issues played critical roles in evaluating the many options available early in the studies. Some options for the timing of delivery of the in situ elements yielded more mass capability available for those elements, but their reduced data return due to orbit geometry outweighs the added mass capability. Another delivery option, delivery from Titan orbit, yields reduced delivery mass capability but was thought (before studies) to offer better data relay capability. Studies revealed that this strategy actually decreases the return from the lake lander as compared to options delivering the in situ elements from hyperbolic flybys. This presentation will describe options examined in the TSSM communications strategy studies. Particular attention is given to that chosen for the baseline strategy, with potential returned data volumes that provide generous margins over anticipated data requirements. Many of the results are not unique to Titan alone, but are applicable to in situ missions at any satellite of a giant planet. These collaborative studies were funded by, and performed under the cognizance of, NASA and ESA.
Orbital dynamics in the post-Newtonian planar circular restricted Sun-Jupiter system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, F. L.
The theory of the post-Newtonian (PN) planar circular restricted three-body problem is used for numerically investigating the orbital dynamics of a test particle (e.g. a comet, asteroid, meteor or spacecraft) in the planar Sun-Jupiter system with a scattering region around Jupiter. For determining the orbital properties of the test particle, we classify large sets of initial conditions of orbits for several values of the Jacobi constant in all possible Hill region configurations. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) collisional. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. In order to get a spherical view of the dynamics of the system, the grids of the initial conditions of the orbits are defined on different types of two-dimensional planes. We locate the different types of basins and we also relate them with the corresponding spatial distributions of the escape and collision time. Our thorough analysis exposes the high complexity of the orbital dynamics and exhibits an appreciable difference between the final states of the orbits in the classical and PN approaches. Furthermore, our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant, along with a remarkable presence of fractal basin boundaries. Our outcomes are compared with the earlier ones regarding other planetary systems.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
Modeling the effects of an offset of the center of symmetry in the zodiacal cloud
NASA Astrophysics Data System (ADS)
Holmes, E. K.; Dermott, S. F.; Xu, Y. L.; Wyatt, M.; Jayaraman, S.
1998-04-01
There is a possible connection between structure in circumstellar dust clouds and the presence of planets, our own zodiacal cloud being the prime example. Asymmetries in such clouds could be diagnostic of planets which would be otherwise undetectable. One such feature is an offset of the center of symmetry of the disk with respect to the central star. The offset is caused by the forced eccentricities (ef) of particles in the cloud. The orbit of a particle can be described by a set of five orbital elements: the semi-major axis (a), eccentricity (e), inclination (I), longitude of ascending node (Omega) and the argument of pericenter (omega). In low order secular perturbation theory, osculating elements of small bodies are decomposed into proper and forced elements. The proper elements are dependent on initial conditions while the forced elements are imposed on the particle's orbit by the gravitational perturbations of the planets. This decomposition is still applicable in the presence of drag forces. We compare COBE observations of the variation in average polar brightness of the background cloud, (N + S)/2, with ecliptic longitude of Earth with those of a model cloud made of asteroidal particles which populate the inner solar system according to a 1/rgamma where (gamma) = 1 (Poynting Robertson light drag) distribution. The variation with ecliptic longitude of Earth in mean polar brightness is shown in for the 25 micron waveband. Sine curves are fit to both the COBE observations and the model. The variation in (N+S)/2 with ecliptic longitude of Earth can be represented as a superposition of two sine curves: one for the variation in (N + S)/2 due to the Earth's eccentric orbit and the other for the variation in (N + S)/2 due to the forced eccentricities of particles in the cloud. If the cloud were symmetric about the Sun (i.e., if there were no offset), the maximum and minimum brightnesses of the cloud would occur at perihelion and aphelion, respectively. Looking at the model, one can see that the minimum does occur at Earth's aphelion (282.9 deg). However, the minimum of the COBE curve is clearly displaced from aphelion, showing that the center of symmetry of the cloud is displaced from the Sun. If we could turn off the effect of the Earth's eccentricity, we could isolate the sine curve due to ef. When we do this for the model cloud however, we do not see a variation in (N + S)/2 for two reasons: 1) Although the particle orbits are circularized due to Poynting Robertson drag (PR drag), the wedge shape of the cloud cancels out any number density variation as a function of radial distance; and 2) Even though we would expect the orbits of the particles to be more densely spaced at perihelion than at aphelion (provided all the particles had the same ef and omegaf, due to Kepler's Second Law the particles spend less time at perihelion than at aphelion thus canceling out any noticeable effect on the number density. However, when we build a new model cloud governed by a constant distribution of particles (1/rgamma where gamma = 0) instead of a 1/r distribution, we do see a sinusoidal variation in (N + S)/2 with ecliptic longitude of Earth. These results imply that the particles contributing to the observed offset do not have a PR drag distribution (i.e., they are not simply asteroidal particles). Future work will determine whether cometary particles (having a theoretical gamma = 1.5), collisionally evolved asteroidal particles, or a combination of both types of particles are responsible for the offset of the center of symmetry of the zodiacal cloud.
Selective Tuning of Gilbert Damping in Spin-Valve Trilayer by Insertion of Rare-Earth Nanolayers.
Zhang, Wen; Zhang, Dong; Wong, Ping Kwan Johnny; Yuan, Honglei; Jiang, Sheng; van der Laan, Gerrit; Zhai, Ya; Lu, Zuhong
2015-08-12
Selective tuning of the Gilbert damping constant, α, in a NiFe/Cu/FeCo spin-valve trilayer has been achieved by inserting different rare-earth nanolayers adjacent to the ferromagnetic layers. Frequency dependent analysis of the ferromagnetic resonances shows that the initially small magnitude of α in the NiFe and FeCo layers is improved by Tb and Gd insertions to various amounts. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the observed increase in α can be attributed primarily to the orbital moment enhancement of Ni and Co, rather than that of Fe. The amplitude of the enhancement depends on the specific rare-earth element, as well as on the lattice and electronic band structure of the transition metals. Our results demonstrate an effective way for individual control of the magnetization dynamics in the different layers of the spin-valve sandwich structures, which will be important for practical applications in high-frequency spintronic devices.
Spectroscopic orbits of nearby solar-type dwarfs - II.
NASA Astrophysics Data System (ADS)
Gorynya, N. A.; Tokovinin, A.
2018-03-01
Several nearby solar-type dwarfs with variable radial velocity were monitored to find their spectroscopic orbits. First orbital elements of 15 binaries (HIP 12144, 17895, 27970, 32329, 38636, 39072, 40479, 43004, 73700, 79234, 84696, 92140, 88656, 104514, and 112222) are determined. The previously known orbits of HIP 5276, 21443, 28678, and 41214 are confirmed and updated. The orbital periods range from 2 d to 4 yr. There are eight hierarchical systems with additional distant companions among those 19 stars. The outer visual orbit of the triple system HIP 17895 is updated and the masses of all its components are estimated. We provide radial velocities of another 16 Hipparcos stars without orbital solutions, some of those with long periods or false claims of variability.
On Directional Measurement Representation in Orbit Determination
2016-09-13
representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their...Earth Orbit (LEO) and a Geostationary Earth Orbit (GEO) satellite. Section IV discusses the results from the numerical simulations and finally Section V... Geostationary Earth Orbit (GEO) satellite with the initial orbital parameters shown in Table 1. Different ground sites are used for the LEO and ahttps
On stellar encounters and their effect on cometary orbits in the Oort cloud
NASA Astrophysics Data System (ADS)
Serafin, R. A.; Grothues, H.-G.
2002-03-01
We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian-rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.
On selecting satellite conjunction filter parameters
NASA Astrophysics Data System (ADS)
Alfano, Salvatore; Finkleman, David
2014-06-01
This paper extends concepts of signal detection theory to predict the performance of conjunction screening techniques and guiding the selection of keepout and screening thresholds. The most efficient way to identify satellites likely to collide is to employ filters to identify orbiting pairs that should not come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to accelerate overall processing time. Approximations inherent in filtering techniques include screening using only unperturbed Newtonian two body astrodynamics and uncertainties in orbit elements. Therefore, every filtering process is vulnerable to including objects that are not threats and excluding some that are threats, Type I and Type II errors. The approach in this paper guides selection of the best operating point for the filters suited to a user's tolerance for false alarms and unwarned threats. We demonstrate the approach using three archetypal filters with an initial three-day span, select filter parameters based on performance, and then test those parameters using eight historical snapshots of the space catalog. This work provides a mechanism for selecting filter parameters but the choices depend on the circumstances.
Choi, Woon Ih; Wood, Brandon C.; Schwegler, Eric; ...
2015-09-22
Transition metal (TM) atoms in porphyrin–like complexes play important roles in many protein and enzymetic systems, where crystal–field effects are used to modify d–orbital levels. Inspired by the tunable electronic structure of these motifs, a high–throughput computational search for synthetic hydrogen catalysts is performed based on a similar motif of TM atoms embedded into the lattice of graphene. Based on an initial list of 300 possible embedding geometries, binders, and host atoms, descriptors for stability and catalytic activity are applied to extract ten promising candidates for hydrogen evolution, two of which are expected to exhibit high activity for hydrogen oxidation.more » In several instances, the active TM atoms are earth–abundant elements that show no activity in the bulk phase, highlighting the importance of the coordination environment in tuning the d–orbitals. In conclusion, it is found that the most active candidates involve a hitherto unreported surface reaction pathway that involves a Kubas–complex intermediate, which significantly lowers the kinetic barrier associated with hydrogen dissociation and association.« less
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.
Drift-free solar sail formations in elliptical Sun-synchronous orbits
NASA Astrophysics Data System (ADS)
Parsay, Khashayar; Schaub, Hanspeter
2017-10-01
To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.
A Power Conversion Concept for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2003-01-01
The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission under development by the Office of Space Science at NASA Headquarters. ITMO is examining the potential of Nuclear Electric Propulsion (NEP) technology to efficiently deliver scientific payloads to three Jovian moons: Callisto, Ganymede, and Europa. A critical element of the NEP vehicle is the reactor power system, consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD). The emphasis of this paper is on the non-nuclear elements of the reactor power system.
Venera-D: Technology Implications
NASA Technical Reports Server (NTRS)
Kremic, Tibor
2016-01-01
The Venera-D concept mission being developed by the Joint Russian US Science Definition Team (JSDT) is an exciting concept for exploring Venus and is based largely successful approach of heritage Soviet Veneras and VEGA missions. The desired science of Venera-D seeks to build on the results on these missions and also missions by other nations such as the American Mariners, Pioneer Venus, and Magellan missions, ESAs Venus Express, and the current Japanese Akatsuki mission. A number of elements comprise the potential full mission concept. Core elements of the mission include a long lived orbiter (3 years) and a short duration ( 2 hour) but powerful lander. Several other mission elements are possible depending on mission constraints which include cost limitations. Other possible elements include some form of mobile aerial platform, such as a balloon, long lived dropsonde(s), and sub-satellite. One can image the diverse maturity of technologies that will be needed to support the various elements of the Venera-D mission concept. Given the long heritage and recent orbiting missions, little technology challenges are expected for the orbiter. However it has been several decades since humanity has placed a functioning lander on the Venus surface or spent time floating in the Venus atmosphere so the technology challenges will be of greater concern. This briefing presents some of the results of the Venera-D technology sub-group.
Space Operations Center system analysis. Volume 3, book 1: SOC system definition report, revision A
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station program and its elements are described. A work breakdown structure is presented and elements for the habitat and service modules, docking tunnel and airlock modules defined. The basis for the element's design is given. Mass estimates for the elements are presented in the work breakdown structure.
Design of a space-based infrared imaging interferometer
NASA Astrophysics Data System (ADS)
Hart, Michael; Hope, Douglas; Romeo, Robert
2017-07-01
Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.
NASA Astrophysics Data System (ADS)
Ko, H.; Scheeres, D.
2014-09-01
Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX) is modified to adapt this technique in order to verify the performance of this interpolation approach. Spacecraft anomaly cases are based on either single or multiple low or high thrust maneuvers and the unknown thrust accelerations are recovered and compared with the true thrust acceleration. The advantage of this approach is to easily append TFCs and its dynamics to the pre-built ODTBX, which enables us to blend post-anomaly tracking data to improve the performance of the interpolation representation in the absence of detailed information about a maneuver. It allows us to improve space situational awareness in the areas of uncertainty propagation, anomaly characterization and track correlation.
Titan Saturn System Mission Instrumentation
NASA Astrophysics Data System (ADS)
Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.
2012-10-01
The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.
Stability of planetary orbits in triple star systems
NASA Astrophysics Data System (ADS)
Busetti, Franco; Beust, Hervé; Harley, Charis
2018-06-01
Triple stellar systems comprising a central binary orbited by a third star at a larger distance are fairly common. However, there have been very few studies on the stability of planetary orbits in such systems. There has been almost no work on generalised systems, little on retrograde planetary orbits and none on retrograde stellar orbits, with nearly all being for coplanar orbits and for a limited number of orbital parameters. We provide a generalised numerical mapping of the regions of planetary stability in triples, using the symplectic N-body code HJS (Beust 2003) designed for the dynamics of multiple hierarchical systems. We investigate all these orbit types and extend the parameters used to all relevant orbital elements of the triple’s stars, also expanding these elements and mass ratios to wider ranges.This establishes the regions of secular stability and results in empirical models describing the stability bounds for planets in each type of triple configuration, as functions of the various system parameters. These results are compared to the corresponding results for binaries in the limit of a vanishing mass of the third star. A general feature is that retrograde planetary orbits appear more stable than prograde ones, and that stable regions also tend to be wider when the third star's motion is retrograde. Conversely, we point out the destabilizing role of Kozai-Lidov resonance in non-coplanar systems, which shrinks the stability regions as a result of large induced eccentricity variations. Nonetheless, large enough stability regions for planets do exist in triples, and this should motivate future observational campaigns.Refs : Beust, 2003, A&A 400, 1129 Busetti, Beust, Harley, 2018, to be submitted to A&A
Orbital Solutions and Absolute Elements of the Eclipsing Binary YY Ceti
NASA Astrophysics Data System (ADS)
Williamon, Richard M.; Sowell, James R.
2012-05-01
YY Cet is a 10.5 mag semidetached variable with a 19 hr orbital period. The Wilson-Devinney program is used to simultaneously solve two new sets of UBV light curves together with preexisting photometry and single-line radial velocity measurements . The system has the lower-mass component completely filling its Roche lobe. The resulting masses are M1 = 1.78 ± 0.19 M⊙ and M2 = 0.92 ± 0.10 M⊙, and the radii are R1 = 2.08 ± 0.08 R⊙ and R2 = 1.62 ± 0.06 R⊙. Its computed distance is 534 ± 28 pc. Light- and velocity-curve parameters, orbital elements, and absolute dimensions are presented. A study of published TOM observations indicates that the period changed around 1999.
NASA Astrophysics Data System (ADS)
Yang, Hongu; Ishiguro, Masateru
2018-02-01
In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.
Periodic three-body orbits with vanishing angular momentum in the Jacobi-Poincaré ‘strong’ potential
NASA Astrophysics Data System (ADS)
Dmitrašinović, V.; Petrović, Luka V.; Šuvakov, Milovan
2017-10-01
Moore (1993 Phys. Rev. Lett. 70 3675) and Montgomery (2005 Ergod. Theor. Dynam. Syst. 25 921-947) have argued that planar periodic orbits of three bodies moving in the Jacobi-Poincaré, or the ‘strong’ pairwise potential \\sumi>j\\frac{-1}{rij^2} , can have all possible topologies. Here we search systematically for such orbits with vanishing angular momentum and find 24 topologically distinct orbits, 22 of which are new, in a small section of the allowed phase space, with a tendency to overcrowd, due to overlapping initial conditions. The topologies of these 24 orbits belong to three algebraic sequences defined as functions of integer n=0, 1, 2, \\ldots . Each sequence extends to n \\to ∞ , but the separation of initial conditions for orbits with n ≥slant 10 becomes practically impossible with a numerical precision of 16 decimal places. Nevertheless, even with a precision of 16 decimals, it is clear that in each sequence both the orbit’s initial angle φn and its period T n approach finite values in the asymptotic limit (n \\to ∞ ). Two of three sequences are overlapping in the sense that their initial angles ϕ occupy the same segment on the circle and their asymptotic values φ∞ are (very) close to each other. The actions of these orbits rise linearly with the index n that describes the orbit’s topology, which is in agreement with the Newtonian case. We show that this behaviour is consistent with the assumption of analyticity of the action as a function of period.
The orbiter mate/demate device
NASA Technical Reports Server (NTRS)
Miller, A. J.; Binkley, W. H.
1985-01-01
The numerous components and systems of the space shuttle orbiter mate/demate device (MDD) are discussed. Special emphasis is given, mechanisms and mechanical systems to discuss in general their requirements, functions, and design; and, where applicable, to relate any unusual problems encountered during the initial concept studies, final design, and construction are discussed. The MDD and its electrical, machinery, and mechanical systems, including the main hoisting system, power operated access service platform, wind restrain and adjustment mechanism, etc., were successfully designed and constructed. The MDD was used routinely during the initial orbiter-747 approach and landing test and the more recent orbiter flight tests recovery and mate operations.
Impulsive time-free transfers between halo orbits
NASA Astrophysics Data System (ADS)
Hiday, L. A.; Howell, K. C.
1992-08-01
A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L1 libration point of the sun-earth/moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristics velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.
Impulsive Time-Free Transfers Between Halo Orbits
NASA Astrophysics Data System (ADS)
Hiday-Johnston, L. A.; Howell, K. C.
1996-12-01
A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L 1 libration point of the Sun-Earth/Moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristic velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.
Space vehicle approach velocity judgments under simulated visual space conditions
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1987-01-01
Thirty-five volunteers responded when they first perceived an increase in apparent size of a collimated, 2-D image of an Orbiter vehicle. The test variables of interest included the presence of a fixed angular reticle within the field of view (FOV); three initial Orbiter distances; three constant Orbiter approach velocities corresponding to 1.6, 0.8, and 0.4 percent of the initial distance per second; and two background starfield velocities. It was found that: (1) at each initial range, increasing approach velocity led to a larger distance between the eye and Orbiter image at threshold; (2) including the fixed reticle in the FOV produced a smaller distance between the eye and Orbiter image at threshold; and (3) increasing background star velocity during this judgment led to a smaller distance between the eye and Orbiter image at threshold. The last two findings suggest that other detail within the FOV may compete for available attention which otherwise would be available for judging image expansion; thus, the target has to approach the observer nearer than otherwise if these details were present. These findings are discussed in relation to previous research and possible underlying mechanisms.
The Nimbus 6 data catalog. Volume 7: 1 July - 31 August 1976. Data orbits 5156 - 5985
NASA Technical Reports Server (NTRS)
1977-01-01
Operations of various experiments during the reporting period are summarized. Orbital elements, data availability times, anomalies in the data, geographic location, and time of data are tabulated. Montages obtained by infrared and microwave radiometers are included.
NASA Astrophysics Data System (ADS)
Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen
2018-01-01
A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.
Orbital Alignment of Main-belt Comets
NASA Astrophysics Data System (ADS)
Kim, Yoonyoung; JeongAhn, Youngmin; Hsieh, Henry H.
2018-03-01
We examine the orbital element distribution of main-belt comets (MBCs), which are objects that exhibit cometary activity yet orbit in the main asteroid belt and may be potentially useful as tracers of ice in the inner solar system. We find that the currently known and currently active MBCs have remarkably similar longitudes of perihelion, which are also aligned with that of Jupiter. The clustered objects have significantly higher current osculating eccentricities relative to their proper eccentricities, consistent with their orbits being currently, though only temporarily, secularly excited in osculating eccentricity due to Jupiter’s influence. At the moment, most MBCs seem to have current osculating elements that may be particularly favorable for the object becoming active (e.g., maybe because of higher perihelion temperatures or higher impact velocities causing an effective increase in the size of the potential triggering impactor population). At other times, other icy asteroids will have those favorable conditions and might become MBCs at those times as well.
Rapidly fatal nasal natural killer/T-cell lymphoma: orbital and ocular adnexal presentations.
Yousuf, Salman J; Kumar, Nitin; Kidwell, Earl D; Copeland, Robert A
2011-03-01
Nasal natural killer/T-cell lymphoma (NKTL) is an aggressive malignancy that may initially present with orbital and/or ocular adnexal symptoms. We describe the case of a 27-year-old female with nasal NKTL, who initially presented with epiphora and died 4 months thereafter.
COTS Initiative Panel Discussion
2013-11-13
NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to Gwynne Shotwell, President, SpaceX, at NASA Headquarters in Washington on Thursday, November 13, 2013. Shotwell received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
NASA Astrophysics Data System (ADS)
Dallmann, N. A.; Carlsten, B. E.; Stonehill, L. C.
2017-12-01
Orbiting nuclear spectrometers have contributed significantly to our understanding of the composition of solar system bodies. Gamma rays and neutrons are produced within the surfaces of bodies by impacting galactic cosmic rays (GCR) and by intrinsic radionuclide decay. Measuring the flux and energy spectrum of these products at one point in an orbit elucidates the elemental content of the area in view. Deconvolution of measurements from many spatially registered orbit points can produce detailed maps of elemental abundances. In applying these well-established techniques to small and irregularly shaped bodies like Phobos, one encounters unique challenges beyond those of a large spheroid. Polar mapping orbits are not possible for Phobos and quasistatic orbits will realize only modest inclinations unavoidably limiting surface coverage and creating North-South ambiguities in deconvolution. The irregular shape causes self-shadowing both of the body to the spectrometer but also of the body to the incoming GCR. The view angle to the surface normal as well as the distance between the surface and the spectrometer is highly irregular. These characteristics can be synthesized into a complicated and continuously changing measurement system point spread function. We have begun to explore different model-based, statistically rigorous, iterative deconvolution methods to produce elemental abundance maps for a proposed future investigation of Phobos. By incorporating the satellite orbit, the existing high accuracy shape-models of Phobos, and the spectrometer response function, a detailed and accurate system model can be constructed. Many aspects of this model formation are particularly well suited to modern graphics processing techniques and parallel processing. We will present the current status and preliminary visualizations of the Phobos measurement system model. We will also discuss different deconvolution strategies and their relative merit in statistical rigor, stability, achievable resolution, and exploitation of the irregular shape to partially resolve ambiguities. The general applicability of these new approaches to existing data sets from Mars, Mercury, and Lunar investigations will be noted.
Results in orbital evolution of objects in the geosynchronous region
NASA Technical Reports Server (NTRS)
Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1990-01-01
The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.
Introduction to the Space Transportation System. [space shuttle cost effectiveness
NASA Technical Reports Server (NTRS)
Wilson, R. G.
1973-01-01
A new space transportation concept which is consistent with the need for more cost effective space operations has been developed. The major element of the Space Transportation System (STS) is the Space Shuttle. The rest of the system consists of a propulsive stage which can be carried within the space shuttle to obtain higher energy orbits. The final form of this propulsion stage will be called the Space Tug. A third important element, which is not actually a part of the STS since it has no propulsive capacity, is the Space Laboratory. The major element of the Space Shuttle is an aircraft-like orbiter which contains the crew, the cargo, and the liquid rocket engines in the rear.
Space operations center: Shuttle interaction study extension, executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) is conceived as a permanent facility in low Earth orbit incorporating capabilities for space systems construction; space vehicle assembly, launching, recovery and servicing; and the servicing of co-orbiting satellites. The Shuttle Transportation System is an integral element of the SOC concept. It will transport the various elements of the SOC into space and support the assembly operation. Subsequently, it will regularly service the SOC with crew rotations, crew supplies, construction materials, construction equipment and components, space vehicle elements, and propellants and spare parts. The implications to the SOC as a consequence of the Shuttle supporting operations are analyzed. Programmatic influences associated with propellant deliveries, spacecraft servicing, and total shuttle flight operations are addressed.
Stochasticity and predictability in terrestrial planet formation
NASA Astrophysics Data System (ADS)
Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim
2017-02-01
Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.
Ballistic mode Mercury orbiter missions.
NASA Technical Reports Server (NTRS)
Hollenbeck, G. R.
1973-01-01
The MVM'73 Mercury flyby mission will initiate exploration of this unique planet. No firm plans for follow-on investigations have materialized due to the difficult performance requirements of the next logical step, an orbiter mission. Previous investigations of ballistic mode flight opportunities have indicated requirements for a Saturn V class launch vehicle. Consequently, most recent effort has been oriented to use of solar electric propulsion. More comprehensive study of the ballistic flight mode utilizing Venus gravity-assist has resulted in identification of timely high-performance mission opportunities compatible with programmed launch vehicles and conventional spacecraft propulsion technologies. A likely candidate for an initial orbiter mission is a 1980 opportunity which offers net orbiter spacecraft mass of about 435 kg with the Titan IIIE/Centaur launch vehicle and single stage solid propulsion for orbit insertion.
FSD- FLEXIBLE SPACECRAFT DYNAMICS
NASA Technical Reports Server (NTRS)
Fedor, J. V.
1994-01-01
The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD is written in FORTRAN 77, PASCAL, and MACRO assembler for batch execution and has been implemented on a DEC VAX series computer operating under VMS. The PASCAL and MACRO routines (in addition to the FORTRAN program) are supplied as both source and object code, so the PASCAL compiler is not required for implementation. This program was last updated in 1985.
VizieR Online Data Catalog: Double stars with wide separations in the AGK3 (Halbwachs+, 2016)
NASA Astrophysics Data System (ADS)
Halbwachs, J. L.; Mayor, M.; Udry, S.
2016-10-01
A large list of common proper motion stars selected from the third Astronomischen Gesellschaft Katalog (AGK3) was monitored with the CORAVEL (for COrrelation RAdial VELocities) spectrovelocimeter, in order to prepare a sample of physical binaries with very wide separations. In paper I,66 stars received special attention, since their radial velocities (RV) seemed to be variable. These stars were monitored over several years in order to derive the elements of their spectroscopic orbits. In addition, 10 of them received accurate RV measurements from the SOPHIE spectrograph of the T193 telescope at the Observatory of Haute-Provence. For deriving the orbital elements of double-lined spectroscopic binaries (SB2s), a new method was applied, which assumed that the RV of blended measurements are linear combinations of the RV of the components. 13 SB2 orbits were thus calculated. The orbital elements were eventually obtained for 52 spectroscopic binaries (SBs), two of them making a triple system. 40 SBs received their first orbit and the orbital elements were improved for 10 others. In addition, 11 SBs were discovered with very long periods for which the orbital parameters were not found. It appeared that HD 153252 has a close companion, which is a candidate brown dwarf with a minimum mass of 50 Jupiter masses. In paper II, 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. Adding CPM stars with separations close enough to be almost certain they are physical, a "bias-controlled" sample of 116 wide binaries was obtained, and used to derive the distribution of separations from 100 to 30,000 au. The distribution obtained doesn't match the log-constant distribution, but is in agreement with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical informations about the multiple systems. The close binaries in WBs seem to be similar to those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems is in agreement with the "no correlation" hypothesis; this indicates that an environment conducive to the formation of WBs doesn't favor the formation of subsystems with periods shorter than 10 years. (9 data files).
Weight-lattice discretization of Weyl-orbit functions
NASA Astrophysics Data System (ADS)
Hrivnák, Jiří; Walton, Mark A.
2016-08-01
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
Orbiter windward surface entry Heating: Post-orbital flight test program update
NASA Technical Reports Server (NTRS)
Harthun, M. H.; Blumer, C. B.; Miller, B. A.
1983-01-01
Correlations of orbiter windward surface entry heating data from the first five flights are presented with emphasis on boundary layer transition and the effects of catalytic recombination. Results show that a single roughness boundary layer transition correlation developed for spherical element trips works well for the orbiter tile system. Also, an engineering approach for predicting heating in nonequilibrium flow conditions shows good agreement with the flight test data in the time period of significant heating. The results of these correlations, when used to predict orbiter heating for a high cross mission, indicate that the thermal protection system on the windward surface will perform successfully in such a mission.
A GCM Recent History of the Northern Martian Polar Layered Deposits
NASA Technical Reports Server (NTRS)
Levrard, B.; Laskar, J.; Forget, F.; Montmessin, F.
2003-01-01
The polar layered deposits are thought to contain alternate layers of water and dust in different proportions resulting from the astronomical forcing of the martian climate. In particular, longterm variations in the orbital and axial elements of Mars are presumed to generate variations of the latitudes of surface water ice stability and of the amount of water exchanged in the polar areas. At high obliquity, simplified climate models and independent general circulation simulations suggest a transfer of water ice from the north polar region to tropical areas, whereas at lower and present obliquities, water ice is expected to be stable only at the poles. If so, over obliquity cycles, water ice may be redistributed between the surface water reservoirs leading to their incremental building or disintegration depending on the rates of water transfer. If only a relative limited amount of the available water is exchanged on orbital timescales, this may provide an efficient mechanism for the formation of the observed polar deposits. Within this context, GCM simulations of the martian water cycle have been performed for various obliquities ranging from 15 degrees to 45 degrees and for a large set of initial water ice locations to determine the rate of water exchange between the surface water reservoirs as a function of the obliquity. Propagating these rates over the last 10 Ma orbital history gives a possible recent evolution of these reservoirs.
NASA Astrophysics Data System (ADS)
Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei
2014-09-01
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.
Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei
2014-09-28
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.
Dynamics and Control of a Disordered System in Space
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2013-01-01
In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of N grains in orbit, with N greater than 10(exp 3). These grains can be large (Cubesat-size) or small (mm-size), and can be active, i.e., a fully equipped vehicle capable sensing their own position and attitude, and enabled with propulsion means, or entirely passive. The ultimate objective would be to study the behavior of the single grains and of large ensembles of grains in orbit and to identify ways to guide and control the shape of a cloud composed of these grains so that it can perform a useful function in space, for instance, as an element of an optical imaging system for astrophysical applications. This concept, in which the aperture does not need to be continuous and monolithic, would increase the aperture size several times compared to large NASA observatories such as ATLAST, allowing for a true Terrestrial Planet Imager that would be able to resolve exo-planet details and do meaningful spectroscopy on distant world. In the paper, we address the modeling and autonomous operation of a distributed assembly (the cloud) of large numbers of highly miniaturized space-borne elements (the grains). A multi-scale, multi-physics model is proposed of the dynamics of the cloud in orbit, as well as a control law for cloud shape maintenance, and preliminary simulation studies yield an estimate of the computational effort, indicating a scale factor of approximately N(exp 1.4) as a function of the number of grains. A granular spacecraft can be defined as a collection of a large number of space-borne elements (in the 1000s) designed and controlled such that a desirable collective behavior emerges, either from the interactions among neighboring grains, and/or between the grains and the environment. In this paper, each grain is considered to be a highly miniaturized spacecraft which has limited size and mass, hence it has limited actuation, limited propulsive capability, limited power, limited sensing, limited communication, limited computational resources, limited range of motion, limited lifetime, and may be expendable. The modeling and dynamics of clouds of vehicles is more challenging than with conventional vehicles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected vehicles. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). Second, the control design needs to be tolerant of the system complexity, of the system architecture (centralized vs. decentralized large scale system control) as well as robust to un-modeled dynamics and noise sources. Figure 1, top left, shows the kinematic parameters of a 1000 element cloud in orbit. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) orbiting reference frame (x,y,z)=F(sub ORF) of origin O(sub ORF) which rotates with mean motion omega and orbital semi-major axis R(sub 0). The orbital geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point O(sub ORF) is propagated forward in time under the influence of the gravitational field of the primary and other external perturbations, described below. The origin of this frame coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The assumptions we used to model the dynamics are as follows: 1) The inertial frame is fixed at Earth's center. 2) The orbiting Frame ORF follows Keplerian orbit. 3) the cloud system dynamics is referred to ORF. 4) the attitude of each grain uses the principal body frame as body fixed frame. 5) the atmosphere is assumed to be rigidly rotating with the Earth. Regarding the grains forming the cloud: 1) each grain is modeled as a rigid body; 2) a simple attitude estimator provides attitude estimates, 3) a simple guidance logic commands the position and attitude of each grain, 4) a simple local feedback controller based on PD control of local states is used to stabilize the attitude of the vehicle. Regarding the cloud: 1) the cloud as a whole is modeled as an equivalent rigid body in orbit, and 2) an associated graph establishes agent connectivity and enables coupling between modes of motion at the micro and macro scales; 3) a simple guidance and estimation logic is modeled to estimate and command the attitude of this equivalent rigid body; 4) a cloud shape maintenance controller is based on the dynamics of a stable virtual truss in the orbiting frame. Regarding the environmental perturbations acting on the cloud: 1) a non-spherical gravity field including JO (Earth's spherical field) zonal component, J2 (Earth's oblateness) and J3 zonal components is implemented; 2) atmospheric drag is modeled with an exponential model; 3) solar pressure is modeled assuming the Sun is inertially fixed; and 4) the Earth's magnetic field is model using an equivalent dipole model. The equations of motion are written in a referential system with respect to the origin of the orbiting frame and the state is propagated forward in time using an incremental predictor-corrector scheme. A representative cloud with varying number of grains is simulated to identify the limitations in computation time as the number of grains grows. We derive a control law to track a desired surface in the ORF (equivalently to maintain a reference cloud shape) by defining an error from a desired surface shape, and designing a control law that is exponentially stable and reduces the tracking error to zero. Figure 1 (top right) shows a comparison of various requirements for simulation of single spacecraft vs. granular spacecraft, indicating the high degree of complexity that needs to be taken into consideration. The ORF components of control force required by one of the grains is, for this particular case, in the micro-Newton range. However, no attempt has been made yet to reconfigure (or re-orient) the cloud configuration internally, for which forces in the milli-Newton level are expected, depending on the time required to do the reconfiguration. Figure 1, bottom, shows the computation time as a function of the number of grains, indicating an order N(exp 1.43) scaling on a 8 Gb, 1067 MHz RAM MacOSX computer with a 3.06 GHz Intel Core 2 Duo processor. With this metric, the same simulation for a system of N=1000 grains would take 5.4 hours, and 146 hours (i.e., 6 days) for a system with N=10,000 grains. Therefore, efficient ways to simulate this complex system, where not only the time scales of natural system dynamics, but also the sampling times of the Guidance, Navigation, and Control are included, remain to be explored. Additional details on the cloud modeling, dynamics, and control will be described in the paper.
The structure of non-hierarchical triple system stability regions
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.; Rubinov, A. V.
2009-08-01
A detailed study of the two-dimensional initial conditions region section in the planar three-body problem is performed. The initial conditions for the three well-known stable periodic orbits (the Schubart’s orbit, the Broucke’s orbit and the eight-like orbit) belong to this section. Continuous stability regions (for the fixed integration interval) generated by these periodic orbits are found. Zones of the quick stability violation are outlined. The analysis of some concrete trajectories coming from various stability regions is performed. In particular, trajectories possessing varying number of “eights” formed by moving triple system components are discovered. Orbits with librations are also found. The new periodic orbit originated from the zone siding with the Schubart’s orbit region is discovered. This orbit has reversibility points (each of the outer bodies possess a reversibility point) and two points of close double approach of the central body to each of the outer bodies. The influence of the numerical integration accuracy on the results is studied. The stability regions structure is preserved during calculations with different values of the precision parameter, numerical integration methods and regularization algorithms of the equations of motion.
Wind-accelerated orbital evolution in binary systems with giant stars
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan
2018-01-01
Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.
NASA Astrophysics Data System (ADS)
Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing
2018-03-01
The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.
A spectroscopic binary in the Hercules dwarf spheroidal galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Andreas; Hansen, Terese; Feltzing, Sofia
2014-01-01
We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{submore » p} sin i = 38 R {sub ☉}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.« less
Round-trip missions to low delta-V asteroids and implications for material retrieval
NASA Technical Reports Server (NTRS)
Bender, D. F.; Dunbar, R. S.; Ross, D. J.
1979-01-01
Low-delta-V asteroids are to be found among those which have perihelia near 1 AU. From the 50 known asteroids with perihelia less than 1.5 AU, 10 candidates for asteroid retrieval missions were selected on the basis of low eccentricity and inclination. To estimate the ranges of orbital elements for which capture in earth orbit may be feasible, a survey was made of 180 deg transfer from a set of orbits having elements near those of the earth to the earth. For 2 of the 10 low-delta-V asteroids and for an additional one with elements more earth-like than any yet known, direct ballistic round trips in the 1980's were computed. A stay time of several months at the asteroid was used. The results show that the total delta V, including that for rendezvous with earth upon return, for the known asteroids is above 14 km/sec. But if asteroids are found similar to the strawman considered, the total delta V could be as low as 10 km/sec.
Means, A L; Farnham, P J
1990-02-01
We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).
Space Propulsion Technology Program Overview
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1991-01-01
The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).
STS Challenger Mated to 747 SCA for Initial Delivery to Florida
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Shuttle orbiter Challenger atop NASA's Boeing 747 Shuttle Carrier Aircraft (SCA), NASA 905, after leaving the Dryden Flight Research Center, Edwards, California, for the ferry flight that took the orbiter to the Kennedy Space Center in Florida for its first launch. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 3: Project cost estimates
NASA Technical Reports Server (NTRS)
1990-01-01
The laser atmospheric wind sounder (LAWS) cost modeling activities were initiated in phase 1 to establish the ground rules and cost model that would apply to both phase 1 and phase 2 cost analyses. The primary emphasis in phase 1 was development of a cost model for a LAWS instrument for the Japanese Polar Orbiting Platform (JPOP). However, the Space Station application was also addressed in this model, and elements were included, where necessary, to account for Space Station unique items. The cost model presented in the following sections defines the framework for all LAWS cost modeling. The model is consistent with currently available detail, and can be extended to account for greater detail as the project definition progresses.
The mechanical behavior of cross-rolled beryllium sheet
NASA Technical Reports Server (NTRS)
Henkener, J. A.; Spiker, I. K.; Castner, W. L.
1992-01-01
In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.
A Pragmatic Path to Investigating Europa's Habitability
NASA Technical Reports Server (NTRS)
Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter;
2011-01-01
Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We will report on the status of this evolving concept, and will solicit community feedback, as we pursue an innovative and low-cost ways to explore Europa and investigate its habitability.
NASA Astrophysics Data System (ADS)
Raj, Xavier James
2016-07-01
Accurate orbit prediction of an artificial satellite under the influence of air drag is one of the most difficult and untraceable problem in orbital dynamics. The orbital decay of these satellites is mainly controlled by the atmospheric drag effects. The effects of the atmosphere are difficult to determine, since the atmospheric density undergoes large fluctuations. The classical Newtonian equations of motion, which is non linear is not suitable for long-term integration. Many transformations have emerged in the literature to stabilize the equations of motion either to reduce the accumulation of local numerical errors or allowing the use of large integration step sizes, or both in the transformed space. One such transformation is known as KS transformation by Kustaanheimo and Stiefel, who regularized the nonlinear Kepler equations of motion and reduced it into linear differential equations of a harmonic oscillator of constant frequency. The method of KS total energy element equations has been found to be a very powerful method for obtaining numerical as well as analytical solution with respect to any type of perturbing forces, as the equations are less sensitive to round off and truncation errors. The uniformly regular KS canonical equations are a particular canonical form of the KS differential equations, where all the ten KS Canonical elements αi and βi are constant for unperturbed motion. These equations permit the uniform formulation of the basic laws of elliptic, parabolic and hyperbolic motion. Using these equations, developed analytical solution for short term orbit predictions with respect to Earth's zonal harmonic terms J2, J3, J4. Further, these equations were utilized to include the canonical forces and analytical theories with air drag were developed for low eccentricity orbits (e < 0.2) with different atmospheric models. Using uniformly regular KS canonical elements developed analytical theory for high eccentricity (e > 0.2) orbits by assuming the atmosphere to be oblate only. In this paper a new non-singular analytical theory is developed for the motion of high eccentricity satellite orbits with oblate diurnally varying atmosphere in terms of the uniformly regular KS canonical elements. The analytical solutions are generated up to fourth-order terms using a new independent variable and c (a small parameter dependent on the flattening of the atmosphere). Due to symmetry, only two of the nine equations need to be solved analytically to compute the state vector and change in energy at the end of each revolution. The theory is developed on the assumption that density is constant on the surfaces of spheroids of fixed ellipticity ɛ (equal to the Earth's ellipticity, 0.00335) whose axes coincide with the Earth's axis. Numerical experimentation with the analytical solution for a wide range of perigee height, eccentricity, and orbital inclination has been carried out up to 100 revolutions. Comparisons are made with numerically integrated values and found that they match quite well. Effectiveness of the present analytical solutions will be demonstrated by comparing the results with other analytical solutions in the literature.
Mature orbital teratoma with an ectopic tooth and primary anophthalmos.
Chawla, Bhavna; Chauhan, Kanchan; Kashyap, Seema
2013-02-01
To describe the clinicopathologic features and management of an unusual case of orbital teratoma. A 7-year-old girl presented with a history of an orbital mass since birth. CT scan showed a large mass lesion involving the right orbit, with absence of the eyeball. An ectopic tooth was identified within the tumor. Lid-sparing exenteration surgery was performed. Histopathologic examination of the excised mass showed presence of elements from all three germ layers, consistent with a diagnosis of mature orbital teratoma. Normal ocular structures were not identified on histopathology. At one year follow-up, there was no tumor recurrence. We report an extremely rare and interesting case of a mature orbital teratoma, which was associated with primary anophthalmos and an ectopic tooth.
Space Construction Experiment Definition Study (SCEDS), part 2. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
A baseline Space Construction Experiment (SCE) concept is defined. Five characteristics were incorporated: (1) large space system (LSS) element test, (2) shuttle mission payload of opportunity, (3) attachment to Orbiter with jettison capability, (4) Orbiter flight control capabilities, and (5) LSS construction and assembly operations.
NASA Technical Reports Server (NTRS)
1978-01-01
The methodology and rationale used in the development of costs for engineering, manufacturing, testing and operating a low thrust system for placing automated shuttle payloads into earth orbits are described. Cost related information for the recommended propulsion approach is included.
Computer Controlled Optical Surfacing With Orbital Tool Motion
NASA Astrophysics Data System (ADS)
Jones, Robert A.
1985-11-01
Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by hand grinding and polishing, using small laps with orbital tool motion. However, this is a time consuming process unsuitable for large optical elements.
NASA Technical Reports Server (NTRS)
Glenn, G. M.
1976-01-01
The determination of the separation initial conditions (i.e. incidence angle) that maximize orbiter altitude at the ALT interface airspeed is considered. Optimum altitude airspeed profiles are generated for each orbiter incidence angle and tailcone configuration. Results show that the highest separation altitude does not result in the highest altitude at ALT interface airspeed. The altitude attainable at ALT interface airspeed should therefore be considered in the selection of the initial conditions (i.e. incidence angle). Without violating any known constraints, the incidence angles that maximize orbiter altitude at the ALT interface airspeeds are 7.0 deg for ALT free flight 1 and 5.5 deg for ALT free flight 6.
COTS Initiative Panel Discussion
2013-11-13
L-R: Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program, NASA; Gwynne Shotwell, President, SpaceX; Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group; Frank Slazer, Vice President of Space Systems, Aerospace Industries Association and Phil McAlister, Director of Commercial Spaceflight Development at NASA, participate in a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
Guidebook for analysis of tether applications
NASA Technical Reports Server (NTRS)
Carroll, J. A.
1985-01-01
This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.
General Relativistic Precession in Small Solar System Bodies
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Werner, Stephanie; Hoffmann, Volker; Asher, David; Vaubaillon, Jeremie; Hajdukova, Maria; Li, Gongjie
2016-10-01
Introduction: One of the greatest successes of the Einstein's General Theory of Relativity (GR) was the correct prediction of the precession of perihelion of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre (ω) can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Analytical Approach and Numerical Integrations: Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of ω. Numerical integrations were done with package MERCURY incorporating the GR code to test the same effects. Numerical approach showed the same interesting relationship (as shown by analytical theory) between values of ω and the peaks/dips in MOID values. Previous works have shown that GR precession suppresses Kozai oscillations and this aspect was verified using our integrations. There is an overall agreement between both analytical and numerical methods.Summary and Discussion: We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements). Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of orbits where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.
Implementation of a low-cost, commercial orbit determination system
NASA Astrophysics Data System (ADS)
Corrigan, Jim
1994-11-01
Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.
Implementation of a low-cost, commercial orbit determination system
NASA Technical Reports Server (NTRS)
Corrigan, Jim
1994-01-01
Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.
Satellite Power Systems /SPS/ - Overview of system studies and critical technology
NASA Technical Reports Server (NTRS)
Manson, S. V.
1980-01-01
Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.
Tumors masquerading in patients with thyroid eye disease.
Griepentrog, Gregory J; Burkat, Cat N; Kikkawa, Don O; Lucarelli, Mark J
2013-08-01
Thyroid eye disease (TED) is the most common cause of proptosis in adults. The external manifestations of TED are characteristic and the diagnosis is typically made without imaging. Although there are multiple descriptions of primary and secondary orbital tumors initially mistaken for TED in the literature, there are limited reports detailing the findings of patients with long-standing TED whom developed an orbital tumor at a later date. Herein, we present a 6-year retrospective multi-center report of three patients with long-standing TED who developed an initially unsuspected orbital or cavernous sinus tumor.
A satellite relative motion model including J_2 and J_3 via Vinti's intermediary
NASA Astrophysics Data System (ADS)
Biria, Ashley D.; Russell, Ryan P.
2018-03-01
Vinti's potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti's spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating J_2, J_3, and generally a partial J_4 in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti's solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti's solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti's solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the J_2 through J_5 terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim-Alfriend state transition matrix, which considers the J_2 perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
Huempfner-Hierl, Heike; Bohne, Alexander; Wollny, Gert; Sterker, Ina; Hierl, Thomas
2015-10-01
Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy. A finite element study simulating impact forces on the paramedian forehead in different grades was initiated. The set-up consisted of a high-resolution skull model with about 740 000 elements, a blunt impactor and was solved in a transient time-dependent simulation. Individual bone material parameters were calculated for each volume element to increase realism. Results showed stress propagation from the frontal impact towards the optic foramen and the chiasm even at low-force fist-like impacts. Higher impacts produced stress patterns corresponding to typical fracture patterns of the anterior skull base including the optic canal. Transient simulation discerned two stress peaks equalling oscillation. It can be concluded that even comparatively low stresses and oscillation in the optic foramen may cause micro damage undiscerned by CT or MRI explaining consecutive vision loss. Higher impacts lead to typical comminuted fractures, which may affect the integrity of the optic canal. Finite element simulation can be effectively used in studying head trauma and its clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Numerical black hole initial data with low eccentricity based on post-Newtonian orbital parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walther, Benny; Bruegmann, Bernd; Mueller, Doreen
2009-06-15
Black hole binaries on noneccentric orbits form an important subclass of gravitational wave sources, but it is a nontrivial issue to construct numerical initial data with minimal initial eccentricity for numerical simulations. We compute post-Newtonian orbital parameters for quasispherical orbits using the method of Buonanno, Chen and Damour, (2006) and examine the resulting eccentricity in numerical simulations. Four different methods are studied resulting from the choice of Taylor-expanded or effective-one-body Hamiltonians, and from two choices for the energy flux. For equal-mass, nonspinning binaries the approach succeeds in obtaining low-eccentricity numerical initial data with an eccentricity of about e=0.002 for rathermore » small initial separations of D > or approx. 10M. The eccentricity increases for unequal masses and for spinning black holes, but remains smaller than that obtained from previous post-Newtonian approaches. The effective-one-body Hamiltonian offers advantages for decreasing initial separation as expected, but in the context of this study also performs significantly better than the Taylor-expanded Hamiltonian for binaries with spin. For mass ratio 4 ratio 1 and vanishing spin, the eccentricity reaches e=0.004. For mass ratio 1 ratio 1 and aligned spins of size 0.85M{sup 2} the eccentricity is about e=0.07 for the Taylor method and e=0.014 for the effective-one-body method.« less
2015-10-27
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Eric K. Sutton 5d. PROJECT NUMBER 3001 5e. TASK NUMBER PPM00018035...principal components, hybrid model, helium model, neutral composition, low-Earth orbit 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...difficult force to determine and predict, in the orbit propagation model of low earth orbiting satellites [36]. The drag acceleration vector, ~a
The Generalized Sundman Transformation for Propagation of High-Eccentricity Elliptical Orbits
2002-01-01
or the Kustaanheimo - Stiefel transformation (Ref. 8). • n = 3/2 or dt = cr3/2ds. We shall focus on this transformation . • n = 2 or dt = cr2ds. The...Paper AAS 02-109 The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits Matthew Berry and...generalized Sundman transformation for propagation of high-eccentricity elliptical orbits 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Multipoint Geospace Science in 3D: The Paired Ionosphere-Thermosphere Orbiters(PITO) Mission
NASA Technical Reports Server (NTRS)
Clemmons, J.; Walterscheid, R.; Nigg, D.; Judnick, D.; Lang, J.; Spann, J.
2010-01-01
The science enabled by the Paired Ionosphere-Thermosphere Orbiters (PITO) mission is described and discussed. PITO has been designed to provide the concurrent, three-dimensional, multipoint measurements needed to advance geospace science while staying within a stringent resource envelope. The mission utilizes a pair of orbiting vehicles in eccentric, high-inclination, coplanar orbits. The orbits have arguments of perigee that differ by 180 degrees and are phased such that one vehicle is at perigee (200 km) while the second is at apogee (2000 km). Half an orbit later, the vehicles switch positions. Three complementary types of measurements exploit this scenario: local, in-situ measurements on both satellites, two-dimensional imaging from the higher satellite, and vertical sounders. The main idea is that two-dimensional context information for the low-altitude measurements is obtained by the high altitude imagers, while information on the third dimension is provided by vertical profiling. Such an observation system is capable of providing elements of global coverage, regional coverage, and concurrent coverage in three dimensions. Science goals are presented, as are the results of a detailed implementation plan, including several trade studies on key elements of the mission. The conclusion is that the mission would enable significant new understanding of the ionosphere-thermosphere system within a resource envelope that is consistent with that of NASA's Medium Explorer (MIDEX) line of science missions.
Angles-only, ground-based, initial orbit determination
NASA Astrophysics Data System (ADS)
Taff, L. G.; Randall, P. M. S.; Stansfield, S. A.
1984-05-01
Over the past few years, passive, ground-based, angles-only initial orbit determination has had a thorough analytical, numerical, experimental, and creative re-examination. This report presents the numerical culmination of this effort and contains specific recommendations for which of several techniques one should use on the different subsets of high altitude artificial satellites and minor planets.
Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia
1998-04-01
Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.
Determination of celestial bodies orbits and probabilities of their collisions with the Earth
NASA Astrophysics Data System (ADS)
Medvedev, Yuri; Vavilov, Dmitrii
In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.
An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.
2009-01-01
Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.
The Efficacy of Radiotherapy in the Treatment of Orbital Pseudotumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthiesen, Chance, E-mail: chance-matthiesen@ouhsc.ed; Bogardus, Carl; Thompson, J. Spencer
Purpose: To review institutional outcomes for patients treated with external-beam radiotherapy (EBRT) for orbital pseudotumor. Methods and Materials: This is a single-institution retrospective review of 20 orbits in 16 patients diagnosed with orbital pseudotumor that received EBRT at the University of Oklahoma, Department of Radiation Oncology. Treated patients had a median follow-up of 16.5 months. Results: Fifteen patients (93.7%) were initially treated with corticosteroids. Eight had recurrence after steroid cessation, six were unable to taper corticosteroids completely or partially, and one experienced progression of symptoms despite corticosteroid therapy. Fourteen patients (87.5%) initially responded to radiotherapy indicated by clinical improvement ofmore » preradiation symptoms and/or tapering of corticosteroid dose. Mean EBRT dose was 20 Gy (range, 14-30 Gy). Thirteen patients (81.2%) continued to improve after radiation therapy. Patient outcomes were complete cessation of corticosteroid therapy in nine patients (56.3%) and reduced corticosteroid dose in four patients (25%). Radiotherapy did not achieve long-term control for three patients (18.7%), who still required preradiation corticosteroid dosages. Three patients received retreatment(s) of four orbits, of which two patients achieved long-term symptom control without corticosteroid dependence. One patient received retreatment to an orbit three times, achieving long-term control without corticosteroid dependence. No significant late effects have been observed in retreated patients. Conclusions: Radiotherapy is an effective treatment for acute symptomatic improvement and long-term control of orbital pseudotumor. Orbital retreatment can be of clinical benefit, without apparent increase in morbidity, when initial irradiation fails to achieve complete response.« less
Initiation of small-satellite formations via satellite ejector
NASA Astrophysics Data System (ADS)
McMullen, Matthew G
Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, offering expanded area coverage through formation flight. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of love deployment velocities (on the order of meters per second). Motivated to address this shortcoming, a conceived satellite ejector would offer a significant orbit change by ejecting the satellite at higher deployment velocities (125-200 m/s). Focusing on the applications of the ejector, it is sought to bridge the gap in prior research by offering a method to initiate formation flight. As a precursor to the initiation, the desired orbit properties to initiate the formation are specified in terms of spacing and velocity change vector. From this, a systematic method is developed to find the relationship among velocity change vector, the desired orbit's orientation, and the spacing required to initiate the formation.
Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit.
Jeyakodi David, Jim Fletcher; Sharma, Ram Krishan
2014-01-01
The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days.
Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit
Jeyakodi David, Jim Fletcher; Sharma, Ram Krishan
2014-01-01
The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days. PMID:27437491
An aggressive primary orbital natural killer/T-cell lymphoma case: poor response to chemotherapy.
Marchino, Tizana; Ibáñez, Núria; Prieto, Sebastián; Novelli, Silvana; Szafranska, Justyna; Mozos, Anna; Graell, Xavier; Buil, José A
2014-01-01
Natural killer/T-cell lymphoma (NKTCL) and its presentation with extranodal orbital involvement as a single lesion are extremely rare. The aim of this article was to describe the presentation, diagnosis, and systemic treatment of a primary orbital NKTCL. A 67-year-old Caucasian woman presented with left exophthalmos, pain, periorbital swelling, and limited extrinsic ocular motility. Orbital cellulitis was suspected, but finally orbital biopsy was performed due to no response to initial antibiotic and anti-inflammatory standard treatment. The pathologic diagnosis was NKTCL. Systemic evaluations were negative. CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy was initiated, but after 2 cycles of treatment, tumoral progression was observed. SMILE (dexamethasone, methotrexate, ifosfamide, L-asparaginase, etoposide) rescue chemotherapy was then administered. Lymphoma progression was inevitable. She died 10 months later. Although more nasal NKTCL cases have been described, the nonnasal primary orbital NKTCL is an uncommon neoplasm with high mortality rate, despite the recent use of more potent chemotherapy regimens.
Optimal high- and low-thrust geocentric transfer
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Edelbaum, T. N.
1974-01-01
A computer code which rapidly calculates time optimal combined high- and low-thrust transfers between two geocentric orbits in the presence of a strong gravitational field has been developed as a mission analysis tool. The low-thrust portion of the transfer can be between any two arbitrary ellipses. There is an option for including the effect of two initial high-thrust impulses which would raise the spacecraft from a low, initially circular orbit to the initial orbit for the low-thrust portion of the transfer. In addition, the effect of a single final impulse after the low-thrust portion of the transfer may be included. The total Delta V for the initial two impulses must be specified as well as the Delta V for the final impulse. Either solar electric or nuclear electric propulsion can be assumed for the low-thrust phase of the transfer.
Tribometer for Lubrication Studies in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1998-01-01
The NASA Lewis Research Center has developed a new way to evaluate the liquid lubricants used in ball bearings in space mechanisms. For this evaluation, a liquid lubricant is exercised in the rolling contact vacuum tribometer shown in the photo. This tribometer, which is essentially a thrust bearing with three balls and flat races, has contact stresses similar to those in a typical preloaded, angular contact ball bearing. The rotating top plate drives the balls in an outward-winding spiral orbit instead of a circular path. Upon contact with the "guide plate," the balls are forced back to their initial smaller orbit radius; they then repeat this spiral orbit thousands of times. The orbit rate of the balls is low enough, 2 to 5 rpm, to allow the system to operate in the boundary lubrication regime that is most stressful to the liquid lubricant. This system can determine the friction coefficient, lubricant lifetime, and species evolved from the liquid lubricant by tribodegradation. The lifetime of the lubricant charge is only few micrograms, which is "used up" by degradation during rolling. The friction increases when the lubricant is exhausted. The species evolved by the degrading lubricant are determined by a quadrupole residual gas analyzer that directly views the rotating elements. The flat races (plates) and 0.5-in.-diameter balls are of a configuration and size that permit easy post-test examination by optical and electron microscopy and the full suite of modern surface and thin-film chemical analytical techniques, including infrared and Raman microspectroscopy and x-ray photoelectron spectroscopy. In addition, the simple sphere-on-a-flat-plate geometry allows an easy analysis of the contact stresses at all parts of the ball orbit and an understanding of the frictional energy losses to the lubricant. The analysis showed that when the ball contacts the guide plate, gross sliding occurs between the ball and rotating upper plate as the ball forced back to a smaller orbit radius. The friction force due to gross sliding is sensed by the piezoelectric force transducer behind the guide plate and furnishes the coefficient of friction for the system. This tribometer has been used to determine the relative lifetimes of Fomblin Z-25, a lubricant often used in space mechanisms, as a function of the material of the plates against which it was run. The balls were 440C steel in all cases; the plate materials were aluminum, chromium (Cr), 440C steel (17 wt % Cr), and 4150 steel (1 wt % Cr). As shown in the bar graph, the lifetime is greatest for the plate material with least chromium, thus implicating chromium as a tribochemically active element attacking Fomblin Z-25.
DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trani, Alessandro A.; Bressan, Alessandro; Mapelli, Michela
2016-11-01
Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N -body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk andmore » planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.« less
Space Shuttle Solid Rocket Booster Lightweight Recovery System
NASA Technical Reports Server (NTRS)
Wolf, Dean; Runkle, Roy E.
1995-01-01
The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.
Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan
2005-08-01
This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung
2016-01-01
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10−3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc– or V–porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials. PMID:26902156
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.
Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I; Lee, Hoonkyung
2016-02-23
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
NASA Astrophysics Data System (ADS)
Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, Chihye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung
2016-02-01
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10-3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.
Tracking an Exodus: Lost Children of the Dwarf Planet Haumea
NASA Astrophysics Data System (ADS)
Maggard, Steven; Ragozzine, Darin
2017-10-01
The orbital properties of Kuiper Belt Objects (KBOs) refine our understanding of the formation of the solar system. One object of particular interest is the dwarf planet Haumea which experienced a collision in the early stages of our solar system that ejected shards form its surface and spread them over a localized part of the Kuiper Belt. Detailed orbital integrations are required to determine the dynamical distances between family members, in the form of "Delta v" as measured from conserved proper orbital elements (Ragozzine & Brown 2007). In the past 10 years, the number of known KBOs has tripled; here, we perform dynamical integrations to triple the number of candidate Haumea family members. The resulting improved understanding of Haumea's family will bring us closer to understanding its formation. In order to place more secure estimates on the dynamical classification of Haumea family members (and KBOs generally), we use OpenOrb to perform rigorous Bayesian uncertainty propagation from observational uncertainty into orbital elements and then into dynamical classifications. We will discuss our methodology, the new Haumea family members, and some implications for the Haumea family.
Mission Options Scoping Tool for Mars Orbiters: Mass Cost Calculator (MC2)
NASA Technical Reports Server (NTRS)
Sturm, Eric J., II; Deutsch, Marie-Jose; Harmon, Corey; Nakagawa, Roy; Kinsey, Robert; Lopez, Nino; Kudrle, Paul; Evans, Alex
2007-01-01
Prior to developing the details of an advanced mission study, the mission architecture trade space is typically explored to assess the scope of feasible options. This paper describes the main features of an Excel-based tool, called the Mass-Cost-Calculator (MC2 ), which is used to perform rapid, high-level mass and cost options analyses of Mars orbiter missions. MC2 consists of a combination of databases, analytical solutions, and parametric relationships to enable quick evaluation of new mission concepts and comparison of multiple architecture options. The tool's outputs provide program management and planning teams with answers to "what if" queries, as well as an understanding of the driving mission elements, during the pre-project planning phase. These outputs have been validated against the outputs generated by the Advanced Projects Design Team (Team X) at NASA's Jet Propulsion Laboratory (JPL). The architecture of the tool allows for future expansion to other orbiters beyond Mars, and to non-orbiter missions, such as those involving fly-by spacecraft, probes, landers, rovers, or other mission elements.
NASA Astrophysics Data System (ADS)
Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.
2018-06-01
Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.
NASA Astrophysics Data System (ADS)
Ehrhorn, B.; Azari, D.
Low Earth Orbit (LEO) and Orbital Debris tracking have become considerably important with regard to Space Situational Awareness (SSA). This paper discusses the capabilities of autonomous LEO and Orbital Debris Tracking Systems using commercially available (mid aperture 20-24 inch) telescopes, tracking gimbals, and CCD imagers. RC Optical Systems has been developing autonomous satellite trackers that allow for unattended acquisition, imaging, and orbital determination of LEOs using low cost COTS equipment. The test setup from which we are gathering data consists of an RC Optical Systems Professional Series Elevation over Azimuth Gimbal with field de-rotation, RC Optical Systems 20 inch Ritchey-Chretien Telescope coupled to an e2v CCD42-40 CCD array, and 77mm f/4 tracking lens coupled to a KAF-0402ME CCD array. Central to success of LEO acquisition and open loop tracking is accurate modeling of Gimbal and telescope misalignments and flexures. Using pro-TPoint and a simple automated mapping routine we have modeled our primary telescope to achieve pointing and tracking accuracies within a population standard deviation of 1.3 arc-sec (which is 1.1 arc-sec RMS). Once modeled, a mobile system can easily and quickly be calibrated to the sky using a simple 6-10 star map to solve for axis tilt and collimation coefficients. Acquisition of LEO satellites is accomplished through the use of a wide field imager. Using a 77mm f/4 lens and 765 x 510 x 9mu CCD array yields a 1.28 x 0.85 degree field of view in our test setup. Accurate boresite within the acquisition array is maintained throughout the full range of motion through differential tpoint modeling of the main and acquisition imagers. Satellite identification is accomplished by detecting a stationary centroid as a point source and differentiating from the background of streaked stars in a single frame. We found 100% detection rate of LEO with radar cross sections (RCS) of > 0.5 meter*meter within the acquisition array, and approximately 90% within 0.25 degrees of center. Tests of open loop tracking revealed a vast majority of satellites remain within the main detector area of 0.19 x 0.19 degrees after initial centering. Once acquired, the satellite is centered within the main imager via automated adjustment of the epoch and inclination using non-linear least square fit. Thereafter, real time satellite position is sequentially determined and recorded using the main imaging array. Real time determination of the SGP4 Keplerian elements are solved using non-linear least squares regression. The tracking propagator is periodically updated to reflect the solved Keplerian elements in order to maintain the satellite position near image center. These processes are accomplished without the need for user intervention. Unattended fully autonomous LEO satellite tracking and orbital determination simply requires scheduling of appropriate targets and scripted command of the tracking system.
MagLifter Site Investigation and Implementation Strategies
NASA Technical Reports Server (NTRS)
Burke, Pamela; Slaughter, Maynard; Beer, C. Neil
1995-01-01
MagLifter, as defined here, is an advanced, earth-bound catapult system to provide the initial lift for earth orbiting vehicles to reduce or eliminate the need for multistage propulsion, thus reducing the cost of orbital space flight. It is presumed that magnetic levitation will catapult the vehicle to a desired initial velocity sufficient for reaching orbit with the vehicles own engines. Of necessity, the system must be located on and around a mountain with sufficient relief to allow the catapult to accelerate the launch vehicle to a sufficient speed in the desired direction to allow it to reach orbit. Such a mountain site must meet criteria consistent with current and future space launch needs and conditions. It is the purpose of this report to set forth preliminary criteria for choosing a suitable maglifter site. The report is divided into four major sections: (1) Assumed Launch System and Flight Vehicle Characteristics; (2) Task 1.A - Initial Site Selection Criteria; (3) Conclusions; and (4) Appendix - Phases of the Site Selection Process.
Consideration of lifetime limitation for spent stages in GTO
NASA Astrophysics Data System (ADS)
Sharma, R.; Bandyopadhyay, P.; Adimurthy, V.
It is well known that the time of launch during a day can have substantial effect in determining the orbital life of an object placed in a highly elliptic orbit like GTO (Ref.1). One of the proposed criteria to ensure stable space debris environment is to place the objects in orbits with limited lifetime of up to 25 years. This paper presents the investigations made in this connection for the Launch of GSLV-D1 on April 18, 2001. The decay of objects from elliptic orbits of moderate eccentricity is well understood in the literature where the apogee height decreases fast resulting in the circularization of orbits, which decays gradually under the effect of drag till the reentry. The evolution of objects in GTO orbits, whose perigee altitude falls between 180 km to 650 km and apogee is near the geo-stationary altitudes (35000 km to 36000 km), is determined by a complex interplay of different kind of forces, like upper atmospheric drag and luni-solar gravitation. These orbits are characterized by periodic changes in the altitude of the perigee caused by gravitational perturbations of the moon and the sun. The initial orientation of the orbit just after the launch with respect to the sun and the moon predominantly determines the subsequent histories of the orbital evolution. Therefore, the launch time plays an important role. The long time evolution of objects in GTO orbits can fall into two broad categories; (a) Decay predominantly by luni-solar gravity effect and (b) Decay by combination of atmospheric drag and luni-solar perturbations. In the former case, the perigee is driven below the decay altitude and circularization of the orbit does not take place before the reentry. In the later case, the evolution has phases of complex interplay of drag and luni-solar perturbations. Atmospheric drag generates a retarding force on the space object, but the effects of the sun and the moon on the object are more complex and can result in either increase or decrease in perigee altitude. It is interesting to understand the basic physics of the luni-solar perturbations. A few typical examples presented here illustrate this effect very clearly. It is interesting to note that in GTO orbits the interplay of drag and luni- solar gravity effects can give rise to situations where more drag get translated into more lifetime. Orbital evolution study of the third stage of GSLV-D1, which falls into the second category described above, provides us with a few interesting observations (Ref.2). The orbital lifetime can vary from around 7 months to well beyond 50 years depending on the launch time during the day of launch. A study with respect to few other days during the year to find the effect of sun and moon initial locations on orbital life is also included. For the present launch, the orbital life is around 600 days, which is well within the widely accepted criterion on the lifetime of any manmade space object. It is noted that the osculating perigee altitude decreases and apogee altitude increases when the object comes near the perigee due to oblate earth effects. The decrease in perigee is about 3.5 km and the increase in apogee is 160 km. Utilizing 175 Two Line Element (TLE) sets of the object available in the first 100 days of its life, the suitable ballistic coefficient is estimated and simulations up to re-entry are done. The re-entry is predicted between 7 Nov 2002 and 29 Dec 2002. A continuous monitoring with the available orbital data shows that the predictions continue to be within the above bounds. Ref.1. King-Hele, D.G., "Lifetime Predictions for Satellites in Low inclination Transfer Orbits", Journal of the British Interplanetary Society, Vol.35, pp.339-344, 1982 Ref.2. Priyankar Bandhopadhyay, Sharma, R.K., Adimurthy,V., " The Orbiting Third Stage of GSLV-D1 as Space Debris", VSSC/AERO/TR-001/2001, Vikram Sarabhai Space Centre, Trivandrum, 2001
Scheduler for monitoring objects orbiting earth using satellite-based telescopes
Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W
2015-04-28
An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.
Monitoring objects orbiting earth using satellite-based telescopes
Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.
2015-06-30
An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.
Dealing with Uncertainties in Initial Orbit Determination
NASA Technical Reports Server (NTRS)
Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato
2015-01-01
A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.
Weight-lattice discretization of Weyl-orbit functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrivnák, Jiří, E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca; Walton, Mark A., E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments andmore » labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.« less
ORBITAL SOLUTIONS AND ABSOLUTE ELEMENTS OF THE ECLIPSING BINARY EE AQUARII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronka, Marissa Diehl; Gold, Caitlin; Sowell, James R.
2010-04-15
EE Aqr is a 7.9 mag Algol variable with a 12 hr orbital period. The Wilson-Devinney program is used to simultaneously solve 11 previously published light curves together with two existing radial velocity curves. The resulting masses are M {sub 1} = 2.24 {+-} 0.13 M {sub sun} and M {sub 2} = 0.72 {+-} 0.04 M {sub sun}, and the radii are R {sub 1} = 1.76 {+-} 0.03 R {sub sun} and R {sub 2} = 1.10 {+-} 0.02 R {sub sun}. The system has the lower-mass component completely filling its Roche lobe. Its distance from Hipparcos observationsmore » is 112 {+-} 10 pc. An improved ephemeris is derived, and no deviations in the period over time were seen. Light and velocity curve parameters, orbital elements, and absolute dimensions are presented, plus a comparison is made with previous solutions.« less
Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives.
De Simone, B C; Mazzone, G; Pirillo, J; Russo, N; Sicilia, E
2017-01-18
The influence of halogen atom substitution (Br and I), in different amounts and positions in an aza-BODIPY skeleton, on the photophysical properties of some aza-BODIPY derivatives has been investigated by using density functional theory and its time-dependent extension. The heavy atom effect on excitation energies, singlet-triplet energy gaps and spin-orbit matrix elements has been considered. The maximum absorption within the therapeutic window has been confirmed for all the aza-BODIPY derivatives. The feasible intersystem spin crossing pathways for the population of the lowest triplet state, that will depend on the values of the spin-orbit matrix elements, the energy gap as well as the orbital composition of the involved states have been found to most likely involve the S 1 and T 1 or T 2 states. The outcomes of computations support the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy.
NASA Astrophysics Data System (ADS)
Guillot, T.; Santos, N. C.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.
2006-07-01
Context.Nine extrasolar planets with masses between 110 and 430 M_⊕ are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately.Aims.We seek to better understand the composition of transiting extrasolar planets by considering them as an ensemble, and by comparing the obtained planetary properties to that of the parent stars.Methods.We use evolution models and constraints on the stellar ages to derive the mass of heavy elements present in the planets. Possible additional energy sources like tidal dissipation due to an inclined orbit or to downward kinetic energy transport are considered.Results.We show that the nine transiting planets discovered so far belong to a quite homogeneous ensemble that is characterized by a mass of heavy elements that is a relatively steep function of the stellar metallicity, from less than 20 earth masses of heavy elements around solar composition stars, to up to ~100 M_⊕ for three times the solar metallicity (the precise values being model-dependant). The correlation is still to be ascertained however. Statistical tests imply a worst-case 1/3 probability of a false positive.Conclusions.Together with the observed lack of giant planets in close orbits around metal-poor stars, these results appear to imply that heavy elements play a key role in the formation of close-in giant planets. The large masses of heavy elements inferred for planets orbiting metal rich stars was not anticipated by planet formation models and shows the need for alternative theories including migration and subsequent collection of planetesimals.
NASA Technical Reports Server (NTRS)
Bond, Victor R.; Fraietta, Michael F.
1991-01-01
In 1961, Sperling linearized and regularized the differential equations of motion of the two-body problem by changing the independent variable from time to fictitious time by Sundman's transformation (r = dt/ds) and by embedding the two-body energy integral and the Laplace vector. In 1968, Burdet developed a perturbation theory which was uniformly valid for all types of orbits using a variation of parameters approach on the elements which appeared in Sperling's equations for the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by embedding the total energy (which is a constant when the potential function is explicitly dependent upon time.) The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In the process, another element which is proportional to a component of the angular momentum was introduced. Recently trajectories computed during numerical studies of atmospheric entry from circular orbits and low thrust beginning in near-circular orbits exhibited numerical instability when solved by the method of Bond and Gottlieb (1989) for long time intervals. It was found that this instability was due to secular terms which appear on the righthand sides of the differential equations of some of the elements. In this paper, this instability is removed by the introduction of another vector integral called the delta integral (which replaces the Laplace Vector) and another scalar integral which removes the secular terms. The introduction of these integrals requires a new derivation of the differential equations for most of the elements. For this rederivation, the Lagrange method of variation of parameters is used, making the development more concise. Numerical examples of this improvement are presented.
Autonomous formation flying based on GPS — PRISMA flight results
NASA Astrophysics Data System (ADS)
D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio
2013-01-01
This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.
NASA Astrophysics Data System (ADS)
Aleksandrov, D. G.; Filipov, F. I.
1988-11-01
A method is proposed for calculation of the electron band structure of multicomponent semiconductor solid solutions. Use is made of virtual atomic orbitals formed from real orbitals. The method represents essentially an approximation of a multicomponent solid solution by a binary one. The matrix elements of the Hamiltonian are obtained in the methods of linear combinations of atomic and bound orbitals. Some approximations used in these methods are described.
Determination of Precise Satellite Orbital Position Using Multi-Band GNSS Signals
2017-10-16
AFRL-AFOSR-JP-TR-2018-0002 Determination of Precise Satellite Orbital Position Using Multi -Band GNSS Signals Erry Gunawan NANYANG TECHNOLOGICAL...Position Using Multi -Band GNSS Signals 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-4041 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Erry...Grant FA2386-15-1-4041 “Determination of Precise orbital position using multi -band GNSS signals” October 13, 2017 Name of Principal Investigators