Zhou, Zhenming; Liu, Qidi; Li, Shuwen; Li, Fei; Zou, Jing; Liao, Xiaobin; Yuan, Baoling; Sun, Wenjie
2018-04-26
This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.
NASA Astrophysics Data System (ADS)
Padhi, S.; Tokunaga, T.
2017-12-01
Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.
Stability of urea in solution and pharmaceutical preparations.
Panyachariwat, Nattakan; Steckel, Hartwig
2014-01-01
The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.
Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.
Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe
2015-01-01
The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). Copyright © 2014 Elsevier Ltd. All rights reserved.
Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik
2017-09-15
The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.
The initial freezing point temperature of beef rises with the rise in pH: a short communication.
Farouk, M M; Kemp, R M; Cartwright, S; North, M
2013-05-01
This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.
An analysis of nitrification during the aerobic digestion of secondary sludges.
Bhargava, D S; Datar, M T
1989-01-01
Investigations were undertaken to study the occurrence and progress of nitrification during aerobic digestion of activated sludge in a wide range of initial concentrations of total solids (1000 to 80 000 mg litre(-1), initial pH range of 4.5 to 10.4 and digestion temperature range of 5 degrees to 60 degrees C. Batch aerobic digestion studies on activated sludge grown on wastewater (enriched with organic solids from human excretal material) indicate that almost complete elimination of the 'biodegradable' matter of the activated sludge was one of the essential prerequisites to initiate nitrification. Favourable ranges of temperature and pH for nitrification were observed to be 25 degrees to 30 degrees C and 6.0 to 8.3, respectively. With all favourable conditions, a minimum period of about 2 days was necessary for population build-up of genera Nitrosomonas and Nitrobacter, and to initiate nitrification. Nitrate formation invariably lagged behind nitrite formation, but under certain conditions both phases of nitrification were observed to progress hand in hand.
Temporal and spatial variability of rainfall pH
Richard G. Semonin
1977-01-01
The distribution of average rainwater pH over an area of 1,800 km² containing 81 collectors was determined from 25 storm events. The areal average of the data was pH 4.9, with a range of values from 4.3 to 6.8. A single storm event was studied to determine the change of pH as a function of time. The initial rain was pH 7.1, decreasing to 4.1. An excellent...
Effect of Sodium Chloride and pH on Enterotoxin C Production
Genigeorgis, Constantin; Foda, Mohamed S.; Mantis, Antony; Sadler, Walter W.
1971-01-01
Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts. PMID:5574320
Synergistic effect of ozonation and ionizing radiation for PVA decomposition.
Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong
2015-08-01
Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Croxton, A.; Wikfors, G. H.
2012-12-01
Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.
Good, A.B.; Schroder, L.J.
1984-01-01
Simulated precipitation samples containing 16 metal ions were prepared at 4 pH values. Absorptive characteristics of polypropylene, polyethylene, and polyester/polyolefin sacks were evaluated at pH 3.5, 4.0, 4.5, and 5.0. Simulated precipitation was in contact with the sacks for 17 days, and subsamples were removed for chemical analysis at 3, 7, 10, 14, and 17 days after initial contact. All three types of plastic sacks absorbed Fe throughout the entire pH range. Polypropylene and polyethylene absorbed Pb throughout the entire pH range; polyester/polyolefin sacks absorbed Pb at pH 4.0 or greater. All plastic sacks also absorbed Cu, Mo, and V at pH 4.5 and 5.0. Leaching the plastic sacks with 0.7 percent HNO3 did not result in 100 percent of Cu, Fe, Pb, and V. These sacks would be suitable collection vessels for Ba, Be, Ca, Cd, Co, Li, Mg, Mn, Na Sr and Zn in precipitation through the pH range of 3.5 to 5.0.
Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.
Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu
2009-07-01
External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.
The influence of pH on biotite dissolution and alteration kinetics at low temperature
Acker, James G.; Bricker, O.P.
1992-01-01
Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Z.; Calik, A.
1999-03-01
In this study a comparative biosorption of iron(III)-cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)-cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)-cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)-cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R.arrhizus at 1,996.2 mg/L initial iron(III)-cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/Lmore » initial iron(III)-cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.« less
Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi
2014-01-01
Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.
pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas)
Suquet, Marc; Malo, Florent; Queau, Isabelle; Pignet, Patricia; Ratiskol, Dominique; Le Grand, Jacqueline; Huber, Matthias; Cosson, Jacky
2018-01-01
ABSTRACT Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions) and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster, Crassostrea gigas. The acidic pH of the gonad (5.82±0.22) maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe) when released in seawater (SW). At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi) of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na+-free artificial seawater (ASW) was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na+/H+ exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰), and pH values above 7.5 (within a range of 4.5 to 9.5). PMID:29483075
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-06-02
Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.
Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha
2014-04-01
The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.
Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium.
Sannasi, P; Kader, J; Ismail, B S; Salmijah, S
2006-03-01
This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).
Decomposition of 2,4,6-trinitrotoluene (TNT) by gamma irradiation.
Lee, Byungjin; Lee, Myunjoo
2005-12-01
The purpose of this study was to evaluate the potential of gamma irradiation to decompose 2,4,6-trinitrotoluene (TNT) in an aqueous solution; the concentration range of the TNT solution was 0.11-0.44 mmol/L. The decomposition rate of TNT by gamma irradiation was pseudo-first-order kinetic over the applied initial concentrations. The dose constant was strongly dependent on the initial concentration of TNT. Increasing the concentration of dissolved oxygen in the solution was more effective on the decomposition of TNT as well as its mineralization. The required irradiation dose to remove 90% of initial TNT (0.44 mmol/L) was 58, 41, 32, 28, and 25 kGy at the dissolved oxygen concentration of 0.025, 0.149, 0.3, 0.538, and 0.822 mmol/L, respectively. However, TOC still remained as 30% of the initial TOC (3.19 mmol/L) when 200 kGy irradiation dose was applied to the TNT solution (0.44 mmol/L) containing dissolved oxygen of 0.822 mmol/L. The removal of the TNT was more efficient at a pH below 3 and at a pH above 11 than at neutral pH (pH 5-9). The required irradiation dose to remove over 99% of the initial TNT (0.44 mmol/L) was 39, 76, and 10 kGy at pH 2, 7, and 13, respectively. The dose constant was increased 1.6-fold and over 15.6-fold at pH 2 and 13, respectively, compared to that at pH 7. When an irradiation dose of 200 kGy was applied, the removal efficiencies of the TOC (initial concentration 3.19 mmol/L) were 91, 46, and 53% at pH 2, 7, and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of TNT, and glyoxalic acid and oxalic acid were detected as organic byproducts.
Preliminary screening oxidative degradation methyl orange using ozone/ persulfate
NASA Astrophysics Data System (ADS)
Aqilah Razali, Nur; Zulzikrami Azner Abidin, Che; An, Ong Soon; Ridwan, Fahmi Muhammad; Haqi Ibrahim, Abdul; Nasuha Sabri, Siti; Huan Kow, Su
2018-03-01
The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.
Temperature and frequency characteristics of low-loss MnZn ferrite in a wide temperature range
NASA Astrophysics Data System (ADS)
Sun, Ke; Lan, Zhongwen; Yu, Zhong; Xu, Zhiyong; Jiang, Xiaona; Wang, Zihui; Liu, Zhi; Luo, Ming
2011-05-01
A low-loss Mn0.7Zn0.24Fe2.06O4 ferrite has been prepared by a solid-state reaction method. The MnZn ferrite has a high initial permeability, μi (3097), a high saturation induction, Bs (526 mT), a high Curie temperature, Tc (220 °C), and a low core loss, PL (≤ 415 kW/m3) in a wide temperature (25-120 °C) and frequency (10-100 kHz) range. As the temperature increases, an initial decrease followed by a subsequent increase of hysteresis loss, Ph, and eddy current loss, Pe is observed. Both Ph and Pe increase with increasing frequency. When f ≥ 300 kHz, a residual loss, Pr, appears. Pe increases with increasing temperature and frequency. The temperature and frequency dependence of Ph can be explained by irreversible domain wall movements, Pe by the skin effect, and Pr by domain wall resonance, respectively.
Inactivation of Mycobacterium avium with free chlorine.
Luh, Jeanne; Mariñas, Benito J
2007-07-15
The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.
Adsorption of arsenic from aqueous solution using magnetic graphene oxide
NASA Astrophysics Data System (ADS)
Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.
2017-06-01
A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.
NASA Astrophysics Data System (ADS)
Che Zuhar, C. N. S.; Lutpi, N. A.; Idris, N.; Wong, Y. S.; Tengku Izhar, T. N.
2018-03-01
In this study, mesophilic biohydrogen production by a mixed culture, obtained from a continuous anaerobic reactor treating molasses effluent from sugarcane bagasse, was improved by using granular activated carbon (GAC) as the carrier material. A series of batch fermentation were performed at 37°C by feeding the anaerobic sludge bacteria with molasses to determine the effect of initial pH in the range of 5.5 to 7.5, and the effect of repeated batch cultivation on biohydrogen production. The enrichment of granular activated carbon (GAC) immobilised cells from the repeated batch cultivation were used as immobilised seed culture to obtain the optimal initial pH. The cumulative hydrogen production results from the optimal pH were fitted into modified Gompertz equation in order to obtained the batch profile of biohydrogen production. The optimal hydrogen production was obtained at an initial pH of 5.5 with the maximum hydrogen production (Hm) was found to be 84.14 ml, and maximum hydrogen production rate (Rm) was 3.63 mL/h with hydrogen concentration of 759 ppm. The results showed that the granular activated carbon was successfully enhanced the biohydrogen production by stabilizing the pH and therefore could be used as a carrier material for fermentative hydrogen production using industrial effluent.
Investigation of hexavalent chromium sorption in serpentine sediments
NASA Astrophysics Data System (ADS)
Mpouras, Thanasis; Chrysochoou, Maria; Dermatas, Dimitris
2017-02-01
In this study the removal of hexavalent chromium (Cr6 +) by serpentine sediments was investigated in order to delineate Cr6 + sorption behavior in aquifers with ultramafic geologic background. Batch experiments were conducted in order to determine the influence of several parameters on Cr6 + removal, including the pH of the sediment solution, mineralogy, sediment's particle size and Cr6 + initial concentration. The results showed that Cr6 + removal was due to both adsorption and reduction phenomena. Reduction was attributed to the presence of a magnetic fraction in the sediment, mostly related to magnetite, which contributed almost 50% of the total removal in the pH range 3-7. Adsorption behavior was dominated by the finer sediment fraction (d < 0.075 mm). The amount of Cr6 + adsorbed was constant in the pH range 3-7, while it decreased sharply in the range 7-8.5. Cr6 + adsorption was found to increase and decrease proportionally with increasing initial Cr6 + concentration of and particle size, respectively. The linear Langmuir and Freundlich adsorption isotherms were used to describe the experimental data, with Freundlich providing a better fit to determine distribution factors for transport modeling.
Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.
Chojnacka, Katarzyna
2005-04-01
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Many times the start up of granular activated carbon adsorption systems for the control of organic contaminants in wastewater cm exhibit unacceptable increases in the adscurber effluent pH. Experience shows that the duration of the pH increase ranges from several hours to several days, during which time several hundred bed volumes of water can be discharged with a pH in excess of 9. Laboratory studies have identified the cause of the pH rise as an interaction between the naturally occurring anions and protons ar the water and the carbon surface. The interaction can be described as an ion exchange typemore » of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. Capacities of the carbon for the anions range from 2 to 9 mg/g GAC, depending upon the water characteristics, the carbon type, the nature of the anion and its influent concentration. These studies have shown de the anion sorption and resulting pH increase is independent of the raw material used for die activated carbon production, e.g. bituminous or sub-bituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface rather than the water chemistry. The change to the carbon surface is accomplished through a controlled oxidation process. This process provides a more acidic carbon surface with a reduced affinity for the anions in the waste water. As a result, the pH excursions above 9 are eliminated and the initial effluent from the adsorption system can be discharged without further treatment.« less
Xu, Yin; Li, Xiaoyi; Sun, Dezhi
2014-09-01
Catalytic mechanism of cationic red GTL at wide pH using the Mo-Zn-Al-O nanocatalyst under room conditions was investigated. The experimental results indicate that initial pH significantly affected the removal of cationic red GTL, the removal of COD, the pH value and residual oxygen in the reaction. In the range of pH value from 4 to 10, decolorization of cationic red GTL was almost above 90%. COD removal efficiency was enhanced with the decrease of pH in CWAO process and 79% of the COD was removed at pH 4.0, whereas only 57% COD removal was observed at pH 10.0. The terminal pH was in the range of 5.0-6.0 and the highest terminal concentrations of aqueous oxygen with 5.5 mg/L were observed at pH = 4.0. The radical inhibition experiments also carried out and the generation of *OH and 1O2 in catalytic wet air oxidation process were detected. It was found that the degradation of cationic red GTL occurs mainly via oxidation by 1O2 radical generated by Mo-Zn-Al-O nanocatalyst under acid conditions and *OH radical under alkaline conditions.
Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni
2010-01-01
Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U mL(-1) or 300 Ug(-1) of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL I', II', III', IV', and VII'. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35 degrees C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45 degrees C. Crude enzyme from SmF and PL III' showed thermophilic profiles of activity, with maximum activity at 60 and 55 degrees C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0-10.0 and PL III was most stable in the pH range 4.0-7.0. Crude enzyme from SmF retained 70%-80% of its maximum activity in the acid-neutral pH range (4.0-7.0), but PIII showed high stability at alkaline pH (7.5-9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55 degrees C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes.
Santarpia, R P; Cho, M I; Pollock, J J
1990-08-01
Purified synthetic salivary histidine-rich polypeptides, HRPs 2, 3, 4, 5, and 6, were observed to inhibit Candida albicans blastospore viability at yeast cell concentrations ranging from 10(2) to greater than 10(6) colony forming units per ml. Among the HRPs, HRP-4 was the best inhibitor with significant killing activity noted at a peptide concentration of 0.5 microgram per ml. Antifungal potency under growth conditions was observed to be dependent upon pH. In contrast, killing did not vary throughout the pH range tested under non-growth conditions. Electron microscopy results demonstrated HRP damage at pH 5 which appeared to be initiated at the membrane. At pH 7.4, micrographs revealed clear evidence of intracellular destruction suggesting more extensive damage at neutral as compared to acidic pH. These results suggest that within the changing realm of the oral cavity, the HRPs would be expected to be potent killers of C. albicans.
Afforestation neutralizes soil pH.
Hong, Songbai; Piao, Shilong; Chen, Anping; Liu, Yongwen; Liu, Lingli; Peng, Shushi; Sardans, Jordi; Sun, Yan; Peñuelas, Josep; Zeng, Hui
2018-02-06
Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions. Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive. Here we investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China. We find significant soil pH neutralization by afforestation-afforestation lowers pH in relatively alkaline soil but raises pH in relatively acid soil. The soil pH thresholds (T pH ), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3. These findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity.
Skopp, Gisela; Pötsch, Lucia
2004-01-01
Preanalytical stability of a drug and its major metabolites is an important consideration in pharmacokinetic studies or whenever the analyte pattern is used to estimate drug habits. Firstly, the stability of free and glucuronidated 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH, THCCOOglu) in authentic urine samples was investigated. Random urine samples of cannabis users (n = 38) were stored at -20, 4, and 20 degrees C up to 15 days and up to 5 days at 40 degrees C, and alterations of the analyte pattern during storage were followed by liquid chromatography-tandem mass spectrometry. Secondly, the influence of pH (range 5.0-8.0) on the stability of the analytes was studied using spiked urine to elucidate the results obtained from authentic samples. In authentic urine samples, the initial pH ranged from 5.1 to 8.8. The glucuronide was found to be highly labile at a storage temperature of 4 degrees C and above. Initially, 18 urine samples tested positive for THCCOOH. After 2 days storage at 20 degrees C, THCCOOH was detectable in a further 4 samples, and 7 more samples tested positive for THCCOOH (5-81 ng/mL) after 15 days. Depending on time and temperature, the glucuronide concentration decreased, resulting in an increase of THCCOOH concentration. However, a loss in mean total THCCOOH concentration was found, which was significantly higher in deteriorated samples than in samples without signs of deterioration after 15 days of storage at 20 degrees C. In the drug-free urine sample separately spiked with THCCOOglu or THCCOOH, the investigations on the stability of the target analytes at various pH values revealed that THCCOOH was stable at pH 5.0. At higher pH values, its concentration slightly decreased with time, and about 69% of the initial THCCOOH concentration was still present at pH 8.0 on day 5. THCCOOglu concentrations rapidly decreased with increasing pH value. For example, only 72% of the initial THCCOOglu concentration could be detected at pH 5.0 on day 1. Degradation of the glucuronide resulted in formation of THCCOOH, which was observed even at pH 5.0. In light of the present findings, advanced forensic interpretations based on the presence of THCCOOH or the pattern of THCCOOH and THCCOOglu in stored urine samples seems questionable.
Behavior of decomposition of rifampicin in the presence of isoniazid in the pH range 1-3.
Sankar, R; Sharda, Nishi; Singh, Saranjit
2003-08-01
The extent of decomposition of rifampicin in the presence of isoniazid was determined in the pH range 1-3 at 37 degrees C in 50 min, the mean stomach residence time. With increase in pH, the degradation initially increased from pH 1 to 2 and then decreased, resulting in a bell-shaped pH-decomposition profile. This showed that rifampicin degraded in the presence of isoniazid to a higher extent at pH 2, the maximum pH in the fasting condition, under which antituberculosis fixed-dose combination (FDC) products are administered. At this pH and in 50 min, rifampicin decomposed by approximately 34%, while the fall of isoniazid was 10%. The extent of decomposition for the two drugs was also determined in marketed formulations, and the values ranged between 13-35% and 4-11%, respectively. The extents of decomposition at stomach residence times of 15 min and 3 h were 11.94% and 62.57%, respectively, for rifampicin and 4.78% and 11.12%, respectively, for isoniazid. The results show that quite an extensive loss of rifampicin and isoniazid can occur as a result of interaction between them in fasting pH conditions. This emphasizes that antituberculosis FDC formulations, which contain both drugs, should be designed in a manner that the interaction of the two drugs is prevented when the formulations are administered on an empty stomach.
NASA Astrophysics Data System (ADS)
Anah, L.; Astrini, N.
2017-03-01
The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.
Gallegos, T.J.; Han, Y.-S.; Hayes, K.F.
2008-01-01
This study investigates the removal of As(III) from solution using mackinawite, a nanoparticulate reduced iron sulfide. Mackinawite suspensions (0.1-40 g/L) effectively lower initial concentrations of 1.3 ?? 10 -5 M As(III) from pH 5-10, with maximum removal occurring under acidic conditions. Based on Eh measurements, it was found that the redox state of the system depended on the mackinawite solids concentration and pH. Higher initial mackinawite concentrations and alkaline pH resulted in a more reducing redox condition. Given this, the pH edge data were modeled thermodynamically using pe (-log[e-]) as a fitting parameter and linear pe-pH relationships within the range of measured Eh values as a function of pH and mackinawite concentration. The model predicts removal of As(III) from solution by precipitation of realgar with the formation of secondary oxidation products, greigite or a mixed-valence iron oxide phase, depending on pH. This study demonstrates that mackinawite is an effective sequestration agent for As(III) and highlights the importance of incorporating redox into models describing the As-Fe-S-H2O system. ?? 2008 American Chemical Society.
Sol-gel synthesis of nanosized titanium dioxide at various pH of the initial solution
NASA Astrophysics Data System (ADS)
Dorosheva, I. B.; Valeeva, A. A.; Rempel, A. A.
2017-09-01
Titanium dioxide (TiO2) was synthesized by sol-gel method at different values of pH = 3, 7, 8, 9, or 10. X-ray phase analysis has shown that in an acid rout an anatase phase was crystallized, and in an alkaline rout an amorphous phase of TiO2 was achieved. After annealing for 4 hours at 350 °C, all samples was transformed in the anatase phase. The particle size in the different samples varies from 7 to 49 nm depending on the pH. The diffuse reflection spectra revealed a high value of the band gap in the range from 3.2 to 3.7 eV and its narrowing after annealing to the range from 3.2 to 3.5 eV.
Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni
2010-01-01
Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U mL−1 or 300 Ug−1 of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35°C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45°C. Crude enzyme from SmF and PL III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55°C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0), but PIII showed high stability at alkaline pH (7.5–9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55°C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes. PMID:20689719
Shimatani, Tomohiko; Inoue, Masaki; Kuroiwa, Tomoko; Xu, Jing; Mieno, Hiroshi; Nakamura, Masuo; Tazuma, Susumu
2006-01-01
To improve clinical outcomes of the initial therapy for gastroesophageal reflux disease, intragastric pH should be above 4.0 for more than 20 hours a day (83.3%) and nocturnal gastric acid breakthrough, defined as 60 continuous minutes of intragastric pH below 4.0 at night, should be inhibited. A "step-down" therapy sometimes fails because of insufficient acid suppression. Therefore we compared the acid-suppressive effects of proton pump inhibitors. This was a prospective, randomized, open-label, 8-way crossover study. In 9 healthy Helicobacter pylori-negative cytochrome P450 (CYP) 2C19 homozygous extensive metabolizers, intragastric pH was measured for 24 hours on day 7 of treatment with rabeprazole, omeprazole, and lansoprazole orally administered once daily at reduced and standard doses. Compared with baseline data (7% [range, 5%-20%]), the median values of the 24-hour percent of time that intragastric pH was above 4.0 significantly increased but did not exceed 83.3% under any of the 7 regimens, which were as follows: 10 mg rabeprazole (51% [range, 28%-78%], P < .01), 20 mg rabeprazole (59% [range, 36%-83%], P < .01), 10 mg omeprazole (26% [range, 4%-33%], P < .05), 20 mg omeprazole (48% [range, 31%-73%], P < .01), 40 mg omeprazole (62% [range, 47%-87%], P < .01), 15 mg lansoprazole (34% [range, 5%-51%], P < .05), and 30 mg lansoprazole (56% [range, 20%-76%], P < .05). Significant differences were observed among 10, 20, and 40 mg omeprazole (10 mg versus 20 mg, P < .01; 10 mg versus 40 mg, P < .01; and 20 mg versus 40 mg, P < .05) and between 15 and 30 mg lansoprazole (P < .01), whereas no significant difference was observed between 10 and 20 mg rabeprazole. Nocturnal gastric acid breakthrough was observed under all regimens. Rabeprazole, omeprazole, and lansoprazole, given once daily at standard doses, cannot be expected to achieve ideal acid suppression for the initial therapy for gastroesophageal reflux disease in Helicobacter-negative CYP2C19 homozygous extensive metabolizers. Rabeprazole 10 mg may be appropriate for step-down therapy.
Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing
2013-07-01
The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.
Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.
Chakrabortty, Dhruba; Gupta, Susmita Sen
2013-05-01
Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.
Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R
2010-06-03
Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.
Reductive Dissolution of Goethite and Hematite by Reduced Flavins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhi; Zachara, John M.; Wang, Zheming
2013-10-02
The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive thanmore » hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.« less
The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.
García-Casal, M N; Layrisse, M
2001-03-01
The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.
The hydrothermolysis of the picrate anion: Kinetics and mechanism
Ross, D.S.; Jayaweera, I.
2002-01-01
The hydrothermolysis of the picrate anion in aqueous solution has been studied at 260-325??C in liquid water. At starting pH values above 12, the disappearance of picrate begins immediately and is first order in OH-. At lower pH, there is an induction period preceding the disappearance, and over the pH range 6.7-11.9 there is no pH dependence in the developed reaction phase. Added borate and silicate salts promote the reaction, suggesting their acting as nucleophiles at hydrothermal conditions. Nitrite is an initial product, while acetate is a final product and reflective of a vigorous oxidative sequence consuming the intermediate products. A reaction sequence consistent with the results at the lower pH includes initiation of a chain process by displacement of nitrite by water, followed by nucleophilic displacement of nitrite by nitrite such that a nitro group is replaced by an O-N=O group. The ester then rapidly hydrolyzes, and the net reaction is the production of an additional nitrite with each cycle. A simple modeling of this system satisfactorily fits the experimental findings. ?? 2002 Elsevier Science B.V. All rights reserved.
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2016-11-01
A new simple, sensitive, rapid and accurate gradient reversed-phase high-performance liquid chromatography with photodiode array detector (RP-HPLC-DAD) was developed and validated for simultaneous analysis of Metronidazole (MNZ), Spiramycin (SPY), Diloxanidefuroate (DIX) and Cliquinol (CLQ) using statistical experimental design. Initially, a resolution V fractional factorial design was used in order to screen five independent factors: the column temperature (°C), pH, phosphate buffer concentration (mM), flow rate (ml/min) and the initial fraction of mobile phase B (%). pH, flow rate and initial fraction of mobile phase B were identified as significant, using analysis of variance. The optimum conditions of separation determined with the aid of central composite design were: (1) initial mobile phase concentration: phosphate buffer/methanol (50/50, v/v), (2) phosphate buffer concentration (50 mM), (3) pH (4.72), (4) column temperature 30°C and (5) mobile phase flow rate (0.8 ml min -1 ). Excellent linearity was observed for all of the standard calibration curves, and the correlation coefficients were above 0.9999. Limits of detection for all of the analyzed compounds ranged between 0.02 and 0.11 μg ml -1 ; limits of quantitation ranged between 0.06 and 0.33 μg ml -1 The proposed method showed good prediction ability. The optimized method was validated according to ICH guidelines. Three commercially available tablets were analyzed showing good % recovery and %RSD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Oesophageal lumen pH in yearling horses and effects of management and administration of omeprazole.
Wilson, C S; Brookes, V J; Hughes, K J; Trope, G D; Ip, H; Gunn, A J
2017-05-01
In human subjects, arytenoid chondritis can be caused by chemical trauma of mucosa attributable to gastro-oesophageal reflux. Although a similar process may be involved in the aetiopathogenesis of arytenoid chondritis in horses, the oesophageal lumen pH in this species is poorly understood. To determine if gastro-oesophageal reflux occurs in horses by characterising oesophageal lumen pH. Blinded, randomised, placebo-controlled, crossover, experimental study. Luminal oesophageal pH in six yearling horses was recorded over four 24 h periods using an ambulatory pH recorder attached to a catheter with two electrodes (proximal and distal) inserted into the oesophagus. Recordings of pH were made during three management protocols. Initially, horses grazed in a paddock (Protocol A). Horses were then moved to stables to simulate sale preparation of Thoroughbred yearlings, and were given either omeprazole (Protocol B) or placebo paste (Protocol C) orally once per day. Protocol A was repeated for each horse (after a 13 day washout period) between Protocols B and C. Summary statistics described pH range and frequency of pH changes. Associations with predictor variables were investigated using linear mixed-effects models. Data are presented as the mean ± s.d. Oesophageal lumen pH ranged from 4.90 to 9.70 (7.36 ± 0.27 and 7.18 ± 0.24 for the proximal and distal electrodes, respectively) and varied frequently (1.2 ± 0.9 changes/min and 0.8 ± 0.8 changes/min for the proximal and distal electrodes, respectively). Oesophageal lumen pH was associated with time since concentrate feeding, activity and time of day, but not with treatment of omeprazole. A small number of horses were used and measurement periods were limited. Gastro-oesophageal reflux occurs in clinically normal yearling horses. Although omeprazole had no detectable effect, oesophageal lumen pH recorded during this study did not fall within the therapeutic range of omeprazole. © 2016 EVJ Ltd.
Yun, Na Ra; Lee, Jun; Han, Mi Ah
2015-01-01
Vibrio vulnificus infection can progress to necrotizing fasciitis and death. To improve the likelihood of patient survival, an early prognosis of patient outcome is clinically important for emergency/trauma department doctors. To identify an accurate and simple predictor for death among V. vulnificus–infected persons, we reviewed clinical data for 34 patients at a hospital in South Korea during 2000–2011; of the patients, 16 (47%) died and 18 (53%) survived. For nonsurvivors, median time from hospital admission to death was 15 h (range 4–70). For predicting death, the areas under the receiver operating characteristic curves of the Acute Physiology and Chronic Health Evaluation (APACHE) II score and initial pH were 0.746 and 0.972, respectively (p = 0.005). An optimal cutoff pH of <7.35 had a sensitivity of 100% and specificity of 83%. Compared with the APACHE II score, the initial arterial blood pH level in V. vulnificus-infected patients was a more accurate predictive marker for death. PMID:25627847
Yun, Na Ra; Kim, Dong-Min; Lee, Jun; Han, Mi Ah
2015-02-01
Vibrio vulnificus infection can progress to necrotizing fasciitis and death. To improve the likelihood of patient survival, an early prognosis of patient outcome is clinically important for emergency/trauma department doctors. To identify an accurate and simple predictor for death among V. vulnificus-infected persons, we reviewed clinical data for 34 patients at a hospital in South Korea during 2000-2011; of the patients, 16 (47%) died and 18 (53%) survived. For nonsurvivors, median time from hospital admission to death was 15 h (range 4-70). For predicting death, the areas under the receiver operating characteristic curves of the Acute Physiology and Chronic Health Evaluation (APACHE) II score and initial pH were 0.746 and 0.972, respectively (p = 0.005). An optimal cutoff pH of <7.35 had a sensitivity of 100% and specificity of 83%. Compared with the APACHE II score, the initial arterial blood pH level in V. vulnificus-infected patients was a more accurate predictive marker for death.
Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.
Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata
2017-03-01
This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.
Effects of pH and Temperature on the Stability of Fumonisins in Maize Products
Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata
2017-01-01
This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053
Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven C.; Peper, Shane M.; Douglas, Matthew
2009-11-01
Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.
Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure.
Zhai, Ningning; Zhang, Tong; Yin, Dongxue; Yang, Gaihe; Wang, Xiaojiao; Ren, Guangxin; Feng, Yongzhong
2015-04-01
This study investigated the effects of different initial pH (6.0, 6.5, 7.0, 7.5 and 8.0) and uncontrolled initial pH (CK) on the lab-scale anaerobic co-digestion of kitchen waste (KW) with cow manure (CM). The variations of pH, alkalinity, volatile fatty acids (VFAs) and total ammonia nitrogen (NH4(+)-N) were analyzed. The modified Gompertz equation was used for selecting the optimal initial pH through comprehensive evaluation of methane production potential, degradation of volatile solids (VS), and lag-phase time. The results showed that CK and the fermentation with initial pH of 6.0 failed. The pH values of the rest treatments reached 7.7-7.9 with significantly increased methane production. The predicted lag-phase times of treatments with initial pH of 6.5 and 7.5 were 21 and 22 days, which were 10 days shorter than the treatments with initial pH of 7.0 and 8.0, respectively. The maximum methane production potential (8579 mL) and VS degradation rate (179.8 mL/g VS) were obtained when the initial pH was 7.5, which is recommended for co-digestion of KW and CM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sahoo, C; Gupta, A K
2012-05-15
Photocatalytic degradation of methyl blue (MYB) was studied using Ag(+) doped TiO(2) under UV irradiation in a batch reactor. Catalytic dose, initial concentration of dye and pH of the reaction mixture were found to influence the degradation process most. The degradation was found to be effective in the range catalytic dose (0.5-1.5g/L), initial dye concentration (25-100ppm) and pH of reaction mixture (5-9). Using the three factors three levels Box-Behnken design of experiment technique 15 sets of experiments were designed considering the effective ranges of the influential parameters. The results of the experiments were fitted to two quadratic polynomial models developed using response surface methodology (RSM), representing functional relationship between the decolorization and mineralization of MYB and the experimental parameters. Design Expert software version 8.0.6.1 was used to optimize the effects of the experimental parameters on the responses. The optimum values of the parameters were dose of Ag(+) doped TiO(2) 0.99g/L, initial concentration of MYB 57.68ppm and pH of reaction mixture 7.76. Under the optimal condition the predicted decolorization and mineralization rate of MYB were 95.97% and 80.33%, respectively. Regression analysis with R(2) values >0.99 showed goodness of fit of the experimental results with predicted values. Copyright © 2012 Elsevier B.V. All rights reserved.
Sasidharan Pillai, Indu M; Gupta, Ashok K
2016-07-01
Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). Copyright © 2016 Elsevier Ltd. All rights reserved.
Willoughby, T.C.; See, R.B.; Schroder, L.J.
1989-01-01
Three experiments were conducted to determine the stability of nitrate-ion concentrations in simulated deposition samples. In the four experiment-A solutions, nitric acid provided nitrate-ion concentrations ranging from 0.6 to 10.0 mg/L and that had pH values ranging from 3.8 to 5.0. In the five experiment-B solutions, sodium nitrate provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. The pH was adjusted to about 4.5 for each of the solutions by addition of sulfuric acid. In the four experiment-C solutions, nitric acid provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. Major cation and anion concentrations were added to each solution to simulate natural deposition. Aliquots were removed from the 13 original solutions and analyzed by ion chromatography about once a week for 100 days to determine if any changes occurred in nitrate-ion concentrations throughout the study period. No substantial changes were observed in the nitrate-ion concentrations in solutions that had initial concentrations below 4.0 mg/L in experiments A and B, although most of the measured nitrate-ion concentrations for the 100-day study were below the initial concentrations. In experiment C, changes in nitrate-ion concentrations were much more pronounced; the measured nitrate-ion concentrations for the study period were less than the initial concentrations for 62 of the 67 analyses. (USGS)
Pork Quality Traits According to Postmortem pH and Temperature in Berkshire
Kim, Tae Wan; Kim, Chul Wook; Yang, Mi Ra; No, Gun Ryoung; Kim, Il-Suk
2016-01-01
This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork. PMID:27499661
Carlson, Karen-Sue B.; Nguyen, Lan; Schwartz, Kat; Lawrence, Daniel A.; Schwartz, Bradford S.
2016-01-01
Tissue-type plasminogen activator (t-PA), initially characterized for its critical role in fibrinolysis, also has key functions in both physiologic and pathologic processes in the CNS. Neuroserpin (NSP) is a t-PA specific serine protease inhibitor (serpin) found almost exclusively in the CNS that regulates t-PA’s proteolytic activity and protects against t-PA mediated seizure propagation and blood–brain barrier disruption. This report demonstrates that NSP inhibition of t-PA varies profoundly as a function of pH within the biologically relevant pH range for the CNS, and reflects the stability, rather than the formation of NSP: t-PA acyl-enzyme complexes. Moreover, NSP differentiates between the zymogen-like single chain form (single chain t-PA, sct-PA) and the mature protease form (two chain t-PA, tct-PA) of t-PA, demonstrating different pH profiles for protease inhibition, different pH ranges over which catalytic deacylation occurs, and different pH dependent profiles of deacylation rates for each form of t-PA. NSP’s pH dependent inhibition of t-PA is not accounted for by differential acylation, and is specific for the NSP-t-PA serpin-protease pair. These results demonstrate a novel mechanism for the differential regulation of the two forms of t-PA in the CNS, and suggest a potential specific regulatory role for CNS pH in controlling t-PA proteolytic activity. PMID:27378851
Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro
2017-03-01
The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L -1 and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L -1 resulted in an increase in the final biodegradation of AO-R 12 and AO-R 14 . However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R 12 and AO-R 14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of pH buffering agents on the anaerobic hydrolysis acidification stage of kitchen waste.
Wang, Yaya; Zang, Bing; Gong, Xiaoyan; Liu, Yu; Li, Guoxue
2017-10-01
This study investigated effects of initial pH buffering agents on the lab-scale anaerobic hydrolysis acidification stage of kitchen waste (KW). Different cheap, available and suitable buffering agents (NaOH(s), NaOH(l), CaO(s)-NaOH, KOH(l)-NaOH, K 2 HPO 4 (s)-KOH, Na 2 CO 3 (s)-NaOH) were added under optimal adjusting mode (first two days: per 16h, after: one time per day) which was obtained in previous work. The effects of buffering agents were evaluated according to indexes of pH, VFAs, NH 4 + -N, TS, VS, VS/TS, TS and VS removal rate. The results showed treatment 5 with adding K 2 HPO 4 -KOH buffering agents had the most stable pH (6.7-7.0). Also treatment 5, 2, 4 and 6 provided stable pH ranging in 5-8. Among the treatments, treatment 6 with adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator was chosen as the optimal mode for highest VFAs content (44.05g/L) with high acetic acid and butyrate acid proportion (42.64%), TS and VS removal rate (44.84% and 58.67%, respectively), low VS/TS ratio (58.55), fewer adding dosage and low adjusting frequency. The VFAs content of treatment 6 at the end of hydrolysis acidification stage could be used for methanogenic phase of anaerobic two-phase digestion. Thus, treatment 6 (adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator) with highest VFAs content and TS and VS removal rate could be considered using in anaerobic hydrolysis acidification stage pH adjustment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ozone-initiated disinfection kinetics of Escherichia coli in water.
Zuma, Favourite; Lin, Johnson; Jonnalagadda, Sreekanth B
2009-01-01
The effect of ozonation on the rate of disinfection of Escherichia coli was investigated as a function of ozone concentration, ozonation duration and flow rates. Ozone was generated in situ using Corona discharge method using compressed oxygen stream and depending on the oxygen flux the ozone concentrations ranged from 0.91-4.72 mg/L. The rate of disinfection of all the three microbes followed pseudo-first-order kinetics with respect to the microbe count and first order with respect to ozone concentration. The influence of pH and temperature the aqueous systems on the rate of ozone initiated disinfection of the microbe was investigated. The inactivation was faster at lower pH than at basic pH. Molecular ozone is found more effective in disinfection than hydroxyl radicals. Two reported mechanisms for antimicrobial activity of ozone in water systems from the literature are discussed. Based on the experimental findings a probable rate law and mechanism are proposed. Ozonation of natural waters significantly decreased the BOD levels of the control and microbe contaminated waters.
Klamerth, N; Malato, S; Agüera, A; Fernández-Alba, A
2013-02-01
This study compares two different solar photo-Fenton processes, conventional photo-Fenton at pH3 and modified photo-Fenton at neutral pH with minimal Fe (5 mg L⁻¹) and minimal initial H₂O₂ (50 mg L⁻¹) concentrations for the degradation of emerging contaminants in Municipal Wastewater Treatment Plants effluents in solar pilot plant. As Fe precipitates at neutral pH, complexing agents which are able to form photoactive species, do not pollute the environment or increase toxicity have to be used to keep the iron in solution. This study was done using real effluents containing over 60 different contaminants, which were monitored during treatment by liquid chromatography coupled to a hybrid quadrupole/linear ion trap mass analyzer (LC-QTRAP-MS/MS) operating in selected reaction monitoring (SRM) mode. Concentrations of the selected contaminants ranged from a few ng L⁻¹ to tens of μg L⁻¹. It was demonstrated in all cases the removal of over 95% of the contaminants. Photo-Fenton at pH3 provided the best treatment time, but has the disadvantage that the water must be previously acidified. The most promising process was photo-Fenton modified with Ethylenediamine-N,N'-disuccinic acid (EDDS), as the pH remained in the neutral range. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption
NASA Astrophysics Data System (ADS)
Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi
2016-08-01
We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N‧-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6‧-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.
Butanol production from thin stillage using Clostridium pasteurianum.
Ahn, Jae-Hyung; Sang, Byoung-In; Um, Youngsoon
2011-04-01
The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Cheng-Chung; Chen, Guan-Bu
2013-01-15
Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes
2017-04-01
Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal growth rates measured on litter-bags in soils were relatively stable over time, with unclear links to fertility. Microbial respiration rates were highest in litterbags buried in soils, and only initially negatively affected by pH. There was a large decrease in litter mass loss initially in aquatic systems. Subsequently the rates of loss stabilized to similar values to those in terrestrial systems, to finally be exceeded by the rates of loss in terrestrial systems. In conclusion, initial decomposition of litter appeared to be N-limited in aquatic systems, which was associated with a fungal dominance. In contrast, litter decomposition in terrestrial systems appeared to be lower in acidic sites, which coincided with lower growth rates of bacteria. Litter degradation was initially faster in aquatic systems, but overall mass-loss over the full time course was higher in terrestrial systems.
In vitro analysis of the physical properties of contact lens blister pack solutions.
Menzies, Kara L; Jones, Lyndon
2011-04-01
Since the initial development of silicone hydrogels, many modifications to the bulk and surface properties of the lenses have been undertaken to improve the wettability and comfort of the lenses. Recently, manufacturers have incorporated various "wetting agents" or surface-active agents into the blister packaging solutions (BPSs) of the lenses to improve initial comfort of the lens on eye. The purpose of this study was to measure and compare the pH, surface tension (ST), viscosity, and osmolality of BPSs for a variety of silicone hydrogel and polyHEMA-based hydrogel lenses. In addition, two saline solutions were tested for comparison purposes. The pH, osmolality, ST, and viscosity were measured for the BPSs for lotrafilcon B and lotrafilcon A and lotrafilcon B with a "modified BPS" (m-lotrafilcon A, m-lotrafilcon B) (CIBA Vision, Duluth, GA); balafilcon A (Bausch & Lomb, Rochester, NY); galyfilcon A, senofilcon A, and narafilcon A (Johnson & Johnson, Jacksonville, FL); and comfilcon A and enfilcon A (CooperVision, Pleasanton, CA) and BPSs from two conventional polyHEMA-based materials-etafilcon A (Johnson & Johnson) and omafilcon A (CooperVision). The two saline solutions tested were Unisol (Alcon, Fort Worth, TX) and Softwear Saline (CIBA Vision). The pH results for the two saline solutions and all BPSs remained in the pH range of tears (6.6-7.8). The ST of the modified BPS was significantly lower (p < 0.01) than the original non-modified BPS. Viscosity measurements ranged between 0.90 and 1.00 cP for all BPSs and saline solutions, except for the modified BPS, which had significantly higher viscosities (p < 0.001). Osmolality measurements were not significantly different (p > 0.05) between BPSs made by the same manufacturer but were significantly different compared with BPSs made by different manufacturers (p < 0.05). The incorporation of wetting agents and surfactants into BPSs does alter the physical properties of the BPSs, which may have clinical implications regarding initial in-eye comfort.
Baeseman, J.L.; Smith, R.L.; Silverstein, J.
2006-01-01
Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.
Uptake of Nickel by Synthetic Mackinawite
The uptake of aqueous Ni(II) by synthetic mackinawite (FeS) was examined in anaerobic batch experiments at near-neutral pH (5.2 to 8.4). Initial molar ratios of Ni(II) to FeS ranged from 0.008 to 0.83 and maximum Ni concentrations in mackinawite, expressed as the cation mol fract...
el-Ziney, M G; De Meyer, H; Debevere, J M
1997-03-03
The influence of different organic acids (lactic, acetic, formic and propionic acids) at equimolar concentrations of undissociated acid with pH range of 3.9, 5.8, on the aerobic and anaerobic growth and survival kinetics of the virulent strain of Y. enterocolitica IP 383 0:9, was determined in tryptone soy broth at 4 degrees C. Growth and survival data were analyzed and fitted by a modification of the Whiting and Cygnarowicz-Provost model, using the Minpack software library. Initial generation times, initial specific growth rates, lag time and dead rate were subsequently calculated from the model parameters. The results demonstrate that the inhibitory effects of the acids were divided into two categories dependent upon pH. At high pH (5.8) the order of inhibition was formic acid > acetic acid > propionic acid > lactic acid, whereas at lower pH it became formic acid > lactic acid > acetic acid > propionic acid. The inhibitory effect of lactic acid is enhanced under anaerobic condition. Nevertheless, when the organism was cultured anaerobically, it was shown to be more tolerant to formic and acetic acids. Moreover, these variables (type of organic acid, pH and atmosphere) did not lead to the loss of the virulence plasmid in growing and surviving cells. The mechanism of inhibitory effect for each of the acids are also discussed.
Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad
2012-06-15
This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.
An Eulerian model for scavenging of pollutants by raindrops
NASA Astrophysics Data System (ADS)
Kumar, Sudarshan
An Eulerian model for simulating the coupled processes of gas-phase depletion and aqueousphase accumulation of the pollutant species during a rain event has been formulated. The model is capable of taking into account any realistic vertical profile of pollutant species concentrations and time-dependent initial aqueous-phase concentrations at the cloud base. The model considers the processes of single species absorption and dissociation in the aqueous phase. The coupled partial differential equations constituting the model are discretized into a set of ordinary differential equations by using the Galerkin method with chapeau functions as the basis functions. These equations are solved to obtain the pollutant concentrations of the gas phase and raindrops as well as the pH of raindrops as a function of time and distance below cloud-base. Simulations are performed for scavenging of gaseous HNO 3, H 2O 2, SO 2, formaldehyde and NH 3. For the case of highly soluble HNO 3 and H 2O 2, raindrops are far from equilibrium with the gas phase and their capacity for absorption of these gases is undiminished even as they reach ground level. The gas-phase concentrations for these species decrease exponentially with time and the washout is determined primarily by the rain intensity and mass-transfer coefficient of the gaseous species to the raindrops. The pollutant species concentrations in raindrops are an almost linear function of the distance below the cloud base. For the simulation conditions considered in this study, the half-life periods of these gases for removal from the atmosphere range from 15 to 40 min. For SO 2 and formaldehyde, the aqueous-phase concentrations approach equilibrium as the drops fall to ground level and the gas-phase concentrations show large gradients in the vertical. Half-life periods for SO 2 range from 1.3 to 13 h depending on the initial raindrop pH and rain intensity. For formaldehyde, the half-life ranges from 19 to 63 min. Solubility of NH 3 is a strong function of the raindrop pH. As NH 3 is absorbed, the raindrop pH increases and NH 3 solubility decreases. For pre-acidified drops (pH = 4.6), ammonia solubility is very high and the drops are far from equilibrium with the gas phase throughout the falling period. The half-life for ammonia ranges from 11 min to over 3 h in our simulations.
Normal 24-hour ambulatory proximal and distal gastroesophageal reflux parameters in Chinese.
Hu, W H C; Wong, N Y H; Lai, K C; Hui, W M; Lam, K F; Wong, B C Y; Xia, H H X; Chan, C K; Chan, A O O; Wong, W M; Tsang, K W T; Lam, S K
2002-06-01
To quantify normal proximal and distal oesophageal acid parameters in healthy Chinese. Observational study. University teaching hospital, Hong Kong. Twenty healthy adults who were not on medication and were free from gastrointestinal symptoms were recruited by advertisement. Ambulatory oesophageal acid (pH<4) exposure parameters were recorded at distal and proximal sites, 5 and 20 cm, respectively above the lower oesophageal sphincter. The 95th percentile for reflux parameters assessed in the distal/proximal oesophagus were: percent total time pH<4, 4.6/0.7%; percent upright time pH<4, 7.0/1.1%; percent supine time pH<4, 4.5/0.5%; number of reflux episodes, 73/12; number of reflux episodes with pH<4 for >5 minutes, 4/0; and the longest single acid exposure episode, 11.2/3.0 minutes. Physiological gastroesophageal reflux occurs in healthy Chinese. These initial data provide a preliminary reference range that could be utilised by laboratories studying Chinese subjects.
The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater.
Lucas, D; Castellet-Rovira, F; Villagrasa, M; Badia-Fabregat, M; Barceló, D; Vicent, T; Caminal, G; Sarrà, M; Rodríguez-Mozaz, S
2018-01-01
The contribution of the sorption processes in the elimination of pharmaceuticals (PhACs) during the fungal treatment of wastewater has been evaluated in this work. The sorption of four PhACs (carbamazepine, diclofenac, iopromide and venlafaxine) by 6 different fungi was first evaluated in batch experiments. Concentrations of PhACs in both liquid and solid (biomass) matrices from the fungal treatment were measured. Contribution of the sorption to the total removal of pollutants ranged between 3% and 13% in relation to the initial amount. The sorption of 47 PhACs in fungi was also evaluated in a fungal treatment performed in 26days in a continuous bioreactor treating wastewater from a veterinary hospital. PhACs levels measured in the fungal biomass were similar to those detected in conventional wastewater treatment (WWTP) sludge. This may suggest the necessity of manage fungal biomass as waste in the same manner that the WWTP sludge is managed. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir
2017-05-01
The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.
Ma, Junhua; Lei, Yanyan; Rehman, Kashif Ur; Yu, Ziniu; Zhang, Jibin; Li, Wu; Li, Qing; Tomberlin, Jeffery K; Zheng, Longyu
2018-02-08
Edible insects have become a recognized alternative and sustainable source of high-quality proteins and fats for livestock or human consumption. In the production process of black soldier fly (BSF), (Hermetia illucens L. [Diptera: Stratiomyidae]), initial substrate pH is a critical parameter to ensure the best value of insect biomass, life history traits, and quality bio-fertilizer. This study examined the impact of initial pH values on BSF larvae production, development time, and adult longevity. The BSF were reared on artificial diet with initial pH of 2.0, 4.0, 6.0, 8.0, and 10.0; the control was set at 7.0. Final BSF larval weight was significantly greater in substrates having initial pH 6.0 (0.21 g), control 7.0 (0.20 g), and 10.0 (0.20 g) with no significant difference among them, whereas larval weight reared with initial pH 2.0 and 4.0 were lowest at 0.16 g (-23%). Prepupal weight was greatest when larvae were reared on substrates with initial pH 6.0 (0.18 g), control 7.0 (0.19 g), 8.0 (0.18 g), and 10.0 (0.18 g). In contrast, the prepupal weight of larvae reared on diets with initial pH 2.0 was lowest at 0.15 g (-22%). Larval development time was 21.19 d at pH 8.0, about 3 d (12.5%) shorter than that of those reared on diets with initial pH 6.0, 7.0 control, and 10.0. In all treatments, pH shifted to 5.7 after 3-4 d and 8.5 after 16-17 d except for two groups (2.0 and 4.0) where the pH remained slightly acidic 5.0 and 6.5, respectively. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Remediation of lead-contaminated soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1992-01-01
Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acidmore » (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations).« less
Remediation of lead-contaminated soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1992-09-01
Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acidmore » (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations).« less
Phosphate removal from aqueous solutions using raw and activated red mud and fly ash.
Li, Yanzhong; Liu, Changjun; Luan, Zhaokun; Peng, Xianjia; Zhu, Chunlei; Chen, Zhaoyang; Zhang, Zhongguo; Fan, Jinghua; Jia, Zhiping
2006-09-01
The effect of acidification and heat treatment of raw red mud (RM) and fly ash (FA) on the sorption of phosphate was studied in parallel experiments. The result shows that a higher efficiency of phosphate removal was acquired by the activated samples than by the raw ones. The sample prepared by using the RM stirred with 0.25 M HCl for 2h (RM0.25), as well as another sample prepared by heating the RM at 700 degrees C for 2h (RM700), registered the maximum removal of phosphate (99% removal of phosphate). This occurred when they were used in the phosphate sorption studies conducted at pH 7.0 and 25 degrees C with the initial PO(4)(3-) concentration of 155 mg P/l. The FA samples treated in the same way described above can achieve 7.0 and 8.2 mg P/l phosphate removal for FA0.25 and FA700 respectively, corresponding to 45.2% and 52.9% removal. The activated materials performed higher phosphate removal over broader pH range compared with the raw ones. The influences of various factors, such as initial pH and initial phosphate concentration on the sorption capacity were also studied in batch equilibration technique. Solution pH significantly influenced the sorption. Each sample achieved the maximal removal of phosphate at pH 7.0. The amount of phosphate removal increased with the solute concentration. The Freundlich and Langmuir models were used to simulate the sorption equilibrium. The results indicate that the Langmuir model has a better correlation with the experimental data than the Freundlich model.
Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a.
Malheiros, Patrícia S; Sant'Anna, Voltaire; Todorov, Svetoslav D; Franco, Bernadette D G M
2015-01-01
Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 2(4) factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R (2) = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L(-1) and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL(-1)) occurred in the MRS broth supplemented with 5.5 g L(-1) glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL(-1).
Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a
Malheiros, Patrícia S.; Sant’Anna, Voltaire; Todorov, Svetoslav D.; Franco, Bernadette D.G.M.
2015-01-01
Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 24 factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R 2 = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L−1 and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL−1) occurred in the MRS broth supplemented with 5.5 g L−1 glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL−1. PMID:26413066
Ethanol Fermentation of Various Pretreated and Hydrolyzed Substrates at Low Initial pH
NASA Astrophysics Data System (ADS)
Kádár, Zsófia; Maltha, San Feng; Szengyel, Zsolt; Réczey, Kati; de Laat, Wim
Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.
Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.
Zuo, Qianhai; Chen, Xueming; Li, Wei; Chen, Guohua
2008-11-30
A combined electrocoagulation (EC) and electroflotation (EF) process was proposed to remove fluoride from drinking water. Its efficacy was investigated under different conditions. Experimental results showed that the combined process could remove fluoride effectively. The total hydraulic retention time required was only 30 min. After treatment, the fluoride concentration was reduced from initial 4.0-6.0mg/L to lower than 1.0mg/L. The influent pH value was found to be a very important variable that affected fluoride removal significantly. The optimal influent pH range is 6.0-7.0 at which not only can effective defluoridation be achieved, but also no pH readjustment is needed after treatment. In addition, it was found that SO(4)(2-) had negative effect; Ca(2+) had positive effect; while Cl(-) had little effect on the fluoride removal. The EC charge loading, EF charge loading and energy consumption were 3.0 Faradays/m(3), 1.5 Faradays/m(3), and 1.2 kWh/m(3), respectively, under typical conditions where fluoride was reduced from initial 4.0 to 0.87 mg/L.
NASA Astrophysics Data System (ADS)
Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen
2012-06-01
The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.
A New Neutral-pH Low-GDP Peritoneal Dialysis Fluid
Himmele, Rainer; Jensen, Lynn; Fenn, Dominik; Ho, Chih-Hu; Sawin, Dixie-Ann; Diaz-Buxo, Jose A.
2012-01-01
♦ Background: Conventional peritoneal dialysis fluids (PDFs) consist of ready-to-use solutions with an acidic pH. Sterilization of these fluids is known to generate high levels of glucose degradation products (GDPs). Although several neutral-pH, low-GDP PD solutions have been developed, none are commercially available in the United States. We analyzed pH and GDPs in Delflex Neutral pH (Fresenius Medical Care North America, Waltham, MA, USA), the first neutral-pH PDF to be approved by the US Food and Drug Administration. ♦ Methods: We evaluated whether patients (n = 26; age range: 18 - 78 years) could properly mix the Delflex Neutral pH PDF after standardized initial training. We further analyzed the concentrations of 10 different glucose degradation products in Delflex Neutral pH PDF and compared the results with similar analyses in other commercially available biocompatible PDFs. ♦ Results: All pH measurements (n = 288) in the delivered Delflex Neutral pH solution consistently fell within the labeled range of 7.0 ± 0.4. Analysis of mixing errors showed no significant impact on the pH results. Delflex Neutral pH, Balance (Fresenius Medical Care, Bad Homburg, Germany), BicaVera (Fresenius Medical Care), and Gambrosol Trio (Gambro Lundia AB, Lund, Sweden) exhibited similar low total GDP concentrations, with maximums in the 4.25% solutions of 88 μmol/L, 74 μmol/L, 74 μmol/L, and 79 μmol/L respectively; the concentration in Physioneal (Baxter Healthcare Corporation, Deerfield, IL, USA) was considerably higher at 263.26 μmol/L. The total GDP concentration in Extraneal (Baxter Healthcare Corporation) was 63 μmol/L, being thus slightly lower than the concentrations in the 4.25% glucose solutions, but higher than the concentrations in the 1.5% and 2.5% glucose solutions. ♦ Conclusions: The new Delflex Neutral pH PDF consistently delivers neutral pH with minimal GDPs. PMID:22383632
Shiroodi, Setareh Ghorban; Lo, Y Martin
2015-11-01
The ultimate goal of this work was to examine the effect of xanthan-curdlan hydrogel complex (XCHC) on the rheology of whey protein isolate (WPI) within the pH range of 4-7 upon heating and cooling. Dynamic rheological properties of WPI and XCHC were studied individually and in combination, as a function of time or temperature. For pure WPI, gels were pH-dependent, and in all pH values except 7, gels formed upon first heating from 40 to 90 °C. At pH 7, WPI did not form gel upon first heating, and the storage modulus (G') started to increase during the holding time at 90 °C. The onset of gelation temperature of WPI was lower in acidic pH ranges compared to the neutral pH. In mixed gels, the presence of XCHC increased the G' of the gels. The rheological behaviour was pH-dependent and initially was controlled by XCHC; however, after the consolidation of WPI network, the behaviour was led by the whey protein isolate. Results showed that XCHC had a synergistic effect on enhancing the elastic modulus of the gels after the consolidation of WPI network. Based on the results of this study, it is possible to use these biopolymers in the formulation of frozen dairy-based products and enable food manufactures to improve the textural and physicochemical properties, and as a result the consumer acceptance of the food product.
pH-dependent effect of pectinase secretion in Penicillium griseoroseum recombinant strains.
Teixeira, Janaina Aparecida; Corrêa, Thamy Lívia Ribeiro; de Queiroz, Marisa Vieira; de Araújo, Elza Fernandes
2014-02-01
A number of parameters, including culture medium pH, affect growth and enzyme production by microorganisms. In the present study, the production and secretion of pectin lyase (PL) and polygalacturonase (PG) by recombinant strains of Penicillium griseoroseum cultured in mineral-buffered media (MBM; initial pH 6.8) and mineral-unbuffered medium (MUM; initial pH 6.3) were evaluated. Under these culture conditions, no change in the transcriptional levels of plg1 and pgg2 was observed. However, the levels of secreted total protein ranged from 7.80 ± 1.1 to 3.25 ± 1.50 µg ml(-1) in MBM and MUM, respectively, and were evaluated by SDS-PAGE. PL and PG enzymatic activities decreased 6.4 and 3.6 times, respectively, when P. griseoroseum was cultivated under acidic pH conditions (MUM). Furthermore, differences were observed in the hypha and mycelium morphology. These findings suggest that acidic growing conditions affect PL and PG secretion, even though the transcription and translation processes are successful. The data obtained in this study will help to establish optimal culture conditions that increase production and secretion of recombinant proteins by filamentous fungi. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Colour and pH changes of tempe during extended fermentation
NASA Astrophysics Data System (ADS)
Muzdalifah, D.; Athaillah, Z. A.; Nugrahani, W.; Devi, A. F.
2017-01-01
Tempe is a nutritious food, prepared mostly from soybeans and was originated in Indonesia. Tempe is sometimes collected beyond its maturity age for culinary purpose. The studies of overripe tempe ranged from microbiology, chemical and nutritional changes, functionality and safety, to sensorial aspect. Study which follows pH and colour changes of tempe during fermentation, however, is scarce. The objectives of this study were to investigate and model the colour and pH changes of tempe and the mould mycelia during extended fermentation with Rhizopus spp. up to 156 hours. Our investigation revealed that both lightness soybeans and mycelia of the tempe decreased with increasing fermentation time while pH of the tempe increased. The decrease of both lightness followed simple cubic equations whilst the pH increased linearly with increasing time. The other a values of tempe decreased by one point in the first 72 h of fermentation and tended to increase later however did not reach the initial a value, The b value decreased by approximately two points during the first 24 h of fermentation and the changes during the rest of fermentation time were not significant. The colour changes were believed to be the results of increased numbers of Rhizopus spp which entered the death phase, increased amount of linoleic and linolenic unsaturated fatty acids which were prone to oxidation, and formation of red coloured vitamin B12. Meanwhile, the increase of pH was majorly because of protein break down which led to increased ammonia production. The utilisation of lactic acid for mould growth also contributed to the alkalinisation, however to a much lesser extent. The lactic acid was previously formed during the soaking which resulted in decrease in pH of initial soybeans.
Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo
2013-10-15
Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín
2015-11-01
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris
2015-01-01
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199
Lu, Qinghong; Ku, Mannching Sherry
2012-03-01
The stability in solution of HKI-272 (Neratinib) was studied as a function of pH. The drug is most stable from pH 3 to 4, and degradation rate increases rapidly around pH 6 and appears to approach a maximum asymptotic limit in the range of pH 812. Pseudo first-order reaction kinetics was observed at all pH values. The structure of the major degradation product indicates that it is formed by a cascade of reactions within the dimethylamino crotonamide group of HKI-272. It is assumed that the rate-determining step is the initial isomerization from allyl amine to enamine functionality, followed by hydrolysis and subsequent cyclization to a stable lactam. The maximum change in degradation rate as a function of pH occurs at about pH 6, which corresponds closely to the theoretical pKa value of the dimethylamino group of HKI-272 when accounting for solvent/temperature effects. The observed relationship between pH and degradation rate is discussed, and a self-catalyzed mechanism for the allylamine-enamine isomerization reaction is proposed. The relevance of these findings to other allylamine drugs is discussed in terms of the relative stability of the allylic anion intermediate through which, the isomerization occurs.
Formation of NDMA from ranitidine and sumatriptan: the role of pH.
Shen, Ruqiao; Andrews, Susan A
2013-02-01
N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) which can be formed via the chloramination of amine-based precursors. The formation of NDMA is mainly determined by the speciation of chloramines and the precursor amine groups, both of which are highly dependent on pH. The impact of pH on NDMA formation has been studied for the model precursor dimethylamine (DMA) and natural organic matter (NOM), but little is known for amine-based pharmaceuticals which have been newly identified as a group of potential NDMA precursors, especially in waters impacted by treated wastewater effluents. This study investigates the role of pH in the formation of NDMA from two amine-based pharmaceuticals, ranitidine and sumatriptan, under drinking water relevant conditions. The results indicate that pH affects both the ultimate NDMA formation as well as the reaction kinetics. The maximum NDMA formation typically occurs in the pH range of 7-8. At lower pH, the reaction is limited due to the lack of non-protonated amines. At higher pH, although the initial reaction is enhanced by the increasing amount of non-protonated amines, the ultimate NDMA formation is limited because of the lack of dichloramine. Copyright © 2012 Elsevier Ltd. All rights reserved.
n-MoSe2 photoelectrochemical halogen storage cell
NASA Astrophysics Data System (ADS)
Ang, P. G. P.; Sammells, A. F.
1982-01-01
In the study reported here, single-crystal n-MoSe2 photoanodes are investigated in a variety of halogen redox couples. The photoanode is prepared by allowing the silver epoxy cement to come into contact with the front surface of the crystal before being insulated from the redox electrolyte with paraffin wax. This photoanode is evaluated in bromine redox electrolytes in various pH ranges. In 1M HBr + 1M Br2 (pH, approximately zero), the initial open-circuit potential of the MoSe2 versus a platinum reference electrode in the same electrolyte is -130 mV in the dark and -480 mV under 200 mW/sq cm xenon illumination. It is noted that improved performance could be achieved with such crystals by subjecting them to an anodic polarization of around 1 volt from the initial resting potential, a current of about 5 mA/sq cm flowing in the dark.
Cheng, Li-Kun; Wang, Jian; Xu, Qing-Yang; Zhao, Chun-Guang; Shen, Zhi-Qiang; Xie, Xi-Xian; Chen, Ning
2013-05-01
Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.
Adams, Monica L; Sharma, Vijayata; Gokhale, Madhushree; Huang, Yande; Stefanski, Kevin; Su, Ching; Hussain, Munir A
2016-04-01
BMS-779788 contains a reactive tertiary hydroxyl attached to a weakly basic imidazole ring. Propensity of the carbinol toward dehydration to yield the corresponding alkene, BMS-779788-ALK, was evaluated. Elevated levels of BMS-779788-ALK were observed in excipient compatibility samples. Stability studies revealed that BMS-779788 degrades to BMS-779788-ALK in capsules and tablets prepared by both dry and wet granulation processes. An acid-catalyzed dehydration mechanism, in which the heterocyclic core contributes resonance stability to the cationic intermediate via charge transfer to the imidazole ring, was proposed. Therefore, neutralization via a buffered (pH 7.0) granulating solution was used to mitigate dehydration. Solution studies revealed degradation of BMS-779788 to BMS-779788-ALK over the pH range of 1-7.5. Reversibility was confirmed by initiating reactions with BMS-779788-ALK over the same pH range. Accordingly, a simple reversible scheme can be used to describe reactions initiated with either BMS-779788 or BMS-779788-ALK. To eliminate potential for charge delocalization across the heterocycle and probe the degradation mechanism, the imidazole ring of BMS-779788 was methylated (BMS-779788-Me). The propensity for acid-catalyzed dehydration was then evaluated. The acid stability of BMS-779788-Me confirmed that the heterocyclic core contributes to reactivity liability of the tertiary hydroxyl. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears
2012-06-01
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears by David “Blake” Stringer, Ph.D., Kelsen E. LaBerge, Ph.D., Cory...0383 June 2012 Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears David “Blake” Stringer and Ph.D., Kelsen E. LaBerge...Quality Spur Gears 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David “Blake” Stringer, Ph.D., Kelsen E
Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.
Chen, Hong; Hsieh, You-Lo
2005-05-20
Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. (c) 2004 Wiley Periodicals, Inc.
Initial pH of medium affects organic acids production but do not affect phosphate solubilization.
Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S
2015-06-01
The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.
Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes
2012-01-01
The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489
Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber
Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao
2015-01-01
The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265
Lei, Zhongli; Ren, Na; Li, Yanli; Li, Na; Mu, Bo
2009-02-25
Polymer nanocomposite microspheres (PNCMs) as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit. In this work, pectinase was immobilized on Fe(3)O(4)/SiO2-g-poly(PSStNa) nanocomposite microspheres by covalent attachment. Biochemical studies showed an improved storage stability of the immobilized pectinase as well as enhanced performance at higher temperatures and over a wider pH range. The immobilized enzyme retained >50% of its initial activity over 30 days, and the optimum temperature and pH also increased to the ranges of 50-60 degrees C and 3.0-4.7, respectively. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated by the Michaelis-Menten equation. The PSStNa support presents a very simple, mild, and time-saving process for enzyme immobilization, and this strategy of immobilizing pectinase also makes use of expensive enzymes economically viable, strengthening repeated use of them as catalysts following their rapid and easy separation with a magnet.
Valdovinos Díaz, Miguel A; Remes Troche, José Ma; Ruiz Aguilar, Juan Carlos; Schmulson, Max J; Valdovinos-Andraca, Francisco
2004-01-01
Esophageal 24-h pH monitoring (24-pH) is the most useful test to diagnose and treat patients with gastroesophageal reflux disease (GERD). The traditional system for 24-pH requires transnasal introduction of a catheter with pH sensors. This technique produces discomfort, inconvenience and interference with daily activity. Recently, the Bravo pH system has been proposed as an alternative and promising method for 24-pH. In this study, the initial experience in Mexico with this system is reported. To evaluate safety, tolerability and performance of the pH Bravo capsule in patients with GERD. Patients with GERD symptoms at least twice a week during the last three months, with indication for 24-pH were evaluated. pH Bravo capsule was placed 6 cm above squamocolumnar junction (SCJ). Symptoms, quality and duration of pH tracings, capsule detachment and patient global satisfaction were evaluated. Eleven patients (nine female, two male) mean age 42 years (range 26-62 years), two with erosive and nine with non-erosive GERD were studied. pH capsule was correctly positioned at 6 cm above SCJ in all patients. Nine patients noted a mild foreign body sensation (especially while eating) and four had mild chest pain; two patients had no discomfort. Capsule detachment occurred spontaneously in all patients on day 10. pH record for > 43 h was obtained in the 11 patients. There were no differences in pH parameters between days 1 and 2. Two patients with normal acid exposure on day 1 had abnormal pH parameters on day 2. Esophageal pH monitoring with Bravo capsule is a safe, reliable and tolerable method in patients with GERD. Extended pH recordings increases abnormal esophageal acid exposure detection in patients with this disease.
Gao, Xiaodong; Root, Robert A.; Farrell, James; Ela, Wendell; Chorover, Jon
2014-01-01
The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 – 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92–2.94 and 3.41–3.44 Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms. PMID:25382933
Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH.
Wang, Bing; Lehmann, Johannes; Hanley, Kelly; Hestrin, Rachel; Enders, Akio
2015-11-01
The objective of this work was to investigate the retention mechanisms of ammonium in aqueous solution by using progressively oxidized maple wood biochar at different pH values. Hydrogen peroxide was used to oxidize the biochar to pH values ranging from 8.1 to 3.7, with one set being adjusted to a pH of 7 afterwards. Oxidizing the biochars at their lowered pH did not increase their ability to adsorb ammonium. However, neutralizing the oxygen-containing surface functional groups on oxidized biochar to pH 7 increased ammonia adsorption two to three-fold for biochars originally at pH 3.7-6, but did not change adsorption of biochars oxidized to pH 7 and above. The adsorption characteristics of ammonium are well described by the Freundlich equation. Adsorption was not fully reversible in water, and less than 27% ammonium was desorbed in water in two consecutive steps than previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 2M KCl increased from 34% to 99% of ammonium undesorbed by both preceding water extractions with increasing oxidation, largely irrespective of pH adjustment. Unrecovered ammonium in all extractions and residual biochar was negligible at high oxidation, but increased to 39% of initially adsorbed amounts at high pH, likely due to low amounts adsorbed and possible ammonia volatilization losses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan
2013-01-01
A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.
Microwave spectroscopy of carbonyl sulfide isotopologues solvated with 2-5 para-hydrogen molecules
NASA Astrophysics Data System (ADS)
Raston, Paul L.; Knapp, Chrissy J.; Jäger, Wolfgang
2017-11-01
We report high resolution Fourier transform microwave spectra of (pH2)N-OC32S and (pH2)N-OC34S clusters in the size range from N = 2 to 5. Observation of the J = 1-0 and J = 2-1 transitions allowed for determination of the rotational (B) and quartic distortion (D) constants for each N. Comparison with theory (Paesani et al., 2003) reveals that the predicted B values are of good quality (all within 100 MHz of the actual values), while the predicted D values are an order of magnitude too high. Results from linear molecule Kraitchman analyses for clusters with N ≤ 5 are consistent with theoretical calculations which suggest that the initial pH2 density accumulates in a donut ring about the carbon-oxygen bond.
Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.
Abel, K M
1984-11-01
Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.
NASA Astrophysics Data System (ADS)
Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre
2002-08-01
Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.
Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang
2017-08-01
Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe 2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Denitrification using a monopolar electrocoagulation/flotation (ECF) process.
Emamjomeh, Mohammad M; Sivakumar, Muttucumaru
2009-01-01
Nitrate levels are limited due to health concerns in potable water. Nitrate is a common contaminant in water supplies, and especially prevalent in surface water supplies and shallow wells. Nitrate is a stable and highly soluble ion with low potential for precipitation or adsorption. These properties make it difficult to remove using conventional water treatment methods. A laboratory batch electrocoagulation/flotation (ECF) reactor was designed to investigate the effects of different parameters such as electrolysis time, electrolyte pH, initial nitrate concentration, and current rate on the nitrate removal efficiency. The optimum nitrate removal was observed at a pH range of between 9 and 11. It appeared that the nitrate removal rate was 93% when the initial nitrate concentration and electrolysis time respectively were 100 mg L(-1)-NO(3)(-) and 40 min. The results showed a linear relationship between the electrolysis time for total nitrate removal and the initial nitrate concentration. It is concluded that the electrocoagulation technology for denitrification can be an effective preliminary process when the ammonia byproduct must be effectively removed by the treatment facilities.
Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra
2014-01-23
The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.
Paramithiotis, Spiros; Kouretas, Konstantinos; Drosinos, Eleftherios H
2014-06-01
Spontaneous fermentation of plant-derived material is mainly performed on a small scale, with the exception of fermented olives, cucumbers, sauerkraut and kimchi, which have met worldwide commercial significance. This study of spontaneous fermentation of green tomatoes at different stages of ripening revealed a significant effect on the growth kinetics of lactic acid bacteria and the final pH value. Leuconostoc mesenteroides dominated spontaneous fermentation when the initial pH value ranged from 3.8 to 4.8 whereas at higher pH values (4.9-5.4) it co-dominated with Leu. citreum and Lactobacillus casei. Application of RAPD-PCR and rep-PCR allowed differentiation at sub-species level, suggesting a microbial succession at that level accompanying the respective at species level. Ripening stage affected the development of the micro-ecosystem through the growth of lactic acid bacteria and concomitant pH value reduction; however, the outcome of the fermentation was only marginally different. © 2013 Society of Chemical Industry.
Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC.
Belur, Prasanna D; Gopal, Mugeraya; Nirmala, K R; Basavaraj, N
2010-04-01
Five strains of tannic acid degrading bacteria were isolated and identified by phenotypic characterization. All the five isolates showed cell-associated activity, where as only three showed extracellular activity. Serratia ficaria DTC showing highest cell-associated activity (0.29 U/l) was selected for further shake flask studies. Tannase synthesis was growth associated and reached the peak in the late stationary phase of growth. Organic nitrogen sources enhanced the tannase production. Peak tannase production of 0.56 U/l was recorded in the medium having the initial pH of 6. The pH and temperature optima of the enzyme were found to be 8.9 and 35 degrees , respectively. This is the first report of cell-associated activity in case of bacterial tannase. Cell-associated tannase of Serratia ficaria DTC could be industrially important from the perspective of its activity at broad temperature and pH range, its unusually high activity at pH 8.9.
Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation.
Xie, Hui; Zhu, Lusheng; Ma, Tingting; Wang, Jun; Wang, Jinhua; Su, Jun; Shao, Bo
2010-01-01
The free enzyme extracted from WZ-I, which was identified as Fusarium LK. ex Fx, could effectively degrade chlorpyrifos, an organophosphate insecticide. The methods of immobilizing this free enzyme and determined its degradation-related characteristics were investigated. The properties of the immobilized enzyme were compared with those of the free enzyme. The optimal immobilization of the enzyme was achieved in a solution of 30 g/L sodium alginate at 4 degrees C for 4-12 hr. The immobilized enzyme showed the maximal activity at pH 8.0, 45 degrees C. The maximum initial rate and the substrate concentration of the immobilized enzyme were less than that of the free enzyme. The immobilized enzyme, therefore, had a higher capacity to withstand a broader range of temperatures and pH conditions than the free enzyme. With varying pH and temperatures, the immobilized enzyme was more active than the free enzyme in the degradation reaction. In addition, the immobilized enzyme exhibited only a slight loss in its initial activity, even after three repeated uses. The results showed that the immobilized enzyme was more resistant to different environmental conditions, suggesting that it was viable for future practical use.
Miao, Jie; Sunarso, Jaka; Su, Chao; Zhou, Wei; Wang, Shaobin; Shao, Zongping
2017-01-01
Perovskite-like oxides SrCo1−xTixO3−δ (SCTx, x = 0.1, 0.2, 0.4, 0.6) were used as heterogeneous catalysts to activate peroxymonosulfate (PMS) for phenol degradation under a wide pH range, exhibiting more rapid phenol oxidation than Co3O4 and TiO2. The SCT0.4/PMS system produced a high activity at increased initial pH, achieving optimized performance at pH ≥ 7 in terms of total organic carbon removal, the minimum Co leaching and good catalytic stability. Kinetic studies showed that the phenol oxidation kinetics on SCT0.4/PMS system followed the pseudo-zero order kinetics and the rate on SCT0.4/PMS system decreased with increasing initial phenol concentration, decreased PMS amount, catalyst loading and solution temperature. Quenching tests using ethanol and tert-butyl alcohol demonstrated sulfate and hydroxyl radicals for phenol oxidation. This investigation suggested promising heterogeneous catalysts for organic oxidation with PMS, showing a breakthrough in the barriers of metal leaching, acidic pH, and low efficiency of heterogeneous catalysis. PMID:28281656
Bucek, Pavel; Jaumot, Joaquim; Aviñó, Anna; Eritja, Ramon; Gargallo, Raimundo
2009-11-23
Guanine-rich regions of DNA are sequences capable of forming G-quadruplex structures. The formation of a G-quadruplex structure in a region 140 base pairs (bp) upstream of the c-kit transcription initiation site was recently proposed (Fernando et al., Biochemistry, 2006, 45, 7854). In the present study, the acid-base equilibria and the thermally induced unfolding of the structures formed by a guanine-rich region and by its complementary cytosine-rich strand in c-kit were studied by means of circular dichroism and molecular absorption spectroscopies. In addition, competition between the Watson-Crick duplex and the isolated structures was studied as a function of pH value and temperature. Multivariate data analysis methods based on both hard and soft modeling were used to allow accurate quantification of the various acid-base species present in the mixtures. Results showed that the G-quadruplex and i-motif coexist with the Watson-Crick duplex over the pH range from 3.0 to 6.5, approximately, under the experimental conditions tested in this study. At pH 7.0, the duplex is practically the only species present.
Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide.
Bedemo, Agaje; Chandravanshi, Bhagwan Singh; Zewge, Feleke
2016-01-01
Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3-10). The optimum conditions for the removal of Cr(III) were found to be at pH 4-6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent.
Impact of gastric pH profiles on the proteolytic digestion of mixed βlg-Xanthan biopolymer gels.
Dekkers, B L; Kolodziejczyk, E; Acquistapace, S; Engmann, J; Wooster, T J
2016-01-01
The understanding of how foods are digested and metabolised is essential to enable the design/selection of foods as part of a balanced diet. Essential to this endeavour is the development of appropriate biorelevant in vitro digestion tools. In this work, the influence of gastric pH profile on the in vitro digestion of mixtures of β-lactoglobulin (βlg) and xanthan gum prior to and after heat induced gelation was investigated. A conventional highly acidic (pH 1.9) gastric pH profile was compared to two dynamic gastric pH profiles (initial pH of 6.0 vs. 5.2 and H(+) secretion rates of 60 vs. 36 mmol h(-1)) designed to mimic the changes in gastric pH observed during clinical trials with high protein meals. In moving away from the pH 1.9 model, to a pH profile reflecting in vivo conditions, the initial rate and degree of protein digestion halved during the first 45 minutes. After 90 minutes of gastric digestion, all three pH profiles caused similar extents of protein digestion. Given that 50% gastric emptying times of (test) meals are in range of 30-90 min, it would seem highly relevant to use a dynamic pH gastric model rather than a pH 1.9 (USP) or pH 3 model (INFOGEST) in assessing the impact of food structuring approaches on protein digestion. The impact that heat induced gelation had on the degree of gel digestion by pepsin was also investigated. Surprisingly, it was found that heat induced gelation of βlg-xanthan mixtures at 70-90 °C for 20 minutes lead to a considerable decrease in the rate of proteolysis, which contrasts many studies of dispersed aggregates and gels of βlg alone whose heating accelerates pepsin activity due to unfolding. In the present case, the formation of a dense protein network created a fine pore structure which restricted pepsin access into the gel thereby slowing proteolysis. This work not only has implications for the in vitro assessment of protein digestion, but also highlights how protein digestion might be slowed, learnings that might have an influence on the design of foods as part of a satisfying balanced diet.
NASA Astrophysics Data System (ADS)
Hope, Christopher K.; Higham, Susan M.
2016-08-01
A number of anaerobic oral bacteria, notably Prevotellaceae, exhibit red fluorescence when excited by short-wavelength visible light due to their accumulation of porphyrins, particularly protoporphyrin IX. pH affects the fluorescence of abiotic preparations of porphyrins due to transformations in speciation between monomers, higher aggregates, and dimers. To elucidate whether the porphyrin speciation phenomenon could be manifested within a microbiological system, suspensions of Prevotella intermedia and Prevotella nigrescens were examined by fluorescence spectrophotometry while being titrated against NaOH. The initial pH of the samples was <6, which was then raised toward the maximum found within a diseased periodontal pocket, being ˜pH 8.7. The intensity of the fluorescence emissions increased between 600 and 650 nm with increasing pH. Peak fluorescence emissions occurred at 635±1 nm with a second emission peak developing with increasing pH at 622 nm. A linear relationship was demonstrated between pH and the log10 ratio of 635:622 nm excitation fluorescence intensities. These findings suggest that the pH range found within the oral cavity could affect the fluorescence of oral bacteria in vivo, which may in turn have connotations for any clinical diagnoses that may be inferred from dental plaque fluorescence.
Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A
2016-10-18
Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.
Experimental co-digestion of corn stalk and vermicompost to improve biogas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Guangyin; Zheng Zheng, E-mail: zzhenghj@fudan.edu.c; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433
2010-10-15
Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% withmore » the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.« less
Johnsson, P.A.; Reddy, M.M.
1990-01-01
This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.
pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water.
Avisar, D; Lester, Y; Mamane, H
2010-03-15
Water and wastewater effluents contain a vast range of chemicals in mixtures that have different chemical structures and characteristics. This study presents a treatment technology for the removal of mixtures of antibiotic residues (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) from contaminated water. The treatment combines pH modification of the water to an optimal value, followed by a photolytic treatment using direct polychromatic ultraviolet (UV) irradiation by medium pressure UV lamp. The pH adjustment of the treated water leads to structural modifications of the pollutant's molecule thus may enhance direct photolysis by UV light. Results showed that an increase of water pH from 5 to 7 leads to a decrease in degradation rate of SMX and an increase in degradation rate of OTC and CIP, when studied separately and not in a mixture. Thus, the optimal pH values for UV photodegradation in a mixture, involve initial photolysis at pH 5 and then gradually changing the pH from 5 to 7 during the UV exposure. For example, this resulted in 99% degradation of SMX at pH 5 and enhanced degradation of OTC and CIP from 54% and 26% to 91% and 96% respectively when pH was increased from 5 to 7. Thus the pH induced photolytic treatment has a potential in improving treatment of antibiotics in mixtures. (c) 2009 Elsevier B.V. All rights reserved.
Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems
NASA Astrophysics Data System (ADS)
Michie, W. C.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N. B.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B.
1995-01-01
We report on the design, construction and test of a generic form of sensor for making distributed measurements of a range of chemical parameters. The technique combines optical time-domain reflectometry with chemically sensitive water-swellable polymers (hydrogels). Initial experiments have concentrated on demonstrating a distributed water detector; however, gels have been developed that enable this sensor to be
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149
Chan, J T Y; Omana, D A; Betti, M
2011-05-01
Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.
Effect of dilution and ash supplement on the bio-methane potential of palm oil mill effluent (POME)
NASA Astrophysics Data System (ADS)
Jijai, Sunwanee; Muleng, Saina; Siripatana, Chairat
2017-08-01
This study aimed to evaluate the bio-methane potential of POME at different dilutions (100, 80, 60, 40, and 20 percent of initial POME) and different pH dues to different levels of ash supplement. Five different amounts of ash were added to digesters (0, 2, 4, 6, and 8 grams of ash were added to 170 ml of POME respectively). The digesters were operated in batch anaerobic digestion systems at room temperature (28-30 °C) and the experiments were performed in duplicate manner. The results showed that POME without dilution gave highest cumulative biogas (950 ml). However, 80% dilution from original POME gave the highest methane yield (45.83 mL CH4/ gCODadded or 103.13 mL CH4/ gCODremoved). Finally, the results of experiment 2, this adding ash into POME increased pH as well as enhanced the biogas production. It was found that adding ash at the ash:POME ratio of 2 g: 170 ml gave the highest both the cumulative biogas and methane yield (1,520 mL and 218.79 mL CH4/ gCODremoved respectively). The addition of ash in the raw waste of POME gave the pH in the range of criteria and highest bio-methane potential. The modified Gompertz equation, Schnute as well as Monod kinetic models were used to compare the data from the experiments. It was found that the factors that affected included, the bio-methane production and the kinetic parameters (the maximum specific methane production rates (Rm ml/day) and the methane production potential (P, mL)), initial COD, nutrients, levels of dilution, and initial pH (by adding different level of ash). However, λ (lag phase period) was not affected by initial COD and other factors. While Monod kinetics provides valuable insight in explaining what could happen behind the systematic trends.
Liu, Xingyan; Jia, Bo; Sun, Xiangyu; Ai, Jingya; Wang, Lihua; Wang, Cheng; Zhao, Fang; Zhan, Jicheng; Huang, Weidong
2015-04-01
As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future. © 2015 Institute of Food Technologists®
Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces.
Wang, Yili; Lu, Jia; Baiyu, Du; Shi, Baoyou; Wang, Dongsheng
2009-01-01
The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (Df) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere VS. logdL) of PFC-HA flocs decreased with the increase of PFC dosages, and PFC-HA flocs showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Df, and they even had different tendency with the change of initial pH values. However, the D2 values of the flocs formed at three different initial pH in HA solution had a same tendency with the corresponding Dr. Based on fractal Frenkel-Halsey-Hill (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.
Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah
2014-06-01
We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seco, A.; Marzal, P.; Gabaldon, C.
1999-06-01
The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overallmore » surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Thomas; Jalilehvand, Farideh
Mercury(II) ions precipitate from aqueous cysteine (H 2Cys) solutions containing H 2Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S-HCys) 2. In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S, N-Cys) 2] 2- complex dominating. With excess cysteine (H 2Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S-Cys) 4] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) variedmore » between 8 – 9 mM and 80 – 100 mM, respectively, with H 2Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 – 8.8, at the pH at which the initial Hg( S-HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions (C Hg(II) = 8 – 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess (C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions (C Hg(II) = 80 – 100 mM) with high cysteine excess (C H2Cys > 0.9 M), tetrathiolate [Hg( S-cysteinate) 4] m-6 ( m = 0 – 4) complexes dominate in the pH range 7.3 – 7.8, with lower charge than for the [Hg( S-Cys) 4] 6- complex due to protonation of some ( m) of the amino groups of the coordinated cysteine ligands. In conclusion, the results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.« less
Optimization of biogenic methane production from coal
Fuertez, John; Nguyen, Van; McLennan, John D.; ...
2017-09-29
Given continuously increasing global energy needs, diversified efforts have been made to find and exploit new natural gas resources. These include coalbed methane (CBM), which represents an important global, unconventional source of natural gas. Efforts have been underway for some time to more effectively generate methane in-situ in coal plays by introduction of nutrients and/or microbial consortia. However, much is still to be learned about the limitations and environmental conditions that support microbial growth and are conducive to biogenic methane production from coal. Here we evaluated environmental conditions that led to increased methane production from subbituminous coal by introducing amore » foreign methanogenic consortium that included Methanobacterium sp. Furthermore, we used a central composite design (CCD) to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. An anticipated detrimental effect of NaCl concentration on methane production was observed for the consortium assessed. The range of feasible operational conditions comprised initial pH values between 4.2 and 6.8, temperatures between 23 °C and 37 °C, and NaCl concentrations between 3.7 mg/cm 3 and 9.0 mg/cm 3. Coal biogasification was optimal for this consortium at an initial pH value of 5.5, at 30 °C, and at a NaCl concentration 3.7 mg/cm 3 (i.e., 145,165 ppm, which is 25.6 sft 3/ton).« less
Optimization of biogenic methane production from coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuertez, John; Nguyen, Van; McLennan, John D.
Given continuously increasing global energy needs, diversified efforts have been made to find and exploit new natural gas resources. These include coalbed methane (CBM), which represents an important global, unconventional source of natural gas. Efforts have been underway for some time to more effectively generate methane in-situ in coal plays by introduction of nutrients and/or microbial consortia. However, much is still to be learned about the limitations and environmental conditions that support microbial growth and are conducive to biogenic methane production from coal. Here we evaluated environmental conditions that led to increased methane production from subbituminous coal by introducing amore » foreign methanogenic consortium that included Methanobacterium sp. Furthermore, we used a central composite design (CCD) to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. An anticipated detrimental effect of NaCl concentration on methane production was observed for the consortium assessed. The range of feasible operational conditions comprised initial pH values between 4.2 and 6.8, temperatures between 23 °C and 37 °C, and NaCl concentrations between 3.7 mg/cm 3 and 9.0 mg/cm 3. Coal biogasification was optimal for this consortium at an initial pH value of 5.5, at 30 °C, and at a NaCl concentration 3.7 mg/cm 3 (i.e., 145,165 ppm, which is 25.6 sft 3/ton).« less
Bolzenius, Jennifer K; Cushman, Robert A; Perry, George A
2016-08-01
Cows that exhibit estrus prior to fixed-time AI had increased sperm transport to the site of fertilization, and improved embryo quality on d 6 after insemination. Sperm transport is influenced by uterine pH, and research has reported that uterine pH decreased at onset of estrus, but must return to normal prior to ovulation. Therefore, the objectives of these studies were to investigate a possible mechanism for the regulation of uterine pH around the onset of estrus, and to determine if uterine pH at time of fixed-time AI influenced pregnancy success. In experiment 1, Angus-cross beef cows (n=40 and 28 in rep. 1 and 2, respectively) were synchronized with the PG 6-day CIDR protocol (PGF2α on d -9, GnRH and insertion of a CIDR on d -6, and PGF2α and CIDR removal on d 0). Cows were blocked by follicle size at time of CIDR removal, and uterine biopsies were collected at 0, 12, 24, 36, 48, 60 (Rep. 1), 72, 84, or 96h (Rep2) after CIDR removal, and total cellular RNA was extracted from all biopsies. Estrus was monitored by the HeatWatch Estrous Detection System. In experiment 2, 223 postpartum beef cows in 2 herds were synchronized with a fixed-time AI protocol (herd 1: n=97; CO-Synch plus CIDR protocol; herd 2: n=126; Co-synch protocol). Uterine pH was determined at time of AI (n=80 and 63 for herd 1 and 2, respectively), and estrus was monitored by visual estrus detection with the aid of an ESTROTECT estrous detection patches, and pregnancy was determined by transrectal ultrasonography. In experiment 1, there was a significant (P<0.01), quadratic relationship in expression of Na(+)/H(+) exchanger isoforms 1, 2, and 3 among animals that exhibited estrus, with expression greatest at time of CIDR removal, decreasing to the onset of estrus, and then increasing again following the onset of estrus. Among cows that did not exhibit estrus, the preceding relationship did not exist (P>0.46). In experiment 2, cows that had initiated estrus prior to fixed-time AI had decreased (P=0.01) uterine pH compared to cows that did not initiate estrus (6.78±0.03 and 6.89±0.03, respectively), and uterine pH at AI had an approximately linear effect on pregnancy success within the observed pH range. Furthermore, cows that initiated estrus prior to AI had increased (P=0.05) pregnancy success (52% vs. 38%) compared to cows that had not initiated estrus. In summary, expression of Na(+)/H(+) exchanger isoforms 1, 2, and 3 decreased after CIDR removal among cows that exhibited estrus, but did not change among cows that did not exhibit estrus. Additionally, as uterine pH decreased pregnancy success tended to increase (P=0.076, logistics regression). Thus, Na(+)/H(+) exchanger isoforms 1, 2, and 3 appear to be key regulators of uterine pH around the onset of estrus, and this change in uterine pH is critical for pregnancy success. Expression of Na(+)/H(+) exchanger isoforms 1, 2, and 3 decreased after CIDR removal among cows that exhibited estrus, but did not change among cows that did not exhibit estrus, and as uterine pH decreased, pregnancy success tended to increase. Copyright © 2016 Elsevier B.V. All rights reserved.
Petzelbauer, Inge; Kuhn, Bernhard; Splechtna, Barbara; Kulbe, Klaus D; Nidetzky, Bernd
2002-03-20
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 619-631, 2002; DOI 10.1002/bit.10110
The potential effects of pH and buffering capacity on dental erosion.
Owens, Barry M
2007-01-01
Soft drink pH (initial pH) has been shown to be a causative factor--but not necessarily the primary initiating factor--of dental erosion. The titratable acidity or buffering capacity has been acknowledged as playing a significant role in the etiology of these lesions. This in vitro study sought to evaluate five different soft drinks (Coca-Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappucino coffee drink) and tap water (control) in terms of initial pH and buffering capacity. Initial pH was measured in triplicate for the six beverages. The buffering capacity of each beverage was assessed by measuring the weight (in grams) of 0.10 M sodium hydroxide necessary for titration to pH levels of 5.0, 6.0, 7.0, and 8.3. Coca-Cola Classic produced the lowest mean pH, while Starbucks Frappucino produced the highest pH of any of the drinks except for tap water. Based on statistical analysis using ANOVA and Fisher's post hoc tests at a P < 0.05 level of significance, Red Bull had the highest mean buffering capacity (indicating the strongest potential for erosion of enamel), followed by Gatorade, Coca-Cola Classic, Diet Coke, and Starbucks Frappucino.
Borgo, Lucélia
2017-06-01
Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Musiał, Witold; Pluta, Janusz; Byrski, Tomasz; Valh, Julija V
2015-01-01
In the available literature, the problem of pH and conductivity in FED is evaluated separately, and limited mainly to the final purity of the synthesized polymer. In this study data from conductivity and pH measurements were evaluated in the context of the structure of the macromolecule. The aim of the study was to evaluate the conductivity and pH of dispersions of nanospheres synthesized with the use of N-isopropyl acrylamide (NIPA) as the main monomer, N,N'-methylenebisacrylamide (MBA) as the cross-linker and acrylic acid (AcA) as the anionic comonomer during the purification of dispersions via forced equilibrium dialysis (FED). Six batches of nanospheres were obtained in the process of surfactant free precipitation polymerization (SFPP) under inert nitrogen. The conductivity and pH of the dispersions of nanospheres were measured at the beginning of FED and after finishing that process. The conductivity in the systems being studied decreased significantly in the process of FED. The initial values of conductivity ranged from 736.85±8.13 μS×cm(-1) to 1048.90±67.53 μS×cm(-1) After 10 days, when the systems being assessed gained stability in terms of conductivity level, the values of conductivity were between 4.29±0.01 μS×cm(-1) and 33.56±0.04 μS×cm(-1). The pH values inreased significantly after FED. The resulting pH was between 6.92±0.07 and 8.21±0.07, while the initial values were between 3.42±0.23 μS×cm(-1) and 4.30±0.22 μS×cm(-1). Conductivity and pH measurements performed during purification via FED provide important information on the composition of the resulting nanospheres, including the functional groups embedded in the structure of the polymer in the course of the synthesis, as well as the purity of the structures. The presence of a cross-linker and acidic comonomer in the poly-N-isopropyl acrylamide (polyNIPA) macromolecule may be confirmed by both the pH and the conductivity measurements.
Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M
2005-07-01
Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.
Ghimire, Anish; Sposito, Fabio; Frunzo, Luigi; Trably, Eric; Escudié, Renaud; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni
2016-04-01
This work aimed to investigate the effect of the initial pH, combination of food to microorganism ratio (F/M) and initial pH, substrate pre-treatment and different inoculum sources on the dark fermentative biohydrogen (H2) yields. Three model complex waste biomasses (food waste, olive mill wastewater (OMWW) and rice straw) were used to assess the effect of the aforementioned parameters. The effect of the initial pH between 4.5 and 7.0 was investigated in batch tests carried out with food waste. The highest H2 yields were shown at initial pH 4.5 (60.6 ± 9.0 mL H2/g VS) and pH 5.0 (50.7 ± 0.8 mL H2/g VS). Furthermore, tests carried out with F/M ratios of 0.5, 1.0 and 1.5 at initial pH 5.0 and 6.5 revealed that a lower F/M ratio (0.5 and 1.0) favored the H2 production at an initial pH 5.0 compared to pH 6.5. Alkaline pre-treatment of raw rice straw using 4% and 8% NaOH at 55°C for 24h, increased the H2 yield by 26 and 57-fold, respectively. In the dark fermentation of OMWW, the H2 yield was doubled when heat-shock pre-treated activated sludge was used as inoculum in comparison to anaerobic sludge. Overall, this study shows that the application of different operating parameters to maximize the H2 yields strongly depends on the biodegradability of the substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hutson, S M
1987-07-15
The kinetics of branched chain alpha-keto acid uptake and efflux were studied as a function of varied external and matrix pH. Matrix pH was determined by the distribution of 5,5'-dimethyloxazolidine-2,4-dione. When rat heart mitochondria were incubated under transport conditions at pH 7.0 with succinate as respiratory substrate, the matrix pH was significantly greater than 8.0. Matrix pH remained greater than or equal to 8.0 when the medium pH was varied from 6.3 to 8.3, and it was lowered below 8.0 by addition of 5 mM phosphate or uncoupler. No pH gradient was detectable when mitochondria were incubated in the presence of valinomycin and uncoupler. Efflux of alpha-ketoisocaproate or alpha-ketoisovalerate from rat heart mitochondria obeyed first order kinetics. Varying the external pH from 6.6 to 8.3 had no significant effect on efflux, and at an external pH of 7.0, the first order rate constant for efflux was not affected by decreasing the matrix pH. On the other hand, exchange was sensitive to changes in medium but not matrix pH. The K0.5 for external branched chain alpha-keto acid was lowered by changing the medium pH from 7.6 to 6.3. At medium pH values greater than or equal to 8.0 both K0.5 and Vmax were affected. Uptake was determined either by measuring initial rates or was calculated after measuring the first order approach to a final equilibrium value. Unlike efflux, uptake was sensitive to changes in both external and matrix pH. The rate of branched chain alpha-keto acid uptake was stimulated by decreasing the medium pH from 8.3 to 6.3 and by alkalinization of the mitochondrial matrix. The estimated external pK for proton binding was 6.9. The data indicate that the branched chain alpha-keto acid transporter is asymmetric, that is, binding sites for substrate on the inside and outside of the mitochondrial membrane are not identical. alpha-Ketoisocaproate oxidation was measured at 37 degrees C in isolated mitochondria over the pH range of 6.6 to 8.1. Changes in the rate of branched chain alpha-keto acid oxidation, particularly when ATP was added (increase delta pH), were found to parallel the pH effects observed on branched chain alpha-keto acid uptake. Therefore, transport, and by implication oxidation, can be regulated by pH changes within the physiological range. Furthermore, intracellular pH may affect the degree of compartmentation between the cytosolic and mitochondrial branched chain alpha-keto acid pools.
Ammonia nitrogen removal from aqueous solution by local agricultural wastes
NASA Astrophysics Data System (ADS)
Azreen, I.; Lija, Y.; Zahrim, A. Y.
2017-06-01
Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
The use of colloidal microgels for the controlled delivery of proteins and peptides
NASA Astrophysics Data System (ADS)
Cornelius, Victoria J.; Snowden, Martin J.; Mitchell, John C.
2007-01-01
Colloidal microgels may be used for the absorption and controlled release of confirmationally sensitive molecules such as proteins and peptides. These monodisperse microgels are easily prepared in a single pot reaction from e.g. Nisopropylacrylamide, butyl acrylate and methacrylic acid in the presence of a cross-linking agent and a suitable free radical initiator. The resultant materials display dramatic conformational changes in aqueous dispersion in response to changes in e.g. environmental pH. Colloidal microgels are capable of absorbing a range of different proteins and peptides at one pH, affording them protection by changing the conformation of the microgel following a pH change. A further change in environmental pH will allow the microgel to adopt a more extended confirmation and therefore allow the release of the encapsulated material. In the case of e.g. insulin this would offer the possibility of an oral delivery route. At the pH of stomach the microgel adopts a compact conformation, "protecting" the protein from denaturation. As the pH increases passing into the GI tract, the microgel changes its conformation to a more expanded form and thereby allows the protein to be released. Colloidal microgels offer an opportunity for the controlled release of conformationally sensitive protein and peptide molecules via an oral route.
Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.
Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra
2016-11-20
A novel, efficient delivery system for iron (Fe 2+ ) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Bao-xiu; Li, Xiang-zhong; Wang, Peng
2007-01-01
Degradation of 2,4-dichlorophenol (2,4-DCP) was studied in a novel three-electrode photoelectrocatalytic (PEC) integrative oxidation process, and the factors influencing the degradation rate, such as applied current, flow speed of O2, pH, adscititious voltage and initial 2,4-DCP concentration were investigated and optimized. H2O2 was produced nearby cathode and Fe2+ continuously generated from Fe anode in solution when current and O2 were applied, so, main reactions, H2O2-assisted TiO2 PEC oxidation and E-Fenton reaction, occurred during degradation of 2,4-DCP in this integrative system. The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process, while it was only 31% in E-Fenton process and 46% in H2O2-assisted TiO2 PEC process. So, it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect. By the investigation of pH, it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.
The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.
1999-01-01
Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.
Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH.
Wang, Qian; Wang, Bing; Lee, Xinqing; Lehmann, Johannes; Gao, Bin
2018-09-01
The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO 3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. Copyright © 2018 Elsevier B.V. All rights reserved.
Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming
2018-07-01
High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bitziou, Eleni; Joseph, Maxim B; Read, Tania L; Palmer, Nicola; Mollart, Tim; Newton, Mark E; Macpherson, Julie V
2014-11-04
A novel electrochemical approach to the direct detection of hydrogen sulfide (H2S), in aqueous solutions, covering a wide pH range (acid to alkali), is described. In brief, a dual band electrode device is employed, in a hydrodynamic flow cell, where the upstream electrode is used to controllably generate hydroxide ions (OH(-)), which flood the downstream detector electrode and provide the correct pH environment for complete conversion of H2S to the electrochemically detectable, sulfide (HS(-)) ion. All-diamond, coplanar conducting diamond band electrodes, insulated in diamond, were used due to their exceptional stability and robustness when applying extreme potentials, essential attributes for both local OH(-) generation via the reduction of water, and for in situ cleaning of the electrode, post oxidation of sulfide. Using a galvanostatic approach, it was demonstrated the pH locally could be modified by over five pH units, depending on the initial pH of the mobile phase and the applied current. Electrochemical detection limits of 13.6 ppb sulfide were achieved using flow injection amperometry. This approach which offers local control of the pH of the detector electrode in a solution, which is far from ideal for optimized detection of the analyte of interest, enhances the capabilities of online electrochemical detection systems.
Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA.
Idrees, Danish; Shahbaaz, Mohd; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz
2017-02-01
Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0-pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of k cat and k cat /K m at pH 9.0 are 3.7 × 10 6 s -1 and 5.5 × 10 7 M -1 s -1 , respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.
Degradation kinetics and transformation products of chlorophene by aqueous permanganate.
Xu, Xinxin; Chen, Jing; Wang, Siyuan; Ge, Jiali; Qu, Ruijuan; Feng, Mingbao; Sharma, Virender K; Wang, Zunyao
2018-07-01
This paper evaluates the oxidation of an antibacterial agent, chlorophene (4-chloro-2-(phenylmethyl)phenol, CP), by permanganate (Mn(VII)) in water. Second-order rate constant (k) for the reaction between Mn(VII) and CP was measured as (2.05 ± 0.05) × 10 1 M -1 s -1 at pH 7.0 for an initial CP concentration of 20.0 μM and Mn(VII) concentration of 60.0 μM. The value of k decreased with increasing pH in the pH range of 5.0-7.0, and then increased with an increase in solution pH from 7.0 to 10.0. The presence of MnO 2 and Fe 3+ in water generally enhanced the removal of CP, while the effect of humic acid was not obvious. Fourteen oxidation products of CP were identified by an electrospray time-of-flight mass spectrometer, and direct oxidation, ring-opening, and decarboxylation were mainly observed in the reaction process. The initial reaction sites of CP by Mn(VII) oxidation were rationalized by density functional theory calculations. Toxicity changes of the reaction solutions were assessed by the luminescent bacteria P. phosphoreum, and the intermediate products posed a relatively low ecological risk during the degradation process. The efficient removal of CP in secondary clarifier effluent and river water demonstrated the potential application of this Mn(VII) oxidation method in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pandey, A; Dolly, S; Semwal, D; Pandey, A
2017-07-31
Rhodobacter sphaeroides NMBL-02, photosynthetic purple non sulfur (PNS) bacteria and associated Bacillus firmus NMBL-03 were isolated from water sample collected from 15-20 inches beneath the surface of ponds from Northern region of India in modified Sistrom's media (120 ml) containing 3 g/L malate and 1.2 g/L ammonium sulfate. The isolation was done in air tight serum bottles (120 ml) under tungsten bulb (1.8 kLux light intensity) at 30 oC ± 2 oC. The PNS and heterotrophic bacteria associated with the culture was purified by clonal selection method and characterized by 16S rDNA sequencing. The PNS isolate was identified as Rhodobacter sphaeroides NMBL-02 (ID: 1467407, Accession BANKIT: JN256030) and associated heterotroph as Bacillus firmus NMBL-03 (Gene Bank Accession no.: JN 256029). The effect of initial medium pH on optimization of hydrogen production was investigated in batch process. The maximum hydrogen potential and hydrogen production rate was 2310 ± 55 ml/L and 4.75 ml/L culture/h respectively using glutamate (1.7 mmol/L) as nitrogen source and malate (22.38 mmol/L) as carbon source with 76.39% malate conversion efficiency at initial medium pH 5.0. This co-culture has the ability to produce significant amount of hydrogen in the pH range of 5.0 to 10.0 with 76.39% to 35.71% malate conversion respectively.
Identification of Limiting Factors for the Optimum Growth of Fusarium Oxysporum in Liquid Medium
Srivastava, Shilpi; Pathak, Neelam; Srivastava, Prachi
2011-01-01
Fusarium oxysporum is a highly ubiquitous species that infects a wide range of hosts causing various diseases such as vascular wilts, yellows, rots, and damping-off. Despite the immense economic significance of this phytopathogen, few workers have reported growth studies in this genus in submerged culture. In the present study, several parameters such as change in media pH, biomass, pattern of substrate utilization, viability of the fungal cells, and protein content were observed over a period of time. The fungal biomass increased at a slow rate for the initial 48 h and thereafter increased at an exponential rate. However, after about 8 days the rapid growth stabilized and the trend became more toward stationary phase. The concentration of glucose in the liquid media decreased rapidly up to the initial 4 days, followed by a slow decrease. The pH of the medium gradually decreased as the fungal growth progressed, the reduction being more pronounced in the initial 48 h. This study would be of immense importance for utilization of F. oxysporum for diverse applications because we can predict the growth pattern in the fungus and modulate its growth for human benefit. PMID:21976815
Isakova, Anna; Murdoch, Billy J; Novakovic, Katarina
2018-04-04
The oscillatory palladium-catalysed carbonylation reaction opens new horizons for applications in smart materials due to the versatility of its conditions and substrates, as well as the adjustability of amplitude and period of pH oscillations. A variety of viable substrates have been demonstrated, including polymeric alkyne-terminated substrates. However, so far, there have not been any reports of polymer-based palladium catalysts in oscillatory mode. In this paper, we demonstrate pH oscillations in various systems, using commercially available palladium acetate, a triphenylphosphine palladium acetate complex and a polymer-bound palladium catalyst. While palladium acetate was able to generate oscillations under the conditions already established in our previous research on PdI2-catalysed oscillators, the other two catalysts needed the addition of HI to induce oscillations. HI forced an initial pH drop, bringing pH into the range where oscillations generally occur. Addition of HI had a significant effect on all catalysts, modifying the amplitude and period of oscillations, oscillation mode, as well as starting material conversion and product distribution.
Sardi, Florencia; Manta, Bruno; Portillo-Ledesma, Stephanie; Knoops, Bernard; Comini, Marcelo A; Ferrer-Sueta, Gerardo
2013-04-01
A method based on the differential reactivity of thiol and thiolate with monobromobimane (mBBr) has been developed to measure nucleophilicity and acidity of protein and low-molecular-weight thiols. Nucleophilicity of the thiolate is measured as the pH-independent second-order rate constant of its reaction with mBBr. The ionization constants of the thiols are obtained through the pH dependence of either second-order rate constant or initial rate of reaction. For readily available thiols, the apparent second-order rate constant is measured at different pHs and then plotted and fitted to an appropriate pH function describing the observed number of ionization equilibria. For less available thiols, such as protein thiols, the initial rate of reaction is determined in a wide range of pHs and fitted to the appropriate pH function. The method presented here shows excellent sensitivity, allowing the use of nanomolar concentrations of reagents. The method is suitable for scaling and high-throughput screening. Example determinations of nucleophilicity and pK(a) are presented for captopril and cysteine as low-molecular-weight thiols and for human peroxiredoxin 5 and Trypanosoma brucei monothiol glutaredoxin 1 as protein thiols. Copyright © 2013 Elsevier Inc. All rights reserved.
Huang, Liping; Li, Ming; Pan, Yuzhen; Quan, Xie; Yang, Jinhui; Puma, Gianluca Li
2018-04-16
The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m 3 /m 3 /d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)). Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, En; Fan, Lihua; Yan, Jinping; Jiang, Yueming; Doucette, Craig; Fillmore, Sherry; Walker, Bradley
2018-01-24
There has been continued interest in bacteriocins research from an applied perspective as bacteriocins have potential to be used as natural preservative. Four bacteriocinogenic lactic acid bacteria (LAB) strains of Lactobacillus curvatus (Arla-10), Enterococcus faecium (JFR-1), Lactobacillus paracasei subsp. paracasei (JFR-5) and Streptococcus thermophilus (TSB-8) were previously isolated and identified in our lab. The objective of this study was to determine the optimal growth conditions for both LAB growth and bacteriocins production. In this study, various growth conditions including culture media (MRS and BHI), initial pH of culture media (4.5, 5.5, 6.2, 7.4 and 8.5), and incubation temperatures (20, 37 and 44 °C) were investigated for LAB growth measured as optical density (OD), bacteriocin activity determined as arbitrary unit and viability of LAB expressed as log CFU ml -1 . Growth curves of the bacteriocinogenic LAB were generated using a Bioscreen C. Our results indicated that Arla-10, JFR-1, and JFR-5 strains grew well on both MRS and BHI media at growth temperature tested whereas TSB-8 strain, unable to grow at 20 °C. LAB growth was significantly affected by the initial pH of culture media (p < 0.001) and the optimal pH was found ranging from 6.2 to 8.5. Bacteriocin activity was significantly different in MRS versus BHI (p < 0.001), and the optimal condition for LAB to produce bacteriocins was determined in MRS broth, pH 6.2 at 37 °C. This study provides useful information on potential application of bacteriocinogenic LAB in food fermentation processes.
Kårelid, Victor; Larsson, Gen; Björlenius, Berndt
2017-05-15
Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cost-Effectiveness of 2009 Pandemic Influenza A(H1N1) Vaccination in the United States
Prosser, Lisa A.; Lavelle, Tara A.; Fiore, Anthony E.; Bridges, Carolyn B.; Reed, Carrie; Jain, Seema; Dunham, Kelly M.; Meltzer, Martin I.
2011-01-01
Background Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination. Methodology A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted. Results For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery. Conclusions Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial impact on the cost-effectiveness of vaccination. PMID:21829456
Formation of Hg(II) tetrathiolate complexes with cysteine at neutral pH
Warner, Thomas; Jalilehvand, Farideh
2016-01-04
Mercury(II) ions precipitate from aqueous cysteine (H 2Cys) solutions containing H 2Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S-HCys) 2. In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S, N-Cys) 2] 2- complex dominating. With excess cysteine (H 2Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S-Cys) 4] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) variedmore » between 8 – 9 mM and 80 – 100 mM, respectively, with H 2Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 – 8.8, at the pH at which the initial Hg( S-HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions (C Hg(II) = 8 – 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess (C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions (C Hg(II) = 80 – 100 mM) with high cysteine excess (C H2Cys > 0.9 M), tetrathiolate [Hg( S-cysteinate) 4] m-6 ( m = 0 – 4) complexes dominate in the pH range 7.3 – 7.8, with lower charge than for the [Hg( S-Cys) 4] 6- complex due to protonation of some ( m) of the amino groups of the coordinated cysteine ligands. In conclusion, the results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.« less
Renal function can be impaired in children with primary hyperoxaluria type 3.
Allard, Lise; Cochat, Pierre; Leclerc, Anne-Laure; Cachat, François; Fichtner, Christine; De Souza, Vandréa Carla; Garcia, Clotilde Druck; Camoin-Schweitzer, Marie-Christine; Macher, Marie-Alice; Acquaviva-Bourdain, Cécile; Bacchetta, Justine
2015-10-01
Primary hyperoxaluria type 3 (PH3) is characterized by mutations in the 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 patients are believed to present with a less severe phenotype than those with PH1 and PH2, but the clinical characteristics of PH3 patients have yet to be defined in sufficient detail. The aim of this study was to report our experience with PH3. Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after the presence of mutations in the alanine-glyoxylate aminotransferase gene had been ruled out. Clinical, biochemical and genetic data of the seven patients identified with HOGA1 mutations were subsequently retrospectively reviewed. Among the seven patients identified with HOGA1 mutations the median onset of clinical symptoms was 1.8 (range 0.4-9.8) years. Five patients initially presented with urolithiasis, and two other patients presented with urinary tract infection. All patients experienced persistent hyperoxaluria. Seven mutations were found in HOGA1, including two previously unreported ones, c.834 + 1G > T and c.3G > A. At last follow-up, two patients had impaired renal function based on estimated glomerular filtration rates (GFRs) of 77 and 83 mL/min per 1.73 m(2), respectively. We found that the GFR was significantly impaired in two of our seven patients with PH3 diagnosed during childhood. This finding is in contrast to the early-impaired renal function in PH1 and PH2 and appears to refute to preliminary reassuring data on renal function in PH3.
Copper uptake by the water hyacinth. [Eichornia crassipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.A.; Hardy, J.K.
1987-01-01
Factors affecting Cu/sup +2/ uptake by the water hyacinth (Eichornia crassipes) were examined. Two phases of copper uptake were observed throughout the uptake range (1-1000 mg/1). An initial rapid uptake phase of 4 hours followed by a slower, near linear uptake phase extending past 48 hours was observed. Stirring the solution enhanced uptake, suggesting copper removal is partially diffusion limited. Variations in pH over the range of 3 to 10 did not significantly affect uptake. Increasing the root mass of the plant increased the amount of copper taken up. As solution volume was increased more copper was removed. The presencemore » of complexing agents during the uptake phase reduced copper uptake. The inability of complexing agents to recover all copper initially removed by a plant suggests a migration to sites within the plant.« less
Biodegradation kinetics of picric acid by Rhodococcus sp.NJUST16 in batch reactors.
Shen, Jinyou; He, Rui; Wang, Lianjun; Zhang, Jianfa; Zuo, Yi; Li, Yanchun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing
2009-08-15
Biological degradation of 2,4,6-trinitrophenol (TNP) by Rhodococcus sp.NJUST16 in mineral salt medium was investigated in shake-flask experiments at pH of 7.0 and 30 degrees C, over a wide range of initial TNP concentration (20-800 mgl(-1)). The TNP was observed to be the inhibitory compound. For the studied concentration range, Haldane's model could be fitted to the growth kinetics data well with the kinetic constants mu(max)=0.2362 h(-1), K(s)=9.9131 mgl(-1) and K(i)=362.7411 mgl(-1). Further, the variation of observed yield coefficient Y with initial TNP concentration and the decay coefficient were investigated. It is our view that the above information would be useful for modeling and designing the units treating TNP-containing wastewaters.
Song, Yong-Hong; Sun, Xue-Wen; Jiang, Bo; Liu, Ji-En; Su, Xian-Hui
2015-12-01
Design of experiment (DoE) is a statistics-based technique for experimental design that could overcome the shortcomings of traditional one-factor-at-a-time (OFAT) approach for protein purification optimization. In this study, a DoE approach was applied for optimizing purification of a recombinant single-chain variable fragment (scFv) against type 1 insulin-like growth factor receptor (IGF-1R) expressed in Escherichia coli. In first capture step using Capto L, a 2-level fractional factorial analysis and successively a central composite circumscribed (CCC) design were used to identify the optimal elution conditions. Two main effects, pH and trehalose, were identified, and high recovery (above 95%) and low aggregates ratio (below 10%) were achieved at the pH range from 2.9 to 3.0 with 32-35% (w/v) trehalose added. In the second step using cation exchange chromatography, an initial screening of media and elution pH and a following CCC design were performed, whereby the optimal selectivity of the scFv was obtained on Capto S at pH near 6.0, and the optimal conditions for fulfilling high DBC and purity were identified as pH range of 5.9-6.1 and loading conductivity range of 5-12.5 mS/cm. Upon a further gel filtration, the final purified scFv with a purity of 98% was obtained. Finally, the optimized conditions were verified by a 20-fold scale-up experiment. The purities and yields of intermediate and final products all fell within the regions predicted by DoE approach, suggesting the robustness of the optimized conditions. We proposed that the DoE approach described here is also applicable in production of other recombinant antibody constructs. Copyright © 2015 Elsevier Inc. All rights reserved.
Hayes, Sarah M; White, Scott A; Thompson, Thomas L; Maier, Raina M; Chorover, Jon
2009-12-01
Desert mine tailings may accumulate toxic metals in the near surface centimeters because of low water through-flux rates. Along with other constraints, metal toxicity precludes natural plant colonization even over decadal time scales. Since unconsolidated particles can be subjected to transport by wind and water erosion, potentially resulting in direct human and ecosystem exposure, there is a need to know how the lability and form of metals change in the tailings weathering environment. A combination of chemical extractions, X-ray diffraction, micro-X-ray fluorescence spectroscopy, and micro-Raman spectroscopy were employed to study Pb and Zn contamination in surficial arid mine tailings from the Arizona Klondyke State Superfund Site. Initial site characterization indicated a wide range in pH (2.5 to 8.0) in the surficial tailings pile. Ligand-promoted (DTPA) extractions, used to assess plant-available metal pools, showed decreasing available Zn and Mn with progressive tailings acidification. Aluminum shows the inverse trend, and Pb and Fe show more complex pH dependence. Since the tailings derive from a common source and parent mineralogy, it is presumed that variations in pH and "bioavailable" metal concentrations result from associated variation in particle-scale geochemistry. Four sub-samples, ranging in pH from 2.6 to 5.4, were subjected to further characterization to elucidate micro-scale controls on metal mobility. With acidification, total Pb (ranging from 5 - 13 g kg(-1)) was increasingly associated with Fe and S in plumbojarosite aggregates. For Zn, both total (0.4 - 6 g kg(-1)) and labile fractions decreased with decreasing pH. Zinc was found to be primarily associated with the secondary Mn phases manjiroite and chalcophanite. The results suggest that progressive tailings acidification diminishes the overall lability of the total Pb and Zn pools.
NASA Astrophysics Data System (ADS)
Nikolaeva, L. S.; Semenov, A. N.
2018-02-01
The anticoagulant activity of high-molecular-weight heparin is increased by developing a new highly active heparin complex with glutamate using the thermodynamic model of chemical equilibria based on pH-metric data. The anticoagulant activity of the developed complexes is estimated in the pH range of blood plasma according to the drop in the calculated equilibrium Ca2+ concentration associated with the formation of mixed ligand complexes of Ca2+ ions, heparin (Na4hep), and glutamate (H2Glu). A thermodynamic model is calculated by mathematically modelling chemical equilibria in the CaCl2-Na4hep-H2Glu-H2O-NaCl system in the pH range of 2.30 ≤ pH ≤ 10.50 in diluted saline that acts as a background electrolyte (0.154 M NaCl) at 37°C and initial concentrations of the main components of ν × 10-3 M, where n ≤ 4. The thermodynamic model is used to determine the main complex of the monomeric unit of heparin with glutamate (HhepGlu5-) and the most stable mixed ligand complex of Ca2+ with heparin and glutamate (Ca2hepGlu2-) in the pH range of blood plasma (6.80 ≤ pH ≤ 7.40). It is concluded that the Ca2hepGlu2- complex reduces the Ca2+ concentration 107 times more than the Ca2+ complex with pure heparin. The anticoagulant effect of the developed HhepGlu5- complex is confirmed in vitro and in vivo via coagulation tests on the blood plasma of laboratory rats. Additional antithrombotic properties of the developed complex are identified. The new highly active anticoagulant, HhepGlu5- complex with additional antithrombotic properties, is patented.
Hayes, Sarah M.; White, Scott A.; Thompson, Thomas L.; Maier, Raina M.; Chorover, Jon
2009-01-01
Desert mine tailings may accumulate toxic metals in the near surface centimeters because of low water through-flux rates. Along with other constraints, metal toxicity precludes natural plant colonization even over decadal time scales. Since unconsolidated particles can be subjected to transport by wind and water erosion, potentially resulting in direct human and ecosystem exposure, there is a need to know how the lability and form of metals change in the tailings weathering environment. A combination of chemical extractions, X-ray diffraction, micro-X-ray fluorescence spectroscopy, and micro-Raman spectroscopy were employed to study Pb and Zn contamination in surficial arid mine tailings from the Arizona Klondyke State Superfund Site. Initial site characterization indicated a wide range in pH (2.5 to 8.0) in the surficial tailings pile. Ligand-promoted (DTPA) extractions, used to assess plant-available metal pools, showed decreasing available Zn and Mn with progressive tailings acidification. Aluminum shows the inverse trend, and Pb and Fe show more complex pH dependence. Since the tailings derive from a common source and parent mineralogy, it is presumed that variations in pH and “bioavailable” metal concentrations result from associated variation in particle-scale geochemistry. Four sub-samples, ranging in pH from 2.6 to 5.4, were subjected to further characterization to elucidate micro-scale controls on metal mobility. With acidification, total Pb (ranging from 5 – 13 g kg−1) was increasingly associated with Fe and S in plumbojarosite aggregates. For Zn, both total (0.4 – 6 g kg−1) and labile fractions decreased with decreasing pH. Zinc was found to be primarily associated with the secondary Mn phases manjiroite and chalcophanite. The results suggest that progressive tailings acidification diminishes the overall lability of the total Pb and Zn pools. PMID:20161492
Arylsulfatase Activity in Salt Marsh Soils †
Oshrain, R. L.; Wiebe, W. J.
1979-01-01
The presence of arylsulfatase(s) was confirmed in salt marsh soils. The temperatures of maximum activity and inactivation, the pH range over which the enzyme was active, and the Km values were similar to those of soil enzymes. Unlike soil arylsulfatases, however, the salt marsh enzymes do not appear to be repressed by sulfate. It is postulated that these enzymes may be necessary for the initiation of arylsulfate ester metabolism. PMID:16345425
NASA Astrophysics Data System (ADS)
Craig, L.; Stillings, L. L.; Decker, D.; Thomas, J.
2013-12-01
In northern Ghana, groundwater is the main source of household water and is generally considered a safe and economical source of drinking water. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of northern Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of the poverty and limited access to technology, the affected community lacks the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F- drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, as well as potential changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (as C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Experimental results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours up to 30 weeks before the experiment. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (at initial pH ~6.9, initial F- 1 to 60 ppm, and 20 hr reaction time). The pH dependent surface charge shows a maximum of ~0.14 C m-2 at pH of ~4.4 and zero surface charge at pH ~8.5. F- loading experiments were conducted with grain size ranges 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading onto activated alumina did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will be incorporated into the design of a small-scale F-1 adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.
Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin
Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun
2012-01-01
To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the published experimental TSR data yield kinetic parameters that are consistent with our values. Assuming MgSO4 contact-ion-pair ([MgSO4]CIP) as the reactive form of sulfate in petroleum reservoir formation waters, a simple extrapolation of our experimentally derived HSO4− reduction kinetics as a proxy for [MgSO4]CIP to geologically reasonable conditions predicts onset temperatures (130–140 °C) that are comparable to those observed in nature.
Cull, S G; Holbrey, J D; Vargas-Mora, V; Seddon, K R; Lye, G J
2000-07-20
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. Copyright 2000 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-07-01
The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Suryanarayanan, Raj
To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less
Optimization of Photooxidative Removal of Phenazopyridine from Water
NASA Astrophysics Data System (ADS)
Saeid, Soudabeh; Behnajady, Mohammad A.; Tolvanen, Pasi; Salmi, Tapio
2018-05-01
The photooxidative removal of analgesic pharmaceutical compound phenazopyridine (PhP) from aqueous solutions by UV/H2O2 system with a re-circulated photoreactor was investigated. Response surface methodology (RSM) was employed to optimize the effect of operational parameters on the photooxidative removal efficiency. The investigated variables were: the initial PhP and H2O2 concentrations, irradiation time, volume of solution and pH. The analysis of variance (ANOVA) of quadratic model demonstrated that the described model was highly significant. The predicted values of the photooxidative removal efficiency were found to be in a fair agreement with experimental values ( R 2 = 0.9832, adjusted R 2 = 0.9716). The model predicted that the optimal reaction conditions for a maximum removal of PhP (>98%) were: initial PhP concentration less than 23 mg L-1, initial concentration of H2O2 higher than 470 mg L-1, solution volume less than 500 mL, pH close to 2 and irradiation time longer than 6 min.
Touahar, Imad E; Haroune, Lounès; Ba, Sidy; Bellenger, Jean-Phillipe; Cabana, Hubert
2014-05-15
In order to transform a wide range of pharmaceutically active compounds (PhACs), the three oxidative enzymes laccase (Lac) from Trametes versicolor, versatile peroxidase (VP) from Bjerkandera adusta and glucose oxidase (GOD) from Aspergillus niger were concomitantly cross-linked after aggregation, thus, making a combined cross-linked enzyme aggregate (combi-CLEA) that was versatile and involved in an enzymatic cascade reaction. From the initial enzymes about 30% of initial laccase activity was recovered along with 40% for each of VP and GOD. The combi-CLEA showed good results in conditions close to those of real wastewater (neutral pH and medium temperature) as well as a good ability to resist to denaturing conditions such as high temperature (60°C) and low pH (3). Batch experiments were realized to test the free enzyme's ability to degrade, a PhACs cocktail, mainly in a synthetic wastewater containing acetaminophen, naproxen, mefenamic acid, indometacin, diclofenac, ketoprofen, caffeine, diazepam, ciprofloxacin, trimethoprim, fenofibrate and bezafibrate, carbamazepine and its by-product 10-11 epoxy-carbamazepine. High removal was achieved (more than 80%) for the five first compounds. Then, the elimination ability of the combi-CLEA with or without hydrogen peroxide, glucose or manganese sulfate was determined. Globally, our results demonstrated that VP has a wider removal spectrum than Lac. These removal features are enhanced under more specific conditions, whereas the combi-CLEA combined advantages of both VP and laccase. Finally, the elimination of PhACs in a municipal wastewater treatment plant effluent using the combi-CLEA was marginally investigated. Concentrations of most of the selected PhACs were below the limit of quantification (lower than 20 ng/L) except for acetaminophen. Its combi-CLEA-mediated removal reached up to 25%. Copyright © 2014 Elsevier B.V. All rights reserved.
Factors affecting UV/H2O2 inactivation of Bacillus atrophaeus spores in drinking water.
Zhang, Yongji; Zhang, Yiqing; Zhou, Lingling; Tan, Chaoqun
2014-05-05
This study aims at estimating the performance of the Bacillus atrophaeus spores inactivation by the UV treatment with addition of H2O2. The effect of factors affecting the inactivation was investigated, including initial H2O2 dose, UV irradiance, initial cell density, initial solution pH and various inorganic anions. Under the experimental conditions, the B. atrophaeus spores inactivation followed both the modified Hom Model and the Chick's Model. The results revealed that the H2O2 played dual roles in the reactions, while the optimum reduction of 5.88lg was received at 0.5mM H2O2 for 10min. The inactivation effect was affected by the UV irradiance, while better inactivation effect was achieved at higher irradiance. An increase in the initial cell density slowed down the inactivation process. A slight acid condition at pH 5 was considered as the optimal pH value. The inactivation effect within 10min followed the order of pH 5>pH 7>pH 9>pH 3>pH 11. The effects of three added inorganic anions were investigated and compared, including sulfate (SO4(2)(-)), nitrate (NO3(-)) and carbonate (CO3(2)(-)). The sequence of inactivation effect within 10min followed the order of control group>SO4(2)(-)>NO3(-)>CO3(2)(-). Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan
2018-05-15
pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.
Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard
2016-06-01
In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.
Tang, Jie; Chen, Chunxia; Chen, Lei; Daroch, Maurycy; Cui, Yan
2017-10-01
Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb 2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb 2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb 2+ concentration, whereas synergistic effect of pH and initial Pb 2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb 2+ removal efficiencies and can promote population to remove Pb 2+ . Besides, the three duckweed strains could be potential candidates for Pb 2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.
Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.
Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E
2015-12-01
A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.
[Degradation kinetics of ozone oxidation on high concentration of humic substances].
Zheng, Ke; Zhou, Shao-Qi; Yang, Mei-Mei
2012-03-01
Humic substance oxidation (HS) degradation by ozone was kinetically investigated. The effects of O3 dosage, initial pH, temperature and initial concentration of HS were studied. Under the conditions of 3.46 g x h(-1) ozone dosage, 1 000 mg x L(-1) initial HS, 8.0 initial pH and 303 K temperature, the removal efficiencies of HS achieved 89.04% at 30 min. The empirical kinetic equation of ozonation degradation for landfill leachate under the conditions of 1.52-6.10 g x h(-1) ozone dosage, 250-1 000 mg x L(-1) initial HS, 2.0-10.0 initial pH, 283-323 K temperature fitted well with the experimental data (average relative error is 7.62%), with low activation energy E(a) = 1.43 x 10(4)J x mol(-1).
NASA Astrophysics Data System (ADS)
Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza
2017-03-01
In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.
AGXT Gene Mutations and Prevalence of Primary Hyperoxaluria Type 1 in Moroccan Population.
Boualla, Lamiae; Tajir, Mariam; Oulahiane, Najat; Lyahyai, Jaber; Laarabi, Fatima Zahra; Chafai Elalaoui, Siham; Soulami, Kenza; Ait Ouamar, Hassan; Sefiani, Abdelaziz
2015-11-01
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by deficiency of alanine glyoxylate aminotransferase, due to a defect in the AGXT gene. Several mutations in this gene have been reported and some of them have been observed in multiple populations. The aim of our study was to analyze the mutations causing PH1 in the Moroccan population and to estimate its prevalence in Morocco. Molecular studies of 29 unrelated Moroccan patients with PH were performed by direct sequencing of all exons of the AGXT gene. In addition, to estimate the prevalence of PH1, we screened for the recurrent p.Ile244Thr mutation in 250 unrelated Moroccan newborns using real-time polymerase chain reaction. Four pathogenic mutations were detected in 25 unrelated patients. The c.731T>C (p.Ile244Thr) was the most frequent mutation with a frequency of 84%. The other three mutations were c.33delC, c.976delG, and c.331C>T. The prevalence of the PH1 mutation among Moroccans was then estimated to range from 1/7267 to 1/6264. PH1 is one of the most prevalent genetic diseases in the Moroccan population and is probably underdiagnosed. Front line genetic testing for PH1 in Morocco should be initiated using an assay for the recurrent p.Ile244Thr mutation. This strategy would provide a useful tool for precocious diagnosis of presymptomatic individuals and to prevent their rapid progression to renal failure.
NASA Astrophysics Data System (ADS)
Croxton, A.; Wikfors, G.
2013-12-01
Decreasing pH in estuarine systems is a growing concern for researchers studying mollusk species. Debates continue on whether estuarine bivalve species are more or less vulnerable to ocean acidification than marine species because estuaries can present multiple environmental stressors. The aim of this study is to understand the homeostatic mechanisms of bivalve hemocytes following exposure to extracellular acid treatment. Previous measurements using fluorescent SNARF probes and flow-cytometry have determined the intracellular pH of hemocytes from several bivalve species (eastern oyster, bay scallop, northern quahog, soft-shell clam, and blue mussel) to range between 7.0-7.4. In the present study of four bivalve species, recovery rate profiles were determined for intracellular hemocyte pH following addition of acid to hemolymph in vitro. These profiles indicate that soft-shell clams and bay scallops maintained homeostasis with very little change in intracellular pH. In contrast, an initial drop in intracellular pH in northern quahogs was followed by a steady recovery of intracellular pH. Contrasting results between species appear to be unrelated to mineral shell composition (aragonite vs. calcite) or habitat location (infaunal vs. epifaunal). The next phase of this study will be to determine if offshore species (surfclams and sea scallops) will have similar responses. Results from these studies will provide a better understanding of the physiological responses of estuarine and marine species exposed to acidified environments.
Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea.
Wang, Q; Su, M; Zhu, W; Li, X; Jia, Y; Guo, P; Chen, Z; Jiang, W; Tian, X
2010-01-01
Harmful cyanobacterial blooms cause water deterioration and threaten human health. It is necessary to remove harmful cyanobacteria with useful methods. A bio-treatment may be one of the best ways to do this. A strain of specific white-rot fungus, Lopharia spadicea, with algicidal ability was isolated. Its algicidal ability on algae under various conditions was determined using three main influence factors: initial chlorophyll-a content, initial pH, and algal cell mixture. The result showed that the chlorophyll-a content of Microcystis aeruginosa FACHB-912, Oocystis borgei FACHB-1108, and Microcystis flos-aquae FACHB-1028 decreased from 798+/-13, 756+/-40, and 773+/-24 microg/L to 0 within 39 h. L. spadicea could also remove more than 95% chlorophyll-a when initial chlorophyll-a content increased from 397+/-13 to 2,132+/-4 microg/L. Moreover, the strain has great removal ability under a broad initial pH range of 5.5 to 9.5. The chlorophyll-a content of the three algal strain mixtures decreased from about 672+/-23 microg/L to 0 within 45 h. After superoxide dismutase (SOD) and malondialdehyde (MAD) were assessed in a co-culture of L. spadicea, it was observed that an increase in MAD content was correlated with the decrease in chlorophyll-a content of M. aeruginosa FACHB-912. This result suggested that the algae was not only greatly inhibited but also severely damaged by the fungus.
Assessment of coagulation pretreatment of leachate by response surface methodology.
Lessoued, Ridha; Souahi, Fatiha; Castrillon Pelaez, Leonor
2017-11-01
Coagulation-flocculation is a relatively simple technique that can be used successfully for the treatment of old leachate by poly-aluminum chloride (PAC). The main objectives of this study are to design the experiments, build models and optimize the operating parameters, dosage m and pH, using the central composite design and response surface method. Developed for chemical organic matter (COD) and turbidity responses, the quadratic polynomial model is suitable for prediction within the range of simulated variables as it showed that the optimum conditions were m of 5.55 g/L at pH 7.05, with a determination coefficient R² at 99.33%, 99.92% and adjusted R² at 98.85% and 99.86% for both COD and turbidity. We confirm that the initial pH and PAC dosage have significant effects on COD and turbidity removal. The experimental data and model predictions agreed well and the removal efficiency of COD, turbidity, Fe, Pb and Cu reached respectively 61%, 96.4%, 97.1%, 99% and 100%.
Affinity chemiresistor sensor for sugars.
Tlili, Chaker; Badhulika, Sushmee; Tran, Thien-Toan; Lee, Ilkeun; Mulchandani, Ashok
2014-10-01
In this work, a non-enzymatic chemiresistive sugar sensor has been developed by combining a synthetic receptor with aligned single-walled carbon nanotubes (SWNTs) device. Briefly, boronic acid as a multivalent sugar receptor was immobilized on carbon nanotubes through amide bond formation. The interaction between three common sugars (d-glucose, d-fructose and sucrose) and boronic acid modified SWNTs device was studied. The effect of pH on the receptor-ligand binding was examined and highest response was observed at pH 9. The chemiresistive sensor exhibited specific and reproducible detection with sensitivity over the concentration range of 1-20mM, 1-25 mM, and 1-30 mM for fructose, glucose, and sucrose, respectively. The sensor showed no interference from common electroactive compounds such as citric acid, uric acid, and ascorbic acid. Furthermore, the sensor retained 97.4% of the initial value after five regeneration cycles with an acidic buffer at pH 5, thus ensuring good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.
Chaparadza, Allen; Hossenlopp, Jeanne M
2012-01-01
Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).
Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi
2014-04-07
A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.
Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur
2016-07-01
Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.
Yakout, Sobhy M; Hassan, Hisham S
2014-07-01
Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.
Nickel adsorption by magnetic alginate microcapsules containing an extractant.
Ngomsik, Audrey-Flore; Bee, Agnès; Siaugue, Jean-Michel; Cabuil, Valérie; Cote, Gérard
2006-05-01
The adsorption of heavy metals on biomaterials was investigated by studying the potential of alginate microcapsules containing an extractant (Cyanex 272) and magnetic nanoparticles (gamma-Fe2O3) for the adsorption of nickel (II) from aqueous solutions. A two-stage kinetics behaviour was observed with 70% of the maximum sorption capacity achieved within 8 h. An increase in nickel removal with increase in pH occurred, the maximum uptake capacity being around 0.42 mmol g-1 at pH 8. The adsorption isotherm (pH about 5.3) was obtained in a wide range of initial nickel concentrations; the experimental data were fitted by a Langmuir model and the qmax value was estimated to be 0.52 mmol g-1. Moreover, including magnetic particles in the microcapsules allowed easy isolation of the beads from the aqueous solutions after the sorption process. Magnetic microcapsules are then suitable for the development of efficient biosorbents for removal and recovery of heavy metals from wastewater using magnetic separation.
Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong
2016-08-01
As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).
Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L
2013-12-01
Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.
Song, Fanhao; Wu, Fengchang; Guo, Fei; Wang, Hao; Feng, Weiying; Zhou, Min; Deng, Yanghui; Bai, Yingchen; Xing, Baoshan; Giesy, John P
2017-12-15
In aquatic environments, pH can control environmental behaviors of fulvic acid (FA) via regulating hydrolysis of functional groups. Sub-fractions of FA, eluted using pyrophosphate buffers with initial pHs of 3.0 (FA 3 ), 5.0 (FA 5 ), 7.0 (FA 7 ), 9.0 (FA 9 ) and 13.0 (FA 13 ), were used to explore interactions between the various, operationally defined, FA fractions and protons, by use of EEM-PARAFAC analysis. Splitting of peaks (FA 3 and FA 13 ), merging of peaks (FA 7 ), disappearance of peaks (FA 9 and FA 13 ), and red/blue-shifting of peaks were observed during fluorescence titration. Fulvic-like components were identified from FA 3 -FA 13 , and protein-like components were observed in fractions FA 9 and FA 13 . There primary compounds (carboxylic-like, phenolic-like, and protein-like chromophores) in PARAFAC components were distinguished based on acid-base properties. Dissociation constants (pK a ) for fulvic-like components with proton ranged from 2.43 to 4.13 in an acidic pH and from 9.95 to 11.27 at basic pH. These results might be due to protonation of di-carboxylate and phenolic functional groups. At basic pH, pK a values of protein-like components (9.77-10.13) were similar to those of amino acids. However, at acidic pH, pK a values of protein-like components, which ranged from 3.33 to 4.22, were 1-2units greater than those of amino acids. Results presented here, will benefit understanding of environmental behaviors of FA, as well as interactions of FA with environmental contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric
2013-09-10
The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. Copyright © 2013 Elsevier B.V. All rights reserved.
Wood ash to treat sewage sludge for agricultural use
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.K.
About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for landmore » application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.« less
Single step, pH induced gold nanoparticle chain formation in lecithin/water system.
Sharma, Damyanti
2013-07-01
Gold nanoparticle (AuNP) chains have been formed by a single step method in a lecithin/water system where lecithin itself plays the role of a reductant and a template for AuNP chain formation. Two preparative strategies were explored: (1) evaporating lecithin solution with aqueous gold chloride (HAuCl4) at different pHs and (2) dispersing lecithin vesicles in aqueous HAuCl4 solutions of various pHs in the range of 2.5-11.3. In method 1, at initial pH 2.5, 20-50 nm AuNPs are found attached to lecithin vesicles. When pH is raised to 5.5 there are no vesicles present and 20 nm monodisperse particles are found aggregating. Chain formation of fine nanoparticles (3-5 nm) is observed from neutral to basic pH, between 6.5-10.3 The chains formed are hundreds of nanometers to micrometer long and are usually 2-3 nanoparticles wide. On further increasing pH to 11.3, particles form disk-like or raft-like structures. When method (ii) was used a little chain formation was observed. Most of the nanoparticles formed were found either sitting together as raft like structures or scattered on lecithin structures. Copyright © 2013 Elsevier B.V. All rights reserved.
Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk.
Li, W C; Law, F Y; Chan, Y H M
2017-04-01
This study investigated the adsorption and removal behaviour of copper (Cu) (II) and cadmium (Cd) (II) ions using rice husk and rice straw in aqueous solutions. Different parameters were used to investigate their adsorption performance in saline conditions and the optimal level of biosorption at different pH levels. The main parameters were pH (3, 6 and 9), initial concentration level of heavy metals (Cu (II) 5, 10, 20, 40 and 60 mg/L and Cd (II) 0.5, 1, 2, 4 and 8 mg/L, respectively), salinity (0, 50 and 100 mM NaCl) and contact time (ranging from 3 to 60 min). Langmuir and Freundlich isotherm models were applied to analyse the removal efficiency and sorption capacity of the pretreated rice husk and rice straw. The removal efficiency and adsorption capacity generally increased with the pH and reached a plateau in alkaline conditions. The percentage removal of Cu (II) by rice husk reached 97 % at pH 9 and 95 % by rice straw at pH 6. Biosorption performance increased in the absence of NaCl. Kinetic studies for both metals revealed that the biosorption of Cu (II) and Cd (II) onto rice straw and husk was pseudo-second order.
Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.
Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf
2016-01-01
Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.
Bowden, G. H. W.; Odlum, O.; Nolette, N.; Hamilton, I. R.
1982-01-01
Longitudinal microbiological examinations have been made of dental plaque from a site approximal to the upper central incisors of 10 8-year-old children living in an area with water fluoridation. Differential counts of viable bacteria, made using a selective medium containing various levels of fluoride (0 to 100 μg/ml) at pH levels of 7.0 to 5.5, demonstrated an effect of both pH and fluoride on the numbers and types of bacteria isolated. Strains of Streptococcus and Neisseria grew after only 16 h of incubation at pH levels as low as 6.0 with fluoride levels up to 50 μg/ml. The most commonly isolated streptococci were Streptococcus mitior and S. salivarius. S. mutans was isolated less frequently and was inhibited by 20 and 50 μg of fluoride per ml at pH 6.0 and 6.5, respectively. Veillonella strains were the most resistant isolates, being isolated after 16 h of incubation on media at pH 6.0 with 100 μg of fluoride per ml. Despite their known fluoride resistance, Actinomyces spp. were often only detected on the selective media after 72 h of incubation. The pH of the medium had a definite selective effect, as the number of colonies growing on the fluoride-free basal media at pH 6.0 was only 30% of that at pH 7.0. Representative strains of S. mutans, S. mitior, S. sanguis, and S. milleri were tested for their ability to utilize glucose at the pH and fluoride levels of the medium on which they were initially isolated. Fluoride reduced the initial glycolytic rate of the cells, but in 5 of the 13 strains tested the final amount of glucose used after 2 h of incubation was the same in the presence or absence of fluoride. The isolation of bacteria capable of growth in the presence of fluoride over a significant portion of the pH range that occurs in plaque in vivo could explain in part the finding that fluoride does not have a dramatic effect on the plaque community. Fluoride in plaque may reduce the ecological advantage afforded to aciduric S. mutans strains by carbohydrate substances. In the in vivo situation this could mean that, even with high carbohydrate intake, fluoride may permit S. mitior to compete with S. mutans within the plaque ecosystem. PMID:7076297
Evaluation of pH of Bathing Soaps and Shampoos for Skin and Hair Care.
Tarun, Jose; Susan, Jose; Suria, Jacob; Susan, Veronica John; Criton, Sebastian
2014-09-01
Normal healthy skin has potential of hydrogen (pH) range of 5.4-5.9 and a normal bacterial flora. Use of soap with high pH causes an increase in skin pH, which in turn causes an increase in dehydrative effect, irritability and alteration in bacterial flora. The majority of soaps and shampoos available in the market do not disclose their pH. The aim of this study was to assess the pH of different brands of bathing soaps and shampoos available in the market. The samples of soaps and shampoos were collected from shops in the locality. The samples of different brands are coded before the analysis of the pH. Solution of each sample was made and pH was measured using pH meter. Majority of the soaps have a pH within the range of 9-10. Majority of the shampoos have a pH within the range of 6-7. The soaps and shampoos commonly used by the population at large have a pH outside the range of normal skin and hair pH values. Therefore, it is hoped that before recommending soap to patient especially those who have sensitive and acne prone skin, due consideration is given to the pH factor and also that manufacturers will give a thought to pH of soaps and shampoos manufactured by them, so that their products will be more skin and hair friendly.
Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F
2017-12-01
To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.
Peterson, A. C.; Black, J. J.; Gunderson, M. F.
1964-01-01
Previous results showed definite repressive effects on the growth of staphylococci in mixed cultures due to the competitive growth of psychrophilic saprophytes. This study was continued, and the influence of other environmental factors, pH and salt, on the competition between staphylococci and saprophytes was investigated. Initial pH values varied from 5 to 9. At the extremes of the pH range, staphylococci failed to grow, while the saprophytes grew under all of the conditions tested. At pH 5, the growth curves for the saprophytes were markedly altered from those obtained at neutral pH. The lag phases were greatly lengthened at and below 20 C, but normal numbers of saprophytes were reached in the stationary phase. At pH 6 and 8, staphylococcal growth showed the same inhibition observed at pH 7, at and below 20 C; normal multiplication was observed above this temperature, but with accelerated death phases. Thus, pH did not primarily effect staphylococcal growth through its influence on saprophyte growth and competition, but rather directly affected the growth of Staphylococcus cultures. Salt concentrations from 3.5 to 9.5% were investigated for influence on staphylococcal growth in mixed populations. Above 3.5% salt, staphylococcal inhibition at and above 20 C was not as marked as in the controls, although normal numbers were never reached. The saprophytes were increasingly inhibited, and their lag phases materially lengthened as salt concentration was increased. Salt acted directly on the Staphylococcus population and also, by repressing saprophyte growth, decreased competition, which allowed the staphylococci to grow. PMID:14106943
Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu
2015-12-01
Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.
Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.
Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele
2016-01-01
In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to <90% of initial concentration in ideal laboratory conditions. At 25-35°C, neutralized-NaOCl solutions (pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Edward A.
2007-02-02
This Festschrift is in honor of Dale Sayers who passed away in November 2004. Dale played a pivotal role in initiating the modern era of X-ray Absorption Fine Structure (XAFS) 35 years ago. The prehistory of XAFS before the modern era consisted of 40 years of confusion caused by Kronig's two different theories of the extended XAFS (EXAFS), the Short-Range Order (SRO) and Long-Range Order (LRO) theories. Dale's PhD thesis on EXAFS led to the idea of a Fourier transform to definitely prove that SRO is the correct theory and then to the development of XAFS as a structure determinationmore » technique.« less
Göktürk, Ilgım; Perçin, Işık; Denizli, Adil
2016-08-17
In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe(3+)) cryogel discs were prepared. The PHEMAGA/Fe(3+) cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe(3+) cryogel discs had large pores ranging from 10 to 100 µm with a swelling degree of 9.36 g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe(3+) cryogel discs were investigated. Maximum catalase adsorption capacity (62.6 mg/g) was obtained at pH 7.0, 25°C, and 3 mg/ml initial catalase concentration. The PHEMAGA/Fe(3+) cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe(3+) cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.
NASA Astrophysics Data System (ADS)
Rehman, Fatima; Faisal, Muhammad
2015-05-01
Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37°C. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37°C after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.
Yan, Qing; Gao, Xu; Huang, Lei; Gan, Xiu-Mei; Zhang, Yi-Xin; Chen, You-Peng; Peng, Xu-Ya; Guo, Jin-Song
2014-03-01
The occurrence and fate of twenty-one pharmaceutically active compounds (PhACs) were investigated in different steps of the largest wastewater treatment plant (WWTP) in Southwest China. Concentrations of these PhACs were determined in both wastewater and sludge phases by a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Results showed that 21 target PhACs were present in wastewater and 18 in sludge. The calculated total mass load of PhACs per capita to the influent, the receiving water and sludge were 4.95mgd(-1)person(-1), 889.94μgd(-1)person(-1) and 78.57μgd(-1)person(-1), respectively. The overall removal efficiency of the individual PhACs ranged from "negative removal" to almost complete removal. Mass balance analysis revealed that biodegradation is believed to be the predominant removal mechanism, and sorption onto sludge was a relevant removal pathway for quinolone antibiotics, azithromycin and simvastatin, accounting for 9.35-26.96% of the initial loadings. However, the sorption of the other selected PhACs was negligible. The overall pharmaceutical consumption in Chongqing, China, was back-calculated based on influent concentration by considering the pharmacokinetics of PhACs in humans. The back-estimated usage was in good agreement with usage of ofloxacin (agreement ratio: 72.5%). However, the back-estimated usage of PhACs requires further verification. Generally, the average influent mass loads and back-calculated annual per capita consumption of the selected antibiotics were comparable to or higher than those reported in developed countries, while the case of other target PhACs was opposite. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pore formation and pore closure in poly(D,L-lactide-co-glycolide) films.
Fredenberg, Susanne; Wahlgren, Marie; Reslow, Mats; Axelsson, Anders
2011-03-10
Pore formation and pore closure in poly(D,L-lactide-co-glycolide)-based drug delivery systems are two important processes as they control the release of the encapsulated drug. The phenomenon pore closure was investigated by studying the effects of the pH and the temperature of the release medium, and the properties of the polymer. Poly(D,L-lactide-co-glycolide) (PLG) films were subjected to a pore forming pre-treatment, and then pore closure was observed simultaneously with changes in glass transition temperature, wettability (contact angle), water absorption and mass remaining. To further understand the effect of pH, combined pore formation and pore closure were studied at different pH values. Pore closure was increased in a release medium with low pH, with a low-molecular-weight PLG of relatively low degree of hydrophobicity, or at high temperature. Pore closure occurred by two different mechanisms, one based on polymer-polymer interactions and one on polymer-water interactions. The mobility of the PLG chains also played an important role. The surface of the PLG films were more porous at pH 5-6 than at lower or higher pH, as pore formation was relatively fast and pore closure were less pronounced in this pH range. The pH had a significant impact on the porous structure, which should be kept in mind when evaluating experimental results, as the pH may be significantly decreased in vitro, in vivo and in situ. The results also show that the initial porosity is very important when using a high-molecular-weight PLG. Copyright © 2010 Elsevier B.V. All rights reserved.
2013-01-01
In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated. The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst) and finally photocatalytic studies in presence and absence of additional oxidant (H2O2). All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH). For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8). The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%. PMID:23369352
Fat digestion in the stomach: stability of lingual lipase in the gastric environment.
Fink, C S; Hamosh, P; Hamosh, M
1984-03-01
Digestion of dietary fat starts in the stomach, where lingual lipase hydrolyzes triglycerides to free fatty acids and partial glycerides at pH 3.0-6.0. Lingual lipase is secreted continuously from lingual serous glands and accumulates in the stomach between meals, when gastric pH is less than 3.0. We have, therefore, examined the resistance of lingual lipase to low pH and its possible protection by dietary components present in the stomach contents. Partially purified rat lingual lipase (7-15 micrograms enzyme protein) was preincubated at 37 degrees C for 10-60 min at pH 1.0-6.0 before incubation for assay of lipolytic activity, hydrolysis of tri-[3H]olein at pH 5.4. The data show that partially purified rat lingual lipase preparations are stable at 37 degrees C in the pH range of 2.5-6.0. Enzyme activity, however, is rapidly and irreversibly lost during preincubation at pH 1.0-2.4 for 10-30 min. Protein (gelatin 1% or albumin 1% or 2.5%) cannot prevent the inactivation of lingual lipase at low pH. The large molecular species (molecular weight greater than 500,000) of lingual lipase (thought to be an aggregate of enzyme with lipids) is slightly more resistant to inactivation than the 46,000 dalton preparation, suggesting that lipids might protect the enzyme from inactivation. Indeed, about 60% of the initial lipase activity is preserved during incubation at pH 2.0 in the presence of 50 mM lecithin or 10 mM triolein. The data indicate that triglycerides which are hydrolyzed by this enzyme as well as phospholipids that are not hydrolyzed can prevent the inactivation of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.
Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai
2016-11-18
Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.
NASA Astrophysics Data System (ADS)
Hassan, Safia; Yasin, Tariq; Imran, Zahid; Batool, Syeda Sitwat
2018-02-01
In present study, series of gamma irradiated poly(acrylic acid)/Penytriethoxytrisilane (PTES) based hydrogels were synthesized. The hydrogels were used for the adsorption of Cu2+ from the aqueous solution. Batch adsorption experiments were performed by varying contact time (0-10 hours), pH value (2-6), hydrogels weight (15-155 mg) and initial Cu2+ concentration (0.003-90 mg/L). The results indicated that lowering the gamma irradiation dose (30-15 kGy) and PTES amount (1.65-0.83 μmol) into hydrogel polymeric networks, improved the initial rate of adsorption and final adsorption capacity of hydrogel for Cu2+. AA40/15 had 143.4mg/g Cu2+ adsorption capacity higher than AA80/30 which is 106.0mg/g. Hydrogels exhibited maximum o adsorption capacity for Cu2+ within a wide pH range. All adsorption data was described by the pseudo—first order and second order kinetic model equations and isotherm data by Langmuir model. FTIR spectra analysis before and after adsorption of Cu2+ on the AA hydrogels gave detail analysis of adsorption mechanism. The behavior of adsorption expressed that the enhanced adsorption capacity was due to the porous structure and e presence of functional groups onto surface of adsorbate. It is expected this polymeric hydrogel has potential to work as alternative biomedical sorbents and environmental use as pH altered.
Nettleton, E J; Tito, P; Sunde, M; Bouchard, M; Dobson, C M; Robinson, C V
2000-01-01
The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils. PMID:10920035
Thomas, R; Anjaneyulu, A S R; Kondaiah, N
2008-05-01
Shelf stable pork sausages were developed using hurdle technology and their quality was evaluated during ambient temperature (37±1°C) storage. Hurdles incorporated were low pH, low water activity, vacuum packaging and post package reheating. Dipping in potassium sorbate solution prior to vacuum packaging was also studied. Reheating increased the pH of the sausages by 0.17units as against 0.11units in controls. Incorporation of hurdles significantly decreased emulsion stability, cooking yield, moisture and fat percent, yellowness and hardness, while increasing the protein percent and redness. Hurdle treatment reduced quality deterioration during storage as indicated by pH, TBARS and tyrosine values. About 1 log reduction in total plate count was observed with the different hurdles as were reductions in the coliform, anaerobic, lactobacilli and Staphylococcus aureus counts. pH, a(w) and reheating hurdles inhibited yeast and mold growth up to day 3, while additional dipping in 1% potassium sorbate solution inhibited their growth throughout the 9 days storage. Despite low initial sensory appeal, the hurdle treated sausages had an overall acceptability in the range 'very good' to 'good' up to day 6.
Analytic model for washout of HCl(g) from dispersing rocket exhaust clouds
NASA Technical Reports Server (NTRS)
Pellett, G. L.
1981-01-01
The potential is investigated that precipitation scavenging of HCl from large solid rocket exhaust clouds may result in unacceptably acidic rain in the Cape Canaveral, Florida, area before atmospheric dispersion reduces HCl concentrations to safe limits. Several analytic expressions for HCl(g) and HCl(g + aq) washout are derived; a geometric mean washout coefficient is recommended. A previous HCl washout model is refined and applied to a space shuttle case (70 t HCl exhausted up to 4 km) and eight Titan 3 (60 percent less exhaust) dispersion cases. The vertical column density (sigma) decays were deduced by application of a multilayer Gaussian diffusion model to seven standard meteorological regimes for overland advection. The Titan 3 decays of sigma and initial rain pH differed greatly among regimes; e.g., a range of 2 pH units was spanned at x 100 km downwind and t = 2 hr. Environmentally significant pH's .5 for infrequent exposures were shown possible at X = 50 km and t 5 hr for the two least dispersive Titan 3 cases. Representative examples of downwind rainwater pH and G(X) are analyzed. Factors affecting the validity of the results are discussed.
pH-dependent ammonia removal pathways in microbial fuel cell system.
Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop
2016-09-01
In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles' biomimetics.
Simão, Ana Maria S; Bolean, Maytê; Hoylaerts, Marc F; Millán, José Luis; Ciancaglini, Pietro
2013-09-01
During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (PPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP, and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph containing 1 mM ATP as substrate and amorphous calcium phosphate or calcium-phosphate-phosphatidylserine complexes as nucleators. Propagation of mineralization was significantly more efficient at pH 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP, and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Cotter, C.R.; Kraus, S.M.
1996-08-01
We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do notmore » sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz.« less
Moraes, L E; Burgos, S A; DePeters, E J; Zhang, R; Fadel, J G
2017-03-01
The objective of the study was to quantify the rate of urea hydrolysis in dairy cattle manure under different initial urea concentration, temperature, and pH conditions. In particular, by varying all 3 factors simultaneously, the interactions between them could also be determined. Fresh feces and artificial urine solutions were combined into a slurry to characterize the rate of urea hydrolysis under 2 temperatures (15°C and 35°C), 3 urea concentrations in urine solutions (500, 1,000, and 1,500 mg of urea-N/dL), and 3 pH levels (6, 7, and 8). Urea N concentration in slurry was analyzed at 0.0167, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h after initial mixing. A nonlinear mixed effects model was used to determine the effects of urea concentration, pH, and temperature treatments on the exponential rate of urea hydrolysis and to predict the hydrolysis rate for each treatment combination. We detected a significant interaction between pH and initial urea level. Increasing urea concentration from 1,000 to 1,500 mg of urea-N/dL decreased the rate of urea hydrolysis across all pH levels. Across all pH and initial urea levels, the rate of urea hydrolysis increased with temperature, but the effect of pH was only observed for pH 6 versus pH 8 at the intermediate initial urea concentration. The fast rates of urea hydrolysis indicate that urea was almost completely hydrolyzed within a few hours of urine mixing with feces. The estimated urea hydrolysis rates from this study are likely maximum rates because of the thorough mixing before each sampling. Although considerable mixing of feces and urine occurs on the barn floor of commercial dairy operations from cattle walking through the manure, such mixing may be not as quick and thorough as in this study. Consequently, the urea hydrolysis rates from this study indicate the maximum loss of urea and should be accounted for in management aimed at mitigating ammonia emissions from dairy cattle manure under similar urea concentration, pH, and temperature conditions reported in this experiment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Levine, R L; Fromm, R E; Mojtahedzadeh, M; Baghaie, A A; Opekun, A R
1994-06-01
To compare the accuracy of litmus paper-determined gastric pH to a nasogastric graphite antimony pH probe. A prospective clinical trial of gastric pH determination in patients enrolled in a study of histamine-2-receptor (H2) antagonists. The medical intensive care unit (ICU) of a 450-bed county hospital. Critically ill ICU patients requiring stress ulcer prophylaxis. Using a crossover design, the patients were randomized to initially receive an H2 antagonist by continuous infusion or intravenous bolus, and subsequently were crossed over to the other limb of the study. Gastric pH was determined using pH-sensitive litmus paper at the initiation of each limb of the study and at 1, 2, 4, and 8 hrs after the initiation of H2 receptor antagonist therapy. In addition, gastric pH was continuously determined over the same time period utilizing a graphite antimony pH probe. Gastric pH measurements determined with litmus paper and intragastric pH probes demonstrated an excellent correlation (r2 = .93, p < .001). McNemar's test of correlated proportions could not demonstrate a significant difference between the two monitoring methods (chi-square = 0.5, p > .47), and the kappa statistic (0.95, p < .001) demonstrated excellent concordance. Bias measurement was 0.01 (95% confidence interval = -0.155 to 0.176). Measurement of intragastric pH, using pH-sensitive litmus paper, is both sensitive and specific when utilizing a graphite antimony nasogastric pH probe as a reference standard. Litmus paper-determined gastric pH testing is both easy to perform and inexpensive. Therefore, based on the current data, we believe this technique (i.e., litmus paper determined gastric pH testing) to be the method of choice for determination of intragastric pH in patients at risk for stress gastric ulcers in the medical ICU.
Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin
2016-08-15
A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Shi-Peng; Zhong, Xiao-Zhong; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji
2017-12-01
Aerobic composting of distilled grain waste (DGW) at different initial pH values adjusted by CaO addition was investigated. Three pH-adjusted treatments with initial pH values of 4 (R1), 5 (R2) and 6 (R3) and a control treatment (R0) with a pH value of 3.5 were conducted simultaneously. The results showed that R0 had an unsuccessful start-up of composting. However, the pH-adjusted treatments produced remarkable results, with a relatively high initial pH being beneficial for the start-up. Within 65days of composting, the degradation of volatile solids (VS) and the physicochemical properties of R2 and R3 displayed similar tendencies, and both produced a mature end-product, while R1 exhibited a lower VS degradation rate, and some of its physicochemical properties indicated the end-product was immature. Quantitative PCR analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of DGW could be attributed to the activity of ammonia-oxidizing bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Changes in root cap pH are required for the gravity response of the Arabidopsis root
NASA Technical Reports Server (NTRS)
Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.
2001-01-01
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.
Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan
2009-03-01
Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater capacity to desorb arsenate from aluminum than iron sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moaseri, Ehsan; Bollinger, Jonathan A.; Changalvaie, Behzad
In this study, nanoparticle (NP) clusters with diameters ranging from 20 to 100 nm are reversibly assembled from 5 nm gold (Au) primary particles coated with glutathione (GSH) in aqueous solution as a function of pH in the range of 5.4 to 3.8. As the pH is lowered, the GSH surface ligands become partially zwitterionic and form interparticle hydrogen bonds that drive the self-limited assembly of metastable clusters in <1 min. Whereas clusters up to 20 nm in size are stable against cluster–cluster aggregation for up to 1 day, clusters up to 80 nm in size can be stabilized overmore » this period via the addition of citrate to the solution in equal molarity with GSH molecules. The cluster diameter may be cycled reversibly by tuning pH to manipulate the colloidal interactions; however, modest background cluster–cluster aggregation occurs during cycling. Cluster sizes can be stabilized for at least 1 month via the addition of PEG-thiol as a grafted steric stabilizer, where PEG-grafted clusters dissociate back to starting primary NPs at pH 7 in fewer than 3 days. Whereas the presence of excess citrate has little effect on the initial size of the metastable clusters, it is necessary for both the cycling and dissociation to mediate the GSH–GSH hydrogen bonds. In conclusion, these metastable clusters exhibit significant characteristics of equilibrium self-limited assembly between primary particles and clusters on time scales where cluster–cluster aggregation is not present.« less
Moaseri, Ehsan; Bollinger, Jonathan A.; Changalvaie, Behzad; ...
2017-10-06
In this study, nanoparticle (NP) clusters with diameters ranging from 20 to 100 nm are reversibly assembled from 5 nm gold (Au) primary particles coated with glutathione (GSH) in aqueous solution as a function of pH in the range of 5.4 to 3.8. As the pH is lowered, the GSH surface ligands become partially zwitterionic and form interparticle hydrogen bonds that drive the self-limited assembly of metastable clusters in <1 min. Whereas clusters up to 20 nm in size are stable against cluster–cluster aggregation for up to 1 day, clusters up to 80 nm in size can be stabilized overmore » this period via the addition of citrate to the solution in equal molarity with GSH molecules. The cluster diameter may be cycled reversibly by tuning pH to manipulate the colloidal interactions; however, modest background cluster–cluster aggregation occurs during cycling. Cluster sizes can be stabilized for at least 1 month via the addition of PEG-thiol as a grafted steric stabilizer, where PEG-grafted clusters dissociate back to starting primary NPs at pH 7 in fewer than 3 days. Whereas the presence of excess citrate has little effect on the initial size of the metastable clusters, it is necessary for both the cycling and dissociation to mediate the GSH–GSH hydrogen bonds. In conclusion, these metastable clusters exhibit significant characteristics of equilibrium self-limited assembly between primary particles and clusters on time scales where cluster–cluster aggregation is not present.« less
Foley, Nicholas A; Lail, Marty; Lee, John P; Gunnoe, T Brent; Cundari, Thomas R; Petersen, Jeffrey L
2007-05-30
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.
NASA Technical Reports Server (NTRS)
Peretyazhko, T. A.; Rampe, E. B.; Clark, J. V.; Archer, P. D., Jr.; Morris, R. V.; Ming, D. V.
2017-01-01
Akaganeite (Beta-FeOOH, chloride-containing Fe(III) (hydr)oxide) has been recently discovered on the surface of Mars by the Mars Science Laboratory Curiosity rover in Yellowknife Bay, Gale Crater, Mars [1] and from orbit by the Mars Reconnaissance Orbiter in Robert Sharp crater and Antoniadi basin [2]. However, the mechanism and aqueous environmental conditions of akaganeite formation (e.g., pH and chloride concentration) remain unknown. We have investigated formation of akaganeite through Fe(III) hydrolysis at variable initial pH and chloride concentrations. The formed Fe(III) precipitates were characterized by instruments similar to instruments on Mars robotic spacecraft. Syntheses were performed through hydrolysis of Fe(III) perchlorate with addition of Na cloride (Fe/Cl ratio between 0.5 and 5) and at initial pH of 1.5, 2, 4, 6 and 8 at 90degC. X-ray diffraction analysis revealed formation of akaganeite alone or in mixture with goethite, hematite and ferrihydrite at all initial pHs and Fe/Cl ratio between 0.5 and 2 while akaganeite precipitated only at pH 1.5 and Fe/Cl greater than2. Chloride content of akaganeite was affected by initial pH and decreased from 20-60 mg/g at pH 1.5 to less than 0.1 mg/g at pH 8. The synthesized akaganeite samples were also characterized by Mössbauer and infrared spectroscopy and volatiles were analysed by thermal and evolved gas analysis. The obtained characterization data will be compared to published data from rover and orbital missions [1-3] to determine martian akaganeite composition, crystallinity and formation conditions.
Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.
2009-01-01
The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.
Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu
2007-05-01
To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.
Ye, Ran; Harte, Federico
2015-01-01
Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10 mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (<40 nm) of the casein micelle upon acidification (pH <5) and alkalization (pH >8) in imidazole buffer. In addition, higher concentrations of casein (0.25 mg/mL) and calcium (20 mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1 mg/mL) and calcium (2 mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. PMID:23200467
Ye, Ran; Harte, Federico
2013-02-01
Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (<40 nm) of the casein micelle upon acidification (pH <5) and alkalization (pH>8) in imidazole buffer. In addition, higher concentrations of casein (0.25mg/mL) and calcium (20mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1mg/mL) and calcium (2mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zou, Xinxin; Wang, Yunqing; Liu, Wanhui; Chen, Lingxin
2017-06-26
Herein, a pH sensitive paper SERS chip was prepared by selecting m-cresol purple, a molecule with halochromic properties in the neutral pH range as a Raman reporter. The adsorbed m-cresol purple underwent a reversible change in its electronic configuration from a non-resonant species to a resonant species, which resulted in a significant Raman signal intensity variation due to the transformation of the sensing mode from SERS to surface-enhanced resonance Raman scattering (SERRS). The chips have a sensitive pH range of 6.0 to 8.0 and exhibited good performance for the detection of natural water samples with detection precision of approximately 0.03 pH units, suggesting great potential for environmental pH monitoring applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitari, W.M.; Fatoba, O.O.; Petrik, L.F.
2009-07-01
Fly ash samples from two South African coal-fired power stations were subjected to different leaching tests under alkaline and acidic conditions in an attempt to assess the effect of pH on the leachability of species from the fly ashes and also assess the potential impact of the fly ashes disposal on groundwater and the receiving environment. To achieve this, German Standard leaching (DIN-S4) and Acid Neutralization Capacity (ANC) tests were employed. Ca, Mg, Na, K and SO{sub 4} were significantly leached into solution under the two leaching conditions with the total amounts in ANC leachates higher than that of DIN-S4.more » This indicates that a large fraction of the soluble salts in unweathered fly ash are easily leached. These species represents the fraction that can be flushed off initially from the surface of ash particles on contacting the ash with water. The amounts of toxic trace elements such as As, Se, Cd, Cr and Pb leached out of the fly ashes when in contact with de-mineralized water (DIN-S4 test) were low and below the Target Water Quality Range (TWQR) of South Africa. This is explained by their low concentrations in the fly ashes and their solubility dependence on the pH of the leaching solution. However the amounts of some minor elements such as B, Mn, Fe, As and Se leached out at lower pH ranging between 10 to 4 (ANC test) were slightly higher than the TWQR, an indication that the pH of the leaching solution plays a significant role on the leaching of species in fly ash. The high concentrations of the toxic elements released from the fly ashes at lower pH gives an indication that the disposal of the fly ash could have adverse effects on the receiving environment if the pH of the solution contacting the ashes is not properly monitored.« less
Force decay and deformation of orthodontic elastomeric ligatures.
Taloumis, L J; Smith, T M; Hondrum, S O; Lorton, L
1997-01-01
This study evaluated commercially available molded gray elastomeric ligatures from seven companies for force decay, dimensional change, and the relationship between ligature dimension and force. The initial wall thickness, inside diameter, outside diameter, and force levels of each ligature were measured. Three of four test groups of ligatures were stretched over stainless steel dowels with a circumference approximating that of a large orthodontic twin bracket. Test group 1 was kept at room temperature and humidity for 28 days and test group 2 in a synthetic saliva bath at 37 degrees C, pH 6.84 for 28 days. The residual forces and dimensional changes were measured. The third test group was placed in a synthetic saliva bath at 37 degrees C, pH 6.84, and force levels recorded at initial, 24 hours, 7 days, 14 days, and 28 days. The fourth test group of unstretched samples was placed in a synthetic saliva bath at 37 degrees C, pH 6.84 for 28 days to evaluate dimensional changes due solely to moisture sorption. The results for stretched samples in a simulated oral environment revealed the following: (1) Moisture and heat had a pronounced effect on force decay and permanent deformation, (2) a positive correlation existed between the wall thickness and force, (3) a negative correlation existed between the inside diameter and force, (4) a weak correlation existed between outside diameter and force, (5) the greatest force loss occurred in the first 24 hours and the decay pattern was similar for all ligatures tested, and (6) unstretched ligatures absorbed moisture in the range of 0.060% to 3.15%. The ligatures tested appear to be suitable for use during initial aligning and leveling. However, the rapid force loss and permanent deformation of these products may preclude their use for rotational and torque corrections.
Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension.
Giraldo, Ana L; Peñuela, Gustavo A; Torres-Palma, Ricardo A; Pino, Nancy J; Palominos, Rodrigo A; Mansilla, Héctor D
2010-10-01
In the work presented here, a photocatalytic system using titanium Degussa P-25 in suspension was used to evaluate the degradation of 20mg L(-1) of antibiotic oxolinic acid (OA). The effects of catalyst load (0.2-1.5 g L(-1)) and pH (7.5-11) were evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, low pH values and 1.0 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of the substrate, chemical oxygen demand, dissolved organic carbon, toxicity and antimicrobial activity on Escherichia coli cultures were evaluated. The results indicate that, under optimal conditions, after 30 min, the TiO(2) photocatalytic system is able to eliminate both the substrate and the antimicrobial activity, and to reduce the toxicity of the solution by 60%. However, at the same time, ∼53% of both initial DOC and COD remain in solution. Thus, the photocatalytical system is able to transform the target compound into more oxidized by-products without antimicrobial activity and with a low toxicity. The study of OA by-products using liquid chromatography coupled with mass spectrometry, as well as the evaluation of OA degradation in acetonitrile media as solvent or in the presence of isopropanol and iodide suggest that the reaction is initiated by the photo-Kolbe reaction. Adsorption isotherm experiments in the dark indicated that under pH 7.5, adsorption corresponded to the Langmuir adsorption model, indicating the dependence of the reaction on an initial adsorption step. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effects of pH on the Production of Phosphate and Pyrophosphate by Matrix Vesicles' Biomimetics
Simão, Ana Maria S.; Bolean, Maytê; Hoylaerts, Marc F.; Millán, José Luis; Ciancaglini, Pietro
2013-01-01
During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (ePPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/ phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine (DPPC) liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP, at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph (SCL) containing 1 mM ATP as substrate and amorphous calcium phosphate (ACP) or calciumphosphate- phosphatidylserine complexes (PS-CPLX) as nucleators. Propagation of mineralization was significantly more efficient at pHs 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization. PMID:23942722
A comparison of three electrodes for the measurement of pH in small volumes.
Smit, A; Pollard, M; Cleaton-Jones, P; Preston, A
1997-01-01
An ion-sensitive field effect transistor (ISFET, Sentron, Sentron, Inc.) electrode was compared with a glass combination micro-electrode (MI-410, Micro-electrodes, Inc.) and a solid-state metal wire oxide pH sensor (Beetrode, World Precision Instruments, Inc.) with a liquid junction reference electrode (MERE1, World Precision Instruments, Inc.). The electrodes were assessed for linearity, reproducibility, accuracy, drift from the initial calibration between pH 4 and pH 7 and the time taken to record a stable reading. The ISFET was used to determine the pH in dental plaque samples (1 mg suspended in 20 microliters). The pH values correlated with the hydrogen ion concentration for all the electrodes (r = 0.98). The MI-410 fractured before this evaluation was completed. Coefficients of variation were 0.65% (pH 4) and 0.08% (pH 7) for the ISFET and 4.69% (pH 4) and 3.46% (pH 7) for the Beetrode. Both electrodes gave readings that differed significantly from the initial calibration, but the drift was greater for the Beetrode (F = 7.93; p = 0.0005) than the ISFET (F = 1.89; p = 0.1519). However, this drift was smaller than the change in pH as measured in dental plaque samples. The Beetrode gave a stable reading after 3.39 +/- 0.83 s and the ISFET after 2.2 +/- 0.76 s, while the MI-410 required at least 20 s. The ISFET type electrode is suitable for use in small volumes such as plaque suspensions, is easier to operate and yields results closer to the initial calibration than the Beetrode and is more robust than the MI-410 and the Beetrode.
Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria
Starliper, Clifford E.; Watten, Barnaby J.
2013-01-01
Ship ballast water is a recognized medium for transfer and introductions of nonindigenous species. There is a need for new ballast water treatment methods that effectively and safely eliminate or greatly minimize movements of these species. The present study employed laboratory methods to evaluate the bactericidal efficacy of increased pH (pH 10.0–12.0) for exposure durations of up to 72 h to kill a variety of Gram-negative and Gram-positive bacteria including fish pathogens (Aeromonas spp., Yersinia ruckeri, Edwardsiella ictaluri, Serratia liquefaciens, Carnobacterium sp.), other common aquatic-inhabitant bacteria (Serratia marcescens, Pseudomonas fluorescens, Staphylococcus sp., Bacillus sp.) and indicators listed in International Maritime Organization D2 Standards; namely, Vibrio cholera (an environmental isolate from fish), Escherichia coli and Enterococcus faecalis. Volumes of 5 N NaOH were added to tryptic soy broth to obtain desired pH adjustments. Viable cells were determined after 0, 4, 12, 24, 48, and 72 h. Initial (0 h) cell numbers ranged from 3.40 × 104 cfu/mL for Bacillus sp. to 2.44 × 107 cfu/mL for E. faecalis. The effective endpoints of pH and treatment duration necessary to realize 100% bactericidal effect varied; however, all bacteria tested were killed within 72 h at pH 12.0 or lower. The lowest parameters examined, 4 h at pH 10.0, were bactericidal to V. cholera, E. ictaluri, three of four isolates of E. coli, and (three of four) Aeromonas salmonicida subsp. salmonicida. Bactericidal effect was attained at pH 10.0 within 12 h for the other A. salmonicida subsp. salmonicida, and within 24 h for P. fluorescens, and the remaining E. coli.
Acute toxicity of low pH to the brown darter Etheostoma edwini under flow-through conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kase, J.; Burnett, M.; Shortelle, A.B.
1995-12-31
The Okaloosa darter, Etheostoma okaloosae, is found exclusively in the Rocky and Boggy Bayou stream systems entering Choctawhatchee Bay, Florida. Due to its limited range and habitat degradation, E. okaloosae was added to the List of Endangered Species in 1973. The Air Force controls several active test areas situated near streams known to contain Okaloosa darters. The possible release and deposition of strong acids such as hydrochloric acid and hydrofluoric acid to stream surface water during some testing activities has raised concerns that the Okaloosa darter population may be adversely affected by episodic pH depression as a result of testingmore » activities. To evaluate the sensitivity of the Okaloosa darter to pH depression, acute toxicity tests using a closely related species, E. edwini, were conducted. Ninety-six hour and 200 min acute pH depression flow-through toxicity tests were performed with surface water collected from the Rocky Bayou stream system. The 96 h test was conducted using six concentrations held at constant pH throughout the duration of the exposure. The 200 min test used an episodic exposure; pH in the exposure chambers were initially dropped and allowed to return to normal. Mortality data obtained during the studies were used to determine the pH depression necessary to cause 50% mortality (LC50) in each scenario. The 96 h and 200 min LC50 values are, respectively, 3.79 and 2.99 s.u. The 200 min LC50 calculations are based on the lowest achieved pH in each exposure during the test. The results of these tests are part of an effort by the Air Force to make risk-based management decision regarding testing activities.« less
NASA Astrophysics Data System (ADS)
Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping
2010-11-01
In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.
Photochemical transformation of azoxystrobin in aqueous solutions.
Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M
2007-07-01
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.
NASA Astrophysics Data System (ADS)
Awalina; Harimawan, A.; Haryani, G. S.; Setiadi, T.
2017-05-01
The Biosorption of cadmium (II) ions on dried biomass of Aphanothece sp.which previously grown in a photobioreactor system with atmospheric carbon dioxide fed input, was studied in a batch system with respect to initial pH, biomass concentration, contact time, and temperature. The biomass exhibited the highest cadmium (II) uptake capacity at 30ºC, initial pH of 8.0±0.2 in 60 minute and initial cadmium (II) ion concentration of 7.76 mg/L. Maximum biosorption capacities were 16.47 mg/g, 54.95 mg/g and 119.05 mg/g at range of initial cadmium (II) 0.96-3.63 mg/L, 1.99-8.10 mg/L and 6.48-54.38 mg/L, respectively. Uptake kinetics follows the pseudo-second order model while equilibrium is best described by Langmuir isotherm model. Isotherms have been used to determine thermodynamic parameter process (free energy change, enthalpy change and entropy change). FTIR analysis of microalgae biomass revealed the presence of amino acids, carboxyl, hydroxyl, sulfhydryl and carbonyl groups, which are responsible for biosorption of metal ions. During repeated sorption/desorption cycles, the ratio of Cd (II) desorption to biosorption decreased from 81% (at first cycle) to only 27% (at the third cycle). Nevertheless, due to its higher biosorption capability than other adsorbent, Aphanothece sp appears to be a good biosorbent for removing metal Cd (II) ions from aqueous phase.
Sakai, Shinsuke; Yagishita, Tatsuo
2007-10-01
H(2) and ethanol production from glycerol-containing wastes discharged from a biodiesel fuel production plant by Enterobacter aerogenes NBRC 12010 was demonstrated in bioelectrochemical cells. Thionine as an exogenous electron transfer mediator was reduced by E. aerogenes, and was re-oxidized by a working electrode applied at +0.2 V against a Ag/AgCl reference electrode by a potentiostat (electrode system). At the initial glycerol concentration of 110 mM, 92.9 mM glycerol was consumed in the electrode system with 2 mM thionine after 48 h. On the other hand, the concentration of glycerol consumed was only 50.3 mM under the control conditions without thionine and the electrodes (normal fermentation). There are no differences in the yields of H(2) and ethanol against glycerol consumed between the control conditions and the conditions with the electrode system. A pH of 6.0 was suitable for the H(2) production in the range between pH 6 and pH 7.5 in the electrode system. At pH values of 7.0 and 7.5, H(2) production decreased and formate was remarkably produced in the reaction solution. The rates of both glycerol consumption and the H(2) and ethanol production increased as the thionine concentration and the surface area of the working electrode increased. After 60 h, 154 mM of the initial 161 mM glycerol concentration in the wastes was consumed in the electrode system, which is a 2.6-fold increase compared to the control experiment. Biotechnol. Bioeng. 2007;98: 340-348. (c) 2007 Wiley Periodicals, Inc.
Sun, Fuhong; Yan, Yuanbo; Liao, Haiqing; Bai, Yingchen; Xing, Baoshan; Wu, Fengchang
2014-05-01
There is limited knowledge available on metalloid biosorption by freshwater algae. In this study, biosorption properties of anionic Sb(OH) 6 (-) by naturally occurring cyanobacteria Microcystis were investigated as a function of initial pH, biosorbent dosage, contact time, and addition sequences of competitive ions, and their binding mechanisms were discussed. The biosorption process was fast and equilibrium was reached at 2 h. Sb(V) biosorption decreased with the increase of pH and the optimum pH range was 2.5-3.0, which corresponded with the changes of surface charges of the cell wall of Microcystis. The biosorption data satisfactorily followed the Freundlich model. The simultaneous addition of H2PO4 (-) and Ca(2+) enhanced Sb(V) biosorption, while NO3 (-) greatly inhibited the biosorption, compared with single Sb(V) addition. The initial addition of the competitive ions reduced Sb(V) biosorption at higher Sb(V) concentrations, compared with simultaneous addition. A fraction of biosorbed Sb(V) was replaced by the competitive ions which were added subsequently, and the exchange only occurred at higher concentrations of Sb(V). 1.0 mol/L HCl demonstrated the highest desorption efficiency. Speciation analyses indicated that no reduction of Sb(V) into Sb(III) occurred. Based on the results of zeta potential and attenuated total reflection infrared spectroscopy spectra, Sb(OH) 6 (-) bound to the biomass through electrostatic attraction and surface complexation, and amino, carboxyl, and hydroxyl groups were involved in the biosorption process. The study suggest that Microcystis from cyanobacteria blooms could be used as a potential biosorbent to remove Sb(V) from effluents at environmentally relevant concentrations (≤10.0 mg/L).
Barac, Radomir; Gasic, Jovanka; Trutic, Natasa; Sunaric, Slavica; Popovic, Jelena; Djekic, Petar; Radenkovic, Goran; Mitic, Aleksandar
2015-01-01
Objective To assess the erosive potential of various soft drinks by measuring initial pH and titratable acidity (TA) and to evaluate enamel surface roughness using different exposure times. Materials and Methods The initial pH of the soft drinks (group 1: Coca-Cola; group 2: orange juice; group 3: Cedevita; group 4: Guarana, and group 5: strawberry yoghurt) was measured using a pH meter, and TA was measured by titration with NaOH. Enamel samples (n = 96), cut from unerupted human third molars, were randomly assigned to 6 groups: experimental (groups 1–5) and control (filtered saliva). The samples were exposed to 50 ml of soft drinks for 15, 30 and 60 min, 3 times daily, during 10 days. Between immersions, the samples were kept in filtered saliva. Enamel surface roughness was measured by diamond stylus profilometer using the following roughness parameters: Ra, Rq, Rz, and Ry. Data were analyzed by one-way ANOVA, Tukey's post hoc and Student-Newman-Keuls post hoc tests. Results The pH values of the soft drinks ranged from 2.52 (Guarana) to 4.21 (strawberry yoghurt). Orange juice had the highest TA, requiring 5.70 ml of NaOH to reach pH 7.0, whereas Coca-Cola required only 1.87 ml. Roughness parameters indicated that Coca-Cola had the strongest erosion potential during the 15 min of exposure, while Coca-Cola and orange juice were similar during 30- and 60-min exposures. There were no significant differences related to all exposure times between Guarana and Cedevita. Strawberry yoghurt did not erode the enamel surface regardless of the exposure time. Conclusion All of the tested soft drinks except yoghurt were erosive. Erosion of the enamel surfaces exposed to Coca-Cola, orange juice, Cedevita, and Guarana was directly proportional to the exposure time. PMID:26111496
Barac, Radomir; Gasic, Jovanka; Trutic, Natasa; Sunaric, Slavica; Popovic, Jelena; Djekic, Petar; Radenkovic, Goran; Mitic, Aleksandar
2015-01-01
To assess the erosive potential of various soft drinks by measuring initial pH and titratable acidity (TA) and to evaluate enamel surface roughness using different exposure times. The initial pH of the soft drinks (group 1: Coca-Cola; group 2: orange juice; group 3: Cedevita; group 4: Guarana, and group 5: strawberry yoghurt) was measured using a pH meter, and TA was measured by titration with NaOH. Enamel samples (n = 96), cut from unerupted human third molars, were randomly assigned to 6 groups: experimental (groups 1-5) and control (filtered saliva). The samples were exposed to 50 ml of soft drinks for 15, 30 and 60 min, 3 times daily, during 10 days. Between immersions, the samples were kept in filtered saliva. Enamel surface roughness was measured by diamond stylus profilometer using the following roughness parameters: Ra, Rq, Rz, and Ry. Data were analyzed by one-way ANOVA, Tukey's post hoc and Student-Newman-Keuls post hoc tests. The pH values of the soft drinks ranged from 2.52 (Guarana) to 4.21 (strawberry yoghurt). Orange juice had the highest TA, requiring 5.70 ml of NaOH to reach pH 7.0, whereas Coca-Cola required only 1.87 ml. Roughness parameters indicated that Coca-Cola had the strongest erosion potential during the 15 min of exposure, while Coca-Cola and orange juice were similar during 30- and 60-min exposures. There were no significant differences related to all exposure times between Guarana and Cedevita. Strawberry yoghurt did not erode the enamel surface regardless of the exposure time. All of the tested soft drinks except yoghurt were erosive. Erosion of the enamel surfaces exposed to Coca-Cola, orange juice, Cedevita, and Guarana was directly proportional to the exposure time. © 2015 S. Karger AG, Basel.
Bottoli, Carla B G; Chaudhry, Zahra F; Fonseca, Dania A; Collins, Kenneth E; Collins, Carol H
2002-03-01
Poly(methyloctylsiloxane) (PMOS) and poly(methyloctadecylsiloxane) (PMODS) were sorbed onto porous HPLC silica and thermally immobilized, in the absence of radical initiators, at temperatures in the range of 80 to 180 degrees C. Following extraction of non-immobilized polymer the materials were packed into columns and their chromatographic properties evaluated. The shorter chain (PMOS) stationary phase showed good HPLC characteristics after thermal immobilizations up to 120 degrees C while the longer chain (PMODS) phase gave satisfactory HPLC phases following thermal immobilizations at 80 and 100 degrees C. Stability evaluation for the PMOS and PMODS columns immobilized at 100 degrees C required 250 ml of pH 8.5 mobile phase at 60 degrees C to significantly decrease efficiency, suggesting a long useful life time at neutral pH and ambient temperature.
A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.
Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad
2014-07-15
A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSD<0.4%) in the pH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.
Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory
2011-01-01
Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Olmos-Jiménez, Raquel; Espuny-Miró, Alberto; Díaz-Carrasco, María Sacramento; Fernández-Varón, Emilio; Valderrey-Pulido, Manuel; Cárceles-Rodríguez, Carlos
2016-10-01
Intrathecal administration of methotrexate, cytarabine, and hydrocortisone is commonly used to treat and prevent central nervous system involvement in leukemias and lymphomas. The use of intrathecal solutions with pH and osmolarity values close to physiologic range of CSF (pH 7.31-7.37, osmolarity 281-306 mOsm/kg) and standardization of the methotrexate, cytarabine, and hydrocortisone doses in children and adults based on age is highly recommended. Stability studies of standardized intrathecal mixtures under these conditions have not yet been published. The purpose of this study was to evaluate the physical and chemical stabilities of four standardized mixtures of methotrexate, cytarabine, and hydrocortisone stored at 2-8℃ and 25℃ up to 7 days after preparation. Four different standardized intrathecal mixtures were prepared and stored at 2-8℃ and 25℃ and protected from light. Triplicate samples were taken at different times and precipitation, appearance, color, pH, and osmolarity were analyzed. Methotrexate, cytarabine, and hydrocortisone concentrations were measured using a modified high-performance liquid chromatography method. No variation greater than 10% of the initial concentration of methotrexate, cytarabine, and hydrocortisone was observed in any of the four standardized mixtures for the 7 days of study when stored at 2-8℃ and 25℃ and protected from light. The osmolarity of the four preparations was within the physiologic range of CSF for 7 days at both 2-8℃ and 25℃. The pH values close to the physiologic range of CSF were stable for 48 h at 25℃ and for 120 h at 2-8℃. Triple intrathecal standardized preparations of methotrexate, cytarabine, and hydrocortisone sodium phosphate are physically and chemically stable at 25℃ for 48 h and at 2-8℃ for 5 days. © The Author(s) 2015.
Li, G Y; Cai, Y J; Liao, X R; Yin, J
2011-07-01
A novel nonionic surfactant- and hydrophilic solvent-stable alkaline serine protease was purified from the culture supernatant of Serratia sp. SYBC H with duckweed as nitrogen source. The molecular mass of the purified protease is about 59 kDa as assayed via SDS-PAGE. The protease is highly active over the pH range between 5.0 and 11.0, with the maximum activity at pH 8.0. It is also fairly active over the temperature range between 30 and 80°C, with the maximum activity at 40°C. The protease activity was substantially stimulated by Mn(2+) and Na(+) (5 mM), up to 837.9 and 134.5% at 40°C, respectively. In addition, Mn(2+) enhanced the thermostability of the protease significantly at 60°C. Over 90% of its initial activity remained even after incubating for 60 min at 40°C in 50% (v/v) hydrophilic organic solvents such as DMF, DMSO, acetone and MeOH. The protease retained 81.7, 83.6 and 76.2% of its initial activity in the presence of nonionic surfactants 20% (v/v) Tween 80, 25% (v/v) glycerol and Triton X-100, respectively. The protease is strongly inhibited by PMSF, suggesting that it is a serine protease. Washing experiments revealed that the protease has an excellent ability to remove blood stains.
Lechartier, C; Peyraud, J-L
2010-02-01
This study investigated the effects of the forage-to-concentrate (F:C) ratio and the rate of ruminal degradation of carbohydrates from the concentrate on digestion in dairy cows fed corn silage-based diets. Six cows with ruminal cannulas were assigned to 6 treatments in a 6x6 Latin square. Treatments were arranged in a 3x2 factorial design. Three proportions of neutral detergent fiber from forage [FNDF; 7.6, 13.2, and 18.9% of dry matter (DM)] were obtained by modifying F:C (20:80, 35:65, and 50:50). These F:C were combined with concentrates with either high or low content of rapidly degradable carbohydrates. The dietary content of rapidly degradable carbohydrates from the concentrate was estimated from the DM disappearance of concentrate after 4h of in sacco incubation (CRDM). Thus, 2 proportions of CRDM were tested (20 and 30% of DM). Wheat and corn grain were used as rapidly and slowly degradable starch sources, respectively. Soybean hulls and citrus pulp were used as slowly and rapidly degradable fiber sources, respectively. Concentrate composition was adjusted to maintain dietary starch and neutral detergent fiber contents at 35.9 and 28.9% of DM, respectively. There was no effect of the interaction between F:C and CRDM on DM intake (DMI), ruminal fermentation, chewing activity, and fibrolytic activity. When F:C decreased, DMI increased, the mean ruminal pH linearly decreased, and the pH range linearly increased from 0.95 to 1.27 pH unit. At the same time, the acetate-to-propionate ratio decreased linearly. Decreasing F:C linearly decreased the average time spent chewing per kilogram of DMI from 35.2 to 19.5min/kg of DMI and decreased ruminal liquid outflow from 11.6 to 9.2L/kg of DMI, suggesting a decrease in the salivary flow. Increasing CRDM decreased DMI and increased the time during which pH was below 6.0 (3.1 vs. 4.8h), the pH range (0.90 vs. 1.33), and the initial rate of pH drop. It also increased the volatile fatty acid range (35 vs. 59mM), thus suggesting an increased rate of fermentation. It also decreased the acetate-to-propionate ratio (2.9 vs. 1.8). Increasing CRDM barely affected the average time spent chewing per kilogram of DMI and the ruminal liquid outflow. These results suggest that rumen pH is controlled by different mechanisms when F:C is decreased or when CRDM is increased. Consequently, FNDF is a good predictor of the chewing time, whereas CRDM is a good predictor of the pH range and volatile fatty acid profiles. Finally, considering both FNDF and CRDM improves the prediction of mean pH. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Electrophoretic separation of proteins in space
NASA Technical Reports Server (NTRS)
Brown, R. K.
1976-01-01
Commercially available and synthetic wide range and short range ampholytes used in the isoelectric focusing of proteins was analyzed by ion exchange chromatography. A pH gradient over the pH range 3.8 to 11.0 was used to elute the ampholytes from a column of a sulfonated polystyrene resin. The wide range ampholytes were resolved into some 60 to 70 ninhydrin positive components. The recovery obtained with the method was quantitative. Acid short range ampholytes have approximately 35 components which elute readily from the ion exchange resin. Basic short range ampholytes gave about 50 components, most of which eluted at alkaline pH.
Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability.
Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R; Batstone, Damien J
2016-01-04
Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.
Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability
Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.
2016-01-01
Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895
Effect of soft drinks on proximal plaque pH at normal and low salivary secretion rates.
Johansson, Ann-Katrin; Lingström, Peter; Birkhed, Dowen
2007-11-01
The aim of this study was to investigate the effect of different types of drinks on plaque pH during normal and drug-induced low salivary secretion rates. Three drinks were tested in 10 healthy adult subjects: 1) Coca-Cola regular, 2) Coca-Cola light, and 3) fresh orange juice. pH was measured in the maxillary incisor and premolar region with the microtouch method. The area under the pH curve (AUC) was calculated. During normal salivary condition, mouth-rinsing with Coca-Cola regular resulted in a slightly more pronounced drop in pH during the first few minutes than it did with orange juice. After this initial phase, both products showed similar and relatively slow pH recovery. Coca-Cola light also resulted in low pH values during the very first minutes, but thereafter in a rapid recovery back to baseline. During dry mouth conditions, the regular Cola drink showed a large initial drop in pH, and slightly more pronounced than for orange juice. After the initial phase, both products had a similar and slow recovery back to baseline. At most time-points, AUC was significantly greater in dry conditions compared to normal conditions for Coca-Cola regular and orange juice, but not for Coca-Cola light. Coca-Cola light generally showed a significantly smaller AUC than Coca-Cola regular and orange juice. The main conclusion from this study is that a low salivary secretion rate may accentuate the fall in pH in dental plaque after gentle mouth-rinsing with soft drinks.
[The randomized study of efficiency of preoperative photodynamic].
Akopov, A L; Rusanov, A A; Molodtsova, V P; Gerasin, A V; Kazakov, N V; Urtenova, M A; Chistiakov, I V
2013-01-01
The authors made a prospective randomized comparison of results of preoperative photodynamic therapy (PhT) with chemotherapy, preoperative chemotherapy in initial unresectable central non-small cell lung cancer in stage III. The efficiency and safety of preoperative therapy were estimated as well as the possibility of subsequent surgical treatment. The research included patients in stage IIIA and IIIB of central non-small cell lung cancer with lesions of primary bronchi and lower section of the trachea, which initially were unresectable, but potentially the patients could be operated on after preoperative treatment. The photodynamic therapy was performed using chlorine E6 and the light of wave length 662 nm. Since January 2008 till December 2011,42 patients were included in the research, 21 patients were randomized in the group for photodynamic therapy and 21--in group without PhT. These groups were compared according to their sex, age, stage of the disease and histological findings. After nonadjuvant treatment the remissions were reached in 19 (90%) patients of the group with PhT and in 16 (76%) patients without PhT and all the patients were operated on. The explorative operations were made on 3 patients out of 16 operated on in the group without PhT (19%). In the group PhT 14 pneumonectomies and 5 lobectomies were perfomed opposite 10 pneumonectomies and 3 lobectomies in group without PhT. The degree of radicalism of resection appears to be reliably higher in the group PhT (RO-89%, R1-11% as against RO-54%, R1-46% in group without PhT), p = 0.038. The preoperative endobronchial PhT conducted with chemotherapy was characterized by efficiency and safety, allowed the surgical treatment and elevated the degree of radicalism of this treatment in selected patients, initially assessed as unresectable.
NASA Astrophysics Data System (ADS)
Amalraj, Augustine; Pius, Anitha
2017-10-01
The aim of this study is to design and develop a novel cost effective method for fluoride removal, applicable to rural areas of developing countries. Adsorption is widely considered as one of the appropriate technologies for water defluoridation. This study investigates the feasibility of using low-cost biomass based activated carbon from the bark of Morinda tinctoria coated with aluminum hydroxide (AHAC) for water defluoridation, at neutral pH range. Characterization of AHAC was done through IR, SEM with EDAX studies before and after fluoride treatment. The fluoride adsorption capacity of AHAC as a function of contact time, pH and initial fluoride concentration was investigated. The role of co-existing interfering ions also was studied. The isotherm and kinetic models were used to understand the nature of the fluoride adsorption onto AHAC. Freundlich isotherm and intra-particle diffusion were the best-fitting models for the adsorption of fluoride on AHAC. Fluoride adsorption kinetics well fitted with pseudo-second order model. The results showed excellent fluoride adsorption capacity was found to be 26.03 mg g-1 at neutral pH.
Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.
Cui, Haojie; Fu, Minglai; Yu, Shen; Wang, Ming Kuang
2011-02-28
Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process. Copyright © 2010 Elsevier B.V. All rights reserved.
Evaluation of h secretion relative to zeatin-induced growth of detached cucumber cotyledons.
Ross, C W; Rayle, D L
1982-11-01
Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H(+) secretion.
Becker, Carol J.
2013-01-01
From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.
Murayama, Takashi; Maruyama, Ichiro N
2015-11-01
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.
Netzer, P; Gaia, C; Sandoz, M; Huluk, T; Gut, A; Halter, F; Hüsler, J; Inauen, W
1999-02-01
In healthy subjects and patients with bleeding peptic ulcers, ranitidine and omeprazole, given parenterally, achieve high intragastric pH values on the first day of therapy. However, data on the antisecretory effect beyond the first 24 h is scanty. In addition, the superiority of either infusion or injection of omeprazole remains unproven. Thus, we have compared the antisecretory effect of high dose omeprazole and ranitidine infusion and injection over the critical first 72 h. A total of 34 healthy volunteers were randomized into a double-blind crossover 72 h intragastric pH-metry study (data compared: median pH, percentage of time with pH >4 and pH >6). Omeprazole-infusion: initial bolus of 80 mg + 8 mg/h; omeprazole-injection: initial bolus of 80 mg + 40 mg/6 h; Ranitidine-infusion: initial bolus of 50 mg + 0.25 mg/kg/h; ranitidine-injection: 100 mg/6 h. Omeprazole-infusion versus ranitidine-infusion: on day 1: median pH 6.1 vs 5.1 (p = 0.01) and 95% vs 70% was pH >4 (p < 0.01); on day 2: median pH 6.2 vs 3.2 (p < 0.01); and 100% vs 38% was pH >4 (p < 0.01); on day 3: median pH 6.3 vs 2.7 (p < 0.01); 100% vs 26% was pH >4 (p < 0.01). Injections of both drugs were significantly less effective than the infusions on day 1. Thereafter, omeprazole injection was almost as effective as omeprazole infusion, whereas ranitidine injection and infusion were equally effective. Our study shows, for the first time, that omeprazole infusion was significantly superior to all other regimens by having a high median pH >6 on each day. The tolerance effect of ranitidine, however, led to a rapid loss of antisecretory activity on days 2 and 3, rendering it inappropriate for situations in which high intragastric pH-levels appear to be essential.
A novel optical probe for pH sensing in gastro-esophageal apparatus
NASA Astrophysics Data System (ADS)
Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.
2011-03-01
Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.
Mu'azu, Nuhu Dalhat; Essa, Mohammed Hussain; Lukman, Salihu
2017-10-01
Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.
Production of citrinin-free Monascus pigments by submerged culture at low pH.
Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong; Park, Sunghoon
2014-02-05
Microbial fermentation of citrinin-free Monascus pigments is of great interest to meet the demand of food safety. In the present work, the effect of various nitrogen sources, such as monosodium glutamate (MSG), cornmeal, (NH4)₂SO₄, and NaNO₃, on Monascus fermentation was examined under different initial pH conditions. The composition of Monascus pigments and the final pH of fermentation broth after Monascus fermentation were determined. It was found that nitrogen source was directly related to the final pH and the final pH regulated the composition of Monascus pigments and the biosynthesis of citrinin. Thus, an ideal nitrogen source can be selected to control the final pH and then the citrinin biosynthesis. Citrinin-free orange pigments were produced at extremely low initial pH in the medium with (NH4)₂SO₄ or MSG as nitrogen source. No citrinin biosynthesis at extremely low pH was further confirmed by extractive fermentation of intracellular pigments in the nonionic surfactant Triton X-100 micelle aqueous solution. This is the first report about the production of citrinin-free Monascus pigments at extremely low pH. Copyright © 2013 Elsevier Inc. All rights reserved.
Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics.
Chiha, Mahdi; Merouani, Slimane; Hamdaoui, Oualid; Baup, Stéphane; Gondrexon, Nicolas; Pétrier, Christian
2010-06-01
Sonochemical degradation of phenol (Ph), 4-isopropylphenol (4-IPP) and Rhodamine B (RhB) in aqueous solutions was investigated for a large range of initial concentrations in order to analyze the reaction kinetics. The initial rates of substrate degradation and H(2)O(2) formation as a function of initial concentrations were determined. The obtained results show that the degradation rate increases with increasing initial substrate concentration up to a plateau and that the sonolytic destruction occurs mainly through reactions with hydroxyl radicals in the interfacial region of cavitation bubbles. The rate of H(2)O(2) formation decreases with increasing substrate concentration and reaches a minimum, followed by almost constant production rate for higher substrate concentrations. Sonolytic degradation data were analyzed by the models of Okitsu et al. [K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes, Ultrason. Sonochem. 12 (2005) 255-262.] and Seprone et al. [N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem. 98 (1994) 2634-2640.] developed on the basis of a Langmuir-type mechanism. The five linearized forms of the Okitsu et al.'s equation as well as the non-linear curve fitting analysis method were discussed. Results show that it is not appropriate to use the coefficient of determination of the linear regression method for comparing the best-fitting. Among the five linear expressions of the Okitsu et al.'s kinetic model, form-2 expression very well represent the degradation data for Ph and 4-IPP. Non-linear curve fitting analysis method was found to be the more appropriate method to determine the model parameters. An excellent representation of the experimental results of sonolytic destruction of RhB was obtained using the Serpone et al.'s model. The Serpone et al.'s model gives a worse fit for the sonolytic degradation data of Ph and 4-IPP. These results indicate that Ph and 4-IPP undergo degradation predominantly at the bubble/solution interface, whereas RhB undergoes degradation at both bubble/solution interface and in the bulk solution. (c) 2010 Elsevier B.V. All rights reserved.
Leaching and geochemical behavior of fired bricks containing coal wastes.
Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid
2018-03-01
High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.
Joshi, Ravi K; Gogate, Parag R
2012-05-01
The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.
Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge.
Guo, Tiecheng; Yao, Sicong; Chen, Hengli; Yu, Xin; Wang, Meicheng; Chen, Yao
2017-10-01
Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer-Emmett-Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4-6) and around 98% for MB in a very wide pH range (pH = 2-12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions' removal than dyes'.
NASA Astrophysics Data System (ADS)
Barbour, Michele E.; Shellis, R. Peter
2007-02-01
Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.
Reuillard, Bertrand; Abreu, Caroline; Lalaoui, Noémie; Le Goff, Alan; Holzinger, Michael; Ondel, Olivier; Buret, Francois; Cosnier, Serge
2015-12-01
This study reports a mixed operational/storage stability of a MWCNT-based glucose biofuel cell (GBFC) over one year. The latter was examined by performing a one hour discharge every day during one month followed by several discharges over a period of 11 months. Under continuous discharge in physiological conditions (5 mM glucose, 37°, pH7), the GBFC exhibits a 25% power decrease after 1 h of operation. This decrease is mainly due to the deactivation of laccase biocathodes at neutral pH. Nevertheless, the biocathodes can be reversibly reactivated via storage in phosphate buffer (pH 5). Under these conditions, the GBFC finally exhibits 22% of its initial maximum power density after one year at intermittent reactivation/discharge cycles. Although both GBFC electrodes can exhibit one year stability, short-term experiments show that biocathodes are limited by hydroxide inhibition while long-term experiments indicate that bioanodes are likely limited by the stability of the GOx itself. While most of the GBFCs in the literature present stability in the range of several weeks, these results demonstrate the viability of a GBFC for industrial applications in a long period of time. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong
2016-08-01
Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.
Nickel(II) biosorption from aqueous solutions by shrimp head biomass.
Hernández-Estévez, Alejandro; Cristiani-Urbina, Eliseo
2014-11-01
The present study evaluates the capacity of shrimp (Farfantepenaeus aztecus) head to remove toxic Ni(II) ions from aqueous solutions. Relevant parameters that could affect the biosorption process, such as shrimp head pretreatment, solution pH level, contact time and initial Ni(II) concentration, were studied in batch systems. An increase in Ni(II) biosorption capacity and a reduction in the time required to reach Ni(II) biosorption equilibrium was manifested by shrimp head biomass pretreated by boiling in 0.5 N NaOH for 15 min; this biomass was thereafter denominated APSH. The optimum biosorption level of Ni(II) ions onto APSH was observed at pH 7.0. Biosorption increased significantly with rising initial Ni(II) concentration. In terms of biosorption dynamics, the pseudo-second-order kinetic model described Ni(II) biosorption onto APSH best. The equilibrium data adequately fitted the Langmuir isotherm model within the studied Ni(II) ion concentration range. According to this isotherm model, the maximum Ni(II) biosorption capacity of APSH was 104.22 mg/g. Results indicate that APSH could be used as a low-cost, environmentally friendly, and promising biosorbent with high biosorption capacity to remove Ni(II) from aqueous solutions.
Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH.
Warrit, K; Boscan, P; Ferguson, L E; Bradley, A M; Dowers, K L; Rao, S; Twedt, D C
2017-09-01
The aim of this study was to describe the feasibility of using a gastrointestinal tract wireless motility capsule (WMC) that measured intraluminal pressure, pH and transit time through the gastrointestinal tract, in dogs in their home environment. Forty-four adult healthy dogs, eating a standard diet, were prospectively enrolled. The WMC was well tolerated by all dogs and provided data from the different sections of the gastrointestinal tract. Median gastric emptying time was 20h (range, 6.3-119h), demonstrating a large range. The gastric pressure pattern and pH depended on the phase of food consumption. The small bowel transit time was 3.1h (range, 1.6-5.4h) with average contraction pressures of 6.5mmHg (range, 1.1-21.4mmHg) and pH 7.8 (range, 7-8.9). The large bowel transit time was 21h (range, 1-69h) with average contractions pressures of 0.9mmHg (range, 0.3-2.7mmHg) and pH 6.4 (range, 5.3-8.2). There was considerable individual variation in motility patterns and transit times between dogs. No difference was observed between the sexes. No relationships between any transit time, bowel pH or pressure pattern and bodyweights were identified. The WMC likely represents movement of a large non-digestible particle rather than normal ingesta. Due to its large size, the WMC should not be use in smaller dogs. The WMC is a promising minimally invasive tool to assess GIT solid phase transit times, pressures and pH. However, further studies are necessary due to the current limitations observed. Published by Elsevier Ltd.
The pyrolysis of toluene and ethyl benzene
NASA Technical Reports Server (NTRS)
Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.
1987-01-01
The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).
N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.
Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng
2015-07-01
Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions.
NASA Astrophysics Data System (ADS)
Stibal, Marek; Tranter, Martyn
2007-12-01
Laboratory experiments were undertaken to determine the inorganic carbon uptake rate and the interactions between photosynthesis and water chemistry, particularly pH and nutrient concentrations, for cryoconite debris from Werenskioldbreen, a well-researched Svalbard glacier. Microorganisms in cryoconite debris took up inorganic carbon at rates between 0.6 and 15 μg C L-1 h-1 and fixed it as organic carbon. Cyanobacterial photosynthesis (75-93%) was the main process responsible for inorganic carbon fixation, while heterotrophic uptake (6-15%) only accounted for a minor part. The microbes in cryoconite debris were active shortly after melt and fixed carbon as long as there were favorable conditions. They were not truly psychrophilic: their physiological optimum temperature was higher than is prevalent in cryoconite holes. The pH was also a factor affecting photosynthesis in the cryoconite slurry. The highest dissolved inorganic carbon (DIC) uptake rates per liter of slurry occurred at pH ˜7, and there was a significant correlation between the initial pH and DIC fixation on a per cell basis, showing increasing DIC uptake rates when pH increased from ˜5.5 to 9. Inorganic carbon fixation resulted in an increased pH in solution. However, the microbes were able to photosynthesize in a wide range of pH from ˜4 to ˜10. The average C:N:P molar ratios in solution were ˜350:75:1. Unlike nitrogen, phosphorus concentrations decreased with increasing carbon uptake, and when the rate approached ˜15 μg C L-1 h-1, all available dissolved phosphorus was utilized within 6 h. Hence phosphorus is probably biolimiting in this system.
Khare, Nidhi; Eggleston, Carrick M; Lovelace, David M; Boese, Steven W
2006-11-15
The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.
Sterngren, Anna E.; Rousk, Johannes
2012-01-01
Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045
Bengtson, Per; Sterngren, Anna E; Rousk, Johannes
2012-08-01
Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.
Martinez, Keith A.; Kitko, Ryan D.; Mershon, J. Patrick; Adcox, Haley E.; Malek, Kotiba A.; Berkmen, Melanie B.
2012-01-01
The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms. PMID:22427503
Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L
2012-05-01
The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.
Effects of Metals Associated with Wildfire Ash on Water Quality
NASA Astrophysics Data System (ADS)
Cerrato, J.; Clark, A.; Correa, N.; Ali, A.; Blake, J.; Bixby, R.
2015-12-01
The forests of the western United States are impacted dramatically by climate change and have suffered from large-scale increases in wildfire activity. This rise in wildfires introduces additional ash to ecosystems and can represent a serious and ongoing threat to water quality in streams and rivers from storm event runoff in burn areas. The effect of metals associated with wildfire ash (from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico) on solution pH and dissolved oxygen was assessed through a series of laboratory experiments. Microscopy and spectroscopy analyses were conducted to characterize the elemental content and oxidation state of metals in unreacted and reacted ash. Certain metals (e.g., Ca, K, Al, Mg) were detected in ash from ponderosa pine, one of the dominant species in the Valles Caldera, with mean concentrations ranging from 400-1750 mg kg-1. Other metals (e.g., Na, Fe, Mn, V, Zn, Ni) were present at lower mean concentrations ranging from 12-210 mg kg-1. The initial pH after conducting batch experiments reacting ash with water started at 9.9 and the alkalinity of the water was 110 mg L-1 as CaCO3. Solution pH decreased to 8.0 after 48 hours of reaction, which is almost a delta of two pH units. Dissolved oxygen concentrations decreased by 2 mg L-1 over the course of 12 hours before the rate of reaeration surpassed the rate of consumption. This presentation will discuss how redox-active metals, such as Fe and Mn, could contribute to the increased dissolved oxygen demand and fluctuation of the oxidation/reduction potential in the system.
Byers, James E; McDowell, William G; Dodd, Shelley R; Haynie, Rebecca S; Pintor, Lauren M; Wilde, Susan B
2013-01-01
Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species' overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail's extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5) are detrimental to the snail's survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail's establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Kwon Joo; Kim, Eun Hye; Hwang, Eunha
2013-02-15
Highlights: ► We described the biochemical and biophysical properties of the extracellular sensory domain (ESD) of DraK histidine kinase. ► The ESD of DraK showed a reversible pH-dependent conformational change in a wide pH range. ► The E83 is an important residue for the pH-dependent conformational change. -- Abstract: Recently, the DraR/DraK (Sco3063/Sco3062) two-component system (TCS) of Streptomycescoelicolor has been reported to be involved in the differential regulation of antibiotic biosynthesis. However, it has not been shown that under which conditions and how the DraR/DraK TCS is activated to initiate the signal transduction process. Therefore, to understand the sensing mechanism,more » structural study of the sensory domain of DraK is highly required. Here, we report the biochemical and biophysical properties of the extracellular sensory domain (ESD) of DraK. We observed a reversible pH-dependent conformational change of the ESD in a pH range of 2.5–10. Size-exclusion chromatography and AUC (analytical ultracentrifugation) data indicated that the ESD is predominantly monomeric in solution and exists in equilibrium between monomer and dimer states in acidic condition. Using NMR (nuclear magnetic resonance) and CD (circular dichroism) spectroscopy, our findings suggest that the structure of the ESD at low pH is more structured than that at high pH. In particular, the glutamate at position 83 is an important residue for the pH-dependent conformational change. These results suggest that this pH-dependent conformational change of ESD may be involved in signal transduction process of DraR/DraK TCS.« less
Amperometric micro pH measurements in oxygenated saliva.
Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G
2017-07-24
An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Saraswat, Chitresh; Mishra, Binaya Kumar; Avtar, Ram; Patel, Hiral; Patel, Asha; Sharma, Tejal; Patel, Roshni
2017-09-01
Fluoride pollution (with concentration >1.0 mg/L) in groundwater has become a global threat in the recent past due to the lesser availability of potable groundwater resource. In between several defluoridation techniques discovered so far, the adsorption process proved to be most economic and efficient. This study is an effort to evaluate defluoridation efficiency of powdered rice husk, fine chopped rice husk and sawdust by the batch adsorption process. Optimum defluoridation capacity is achieved by optimizing various parameters, viz. dose of adsorbent, pH, contact time and initial concentration. It was found that all three materials can be employed for the defluoridation technique, but powdered rice husk is the best adsorbent in the midst of all three. Powdered rice husk showed fluoride removal efficiency ranging between 85 and 90 % in the contact period of 7 h only in conditions of all optimized parameter. Following this parameter optimization, adsorption efficiency was also evaluated at natural pH of groundwater to minimize the cost of defluoridation. No significant difference was found between fluoride adsorption at optimized pH (pH = 4) and natural one (pH = 7), which concludes that powdered rice husk can be efficiently used for the defluoridation technique at field scale. The adsorption isotherm using this adsorbent perfectly followed Langmuir isotherms. The value of calculated separation factor also suggests the favourable adsorption of fluoride onto this adsorbent under the conditions used for the experiments. The field application for defluoridation of groundwater using this adsorbent (based on pH of natural groundwater there and seasonal variation of temperature) showed the high success rate.
Preparation Of Small Diameter Sensors For Continuous Clinical Monitoring
NASA Astrophysics Data System (ADS)
Walt, David R.; Munkholm, Christiane; Jordan, David; Milanovich, Fred P.; Daley, Paul F.
1987-04-01
We have prepared fluorescence-based fiber optic sensors which give rapid and reversible responses. Other investigators have previously prepared sensors in which a membrane, tubing, or a hollow fiber is used to contain a specific reagent near the distal end of the fiber. Such an approach produces fibers with limited signal magnitudes and slow response times. Furthermore, these sensors are cumbersome to assemble, and are difficult to miniaturize and calibrate. We have developed a technique for the covalent chemical modification of the fiber's distal surface which is easily adapted to the smallest diameter glass optical fiber (100 μm). The sensing layer is attached directly to the fiber surface. The layer is extremely thin and highly porous and provides high fluorescence intensity with nearly instantaneous response times. The fibers are moderately stable against bleaching and have long shelf-lives. Our initial efforts have concentrated on the preparation of pH-sensitive optical sensors that are useful in the pH range 4.0 to 8.0. These sensors are reversible in response to pH variation and possess signal-to-noise ratios over 250/1. The fibers are prepared using a glass surface modification followed by a polymerization step for dye immobilization. Both fluorescence and absorbance-based sensors have been prepared using this technique. The absorbance-based pH sensors have 100% response times of less than 3 seconds, are sensitive in the region of pH 6.0 to 8.0, and provide reliable measurement of pH with precision of better than 0.03 pH units.
Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.
Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali
2016-04-01
A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. Copyright © 2015 Elsevier B.V. All rights reserved.
The Influence of pH on Prokaryotic Cell Size and Temperature
NASA Astrophysics Data System (ADS)
Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.
2015-12-01
The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.
Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Chen, Guanghao
2017-10-15
The performance of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) process tends to be unstable and requires further study and development. This in turn requires extensive study of the anaerobic metabolism in terms of its stoichiometry and kinetics. This study evaluates the corresponding responses of DS-EBPR to pH, as it significantly influences both stoichiometry and biochemical kinetics. The impacts of five representative pH values ranging between 6.5 and 8.5 on the anaerobic metabolism were investigated, followed by identification of the optimal pH for performance optimization. A mature DS-EBPR sludge was used in the study, enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB). Through a series of batch tests, the optimal pH range was determined as 7.0-7.5. In this pH range, the anaerobic stoichiometry of phosphorus released/volatile fatty acid (VFA) uptake ratio, sulfate reduction, and internal polymer production (including poly-β-hydroxyalkanoates and polysulfide and/or elemental sulfur) all increased along with the anaerobic kinetics of the VFA uptake ratio. Consequently, phosphorus removal was maximized at this pH range (≥95% vs. 84-93% at other pH values), as was sulfur conversion (16 mg S/L vs. 10-13 mg S/L). This pH range therefore favors the activity and synergy of the key functional bacteria (i.e. SRB and SOB). Anaerobic maintenance tests showed these bacteria required 38-61% less energy for maintenance than that reported for GAOs regardless of pH changes, improving their ability to cope with anaerobic starvation. Adversely, both bacteria showed much lower VFA uptake rates than that of GAOs at all tested pH values (0.03-0.06 vs. 0.2-0.24 mol-C/C-mol biomass/h), possibly revealing the primary cause of frequent instability in the DS-EBPR process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong
2013-01-01
The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.
Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. In addition, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. We evaluated two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commerciallymore » available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is obtained within a few minutes, which is attributed to the high surface areas of the nanomaterials and the high level of dispersion in the liquids. In sum, our results indicate that these nanomaterials may have the potential to be employed for a range of applications to extract radionuclides from aqueous solutions.« less
O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.; ...
2016-10-31
Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. In addition, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. We evaluated two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commerciallymore » available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is obtained within a few minutes, which is attributed to the high surface areas of the nanomaterials and the high level of dispersion in the liquids. In sum, our results indicate that these nanomaterials may have the potential to be employed for a range of applications to extract radionuclides from aqueous solutions.« less
NASA Technical Reports Server (NTRS)
Adler, P.; Deiasi, R.
1974-01-01
The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.
Nickel adsorption on chalk and calcite
NASA Astrophysics Data System (ADS)
Belova, D. A.; Lakshtanov, L. Z.; Carneiro, J. F.; Stipp, S. L. S.
2014-12-01
Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite and chalk and pH ranging from 7.7 to 8.8, explored the influence of initial concentration and the amount and type of sorbent on Ni uptake. Adsorption increases with increased surface area and pH. A surface complexation model describes the data well. Stability constants for the Ni surface complex are log KNi = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts of polysaccharides and clay nanoparticles on the chalk surface.
Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.
Bae, Sungjun; Hanna, Khalil
2015-09-01
While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).
Influence of turkey meat on residual nitrite in cured meat products.
Kilic, B; Cassens, R G; Borchert, L L
2001-02-01
A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P < 0.01). An increased amount of turkey meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P < 0.05) on residual nitrite level initially. Greater heat quantity decreased residual nitrite level in finished cured meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.
Yang, Yun-Ya; Borch, Thomas; Young, Robert B; Goodridge, Lawrence D; Davis, Jessica G
2010-01-01
Land application of manure may contribute endocrine disrupting compounds (EDCs) such as steroid hormones to the environment. Little attention has been paid to the potential for degradation of steroid hormones by manure-borne bacteria and their degradation kinetics and pathways. In a laboratory study, the potential for biodegradation of testosterone, 17beta-estradiol (E2) and progesterone by swine (Sus scrofa) manure-borne bacteria was examined. In addition, the impact of temperature, pH (6, 7, and 7.5), glucose amendments (0, 3, and 22 mmol L(-1)), and presence of oxygen on testosterone degradation kinetics was determined. Testosterone, 17beta-estradiol and progesterone were biodegraded within 25 h of reaction initiation under aerobic conditions. The degradation of testosterone followed pseudo first-order and zero-order reaction kinetics under aerobic and anaerobic conditions, respectively, in tryptic soy broth (TSB) pre-enriched systems. The half-life (t1/2) for the degradation of testosterone under anaerobic conditions was six times longer than aerobic conditions. Testosterone degradation was found to significantly increase (- 17%) when incubated at 37 degrees C vs. 22 degrees C. The impact of pH (t1/2 ranged from 4.4-4.9 h) and glucose amendments (t1/2 ranged from 4.6-5.1 h) on the testosterone degradation rate were found to be small. Testosterone was transformed to dehydrotestosterone (DHT) (major degradation product), androstenedione (AD), and androstadienedione (ADD) under aerobic conditions as revealed by liquid chromatography-time-of-flight mass spectrometry (LC/TOF-MS). These results indicate that testosterone is rapidly degraded by manure-borne bacteria under a wide range of environmentally relevant conditions. However, the formed degradation products are still of potential concern due to their endocrine disrupting potential.
Kabir, S
1995-02-01
Jackfruit extracts contain a protein termed jacalin which possesses diverse biological properties. A detailed analysis of its charge properties has been lacking. The present investigation was initiated to study isoelectric properties of jacalin in detail and to isolate a single isoform of jacalin. Jacalin was isolated from jackfruit extracts by affinity chromatography on immunoglobulin-A immobilised to Sepharose 4B. Various techniques such as ion-exchange chromatography, isoelectric focusing (IEF) on polyacrylamide gels and preparative liquid IEF with the Rotofor cell were used. When analysed by IEF on thin layer polyacrylamide gels, jacalin was resolved into 35 bands over a pH range of 5.0-8.5. Upon SDS-PAGE in the second dimension all these charge species gave rise to only two-bands at 12 and 15.4 kDa. The lectin was mostly eluted with 50 and 100 mM sodium chloride when jackfruit extracts were fractionated on an anion-exchange column of DEAE-cellulose. In a single 6 hour run by preparative IEF with the Rotofor cell in the pH range of 3-9.5, it has been possible to isolate pure jacalin fractions containing fewer number of charged isomers. A single jacalin isoform was isolated by subjecting a Rotofor fraction containing fewer charged species to preparative IEF on thin layer polyacrylamide gel and eluting the band of interest from the gel. The isolated jacalin isoform was biologically active as it agglutinated erythrocytes. The study reveals the complexity of jacalin as it exists as multiple charge isomers over a broad pH range. By performing preparative IEF in solution as well as in thin layer polyacrylamide gels, it was possible to isolate a single jacalin isoform with the retention of biological activity.
Present-day nearshore pH differentially depresses fertilization in congeneric sea urchins.
Frieder, Christina A
2014-02-01
Ocean acidification impacts fertilization in some species of sea urchin, but whether sensitivity is great enough to be influenced by present-day pH variability has not been documented. In this study, fertilization in two congeneric sea urchins, Strongylocentrotus purpuratus and S. franciscanus, was found to be sensitive to reduced pH, <7.50, but only within a range of sperm-egg ratios that was species-specific. By further testing fertilization across a broad range of pH, pH-fertilization curves were generated and revealed that S. purpuratus was largely robust to pH, while fertilization in S. franciscanus was sensitive to even modest reductions in pH. Combining the pH-fertilization response curves with pH data collected from these species' habitat demonstrated that relative fertilization success remained high for S. purpuratus but could be as low as 79% for S. franciscanus during periods of naturally low pH. In order for S. franciscanus to maintain high fertilization success in the present and future, adequate adult densities, and thus sufficient sperm-egg ratios, will be required to negate the effects of low pH. In contrast, fertilization of S. purpuratus was robust to a broad range of pH, encompassing both present-day and future ocean acidification scenarios, even though the two congeners have similar habitats.
Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.
Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S
2006-05-01
In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The fact that the pH 4 film experienced a larger and more rapid change in its mechanical properties with time than the pH 11 film, as a consequence of a greater loss of plasticizer, was presumably due to its initial lower degree of protein aggregation/polymerization. Consequently, the cross-link density achieved at pH 4 was too low to effectively retain volatiles and glycerol within the matrix.
A new lime material for container substrates
USDA-ARS?s Scientific Manuscript database
The primary component in greenhouse potting substrates is sphagnum peatmoss. Substrate solution pH of non-amended peatmoss ranges from 4.0 to 4.5. Ideal pH for most greenhouse floriculture crops ranges from 5.8 to 6.2. Dolomitic lime is most often used to elevate substrate pH in peatmoss-based me...
Aggarwal, Vivek; Singla, Mamta; Miglani, Sanjay; Sharma, Ritu
2018-01-01
This study evaluated the effect of 3 commercially available calcium silicate materials (CSMs) on pH changes in simulated root resorption defects. Simulated root resorption defects were prepared on the facial root surface of 40 mandibular premolars. The depth of each defect was individually calculated to standardize the remaining dentin thickness to 1 mm. Prepared canals were obturated with the 3 CSMs. Ten specimens were kept as controls, filled with unbuffered normal saline. The pH measurements were taken at 1 hour, 6 hours, 1 day, 1 week, 2 weeks, 3 weeks, 1 month, and 2 months. All CSM groups exhibited an initial alkaline pH of 9.0-9.7. The pH decreased to 8.0-8.5 after 2 months of storage. There were no significant differences between pH measurements at other time intervals. The CSM groups exhibited higher pH levels than the control group. The results showed that intracanal placement of the CSMs maintained initial pH levels of 9.0-9.7 inside the simulated resorption defects; these measurements gradually decreased to 8.0-8.5 over the span of 2 months.
Song, Ru; Yang, Peiyu; Wei, Rongbian; Ruan, Guanqiang
2016-06-20
The antioxidative, antibacterial, and food functional properties of the half-fin anchovy hydrolysates (HAHp)-glucose conjugates formed by Maillard reaction (MR) were investigated, respectively. Results of sugar and amino acid contents loss rates, browning index, and molecular weight distribution indicated that the initial pH of HAHp played an important role in the process of MR between HAHp and glucose. HAHp-glucose Maillard reaction products (HAHp-G MRPs) demonstrated enhanced antioxidative activities of reducing power and scavenging DPPH radicals compared to control groups. HAHp-G MRPs produced from the condition of pH 9.6 displayed the strongest reducing power. The excellent scavenging activity on DPPH radicals was found for HAHp(5.6)-G MRPs which was produced at pH 5.6. Additionally, HAHp(5.6)-G MRPs showed variable antibacterial activities against Escherichia coli, Pseudomonas fluorescens, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus megaterium, and Sarcina lutea, with the MIC values ranging from 8.3 to 16.7 μg/mL. Result of scanning electron microscopy (SEM) on E. coli suggested that HAHp(5.6)-G MRPs exhibited antibacterial activity by destroying the cell integrity through membrane permeabilization. Moreover, HAHp(5.6)-G MRPs had excellent foaming ability and stability at alkaline conditions of pH 8.0, and showed emulsion properties at acidic pH 4.0. These results suggested that specific HAHp-G MRPs should be promising functional ingredients used in foods.
NASA Astrophysics Data System (ADS)
Vasenko, Liubov; Qu, Haiyan
2017-02-01
In this work, the effects of operational parameters, initial phosphorus concentration and molar ratios of Ca/P and NH4-N/P (further in the text N/P), on the nature and purity of precipitated phosphorus products have been investigated in an artificial system that mimics the supernatant in wastewater treatment plants. Metastable zone width was determined for two target phosphorus products: DCPD (dicalcium phosphate dihydrate) and HAp (hydroxyapatite) in the range of pH 4.5 - 7. HAp crystallizes at final pH higher than 6.3 while DCPD crystallizes at the final pH in between 4.7 and 5.7. At the final pH 5.7 - 6.3 and at pH lower than 4.7 the mixtures of DCPD and HAp were obtained. It was observed that N/P ratio affects not only the metastable zone width but also the kinetics of crystal growth for both DCPD and HAp: the higher the N/P ratio, the lower is the growth rate for both P-products. Investigation of the effect of Ca/P and N/P ratios on the nucleation and crystal growth of DCPD in batch crystallization experiment was performed. It showed that at high supersaturation level, crystals with larger median size can be obtained at higher N/P ratio despite the negative effects of N/P ratio on the growth rate of the crystals.
Effects of an acidic environment on coagulation dynamics.
Gissel, M; Brummel-Ziedins, K E; Butenas, S; Pusateri, A E; Mann, K G; Orfeo, T
2016-10-01
Essentials Acidosis, an outcome of traumatic injury, has been linked to impaired procoagulant efficiency. In vitro model systems were used to assess coagulation dynamics at pH 7.4 and 7.0. Clot formation dynamics are slightly enhanced at pH 7.0 in blood ex vivo. Acidosis induced decreases in antithrombin efficacy offset impairments in procoagulant activity. Background Disruption of hydrogen ion homeostasis is a consequence of traumatic injury often associated with clinical coagulopathy. Mechanisms by which acidification of the blood leads to aberrant coagulation require further elucidation. Objective To examine the effects of acidified conditions on coagulation dynamics using in vitro models of increasing complexity. Methods Coagulation dynamics were assessed at pH 7.4 and 7.0 as follows: (i) tissue factor (TF)-initiated coagulation proteome mixtures (±factor [F]XI, ±fibrinogen/FXIII), with reaction progress monitored as thrombin generation or fibrin formation; (ii) enzyme/inhibitor reactions; and (iii) TF-dependent or independent clot dynamics in contact pathway-inhibited blood via viscoelastometry. Results Rate constants for antithrombin inhibition of FXa and thrombin were reduced by ~ 25-30% at pH 7.0. At pH 7.0 (+FXI), TF-initiated thrombin generation showed a 20% increase in maximum thrombin levels and diminished thrombin clearance rates. Viscoelastic analyses showed a 25% increase in clot time and a 25% reduction in maximum clot firmness (MCF). A similar MCF reduction was observed at pH 7.0 when fibrinogen/FXIII were reacted with thrombin. In contrast, in contact pathway-inhibited blood (n = 6) at pH 7.0, MCF values were elevated 6% (95% confidence interval [CI]: 1%-11%) in TF-initiated blood and 15% (95% CI: 1%- 29%) in the absence of TF. Clot times at pH 7.0 decreased 32% (95% CI: 15%-49%) in TF-initiated blood and 51% (95% CI: 35%-68%) in the absence of TF. Conclusions Despite reported decreased procoagulant catalysis at pH 7.0, clot formation dynamics are slightly enhanced in blood ex vivo and suppression of thrombin generation is not observed. A decrease in antithrombin reactivity is one potential mechanism contributing to these outcomes. © 2016 International Society on Thrombosis and Haemostasis.
Comparison of pH measurements made using 31P NMR and a fibreoptic pH meter.
Jayasundar, R; Hall, L D; Bleehen, N M
1992-01-01
The objective of this study was to compare pH measurements made in biological samples using 31P NMR (pHNMR) with those made with a novel, dye-based fibreoptic pH measurement system (pHF), which is compatible with use in electromagnetic fields without field perturbation. Using protein-free model solutions, pHNMR was calibrated against pHF, giving a correlation coefficient of 0.969 and a mean difference (+/- SD) between pHNMR and pHF of 0.037 +/- 0.054 over the pH range 6.8-7.7. Further calibration of pHNMR with pHF was carried out for human red blood lysates and then pHNMR was compared with pHF for whole, packed red blood cells over the pH range 7.0-7.8. Values for pHNMR, the intracellular pH, were consistently lower than for pHF, the extracellular pH, by a mean (+/- SD) of 0.15 +/- 0.02 units. A close correlation of extracellular pHNMR with pHF was demonstrated for a blood sample exhibiting two P(i) peaks, over the pH range 7.03-7.71. We conclude that concurrent use of NMR and the fibreoptic pH meter provides a reliable method of simultaneous measurement of intracellular and extracellular pH in biological systems.
Evangelista, Danilo Elton; Kadowaki, Marco Antonio Seiki; Mello, Bruno Luan; Polikarpov, Igor
2018-04-01
Environmental issues are promoting the development of innovative technologies for the production of renewable energy and "green products" from plant biomass residues. These technologies rely on the conversion of the plant cell wall (PCW) polysaccharides into simple sugars, which involve synergistic activities of different PCW degrading enzymes, including xylanases; these are widely applied in food and feed sectors, paper and textile industries, among others. We cloned, expressed and biochemically characterized a novel xylanase (Xyn10) from the GH10 identified in a metatranscriptome of compost-derived microbial consortia and determined its low-resolution SAXS molecular envelope in solution. Our results reveal that Xyn10 is a monomeric flexible globular enzyme, with high stability with a broad pH range from 4 to 10 and optimal activity conditions at pH 7 and 40 °C. Only 10% of activity loss was observed after the enzyme was incubated for 30 h at 40 °C with a pH ranging from 5 to 10. Moreover, Xyn10 maintained 100% of its initial activity after incubation for 120 h at 40 °C and 51% after incubation for 24 h at 50 °C (pH = 7.0). Xyn10 shows endocatalytic activity towards xylan and arabinoxylan, liberating xylose, xylobiose, 1,2-α-d-methylglucuronic acid decorated xylotriose, and 1,3-α-l-arabinofuranose decorated xylobiose and xylotriose oligosaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.
da Silva Modesto, Karine Barros; de Godói Simões, Jéssica Bueno; de Souza, Amanda Ferreira; Damaceno, Neiva; Duarte, Danilo Antonio; Leite, Mariana Ferreira; de Almeida, Eliete Rodrigues
2015-11-01
It is recognized that cystic fibrosis (CF) patients present a risk for oral diseases, since it affects exocrine glands, and the treatment consists of a carbohydrate-rich diet. Recognizing the protective function of saliva on maintaining oral health, the aim of the study was to evaluate salivary parameters in stimulated whole saliva from children with CF. A case-control study was conducted comparing stimulated whole saliva of healthy (n=28; control group) and CF children (n=21; experimental group). Salivary flow rate, initial pH, buffer capacity (total and in each range of pH), total protein and sialic acid (total, free, and conjugated) concentration, α-amylase and salivary peroxidase activities were evaluated. Data were compared by two-tailed Student t test (95% CI; p ≤ 0.05). CF patients presented a significant reduction in salivary parameters compared with the control group (p ≤ 0.05): salivary flow rate (36%), buffer capacity (pH range from 6.9 to 6.0), sialic acid concentration (total 75%, free 61%, and conjugated 83%); α-amylase and salivary peroxidase activities (55%). Additionally, a significant increase in total protein concentration (180%) of stimulated whole saliva from CF patients was verified compared with the control group (p ≤ 0.05). Children with CF presented significant changes in salivary composition, including salivary flow rate, buffering capacity and protective proteins of the oral cavity, compared with children without CF. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ennis, B.M.; Maddox, I.S.
1987-02-20
A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose-utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inversemore » relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production. 12 references.« less
[Efficiency of photodecomposition of trace NDMA in water by UV irradiation].
Xu, Bing-Bing; Chen, Zhong-Lin; Qi, Fei; Ma, Jun
2008-07-01
Efficiency of photodecomposition of trace NDMA by UV irradiation was investigated with analyzing the initial concentration of NDMA, solution pH, irradiation area, irradiation intensity and water quality effect on NDMA photolysis. NDMA could be effectively photodegraded by UV irradiation. The removal efficiency of NDMA was 97.5% after 5 min of UV irradiation. Effect of initial NDMA concentration on photodecomposition of NDMA was not remarkable. With pH value ascending, the removal rate of NDMA photodecomposition decreased. The yields of photoquantum were more under lower solution pH than that under higher pH. NDMA had fastest reaction rate at solution pH = 2.2. Removal efficiency of NDMA increased with the available irradiation area ascending. Increscent ultraviolet irradiation intensity was good for NDMA degradation. Water quality affected the removal of NDMA slightly. The removal efficiency of NDMA in tap water and Songhua River raw water were 96.7% and 94.8%, respectively.
Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology.
Xu, Hang; Ding, Mingmei; Shen, Kunlun; Cui, Jianfeng; Chen, Wei
2017-04-01
A vacuum electrokinetic apparatus was operated at a municipal water supply plant in Wuxi, China to study the removal of aluminum from the plant's drinking water treatment sludge, high in trivalent aluminum content. The effect of several experimental variables (initial pH, potential gradient, and zone in the sludge tank) and the trivalent aluminum removal mechanism were analyzed. The speciation of trivalent aluminum mainly depends on the initial pH of drinking water treatment sludge, and more fractions of trivalent aluminum were migrated at pH 4 than at higher or lower pH. The application of high voltage can enhance the removal efficiency of aluminum. A three-dimensional electric field analysis explained the difference in the removal efficiency at different zones in the sludge tank. In view of energy consumption, when the initial pH was 4 and a potential gradient of 2 V cm -1 was applied, achieving a final aluminum concentration of 30 g kg -1 after 120 h. The specific energy consumption was 11.7 kWh kg -1 of Al removed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodríguez Pacheco, T; Aliaga, T; Schoeneberger, H; Gross, R
1981-12-01
Laboratory conditions were first investigated to determine are optimum processing parameters for the preparation of a protein isolate from the ground, defatted, commercial flakes of Lupinus mutabilis. The extraction variables were: pH (2-10); solvent to lupine ratio (5:1 to 40:1); temperature (28 degrees C - 60 degrees C) and time (10-50 min). The isoelectric point of the lupine protein was found to be pH 4.5 with a protein solubility higher than 80% above pH 8.0. Using 70-100 mesh, ground defatted flakes, and extracting at pH 8.7 for 60 min, a protein isolate was obtained on acidification to pH 4.5 which was 99.8 protein (dry basis), compared to 55.25% protein for the original material. This protein isolate represented 32% of the initial material and 57.6% of the initial nitrogen. When making pilot plant assays we found that the yield of protein isolate decreased to 20.4% of the original material and 36.4% of the initial nitrogen. The protein efficiency ratio for the protein isolate was 2.15 when supplemented with methionine, and had a digestibility of 89.33
Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae.
Zheng, X Y; Shen, Y H; Wang, X Y; Wang, T S
2018-07-01
Biosorption of radionuclides by microorganisms is a promising and effective method for the remediation of contaminated areas. pH is the most important factor during uranium biosorption by Saccharomyces cerevisiae because the pH value not only affects the biosorption rate but also affects the precipitation structure. This study investigated the effect of pH on uranium (VI) biosorption and biomineralization by S. cerevisiae. Cells have the ability to buffer the solution to neutral, allowing the biosorption system to reach an optimal level regardless of the initial pH value. This occurs because there is a release of phosphate and ammonium ions during the interaction between cells and uranium. The uranyl and phosphate ions formed nano-particles, which is chernikovite H 2 (UO 2 ) 2 (PO 4 ) 2 ·8H 2 O (PDF #08-0296), on cell surface under the initial acidic conditions. However, under the initial alkaline conditions, the uranyl, phosphate and ammonium ions formed a large amount of scale-like precipitation, which is uramphite (NH 4 )(UO 2 )PO 4 ·3H 2 O (PDF #42-0384), evenly over on cell surface. Copyright © 2018 Elsevier Ltd. All rights reserved.
40 CFR 421.34 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... grease .000 .000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart C—Demagging Wet....330 3.330 pH (2) (2) 1 At the source. 2 Within the range of 7.0 to 10.0 at all times. (f) Subpart C....290 13.290 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (g) Subpart C—Ingot Conveyor...
40 CFR 421.254 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Oil and Grease 4.000 4.000 Total suspended solids 6.000 4.800 pH (1) (1) 1 Within the range of 7.5 to....000 Total suspended solids 19.500 15.600 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b... pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Electrolyte preparation wet air...
40 CFR 421.234 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solids 0.508 0.406 pH 1 1 1 Within the range of 7.5 to 10.0 at all times. (c) Nickel reduction decant... Total suspended solids 1.155 0.924 pH 1 1 1 Within the range of 7.5 to 10.0 at all times. (b) Nickel....400 152.300 pH 1 1 1 Within the range of 7.5 to 10.0 at all times. (d) Cobalt reduction decant. NSPS...
40 CFR 421.34 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... grease .000 .000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart C—Demagging Wet....330 3.330 pH (2) (2) 1 At the source. 2 Within the range of 7.0 to 10.0 at all times. (f) Subpart C....290 13.290 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (g) Subpart C—Ingot Conveyor...
Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation
van Lingen, Henk J.; Plugge, Caroline M.; Fadel, James G.; Kebreab, Ermias; Bannink, André; Dijkstra, Jan
2016-01-01
Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH oxidation. PMID:27783615
Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions
NASA Astrophysics Data System (ADS)
Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas
2017-04-01
Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10 (first order rate constants between 0.029 and 0.036 1/h). Between pH 7 and 8, acetogenesis showed a linear trend (zeroth order rates between 3 and 5 µM/h) whereas formate production became the main process (zeroth order rates between 38 to 197 µM/h) together with methanogenesis as a minor process. The results indicated a strong dependency of the biogeochemical hydrogenotrophic redox reactions on the pH milieu. Thus, pH buffers such as dissolved or solid phase carbonates should be taken into account when predicting effects a hydrogen leakage may have on shallow aquifers. Additionally, parameters derived from the observed processes and their rates allow the design of a process based numerical model simulating a hydrogen intrusion into a shallow aquifer. Consequently the presented outcomes allow an exemplary quantification of the resulting geochemical effects. This study was carried out within the ANGUS+ project and was funded by the German Federal Ministry of Education and Research (BMBF) energy storage funding initiative.
NASA Astrophysics Data System (ADS)
Rudolph, N.; Oswald, S. E.; Lehmann, E.
2012-12-01
This study represents a novel experimental set up to non-invasivley map the gradients of biogeochemical parameters at the soil -root interface of plants in situ. The patterns of oxygen, pH and the soil water content distribution were mapped in high resolution with a combination of fluorescence imaging and neutron radiography. Measuring the real-time distribution of water, pH and oxygen concentration would enable us to locate the active parts of the roots in respect to water uptake, exudation and respiration. Roots performance itself is variable as a function of age and development stage and is interrelated with local soil conditions such as water and oxygen availability or nutrients and pH buffering capacity in soil. Non-destructive imaging methods such as fluorescence and neutron imaging have provided a unique opportunity to unravel some of these complex processes. Thin glass containers (inner size 10cm x 10cm x 1.5 cm) were filled with 2 different sandy soils. Sensor foil for O2 and pH were installed on the inner-sides of the containers. We grew lupine plants in the container under controlled conditions until the root system was developed. Growing plants at different stages prior to the imaging experiment, we took neutron radiographs and fluorescence images of 10-day old and 30-day old root systems of lupine plants over a range of soil water contents, and therefore a range of root activities and oxygen changes. We observed the oxygen consumption pattern, the pH changes, and the root water uptake of lupine plants over the course of several days. We observed a higher respiration activity around the lateral roots than for the tap root. The oxygen depletion zones around the roots extended to farther distances after each rewatering of the samples. Root systems of the plants were mapped from the neutron radiograps. Close association of the roots distribution and the the location of oxygen depletion patterns provided evidence that this effect was caused by roots. The oxygen deficit pattern intensified with increasing root age. Due to the high soil water content after rewatering, the aeration from atmosphere was limited. pH dynamic was closely related to the root age. Initially, the soil pH strongly decreased around the young growing tap root. This pattern changed with time to an increased pH around the tap root but a strong acidification in the vicinity of lateral roots. After each rewatering, the pH increased which might be due to the dilution of H+ in high soil water contents. With our coupled imaging set up we were able to monitor the dynamics of oxygen, pH and water content around the roots of plant with high spatial and temporal resolutions over day and night at a wide range of soil water contents. Our experimental set up provides the opportunity to simultaneousely map the dynamics of these vital parameters in the root zone of plants.
Sensitivity of sea urchin fertilization to pH varies across a natural pH mosaic.
Kapsenberg, Lydia; Okamoto, Daniel K; Dutton, Jessica M; Hofmann, Gretchen E
2017-03-01
In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin Strongylocentrotus purpuratus in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pH T ≤ 7.8) exposures, fertilization was tested across a range of pH (pH T 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in S. purpuratus and highlight the need to incorporate environmental variability in the study of global change biology.
Purification, immobilization and characterization of tannase from Penicillium variable.
Sharma, Shashi; Agarwal, Lata; Saxena, Rajendra Kumar
2008-05-01
Tannase from Penicillium variable IARI 2031 was purified by a two-step purification strategy comprising of ultra-filtration using 100 kDa molecular weight cutoff and gel-filtration using Sephadex G-200. A purification fold of 135 with 91% yield of tannase was obtained. The enzyme has temperature and pH optima of 50 degrees C and 5 degrees C, respectively. However, the functional temperature range is from 25 to 80 degrees C and functional pH range is from 3.0 to 8.0. This tannase could successfully be immobilized on Amberlite IR where it retains about 85% of the initial catalytic activity even after ninth cycle of its use. Based on the Michaelis-Menten constant (Km) of tannase, tannic acid is the best substrate with Km of 32 mM and Vmax of 1.11 micromol ml(-1)min(-1). Tannase is inhibited by phenyl methyl sulphonyl fluoride (PMSF) and N-ethylmaleimide retaining only 28.1% and 19% residual activity indicating that this enzyme belongs to the class of serine hydrolases. Tannase in both crude and crude lyophilized forms is stable for one year retaining more than 60% residual activity.
Role of pH on the stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
Khokhar, M. I.; Beck, F. H.; Fontana, M. G.
1973-01-01
Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, Diana Holford; Locke II, Randall A.; Keating, Elizabeth
The National Risk Assessment Partnership (NRAP) has developed a suite of tools to assess and manage risk at CO2 sequestration sites (1). The NRAP tool suite includes the Aquifer Impact Model (AIM), based on reduced order models developed using site-specific data from two aquifers (alluvium and carbonate). The models accept aquifer parameters as a range of variable inputs so they may have more broad applicability. Guidelines have been developed for determining the aquifer types for which the ROMs should be applicable. This paper considers the applicability of the aquifer models in AIM to predicting the impact of CO2 or Brinemore » leakage were it to occur at the Illinois Basin Decatur Project (IBDP). Based on the results of the sensitivity analysis, the hydraulic parameters and leakage source term magnitude are more sensitive than clay fraction or cation exchange capacity. Sand permeability was the only hydraulic parameter measured at the IBDP site. More information on the other hydraulic parameters, such as sand fraction and sand/clay correlation lengths, could reduce uncertainty in risk estimates. Some non-adjustable parameters, such as the initial pH and TDS and the pH no-impact threshold, are significantly different for the ROM than for the observations at the IBDP site. The reduced order model could be made more useful to a wider range of sites if the initial conditions and no-impact threshold values were adjustable parameters.« less
Li, Han; Huang, Shaobin; Zhang, Yongqing
2016-09-01
Cr(VI) pollution is increasing continuously as a result of ongoing industrialization. In this study, we investigated the thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1, isolated from the biofilm of a biotrickling filter used in nitrogen oxides (NOX) removal, with respect to its ability to remove Cr(VI) from an aqueous solution. TAD1 was capable of reducing Cr(VI) from an initial concentration of 10 mg/L to non-detectable levels over a pH range of 7-9 and at a temperature range of 30-50°C. TAD1 simultaneously removed both Cr(VI) and NO3 (-)-N at 50°C, when the pH was 7 and the initial Cr(VI) concentration was 15 mg/L. The reduction of Cr(VI) to Cr(III) correlated with the growth metabolic activity of TAD1. The presence of other heavy metals (Cu, Zn, and Ni) inhibited the ability of TAD1 to remove Cr(VI). The metals each individually inhibited Cr(VI) removal, and the extent of inhibition increased in a cooperative manner in the presence of a combination of the metals. The addition of biodegradable cellulose acetate microspheres (an adsorption material) weakened the toxicity of the heavy metals; in their presence, the Cr(VI) removal efficiency returned to a high level. The feasibility and applicability of simultaneous nitrate removal and Cr(VI) reduction by strain TAD1 is promising, and may be an effective biological method for the clean-up of wastewater.
The Importance of Having a Ph.D., Career Advice
USDA-ARS?s Scientific Manuscript database
A presentation on the importance of having a PhD to motivate Initiative to Maximize Student Diversity Program (IMSD) undergrads towards conducting research, pursuing careers in the biomedical field, applying to grad school, and getting a Ph.D., based upon ARS scientist's experiences as a student, a ...
Prognostic Effect and Longitudinal Hemodynamic Assessment of Borderline Pulmonary Hypertension.
Assad, Tufik R; Maron, Bradley A; Robbins, Ivan M; Xu, Meng; Huang, Shi; Harrell, Frank E; Farber-Eger, Eric H; Wells, Quinn S; Choudhary, Gaurav; Hemnes, Anna R; Brittain, Evan L
2017-12-01
Pulmonary hypertension (PH) is diagnosed by a mean pulmonary arterial pressure (mPAP) value of at least 25 mm Hg during right heart catheterization (RHC). While several studies have demonstrated increased mortality in patients with mPAP less than that threshold, little is known about the natural history of borderline PH. To test the hypothesis that patients with borderline PH have decreased survival compared with patients with lower mPAP and frequently develop overt PH and to identify clinical correlates of borderline PH. Retrospective cohort study from 1998 to 2014 at Vanderbilt University Medical Center, comprising all patients undergoing routine RHC for clinical indication. We extracted demographics, clinical data, invasive hemodynamics, echocardiography, and vital status for all patients. Patients with mPAP values of 18 mm Hg or less, 19 to 24 mm Hg, and at least 25 mm Hg were classified as reference, borderline PH, and PH, respectively. Mean pulmonary arterial pressure. Our primary outcome was all-cause mortality after adjusting for clinically relevant covariates in a Cox proportional hazards model. Our secondary outcome was the diagnosis of overt PH in patients initially diagnosed with borderline PH. Both outcomes were determined prior to data analysis. We identified 4343 patients (mean [SD] age, 59 [15] years, 51% women, and 86% white) among whom the prevalence of PH and borderline PH was 62% and 18%, respectively. Advanced age, features of the metabolic syndrome, and chronic heart and lung disease were independently associated with a higher likelihood of borderline PH compared with reference patients in a logistic regression model. After adjusting for 34 covariates in a Cox proportional hazards model, borderline PH was associated with increased mortality compared with reference patients (hazard ratio, 1.31; 95% CI, 1.04-1.65; P = .001). The hazard of death increased incrementally with higher mPAP, without an observed threshold. In the 70 patients with borderline PH who underwent a repeated RHC, 43 (61%) had developed overt PH, with a median increase in mPAP of 5 mm Hg (interquartile range, -1 to 11 mm Hg; P < .001). Borderline PH is common in patients undergoing RHC and is associated with significant comorbidities, progression to overt PH, and decreased survival. Small increases in mPAP, even at values currently considered normal, are independently associated with increased mortality. Prospective studies are warranted to determine whether early intervention or closer monitoring improves clinical outcomes in these patients.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and grease 7.32 4.39 Suspended solids 15.0 7.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all... solids 60.60 28.82 pH (1) (1) 1 With the range of 7.0 to 10.0 at all times. Subpart C Direct Chill... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...
40 CFR 421.154 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...,700.0 4,378.0 Total Suspended solids 3,300.0 2,640.0 pH (1) (1) 1 Within the range of 7.5 to 10.0 at....000 Total Suspended solids 33,690.000 26,950.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...,269.000 Total Suspended solids 3,218.000 2,574.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...
Code of Federal Regulations, 2010 CFR
2010-07-01
... pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Beryllium Carbonate Filtrate. BPT... suspended solids 9,430.0 4,485.0 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (g) Process... Fluoride 3.535 2.010 Total Suspended Solids 4.141 1.970 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...
40 CFR 471.23 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 4.37 Fluoride 4.44 1.97 Oil and grease 0.746 0.746 TSS 1.12 0.895 pH (1) (1) 1 Within the range of 7... 7.63 Oil and grease 2.89 2.89 TSS 4.34 3.47 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all... 59.3 47.4 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (f) Surface treatment spent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and grease 7.32 4.39 Suspended solids 15.0 7.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all... solids 60.60 28.82 pH (1) (1) 1 With the range of 7.0 to 10.0 at all times. Subpart C Direct Chill... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...
40 CFR 434.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... consecutive days Concentrations in mg/1 Iron, total 6.0 3.0 TSS 70.0 35.0 pH (1) (1) 1 Within the range 6.0 to... property Limitations Settleable Solids 0.5 ml/1 maximum not to be exceeded. pH (1) (1) Within the range 6.0..., total 4.0 2.0 TSS 70.0 35.0 pH (1) (1) 1 Within the range 6.0 to 9.0 at all times. (2) Except as...
Roy Chowdhury, Additi; Mondal, Amita; Roy, Biswajit Gopal; K, Jagadeesh C Bose; Mukhopadhyay, Sudit; Banerjee, Priyabrata
2017-11-08
Two novel hydrazine based sensors, BPPIH (N 1 ,N 3 -bis(perfluorophenyl)isophthalohydrazide) and BPBIH (N 1' ,N 3' -bis(perfluorobenzylidene)isophthalohydrazide), are presented here. BPPIH is found to be a highly sensitive pH sensor in the pH range 5.0 to 10.0 in a DMSO-water solvent mixture with a pK a value of 9.22. Interesting optical responses have been observed for BPPIH in the above mentioned pH range. BPBIH on the other hand turns out to be a less effective pH sensor in the above mentioned pH range. The increase in fluorescence intensity at a lower pH for BPPIH was explained by using density functional theory. The ability of BPPIH to monitor the pH changes inside cancer cells is a useful application of the sensor as a functional material. In addition fluoride (F - ) selectivity studies of these two chemosensors have been performed and show that between them, BPBIH shows greater selectivity towards F - . The interaction energy calculated from the DFT-D3 supports the experimental findings. The pH sensor (BPPIH) can be further interfaced with suitable circuitry interfaced with desired programming for ease of access and enhancement of practical applications.
Skaterna, T D; Kharchenko, O V
2008-01-01
Influence of anionogenic phospholipid of phosphatidic acid (PA) on oxidation of linoleic acid by 5-lipoxygenase (5-LO) from Solanum tuberosum was studied. The influence of PA was studied in micellar system which consisted of mixed micelles of linolenic acid (LK), Lubrol PX and different quantity of enzyme effector PA. The reaction was initiated by addition of 5-LO. It was established that 5-LO had two pHopt. in the presence of 50 microM phosphatidic acid: pH 5.0 and 6.9. In concentration of 50 microM PA was able to activate 5-LO 15 times at pH 5.0. The reaction maximum velocity (Vmax) coincided with Vmax of lipoxygenase reaction without the effector at pH 6.9 under such conditions. It was found that 30-50 microM phospholipid in the reaction mixture decreased the concentration of half saturation by the substrate by 43-67%. The enzyme demonstrated positive cooperation in respect of the substrate, the reaction is described by the Hill equation. Hill coefficient value (h) of the substrate was 3.34 +/- 0.22 (pH 6.9) and 5.61 +/- 0.88 (pH 5.0), that is with the change of pH to acidic region the number of substrate molecules increased and they could interact with the enzyme molecule. In case of substrate insufficiency the enzyme demonstrated positive cooperation of PA, it added from 4 to 3 effectors' molecules at pH 5.0, that is the phospholipid acted as the allosteric regulator of 5-LO. A comparative analysis of the influence of 4-hydroxy-TEMPO displayed, that the level of nonenzymatic processes in the case of physiological pH values was lower by 15-50% in the presence of PA in the range of 30-80 microM than without the effector.
Cr(VI) Sorption by Nanosized FeS-Coated Sand
NASA Astrophysics Data System (ADS)
Park, M.; Jeong, H. Y.; Lee, S.; Kang, N.; Kim, K. H.; Choi, H. J.
2015-12-01
Cr(VI) sorption experiments were conducted as a function of pH (4.7, 7.0 and 9.7) using nanosized FeS-coated sand under anoxic environments. Under the experimental conditions, the sand used, with the FeS content of 0.068 mmol per 1 g sand, completely reduced the initially added Cr(VI) to Cr(III) over the pH range examined. The sorption of the once-reduced Cr(III) varied greatly with the solution pH. By the solution-phase analysis, significant amounts of Cr(III) remained as dissolved species at pH 4.7. On the other hands, dissolved Cr was below the detection limit (0.2 μM) at pH 7.0 and 9.7, indicating the greater sorption of Cr(III) at neutral to basic pH than acidic pH. From Cr-K edge X-ray absorption spectroscopy (XAS) analysis of the solid products, the sorbed Cr was shown to be present predominantly as trivalent state in all samples. Regardless of pH, the second coordination shell around Cr (i.e., the Cr-Cr(Fe) shell) was shown to be located at ~2.6 Å, which was far shorter than those in Cr(III)-bearing model compounds such as Cr(OH)3(s) and [Cr, Fe](OH)3(s). Furthermore, the coordination numbers of the second and third shells in the sorption samples (N = 0.7-1.8) were much lower than those in Cr(OH)3(s) and [Cr, Fe](OH)3(s). Taken together, the sorption of the once-reduced Cr(III) was likely to occur via surface-mediated processes (e.g., surface complexation and/or surface precipitation) rather than the bulk-phase precipitation. Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
Measuring Phagosome pH by Ratiometric Fluorescence Microscopy
Nunes, Paula; Guido, Daniele; Demaurex, Nicolas
2015-01-01
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes. PMID:26710109
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
Mane, Venkat S; Deo Mall, Indra; Chandra Srivastava, Vimal
2007-09-01
The present study deals with the adsorption of Brilliant Green (BG) on rice husk ash (RHA). RHA is a solid waste obtained from the particulate collection equipment attached to the flue gas lines of rice husk fired boilers. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of BG. Optimum conditions for BG removal were found to be pH0 approximately 3.0, adsorbent dose approximately 6 g L(-1) of solution and equilibrium time approximately 5 h for the C0 range of 50-300 mg L(-1). Adsorption of BG followed pseudo-second-order kinetics. Intra-particle diffusion does not seem to control the BG removal process. Equilibrium isotherms for the adsorption of BG on RHA were analyzed by Freundlich, Langmuir, Redlich-Peterson (R-P), Dubnin-Radushkevich (D-R), and Temkin isotherm models using a non-linear regression technique. Langmuir and R-P isotherms were found to best represent the data for BG adsorption onto RHA. Adsorption of BG on RHA is favourably influenced by an increase in the temperature of the operation. Values of the change in entropy (DeltaS0) and heat of adsorption (DeltaH0) for BG adsorption on RHA were positive. The high negative value of change in Gibbs free energy (DeltaG0) indicates the feasible and spontaneous adsorption of BG on RHA.
Özer, Cem O; Kılıç, Birol; Kılıç, Gülden Başyiğit
2016-04-01
Twenty-three probiotic Lactobacillus plantarum strains were screened in-vitro to determine their ability to produce conjugated linoleic acid (CLA). L. plantarum AA1-2 and L. plantarum AB20-961 were identified as potential strains for CLA production. Optimum conditions for these strains to produce high levels of CLA were determined by evaluating the amount of added hydrolyzed sunflower oil (HSO) and initial pH levels in a nutrient medium. The highest CLA production was obtained in medium with pH6.0 and 2% HSO (P<0.05). Those strains were then used as starter culture in sucuk fermentation. Five sucuk treatments included a control (no starter culture), two sucuk groups with L. plantarum AA1-2 at the initial pH of 5.8 or 6.0 and two sucuk groups with L. plantarum AB20-961 at the initial pH of 5.8 or 6.0. Results indicate that L. plantarum AB20-961 produced higher amount of CLA in sucuk at initial pH of 5.8 and 6.0 levels during first 24h of fermentation compared with other groups. CLA isomer concentration decreased in all sucuk groups during the rest of the fermentation period (P<0.05) and remained quite stable during the storage. This study demonstrated that probiotic L. plantarum AB20-961 can be used in sucuk manufacturing without posing any quality problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-assembly processes in the prebiotic environment
Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen
2006-01-01
An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220
Influence of process parameters on the effectiveness of photooxidative treatment of pharmaceuticals.
Markic, Marinko; Cvetnic, Matija; Ukic, Sime; Kusic, Hrvoje; Bolanca, Tomislav; Bozic, Ana Loncaric
2018-03-21
In this study, UV-C/H 2 O 2 and UV-C/[Formula: see text] processes as photooxidative Advanced oxidation processes were applied for the treatment of seven pharmaceuticals, either already included in the Directive 2013/39/EU "watch list" (17α- ethynylestradiol, 17β-estradiol) or with potential to be added in the near future due to environmental properties and increasing consumption (azithromycin, carbamazepine, dexamethasone, erythromycin and oxytetracycline). The influence of process parameters (pH, oxidant concentration and type) on the pharmaceuticals degradation was studied through employed response surface modelling approach. It was established that degradation obeys first-order kinetic regime regardless structural differences and over entire range of studied process parameters. The results revealed that the effectiveness of UV-C/H 2 O 2 process is highly dependent on both initial pH and oxidant concentration. It was found that UV-C/[Formula: see text] process, exhibiting several times faster degradation of studied pharmaceuticals, is less sensitive to pH changes providing practical benefit to its utilization. The influence of water matrix on degradation kinetics of studied pharmaceuticals was studied through natural organic matter effects on single component and mixture systems.
Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae
2015-01-01
This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt.
Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing
2016-01-01
The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffries, T.W.; Timourian, H.; Ward, R.L.
Anabaena cylindrica sparged with argon gas produced H/sub 2/ continuously for 30 days under limited light conditions (6.0 W/m/sup 2/) and for 18 days under elevated light conditions (32 W/m/sup 2/) in the absence of exogenous nitrogen. The efficiency of converting visible light energy (32 W/m/sup 2/) into chemical energy that is trapped as H/sub 2/ ranged between 0.35 and 0.85% (approximately 13 ..mu..l of H/sub 2/ per mg (dry wt) per h). Ammonium additions (0.2 mM NH/sup +//sub 4/) at various times destabilized the system and eventually suppressed H/sub 2/ production completely, as compared with the control. Cultures grownmore » with 5.0 mg of Fe/sup 3 +/ per liter produced H/sub 2/ at a rate about twice that of cultures with 0.5 mg of Fe/sup 3 +/ per liter. Cultures grown at pH 7.4 produced H/sub 2/ at the same initial rates as cultures that were grown at pH 9.4; however, the latter cultures continued to produce H/sub 2/ after CO/sub 2/ deprivation.« less
Thiol surface complexation on growing CdS clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swayambunathan, V.; Hayes, D.; Schmidt, K.H.
1990-05-09
The growth of small CdS colloidal particles has been initiated by pulse radiolytic release of sulfide from thiol (3-mercapto-1,2-propanediol, RSH) in the presence of Cd{sup 2+} ions. The kinetics and stoichiometry of the ensuring reactions were followed by conductivity, absorption spectroscopy, and light-scattering techniques. The final CdS product has been identified by electron diffraction. The formation of Cd-thiolate complexes at the surface of the particles is indicated by conductivity and by energy dispersive analysis of X-ray (EDAX) results. The rate of formation of CdS clusters is strongly pH dependent due to the pH effect on the stability of Dd{sup 2+}/HS{supmore » {minus}} complexes. At low pHs (4.0-5.3) the growth mechanism is proposed to be primarily a cluster-molecule process. At this pH range Cd{sup 2+} ions at the CdS particle surface complex with thiolate ions stronger than in the bulk of the solution. The size control of the particles by thiols is proposed to result from a competition of thiolate ions with HS{sup {minus}} ions for cadmium ions at the surface of the growing particles.« less
Evaluation of H+ Secretion Relative to Zeatin-Induced Growth of Detached Cucumber Cotyledons 1
Ross, Cleon W.; Rayle, David L.
1982-01-01
Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H+ secretion. PMID:16662700
2015-01-01
This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641
Guan, Qian; Noblitt, Scott D.; Henry, Charles S.
2012-01-01
The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on EOF was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione (GSH) in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems. PMID:22222982
Cravotta, C.A.
2007-01-01
This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991-2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ??? 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and <0.2 mg/L, respectively). In 2001, the laboratory aeration experiment demonstrated rapid oxidation of ferrous iron (Fe 2+) without supplemental alkalinity; the initial Fe2+ concentration of 16.4 mg/L decreased to less than 0.5 mg/L within 24 h; pH values increased rapidly from 5.8 to 7.2, ultimately attaining a steady-state value of 7.5. The increased pH coincided with a rapid decrease in the partial pressure of carbon dioxide (PCO2) from an initial value of 10 -1.1atm to a steady-state value of 10-3.1atm. From these results, a staged aerobic treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80-100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent remained elevated (10-2.4 to 10-1.7atm). The elevated PCO 2 maintained the pH within the system at values less than 7 and hence slowed the rate of Fe2+ oxidation compared to the aeration experiment. Kinetic models of Fe2+ oxidation that consider effects of pH and dissolved O2 were incorporated in the geochemical computer program PHREEQC to evaluate the effects of detention time, pH, and other variables on Fe2+ oxidation and removal rates. These models and the laboratory aeration experiment indicate that performance of this and other aerobic wetlands for treatment of net-alkaline AMD could be improved by aggressive, continuous aeration in the initial stage to decrease PCO 2, increase pH, and accelerate Fe2+ oxidation. ?? 2007 Springer-Verlag.
Lactic acid bacteria isolated from apples are able to catabolise arginine.
Savino, María J; Sánchez, Leandro A; Saguir, Fabiana M; de Nadra, María C Manca
2012-03-01
We investigated the potentiality of lactic acid bacteria (LAB) isolated from two apples variety to utilize arginine at different initial pH values. Apples surface contained average levels of bacteria ranging from log 2.49 ± 0.53 to log 3.73 ± 0.48 cfu/ml for Red Delicious and Golden Delicious varieties, respectively. Thirty-one strains able to develop in presence of arginine at low pH were phenotypically and genotipically identified as belonging to Lactobacillus, Pediococcus and Leuconostoc genera. In general, they did not produce ammonia from arginine when cultivated in basal medium with arginine (BMA) at pH 4.5 or 5.2. When this metabolite was quantified only six strains belonging to Leuconostoc dextranicum, Lactobacillus brevis and Lactobacillus plantarum species formed higher ammonia amounts in BMA as compared to control. This was correlated with arginine utilization and it was more pronounced at pH 4.5 than 5.2. Analysis of citrulline production confirmed the arginine utilization in these bacteria by the arginine deiminase (ADI) pathway. Maxima citrulline production was observed for Lactobacillus brevis M15 at the two pH values. In this strain ammonia was formed at higher rate than citrulline, which was detected in concentration lower than 1 mM. Thus, main LAB species found on apple surfaces with abilities to degrade arginine by the ADI pathway under different conditions were reported here at the first time. The results suggested that the ADI pathway in apples LAB might not be mainly relevant for their survival in the acid natural environmental, despite leading to the ammonia formation, which may contribute to the increase in pH, coping the acid stress.
Ad-/desorption behavior of Sulfadiazine on soil and soil components
NASA Astrophysics Data System (ADS)
Meng, N.; Lewandowski, H.; Kasteel, R.; Narres, H.-D.; Klumpp, E.; Vereecken, H.
2009-04-01
Sulfadiazine [4-amino-N-(2-pyrimidinyl)benzene sulfonamide, SDZ] belongs to the widely used antibacterial veterinary pharmaceuticals which reach the environment by the application of manure. Therefore the adsorption and desorption behavior of 14C labeled sulfadiazine was investigated with different inorganic soil components including Al2O3, goethite, illite and compared with air-dried topsoil. The batch sorption experiments with Al2O3and soil were performed in natural pH-values (8.2 and 7.5, negatively charged SDZ). Experiments with illite and goethite were done with pH-values of 4.2 and 6.8 (natural pH of illite and goethite, neutral and partly negatively charged SDZ) and also done in buffer solution about pH 8 for comparing the adsorption on all adsorbents in same pH range. The adsorption isotherms on all sorbents are strongly nonlinear and can be fitted well by the Freundlich equation. From the initial slope of the isotherm the partition coefficient Kd could be determined. The adsorption of SDZ on illite at pH 4.2 and on goethite at pH 6.8 has higher Kd-values than at pH 8, which demonstrates that the negative charge of SDZ obstructs the adsorption. The desorption isotherms show hysteresis effects for all adsorbents. The strong hysteresis was found for goethite and soil indicates strongly physical or chemical binding. On the other hand, the low hysteresis effect for Al2O3 and illite indicates the weak binding of the adsorbed SDZ. The properties of the inorganic matrix and especially the charges of the inorganic compounds in relation to the charge of SDZ are important parameters for the sorption process. The data could be described by modeling with different sorption rates and sites.
Regan, Matthew D; Brauner, Colin J
2010-06-01
The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived teleosts studied to date. This is paralleled by the initial appearance of the choroid rete in bowfin, as well as a significant decrease in Hb buffer value and an increase in Bohr/Haldane effects, together suggesting bowfin as the most basal species capable of utilizing its Root effect to maximize O(2) delivery to the eye.
Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee
2015-08-15
Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.
Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways.
Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei
2016-01-25
Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi
2015-01-01
To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition.
NASA Astrophysics Data System (ADS)
Isnawati; Trimulyono, G.
2018-01-01
Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.
Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj
2016-06-27
A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.
Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj
2016-01-01
A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4–12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100–200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R2 = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device. PMID:27355953
Degradation of bisphenol A in water by the heterogeneous photo-Fenton.
Jiang, Chuanrui; Xu, Zhencheng; Guo, Qingwei; Zhuo, Qiongfang
2014-01-01
Bisphenol A (BPA) is a kind of a controversial endocrine disruptor, and is ubiquitous in environment. The degradation of BPA with the heterogeneous photo-Fenton system was demonstrated in this study. The Fe-Y molecular sieve catalyst was prepared with the ion exchange method, and it was characterized by X-ray radiation diffraction (XRD). The effects ofpH, initial concentration of H2O2, initial BPA concentration, and irradiation intensity on the degradation of BPA were investigated. The service life and iron solubility of catalyst were also tested. XRD test shows that the major phase of the Fe-Y catalyst was Fe2O3. The method of heterogeneous photo-Fenton with Fe-Y catalyst was superior to photolysis, photo-oxidation with only hydrogen, heterogeneous Fenton, and homogeneous photo-Fenton approaches. pH value had no obvious effects on BPA degradation over the range of 2.2-7.2. The initial concentration of H2O2 had an optimal value of 20 x 10(-4) mol/L. The decrease in initial concentration of BPA was favourable for degradation. The intensity of ultraviolet irradiation has no obvious effect on the BPA removal. The stability tests indicated that the Fe-Y catalyst can be reused and iron solubility concentration ranged from NA to 0.0062 mg/L. Based on the results, the heterogeneous photo-Fenton treatment is the available method for the degradation of BPA.
Al-Shorgani, Najeeb Kaid Nasser; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul
2018-02-01
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield ( Y P / S ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.
Hydrogen production by sodium borohydride in NaOH aqueous solution
NASA Astrophysics Data System (ADS)
Wang, Q.; Zhang, L. F.; Zhao, Z. G.
2018-01-01
The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.
Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin
2009-10-01
Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.
Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate.
Deng, Yang; Englehardt, James D
2008-05-01
Municipal landfill leachate is being disallowed for biological treatment by some sewer authorities due to its recalcitrance and corrosiveness, and therefore physicochemical treatment may be needed. In this paper, hydrogen peroxide-enhanced iron (Fe(0))-mediated aeration (IMA) was studied as an alternative for the treatment of mature landfill leachate. Bench-scale Taguchi array screening tests and full factorial tests were conducted. Iron grade, initial pH, H(2)O(2) addition rate, and aeration rate significantly influenced both overall chemical oxygen demand (COD) removal and iron consumption. In the enhanced IMA-treated leachate at an initial pH of 8.2, COD was reduced by 50% due to oxidation and coagulation, a level almost equivalent to those obtained by Fenton treatment. Meanwhile, the 5-day biochemical oxygen demand (BOD(5))/COD ratio was increased from 0.02 to 0.17. In particular, the effect of initial pH became minor at H(2)O(2) addition rate greater than the theoretical demand for complete oxidation of organics by H(2)O(2). In addition, 83% of 300 mg/L ammonia nitrogen and 38% of 8.30 mS/cm electrical conductivity were removed when the initial pH was not adjusted. Based on these results, the process appears suitable for treatment of mature leachate.
Tavares, A P M; Coelho, M A Z; Agapito, M S M; Coutinho, J A P; Xavier, A M R B
2006-09-01
Experimental design and response surface methodologies were applied to optimize laccase production by Trametes versicolor in a bioreactor. The effects of three factors, initial glucose concentration (0 and 9 g/L), agitation (100 and 180 rpm), and pH (3.0 and 5.0), were evaluated to identify the significant effects and its interactions in the laccase production. The pH of the medium was found to be the most important factor, followed by initial glucose concentration and the interaction of both factors. Agitation did not seem to play an important role in laccase production, nor did the interaction agitation x medium pH and agitation x initial glucose concentration. Response surface analysis showed that an initial glucose concentration of 11 g/L and pH controlled at 5.2 were the optimal conditions for laccase production by T. versicolor. Under these conditions, the predicted value for laccase activity was >10,000 U/L, which is in good agreement with the laccase activity obtained experimentally (11,403 U/L). In addition, a mathematical model for the bioprocess was developed. It is shown that it provides a good description of the experimental profile observed, and that it is capable of predicting biomass growth based on secondary process variables.
Extraction of palm tree cellulose and its functionalization via graft copolymerization.
Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S
2014-09-01
The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.
Keawchaoon, Lalita; Yoksan, Rangrong
2011-05-01
The fabrication of carvacrol-loaded chitosan nanoparticles was achieved by a two-step method, i.e., oil-in-water emulsion and ionic gelation of chitosan with pentasodium tripolyphosphate. The obtained particles possessed encapsulation efficiency (EE) and loading capacity (LC) in the ranges of 14-31% and 3-21%, respectively, when the initial carvacrol content was 0.25-1.25 g/g of chitosan. The individual particles exhibited a spherical shape with an average diameter of 40-80 nm, and a positively charged surface with a zeta potential value of 25-29 mV. The increment of initial carvacrol content caused a reduction of surface charge. Carvacrol-loaded chitosan nanoparticles showed antimicrobial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli with an MIC of 0.257 mg/mL. The release of carvacrol from chitosan nanoparticles reached plateau level on day 30, with release amounts of 53% in acetate buffer solution with pH of 3, and 23% and 33% in phosphate buffer solutions with pH of 7 and 11, respectively. The release mechanism followed a Fickian behavior. The release rate was superior in an acidic medium to either alkaline or neutral media, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhou, Lei; Zhang, Ya; Ying, Rongrong; Wang, Guoqing; Long, Tao; Li, Jianhua; Lin, Yusuo
2017-04-01
The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO 4 ·- and provides important information for further research on the oxidation of these contaminants.
Nkurunziza, T; Nduwayezu, J B; Banadda, E N; Nhapi, I
2009-01-01
Laboratory experiments were carried out to assess the water purification and antimicrobial properties of Moringa oleifera (MO). Hence different concentrations (25 to 300 mg/L) were prepared from a salt (1 M NaCl) extract of MO fine powder and applied to natural surface water whose turbidity levels ranged from 50 to 450 NTU. The parameters determined before and after coagulation were turbidity, pH, colour, hardness, iron, manganese and Escherichia coli. The experiments showed that turbidity removal is influenced by the initial turbidity since the lowest turbidity removal of 83.2% was observed at 50 NTU, whilst the highest of 99.8% was obtained at 450 NTU. Colour removal followed the same trend as the turbidity. The pH exhibited slight variations through the coagulation. The hardness removal was very low (0 to 15%). However, high removals were achieved for iron (90.4% to 100%) and manganese (93.1% to 100%). The highest E. coli removal achieved was 96.0%. Its removal was associated with the turbidity removal. The optimum MO dosages were 150 mg/L (50 NTU and 150 NTU) and 125 mg/L for the rest of the initial turbidity values. Furthermore all the parameters determined satisfied the WHO guidelines for drinking water except for E. coli.
Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent.
Ru, Jia; Liu, Huijuan; Qu, Jiuhui; Wang, Aimin; Dai, Ruihua
2007-03-06
In this study, a novel triolein-embedded activated carbon composite adsorbent (CA-T) was prepared and applied for the adsorption and removal of dieldrin from aqueous systems. Experiments were carried out to investigate the adsorption behavior of dieldrin on CA-T, including adsorption isotherms, adsorption kinetics, the influence of initial concentration, temperature, shaking speed, pH and the addition of humic acid (HA) on adsorption. The adsorption isotherms accorded with Freundlich equation. Three kinetics models, including pseudo-first-order, pseudo-second-order and intraparticle diffusion models, were used to fit the experimental data. By comparing the correlation coefficients, it was found that both pseudo-second-order and intraparticle diffusion models were used to well describe the adsorption of dieldrin on CA-T. The addition of HA had little effect on dieldrin adsorption by CA-T. Results indicated that CA-T appeared to be a promising adsorbent for removing lipophilic dieldrin in trace amount, which was advantageous over pure granular activated carbon (GAC). The adsorption rate increased with increasing shaking speed, initial concentration and temperature, and remained almost unchanged in the pH range of 4-8. Thermodynamic calculations indicated that the adsorption reaction was spontaneous with a high affinity and the adsorption was an endothermic reaction.
Rovani, Suzimara; Censi, Monique T; Pedrotti, Sidnei L; Lima, Eder C; Cataluña, Renato; Fernandes, Andreia N
2014-04-30
A new activated carbon (AC) material was prepared by pyrolysis of a mixture of coffee grounds, eucalyptus sawdust, calcium hydroxide and soybean oil at 800°C. This material was used as adsorbent for the removal of the endocrine disruptor compounds 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solutions. The carbon material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), N2 adsorption/desorption curves and point of zero charge (pHPZC). Variables including the initial pH of the adsorbate solutions, adsorbent masses and contact time were optimized. The optimum range of initial pH for removal of endocrine disruptor compounds (EDC) was 2.0-11.0. The kinetics of adsorption were investigated using general order, pseudo first-order and pseudo-second order kinetic models. The Sips isotherm model gave the best fits of the equilibrium data (298K). The maximum amounts of E2 and EE2 removed at 298K were 7.584 (E2) and 7.883mgg(-1) (EE2) using the AC as adsorbent. The carbon adsorbent was employed in SPE (solid phase extraction) of E2 and EE2 from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.
Geethakarthi, A; Phanikumar, B R
2012-03-01
The removal of azo Reactive Red 31(RR31) from synthetic dye solution using tannery sludge-developed activated carbon (TSC) was investigated. TSC was prepared from a combination of physical and chemical activation. The developed TSC was characterized by FT-IR, SEM, TG-DTA, specific surface area and zero point charge of pH (pH(zpc)). The isotherm models, kinetic models and thermodynamic parameters were also analysed to describe the adsorptive behaviour of TSC. The effect of contact time, initial dye concentration, carbon dosage, agitation speed, initial pH and temperature were carried out for batch adsorption studies. The isotherm plot of the dye RR31 on TSC fitted better with the Langmuir adsorption isotherm than the Freundlich model. The maximum monolayer adsorption capacity of TSC in the removal of RR31 ranged from 23.15 to 39.37 mg/g. The thermodynamic parameters showed the endothermic and physical nature of the Reactive Red 31 adsorption on TSC. The entropy and enthalpy values were 181.515 J/Kmol and 5.285 kJ/mol, respectively. The developed cationic tannery sludge carbon was found to be an effective adsorbent in the removal of the anionic azo reactive dye RR31.
Magnesium incorporated bentonite clay for defluoridation of drinking water.
Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin
2010-08-15
Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water. Copyright 2010 Elsevier B.V. All rights reserved.
Oladzad, Sepideh; Fallah, Narges; Nasernejad, Bahram
2017-07-01
In the present study a combination of a novel coalescing oil water separator (COWS) and electrocoagulation (EC) technique was used for treatment of petroleum product contaminated groundwater. In the first phase, COWS was used as the primary treatment. Two different types of coalescing media and two levels of flow rates were examined in order to find the optimum conditions. The effluent of COWS was collected in optimum conditions and was treated using an EC process in the second phase of the research. In this phase, preliminary experiments were conducted in order to investigate the effect of EC reaction time and sedimentation time on chemical oxygen demand (COD) removal efficiency. Best conditions for EC reaction time and sedimentation time were obtained to be 5 min and 30 min, respectively. Response surface methodology was applied to evaluate the effect of initial pH, current density and aeration rate on settling velocity (V s ) and effluent COD. The optimum conditions, for achieving maximum values of V s as well as the values of effluent COD, in the range of results were obtained at conditions of 7, 34 mA·cm -2 and 1.5 L·min -1 for initial pH, current density and aeration rate, respectively.
Adsorption of heavy metal ions by sawdust of deciduous trees.
Bozić, D; Stanković, V; Gorgievski, M; Bogdanović, G; Kovacević, R
2009-11-15
The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g(-1) of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu(2+) ions but it is very low for Fe(2+) ions, not exceeding 10%.
Response of the Mimeae to some Physical and Chemical Agents1
Snodgrass, Charlotte J.; Koburger, J. A.
1968-01-01
Isolates of Mima polymorpha and Herellea vaginicola obtained from retail food products were investigated for their ability to hydrolyze proteins, starch, and lipids as well as for their ability to initiate growth under varying conditions of pH, sodium chloride concentration, and temperature. None of the isolates hydrolyzed starch and a few hydrolyzed proteins, whereas most were actively lipolytic. Members of each genus grew over the range 6 to 42 C; in general, H. vaginicola was more tolerant to high concentrations of sodium chloride and to acid conditions than was M. polymorpha. PMID:5726150
Code of Federal Regulations, 2011 CFR
2011-07-01
... TSS 6.97 3.32 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Rolling contact cooling... Nickel 7.24 4.79 Fluoride 225 99.6 Oil and grease 75.4 45.3 TSS 155 73.5 pH (1) (1) 1 Within the range of... 0.295 Fluoride 13.8 6.13 Oil and grease 4.64 2.79 TSS 9.51 4.53 pH (1) (1) 1 Within the range of 7.5...
Code of Federal Regulations, 2010 CFR
2010-07-01
... TSS 6.97 3.32 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Rolling contact cooling... Nickel 7.24 4.79 Fluoride 225 99.6 Oil and grease 75.4 45.3 TSS 155 73.5 pH (1) (1) 1 Within the range of... 0.295 Fluoride 13.8 6.13 Oil and grease 4.64 2.79 TSS 9.51 4.53 pH (1) (1) 1 Within the range of 7.5...
Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung
2015-01-01
The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers
DiPolo, R.
1972-01-01
Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluating nanoparticle sensor design for intracellular pH measurements.
Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L
2011-07-26
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Bazilevskaya; D Archibald; M Aryanpour
2011-12-31
Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitatesmore » were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlike at 8 mol% Al substitution.« less
A novel "modularized" optical sensor for pH monitoring in biological matrixes.
Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua
2018-06-30
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Effect of pH on lead removal from water using tree fern as the sorbent.
Ho, Yuh-Shan
2005-07-01
The sorption of lead from water onto an agricultural by-product, tree fern, was examined as a function of pH. The sorption processes were carried out using an agitated and baffled system. Pseudo-second-order kinetic analyses were performed to determine the rate constant of sorption, the equilibrium sorption capacity, and the initial sorption rate. Application of the pseudo-second-order kinetics model produced very high coefficients of determination. Results showed the efficiency of tree fern as a sorbent for lead. The optimum pH for lead removal was between 4 and 7, with pH 4.9 resulting in better lead removal. Ion exchange occurred in the initial reaction period. In addition, a relation between the change in the solution hydrogen ion concentration and equilibrium capacity was developed and is presented.
Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C
2016-02-01
Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.
Leaching of DOC, DN, and inorganic constituents from scrap tires.
Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju
2015-11-01
One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electro-oxidation and characterization of nickel foam electrode for removing boron.
Kartikaningsih, Danis; Huang, Yao-Hui; Shih, Yu-Jen
2017-01-01
The electrocoagulation (EC) using metallic Ni foam as electrodes was studied for the removal of boron from solution. The electrolytic parameters were pH (4-12), current density (0.6-2.5 mA cm -2 ), and initial concentration of boron (10-100 mg L -1 ). Experimental results revealed that removal efficiency was maximized at pH 8-9, and decreased as the pH increased beyond that range. At particular onset potentials (0.5-0.8 V vs. Hg/HgO), the micro-granular nickel oxide that was created on the surface of the nickel metal substrate depended on pH, as determined by cyclic voltammetry. Most of the crystallites of the precipitates comprised a mixed phase of β-Ni(OH) 2 , a theophrastite phase, and NiOOH, as revealed by XRD and SEM analyses. A current density of 1.25 mA cm -2 was effective in the EC of boron, and increasing the concentration of boric acid from 10 to 100 mg L -1 did not greatly impair removal efficiency. A kinetic investigation revealed that the reaction followed a pseudo-second order rate model. The optimal conditions under which 99.2% of boron was removed from treated wastewater with 10 mg L -1 -B, leaving less than 0.1 mg L -1 -B in the electrolyte, were pH 8 and 1.25 mA cm -2 for 120 min. Copyright © 2016 Elsevier Ltd. All rights reserved.
IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel P. Molloy
2002-10-15
The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P.more » fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.« less
A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution - abstract
Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...
A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution
Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...
Søndergaard, Rikke V; Henriksen, Jonas R; Andresen, Thomas L
2014-12-01
Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2-3 weeks.
Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis.
Baeza-Trinidad, R; Brea-Hernando, A; Morera-Rodriguez, S; Brito-Diaz, Y; Sanchez-Hernandez, S; El Bikri, L; Ramalle-Gomara, E; Garcia-Alvarez, J L
2015-11-01
Rhabdomyolysis (RB) is a syndrome characterised by decomposition of skeletal muscle that could be life threatening, so the identification of biomarkers of its severity could help us in its treatment. Creatine kinase (CK) is usually taken as a reference in patients with RB in order to stratify prognosis, however that is not probably the most effective parameter. The present study was designed to analyse the specific features and mortality of patients with RB and the relation between creatinine, CK and mortality. Retrospective cohort analysis among patients admitted to San Pedro Hospital in Logroño (Spain) with RB (CK levels higher than 2000 U/L) diagnosed since 1 January 2009 until 31 December 2; 013 522 patients with RB patients diagnosed of RB were collected. The aetiology and the analytical feature (creatinine, CK, calcium, phosphorus, pH and bicarbonate), as well as 30-year mortality, were investigated. Among the 522 patients, there were 138 deaths. Four patients required renal replacement therapy. The most common cause of RB was trauma (29%). Infectious aetiology had the highest mortality (41.2%). The median CK was 3451 u/L (interquartile range 3348), and the mean creatinine at admission was 132.6 umol/L (±110.5). Initial CK levels do not have predictive ability on mortality or renal dysfunction in contrast to initial creatinine values. Each state of acute kidney injury (AKI) increased mortality compared with those who have not presented this renal dysfunction (P < 0.0001). Age, calcium, phosphorus, bicarbonate and pH are associated with AKI. Despite being a diagnostic marker for RB, initial CK levels do not predict mortality. However, creatinine initial levels are related to progression to acute renal injury and mortality at 30 days. © 2015 Royal Australasian College of Physicians.
Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation.
Lin, Justin Chun-Te; de Luna, Mark Daniel G; Aranzamendez, Graziel L; Lu, Ming-Chun
2016-07-01
Acetaminophen (ACT) is a mild analgesic commonly used for relief of fever, headache and some minor pains. It had been detected in both fixed factory-discharged wastewaters, and diverse sources, e.g. surface waters during festival events. Degradation of such trace emergent pollutants by titanium dioxide (TiO2) photocatalysts is a common approach; however, the band gap that can be utilized in the UV range is limited. In order to extend downward the energy required to excite the photocatalytic material, doping with potassium peroxodisulfate (K2S2O8) by a sol-gel method was done in this work. The visible-light active photocatalyst was tested on the degradation of ACT under four parameters including: initial ACT concentration, catalyst dose, initial pH, and system temperature. Optimal conditions, which achieved 100% ACT degradation, were obtained by using 0.1 mM ACT initial concentration, catalyst dose of 1 g L(-1), initial pH of 9.0 and system temperature of 22 °C at the end of 9-h irradiation. Meanwhile, three types of degradation kinetic models (i.e. zero, pseudo first and second order) were tested. The feasible model followed a pseudo-first order model with the computed constant (kapp) of 7.29 × 10(-3) min(-1). The present study provides a better photocatalytic degradation route by K2S2O8-modified TiO2 in comparison with pristine TiO2, in wastewater treatment dealing with ACT and other persistent organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bradley, J S; Phillips, J O; Cavanaugh, J E; Metzler, M H
1998-11-01
To evaluate the clinical utility of measuring gastric pH with a pH meter vs. pH paper in critical care patients. Prospective comparison of gastric pH measurements, using both pH meter and pH paper. Surgical intensive care unit (ICU) at a rural Midwestern university medical center. Fifty-one patients who received therapy for prophylaxis of stress ulcers in the surgical ICU. Therapy for stress ulcer prophylaxis was monitored. The pH of 985 gastric samples, taken from 51 patients, was measured with both pH meter and pH paper. The pH meter and pH paper measures demonstrated a concordance correlation coefficient of .896. The mean difference between the two measures (pH paper - pH meter) was estimated to be between -0.4 and 1.4, suggesting a positive bias for the paper. The prevalence of events representing clinically relevant differences between the pH meter and pH paper in the measurement of the same gastric sample was calculated. The frequency with which each of the events occurred consecutively (or, in one case, two nearly consecutive events on the same day) was also calculated. Bias in a clinically relevant range was estimated. A set of "probability profiles" was constructed. A hand-held pH meter and pH paper are not interchangeable measures of gastric pH. The pH paper exhibits an appreciable positive bias compared with a hand-held pH meter in the clinically relevant range of 2 to 6. More research is needed to determine if that bias affects treatment outcomes. We recommend the use of a pH meter for patients who demonstrate pH readings of < or = 4, consecutive with readings of < or = 5.
Gatsios, Evangelos; Hahladakis, John N; Gidarakos, Evangelos
2015-05-01
In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.
2018-01-01
The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.
Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan
2013-06-26
We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.
Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment
NASA Astrophysics Data System (ADS)
Lengke, Maggy F.; Tempel, Regina N.
2005-01-01
Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.
Complexation Key to a pH Locked Redox Reaction
ERIC Educational Resources Information Center
Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman
2016-01-01
An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…
Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.
1998-01-01
The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.
Great Salt Lake Composition and Rare Earth Speciation Analysis
Jiao, Yongqin; Lammers, Laura; Brewer, Aaron
2017-04-19
We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.
pH-dependent structures and properties of casein micelles.
Liu, Yan; Guo, Rong
2008-08-01
The association behavior of casein over a broad pH range has first been investigated by fluorescent technique together with DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH ranges 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are the main interactions in the formation of casein micelles. The results show that the structure of casein micelles is more compact at low pH and looser at high pH. The casein micelle has the most compact structure at pH 5.5, when it has almost no electrostatic repulsion between casein molecules.
Acid precipitation effects on soil pH and base saturation of exchange sites
W. W. McFee; J. M. Kelly; R. H. Beck
1976-01-01
The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...
NASA Astrophysics Data System (ADS)
Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.
1995-09-01
The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.
NASA Astrophysics Data System (ADS)
Markovic, Bojan; Vladimirov, Sote; Cudina, Olivera; Savic, Vladimir; Karljikovic-Rajic, Katarina
2010-02-01
A novel topical corticosteroid FA-21-PhP, 2-phenoxypropionate ester of fluocinolone acetonide, has been synthesized in order to investigate the possibility of decreasing systemic side effects. In this study model system for in vitro solvolytic reaction of FA-21-PhP has been analyzed in ethanol/water (90:10, v/v) with excess of sodium hydrogen carbonate. The selected conditions have been used as in vitro model for activation of corticosteroid C-21 ester prodrug. The second-order derivative spectrophotometric method (DS) using zero-crossing technique was developed for monitoring ternary mixture of solvolysis. Fluocinolone acetonide (FA) as a solvolyte was determined in the mixture in the concentration range 0.062-0.312 mM using amplitude 2D 274.96. Experimentally determined LOD value was 0.0295 mM. The accuracy of proposed DS method was confirmed with HPLC referent method. Peak area of parent ester FA-21-PhP was used for solvolysis monitoring to ensure the initial stage of changes. Linear relationship in HPLC assay for parent ester was obtained in the concentration range 0.054-0.54 mM, with experimentally determined LOD value of 0.0041 mM. Investigated solvolytic reaction in the presence of excess of NaHCO 3 proceeded via a pseudo-first-order kinetic with significant correlation coefficients 0.9891 and 0.9997 for DS and HPLC, respectively. The values of solvolysis rate constant calculated according to DS and HPLC methods are in good accordance 0.038 and 0.043 h -1, respectively.
Ahmed, Samia A; Mostafa, Faten A; Ouis, Mona A
2018-06-01
α-Amylase enzyme was immobilized on bioactive phospho-silicate glass (PS-glass) as a novel inorganic support by physical adsorption and covalent binding methods using glutaraldehyde and poly glutaraldehyde as a spacer. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) studies confirmed the glass-enzyme linkage. Dissolution of PS-glass in acidic and neutral pH is higher than that of alkaline pH. Some immobilization variables were optimized using statistical factorial design (Central Composite Design). Optimized immobilization variables enhanced the immobilization yield (IY) from 27.9 to 79.9% (2.9-fold). It was found that the immobilized enzyme had higher optimum temperature, higher half-life time (t 1/2 ), lower activation energy (E a ), lower deactivation constant rate (k d ) and higher decimal reduction time (D-values) within the temperature range of 40-60°C. Differential scanning calorimetry analysis (DSC) confirmed the thermalstability of the immobilized enzyme. The immobilized enzyme was stable at a wide pH range (5.0-8.0). Kinetic studies of starch hydrolysis demonstrated that immobilized enzyme had lower Michaelis constant (K m ), maximum velocity (V max ) and catalytic efficiency (V max /K m ) values. The storage stability and reusability of the immobilized enzyme were found to be about 74.7 and 62.5% of its initial activity after 28days and 11cycles, respectively. Enhanced α-amylase stabilities upon immobilization make it suitable for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.
Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash
NASA Astrophysics Data System (ADS)
Kuntari, Priwidyanjati, Dessyntha Anggiani
2017-12-01
Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.
Disinfection byproduct yields from the chlorination of natural waters
Rathbun, R.E.
1996-01-01
Yields for the formation of trihalomethane and nonpurgeable total organic-halide disinfection byproducts were determined as a function of pH and initial free-chlorine concentration for the chlorination of water from the Mississippi, Missouri, and Ohio Rivers. Samples were collected at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans. LA, and on the Missouri and Ohio Rivers 1.6 km above their confluences with the Mississippi during the summer, fall, and spring seasons of the year. Yields varied little with distance along the Mississippi River, although the dissolved organic-carbon concentration decreased considerably with distance downstream. Yields for the Missouri and Ohio were comparable to yields for the Mississippi, despite much higher bromide concentrations for the Missouri and Ohio. Trihalomethane yields increased as the pH and initial free- chlorine concentration increased. Nonpurgeable total organic-halide yields also increased as the initial free-chlorine concentration increased, but decreased as the pH increased.
Impact of preacidification of milk and fermentation time on the properties of yogurt.
Peng, Y; Horne, D S; Lucey, J A
2009-07-01
Casein interactions play an important role in the textural properties of yogurt. The objective of this study was to investigate how the concentration of insoluble calcium phosphate (CCP) that is associated with casein particles and the length of fermentation time influence properties of yogurt gels. A central composite experimental design was used. The initial milk pH was varied by preacidification with glucono-delta-lactone (GDL), and fermentation time (time to reach pH 4.6 from the initial pH) was altered by varying the inoculum level. We hypothesized that by varying the initial milk pH value, the amount of CCP would be modified and that by varying the length of the fermentation time we would influence the rate and extent of solubilization of CCP during any subsequent gelation process. We believe that both of these factors could influence casein interactions and thereby alter gel properties. Milks were preacidified to pH values from 6.55 to 5.65 at 40 degrees C using GDL and equilibrated for 4 h before inoculation. Fermentation time was varied from 250 to 500 min by adding various amounts of culture at 40 degrees C. Gelation properties were monitored using dynamic oscillatory rheology, and microstructure was studied using fluorescence microscopy. Whey separation and permeability were analyzed at pH 4.6. The preacidification pH value significantly affected the solubilization of CCP. Storage modulus values at pH 4.6 were positively influenced by the preacidification pH value and negatively affected by fermentation time. The value for the loss tangent maximum during gelation was positively affected by the preacidification pH value. Fermentation time positively affected whey separation and significantly influenced the rate of CCP dissolution during fermentation, as CCP dissolution was a slow process. Longer fermentation times resulted in greater loss of CCP at the pH of gelation. At the end of fermentation (pH approximately 4.6), virtually all CCP was dissolved. Preacidification of milk increased the solubilization of CCP, increased the early loss of CCP crosslinks, and produced weak gels. Long fermentation times allowed more time for solubilization of CCP during the critical gelation stage of the process and increased the possibility of greater casein rearrangements; both could have contributed to the increase in whey separation.
Competitive Adsorption and Oxidation Behavior of Heavy Metals on nZVI Coated with TEOS.
Eglal, Mahmoud M; Ramamurthy, Amruthur S
2015-11-01
Zero valent iron nanoparticle (nanofer ZVI) is a powerful substance due to its coating with tetraethyl orthosilicate (TEOS). Tetraethyl orthosilicate imparts higher reactivity and decreases particle agglomeration. The competitive removal and displacement of multi-metals are influenced by time, pH, and initial concentration, the presence and properties of competing metals ion in the solution. For both the isotherm and kinetic studies performed for multi-metal removal experiments, compared to Pb II and Cd II, Cu II experienced a higher removal rate during the initial 5 minutes. After 120 minutes, all metals achieved removal efficiency in the range of 95 to 99%. The results of single and competitive kinetic tests for all three metals during the initial 5 minutes indicated that the presence of other metals generally reduce removal efficiency of metals. Both kinetic test and electron dispersive spectroscope (EDS) studies found that Cu II gets removed faster than the other metals. Pseudo-second order behavior was noted for the multi-metal removal systems.
Gas generation behavior of transuranic waste under disposal conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujisawa, Ryutaro; Kurashige, Tetsunari; Inagaki, Yusuke
1999-07-01
The generation of hydrogen-gas from metallic waste is an important issue for the safety analysis of geological disposal facilities for transuranic (TRU) radioactive waste in Japan. The objective of this study is to clarify the gas-generation behavior of stainless steel and carbon steel in non-oxidizing alkaline synthetic groundwater (pH 12.8 and 10.5) at 30 C simulating geological disposal environments. At pH 12.8, the observed gas-generation rate from stainless steel in the initial period of immersion was 1.0 x 10{sup 2} Nml/m{sup 2}/y and 1.0 x 10 Nml/m{sup 2}/y after 200 days (N represents the standard state of gas at 0more » C and 1 atm). At pH 10.5, gas generation was not observed for 60 days in the initial period. At 60 days, the gas-generation observed was 5.0 x 10 NMl/m{sup 2}/y. After 250 days, the gas-generation rate approaches zero. At pH 12.8, the observed gas generation rate of carbon steel in the initial period of immersion was 1.5 x 10{sup 2} Nml/m{sup 2}/y and the gas generation rate began to decrease after 200 days. After 300 days, it was 25 Nml/m{sup 2}/y. At pH 10.5, the gas generation rate in the initial period was 5.0 x 10{sup 2} Nml/m{sup 2}/y and was 1.0 x 10 Nml/m{sup 2}/y after 200 days.« less
Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP).
Dutta, Susmita; Bhattacharyya, Aparupa; De, Parameswar; Ray, Parthasarathi; Basu, Srabanti
2009-12-30
In the present work mercury has been eradicated from its aqueous solution using papain, immobilized on activated charcoal by physical adsorption method. Operating parameters for adsorption of papain on activated charcoal like pH, amount of activated charcoal, initial concentration of papain in solution have been varied in a suitable manner for standardization of operating conditions for obtaining the best immobilized papain sample based on their specific enzymatic activity. The immobilized papain sample obtained at initial papain concentration 40.0 g/L, activated charcoal amount 0.5 g and pH 7 shows the best specific enzymatic activity. This sample has been designated as charcoal-immobilized papain (CIP) and used for further studies of mercury removal. Adsorption equilibrium data fit most satisfactorily with the Langmuir isotherm model for adsorption of papain on activated charcoal. Physicochemical characterization of CIP has been done. The removal of mercury from its simulated solution of mercuric chloride using CIP has been studied in a lab-scale batch contactor. The operating parameters viz., the initial concentration of mercury in solution, amount of CIP and pH have been varied in a prescribed manner. Maximum removal achieved in the batch study was about 99.4% at pH 7, when initial metal concentration and weight of CIP were 20.0mg/L and 0.03 g respectively. Finally, the study of desorption of mercury has been performed at different pH values for assessment of recovery process of mercury. The results thus obtained have been found to be satisfactory.
Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.
Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil
2017-04-01
In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.
Wasmuth, Claus; Rüdel, Heinz; Düring, Rolf-Alexander; Klawonn, Thorsten
2016-02-01
The OECD guidance document No. 29 was designed to determine the rate and extend to which metals can produce soluble available ionic metal species. This transformation/dissolution protocol was applied to silver nanomaterials. The results prove that concentrations of released Ag(+) at pH 8 were nearly similar at all three different loadings. At pH 6, the concentration of Ag(+) was almost the same at loadings of 10 and 100 mg L(-1) AgNPs. However, the study showed changes in concentrations of nanoparticles and aggregates (operationally defined as the fraction passing a 0.2 µm filter). At the higher pH both the concentrations in the test medium of Ag(+) and of AgNPs (fraction < 0.2 µm) decreased. After 7 days of test duration, 71 µg L(-1) of Ag(+) was found in pH 6 medium (initial loading of 100 mg L(-1)). In pH 8 medium a maximum concentration of 29 µg L(-1) Ag(+) was measured (initial loading of 10 mg L(-1)). The maximum transformation from AgNPs to Ag(+) was 2.7% (27 µg L(-1)) in pH 8 medium (loading of 1 mg L(-1)) after 7 days. At an initial loading of 100 mg L(-1) AgNPs in medium at pH 8, only 0.03% (30 µg L(-1)) were transformed to Ag(+) after 7 days. At the loading of 1 mg L(-1) AgNPs all silver concentrations remain relatively constant for the duration of the test after 7 until 28 days. The results reveal that only low concentrations of Ag(+) are released from AgNPs under the applied conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001
Fisher, Lawrence H.; Wood, Tamara M.
2004-01-01
Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.
Selenium(IV) and (VI) sorption by soils surrounding fly ash management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, S.; Burns, P.E.; Murarka, I.
2006-11-15
Leachate derived from unlined coal ash disposal facilities is one of the most significant anthropogenic sources of selenium to the environment. To establish a practical framework for predicting transport of selenium in ash leachate, sorption of Se(IV) and Se(VI) from 1 mM CaSO{sub 4} was measured for 18 soils obtained down-gradient from three ash landfill sites and evaluated with respect to several soil properties. Furthermore, soil attenuation from lab-generated ash leachate and the effect of Ca{sup 2+} and SO{sub 4}{sup 2-} concentrations as well as pH on both Se(IV) and Se(VI) was quantified for a subset of soils. For bothmore » Se(IV) and Se(VI), pH combined with either percentage clay or dithionite-citrate-bicarbonate (DCB)-extractable Fe described {gt} 80% of the differences in sorption across all soils, yielding an easy approach for making initial predictions regarding site-specific selenium transport to sensitive water bodies. Se(IV) consistently exhibited an order of magnitude greater sorption than Se(VI). Selenium sorption was highest at lower pH values, with Se(IV) sorption decreasing at pH values above 6, whereas Se(VI) decreased over the entire pH range (2.5-10). Using these pH adsorption envelopes, the likely effect of ash leachate-induced changes in soil pore water pH with time on selenium attenuation by down gradient soils can be predicted. Selenium sorption increased with increasing Ca{sup 2+} concentrations while SO{sub 4}2- suppressed sorption well above enhancements by Ca{sup 2+}. Soil attenuation of selenium from ash leachates agreed well with sorption measured from 1 mM CaSO{sub 4}, indicating that 1 mM CaSO{sub 4} is a reasonable synthetic leachate for assessing selenium behavior at ash landfill sites.« less
Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.
Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng
2014-02-01
Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.
Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach
NASA Astrophysics Data System (ADS)
Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar
2013-12-01
Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.
Moosavi, Fatemeh Sadat; Tavakoli, Touraj
2016-11-01
In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.
Gilbertson, Heather Ruth; Rogers, Elizabeth Jessie; Ukoumunne, Obioha Chukwunyere
2011-07-01
Enteral feeding is a common method of nutrition support when oral intake is inadequate. Confirmation of correct nasogastric (NG) tube placement is essential. Risks of morbidity/mortality associated with misplacement in the lung are well documented. Studies indicate that pH ≤ 4 confirms gastric aspirate, but in pediatrics, a pH of gastric aspirate is often >4. The goal of this study was to determine a reliable and practical pH value to confirm NG tube placement, without increasing the risk of not identifying a misplaced NG tube. Pediatric inpatients older than 4 weeks receiving enteral nutrition (nasogastric or gastrostomy) were recruited over 9 months. Aspirate samples were pH tested at NG tube placement and before feedings. If pH >4, NG tube position was confirmed by chest radiograph or further investigations. In addition, intensive care unit (ICU) patients who required endotracheal suctioning were recruited, and endotracheal aspirate samples were pH tested. A total of 4,330 gastric aspirate samples (96% nasogastric) were collected from 645 patients with a median (interquartile range [IQR]) age of 1.0 years (0.3-5.2 years). The mean (standard deviation [SD]) pH of these gastric samples was 3.6 (1.4) (range, 0-9). pH was >4 in 1,339 (30.9%) gastric aspirate samples, and of these, 244 were radiographed, which identified 10 misplaced tubes (1 with pH 5.5). A total of 65 endotracheal aspirate samples were collected from 19 ICU patients with a median (IQR) age of 0.6 years (0.4-5.2 years). The mean (SD) pH of these samples was 8.4 (0.8) (range, 6-9.5). Given that the lowest pH value of endotracheal aspirate sample was 6, and a misplaced NG tube was identified with pH 5.5, it is proposed that a gastric aspirate pH ≤ 5 is a safer, reliable, and practical cutoff in this population.
Novakovic, Katarina; Grosjean, Christophe; Scott, Stephen K; Whiting, Andrew; Willis, Mark J; Wright, Allen R
2008-02-07
This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.
A novel acidic pH fluorescent probe based on a benzothiazole derivative
NASA Astrophysics Data System (ADS)
Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi
2017-04-01
A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.
Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.
Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C
2008-05-12
Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.
Xie, Zhen-Ni; Mei, Lei; Hu, Kong-Qiu; Xia, Liang-Shu; Chai, Zhi-Fang; Shi, Wei-Qun
2017-03-20
A mixed-ligand system provides an alternative route to tune the structures and properties of metal-organic compounds by introducing functional organic or inorganic coligands. In this work, five new uranyl-based polyrotaxane compounds incorporating a sulfate or oxalate coligand have been hydrothermally synthesized via a mixed-ligand method. Based on C6BPCA@CB6 (C6BPCA = 1,1'-(hexane-1,6-diyl)bis(4-(carbonyl)pyridin-1-ium), CB6 = cucurbit[6]uril) ligand, UPS1 (UO 2 (L) 0.5 (SO 4 )(H 2 O)·2H 2 O, L = C6BPCA@CB6) is formed by the alteration of initial aqueous solution pH to a higher acidity. The resulting 2D uranyl polyrotaxane sheet structure of UPS1 is based on uranyl-sulfate ribbons connected by the C6BPCA@CB6 pseudorotaxane linkers. By using oxalate ligand instead of sulfate, four oxalate-containing uranyl polyrotaxane compounds, UPO1-UPO4, have been acquired by tuning reaction pH and ligand concentration: UPO1 (UO 2 (L) 0.5 (C 2 O 4 ) 0.5 (NO 3 )·3H 2 O) in one-dimensional chain was obtained at a low pH value range (1.47-1.89) and UPO2 (UO 2 (L)(C 2 O 4 )(H 2 O)·7H 2 O)obtained at a higher pH value range (4.31-7.21). By lowering the amount of oxalate, another two uranyl polyrotaxane network UPO3 ((UO 2 ) 2 (L) 0.5 (C 2 O 4 ) 2 (H 2 O)) and UPO4 ((UO 2 ) 2 O(OH)(L) 0.5 (C 2 O 4 ) 0.5 (H 2 O)) could be acquired at a low pH value of 1.98 and a higher pH value over 6, respectively. The UPO1-UPO4 compounds, which display structural diversity via pH-dependent competitive effect of oxalate, represent the first series of mixed-ligand uranyl polyrotaxanes with organic ligand as the coligand. Moreover, the self-assembly process and its internal mechanism concerning pH-dependent competitive effect and other related factors such as concentration of the reagents and coordination behaviors of the coligands were discussed in detail.
Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.
Eagling, Jane; Worsfold, Paul J; Blake, William H; Keith-Roach, Miranda J
2013-08-01
There is concern that sea level rise associated with projected climate change will lead to the inundation, flooding and erosion of soils and sediments contaminated with radionuclides at coastal nuclear sites, such as Dounreay (UK), with seawater. Here batch and column experiments were designed to simulate these scenarios and sequential extractions were used to identify the key radionuclide solid phase associations. Strontium was exchangeable and was mobilised rapidly by ion exchange with seawater Mg(2+) in both batch and column experiments. In contrast, U was more strongly bound to the sediments and mobilisation was initially limited by the influence of the sediment on the pH of the water. Release was only observed when the pH increased above 6.9, suggesting that the formation of soluble U(VI)-carbonate species was important. Under dynamic flow conditions, long term release was significant (47%), but controlled by slow desorption kinetics from a range of binding sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Robach, M C
1979-01-01
The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present. PMID:44445
Robach, M C
1979-11-01
The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present.
Yuan Yj, Ying-jin; Wang Sh, Shu-hao; Song Zx, Zheng-xiao; Gao Rc, Rui-chang
2002-04-01
The conditions for immobilization of an l-aminoacylase-producing strain of Aspergillus oryzae in gelatin and the enzymic characteristics of the immobilized pellets were studied. The optimal concentrations of gelatin, glutaraldehyde and ethyldiamine and time of immobilization were determined. Scanning electron micrographs reveal the cross-linked structure differences between the native and immobilized pellets. Optimum pH and temperature of the native and immobilized pellets were determined. Effects of ionic strength and substrate concentration on relative activity of the native and immobilized pellets were investigated in detail. The immobilized pellets were more stable over broader temperature and pH ranges. In addition, the immobilized pellets showed stable activity under operational and storage conditions. The immobilized pellets lost about 20% of their initial activity after five cycles of reuse. The results reported in this paper show the potential for using the immobilized A. oryzae pellets to resolve d,l-methionine.
Treatment of waste water by coagulation and flocculation using biomaterials
NASA Astrophysics Data System (ADS)
Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh
2017-11-01
The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.
Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.
Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar
2015-03-01
Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.
Nickel adsorption on chalk and calcite.
Belova, D A; Lakshtanov, L Z; Carneiro, J F; Stipp, S L S
2014-12-01
Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite and chalk and pH ranging from 7.7 to 8.8, explored the influence of initial concentration and the amount and type of sorbent on Ni uptake. Adsorption increases with increased surface area and pH. A surface complexation model describes the data well. Stability constants for the Ni surface complex are log KNi=-1.12 on calcite and log KNi=-0.43 and -0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts of polysaccharides and clay nanoparticles on the chalk surface. Copyright © 2014 Elsevier B.V. All rights reserved.
Booth, Natha J.; Beekman, Judith B.; Thune, Ronald L.
2009-01-01
Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome. PMID:19749068
Kim, Jeong-Min; Jin, Bong-Soo; Koo, Hoe-Jin; Choi, Jae-Man; Kim, Hyun-Soo
2013-05-01
The Li[Ni0.7Co0.1Mn0.2]O2 cathode material synthesized using a co-precipitation method was investigated as a function of various pH level in terms of its microstructure and electrochemical properties. From the XRD pattern analysis, the Li[Ni0.7Co0.1Mn0.2]O2 cathode material prepared in this study are found to well coincide with typically hexagonal alpha-NaFeO2 structure. The primary particle size was about 100-300 nm at all compositions while secondary particle size increased as pH level increased from 10.34 microm (pH 10.3) to 14 microm (pH 12.5). The initial discharge capacity increased up to 165 mAh/g (0.1 C) at pH 11, and then decreased down to 144 mAh/g with further increasing pH level. The capacity retention of the cathode (pH 11) showed 90% at 0.2 C and 15% at 5 C respectively compared with the discharge capacity at 0.1 C. The capacity retention of the cathode (pH 10.3) performed 94% of the initial capacity after 22 cycles at 0.5 C charge/discharge test. Therefore, it is thought to be that pH 10.3 is optimized condition of the Li[Ni0.7Co0.1Mn0.2]O2 cathode material in this study because pH 10.3 shows better cycle performance than other conditions.
Arvaniti, Olga S; Andersen, Henrik R; Thomaidis, Nikolaos S; Stasinakis, Athanasios S
2014-09-01
The distribution coefficient (Kd) and the organic carbon distribution coefficient (KOC) were determined for four Perfluorinated Compounds (PFCs) to three different types of sludge taken from a conventional Sewage Treatment Plant (STP). Batch experiments were performed in six different environmental relevant concentrations (200ngL(-1)to 5μgL(-1)) containing 1gL(-1) sludge. Kd values ranged from 330 to 6015, 329 to 17432 and 162 to 11770Lkg(-1) for primary, secondary and digested sludge, respectively. The effects of solution's pH, ionic strength and cation types on PFCs sorption were also evaluated. Sorption capacities of PFCs significantly decreased with increased pH values from 6 to 8. Furthermore, the divalent cation (Ca(2+)) enhanced PFCs sorption to a higher degree in comparison with the monovalent cation (Na(+)) at the same ionic strength. The obtained Kd values were applied to estimate the sorbed fractions of each PFC in different stages of a typical STP and to calculate their removal through treated wastewater and sludge. In primary settling tank, the predicted sorbed fractions ranged from 3% for Perfluorooctanoic Acid (PFOA) to 55% for Perfluoroundecanoic acid (PFUdA), while in activated sludge tank and anaerobic digester sorption was more than 50% for all target compounds. Almost 86% of initial PFOA load is expected to be detected in treated wastewater; while Perfluorodecanoic acid (PFDA), PFUdA and Perfluorooctanesulfonate (PFOS) can be significantly removed (>49%) via sorption to primary and excess secondary sludge. In anaerobic digester, the major part (>76%) of target PFCs is expected to be sorbed to sludge, while almost 3% of initial PFOA load will be detected in sludge leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.
High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs
NASA Astrophysics Data System (ADS)
Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao
2016-11-01
The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.
40 CFR 421.264 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Ammonia (as N) 599.900 263.700 Total suspended solids 67.500 54.000 pH (1) (1) 1 Within the range of 7.5....269 Combined metals 0.192 Ammonia (as N) 85.310 37.500 Total suspended solids 9.600 7.680 pH (1) (1) 1....000 12.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Spent cyanide stripping...
40 CFR 421.74 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... bullion produced Lead 4.340 2.015 Zinc 15.810 6.510 Total suspended solids 232.500 186.000 pH (1) (1... solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all times. (b) Subpart G—Blast Furnace... Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all...
40 CFR 421.74 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bullion produced Lead 4.340 2.015 Zinc 15.810 6.510 Total suspended solids 232.500 186.000 pH (1) (1... solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all times. (b) Subpart G—Blast Furnace... Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all...
Meet EPA Biologist Laura Jackson, Ph.D.
Research Biologist Laura Jackson, Ph.D., has worked for the EPA for 22 years, leading research initiatives in a diversity of disciplines, including environmental monitoring, land use planning, and the impacts that urbanization has on an area's ecology
Lin, Chi-Chang; Yang, Ming-Chien
2003-05-01
The surface of polyacrylonitrile hollow fibers was hydrolyzed and covalently bonded with urease via glutaraldehyde. Immobilized urease retained higher relative activity than native urease when storing at various pHs. The stabilities of immobilized urease to pH were higher than those of native enzyme. Immobilized urease retained 86% of initial activity after reusing 15 times at pH 7. After storing for 42d at 4 degrees C and pH 7, the immobilized urease can hydrolyze 15% of initial concentration of urea at pH 7 and 37 degrees C after 4h, while native urease lost almost its catalytic ability. The removal of urea using urease-immobilized dialyzer was demonstrated with in vitro dialysis and showed faster removing rate of urea than a regular dialyzer by 2 times. Furthermore, the improvement in the urea clearance by the urease immobilization to a dialyzer increased with the dialysate velocity.
Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A
2014-06-01
The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated. Copyright © 2014. Published by Elsevier Ltd.
Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.
Turner, Benjamin L
2010-10-01
Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.
The Early Development of Electronic pH Meters
ERIC Educational Resources Information Center
Hines, Wallis G.; de Levie, Robert
2010-01-01
A 19-year-old undergraduate at the University of Chicago, Kenneth Goode, in 1921 came up with the idea of an electronic pH meter, worked out some of its initial problems, and set in motion an international scientific effort that culminated in the current, wide availability of electronic pH meters. Except for the replacement of vacuum tubes by…
Wu, Xinlan; Kong, Fansheng; Huang, Minghui; Yu, Shujuan
2015-10-01
The objective of the present study was to detail the change of 4(5)-Methylimidazole (4-MI) in sulfite and sulfate reactions with different initial pH values. Glucose/ammonium sulfate and glucose/ammonium sulfite reaction systems with initial pH conditions 4.9, 5.9, 6.9, 8.0 and 8.6, were heated at 100°C for 2h, respectively. Higher concentration of methylglyoxal (MGO) and 4-MI was detected in thermal treated glucose/ammonium sulfite reaction system than that in sulfate system. The SO 3 2- reacting with MGO and other precursors of 4-MI at higher pH conditions prevented 4-MI formation. However, no inhibition of 4-MI was found at lower pH conditions due to higher reactivity of the nucleophilic NH 4 + than SO 3 2- . The browning intensity of the sulfite system changed scarcely at higher pH values, which was possibly caused by the polyreaction between SO 3 2- and carbonyl, instead of the intermolecular polymerisation of carbonyl in the advanced stage of the Maillard reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bio sorption of strontium from aqueous solution by New Strain Bacillus sp. GTG-83
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Ghafourian, H.
Attempt was made to isolate bacterial strains capable of removing Sr biologically. In this study we collected ten different water samples from naturally radioactive spring Neydasht in Iran and bacterial strains samples isolated. Initial screening of a total of 50 bacterial isolates resulted in selection of one strain. The strain showed maximum adsorption capacity with 55 mg Sr/g dry wt. It was tentatively identified as Bacillus sp. according to morphological and biochemical properties and called strain GTG-83. Studies indicated that Bacillus sp. GTG-83 was able to grow aerobically in the presence of 50 mM SrCl{sub 2} but showed severe growthmore » inhibition at levels above that concentration. The bio-sorption capacity of Bacillus sp. GTG-83 strongly depends on solution pH, and the maximum Sr sorption capacity of Bacillus sp. GTG-83 were obtained at pH 10 independent of the absence or the presence of increasing concentrations of salt (MgCl{sub 2}). Sr-salt bio-sorption studies were also performed at this pH values. Equilibrium uptakes of Sr increased with increasing Sr concentrations up to 250 mg/l for Bacillus sp. GTG-83. Maximum bio-sorption of Sr was obtained at temperatures in the range of 30-35 deg. C. Bacillus sp. GTG-83 bio-sorbed 97 mg Sr/g dry wt at 100 mg/l initial Sr concentration without salt medium (MgCl{sub 2}). When salt concentration (MgCl{sub 2}) increased to 15% (w/v), these values dropped to 23.6 mg Sr/g dry wt at the same conditions. Uptake of Sr within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter. (authors)« less
Effects of pH during liquid storage of goat semen on sperm viability and fertilizing potential.
Liu, Chang-He; Dong, Hai-Bo; Ma, Dong-Li; Li, You-Wei; Han, Dong; Luo, Ming-Jiu; Chang, Zhong-Le; Tan, Jing-He
2016-01-01
A specific problem in goat semen preservation is the detrimental effect of seminal plasma on sperm viability in extenders containing yolk or milk. Thus, the use of chemically defined extenders will have obvious advantages. Although previous studies indicate that the initial pH of an extender is crucial to sustain high sperm motility, changes in extender pH during long-term semen storage have not been observed. Monitoring extender pH at different times of semen storage and modeling its variation according to nonlinear models is thus important for protocol optimization for long-term liquid semen preservation. The present results showed that during long-term liquid storage of goat semen, both sperm motility and semen pH decreased gradually, and a strong correlation was observed between the two. Whereas increasing the initial extender pH from 6.04 to 6.25 or storage with stabilized pH improved, storage with artificially lowered pH impaired sperm motility. Extender renewal improved sperm motility by maintaining a stable pH. Sperm coating with chicken (Gallus gallus) egg yolk improved motility by increasing tolerance to pH decline. A new extender (n-mZAP) with a higher buffering capacity was formulated, and n-mZAP maintained higher sperm motility, membrane integrity and acrosome intactness than the currently used mZAP extender did. Goat semen liquid-stored for 12 d in n-mZAP produced pregnancy and kidding rates similar to those obtained with freshly collected semen following artificial insemination. In conclusion, maintenance of a stable pH during liquid semen storage dramatically improved sperm viability and fertilizing potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307
Li, Taotao; Wu, Qixian; Wang, Yong; John, Afiya; Qu, Hongxia; Gong, Liang; Duan, Xuewu; Zhu, Hong; Yun, Ze; Jiang, Yueming
2017-01-01
Fusarium proliferatum is an important pathogen and causes a great economic loss to fruit industry. Environmental pH-value plays a regulatory role in fungi pathogenicity, however, the mechanism needs further exploration. In this study, F. proliferatum was cultured under two initial pH conditions of 5 and 10. No obvious difference was observed in the growth rate of F. proliferatum between two pH-values. F. proliferatum cultured under both pH conditions infected banana fruit successfully, and smaller lesion diameter was presented on banana fruit inoculated with pH 10-cultured fungi. Proteomic approach based on two-dimensional electrophoresis (2-DE) was used to investigate the changes in secretome of this fungus between pH 5 and 10. A total of 39 differential spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Compared to pH 5 condition, proteins related to cell wall degrading enzymes (CWDEs) and proteolysis were significantly down-regulated at pH 10, while proteins related to oxidation-reduction process and transport were significantly up-regulated under pH 10 condition. Our results suggested that the downregulation of CWDEs and other virulence proteins in the pH 10-cultured F. proliferatum severely decreased its pathogenicity, compared to pH 5-cultured fungi. However, the alkaline environment did not cause a complete loss of the pathogenic ability of F. proliferatum , probably due to the upregulation of the oxidation-reduction related proteins at pH 10, which may partially compensate its pathogenic ability.
The leaching characteristics of selenium from coal fly ashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Wang, J.; Burken, J.G.
2007-11-15
The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less
Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Tsang, Daniel C W; Qiu, Rongliang
2015-07-01
Recycling sewage sludge by pyrolysis has attracted increasing attention for pollutant removal from wastewater and soils. This study scrutinized As(III) sorption behavior on sludge-derived biochar (SDBC) under different pyrolysis conditions and solution chemistry. The SDBC pyrolyzed at a higher temperature showed a lower As(III) sorption capacity and increasingly nonlinear isotherm due to loss of surface sites and deoxygenation-dehydrogenation. The Langmuir sorption capacity on SDBC (3.08-6.04 mg g) was comparable to other waste-derived sorbents, with the highest As(III) sorption on SDBC pyrolyzed at 400°C for 2 h. The As(III) sorption kinetics best fit with the pseudo-second-order equation, thus suggesting the significance of the availability of surface sites and initial concentration. Sorption of As(III) was faster than that of Cr(VI) but slower than that of Pb(II), which was attributed to their differences in molar volume (correlated to diffusion coefficients) and sorption mechanisms. The X-ray photoelectron spectra revealed an increase of oxide oxygen (O) with a decrease of sorbed water, indicative of ligand exchange with hydroxyl groups on SDBC surfaces. The As(III) sorption was not pH dependent in acidic-neutral range (pH < 8) due to the buffering capacity and surface characteristics of the SDBC; however, sorption was promoted by increasing pH in the alkaline range (pH > 8) because of As(III) speciation in solution. An increasing ionic strength (0.001-0.1 mol L) facilitated As(III) sorption, indicating the predominance of ligand exchange over electrostatic interactions, while high concentrations (0.1 mol L) of competing anions (fluoride, sulfate, carbonate, and phosphate) inhibited As(III) sorption. These results suggest that SDBC is applicable for As(III) immobilization in most environmentally relevant conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu
2013-08-01
A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.
Dorey, Narimane; Lançon, Pauline; Thorndyke, Mike; Dupont, Sam
2013-11-01
Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT = 8.0/pCO2 ≈ 480 μatm to pHT = 6.5/pCO2 ≈ 20 000 μatm) covering present (from pHT 8.7 to 7.6), projected near-future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT ≥ 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT ≤ 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness. © 2013 John Wiley & Sons Ltd.
Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah
2014-01-01
In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.
Rojo-Bezares, Beatriz; Sáenz, Yolanda; Navarro, Laura; Zarazaga, Myriam; Ruiz-Larrea, Fernanda; Torres, Carmen
2007-08-01
Detection and characterization of bacteriocin production by Lactobacillus plantarum strain J23, recovered from a grape must sample in Spain, have been carried out. Bacteriocin activity was degraded by proteolytic enzymes (trypsin, alfa-chymotrypsin, papaine, protease, proteinase K and acid proteases), and it was stable at high temperatures (121 degrees C, 20min), in a wide range of pH (1-12), and after treatment with organic solvents. L. plantarum J23 showed antimicrobial activity against Oenococcus oeni, and a range of Lactobacillus and Pediococcus species. Bacteriocin production was detected in liquid media only when J23 was cocultivated with some inducing bacteria, and induction took place when intact cells or 55 degrees C heated cells of the inducer were cocultivated with J23, but not with their autoclaved cells. Bacteriocin activity of J23 was not induced by high initial J23 inocula, and it was detected in cocultures during the exponential phase. The presence of ethanol or acidic pH in the media reduced bacteriocin production in the cocultures of J23 with the inducing bacteria. The presence of plantaricin-related plnEF and plnJ genes was detected by PCR and sequencing. Nevertheless, negative results were obtained for plnA, plnK, plNC8, plS and plW genes.
Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra L.
2016-01-01
In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.
Ma, Fengming; Li, Pu; Zhang, Baiqing; Wang, Zhenyu
2017-10-01
Synthesis of chitosan-Cu(II) complex by solution plasma process (SPP) irradiation was investigated. The effects of the distance between the electrodes, initial Cu(II) concentration, and initial pH on the Cu(II) adsorption capacity were evaluated. The results showed that narrower distance between the electrodes, higher initial Cu(II) concentration and higher initial pH (at pH<6) were favourable for the adsorption capacity of Cu(II). Characterization of the chitosan-Cu(II) complex by ultraviolet-visible (UV-vis), fourier transform infrared (FT-IR) and electron spin resonance (ESR) spectroscopy revealed that the main structure of chitosan was not changed after irradiation. Thermogravimetry (TG) analysis indicated that Cu(II) ions were well incorporated into the chitosan. The antioxidant activity of the chitosan-Cu(II) complex was evaluated by DPPH, ABTS, and reducing power assays. The chitosan-Cu(II) complex exhibited greater antioxidant activity than the original chitosan. Thus, SPP could be used for preparation of chitosan-Cu(II) complexes. Copyright © 2017. Published by Elsevier B.V.
Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production
NASA Astrophysics Data System (ADS)
Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.
2017-06-01
At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.
Glutaraldehyde degradation in hospital wastewater by photoozonation.
Kist, Lourdes Teresinha; Rosa, Ellen Caroline; Machado, Enio Leandro; Camargo, Maria Emilia; Moro, Celso Camilo
2013-01-01
In this paper, we assessed aqueous solutions of glutaraldehyde (GA), a chemical used for the disinfection of hospital materials, using advanced oxidative processes, O3, and UV, and the combination of the latter two. Assays with different ozone concentrations at distinct pH levels were conducted to determine the best treatment process. GA concentrations before and after each treatment were measured by spectrophotometry. The best treatment was that which combined O3 and UV, yielding a degradation of 72.0-75.0% in relation to the initial concentration with pH between 4 and 9. Kinetics demonstrated that GA degradation is not dependent on pH, as there was a first-order reaction with a rate constant of k = 0.0180 min(-1) for initial pH 9 and of k = 0.0179 min(-1) for initial pH 7, that is, the values are virtually the same. Secondary wastewater samples were also analysed using the septic tank/filter system of a regional hospital in Vale do Rio Pardo, state of Rio Grande do Sul, southern Brazil. In this case, the characteristics of the wastewater were described and, after treatment, a GA degradation rate of 23.3% was noted, with reductions of 75% for chemical oxygen demand, 81% for biochemical oxygen demand, 68% for turbidity, 70% for surfactants and total disinfection in terms of thermotolerant coliforms.
Government stewardship of the for-profit private health sector in Afghanistan
Sayedi, Omarzaman; Irani, Laili; Archer, Lauren C.; Sears, Kathleen; Sharma, Suneeta
2017-01-01
Abstract Background: Since 2003, Afghanistan's largely unregulated for-profit private health sector has grown at a rapid pace. In 2008, the Ministry of Public Health (MoPH) launched a long-term stewardship initiative to oversee and regulate private providers and align the sector with national health goals. Aim: We examine the progress the MoPH has made towards more effective stewardship, consider the challenges and assess the early impacts on for-profit performance. Methods: We reviewed publicly available documents, publications and the grey literature to analyse the development, adoption and implementation of strategies, policies and regulations. We carried out a series of key informant/participant interviews, organizational capacity assessments and analyses of hospital standards checklists. Using a literature review of health systems strengthening, we proposed an Afghan-specific definition of six key stewardship functions to assess progress towards MoPH stewardship objectives. Results: The MoPH and its partners have achieved positive results in strengthening its private sector stewardship functions especially in generating actionable intelligence and establishing strategic policy directions, administrative structures and a legal and regulatory framework. Progress has also been made on improving accountability and transparency, building partnerships and applying minimum required standards to private hospitals. Procedural and operational issues still need resolution and the MoPH is establishing mechanisms for resolving them. Conclusions: The MoPH stewardship initiative is notable for its achievements to date under challenging circumstances. Its success is due to the focus on developing a solid policy framework and building institutions and systems aimed at ensuring higher quality private services, and a rational long-term and sustainable role for the private sector. Although the MoPH stewardship initiative is still at an early stage, the evidence suggests that enhanced stewardship functions in the MoPH are leading to a more efficient and effective for-profit private sector. These successful early efforts offer high-leverage potential to rapidly scale up going forward. PMID:27683341
Government stewardship of the for-profit private health sector in Afghanistan.
Cross, Harry E; Sayedi, Omarzaman; Irani, Laili; Archer, Lauren C; Sears, Kathleen; Sharma, Suneeta
2017-04-01
Since 2003, Afghanistan's largely unregulated for-profit private health sector has grown at a rapid pace. In 2008, the Ministry of Public Health (MoPH) launched a long-term stewardship initiative to oversee and regulate private providers and align the sector with national health goals. We examine the progress the MoPH has made towards more effective stewardship, consider the challenges and assess the early impacts on for-profit performance. We reviewed publicly available documents, publications and the grey literature to analyse the development, adoption and implementation of strategies, policies and regulations. We carried out a series of key informant/participant interviews, organizational capacity assessments and analyses of hospital standards checklists. Using a literature review of health systems strengthening, we proposed an Afghan-specific definition of six key stewardship functions to assess progress towards MoPH stewardship objectives. The MoPH and its partners have achieved positive results in strengthening its private sector stewardship functions especially in generating actionable intelligence and establishing strategic policy directions, administrative structures and a legal and regulatory framework. Progress has also been made on improving accountability and transparency, building partnerships and applying minimum required standards to private hospitals. Procedural and operational issues still need resolution and the MoPH is establishing mechanisms for resolving them. The MoPH stewardship initiative is notable for its achievements to date under challenging circumstances. Its success is due to the focus on developing a solid policy framework and building institutions and systems aimed at ensuring higher quality private services, and a rational long-term and sustainable role for the private sector. Although the MoPH stewardship initiative is still at an early stage, the evidence suggests that enhanced stewardship functions in the MoPH are leading to a more efficient and effective for-profit private sector. These successful early efforts offer high-leverage potential to rapidly scale up going forward. © VC The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
40 CFR 432.3 - General limitation or standard for pH.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...
40 CFR 432.3 - General limitation or standard for pH.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...
Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M
2009-09-15
Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.
Acid rain research program. Annual progress report, September 1975--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Raynor, G.S.
1976-09-01
The aims of the research program are: (a) to observe the minimum threshold dose of simulated acid rain to produce visual and histological effects on plant foliage, (b) approach threshold limits of simulated sulfate acid rain that affect plant growth and reproduction, and (c) to measure chemical and meteorological parameters of incident rain. Acute leaf injury to several plant species resulted from exposure of foliage to simulated sulfate acid rain of pH level 2.3 to 2.9. Only slight injury occurred at 3.1. Scanning electron micrographs showed that injury to upper leaf surfaces occurred mostly at the base of trichomes (leafmore » hairs) and near stomata. An association of lesion development near vascular tissue was also noted. Histologically, lesions are characterized by an initial collapse of the epidermis with eventual lysis and collapse of more internal leaf tissues on the upper leaf surface of pinto beans which complemented detailed descriptions of visual lesion development after daily exposures to simulated rain. Initial experiments with gametophytes of Pteridium aquilinum show that reproduction of this fern species is very sensitive to solutions of pH 5.2 while vegetative development is not affected at pH levels of 2.2. Initial rain samples from the sequential sampler have been obtained. Initial portions of rain events exhibit a pH near 3.0 in some cases. More complete chemical analyses are anticipated.« less
Kane, Lesley A; Yung, Christina K; Agnetti, Giulio; Neverova, Irina; Van Eyk, Jennifer E
2006-11-01
Separation of basic proteins with 2-DE presents technical challenges involving protein precipitation, load limitations, and streaking. Cardiac mitochondria are enriched in basic proteins and difficult to resolve by 2-DE. We investigated two methods, cup and paper bridge, for sample loading of this subproteome into the basic range (pH 6-11) gels. Paper bridge loading consistently produced improved resolution of both analytical and preparative protein loads. A unique benefit of this technique is that proteins retained in the paper bridge after loading basic gels can be reloaded onto lower pH gradients (pH 4-7), allowing valued samples to be analyzed on multiple pH ranges.
Schebor, C; Chirife, J
2000-07-01
The water activity (a(w)) and pH values of commercially available filled fresh pasta and gnocchi packed under modified atmosphere and manufactured in Argentina and Uruguay were examined. The retail survey included 58 samples (several brands) of filled pasta and 11 samples of gnocchi. Fillings consisted of different combinations of cheese (various types), beef, ricotta, ham, chicken, and spinach. The survey revealed that the a(w) values of the 58 samples of filled pasta ranged from 0.916 to 0.973, and their pH values ranged from 5.2 to 7.0. The a(w) of gnocchi was consistently higher and ranged from 0.936 to 0.983, with pH values from 4.8 to 6.4. Some samples of filled pasta and most gnocchi samples were found to have a(w) and pH values that would support growth of spores of Clostridium botulinum, if present, under conditions of temperature abuse (i.e., 30 degrees C).
Quantified pH imaging with hyperpolarized (13) C-bicarbonate.
Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I
2015-06-01
Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.
Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.
Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg
2014-12-01
The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.
Stability of Hydrocortisone Preservative-Free Oral Solutions.
Chappe, Julie; Osman, Névine; Cisternino, Salvatore; Fontan, Jean-Eudes; Schlatter, Joël
2015-01-01
The physical and chemical stability of a preservative-free oral solution of hydrocortisone succinate was studied at different pH values and storage temperatures. Oral solutions of hydrocortisone 1 mg/mL were prepared by dissolving hydrocortisone succinate powder in citrate buffers at pH 4.0, 5.5, and 6.5, or with sterile water (pH 7.4) stored in amber glass vials. Three identical samples of the formulations were prepared and stored under refrigeration (3-7°C), ambient temperature (20-22°C) and high temperature (29-31°C). A 200-μL sample was withdrawn from each of the 3 samples immediately after preparation and at 1, 7, 14, 21, and 35 days. Samples were assayed in duplicate using stability-indicating liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of hydrocortisone succinate. At least 92% of the initial hydrocortisone succinate concentration in solutions pH 5.5, 6.5, and 7.4 remained throughout the 14-day study period under refrigeration. There were no detectable changes in color, odor, or pH and no visible microbial growth in these samples. In other storage conditions, hydrocortisone succinate was rapidly degraded. The hydrocortisone succinate preservative-free oral solutions at pH 5.5, 6.5, or 7.4 are chemically stable when stored under refrigeration for at least 14 days. They provide flexible and convenient dosage forms without any preservatives for pediatric patients.
Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.
Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé
2009-08-01
The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH <5 iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.
Biosorption of hexavalent chromium from aqueous medium with Opuntia biomass.
Fernández-López, José A; Angosto, José M; Avilés, María D
2014-01-01
The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L(-1) and initial metal concentration of 10 mg L(-1). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (q max) was 18.5 mg g(-1) for cladodes and 16.4 mg g(-1) for ectodermis. The results suggest that Opuntia biomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems.
NASA Astrophysics Data System (ADS)
Menke, H. P.; Bijeljic, B.; Blunt, M. J.
2017-05-01
We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50 °C) at two injected acid strengths for a period of 4 h. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary.
Jones, Jamila A D; Kerr, R G; Haltli, B A; Tinto, Winston F
2018-06-01
Cellulolytic bacteria that produce cellulases, which are active over a range of pH and temperatures, can be used to catalyze hydrolysis of pretreated lignocellulosic material. This is important in the production of second generation biofuels among other biotechnological applications. In this investigation, bacteria isolated from sugarcane bagasse were identified as strains of Enterobacter xiangfangensis , Serratia rubidaea , Klebsiella pneumoniae and a novel species of Citrobacter designated Citrobacter sp. UWIBGS10. The glucose production potential of these strains was studied on thermally and solvent pretreated sugarcane bagasse. This was performed at 24-hour intervals up to 168 hours in the range of pH 5-9 and temperature range 25-40 °C. Maximal concentrations of glucose for Citrobacter sp. UWIBGS10 occurred at pH 6 and 25 °C. For E. xiangfangensis , S. rubidaea , K. pneumoniae glucose concentrations were consistent across the pH and temperature ranges examined. From these results it could be concluded that the bacteria demonstrated ability for lignocellulolytic hydrolysis for the production of glucose and could be further explored for the characterization of commercial cellulolytic enzymes.
NASA Astrophysics Data System (ADS)
Anagnostou, E.; Huang, K.; You, C.; Sherrell, R. M.
2011-12-01
The boron isotope ratio (δ11B) of foraminifera and coral carbonate has been proposed to record seawater pH. Here we test this pH proxy in the deep sea coral Desmophyllum dianthus (D. dianthus ). This coral species is cosmopolitan in geographic distribution and tolerates a wide temperature and depth range. Previous studies have shown that fossil D. dianthus skeletons can be dated precisely with U/Th measurements. Additionally, skeletal mass is sufficient for multiple elemental, isotopic, and radiocarbon measurements per sample making it a powerful candidate for paleoceanographic reconstructions. Ten modern corals from a depth range of 274-1470m in the Atlantic, Pacific, and Southern Oceans were analyzed using the sublimation method and multi-collector ICP-MS (Neptune), and the measured δ11B was regressed against ambient pH taken from hydrographic data sets (range pH 7.6 to 8.1). Replicate skeletal subsamples from a single coral agree within 0.35% (2SD). The array of δ11B values for these corals plots above the seawater borate δ11B vs. pH curve (Klochko et al., 2006) by an apparently constant value of 11.7 ± 1.2%, well above the range of values seen in foraminifera and surface corals. This offset is attributed to either partial incorporation of boric acid from seawater or, more likely, to physiological manipulation of the calcifying fluid to pH 8.7-9.0. The uncertainty in calculation of seawater pH from δ11B, dominated by the uncertainty in the offset value, currently limits the precision of absolute pH reconstructions to ±0.09pH units. However, the empirical calibration could be used to examine relative pH changes, thereby overcoming contributions to the uncertainty in the offset that result from the calculation of the empirical fractionation factor α and from sampling bias and variable vital effects among individuals, reducing the reconstruction error envelope. This study provides the first evidence that δ11B in D. dianthus has the potential to record ambient seawater pH.
Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P
2015-03-04
XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.
Bajaj, Bijender Kumar; Singh, Narendera Pratap
2010-11-01
Streptomyces sp. 7b showed highest xylanase activity among 41 bacterial isolates screened under submerged fermentation. The organism grew over broad pH (5-11) and temperatures range (25-55 degrees C) and displayed maximum xylanase production on wheat bran (1230 U/g) under solid-state fermentation. Xylanase production was enhanced substantially (76%-77%) by inclusion of trypton (2180 U/g) or beef extract (2170 U/g) and moderately (36%-46%) by yeast extract (1800 U/g) or soybean meal (1670 U/g). Inclusion of readily utilizable sugars such as glucose, maltose, fructose, lactose or xylose in the substrate repressed the xylanase production. The optimum initial pH of the medium for maximum enzyme production was 7 to 8; however, appreciable level of activity was obtained at pH 6 (1,680 U/g) and 9 (1,900 U/g). Most appropriate solid to liquid ratio for maximum xylanase production in solid-state fermentation was found to be 1:2.5. The organism produced a single xylanase of molecular weight of approximately 30 kDa as analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after purification with ammonium sulfate precipitation, and carboxy methyl sephadex chromatography. The enzyme was purified to the extent of 5.68-fold by salt precipitation and ion-exchange chromatography. Optimum temperature and pH for maximum xylanase activity were 50 degrees C and 6, respectively.
Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.
2015-01-01
XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451
Effect of ozonation on minocycline degradation and N-Nitrosodimethylamine formation.
Lv, Juan; Li, Yong M
2018-06-07
The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO 3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO 3 - and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.
Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris.
Li, Q; Pei, J; Zhao, L; Xie, J; Cao, F; Wang, G
2014-01-01
A laccase-encoding gene of Trametes versicolor, lccA, was cloned and expressed in Pichia pastoris X33. The lccA gene consists ofa 1560 bp open reading frame encoding 519 amino acids, which was classified into family copper blue oxidase. To improve the expression level of recombinant laccase in P. pastoris, conditions of the fermentation were optimized by the single factor experiments. The optimal fermentation conditions for the laccase production in shake flask cultivation using BMGY medium were obtained: the optimal initial pH 7.0, the presence of 0.5 mM Cu2+, 0.6% methanol added into the culture every 24 h. The laccase activity was up to 11.972 U/L under optimal conditions after 16 days of induction in a medium with 4% peptone. After 100 h of large scale production in 5 L fermenter the enzyme activity reached 18.123 U/L. The recombinant laccase was purified by ultrafiltration and (NH4)2SO4 precipitation showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimum pH and temperature for the laccase were pH 2.0 and 50 degrees C with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. The recombinant laccase was stable over a pH range of 2.0-7.0. The K(m) and the V(max) value of LccA were 0.43 mM and 82.3 U/mg for ABTS, respectively.
40 CFR 467.34 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Suspended solids 5.10 4.07 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Extrusion....126 Aluminum 1.82 0.81 Oil and grease 2.98 2.98 Suspended solids 4.47 3.58 pH (1) (1) 1 Within the... Suspended solids 30.56 24.45 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Cleaning...
40 CFR 421.114 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Ammonia (as N) 82.910 36.450 Fluoride 21.770 12.440 Total suspended solids 9.330 7.464 pH (1) (1) 1 Within....100 Total Suspended Solids 138.900 111.100 pH (1) (1) AA 1 Within the range of 7.5 to 10.0 at all... solids 3.690 2.952 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Subpart K—Precipitation...
40 CFR 421.244 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 24.410 12.850 Nickel 24.670 16.320 Total suspended solids 526.800 250.500 pH (1) (1) 1 Within the... Nickel 9.590 6.344 Total suspended solids 204.800 97.400 pH (1) (1) 1 Within the range of 7.5 to 10.0 at....523 Total suspended solids 49.160 23.380 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. ...