Sample records for initial rupture point

  1. Broadband Rupture Process of the 2001 Kunlun Fault (Mw 7.8) Earthquake

    NASA Astrophysics Data System (ADS)

    Antolik, M.; Abercrombie, R.; Ekstrom, G.

    2003-04-01

    We model the source process of the 14 November, 2001 Kunlun fault earthquake using broadband body waves from the Global Digital Seismographic Network (P, SH) and both point-source and distributed slip techniques. The point-source mechanism technique is a non-linear iterative inversion that solves for focal mechanism, moment rate function, depth, and rupture directivity. The P waves reveal a complex rupture process for the first 30 s, with smooth unilateral rupture toward the east along the Kunlun fault accounting for the remainder of the 120 s long rupture. The obtained focal mechanism for the main portion of the rupture is (strike=96o, dip=83o, rake=-8o) which is consistent with both the Harvard CMT solution and observations of the surface rupture. The seismic moment is 5.29×1020 Nm and the average rupture velocity is ˜3.5 km/s. However, the initial portion of the P waves cannot be fit at all with this mechanism. A strong pulse visible in the first 20 s can only be matched with an oblique-slip subevent (MW ˜ 6.8-7.0) involving a substantial normal faulting component, but the nodal planes of this mechanism are not well constrained. The first-motion polarities of the P waves clearly require a strike mechanism with a similar orientation as the Kunlun fault. Field observations of the surface rupture (Xu et al., SRL, 73, No. 6) reveal a small 26 km-long strike-slip rupture at the far western end (90.5o E) with a 45-km long gap and extensional step-over between this rupture and the main Kunlun fault rupture. We hypothesize that the initial fault break occurred on this segment, with release of the normal faulting energy as a continuous rupture through the extensional step, enabling transfer of the slip to the main Kunlun fault. This process is similar to that which occurred during the 2002 Denali fault (MW 7.9) earthquake sequence except that 11 days elapsed between the October 23 (M_W 6.7) foreshock and the initial break of the Denali earthquake along a thrust fault.

  2. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture

    USGS Publications Warehouse

    Guatteri, Mariagiovanna; Spudich, P.

    1998-01-01

    We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved striations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a point on the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rotations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop.Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocentral zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fault, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned with the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip-weakening distance if this parameter is uniform over the fault plane, and the direction of the late part of slip of curved striations should have more weight in the estimate of initial stress direction.

  3. Recent updates in developing a statistical pseudo-dynamic source-modeling framework to capture the variability of earthquake rupture scenarios

    NASA Astrophysics Data System (ADS)

    Song, Seok Goo; Kwak, Sangmin; Lee, Kyungbook; Park, Donghee

    2017-04-01

    It is a critical element to predict the intensity and variability of strong ground motions in seismic hazard assessment. The characteristics and variability of earthquake rupture process may be a dominant factor in determining the intensity and variability of near-source strong ground motions. Song et al. (2014) demonstrated that the variability of earthquake rupture scenarios could be effectively quantified in the framework of 1-point and 2-point statistics of earthquake source parameters, constrained by rupture dynamics and past events. The developed pseudo-dynamic source modeling schemes were also validated against the recorded ground motion data of past events and empirical ground motion prediction equations (GMPEs) at the broadband platform (BBP) developed by the Southern California Earthquake Center (SCEC). Recently we improved the computational efficiency of the developed pseudo-dynamic source-modeling scheme by adopting the nonparametric co-regionalization algorithm, introduced and applied in geostatistics initially. We also investigated the effect of earthquake rupture process on near-source ground motion characteristics in the framework of 1-point and 2-point statistics, particularly focusing on the forward directivity region. Finally we will discuss whether the pseudo-dynamic source modeling can reproduce the variability (standard deviation) of empirical GMPEs and the efficiency of 1-point and 2-point statistics to address the variability of ground motions.

  4. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  5. The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Wei, S.

    2017-12-01

    The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks and the mainshock. The results support that the stress alternation after the foreshocks may have triggered the failure on the fault plane of the Mw7.1 earthquake. Therefore, the 2016 Kumamoto earthquake sequence is dominated by a series of large triggering events whose initiation is associated with the geometric barrier in the intersection of the Futagawa and Hinagu faults.

  6. Earthquake rupture process recreated from a natural fault surface

    USGS Publications Warehouse

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  7. High speed cinematography of the initial break-point of latex condoms during the air burst test.

    PubMed

    Stube, R; Voeller, B; Davidhazy, A

    1990-06-01

    High speed cinematography of latex condoms inflated to burst under standard (ISO) conditions reveals that rupture of the condom typically is initiated at a small focal point on the shank of the condom and then rapidly propagates throughout the condom's surface, often ending with partial or full severance of the condom at its point of attachment to the air burst instrument. This sequence of events is the reverse of that sometimes hypothesized to occur, where initiation of burst was considered to begin at the attachment point and to constitute a testing method artifact. This hypothesis of breakage at the attachment point, if true, would diminish the value of the air burst test as a standard for assessing manufacturing quality control as well as for condom strength measurements and comparisons.

  8. Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1996-01-01

    Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.

  9. Estimating rupture distances without a rupture

    USGS Publications Warehouse

    Thompson, Eric M.; Worden, Charles

    2017-01-01

    Most ground motion prediction equations (GMPEs) require distances that are defined relative to a rupture model, such as the distance to the surface projection of the rupture (RJB) or the closest distance to the rupture plane (RRUP). There are a number of situations in which GMPEs are used where it is either necessary or advantageous to derive rupture distances from point-source distance metrics, such as hypocentral (RHYP) or epicentral (REPI) distance. For ShakeMap, it is necessary to provide an estimate of the shaking levels for events without rupture models, and before rupture models are available for events that eventually do have rupture models. In probabilistic seismic hazard analysis, it is often convenient to use point-source distances for gridded seismicity sources, particularly if a preferred orientation is unknown. This avoids the computationally cumbersome task of computing rupture-based distances for virtual rupture planes across all strikes and dips for each source. We derive average rupture distances conditioned on REPI, magnitude, and (optionally) back azimuth, for a variety of assumed seismological constraints. Additionally, we derive adjustment factors for GMPE standard deviations that reflect the added uncertainty in the ground motion estimation when point-source distances are used to estimate rupture distances.

  10. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing

    2018-05-01

    We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.

  11. The Modulus of Rupture from a Mathematical Point of View

    NASA Astrophysics Data System (ADS)

    Quintela, P.; Sánchez, M. T.

    2007-04-01

    The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.

  12. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  13. Alliance ruptures and rupture resolution in cognitive-behavior therapy: a preliminary task analysis.

    PubMed

    Aspland, Helen; Llewelyn, Susan; Hardy, Gillian E; Barkham, Michael; Stiles, William

    2008-11-01

    An initial ideal, rational model of alliance rupture and rupture resolution provided by cognitive-behavioral therapy (CBT) experts was assessed and compared with empirical observations of ruptures and their resolution in two cases of successful CBT. The initial rational model emphasized nondefensive acknowledgment and exploration of the rupture. Results indicated differences between what therapists think they should do to resolve ruptures and what they actually do and suggested that the rational model should be expanded to emphasize client validation and empowerment. Therapists' ability to attend to ruptures emerged as an important clinical skill.

  14. Complex ruptures during hydraulic fracturing of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Bosman, K.; Baig, A. M.

    2016-12-01

    Complex rupture patterns were observed on several M0+ events recorded during a hydraulic stimulation of the Marcellus shale. Although M>0 events associated with hydraulic fracturing have now been commonly recorded and may cause concern in terms of public and infrastructure safety, the vast majority of these events are smaller than M3 and are not felt at the surface. We investigate the rupture characteristics of one such multi-rupture event with 3 sub-events, by examining the failure dynamics of the overall fracture itself and of each individual sub-event, and the growth of the overall fracture from rupture initiation to arrest. This analysis is only possible due to the wide frequency range of the seismic monitoring system put in place which spanned from 0.1 Hz to 1000 Hz. The monitoring system consists of: high-frequency sensor-arrays of geophones deployed downhole close to the reservoir and thus to the rupture initiation point; and low to intermediate frequency accelerometers and geophones deployed at intermediate and shallow depths, allowing for the investigation of overall rupture characteristics. We aim to gain an understanding of the role of asperities, fracture roughness, and fluids on the different aspects of the rupture processes and of the failure mechanisms (shearing versus tensile dominance of behavior) associated with these complex events. Our results show that the overall event is characterized by the failure of multiple asperities and the distance between the 3 sub-events is less than 20 m. We observe decreasing stress drop and increasing Mw over time for the successive sub-events which suggest decreasing frictional resistance due to the presence of fluids over an increasingly large rupture surface akin to increased slip over a larger and less resistant contact area such as an asperity. The overall failure shows a dominant shearing mode mechanism whereas the sub-events failures show strong tensile components. The ruptures of the 1st and 2nd sub-events are indicative of shear-compaction of an asperity and the one of the 3rd sub-event is suggestive of a rupture riding over several surface patches. Additional analysis of other complex events will improve the characterization of the rupture processes of these larger-magnitude events and allow for the assessment of conditions under which the failures occur.

  15. Observations of the rupture development process from source time functions

    NASA Astrophysics Data System (ADS)

    Renou, Julien; Vallée, Martin

    2017-04-01

    The mechanisms governing the seismic rupture expansion and leading to earthquakes of very different magnitudes are still under debate. In the cascade model, the rupture starts from a very small patch, which size is undetectable by seismological investigation. Then rupture grows in a self-similar way, implying that no clues about the earthquake magnitude can be found before rupture starts declining. However dependencies between early phases of the rupture process and final magnitude have also been proposed, which can be explained if an earthquake is more likely to be a big one when its start and early development occur in rupture-prone areas. Here, the analysis of the early phases of the seismic rupture is achieved from an observational point of view using the SCARDEC database, a global catalog containing more than 3000 Source Time Functions (STFs) of earthquakes with magnitude larger than 5.7. This dataset is theoretically very suitable to investigate the initial phase, because STFs directly describe the seismic moment rate released over time, giving access to the rupture growth behavior. As several studies already showed that deep earthquakes tend to have a specific signature of short duration with respect to magnitude (implying a quicker rupture growth than superficial events), only shallow events (depths < 70km) are analyzed here. Our method consists in computing the STFs slope, i.e. the seismic moment acceleration, at several prescribed moment rates. In order to ensure that the chosen moment rates intersect the growth phase of the STF, its value must be high enough to avoid the very beginning of the signal -not well constrained in the deconvolution process-, and low enough to avoid the proximity of the peak moment rate. This approach does not use any rupture time information, which is interesting as (1) the exact hypocentral time can be uncertain and (2) the real rupture expansion can be delayed compared to origin time. If any magnitude-dependent signal exists, the average or median value of the slope should vary with the magnitude of the events, despite the intrinsic variability of the STFs. The preliminary results from the SCARDEC dataset seem to only exhibit a weak dependence of the slope with magnitude, in the magnitude domain where the chosen moment rate value crosses most of the STFs onsets. In addition, our results point out that slope values gradually increase with the moment rate. These findings will be discussed in the frame of the existing models of seismic rupture expansion.

  16. Non-destructive and non-invasive observation of friction and wear of human joints and of fracture initiation by acoustic emission.

    PubMed

    Schwalbe, H J; Bamfaste, G; Franke, R P

    1999-01-01

    Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.

  17. Rupture dynamics with energy loss outside the slip zone

    USGS Publications Warehouse

    Andrews, D.J.

    2005-01-01

    Energy loss in a fault damage zone, outside the slip zone, contributes to the fracture energy that determines rupture velocity of an earthquake. A nonelastic two-dimensional dynamic calculation is done in which the slip zone is modeled as a fault plane and material off the fault is subject to a Coulomb yield condition. In a mode 2 crack-like solution in which an abrupt uniform drop of shear traction on the fault spreads from a point, Coulomb yielding occurs on the extensional side of the fault. Plastic strain is distributed with uniform magnitude along the fault, and it has a thickness normal to the fault proportional to propagation distance. Energy loss off the fault is also proportional to propagation distance, and it can become much larger than energy loss on the fault specified by the fault constitutive relation. The slip velocity function could be produced in an equivalent elastic problem by a slip-weakening friction law with breakdown slip Dc increasing with distance. Fracture energy G and equivalent Dc will be different in ruptures with different initiation points and stress drops, so they are not constitutive properties; they are determined by the dynamic solution that arrives at a particular point. Peak slip velocity is, however, a property of a fault location. Nonelastic response can be mimicked by imposing a limit on slip velocity on a fault in an elastic medium.

  18. Critical Parameters of the Initiation Zone for Spontaneous Dynamic Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Galis, M.; Pelties, C.; Kristek, J.; Moczo, P.; Ampuero, J. P.; Mai, P. M.

    2014-12-01

    Numerical simulations of rupture propagation are used to study both earthquake source physics and earthquake ground motion. Under linear slip-weakening friction, artificial procedures are needed to initiate a self-sustained rupture. The concept of an overstressed asperity is often applied, in which the asperity is characterized by its size, shape and overstress. The physical properties of the initiation zone may have significant impact on the resulting dynamic rupture propagation. A trial-and-error approach is often necessary for successful initiation because 2D and 3D theoretical criteria for estimating the critical size of the initiation zone do not provide general rules for designing 3D numerical simulations. Therefore, it is desirable to define guidelines for efficient initiation with minimal artificial effects on rupture propagation. We perform an extensive parameter study using numerical simulations of 3D dynamic rupture propagation assuming a planar fault to examine the critical size of square, circular and elliptical initiation zones as a function of asperity overstress and background stress. For a fixed overstress, we discover that the area of the initiation zone is more important for the nucleation process than its shape. Comparing our numerical results with published theoretical estimates, we find that the estimates by Uenishi & Rice (2004) are applicable to configurations with low background stress and small overstress. None of the published estimates are consistent with numerical results for configurations with high background stress. We therefore derive new equations to estimate the initiation zone size in environments with high background stress. Our results provide guidelines for defining the size of the initiation zone and overstress with minimal effects on the subsequent spontaneous rupture propagation.

  19. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation

    USGS Publications Warehouse

    Mori, J.; Abercrombie, R.E.

    1997-01-01

    Statistics of earthquakes in California show linear frequency-magnitude relationships in the range of M2.0 to M5.5 for various data sets. Assuming Gutenberg-Richter distributions, there is a systematic decrease in b value with increasing depth of earthquakes. We find consistent results for various data sets from northern and southern California that both include and exclude the larger aftershock sequences. We suggest that at shallow depth (???0 to 6 km) conditions with more heterogeneous material properties and lower lithospheric stress prevail. Rupture initiations are more likely to stop before growing into large earthquakes, producing relatively more smaller earthquakes and consequently higher b values. These ideas help to explain the depth-dependent observations of foreshocks in the western United States. The higher occurrence rate of foreshocks preceding shallow earthquakes can be interpreted in terms of rupture initiations that are stopped before growing into the mainshock. At greater depth (9-15 km), any rupture initiation is more likely to continue growing into a larger event, so there are fewer foreshocks. If one assumes that frequency-magnitude statistics can be used to estimate probabilities of a small rupture initiation growing into a larger earthquake, then a small (M2) rupture initiation at 9 to 12 km depth is 18 times more likely to grow into a M5.5 or larger event, compared to the same small rupture initiation at 0 to 3 km. Copyright 1997 by the American Geophysical Union.

  20. Creep rupture analysis of a beam resting on high temperature foundation

    NASA Technical Reports Server (NTRS)

    Gu, Randy J.; Cozzarelli, Francis A.

    1988-01-01

    A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.

  1. Roll seat belt induced injury of the duodenum.

    PubMed

    Bergqvist, D; Hedelin, H

    1976-05-01

    A case of duodenal rupture with a roll three-point seatbelt is described. It is apparently the seventh reported case of duodenal rupture in safety belt users. A female driver fell asleep, and her car went off the road, rolling forward in a ditch, slowing slightly, and then came to a sudden stop. The rupture was unusual: on the first part of duodenum, intraperitoneal, and longitudinal. The rupture mechanism is discussed, and the deficiencies of the roll seatbelt pointed out in accidents like the one described.

  2. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments.

    PubMed Central

    Evans, E; Berk, D; Leung, A

    1991-01-01

    A simple micromechanical method has been developed to measure the rupture strength of a molecular-point attachment (focal bond) between two macroscopically smooth membrane capsules. In the procedure, one capsule is prepared with a low density coverage of adhesion molecules, formed as a stiff sphere, and held at fixed position by a micropipette. The second capsule without adhesion molecules is pressurized into a spherical shape with low suction by another pipette. This capsule is maneuvered to initiate point contact at the pole opposite the stiff capsule which leads to formation of a few (or even one) molecular attachments. Then, the deformable capsule is slowly withdrawn by displacement of the pipette. Analysis shows that the end-to-end extension of the capsule provides a direct measure of the force at the point contact and, therefore, the rupture strength when detachment occurs. The range for point forces accessible to this technique depends on the elastic moduli of the membrane, membrane tension, and the size of the capsule. For biological and synthetic vesicle membranes, the range of force lies between 10(-7)-10(-5) dyn (10(-12)-10(-10) N) which is 100-fold less than presently measurable by Atomic Force Microscopy! Here, the approach was used to study the forces required to rupture microscopic attachments between red blood cells formed by a monoclonal antibody to red cell membrane glycophorin, anti-A serum, and a lectin from the snail-helix pomatia. Failure of the attachments appeared to be a stochastic function of the magnitude and duration of the detachment force. We have correlated the statistical behavior observed for rupture with a random process model for failure of small numbers of molecular attachments. The surprising outcome of the measurements and analysis was that the forces deduced for short-time failure of 1-2 molecular attachments were nearly the same for all of the agglutinin, i.e., 1-2 x 10(-6) dyn. Hence, microfluorometric tests were carried out to determine if labeled agglutinins and/or labeled surface molecules were transferred between surfaces after separation of large areas of adhesive contact. The results showed that the attachments failed because receptors were extracted from the membrane. Images FIGURE 1 FIGURE 4 PMID:2065188

  3. High-speed rupture during the initiation of the 2015 Bonin Islands deep earthquake

    NASA Astrophysics Data System (ADS)

    Zhan, Z.; Ye, L.; Shearer, P. M.; Lay, T.; Kanamori, H.

    2015-12-01

    Among the long-standing questions on how deep earthquakes rupture, the nucleation phase of large deep events is one of the most puzzling parts. Resolving the rupture properties of the initiation phase is difficult to achieve with far-field data because of the need for accurate corrections for structural effects on the waveforms (e.g., attenuation, scattering, and site effects) and alignment errors. Here, taking the 2015 Mw 7.9 Bonin Islands earthquake (depth = 678 km) as an example, we jointly invert its far-field P waves at multiple stations for the average rupture speed during the first second of the event. We use waveforms from a closely located aftershock as empirical Green's functions, and correct for possible differences in focal mechanisms and waveform misalignments with an iterative approach. We find that the average initial rupture speed is over 5 km/s, significantly higher than the average rupture speed of 3 km/s later in the event. This contrast suggests that rupture speeds of deep earthquakes can be highly variable during individual events and may define different stages of rupture, potentially with different mechanisms.

  4. Rupture Processes of the Mw8.3 Sea of Okhotsk Earthquake and Aftershock Sequences from 3-D Back Projection Imaging

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2014-12-01

    On May 24, 2013, the largest deep earthquake ever recorded in history occurred on the southern tip of the Kamchatka Island, where the Pacific Plate subducts underneath the Okhotsk Plate. Previous 2D beamforming back projection (BP) of P- coda waves suggests the mainshock ruptured bilaterally along a horizontal fault plane determined by the global centroid moment tensor solution. On the other hand, the multiple point source inversion of P and SH waveforms argued that the earthquake comprises a sequence of 6 subevents not located on a single plane but actually distributed in a zone that extends 64 km horizontally and 35 km in depth. We then apply a three-dimensional MUSIC BP approach to resolve the rupture processes of the manishock and two large aftershocks (M6.7) with no a priori setup of preferential orientations of the planar rupture. The maximum pseudo-spectrum of high-frequency P wave in a sequence of time windows recorded by the densely-distributed stations from US and EU Array are used to image 3-D temporal and spatial rupture distribution. The resulting image confirms that the nearly N-S striking but two antiparallel rupture stages. The first subhorizontal rupture initially propagates toward the NNE direction, while at 18 s later it directs reversely to the SSW and concurrently shifts downward to 35 km deeper lasting for about 20 s. The rupture lengths in the first NNE-ward and second SSW-ward stage are about 30 km and 85 km; the estimated rupture velocities are 3 km/s and 4.25 km/s, respectively. Synthetic experiments are undertaken to assess the capability of the 3D MUSIC BP for the recovery of spatio-temporal rupture processes. Besides, high frequency BP images based on the EU-Array data show two M6.7 aftershocks are more likely to rupture on the vertical fault planes.

  5. [Secondary Splenic Rupture after Initially Inconspicuous CAT Scan].

    PubMed

    Prokop, A; Koll, S; Chmielnicki, M

    2016-04-01

    Splenic injuries occur in 1-5 % of blunt abdominal trauma cases. After initial haemorrhagic compression, secondary delayed spleen rupture can occur with a latency of one day to a month or longer. Mortality is then up to 15 %. The spleen injury is almost always recognisable on CT or ultrasound. In one case from our clinic, secondary splenic rupture occurred in a patient after discharge from hospitalisation, even though the initial CT and ultrasound were unremarkable. The patient survived, and underwent emergent splenectomy 8 days after the trauma. An expert review of the case identified no errors in treatment. No case of secondary splenic rupture after initially unremarkable diagnostic studies and clinical course has previously been published. Secondary splenic rupture has a high mortality rate. Patients should be advised of potential complications after hospital discharge, and should return to the hospital immediately in case of symptoms. Georg Thieme Verlag KG Stuttgart · New York.

  6. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.

  7. Kinematic Rupture Process of the 2015 Gorkha (Nepal) Earthquake Sequence from Joint Inversion of Teleseismic, hr-GPS, Strong-Ground Motion, InSAR interferograms and pixel offsets

    NASA Astrophysics Data System (ADS)

    Yue, H.; Simons, M.; Jiang, J.; Fielding, E. J.; Owen, S. E.; Moore, A. W.; Riel, B. V.; Polet, J.; Duputel, Z.; Samsonov, S. V.; Avouac, J. P.

    2015-12-01

    The April 2015 Gorkha, Nepal (Mw 7.8) earthquake ruptured the front of Himalaya thrust belt, causing more than 9,000 fatalities. 17 days after the main event, a large aftershock (Mw 7.2) ruptured to down-dip and east of the main rupture area. To investigate the kinematic rupture process of this earthquake sequence, we explored linear and non-linear inversion techniques using a variety of datasets including teleseismic, high rate and conventional GPS, InSAR interferograms and pixel-offsets. InSAR interferograms from ALOS-2, RADARSAT-2 and Sentinel-1a satellites are used in the joint inversion. The main event is characterized by unilateral rupture extending along strike approximately 70 km to the southeast and 40 km along dip direction. The rupture velocity is well resolved to be lie between 2.8 and 3.0 km/s, which is consistent with back-projection results. An emergent initial phase is observed in teleseismic body wave records, which is consistent with a narrow area of rupture initiation near the hypocenter. The rupture mode of the main event is pulse like. The aftershock ruptured down-dip to the northeast of the main event rupture area. The aftershock rupture area is compact and contained within 40 km of its hypocenter. In contrast to the main event, teleseismic body wave records of the aftershock suggest an abrupt initial phase, which is consistent with a crack like rupture mode. The locations of most of the aftershocks (small and large) surround the rupture area of the main shock with little, if any, spatial overlap.

  8. An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm

    PubMed Central

    Doyle, Barry J.; Corbett, Timothy J.; Callanan, Anthony; Walsh, Michael T.; Vorp, David A.; McGloughlin, Timothy M.

    2009-01-01

    Purpose: To identify the rupture locations of idealized physical models of abdominal aortic aneurysm (AAA) using an in-vitro setup and to compare the findings to those predicted numerically. Methods: Five idealized AAAs were manufactured using Sylgard 184 silicone rubber, which had been mechanically characterized from tensile tests, tear tests, and finite element analysis. The models were then inflated to the point of rupture and recorded using a high-speed camera. Numerical modeling attempted to confirm these rupture locations. Regional variations in wall thickness of the silicone models was also quantified and applied to numerical models. Results: Four of the 5 models tested ruptured at inflection points in the proximal and distal regions of the aneurysm sac and not at regions of maximum diameter. These findings agree with high stress regions computed numerically. Wall stress appears to be independent of wall thickness, with high stress occurring at regions of inflection regardless of wall thickness variations. Conclusion: According to these experimental and numerical findings, AAAs experience higher stresses at regions of inflection compared to regions of maximum diameter. Ruptures of the idealized silicone models occurred predominantly at the inflection points, as numerically predicted. Regions of inflection can be easily identified from basic 3-dimensional reconstruction; as ruptures appear to occur at inflection points, these findings may provide a useful insight into the clinical significance of inflection regions. This approach will be applied to patient-specific models in a future study. PMID:19642790

  9. Acoustic investigation of the aperture dynamics of an elastic membrane closing an overpressurized cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia; Vidal, Valérie; Melo, Francisco

    2015-08-01

    We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.

  10. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    USGS Publications Warehouse

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time necessary for the crack to reach the half-length Ic. We compare the Tn values resulting from distinct simulations calculated using different constitutive laws and different sets of constitutive parameters. Our results confirm that the DR law provides a different description of the nucleation process than the SW law adopted in this study. We emphasize that the DR law yields a complete description of the rupture process, which includes the most prominent features of SW.

  11. Afterslip-dominated surface rupture in the M6.0 South Napa Earthquake as constrained by structure-from-motion analysis and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    DeLong, S. B.; Pickering, A.; Scharer, K. M.; Hudnut, K. W.; Lienkaemper, J. J.

    2014-12-01

    Near-fault surface deformation associated with the August 24, 2014 M6.0 South Napa earthquake included both coseismic and post-seismic slip. Initial synthesis of field observations and initial measurement and modeling of afterslip from traditional survey methods indicate that coseismic slip was minimal (<10 cm) within 8 km northward from the epicenter but post-seismic slip, in places, approached 40 cm. We collected reconnaissance photographs using professional-grade SLR cameras from a helicopter within 12 hours after the earthquake, and a more systematic collection of air photos the day after the earthquake. We also collected terrestrial laser scanner (TLS) data two days (on August 26) and twenty-two days (on September 22) after the earthquake along a 0.5 km length of the main fault trace, just south of State Highway 12. This study site is 6 km north of the southern end of the 15 km long surface rupture and 5 km south of the highest measured co-seismic slip. We used structure-from-motion (SfM) methods to mosaic, orthorectify, and generate dense point clouds from the photos. SfM data corroborates survey-based ground observations of limited (~5 cm or less) coseismic slip along the fault trace between CA State Highway 12 and Withers Road, on discontinuous left-stepping en echelon ruptures. By August 26, the surface rupture became nearly continuous, and cultural features extracted from the TLS point clouds indicate horizontal slip magnitudes between 15 and 27 cm, increasing northward. By September 22, slip magnitudes had increased to between 26 and 46 cm. The lower slip magnitudes are to the south at Withers Road, and the general trend is increased slip to the north, but there is more slip variability along the fault trace in the September 15 data. From August 26 to September 15, the west side of the fault trace uplifted between 0.5 and 5 cm relative to east side. Increased relief on the surface rupture itself indicated a slight compressional component of the deformation. These results confirm that post-event air photos can be useful for rapid 3D mapping, and that the unparalleled accuracy of TLS data can be used to quantify even very subtle deformation patterns in three dimensions and document changes through time.

  12. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Shaw, Bruce E.

    2015-01-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  13. Rupture characteristics of the three M ∼ 4.7 (1992-1994) Parkfield earthquakes

    USGS Publications Warehouse

    Fletcher, Jon Peter B.; Spudich, Paul A.

    1998-01-01

    Slip on the San Andreas fault was determined for three M ∼ 4.7 earthquakes using a tomographic inverse system [Beroza and Spudich, 1988] to invert seismic source time functions (STFs) from S waves. STFs were obtained by deconvolving mainshock accelerograms by those from collocated smaller earthquakes. Accelerograms were from the U.S. Geological Survey Parkfield Small Aperture Array (UPSAR) and from a distributed array of digital accelerometer stations at Parkfield. Eight or nine STFs are used in each of the three inversions. STFs are typically symmetrical pulses with a duration of about 0.3–0.5 s. In the inversion, mainshock rise time was set to 0.05 s, and we allowed the rupture time to vary slightly from a constant rupture velocity of approximately 0.85β. Rupture for all three events, which are located in or close to the Middle Mountain preparation zone or box (MMB), quickly reaches a local maximum in slip and then propagates outward to peaks, ridges, or plateaus in the slip distribution. Slip for the October 20, 1992, event (located just inside the southern edge of the MMB) propagates from an initial spike north and updip along a curving ridge for about 2 km. The initial spike continued to grow in the November 14, 1993, event (located north of the October 20, 1992, event just beneath the hypocenter of the 1966 Parkfield earthquake), which shows little directivity, although there is a smaller patch of slip updip and to the south. In contrast, rupture for the December 20, 1994, event (located just south of the October 20, 1992, event) propagated north and slightly updip, creating a rough plateau in slip a few kilometers wide on a side. Directivity for this event also is to the north. Directivity for all three events points in the approximate direction of the 1966 hypocenter. Small pulses, which comprise a coda, are found on the STFs for several seconds after the initial impulsive event. Several tests based on the assumption that the average of all STFs from UPSAR for each event is an estimate of the true slip at the source suggest that the codas in the STFs are S waves from a long-duration source rather than uncorrected site response. An initiation phase is found on the array average for the November 14, 1993, and December 20, 1994, events. These precursory phases are the result of a spike in slip at the hypocenter. A value of 2.4–4 mm is obtained for Dc, the slip-weakening distance, by interpreting the initial spike as a critical patch. The few aftershocks for the October 20, 1992, event are distributed to the north and updip of the mainshock, but the November 14, 1993, event had a strong burst of aftershock activity that propagated to the north of its hypocenter at roughly the same depth. Aftershocks of the December 20, 1994, event are mostly updip. The November 14, 1993, event had the simplest slip distribution, appeared to be the most impulsive, and had the most active aftershock sequence and the greatest depth. If the eventual Parkfield earthquake initiates near the 1966 hypocenter, then the directivity of the three events studied here will have pointed to it. However, it is certainly possible that both the initiation of characteristic Parkfield shocks and the directivity of smaller events are controlled by fault properties on a larger scale such as by fault bends or jogs.

  14. The Effects of Fault Bends on Rupture Propagation: A Parameter Study

    NASA Astrophysics Data System (ADS)

    Lozos, J. C.; Oglesby, D. D.; Duan, B.; Wesnousky, S. G.

    2008-12-01

    Segmented faults with stepovers are ubiquitous, and occur at a variety of scales, ranging from small stepovers on the San Jacinto Fault, to the large-scale stepover on of the San Andreas Fault between Tejon Pass and San Gorgonio Pass. Because this type of fault geometry is so prevalent, understanding how rupture propagates through such systems is important for evaluating seismic hazard at different points along these faults. In the present study, we systematically investigate how far rupture will propagate through a fault with a linked (i.e., continuous fault) stepover, based on the length of the linking fault segment and the angle that connects the linking segment to adjacent segments. We conducted dynamic models of such systems using a two-dimensional finite element code (Duan and Oglesby 2007). The fault system in our models consists of three segments: two parallel 10km-long faults linked at a specified angle by a linking segment of between 500 m and 5 km. This geometry was run both as a extensional system and a compressional system. We observed several distinct rupture behaviors, with systematic differences between compressional and extensional cases. Both shear directions rupture straight through the stepover for very shallow stepover angles. In compressional systems with steeper angles, rupture may jump ahead from the stepover segment onto the far segment; whether or not rupture on this segment reaches critical patch size and slips fully is also a function of angle and stepover length. In some compressional cases, if the angle is steep enough and the stepover short enough, rupture may jump over the step entirely and propagate down the far segment without touching the linking segment. In extensional systems, rupture jumps from the nucleating segment onto the linking segment even at shallow angles, but at steeper angles, rupture propagates through without jumping. It is easier to propagate through a wider range of angles in extensional cases. In both extensional and compressional cases, for each stepover length there exists a maximum angle through which rupture can fully propagate; this maximum angle decreases asymptotically to a minimum value as the stepover length increases. We also found that a wave associated with a stopping phase coming from the far end of the fault may restart rupture and induce full propagation after a significant delay in some cases where the initial rupture terminated.

  15. Time-Dependent Alterations of MMPs, TIMPs and Tendon Structure in Human Achilles Tendons after Acute Rupture

    PubMed Central

    Minkwitz, Susann; Schmock, Aysha; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian; Klatte-Schulz, Franka

    2017-01-01

    A balance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) is required to maintain tendon homeostasis. Variation in this balance over time might impact on the success of tendon healing. This study aimed to analyze structural changes and the expression profile of MMPs and TIMPs in human Achilles tendons at different time-points after rupture. Biopsies from 37 patients with acute Achilles tendon rupture were taken at surgery and grouped according to time after rupture: early (2–4 days), middle (5–6 days), and late (≥7 days), and intact Achilles tendons served as control. The histological score increased from the early to the late time-point after rupture, indicating the progression towards a more degenerative status. In comparison to intact tendons, qRT-PCR analysis revealed a significantly increased expression of MMP-1, -2, -13, TIMP-1, COL1A1, and COL3A1 in ruptured tendons, whereas TIMP-3 decreased. Comparing the changes over time post rupture, the expression of MMP-9, -13, and COL1A1 significantly increased, whereas MMP-3 and -10 expression decreased. TIMP expression was not significantly altered over time. MMP staining by immunohistochemistry was positive in the ruptured tendons exemplarily analyzed from early and late time-points. The study demonstrates a pivotal contribution of all investigated MMPs and TIMP-1, but a minor role of TIMP-2, -3, and -4, in the early human tendon healing process. PMID:29053586

  16. Rupture directivity and slip distribution of the M 4.3 foreshock to the 1992 Joshua Tree earthquake, Southern California

    USGS Publications Warehouse

    Mori, J.

    1996-01-01

    Details of the M 4.3 foreshock to the Joshua Tree earthquake were studied using P waves recorded on the Southern California Seismic Network and the Anza network. Deconvolution, using an M 2.4 event as an empirical Green's function, corrected for complicated path and site effects in the seismograms and produced simple far-field displacement pulses that were inverted for a slip distribution. Both possible fault planes, north-south and east-west, for the focal mechanism were tested by a least-squares inversion procedure with a range of rupture velocities. The results showed that the foreshock ruptured the north-south plane, similar to the mainshock. The foreshock initiated a few hundred meters south of the mainshock and ruptured to the north, toward the mainshock hypocenter. The mainshock (M 6.1) initiated near the northern edge of the foreshock rupture 2 hr later. The foreshock had a high stress drop (320 to 800 bars) and broke a small portion of the fault adjacent to the mainshock but was not able to immediately initiate the mainshock rupture.

  17. Impact of the moon on cerebral aneurysm rupture.

    PubMed

    Kamp, Marcel A; Dibué, Maxine; Slotty, Philipp; Steiger, Hans-Jakob; Hänggi, Daniel

    2013-08-01

    Several external and internal risk factors for cerebral aneurysm rupture have been identified to date. Recently, it has been reported that moon phases correlate with the incidence of aneurysmal subarachnoid hemorrhage (SAH), however, another author found no such association. Therefore, the present study investigates the influence of the lunar cycle on the incidence of aneurysmal rupture, the initial clinical presentation, and the amount of subarachnoid blood. Lunar phase and the particular day of the lunar cycle were correlated to the date of aneurysm rupture, aneurysm location, initial clinical presentation, and amount of subarachnoid blood assessed from CT scans of all patients treated for basal SAH in our department from 2003 to 2010. We found no correlation between incidence of aneurysmal SAH, location of the aneurysm, initial clinical presentation, or amount of subarachnoid blood and the lunar cycle. The moon influences neither the incidence of aneurysmal SAH nor the grade of initial neurological deterioration or amount of subarachnoid blood.

  18. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre-stress conditions, such as values of the seismic parameter S = 0.45 to 2.0, and tends to stop for S = 2.5. If rupture initiates in the north on the SAF, we find that it is easier for it to propagate across the entire stepover region. The results have implications for potential earthquakes in the region, with the possibility of a preferred direction of rupture propagation through the stepover.

  19. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.

    2011-04-01

    Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.

  20. Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes

    NASA Astrophysics Data System (ADS)

    Bufe, C. G.

    2002-12-01

    Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay region over several decades preceding the 1906 San Francisco earthquake (M 7.8). Both the Kunlun and the Denali mainshocks occurred at new moon.

  1. Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic cycle model of fault interactions

    USGS Publications Warehouse

    Pollitz, F.F.; Schwartz, D.P.

    2008-01-01

    We construct a viscoelastic cycle model of plate boundary deformation that includes the effect of time-dependent interseismic strain accumulation, coseismic strain release, and viscoelastic relaxation of the substrate beneath the seismogenic crust. For a given fault system, time-averaged stress changes at any point (not on a fault) are constrained to zero; that is, kinematic consistency is enforced for the fault system. The dates of last rupture, mean recurrence times, and the slip distributions of the (assumed) repeating ruptures are key inputs into the viscoelastic cycle model. This simple formulation allows construction of stress evolution at all points in the plate boundary zone for purposes of probabilistic seismic hazard analysis (PSHA). Stress evolution is combined with a Coulomb failure stress threshold at representative points on the fault segments to estimate the times of their respective future ruptures. In our PSHA we consider uncertainties in a four-dimensional parameter space: the rupture peridocities, slip distributions, time of last earthquake (for prehistoric ruptures) and Coulomb failure stress thresholds. We apply this methodology to the San Francisco Bay region using a recently determined fault chronology of area faults. Assuming single-segment rupture scenarios, we find that fature rupture probabilities of area faults in the coming decades are the highest for the southern Hayward, Rodgers Creek, and northern Calaveras faults. This conclusion is qualitatively similar to that of Working Group on California Earthquake Probabilities, but the probabilities derived here are significantly higher. Given that fault rupture probabilities are highly model-dependent, no single model should be used to assess to time-dependent rupture probabilities. We suggest that several models, including the present one, be used in a comprehensive PSHA methodology, as was done by Working Group on California Earthquake Probabilities.

  2. The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.

    1996-01-01

    A hybrid global search algorithm is used to solve the nonlinear problem of calculating slip amplitude, rake, risetime, and rupture time on a finite fault. Thirty-five strong motion velocity records are inverted by this method over the frequency band from 0.1 to 1.0 Hz for the Northridge earthquake. Four regions of larger-amplitude slip are identified: one near the hypocenter at a depth of 17 km, a second west of the hypocenter at about the same depth, a third updip from the hypocenter at a depth of 10 km, and a fourth updip from the hypocenter and to the northwest. The results further show an initial fast rupture with a velocity of 2.8 to 3.0 km/s followed by a slow termination of the rupture with velocities of 2.0 to 2.5 km/s. The initial energetic rupture phase lasts for 3 s, extending out 10 km from the hypocenter. Slip near the hypocenter has a short risetime of 0.5 s, which increases to 1.5 s for the major slip areas removed from the hypocentral region. The energetic rupture phase is also shown to be the primary source of high-frequency radiation (1-15 Hz) by an inversion of acceleration envelopes. The same global search algorithm is used in the envelope inversion to calculate high-frequency radiation intensity on the fault and rupture time. The rupture timing from the low- and high-frequency inversions is similar, indicating that the high frequencies are produced primarily at the mainshock rupture front. Two major sources of high-frequency radiation are identified within the energetic rupture phase, one at the hypocenter and another deep source to the west of the hypocenter. The source at the hypocenter is associated with the initiation of rupture and the breaking of a high-stress-drop asperity and the second is associated with stopping of the rupture in a westerly direction.

  3. A Model For Rapid Estimation of Economic Loss

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2012-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  4. Using Socioeconomic Data to Calibrate Loss Estimates

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2013-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  5. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  6. Strong ground motion simulation of the 2016 Kumamoto earthquake of April 16 using multiple point sources

    NASA Astrophysics Data System (ADS)

    Nagasaka, Yosuke; Nozu, Atsushi

    2017-02-01

    The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This result indicates the necessity for improving the pseudo point-source model, by introducing azimuth-dependent corner frequency for example, so that it can incorporate the effect of rupture directivity.[Figure not available: see fulltext.

  7. Initiation process of the Mw 6.2 central Tottori, Japan, earthquake on October 21, 2016: Stress transfer due to its largest foreshock of Mw 4.1

    NASA Astrophysics Data System (ADS)

    Noda, S.; Ellsworth, W. L.

    2017-12-01

    On October 21, 2016, a strike-slip earthquake with Mw 6.2 occurred in the central Tottori prefecture, Japan. It was preceded by a foreshock sequence that began with a Mw 4.1 event, the largest earthquake for the sequence, and lasted about two hours. According to the JMA catalog, the largest foreshock had a similar focal mechanism as the mainshock and was located in the immediate vicinity of the mainshock hypocenter. The goal of this study is to understand the relationship between the foreshock and the initial rupture of the mainshock. We first determine the relative hypocenter distance between the foreshock and mainshock using the P-wave onsets on Hi-net station records. The initiation points of the two events are likely about 100 m apart according to the current results, but could be closer. Within the location uncertainty, they might either be coplanar or on subparallel planes. Next, we obtain the slip-history models from a kinematic inversion method using empirical Green's functions derived from other foreshocks with M 2.2 - 2.4. The Mw 4.1 foreshock and Mw 6.2 mainshock started in a similar way until approximately 0.2 s after their onsets. For the foreshock, the rapid growth stage completed by 0.2 s even though the rupture propagation continued for 0.4 - 0.5 s longer (note that 0.2 s is significantly shorter than the typical source duration of a Mw 4.1 earthquake). On the other hand, the mainshock rupture continued to grow rapidly after 0.2 s. The comparison between the relative hypocenter locations and the slip models shows that the mainshock nucleated within the area strongly effected by both static and dynamic stress changes created by the foreshock. We also find that the mainshock initially propagated away from the foreshock hypocenter. We consider that the stress transfer process is a key to understand the mainshock nucleation as well as its rupture growth process.

  8. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    NASA Astrophysics Data System (ADS)

    Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, P. M.

    2012-09-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  9. Effect of thermal pressurization on dynamic rupture propagation under depth-dependent stress

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Kuge, K.; Kase, Y.

    2009-12-01

    Fluid and pore pressure evolution can affect dynamic propagation of earthquake ruptures owing to thermal pressurization (e.g., Mase and Smith, 1985). We investigate dynamic rupture propagation with thermal pressurization on a fault subjected to depth-dependent stress, on the basis of 3-D numerical simulations for spontaneous dynamic ruptures. We put a vertical strike-slip rectangular fault in a semi-infinite, homogenous, and elastic medium. The length and width of the fault are 8 and 3 km, respectively. We assume a depth-dependent stress estimated by Yamashita et al. (2004). The numerical algorithm is based on the finite-difference method by Kase and Kuge (2001). A rupture is initiated by increasing shear stress in a small patch at the bottom of the fault, and then proceeds spontaneously, governed by a slip-weakening law with the Coulomb failure criteria. Coefficients of friction and Dc are homogeneous on the fault. On a fault with thermal pressurization, we allow effective normal stress to vary with pore pressure change due to frictional heating by the formulation of Bizzarri and Cocco (2006). When thermal pressurization does not work, tractions drop in the same way everywhere and rupture velocity is subshear except near the free surface. Due to thermal pressurization, dynamic friction on the fault decreases and is heterogeneous not only vertically but horizontally, slip increases, and rupture velocity along the strike direction becomes supershear. As a result, plural peaks of final slip appear, as observed in the case of undrained dip-slip fault by Urata et al. (2008). We found in this study that the early stage of rupture growth under the depth-dependent stress is affected by the location of an initial crack. When a rupture is initiated at the center of the fault without thermal pressurization, the rupture cannot propagate and terminates. Thermal pressurization can help such a powerless rupture to keep propagating.

  10. Slip complexity and frictional heterogeneities in dynamic fault models

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.

    2005-12-01

    The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.

  11. 3D fault curvature and fractal roughness: Insights for rupture dynamics and ground motions using a Discontinous Galerkin method

    NASA Astrophysics Data System (ADS)

    Ulrich, Thomas; Gabriel, Alice-Agnes

    2017-04-01

    Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial stress conditions on a planar fault, is demonstrated. Furthermore, we show that rupture extend, rupture front coherency and rupture speed are highly dependent on the initial amplitude of stress acting on the fault, defined by the normalized prestress factor R, the ratio of the potential stress drop over the breakdown stress drop. The effects of fault complexity are particularly pronounced for lower R. By low-pass filtering a rough fault at several cut-off wavelengths, we then try to capture rupture complexity using a simplified fault geometry. We find that equivalent source dynamics can only be obtained using a scarcely filtered fault associated with a reduced stress level. To investigate the wavelength-dependent roughness effect, the fault geometry is bandpass-filtered over several spectral ranges. We show that geometric fluctuations cause rupture velocity fluctuations of similar length scale. The impact of fault geometry is especially pronounced when the rupture front velocity is near supershear. Roughness fluctuations significantly smaller than the rupture front characteristic dimension (cohesive zone size) affect only macroscopic rupture properties, thus, posing a minimum length scale limiting the required resolution of 3D fault complexity. Lastly, the effect of fault curvature and roughness on the simulated ground-motions is assessed. Despite employing a simple linear slip weakening friction law, the simulated ground-motions compare well with estimates from ground motions prediction equations, even at relatively high frequencies.

  12. Precursory, Nucleation and Propagation of Ruptures Along Heterogeneously Loaded, Circular Experimental Faults

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Zu, X.; Jeffers, J.

    2017-12-01

    We explored the evolution of dynamic rupture along a circular experimental fault composed of clear acrylic blocks. The ring-shaped fault surface has inner and outer diameters of 7.72 and 10.16 cm, respectively. An array of ten rossette strain-gauges is attached to the outer rim of one block that provide the 2D strain tensor in a plane normal to the fault. The 30 components of the gauges are monitored at 10^6 samples/second. One 3D miniature accelerometer is attached to the fault block. The initial asperities of the fault surface generated a non-uniform strain (=stress) distribution that was recorded, and indicated local deviations of ±30% from the mean stress. The mean normal stress was up to 3.5 MPa, the remotely applied velocity was up to .002 m/s, and the slip velocities during rupture were not measured. The rupture characteristics, namely propagation velocity and rupture front strain-field, were determined from strain-gauge outputs. The analysis of tens of stick-slip events revealed the following preliminary results: (1) The ruptures consistently nucleated at sites of high local strains (=stresses) that were formed by the pre-shear, normal stress loading. (2) The pre-rupture nucleation process was recognized a by temporal (< 0.1 s), local (<20 mm) reduction of the shear strain. (3) Commonly, the initiation of nucleation was associated with micro acoustic emissions, whereas the initiation of rupture was associated with intense acoustic activity. (4) Nucleation could occur quasi-simultaneously at two, highly stressed sites. (5) From the nucleation site, the ruptures propagated in two directions along the ring-shaped fault, and the collision between the two fronts led to rupture `shut-off'. (5) The strain-field of rupture fronts was well-recognized for ruptures propagating faster than 50 m/s, and the fastest fronts propagated at 1000 m/s. (7) It appears that the rupture front strain-field close to the nucleation site differs from the front strain-field far from nucleation site. (8) Post-shear examination of the fault surfaces revealed evidence of brittle wear of the acrylic including gouge formation, ploughing, and powder smearing. (9) Work in progress includes attempts to achieve faster dynamic ruptures, and the utilization of the existing monitoring system to rupture granite faults.

  13. Clinical recovery of two hip adductor longus ruptures: a case-report of a soccer player

    PubMed Central

    2013-01-01

    Background Non-operative treatment of acute hip adductor longus ruptures in athletes has been described in the literature. However, very limited information concerning the recovery of this type of injury exists. This case represented a unique possibility to study the recovery of two acute adductor longus ruptures, using novel, reliable and validated assessment methods. Case presentation A 22-year old male soccer player (Caucasian) sustained two subsequent acute adductor longus ruptures, one in each leg. The injuries occurred 10 months apart, and were treated non-surgically in both situations. He was evaluated using hip-strength assessments, self-report and ultrasonography until complete muscle-strength recovery of the hip adductors had occurred. The player was able to participate in a full soccer training session without experiencing pain 15 weeks after the first rupture, and 12 weeks after the second rupture. Full hip adductor muscle-strength recovery was obtained 52 weeks after the first rupture and 10 weeks after the second rupture. The adductor longus injuries, as verified by initial ultrasonography (10 days post-injury), showed evidence of a complete tendon rupture in both cases, with an almost identical imaging appearance. It was only at 6 and 10 weeks ultrasonographic follow-up that the first rupture was found to include a larger anatomical area than the second rupture. Conclusion From this case we can conclude that two apparently similar hip adductor longus ruptures, verified by initial ultrasonography (10 days post-injury), can have very different hip adductor strength recovery times. Assessment of adductor strength recovery may therefore in the future be a useful and important additional measure for determining when soccer players with hip adductor longus ruptures can return safely to play. PMID:23693119

  14. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.

  15. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    The 1995 Hyogo-ken Nambu Earthquake (1995) near Kobe, Japan, spurred research on strong motion prediction. To mitigate damage caused by large earthquakes, a highly precise method of predicting future strong motion waveforms is required. In this study, we applied empirical Green's function method to forward modeling in order to simulate strong ground motion in the Noubi Fault zone and examine issues related to strong motion prediction for large faults. Source models for the scenario earthquakes were constructed using the recipe of strong motion prediction (Irikura and Miyake, 2001; Irikura et al., 2003). To calculate the asperity area ratio of a large fault zone, the results of a scaling model, a scaling model with 22% asperity by area, and a cascade model were compared, and several rupture points and segmentation parameters were examined for certain cases. A small earthquake (Mw: 4.6) that occurred in northern Fukui Prefecture in 2004 were examined as empirical Green's function, and the source spectrum of this small event was found to agree with the omega-square scaling law. The Nukumi, Neodani, and Umehara segments of the 1891 Noubi Earthquake were targeted in the present study. The positions of the asperity area and rupture starting points were based on the horizontal displacement distributions reported by Matsuda (1974) and the fault branching pattern and rupture direction model proposed by Nakata and Goto (1998). Asymmetry in the damage maps for the Noubi Earthquake was then examined. We compared the maximum horizontal velocities for each case that had a different rupture starting point. In the case, rupture started at the center of the Nukumi Fault, while in another case, rupture started on the southeastern edge of the Umehara Fault; the scaling model showed an approximately 2.1-fold difference between these cases at observation point FKI005 of K-Net. This difference is considered to relate to the directivity effect associated with the direction of rupture propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  16. Implementation of visual data mining for unsteady blood flow field in an aortic aneurysm.

    PubMed

    Morizawa, Seiichiro; Shimoyama, Koji; Obayashi, Shigeru; Funamoto, Kenichi; Hayase, Toshiyuki

    2011-12-01

    This study was performed to determine the relations between the features of wall shear stress and aneurysm rupture. For this purpose, visual data mining was performed in unsteady blood flow simulation data for an aortic aneurysm. The time-series data of wall shear stress given at each grid point were converted to spatial and temporal indices, and the grid points were sorted using a self-organizing map based on the similarity of these indices. Next, the results of cluster analysis were mapped onto the real space of the aortic aneurysm to specify the regions that may lead to aneurysm rupture. With reference to previous reports regarding aneurysm rupture, the visual data mining suggested specific hemodynamic features that cause aneurysm rupture. GRAPHICAL ABSTRACT:

  17. Osteophyte formation after ACL rupture in mice is associated with joint restabilization and loss of range of motion

    PubMed Central

    Hsia, Allison W.; Anderson, Matthew J.; Heffner, Mollie A.; Lagmay, Earl P.; Zavodovskaya, Regina; Christiansen, Blaine A.

    2016-01-01

    Osteophytes are a typical radiographic finding during osteoarthritis (OA). Osteophytes are thought to form in response to joint instability, however the time course of osteophyte formation and joint stabilization following joint injury is not well understood. In this study, we investigated the time course of osteophyte formation and joint function following non-invasive knee injury in mice. We hypothesized that initial joint instability following knee injury would initiate osteophyte formation, which would in turn restabilize the joint and reduce range of motion (ROM). Mice were subjected to non-invasive anterior cruciate ligament (ACL) rupture. Anterior-posterior (AP) joint laxity, ROM, and chondro/osteophyte formation were measured immediately after injury, and 2, 4, 6, and 8 weeks post-injury. Chondrophyte areas at each time point were measured with histology, while mineralized osteophyte volume was determined using micro-computed tomography. Immediately after ACL rupture, AP joint laxity was increased 2-fold, while ROM was increased 11.7%. Chondrophytes appeared by 2 weeks post-injury, corresponding with a decrease in AP joint laxity and ROM. By 8 weeks post-injury, considerable osteophyte formation was observed around the joint, AP joint laxity returned to control levels, and joint ROM decreased to 61% of control values. These data support a role for chondro/osteophytes in joint restabilization after injury, and provide crucial insight into the time course and pathology of joint degeneration during OA development in the mouse. PMID:27031945

  18. Dynamic models of an earthquake and tsunami offshore Ventura, California

    USGS Publications Warehouse

    Kenny J. Ryan,; Geist, Eric L.; Barall, Michael; David D. Oglesby,

    2015-01-01

    The Ventura basin in Southern California includes coastal dip-slip faults that can likely produce earthquakes of magnitude 7 or greater and significant local tsunamis. We construct a 3-D dynamic rupture model of an earthquake on the Pitas Point and Lower Red Mountain faults to model low-frequency ground motion and the resulting tsunami, with a goal of elucidating the seismic and tsunami hazard in this area. Our model results in an average stress drop of 6 MPa, an average fault slip of 7.4 m, and a moment magnitude of 7.7, consistent with regional paleoseismic data. Our corresponding tsunami model uses final seafloor displacement from the rupture model as initial conditions to compute local propagation and inundation, resulting in large peak tsunami amplitudes northward and eastward due to site and path effects. Modeled inundation in the Ventura area is significantly greater than that indicated by state of California's current reference inundation line.

  19. Finite-fault inversion of the Mw 5.9 2012 Emilia-Romagna earthquake (Northern Italy) using aftershocks as near-field Green's function approximations

    NASA Astrophysics Data System (ADS)

    Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic

    2017-04-01

    On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.

  20. Spontaneous rupture of the spleen detected on CT as the initial manifestation of infectious mononucleosis.

    PubMed

    Gayer, Gabriela; Zandman-Goddard, Gisele; Kosych, Elena; Apter, Sara

    2003-04-01

    Spontaneous splenic rupture after infectious mononucleosis (IM) is a rare, potentially fatal complication of IM, occurring in 0.1-0.5% of patients with proven IM. It usually occurs several weeks after the onset of symptoms, but may, rarely, be the initial manifestation of the disease. The patient is usually examined as an emergency due to severe abdominal pain and a falling hematocrit. The radiologist should be aware of the pathologic conditions involving the spleen which may lead to its spontaneous rupture.

  1. An artificial stress asperity for initialization of spontaneous rupture propagation - a parametric study of a dynamic model with linear slip-weakening friction

    NASA Astrophysics Data System (ADS)

    Galis, M.; Pelties, C.; Kristek, J.; Moczo, P.

    2012-04-01

    Artificial procedures are used to initiate spontaneous rupture on faults with the linear slip-weakening (LSW) friction law. Probably the most frequent technique is the stress asperity. It is important to minimize effects of the artificial initialization on the phase of the spontaneous rupture propagation. The effects may strongly depend on the geometry and size of the asperity, spatial distribution of the stress in and around the asperity, and a maximum stress-overshoot value. A square initialization zone with the stress discontinuously falling down at the asperity border to the level of the initial stress has been frequently applied (e.g., in the SCEC verification exercise). Galis et al. (2010) and Bizzarri (2010) independently introduced the elliptical asperity with a smooth spatial stress distribution in and around the asperity. In both papers the width of smoothing/tapering zone was only ad-hoc defined. Numerical simulations indicate that the ADER-DG method can account for a discontinuous-stress initialization more accurately than the FE method. Considering the ADER-DG solution a reference we performed numerical simulations in order to define the width of the smoothing/tapering zone to be used in the FE and FD-FE hybrid methods for spontaneous rupture propagation. We considered different sizes of initialization zone, different shapes of the initialization zone (square, circle, ellipse), different spatial distributions of stress (smooth, discontinuous), and different stress-overshoot values to investigate conditions of the spontaneous rupture propagation. We compare our numerical results with the 2D and 3D estimates by Andrews (1976a,b), Day (1982), Campillo & Ionescu (1997), Favreau at al. (1999) and Uenishi & Rice (2003, 2004). Results of our study may help modelers to better setup the initialization zone in order to avoid, e.g., a too large initialization zone and reduce numerical artifacts.

  2. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.

  3. Fan-head shear rupture mechanism as a source of off-fault tensile cracking

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone; behind this zone static microcracks are left in the wake of the propagating rupture. Unfortunately, the modern technology used in these experiments is not able to identify the shear rupture mechanism itself operated within the narrow rupture interface. However, a special analysis of side effects accompanying the shear rupture propagation (including the off-fault tensile cracking) allows supposing that the failure process was governed by the fan-mechanism. 1. Tarasov, B.G. 2014. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics, 621, 69-84. 2. Griffith, W.A., Rosakis, A., Pollard, D.D. and Ko, C.W., 2009. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures, Geology, pp 795-798. 3. Ngo, D., Huang, Y., Rosakis, A., Griffith, W.A., Pollard D. 2012. Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models. Journal of Geophysical Research, vol. 117, B01307, doi: 10.1029/2011JB008577 (2012).

  4. Non-operative management in a case of spontaneous splenic rupture in infectious mononucleosis.

    PubMed

    Paar, W D; Look, M P; Robertz Vaupel, G M; Kreft, B; Hirner, A; Sauerbruch, T

    1995-01-01

    Spontaneous splenic rupture as a complication of infectious mononucleosis was diagnosed in a 19-year-old woman. Sonographic and MRI investigations revealed subcapsular hematoma of the spleen without overt rupture. The patient was managed conservatively. Somatostatin treatment was initiated in order to reduce splanchnic blood flow. Further clinical course of the patient was favourable. Seven days after the diagnosis of splenic rupture the patient was discharged from hospital. Non-operative management should be considered in patients with subcapsular splenic rupture to avoid complications of splenectomy (e.g. post-splenectomy sepsis).

  5. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, Simon; Brietzke, Gilbert; Igel, Heiner; Larmat, Carene; Fichtner, Andreas; Johnson, Paul A.; Huang, Lianjie

    2010-05-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the hypocenter and other information might be inferred. In this study, the backward propagation is performed numerically using a parallel cartesian spectral element code. Initial tests using point source moment tensors serve as control for the adaptability of the used wave propagation algorithm. After that we investigated the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, rupture velocity etc.). We used synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice-rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of various assumptions made on the source (e.g., origin time, hypocenter, fault location, etc.), adjoint source weighting (e.g., correct for epicentral distance) and structure (uncertainty in the velocity model) on the results of the time reversal process. We give an overview about the quality of focussing of the different wavefield properties (i.e., displacements, strains, rotations, energies). Additionally, the potential to recover source properties of multiple point sources at the same time is discussed.

  6. Specifying initial stress for dynamic heterogeneous earthquake source models

    USGS Publications Warehouse

    Andrews, D.J.; Barall, M.

    2011-01-01

    Dynamic rupture calculations using heterogeneous stress drop that is random and self-similar with a power-law spatial spectrum have great promise of producing realistic ground-motion predictions. We present procedures to specify initial stress for random events with a target rupture length and target magnitude. The stress function is modified in the depth dimension to account for the brittle-ductile transition at the base of the seismogenic zone. Self-similar fluctuations in stress drop are tied in this work to the long-wavelength stress variation that determines rupture length. Heterogeneous stress is related to friction levels in order to relate the model to physical concepts. In a variant of the model, there are high-stress asperities with low background stress. This procedure has a number of advantages: (1) rupture stops naturally, not at artificial barriers; (2) the amplitude of short-wavelength fluctuations of stress drop is not arbitrary: the spectrum is fixed to the long-wavelength fluctuation that determines rupture length; and (3) large stress drop can be confined to asperities occupying a small fraction of the total rupture area, producing slip distributions with enhanced peaks.

  7. Quantitative naturalistic methods for detecting change points in psychotherapy research: an illustration with alliance ruptures.

    PubMed

    Eubanks-Carter, Catherine; Gorman, Bernard S; Muran, J Christopher

    2012-01-01

    Analysis of change points in psychotherapy process could increase our understanding of mechanisms of change. In particular, naturalistic change point detection methods that identify turning points or breakpoints in time series data could enhance our ability to identify and study alliance ruptures and resolutions. This paper presents four categories of statistical methods for detecting change points in psychotherapy process: criterion-based methods, control chart methods, partitioning methods, and regression methods. Each method's utility for identifying shifts in the alliance is illustrated using a case example from the Beth Israel Psychotherapy Research program. Advantages and disadvantages of the various methods are discussed.

  8. Earthquake doublet that occurred in a pull-apart basin along the Sumatran fault and its seismotectonic implication

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Yamashina, T.; Inoue, H.; Toda, S.

    2007-12-01

    On March 6, 2007, an earthquake doublet occurred around Lake Singkarak, central Sumatra in Indonesia. An earthquake with magnitude (Mw) 6.4 at 03:49 is followed two hours later (05:49) by a similar-size event (Mw 6.3). Lake Singkarak is located between the Sianok and Sumani fault segments of the Sumatran fault system, and is a pull-apart basin formed at the segment boundary. We investigate source processes of the earthquakes using waveform data obtained from JISNET, which is a broad-band seismograph network in Indonesia. We first estimate the centroid source locations and focal mechanisms by the waveform inversion carried out in the frequency domain. Since stations are distributed almost linearly in the NW-SE direction coincident with the Sumatran fault strike direction, the estimated centroid locations are not well resolved especially in the direction orthogonal to the NW-SE direction. If we assume that these earthquakes occurred along the Sumatran fault, the first earthquake is located on the Sumani segment below Lake Singkarak and the second event is located at a few tens of kilometers north of the first event on the Sianok segment. The focal mechanisms of both events point to almost identical right-lateral strike-slip vertical faulting, which is consistent with the geometry of the Sumatran fault system. We next investigate the rupture initiation points using the particle motions of the P-waves of these earthquakes observed at station PPI, which is located about 20 km north of the Lake Singkarak. The initiation point of the first event is estimated in the north of the lake, which corresponds to the northern end of the Sumani segment. The initiation point of the second event is estimated at the southern end of the Sianok segment. The observed maximum amplitudes at stations located in the SE of the source region show larger amplitudes for the first event than those for the second one. On the other hand, the amplitudes at station BSI located in the NW of the source region show larger amplitude for the second event than that for the first one. Since the magnitudes, focal mechanisms, and source locations are almost identical for the two events, the larger amplitudes for the second event at BSI may be due to the effect of rupture directivity. Accordingly, we obtain the following image of source processes of the earthquake doublet: The first event initiated at the segment boundary and its rupture propagated along the Sumani segment to the SW direction. Then, the second event, which may be triggered by the first event, initiated at a location close to the hypocenter of the first event, but its rupture propagated along the Sianok segment to the NE direction, opposite to the first event. It is known that the previous significant seismic activity along the Sianok and Sumani segments occurred in 1926, which was also an earthquake doublet with similar magnitudes to those in 2007. If we assume that the time interval between the earthquake doublets in 1926 and 2007 represents the average recurrence interval and that typical slip in the individual earthquakes is 1 m, we obtain approximately 1 cm/year for a slip rate of the fault segments. Geological features indicate that Lake Singkrak is no more than a few million years old (Sieh and Natawidjaja, 2000, JGR). If the pull-apart basin has been created since a few million years ago with the estimated slip rate of the segments, we obtain roughly 20 km of the total offset on the Sianok and Sumani segments, which is consistent with the observed offset. Our study supports the model of Sieh and Natawidjaja (2000) that the basin continues to be created by dextral slip on the en echelon Sumani and Sianok segments.

  9. Misdiagnosed Chest Pain: Spontaneous Esophageal Rupture

    PubMed Central

    Inci, Sinan; Gundogdu, Fuat; Gungor, Hasan; Arslan, Sakir; Turkyilmaz, Atila; Eroglu, Atila

    2013-01-01

    Chest pain is one of themost common complaints expressed by patients presenting to the emergency department, and any initial evaluation should always consider life-threatening causes. Esophageal rupture is a serious condition with a highmortality rate. If diagnosed, successful therapy depends on the size of the rupture and the time elapsed between rupture and diagnosis.We report on a 41-year-old woman who presented to the emergency department complaining of left-sided chest pain for two hours. PMID:27122690

  10. Superficial Dorsal Vein Rupture Imitating Penile Fracture

    PubMed Central

    Topsakal, Medih; Kavukcu, Ender; Karadeniz, Tahir

    2011-01-01

    Dorsal vein rupture of the penis is a rare condition, and few cases have been reported in the literature. Herein we report a 41-year-old man who presented with mildly painful and acute swollen penis, which initially imitated a penile fracture but was surgically explored and shown to be a superficial dorsal vein rupture. PMID:21556219

  11. Intraslab rupture triggering megathrust rupture coseismically in the 17 December 2016 Solomon Islands Mw 7.9 earthquake

    NASA Astrophysics Data System (ADS)

    Lay, Thorne; Ye, Lingling; Ammon, Charles J.; Kanamori, Hiroo

    2017-02-01

    The 17 December 2016 Solomon Islands earthquake (Mw 7.9) initiated 103 km deep in the subducting Solomon Sea slab near the junction of the Solomon Islands and New Britain trenches. Most aftershocks are located near the Solomon Islands plate boundary megathrust west of Bougainville, where previous large interplate thrust faulting earthquakes occurred in 1995 (Mw 7.7) and 1971 (Mw 8.0). Teleseismic body wave modeling and aftershock relocations indicate that the initial 30 s of the 2016 rupture occurred over depths of 90 to 120 km on an intraslab fault dipping 30° to the southwest, almost perpendicular to the dipping slab interface. The next 50 s of rupture took place at depths of 32 to 47 km in the deeper (Domain C) portion of the overlying megathrust fault dipping 35° to the northeast. High susceptibility to triggering in the region accounts for this compound rupture of two separate fault planes.

  12. The Flow Induced by the Coalescence of Two Initially Stationary Drops

    NASA Technical Reports Server (NTRS)

    Nobari, M. R.; Tryggvason, G.

    1994-01-01

    The coalescence of two initially stationary drops of different size is investigated by solving the unsteady, axisymmetric Navier-Stokes equations numerically, using a Front-Tracking/Finite Difference method. Initially, the drops are put next to each other and the film between them ruptured. Due to surface tension forces, the drops coalesce rapidly and the fluid from the small drop is injected into the larger one. For low nondimensional viscosity, or Ohnesorge number, little mixing takes place and the small drop fluid forms a blob near the point where the drops touched initially. For low Ohnesorge number, on the other hand, the small drop forms a jet that penetrates far into the large drop. The penetration depth also depends on the size of the drops and shows that for a given fluid of sufficiently low viscosity, there is a maximum penetration depth for intermediate size ratios.

  13. Nucleation and dynamic rupture on weakly stressed faults sustained by thermal pressurization

    NASA Astrophysics Data System (ADS)

    Schmitt, Stuart V.; Segall, Paul; Dunham, Eric M.

    2015-11-01

    Earthquake nucleation requires that the shear stress τ locally reaches a fault's static strength, fσeff, the product of the friction coefficient and effective normal stress. Once rupture initiates, shear heating-induced thermal pressurization can sustain rupture at much lower τ/σeff ratios, a stress condition believed to be the case during most earthquakes. This requires that earthquakes nucleate at heterogeneities. We model nucleation and dynamic rupture on faults in a 2-D elastic medium with rate/state friction and thermal pressurization, subjected to globally low τ but with local stress heterogeneities that permit nucleation. We examine end-member cases of either high-τ or low-σeff heterogeneities. We find that thermal pressurization can sustain slip at τ/σeff values as low as 0.13, compared to static friction of ˜0.7. Background τ (and, to lesser extent, heterogeneity width) controls whether ruptures arrest or are sustained, with extremely low values resulting in arrest. For a small range of background τ, sustained slip is pulse-like. Cessation of slip in a pulse tail can result from either diffusive restrengthening of σeff or a wave-mediated stopping phase that follows the rupture tip. Slightly larger background τ leads to sustained crack-like rupture. Thermal pressurization is stronger at high-τ heterogeneities, resulting in a lower background τ threshold for sustained rupture and potentially larger arresting ruptures. High-stress events also initiate with higher moment rate, although this may be difficult to observe in nature. For arresting ruptures, stress drops and the dependence of fracture energy on mean slip are both consistent with values inferred for small earthquakes.

  14. Distributed Seismic Moment Fault Model, Spectral Characteristics and Radiation Patterns

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Tsesarsky, Michael; Gvirtzman, Zohar

    2014-05-01

    We implement a Distributed Seismic Moment (DSM) fault model, a physics-based representation of an earthquake source based on a skewed-Gaussian slip distribution over an elliptical rupture patch, for the purpose of forward modeling of seismic-wave propagation in 3-D heterogeneous medium. The elliptical rupture patch is described by 13 parameters: location (3), dimensions of the patch (2), patch orientation (1), focal mechanism (3), nucleation point (2), peak slip (1), rupture velocity (1). A node based second order finite difference approach is used to solve the seismic-wave equations in displacement formulation (WPP, Nilsson et al., 2007). Results of our DSM fault model are compared with three commonly used fault models: Point Source Model (PSM), Haskell's fault Model (HM), and HM with Radial (HMR) rupture propagation. Spectral features of the waveforms and radiation patterns from these four models are investigated. The DSM fault model best incorporates the simplicity and symmetry of the PSM with the directivity effects of the HMR while satisfying the physical requirements, i.e., smooth transition from peak slip at the nucleation point to zero at the rupture patch border. The implementation of the DSM in seismic-wave propagation forward models comes at negligible computational cost. Reference: Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H.-O. (2007). Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45(5), 1902-1936.

  15. Delayed splenic rupture presenting 70 days following blunt abdominal trauma.

    PubMed

    Resteghini, Nancy; Nielsen, Jonpaul; Hoimes, Matthew L; Karam, Adib R

    2014-01-01

    Delayed splenic rupture following conservative management of splenic injury is an extremely rare complication. We report a case of an adult patient who presented with delayed splenic rupture necessitating splenectomy, 2 months following blunt abdominal trauma. Imaging at the initial presentation demonstrated only minimal splenic contusion and the patient was discharge following 24 hours of observation. © 2014.

  16. Laparoendoscopic single-site repair of bladder rupture using a home-made single-port device: initial experience of treatment for a traumatic intraperitoneal bladder rupture.

    PubMed

    Lee, Joo Yong; Kang, Dong Hyuk; Lee, Seung Wook

    2012-06-01

    We report our initial experience with a laparoendoscopic single-site (LESS) repair of a bladder rupture using a home-made single-port device. A 37-year-old man presented to the emergency department with complaints of voiding difficulty and gross hematuria after blunt trauma. Cystography and computed tomography revealed an intraperitoneal bladder rupture. The patient underwent LESS repair of a bladder rupture using the Alexis wound retractor, which was inserted through the umbilical incision. A home-made single-port device was made by fixing 6½ surgical gloves to the outer rim of the retractor and securing the glove finger to the end of 3 trocars with a tie. Using the flexible laparoscopic instruments and rigid instruments, LESS surgery was performed using a procedure similar to conventional laparoscopic surgery. The patient did not have any voiding problem after removal of the urethral Foley catheter on the 10th postoperative day. To our knowledge, this is the first published report of LESS repair of a traumatic bladder rupture using a home-made single-port device in the literature.

  17. Fault rupture process and strong ground motion simulation of the 2014/04/01 Northern Chile (Pisagua) earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Suzuki, W.; Aoi, S.

    2014-12-01

    A megathrust earthquake occurred in Northern Chile in April 1, 2014, 23:46 (UTC) (Mw 8.2), in a region that had not experienced a major earthquake since the great 1877 (~M8.6) event. This area had been already identified as a mature seismic gap with a strong interseismic coupling inferred from geodetic measurements (Chlieh et al., JGR, 2011 and Metois et al., GJI, 2013). We used 48 components of strong motion records belonging to the IPOC network in Northern Chile to investigate the source process of the M8.2 Pisagua earthquake. Acceleration waveforms were integrated to get velocities and filtered between 0.02 and 0.125 Hz. We assumed a single fault plane segment with an area of 180 km by 135 km, a strike of 357, and a dip of 18 degrees (GCMT). We set the starting point of rupture at the USGS hypocenter (19.610S, 70.769W, depth 25km), and employed a multi-time-window linear waveform inversion method (Hartzell and Heaton, BSSA, 1983), to derive the rupture process of the Pisagua earthquake. Our results show a slip model characterized by one large slip area (asperity) localized 50 km south of the epicenter, a peak slip of 10 m and a total seismic moment of 2.36 x 1021Nm (Mw 8.2). Fault rupture slowly propagated to the south in front of the main asperity for the initial 25 seconds, and broke it by producing a strong acceleration stage. The fault plane rupture velocity was in average 2.9 km/s. Our calculations show an average stress drop of 4.5MPa for the entire fault rupture area and 12MPa for the asperity area. We simulated the near-source strong ground motion records in a broad frequency band (0.1 ~ 20 Hz), to investigate a possible multi-frequency fault rupture process as the one observed in recent mega-thrust earthquakes such as the 2011 Tohoku-oki (M9.0). Acknowledgments Strong motion data was kindly provided by Chile University as well as the IPOC (Integrated Plate boundary Observatory Chile).

  18. The 1959 MW 7.3 Hebgen Lake earthquake revisited: morphology and mechanics from lidar

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nissen, E.; Lajoie, L. J.

    2016-12-01

    This study demonstrates how we can glean new information by revisiting an early instrumental earthquake with high-resolution topography and modern thinking about the mechanics of surface rupturing. The 1959 MW 7.3 Hebgen Lake earthquake is among the largest and most deadly historic earthquakes within the conterminous United States outside of California, and one of the largest normal faulting earthquakes on record globally. The earthquake ruptured the subparallel Hebgen and Red Canyon faults within the slowly extending ( 3 mm/yr) Centennial Mountain Belt, and is one of the first to be field mapped in detail, modeled from global seismograms, and surveyed geodetically. Here, we augment these early studies with an investigation of the surface rupture in its current state. We use a 50 cm-resolution airborne lidar digital terrain model collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 to document the fault scarp morphology, constrain its evolution, and speculate on the mechanical rupture properties. Using a dense set of scarp profiles, we add >400 displacement measurements to the 143 published data points from early field work, allowing more rigorous quantification of along-strike slip variability and strain gradients. Evidence of off-fault deformation is sparse along most of the scarp, though damage zone width increases where the earthquake ruptured closely spaced sedimentary contacts rather than unconsolidated Quaternary deposits. In a few places, we can identify composite scarps from which we estimate the number of earthquakes that have offset Holocene surfaces. We assess the scarp's degraded state, including some sites that were surveyed in 1980 and 2009 and others that have not been revisited since the initial investigation. Where the rupture crosses unconsolidated surfaces, we compute local sediment diffusion coefficients and analyze their variability along strike. Lastly, we model subsurface fault geometry by fitting dipping planes to its surface trace, testing our best-fit fault dips against those recovered in seismic analyses; this reaffirms that both main rupture strands correspond to primary faulting rather than induced landsliding.

  19. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  20. Shakedown Tests for Refurbished and Upgraded Frames and Initiation of Alloy 709 Creep Rupture Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Moser, Jeremy L.; Hawkins, Charles S.

    This report describes the shakedown tests conducted on the upgraded frames, and initiation of creep rupture tests on refurbished frames. SS316H, a reference material for Alloy 709, was used in shakedown tests, and the tests were conducted at 816 degree C under three stress levels to accumulate 1% creep strain. 1/4” gage diameter specimen design was used. The creep rupture tests on Alloy 709 were initiated at 600 degree C under 330 MPa to target 1,500 h rupture time. 12 specimens with 3/8” gage diameter were prepared from the materials with 6 heat treatment conditions, 2 from each. The requiredmore » mechanical load under 330MPa was calculated to be 5,286 lb for the 3/8” gage diameter specimen. Among the ART frames, 7 frames are equipped with 10,000 lb load cell including #5 to 8 and #88 to 90, and can be used. 7 tests were thus started in this stage of project, and remaining 5 will be continued whenever any of the 7 tests is completed.« less

  1. Dynamic Rupture and Energy Partition in Models of Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Needleman, A.; Ben-Zion, Y.

    2006-12-01

    We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.

  2. Lethal Ultra-Early Subarachnoid Hemorrhage Due to Rupture of De Novo Aneurysm 5 Months After Primary Aneurysmatic Subarachnoid Hemorrhage.

    PubMed

    Walter, Johannes; Unterberg, Andreas W; Zweckberger, Klaus

    2018-05-01

    Approximately 1% of all patients surviving rupture of a cerebral aneurysm suffer from a second aneurysmatic subarachnoid hemorrhage later in their lives, 61% of which are caused by rupture of a de novo aneurysm. Latency between bleedings is usually many years, and younger patients tend to achieve better outcomes from a second subarachnoid hemorrhage. We report an unusual case of lethal ultra-early rupture of a de novo aneurysm of the anterior communicating artery only 5 months after the initial subarachnoid hemorrhage and complete coiling in a young, healthy male patient. Despite complete aneurysm obliteration, young age, and good recovery, patients may be subjected to secondary subarachnoid hemorrhages from de novo aneurysms after only a few months of the initial bleeding. Early-control magnetic resonance angiography might hence be advisable. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.

    2013-12-01

    A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?

  4. To what extent the repeating earthquakes repeated? - Analyses of 1982 and 2008 Ibaraki-ken-oki M7 class earthquakes using strong motion records -

    NASA Astrophysics Data System (ADS)

    Takiguchi, M.; Asano, K.; Iwata, T.

    2010-12-01

    Two M7 class subduction zone earthquakes have occurred in the Ibaraki-ken-oki region, northeast Japan, at 23:23 on July 23, 1982 JST (Mw7.0; 1982MS) and at 01:45 on May 8, 2008 JST (Mw6.8; 2008MS). It has been reported that, from the results of the teleseismic waveform inversion, the rupture of the asperity repeated (HERP, 2010). We estimated the source processes of these earthquakes in detail by analyzing the strong motion records and discussed how much the source characteristics of the two earthquakes repeated. First, we estimated the source model of 2008MS following the method of Miyake et al. (2003). The best-fit set of the model parameters was determined by a grid search using forward modeling of broad-band ground motions. A single 12.6 km × 12.6 km rectangular Strong Motion Generation Area (SMGA, Miyake et al., 2003) was estimated. The rupture of the SMGA of 2008MS (2008SMGA) started from the hypocenter and propagated mainly to northeast. Next, we estimated the source model of 1982MS. We compared the waveforms of 1982MS and 2008MS recorded at the same stations and found the initial rupture phase before the main rupture phase on the waveforms of 1982MS. The travel time analysis showed that the main rupture of the 1982MS started approximately 33 km west of the hypocenter at about 11s after the origin time. The main rupture starting point was located inside 2008SMGA, suggesting that the two SMGAs overlapped in part. The seismic moment ratio of 1982MS to 2008MS was approximately 1.6, and we also found the observed acceleration amplitude spectra of 1982MS were 1.5 times higher than those of 2008MS in the available frequency range. We performed the waveform modeling for 1982MS with a constraint of these ratios. A single rectangular SMGA (1982SMGA) was estimated for the main rupture, which had the same size and the same rupture propagation direction as those of 2008SMGA. However, the estimated stress drop or average slip amount of 1982SMGA was 1.5 times larger than those of 2008SMGA.

  5. Radiated energy and the rupture process of the Denali fault earthquake sequence of 2002 from broadband teleseismic body waves

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2004-01-01

    Displacement, velocity, and velocity-squared records of P and SH body waves recorded at teleseismic distances are analyzed to determine the rupture characteristics of the Denali fault, Alaska, earthquake of 3 November 2002 (MW 7.9, Me 8.1). Three episodes of rupture can be identified from broadband (???0.1-5.0 Hz) waveforms. The Denali fault earthquake started as a MW 7.3 thrust event. Subsequent right-lateral strike-slip rupture events with centroid depths of 9 km occurred about 22 and 49 sec later. The teleseismic P waves are dominated by energy at intermediate frequencies (0.1-1 Hz) radiated by the thrust event, while the SH waves are dominated by energy at lower frequencies (0.05-0.2 Hz) radiated by the strike-slip events. The strike-slip events exhibit strong directivity in the teleseismic SH waves. Correcting the recorded P-wave acceleration spectra for the effect of the free surface yields an estimate of 2.8 ?? 1015 N m for the energy radiated by the thrust event. Correcting the recorded SH-wave acceleration spectra similarly yields an estimate of 3.3 ?? 10 16 N m for the energy radiated by the two strike-slip events. The average rupture velocity for the strike-slip rupture process is 1.1??-1.2??. The strike-slip events were located 90 and 188 km east of the epicenter. The rupture length over which significant or resolvable energy is radiated is, thus, far shorter than the 340-km fault length over which surface displacements were observed. However, the seismic moment released by these three events, 4 ?? 1020 N m, was approximately half the seismic moment determined from very low-frequency analyses of the earthquake. The difference in seismic moment can be reasonably attributed to slip on fault segments that did not radiate significant or coherent seismic energy. These results suggest that very large and great strike-slip earthquakes can generate stress pulses that rapidly produce substantial slip with negligible stress drop and little discernible radiated energy on fault segments distant from the initial point of nucleation. The existence of this energy-deficient rupture mode has important implications for the evaluation of the seismic hazard of very large strike-slip earthquakes.

  6. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  7. [Spontaneous splenic rupture in the course of infectious mononucleosis].

    PubMed

    Irga, Ninela; Mierzejewska, Marta; Balcerska, Anna

    2006-01-01

    Spontaneous splenic rupture (SSR) in the course of infectious mononucleosis (IM) is a rare but potentially fatal complication. Mortality rate is relatively high, therefore emergency splenectomy is a life-saving intervention. In case of undergoing urgent operation there is no possibility to initiate proper prophylaxis of overwhelming infection. The humoral and cellular immunologic response impairment is a reason for life-threatening complications of splenectomised person. Asplenic children should receive infection prophylaxis immediately post splenectomy. We report two cases of splenic rupture inpatients with IM. The prevention of infection was initiated in both children. The mainstays of prophylaxis are: immunization, chemoprophylaxis and education. Complex information concerning asplenia-related subjects should be provided for patients and their parents.

  8. Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence

    USGS Publications Warehouse

    Mori, J.; Kanamori, H.

    1996-01-01

    Close examination of the P waves from earthquakes ranging in size across several orders of magnitude shows that the shape of the initiation of the velocity waveforms is independent of the magnitude of the earthquake. A model in which earthquakes of all sizes have similar rupture initiation can explain the data. This suggests that it is difficult to estimate the eventual size of an earthquake from the initial portion of the waveform. Previously reported curvature seen in the beginning of some velocity waveforms can be largely explained as the effect of anelastic attenuation; thus there is little evidence for a departure from models of simple rupture initiation that grow dynamically from a small region. The results of this study indicate that any "precursory" radiation at seismic frequencies must emanate from a source region no larger than the equivalent of a M0.5 event (i.e. a characteristic length of ???10 m). The size of the nucleation region for magnitude 0 to 5 earthquakes thus is not resolvable with the standard seismic instrumentation deployed in California. Copyright 1996 by the American Geophysical Union.

  9. Integrin-Linked Kinase Deletion in the Developing Lens Leads to Capsule Rupture, Impaired Fiber Migration and Non-Apoptotic Epithelial Cell Death

    PubMed Central

    Cammas, Laura; Wolfe, Jordan; Choi, Sue-Yeon; Dedhar, Shoukat; Beggs, Hilary E

    2012-01-01

    Purpose. The lens is a powerful model system to study integrin-mediated cell-matrix interaction in an in vivo context, as it is surrounded by a true basement membrane, the lens capsule. To characterize better the function of integrin-linked kinase (ILK), we examined the phenotypic consequences of its deletion in the developing mouse lens. Methods. ILK was deleted from the embryonic lens either at the time of placode invagination using the Le-Cre line or after initial lens formation using the Nestin-Cre line. Results. Early deletion of ILK leads to defects in extracellular matrix deposition that result in lens capsule rupture at the lens vesicle stage (E13.5). If ILK was deleted at a later time-point after initial establishment of the lens capsule, rupture was prevented. Instead, ILK deletion resulted in secondary fiber migration defects and, most notably, in cell death of the anterior epithelium (E18.5 − P0). Remarkably, dying cells did not stain positively for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or activated-caspase 3, suggesting that they were dying from a non-apoptotic mechanism. Moreover, cross to a Baxfl/fl/Bak−/− mouse line that is resistant to most forms of apoptosis failed to promote cell survival in the ILK-deleted lens epithelium. Electron microscopy revealed the presence of numerous membranous vacuoles containing degrading cellular material. Conclusions. Our study reveals a role for ILK in extracellular matrix organization, fiber migration, and cell survival. Furthermore, to our knowledge we show for the first time that ILK disruption results in non-apoptotic cell death in vivo. PMID:22491404

  10. Heterogeneity of direct aftershock productivity of the main shock rupture

    NASA Astrophysics Data System (ADS)

    Guo, Yicun; Zhuang, Jiancang; Hirata, Naoshi; Zhou, Shiyong

    2017-07-01

    The epidemic type aftershock sequence (ETAS) model is widely used to describe and analyze the clustering behavior of seismicity. Instead of regarding large earthquakes as point sources, the finite-source ETAS model treats them as ruptures that extend in space. Each earthquake rupture consists of many patches, and each patch triggers its own aftershocks isotropically. We design an iterative algorithm to invert the unobserved fault geometry based on the stochastic reconstruction method. This model is applied to analyze the Japan Meteorological Agency (JMA) catalog during 1964-2014. We take six great earthquakes with magnitudes >7.5 after 1980 as finite sources and reconstruct the aftershock productivity patterns on each rupture surface. Comparing results from the point-source ETAS model, we find the following: (1) the finite-source model improves the data fitting; (2) direct aftershock productivity is heterogeneous on the rupture plane; (3) the triggering abilities of M5.4+ events are enhanced; (4) the background rate is higher in the off-fault region and lower in the on-fault region for the Tohoku earthquake, while high probabilities of direct aftershocks distribute all over the source region in the modified model; (5) the triggering abilities of five main shocks become 2-6 times higher after taking the rupture geometries into consideration; and (6) the trends of the cumulative background rate are similar in both models, indicating the same levels of detection ability for seismicity anomalies. Moreover, correlations between aftershock productivity and slip distributions imply that aftershocks within rupture faults are adjustments to coseismic stress changes due to slip heterogeneity.

  11. Hypergolic ignitor

    NASA Technical Reports Server (NTRS)

    Taylor, Eric S. (Inventor); Myers, W. Neill (Inventor); Martin, Michael A. (Inventor)

    2005-01-01

    An ignitor for use with the MC-1 rocket engine has a cartridge bounded by two end caps with rupture disc assemblies connected thereto. A piston assembly within the cartridge moves from one end of the cartridge during the ignition process. The inlet of the ignitor communicates with a supply taken from the discharge of the fuel pump. When the pump is initially started, the pressure differential bursts the first rupture disc to begin the movement of the piston assembly toward the discharge end. The pressurization of the cartridge causes the second rupture disc to rupture and hypergolic fluid contained within the cartridge is discharged out the ignitor outlet.

  12. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.

    1982-01-01

    Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.

  13. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    NASA Astrophysics Data System (ADS)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor displacement, in 2D. Finally, we use the same rheology in a large-scale 3D scenario of the 2004 Sumatra earthquake to shed light to the source process that caused the subsequent devastating tsunami.

  14. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self-energizing and requires low force compared to current pyrotechnic-based burst disk hermetic valves. This is a novel design for producing a single-use, self-rupturing, hermetically sealed valve for isolation of pressurized gas and/or liquids. This design can also be applied for single-use disposable valves for chemical instruments. A welded foil diaphragm is fully supported by two mated surfaces that are machined to micron accuracies using EDM. To open the valve, one of the surfaces is moved relative to the other to (a) remove the support creating an unsupported diaphragm that ruptures due to over pressure, and/or (b) produce tension in the diaphragm and rupture it.

  15. Reducing maternal mortality from ruptured uterus--the Sokoto initiative.

    PubMed

    Ahmed, Y; Shehu, C E; Nwobodo, E I; Ekele, B A

    2004-06-01

    Uterine rupture is the most common cause of maternal mortality in our institution. Case fatality for the year 2001 was 47%. Health care including emergency obstetric care (EmOC) is not free, hence, delays in receiving care could occur in patients with limited resources. The objectives of the study were to promote access to emergency obstetric care through a loan scheme for indigent patients with ruptured uterus and determine the success or otherwise of the scheme. The scheme was initiated in January 2002, with the sum of thirty eight Thousand Naira (about 300 US dollars) by consultant obstetricians in the department. Funds were released to the patient only after assessment of her financial capability to enable her get emergency surgical packs. All that was required was a promise to pay back the loan before discharge. Following resuscitation, surgery was performed by one of the consultants. Eighteen cases of ruptured uterus have been managed. Treatment was initiated within 30 minutes of admission. Admission-laparotomy interval averaged 3.5 hours (+/-1.2). There were two maternal deaths, giving a case fatality of 11% (2/ 18). The case fatality from a previous study from the same centre was 38% (16/42). There was a significant difference in case fatality between the two studies (P<0.05; confidence limits are-0.328 and -0.211). Of the seventeen patients that benefited from the scheme, 16 repaid the loan before discharge (94% loan recovery). Only one patient defaulted with five thousand Naira (40 US dollars). A loan scheme for indigent patients with ruptured uterus that enabled them receive emergency obstetric care reduced case fatality. Loan recovery was good. In our quest to reduce maternal mortality in low-income countries without health insurance policies, there might be a need to extend similar initiative to other obstetric emergencies.

  16. Cost-minimization Analysis of the Management of Acute Achilles Tendon Rupture.

    PubMed

    Truntzer, Jeremy N; Triana, Brian; Harris, Alex H S; Baker, Laurence; Chou, Loretta; Kamal, Robin N

    2017-06-01

    Outcomes of nonsurgical management of acute Achilles tendon rupture have been demonstrated to be noninferior to those of surgical management. We performed a cost-minimization analysis of surgical and nonsurgical management of acute Achilles tendon rupture. We used a claims database to identify patients who underwent surgical (n = 1,979) and nonsurgical (n = 3,065) management of acute Achilles tendon rupture and compared overall costs of treatment (surgical procedure, follow-up care, physical therapy, and management of complications). Complication rates were also calculated. Patients were followed for 1 year after injury. Average treatment costs in the year after initial diagnosis were higher for patients who underwent initial surgical treatment than for patients who underwent nonsurgical treatment ($4,292 for surgical treatment versus $2,432 for nonsurgical treatment; P < 0.001). However, surgical treatment required fewer office visits (4.52 versus 10.98; P < 0.001) and less spending on physical therapy ($595 versus $928; P < 0.001). Rates of rerupture requiring subsequent treatment (2.1% versus 2.4%; P = 0.34) and additional costs ($2,950 versus $2,515; P = 0.34) were not significantly different regardless whether initial treatment was surgical or nonsurgical. In both cohorts, management of complications contributed to approximately 5% of the total cost. From the payer's perspective, the overall costs of nonsurgical management of acute Achilles tendon rupture were significantly lower than the overall costs of surgical management. III, Economic Decision Analysis.

  17. Different Sutures in the Surgical Treatment of Acute Closed Achilles Tendon Rupture.

    PubMed

    Ji, Yunhan; Ma, Xin; Wang, Xu; Huang, Jiazhang; Zhang, Chao; Chen, Li

    2015-12-01

    The aim was to compare the postoperative efficacy of the PDS II and Ethibond W4843 sutures in fresh, closed Achilles tendon rupture. With methods of random grouping (level of evidence II b), a total of 128 patients with fresh Achilles tendon rupture were operated on with PDS II or Ethibond W4843 suture. Postoperative objective examination and the American Orthopaedic Foot & Ankle Society (AOFAS) scoring system were used for the evaluation. Group A underwent 12-39 months of follow-up, for an average of 22 months. Group B underwent 12-37 months of follow-up, for an average of 23 months. The postoperative AOFAS score of group A within 3 months was 93 ± 9.6 points. One case exhibited re-rupture, five cases exhibited incision infection, one case manifested deep infection, and seven cases exhibited Achilles tendon adhesion. The postoperative AOFAS score of group B within 3 months was 97 ± 7.8 points. Eleven cases had incision infection, and 13 cases manifested Achilles tendon adhesion. Minimal differences were observed in the incision infection, re-rupture rate, and Achilles tendon adhesion in the study of the PDS II and Ethibond W4843 sutures. But, based on the AOFAS score and pain score, the Ethibond suture performed better.

  18. Linking interseismic deformation with coseismic slip using dynamic rupture simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.; He, B.; Weng, H.

    2017-12-01

    The largest earthquakes on earth occur at subduction zones, sometimes accompanied by devastating tsunamis. Reducing losses from megathrust earthquakes and tsunami demands accurate estimate of rupture scenarios for future earthquakes. Interseismic locking distribution derived from geodetic observations is often used to qualitatively evaluate future earthquake potential. However, how to quantitatively estimate the coseismic slip from the locking distribution remains challenging. Here we derive the coseismic rupture process of the 2012 Mw 7.6 Nicoya, Costa Rica, earthquake from interseismic locking distribution using spontaneous rupture simulation. We construct a three-dimensional elastic medium with a curved fault, which is governed by the linear slip-weakening law. The initial stress on the fault is set based on the build-up stress inferred from locking and the dynamic friction coefficient from fast-speed sliding experiments. Our numerical results of coseismic slip distribution, moment rate function and final earthquake moment are well consistent with those derived from seismic and geodetic observations. Furthermore, we find that the epicentral locations affect rupture scenarios and may lead to various sizes of earthquakes given the heterogeneous stress distribution. In the Nicoya region, less than half of rupture initiation regions where the locking degree is greater than 0.6 can develop into large earthquakes (Mw > 7.2). The results of location-dependent earthquake magnitudes underscore the necessity of conducting a large number of simulations to quantitatively evaluate seismic hazard from the interseismic locking models.

  19. Rupture history of 2008 May 12 Mw 8.0 Wen-Chuan earthquake: Evidence of slip interaction

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.; Lu, Z.; Hudnut, K.; Jiu, J.; Hayes, G.; Zeng, Y.

    2008-12-01

    We will present the rupture process of the May 12, 2008 Mw 8.0 Wenchuan earthquake using all available data. The current model, using both teleseismic body and surface waves and interferometric LOS displacements, reveals an unprecedented complex rupture process which can not be resolved using either of the datasets individually. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and are separated approximately 5-15 km at the surface. Rupture initiated on the Pengguan fault and triggered rupture on the Beichuan fault 10 sec later. The two faults dynamically interacted and unilaterally ruptured over 270 km with an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1021 Nm (Mw 8.0), roughly equally partitioned between the two faults. However, the spatiotemporal evaluations of the two faults are very different. This study will focus on the evidence for fault interactions and will analyze the corresponding uncertainties, in preparation for future dynamic studies of the same detailed nature.

  20. Implications of the 26 December 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes

    USGS Publications Warehouse

    Geist, Eric L.; Titov, Vasily V.; Arcas, Diego; Pollitz, Fred F.; Bilek, Susan L.

    2007-01-01

    Results from different tsunami forecasting and hazard assessment models are compared with observed tsunami wave heights from the 26 December 2004 Indian Ocean tsunami. Forecast models are based on initial earthquake information and are used to estimate tsunami wave heights during propagation. An empirical forecast relationship based only on seismic moment provides a close estimate to the observed mean regional and maximum local tsunami runup heights for the 2004 Indian Ocean tsunami but underestimates mean regional tsunami heights at azimuths in line with the tsunami beaming pattern (e.g., Sri Lanka, Thailand). Standard forecast models developed from subfault discretization of earthquake rupture, in which deep- ocean sea level observations are used to constrain slip, are also tested. Forecast models of this type use tsunami time-series measurements at points in the deep ocean. As a proxy for the 2004 Indian Ocean tsunami, a transect of deep-ocean tsunami amplitudes recorded by satellite altimetry is used to constrain slip along four subfaults of the M >9 Sumatra–Andaman earthquake. This proxy model performs well in comparison to observed tsunami wave heights, travel times, and inundation patterns at Banda Aceh. Hypothetical tsunami hazard assessments models based on end- member estimates for average slip and rupture length (Mw 9.0–9.3) are compared with tsunami observations. Using average slip (low end member) and rupture length (high end member) (Mw 9.14) consistent with many seismic, geodetic, and tsunami inversions adequately estimates tsunami runup in most regions, except the extreme runup in the western Aceh province. The high slip that occurred in the southern part of the rupture zone linked to runup in this location is a larger fluctuation than expected from standard stochastic slip models. In addition, excess moment release (∼9%) deduced from geodetic studies in comparison to seismic moment estimates may generate additional tsunami energy, if the exponential time constant of slip is less than approximately 1 hr. Overall, there is significant variation in assessed runup heights caused by quantifiable uncertainty in both first-order source parameters (e.g., rupture length, slip-length scaling) and spatiotemporal complexity of earthquake rupture.

  1. Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2016-12-01

    The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.

  2. Evaluation of the biomechanics of atherosclerosis by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshifumi; Nitta, Shin-ichi; Schiott Jorgensen, Claus; Falk, Erling

    2001-07-01

    Acoustic microscopy provides not only the morphology, but also the biomechanical properties of the biological soft tissues. The biomechanics of atherosclerosis is important because the pathophysiology of atherosclerosis is closely related with mechanical properties and mechanical stress. Rupture of the fibrous cap of atheromatous plaque is the initial event in acute coronary syndrome such as acute myocardial infarction or unstable angina. In addition to extrinsic physical stresses to the plaque, the intrinsic biomechanical property of the plaque is important for assessing the mechanism of the rupture. Two sets of SAMs operating in 100 to 200 MHz and in 800 MHz to 1.3 GHz were equipped to measure the acoustic properties of atherosclerosis of human or mouse arteries. The values of attenuation and sound speed in the tissue components of atherosclerosis were measured by analyzing the frequency dependent characteristics of the amplitude and phase signals. Both values were highest in calcification and lowest in lipid pool. Although attenuation and sound speed were relatively high in intimal fibrosis, the inhomogeneity of acoustic parameters was found within the fibrous cap. Polarized microscopy for the collagen stained with Picrosirius red showed that the attenuation of ultrasound was significantly higher in type I collagen with orange polarized color compared to type III collagen with green color. SAM has shown the possibility to detect the plaque vulnerability and it might improve our understanding of the sudden rupture from micro-mechanical point of view.

  3. Interplay of Structure and Sediment Supply May Influence Subduction Zone Rupture Patches and Propagation

    NASA Astrophysics Data System (ADS)

    Goldfinger, C.; Wang, K.; Witter, R.; Baptista, A.; Zhang, Y.; Priest, G.; Nelson, H.; Morey, A.; Johnson, J.

    2007-12-01

    The question of whether there are universal controls on the genesis and maintenance of large slip and moment patches along strike on subduction megathrusts has proved remarkably elusive, in part due to the short temporal records we have of these great events around the globe. Many events this century are poorly constrained, and many subduction zones only have one or a few events available for comparison. Long historical records and good structural constraints have made Nankai a leading case for basin centered asperities, yet the recent Sumatra Mw 9.2 rupture models show that slip and moment for the most part avoided basins and was centered under structural highs. In Cascadia, both deformation and tsunami models clearly fit the respective subsidence and runup data better if slip in past events was centered under or did not avoid these highs as opposed to basin centered model. Onshore and offshore paleoseismic evidence from 38 Cascadia earthquakes strongly suggest that structural segmentation plays a role only along the southernmost margin. These data do not provide information on moment or slip distribution, but do effectively constrain rupture lengths. Rupture lengths constrained by the paleoseismic data show that there is no Holocene segmentation for the northern margin, and that southern segments may be controlled by some of the obvious structural boundaries such as the Blanco Fracture zone, and outer arc uplifts and forearc basins. Where resolution is adequate, these data also suggest that ruptures die out into the basins and are linked multi-segment ruptures of structural uplifts, similar to that observed in the 2004 and 2005 earthquakes from Sumatra where outer arc uplifts may mark segment boundaries, high slip patches and initiation points for great earthquakes. The difference between the rupture modes observed for Nankai and Sumatra, and suggested here for Cascadia may be linked to the sediment supply for these systems. Cascadia and Sumatra are both systems where massive submarine fans are accreting to the margin in their northern regions, with incoming sections of 3-4 km thickness that taper southward. These thick sections promote high fluid pressure, but also tend to smooth the plate interface with respect to structures in both the downgoing and upper plates. A smooth plate interface has long been thought to promote long ruptures and high moment release, and so we suspect that northern Cascadia and northern Sumatra may be prone to large ruptures due to the masking of other structures by large influxes of sediment on the subducting plate. By comparison, the relatively thin sediment supply at Nankai may allow these structural boundaries to play a greater role in rupture propagation and moment release. The smaller southern Cascadia ruptures are also consistent with this model, with structural control taking precedence as the sediment supply thins southward.

  4. Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-01-01

    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  5. Delayed treatment of ruptured brain AVMs: is it ok to wait?

    PubMed

    Beecher, Jeffrey S; Lyon, Kristopher; Ban, Vin Shen; Vance, Awais; McDougall, Cameron M; Whitworth, Louis A; White, Jonathan A; Samson, Duke; Batjer, H Hunt; Welch, Babu G

    2018-04-01

    OBJECTIVE Despite a hemorrhagic presentation, many patients with arteriovenous malformations (AVMs) do not require emergency resection. The timing of definitive management is not standardized in the cerebrovascular community. This study was designed to evaluate the safety of delaying AVM treatment in clinically stable patients with a new hemorrhagic presentation. The authors examined the rate of rehemorrhage or neurological decline in a cohort of patients with ruptured brain AVMs during a period of time posthemorrhage. METHODS Patients presenting to the authors' institution from January 2000 to December 2015 with ruptured brain AVMs treated at least 4 weeks posthemorrhage were included in this analysis. Exclusion criteria were ruptured AVMs that required emergency surgery involving resection of the AVM, prior treatment of AVM at another institution, or treatment of lesions within 4 weeks for other reasons (subacute surgery). The primary outcome measure was time from initial hemorrhage to treatment failure (defined as rehemorrhage or neurological decline as a direct result of the AVM). Patient-days were calculated from the day of initial rupture until the day AVM treatment was initiated or treatment failed. RESULTS Of 102 ruptured AVMs in 102 patients meeting inclusion criteria, 7 (6.9%) failed the treatment paradigm. Six patients (5.8%) had a new hemorrhage within a median of 248 days (interquartile range 33-1364 days). The total "at risk" period was 18,740 patient-days, yielding a rehemorrhage rate of 11.5% per patient-year, or 0.96% per patient-month. Twelve (11.8%) of 102 patients were found to have an associated aneurysm. In this group there was a single (8.3%) new hemorrhage during a total at-risk period of 263 patient-days until the aneurysm was secured, yielding a rehemorrhage risk of 11.4% per patient-month. CONCLUSIONS It is the authors' practice to rehabilitate patients after brain AVM rupture with a plan for elective treatment of the AVM. The present data are useful in that the findings quantify the risk of the authors' treatment strategy. These findings indicate that delaying intervention for at least 4 weeks after the initial hemorrhage subjects the patient to a low (< 1%) risk of rehemorrhage. The authors modified the treatment paradigm when a high-risk feature, such as an associated intracranial aneurysm, was identified.

  6. Development of the Brazilian Portuguese version of the Achilles Tendon Total Rupture Score (ATRS BrP): a cross-cultural adaptation with reliability and construct validity evaluation.

    PubMed

    Zambelli, Roberto; Pinto, Rafael Z; Magalhães, João Murilo Brandão; Lopes, Fernando Araujo Silva; Castilho, Rodrigo Simões; Baumfeld, Daniel; Dos Santos, Thiago Ribeiro Teles; Maffulli, Nicola

    2016-01-01

    There is a need for a patient-relevant instrument to evaluate outcome after treatment in patients with a total Achilles tendon rupture. The purpose of this study was to undertake a cross-cultural adaptation of the Achilles Tendon Total Rupture Score (ATRS) into Brazilian Portuguese, determining the test-retest reliability and construct validity of the instrument. A five-step approach was used in the cross-cultural adaptation process: initial translation (two bilingual Brazilian translators), synthesis of translation, back-translation (two native English language translators), consensus version and evaluation (expert committee), and testing phase. A total of 46 patients were recruited to evaluate the test-retest reproducibility and construct validity of the Brazilian Portuguese version of the ATRS. Test-retest reproducibility was performed by assessing each participant on two separate occasions. The construct validity was determined by the correlation index between the ATRS and the Orthopedic American Foot and Ankle Society (AOFAS) questionnaires. The final version of the Brazilian Portuguese ATRS had the same number of questions as the original ATRS. For the reliability analysis, an ICC(2,1) of 0.93 (95 % CI: 0.88 to 0.96) with SEM of 1.56 points and MDC of 4.32 was observed, indicating excellent reliability. The construct validity showed excellent correlation with R = 0.76 (95 % CI: 0.52 to 0.89, P < 0.001). The ATRS was successfully cross-culturally validated into Brazilian Portuguese. This version was a reliable and valid measure of function in patients who suffered complete rupture of the Achilles Tendon.

  7. Experimental study of Siphon breaker about size effect in real scale reactor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. H.; Ahn, H. S.; Kim, J. M.

    2012-07-01

    Rupture accident within the pipe of a nuclear reactor is one of the main causes of a loss of coolant accident (LOCA). Siphon-breaking is a passive method that can prevent a LOCA. In this study, either a line or a hole is used as a siphon-breaker, and the effect of various parameters, such as the siphon-breaker size, pipe rupture point, pipe rupture size, and the presence of an orifice, are investigated using an experimental facility similar in size to a full-scale reactor. (authors)

  8. Intracranial dermoid cyst rupture-related brain ischemia: Case report and hemodynamic study.

    PubMed

    Jin, Hang; Guo, Zhen-Ni; Luo, Yun; Zhao, Ren; Sun, Ming-Shuo; Yang, Yi

    2017-01-01

    Spontaneous rupture of intracranial dermoid cyst is a rare but serious clinical event that can result in cerebral ischemia. Cerebral vasospasm and vasculitis are considered as potential mechanisms of dermoid cyst rupture-related cerebral ischemia. However, the hemodynamic mechanisms between cerebral ischemia and dermoid cyst rupture are not well known. A 55-year-old, right-handed man was admitted to our hospital with sudden receptive aphasia and right-sided hypoalgesia. Brain magnetic resonance imaging (MRI) revealed a ruptured dermoid cyst and watershed infarcts in the left hemisphere. Then brain magnetic resonance angiography disclosed mild stenosis in the left middle cerebral artery (MCA), and further high-resolution MRI demonstrated it was caused by an unstable atherosclerosis plaque. Transcranial Doppler of the patient showed a decreasing tendency of peak systolic velocity (PSV) of the left MCA at different time points after the stroke (from 290cm/s at day 6 to 120cm/s at day 30), indicating a transient vasospasm. However, the time course of dynamic cerebral autoregulation (dCA) seemed different from the PSV. The patient's dCA reached its lowest point at day 8 and was restored at day 10. The time course of dCA indicated a "called procedure" of a cerebrovascular regulating function to deal with the stimulation in subarachnoid space. A dermoid cyst rupture-related cerebral infarction was diagnosed in this patient. Aspirin (100 mg/d) and atorvastatin (20 mg/d) were given to the patient. A neurosurgical operation was strongly recommended to minimize the risk of further injury of the ruptured dermoid cyst; however, the patient refused the recommended treatment. The neurological deficit of the patient was significantly improved on 30 days follow-up. We found that the spread of cyst contents through the subarachnoid and/or ventricular system can induce a vasospasm. Then, dCA was "called" to deal with the stimulation in the subarachnoid space. Compromised dCA seems to be one of the compensatory of cerebral vasospasm after a dermoid cyst rupture.

  9. Kinematic Seismic Rupture Parameters from a Doppler Analysis

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-05-01

    The radiation emitted from extended seismic sources, mainly when the rupture spreads in preferred directions, presents spectral deviations as a function of the observation location. This aspect, unobserved to point sources, and named as directivity, are manifested by an increase in the frequency and amplitude of seismic waves when the rupture occurs in the direction of the seismic station and a decrease in the frequency and amplitude if it occurs in the opposite direction. The model of directivity that supports the method is a Doppler analysis based on a kinematic source model of rupture and wave propagation through a structural medium with spherical symmetry [1]. A unilateral rupture can be viewed as a sequence of shocks produced along certain paths on the fault. According this model, the seismic record at any point on the Earth's surface contains a signature of the rupture process that originated the recorded waveform. Calculating the rupture direction and velocity by a general Doppler equation, - the goal of this work - using a dataset of common time-delays read from waveforms recorded at different distances around the epicenter, requires the normalization of measures to a standard value of slowness. This normalization involves a non-linear inversion that we solve numerically using an iterative least-squares approach. The evaluation of the performance of this technique was done through a set of synthetic and real applications. We present the application of the method at four real case studies, the following earthquakes: Arequipa, Peru (Mw = 8.4, June 23, 2001); Denali, AK, USA (Mw = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria (Mw = 6.8, May 21, 2003); and Sumatra, Indonesia (Mw = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data. [1] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x

  10. Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults

    USGS Publications Warehouse

    Felzer, Karen R.

    2014-01-01

    An earthquake occurs when rock that has been deformed under stress rebounds elastically along a fault plane (Gilbert, 1884; Reid, 1911), radiating seismic waves through the surrounding earth. Rupture along the entire fault surface does not spontaneously occur at the same time, however. Rather the rupture starts in one tiny area, the rupture nucleation zone, and spreads sequentially along the fault. Like a row of dominoes, one bit of rebounding fault triggers the next. This triggering is understood to occur because of the large dynamic stresses at the tip of an active seismic rupture. The importance of these crack tip stresses is a central question in earthquake physics. The crack tip stresses are minimally important, for example, in the time predictable earthquake model (Shimazaki and Nakata, 1980), which holds that prior to rupture stresses are comparable to fault strength in many locations on the future rupture plane, with bits of variation. The stress/strength ratio is highest at some point, which is where the earthquake nucleates. This model does not require any special conditions or processes at the nucleation site; the whole fault is essentially ready for rupture at the same time. The fault tip stresses ensure that the rupture occurs as a single rapid earthquake, but the fact that fault tip stresses are high is not particularly relevant since the stress at most points does not need to be raised by much. Under this model it should technically be possible to forecast earthquakes based on the stress-renewaql concept, or estimates of when the fault as a whole will reach the critical stress level, a practice used in official hazard mapping (Field, 2008). This model also indicates that physical precursors may be present and detectable, since stresses are unusually high over a significant area before a large earthquake.

  11. Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms - Implications for asperity interaction in the Michoacan plate boundary segment

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos

    1993-05-01

    The distributions and depths of coseismic slip are derived for the October 25, 1981 Playa Azul and September 21, 1985 Zihuatanejo earthquakes in western Mexico by inverting the recorded teleseismic body waves. Rupture during the Playa Azul earthquake appears to have occurred in two separate zones both updip and downdip of the point of initial nucleation, with most of the slip concentrated in a circular region of 15-km radius downdip from the hypocenter. Coseismic slip occurred entirely within the area of reduced slip between the two primary shallow sources of the Michoacan earthquake that occurred on September 19, 1985, almost 4 years later. The slip of the Zihuatanejo earthquake was concentrated in an area adjacent to one of the main sources of the Michoacan earthquake and appears to be the southeastern continuation of rupture along the Cocos-North America plate boundary. The zones of maximum slip for the Playa Azul, Zihuatanejo, and Michoacan earthquakes may be considered asperity regions that control the occurrence of large earthquakes along the Michoacan segment of the plate boundary.

  12. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, S.; Brietzke, G.; Igel, H.; Larmat, C.; Fichtner, A.; Johnson, P. A.; Huang, L.

    2008-12-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the source point and other information might be inferred. In this study, the backward propagation is performed numerically using a spectral element code. We investigate the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, location of asperities, rupture velocity etc.). We use synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice- rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of relaxing the ignorance to prior source information (e.g., origin time, hypocenter, fault location, etc.) on the results of the time reversal process.

  13. Mechanical characterization of capsule properties using abrupt-step channels

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Le Goff, Anne; Kaoui, Badr; Barthè-Biesel, Dominique; Biomechanics; Bioengineering Lab Team

    2017-11-01

    Capsules consisting of a liquid droplet enclosed by a thin polymerized membrane are commonly encountered in nature (cells) or in industrial process (pharmaceutical, cosmetic or food products). The mechanical properties of the capsule wall are essential to guarantee the particle integrity and release of the internal contents when and where necessary. The difficulty is to assess the mechanical properties of the thin membrane. We will show how abrupt-step channels can be used to identify the membrane viscoelastic properties and point of rupture. This can be achieved by using a channel presenting a step change in cross-section and inverting the direction of the flow of the capsule suspension within the tube. To deduce information on the viscoelasticity, we will exploit the relaxation of the capsules as they flow through the expansion. To study membrane rupture, we will instead invert the channel, block the capsules at the neck of the constriction and determine the pressure difference needed for breakup. All the experiments will be conducted on initially spherical capsules with a thin cross-linked protein membrane for a proof of concept.

  14. In vivo serial MRI-based models and statistical methods to quantify sensitivity and specificity of mechanical predictors for carotid plaque rupture: location and beyond.

    PubMed

    Wu, Zheyang; Yang, Chun; Tang, Dalin

    2011-06-01

    It has been hypothesized that mechanical risk factors may be used to predict future atherosclerotic plaque rupture. Truly predictive methods for plaque rupture and methods to identify the best predictor(s) from all the candidates are lacking in the literature. A novel combination of computational and statistical models based on serial magnetic resonance imaging (MRI) was introduced to quantify sensitivity and specificity of mechanical predictors to identify the best candidate for plaque rupture site prediction. Serial in vivo MRI data of carotid plaque from one patient was acquired with follow-up scan showing ulceration. 3D computational fluid-structure interaction (FSI) models using both baseline and follow-up data were constructed and plaque wall stress (PWS) and strain (PWSn) and flow maximum shear stress (FSS) were extracted from all 600 matched nodal points (100 points per matched slice, baseline matching follow-up) on the lumen surface for analysis. Each of the 600 points was marked "ulcer" or "nonulcer" using follow-up scan. Predictive statistical models for each of the seven combinations of PWS, PWSn, and FSS were trained using the follow-up data and applied to the baseline data to assess their sensitivity and specificity using the 600 data points for ulcer predictions. Sensitivity of prediction is defined as the proportion of the true positive outcomes that are predicted to be positive. Specificity of prediction is defined as the proportion of the true negative outcomes that are correctly predicted to be negative. Using probability 0.3 as a threshold to infer ulcer occurrence at the prediction stage, the combination of PWS and PWSn provided the best predictive accuracy with (sensitivity, specificity) = (0.97, 0.958). Sensitivity and specificity given by PWS, PWSn, and FSS individually were (0.788, 0.968), (0.515, 0.968), and (0.758, 0.928), respectively. The proposed computational-statistical process provides a novel method and a framework to assess the sensitivity and specificity of various risk indicators and offers the potential to identify the optimized predictor for plaque rupture using serial MRI with follow-up scan showing ulceration as the gold standard for method validation. While serial MRI data with actual rupture are hard to acquire, this single-case study suggests that combination of multiple predictors may provide potential improvement to existing plaque assessment schemes. With large-scale patient studies, this predictive modeling process may provide more solid ground for rupture predictor selection strategies and methods for image-based plaque vulnerability assessment.

  15. Uncertainty Estimation in Tsunami Initial Condition From Rapid Bayesian Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Benavente, R. F.; Dettmer, J.; Cummins, P. R.; Urrutia, A.; Cienfuegos, R.

    2017-12-01

    It is well known that kinematic rupture models for a given earthquake can present discrepancies even when similar datasets are employed in the inversion process. While quantifying this variability can be critical when making early estimates of the earthquake and triggered tsunami impact, "most likely models" are normally used for this purpose. In this work, we quantify the uncertainty of the tsunami initial condition for the great Illapel earthquake (Mw = 8.3, 2015, Chile). We focus on utilizing data and inversion methods that are suitable to rapid source characterization yet provide meaningful and robust results. Rupture models from teleseismic body and surface waves as well as W-phase are derived and accompanied by Bayesian uncertainty estimates from linearized inversion under positivity constraints. We show that robust and consistent features about the rupture kinematics appear when working within this probabilistic framework. Moreover, by using static dislocation theory, we translate the probabilistic slip distributions into seafloor deformation which we interpret as a tsunami initial condition. After considering uncertainty, our probabilistic seafloor deformation models obtained from different data types appear consistent with each other providing meaningful results. We also show that selecting just a single "representative" solution from the ensemble of initial conditions for tsunami propagation may lead to overestimating information content in the data. Our results suggest that rapid, probabilistic rupture models can play a significant role during emergency response by providing robust information about the extent of the disaster.

  16. Scram recoveries---C Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constable, D.W.; Pierce, J.R.; Wood, S.A.

    1962-04-26

    The purpose of this report is to discuss the observations made on two equilibrium scram recovery startups (April 5 and April 16). Normally, the two startups would have little significance but unusual ruptures were experienced in the top near section of the reactor shortly after both startups, which indicates that some similarity could exist between the two. The ruptures were unusual in that the two tubes involved both had multiple ruptures. One tube contained two E{sup 2} ruptures and the other tube contained three overbore metal ruptures. The overbore tube also contained three incipient ruptures (uranium split under the can).more » The initial rise to power on both startups appeared to be normal with the flux peaking on the near side as expected. On the April 16 startup the maximum level reached was 1050 at which time a rupture in overbore tube 3062 caused on increase in pressure resulting in a high trip on the Panellit gauge. A level of 1600 was reached on the April 5 startup which was held for approximately 14 hours at which time the reactor was shut down due to rupture indications on row 29.« less

  17. Diverse rupture processes in the 2015 Peru deep earthquake doublet.

    PubMed

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Zhan, Zhongwen; Duputel, Zacharie

    2016-06-01

    Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.

  18. Variability of displacement at a point: Implications for earthquake‐size distribution and rupture hazard on faults

    USGS Publications Warehouse

    Hecker, Suzanne; Abrahamson, N.A.; Wooddell, Kathryn

    2013-01-01

    To investigate the nature of earthquake‐magnitude distributions on faults, we compare the interevent variability of surface displacement at a point on a fault from a composite global data set of paleoseismic observations with the variability expected from two prevailing magnitude–frequency distributions: the truncated‐exponential model and the characteristic‐earthquake model. We use forward modeling to predict the coefficient of variation (CV) for the alternative earthquake distributions, incorporating factors that would effect observations of displacement at a site. The characteristic‐earthquake model (with a characteristic‐magnitude range of ±0.25) produces CV values consistent with the data (CV∼0.5) only if the variability for a given earthquake magnitude is small. This condition implies that rupture patterns on a fault are stable, in keeping with the concept behind the model. This constraint also bears upon fault‐rupture hazard analysis, which, for lack of point‐specific information, has used global scaling relations to infer variability in average displacement for a given‐size earthquake. Exponential distributions of earthquakes (from M 5 to the maximum magnitude) give rise to CV values that are significantly larger than the empirical constraint. A version of the model truncated at M 7, however, yields values consistent with a larger CV (∼0.6) determined for small‐displacement sites. Although this result allows for a difference in the magnitude distribution of smaller surface‐rupturing earthquakes, it may reflect, in part, less stability in the displacement profile of smaller ruptures and/or the tails of larger ruptures.

  19. Dynamic rupture modeling with laboratory-derived constitutive relations

    USGS Publications Warehouse

    Okubo, P.G.

    1989-01-01

    A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author

  20. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  1. Rupture preparation process controlled by surface roughness on meter-scale laboratory fault

    NASA Astrophysics Data System (ADS)

    Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru

    2018-05-01

    We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process, and generally increases its complexity with the degree of roughness.

  2. Fracture Mechanisms For SiC Fibers And SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Hurst, Janet B.; Viterna, L. (Technical Monitor)

    2002-01-01

    The successful application of SiC/SiC ceramic matrix composites as high-temperature structural materials depends strongly on maximizing the fracture or rupture life of the load-bearing fiber and matrix constituents. Using high-temperature data measured under stress-rupture test conditions, this study examines in a mechanistic manner the effects of various intrinsic and extrinsic factors on the creep and fracture behavior of a variety of SiC fiber types. It is shown that although some fiber types fracture during a large primary creep stage, the fiber creep rate just prior to fracture plays a key role in determining fiber rupture time (Monkman-Grant theory). If it is assumed that SiC matrices rupture in a similar manner as fibers with the same microstructures, one can develop simple mechanistic models to analyze and optimize the stress-rupture behavior of SiC/SiC composites for applied stresses that are initially below matrix cracking.

  3. Ruptured superior gluteal artery pseudoaneurysm with hemorrhagic shock: Case report.

    PubMed

    Corbacioglu, Kerem Seref; Aksel, Gokhan; Yildiz, Altan

    2016-03-01

    Pseudoaneurysm of the superior gluteal artery (SGA) is very rare and the most common causes are blunt or penetrating pelvic traumas. Although pseudoaneurysm can be asymptomatic at the time of initial trauma, it can be symptomatic weeks, months, even years after initial trauma. We present a case of a ruptured superior gluteal artery pseudoaneurysm with hemorrhagic shock twenty days after a bomb injury in the Syria civil war. In addition, we review the anatomy of the SGA, clinical presentation and pitfalls of pseudoaneurysm, and imaging and treatment options.

  4. Influence of Melt Superheating Treatment on Solidification Characteristics and Rupture Life of a Third-Generation Ni-Based Single-Crystal Superalloy

    NASA Astrophysics Data System (ADS)

    Su, Haijun; Wang, Haifeng; Zhang, Jun; Guo, Min; Liu, Lin; Fu, Hengzhi

    2018-05-01

    The influence of melt superheating treatment on the melt properties, solidification characteristics, and rupture life of a third-generation Ni-based single-crystal superalloy was investigated to reveal the critical temperature range of melt structure evolution and its effect on rupture life. The results showed that the viscosity of superalloy decreased but the surface tension increased with increasing superheating temperature. Two characteristic temperature points where the melt viscosity and undercooling degree suddenly change were determined to be 1600 °C and 1700 °C, respectively. Similarly, the stability of the solidification interface firstly improved and then weakened with increasing superheating temperature. The dendrite arms were well refined and the segregation was reduced at 1700 °C. In addition, the rupture life obtained at 1100 °C and 137 MPa increased by approximately 30 pct, approaching the rupture life of the corresponding superalloy containing 2 pct Ru, with increasing superheating temperature from 1500 °C to 1700 °C. When the melt was further heated to 1800 °C, the rupture life decreased. The evolutions of solidification characteristics and rupture life with increasing melt superheating temperature were attributed to changes in the melt structure.

  5. Dual Megathrust Slip Behaviors of the 2014 Iquique Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Meng, L.; Huang, H.; Burgmann, R.; Ampuero, J. P.; Strader, A. E.

    2014-12-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A M 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of Northern Chile. This event was preceded by a 2-week-long foreshock sequence including a M 6.7 earthquake. Repeating earthquakes are found among the foreshock sequence that migrated towards the mainshock area, suggesting a large scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence time of repeating earthquakes highlights the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while other repeaters occurred both before and after the mainshock in the area complementary to the mainshock rupture. The spatial and temporal distribution of the repeating earthquakes illustrate the essential role of propagating aseismic slip in leading up to the mainshock and aftershock activities. Various finite fault models indicate that the coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show slow initiation with low amplitude moment rate at low frequency (< 0.1 Hz), while back-projection shows a steady initiation at high frequency (> 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the high-frequency rupture remains within an area of low gravity anomaly, suggesting possible upper-crustal structures that promote high-frequency generation. Back-projection also shows an episode of reverse rupture propagation which suggests a delayed failure of asperities in the foreshock area. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.

  6. 3-D Spontaneous Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi

    2017-04-01

    We investigated the M7.3 Kumamoto, Japan, earthquake to illuminate why and how the rupture of the main shock propagated successfully by 3-D dynamic rupture simulations, assuming a complicated fault geometry estimated based on the distributions of aftershocks. The M7.3 main shock occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred. Their hypocenters were located along by the Hinagu and Futagawa faults and their focal mechanisms were similar to those of the main shock; therefore, an extensive stress shadow can have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of relocated aftershock hypocenters. Then, we evaluated static stress changes on the main shock fault plane due to the occurrence of the three foreshocks assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that the hypocenter of the main shock is located on the region with positive Coulomb failure stress change (ΔCFS) while ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we conducted 3-D dynamic rupture simulations by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges to reproduce the rupture propagation of the main shock consistent with those revealed by seismic waveform analyses. We also demonstrated that the free surface encouraged the slip evolution of the main shock.

  7. [Splenic rupture in infectious mononucleosis].

    PubMed

    Basan, B; Lafrenz, M; Ziegler, K; Klemm, G

    1995-12-01

    A 22 year old male with infectious mononucleosis, who stated a history of trauma to his left thoracic wall, developed an acute abdomen with symptoms of shock. A ruptured spleen was suspected. This working diagnosis, which was supported by ultrasound led to a splenectomy the initial diagnosis. The case report of this rare complication--due to the increased vulnerability of the spleen capsula in infectious mononucleosis--is highlighting the possible danger of splenic rupture. As of today, emergency splenectomy without any compromise ist still the safest state of the art therapy.

  8. Stratification of Recanalization for Patients with Endovascular Treatment of Intracranial Aneurysms

    PubMed Central

    Ogilvy, Christopher S.; Chua, Michelle H.; Fusco, Matthew R.; Reddy, Arra S.; Thomas, Ajith J.

    2015-01-01

    Background With increasing utilization of endovascular techniques in the treatment of both ruptured and unruptured intracranial aneurysms, the issue of obliteration efficacy has become increasingly important. Objective Our goal was to systematically develop a comprehensive model for predicting retreatment with various types of endovascular treatment. Methods We retrospectively reviewed medical records that were prospectively collected for 305 patients who received endovascular treatment for intracranial aneurysms from 2007 to 2013. Multivariable logistic regression was performed on candidate predictors identified by univariable screening analysis to detect independent predictors of retreatment. A composite risk score was constructed based on the proportional contribution of independent predictors in the multivariable model. Results Size (>10 mm), aneurysm rupture, stent assistance, and post-treatment degree of aneurysm occlusion were independently associated with retreatment while intraluminal thrombosis and flow diversion demonstrated a trend towards retreatment. The Aneurysm Recanalization Stratification Scale was constructed by assigning the following weights to statistically and clinically significant predictors. Aneurysm-specific factors: Size (>10 mm), 2 points; rupture, 2 points; presence of thrombus, 2 points. Treatment-related factors: Stent assistance, -1 point; flow diversion, -2 points; Raymond Roy 2 occlusion, 1 point; Raymond Roy 3 occlusion, 2 points. This scale demonstrated good discrimination with a C-statistic of 0.799. Conclusion Surgical decision-making and patient-centered informed consent require comprehensive and accessible information on treatment efficacy. We have constructed the Aneurysm Recanalization Stratification Scale to enhance this decision-making process. This is the first comprehensive model that has been developed to quantitatively predict the risk of retreatment following endovascular therapy. PMID:25621984

  9. Dynamic Rupture along a Material Interface: Background, Implications, and Recent Seismological Observations

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; McGuire, J.

    2003-04-01

    Natural fault systems have interfaces that separate different media. There are fundamental differences between in-plane ruptures on planar faults that separate similar and dissimilar elastic solids. In a linear isotropic homogeneous solid, slip does not change the normal stress on the rupture plane. However, if the fault separates different materials in-plane slip can produce strong variations of normal stress on the fault. The interaction between slip and normal stress along a material interface can reduce dynamically the frictional strength, making material interfaces mechanically favored surfaces for rupture propagation. Analytical and numerical works (Weertman, 1980; Adams, 1995; Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998) have shown that rupture along a material interface occurs as a narrow wrinkle-like pulse propagating spontaneously only in one direction, that of slip in the more compliant medium. Characteristic features of the wrinkle-like pulse include: (1) Strong correlation between variations of normal stress and slip. (2) Asymmetric motion on different sides of the fault. (3) Preferred direction of rupture propagation. (4) Self-sharpening and divergent behavior with propagation distance. These characteristics can be important to a number of fundamental issues, including trapping of rupture in structures with material interfaces, the heat flow paradox, short rise-time of earthquake slip, possible existence of tensile component of rupture, and spatial distribution of seismic shaking. Rubin and Gillard (2000), Rubin (2002) and McGuire et al. (2002) presented some seismological evidence that rupture propagation along the San Andreas and other large faults is predominantly unidirectional. Features (1)-(4) are consistent with observations from lab sliding and fracture experiments (Anooshehpoor and Brune, 1999; Schallamach, 1971; Samudrala and Rosakis, 2000). Cochard and Rice (2000) performed calculations of rupture along a material interface governed by a regularized friction having a gradual response of strength to an abrupt variation of normal stress. Their calculations confirmed features (1)-(3) and showed hints of feature (4). The latter was not fully developed in their results because the calculations did not extend long enough in time. Ben-Zion and Huang (2002) simulated dynamic rupture on an interface governed by the regularized friction between a low velocity layer and a surrounding host rock. The results show that the self-sharpening and divergent behavior exists also with the regularized friction for large enough propagation distance. The simulations of Ben-Zion and Huang suggest that in fault structures having a low velocity layer, rupture initiated by failing of an asperity with size not larger than the layer width can become a self-sustaining wrinkle-like pulse. However, if the initial asperity is much larger than the layer width, the rupture will not propagate as a self-sustaining pulse (unless there is also an overall contrast across the fault). The Bear Valley section of the San Andreas Fault separates high velocity block on the SW from a low-velocity material on the NE. This contrast is expected to generate a preference for rupture to the SE and fault zone head-waves on the NE block. Using seismograms from a high density temporary array (Thurber et al., 1997), we measured differential travel-times of head-waves along with the geometrical distribution of the stations at which they arrive prior to the direct P-wave. The travel-time data and spatial distribution of events and stations associated with headwave first arrivals are compatible with the theoretical results of Ben-Zion (1989). We are now modeling waveforms to obtain high resolution image of the fault-zone structure. To test the prediction of unidirectional rupture propagation, we estimate the space-time variances of the moment-release distribution of magnitude 2.5-3.0 events using a variation of the Empirical Green's Function technique. Initial results for a few small events indicate rupture propagation in both directions. We are developing a catalog that will hopefully be large enough to provide clear results on this issue.

  10. How geometry and structure control the seismic radiation : spectral element simulation of the dynamic rupture of the Mw 9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, G.; Vilotte, J.; Scala, A.

    2012-12-01

    The M 9.0, 2011 Tohoku earthquake, along the North American-Pacific plate boundary, East of the Honshu Island, yielded a complex broadband rupture extending southwards over 600 km along strike and triggering a large tsunami that ravaged the East coast of North Japan. Strong motion and high-rate continuous GPS data, recorded all along the Japanese archipelago by the national seismic networks K-Net and Kik-net and geodetic network Geonet, together with teleseismic data, indicated a complex frequency dependent rupture. Low frequency signals (f< 0.1 Hz) inverted from seismic, geodetic and tsunami data, evidenced an extremely compact region of large slip (between 30 to 50 meters), extending along-dip over about 100 km, between the hypocenter and the trench, and 150 to 200 km along strike. This slip asperity was likely the cause of the localized tsunami source and of the large amplitude tsunami waves. High-frequency signals (f>0.5 Hz) were instead generated close to the coast in the deeper part of the subduction zone, by at least four smaller size asperities, with possible repeated slip, and were mostly the cause for the ground shaking felt in the Eastern part of Japan. The deep origin of the high-frequency radiation was also confirmed by teleseismic high frequency back projection analysis. Intermediate frequency analysis showed a transition between the shallow and deeper part of the fault, with the rupture almost confined in a small stripe containing the hypocenter before propagating southward along the strike, indicating a predominant in-plane rupture mechanism in the initial stage of the rupture itself. We numerically investigate the role of the geometry of the subduction interface and of the structural properties of the subduction zone on the broadband dynamic rupture and radiation of the Tohoku earthquake. Based upon the almost in-plane behavior of the rupture in its initial stage, 2D non-smooth spectral element dynamic simulations of the earthquake rupture propagation are performed including the non planar and kink geometry of the subduction interface, together with bi-material interfaces taking into account rapid and large variations of the impedance properties along the subduction interfaces and dynamic normal stress coupling. Based on a number of tomographic studies of the NE Japan subduction zone at different space, evidencing a high-velocity "toe" mantle wedge, and wide-angle reflection and refraction studies, supporting a non planar geometry of the subduction interface with at least two strong bending or kink features, we constrain the subduction geometry and the structural properties of the subduction zone model along an off-Miyagi profile. Through several simulations, we investigate possible structural control on the broadband rupture process of the Tohoku earthquake, in terms of the rupture velocity, seismic radiation and slip/stress distribution along the subduction interface. We Explored the influence of initial stress and interface behavior to capture the main features of the rupture and its radiation pattern. Implications for the broad band strong motion observation are discussed, together with implications for the seismic cycle and future earthquake nucleation.

  11. Examining Structural Controls on Earthquake Rupture Dynamics Along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    McGuire, J. J.; Ben-Zion, Y.

    2002-12-01

    Recent numerical simulations of dynamic rupture [Andrews and Ben-Zion, 1997; Harris and Day, 1997] have confirmed earlier analytical results [Weertman, 1980; Adams, 1995] that a contrast in elastic properties between the two sides of a fault will generate an interaction between the normal stress and fault slip that is not present in a homogeneous medium. It has been shown that for a range of frictional parameters and initial conditions, this interaction produces a statistical preference for unilateral rupture propagation in the direction of slip of the more compliant medium [Ben-Zion and Andrews, 1998; Cochard and Rice, 2000; Ben-Zion and Huang 2002]. Thus, the directivity of earthquake ruptures on large faults with well-developed material interfaces may be controlled by material contrasts of the rocks within and across the fault zone. One of the largest known velocity contrasts across a major crustal fault occurs along the Bear Valley section of the San Andreas where high velocity materials on the SW side (P-velocity >5 km/s) are juxtaposed with low-velocity material on the NE side (P-velocity <4 km/s) down to a depth of about 4 km with a less dramatic contrast continuing to about 8 km [Thurber et al., 1997]. This boundary is strong enough to generate significant head-waves refracted along it that are recorded as the first arrivals at stations close to the fault on the NE side [McNally and McEvilly, 1977]. Rubin and Gillard [2000] and Rubin [2002] relocated the events in this region using NCSN waveform data and found that more than twice as many immediate aftershocks to small earthquakes occurred to the NW of the mainshock as to the SE, which they interpreted as being consistent with a preferred rupture direction to the SE. Their interpretation that aftershocks to microearthquakes occur preferentially in the direction opposite of rupture propagation has not been directly tested and is inconsistent with observations from moderate [Fletcher and Spudich, 1998] and large earthquakes [Kilb et al., 2000], which show considerable variability and possibly the opposite preference. We are attempting to directly test the prediction of a preference for rupture propagation to the SE on this fault segment by combining travel-time and waveform modeling of fault-zone head waves, high precision earthquake relocations, and rupture directivity studies. Initial results indicate that there is considerable variability along strike in the strength of the across-fault velocity contrast, with maximum values reaching about 25-30%. This spatial variability in the strength of the material property contrast would be expected to produce a spatial variability in earthquake rupture directivity. We are developing a catalog of earthquake rupture directivity estimates for magnitude 2 and larger earthquakes to compare with the variations of the velocity contrast and aftershock asymmetry. Initial results indicate that even in the regions of highest velocity contrast, moderate earthquakes (M=3) can still rupture unilaterally to the NE. Detailed high resolution results from head-wave modeling, rupture directivity studies, and earthquake relocations will be presented.

  12. Composite Megathrust Rupture From Deep Interplate to Trench of the 2016 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Lin, Tzu-Chi; Feng, Kuan-Fu; Liu, Ting-Yu

    2018-01-01

    The deep plate boundary has usually been recognized as an aseismic area, with few large earthquakes occurring at the 60-100 km depth interface. In contrast, we use a finite-fault rupture model to demonstrate that large slip in the 2016 M7.9 Solomon Islands earthquake may have originated from the deep subduction interface and propagated all the way up to the trench. The initial rupture occurred at a depth of about 100 km, forming a deep asperity and then propagating updip to the middle-depth large coseismic slip area. Our proposed source model indicates that the depth-varying rupture characteristics of this event could shift to deeper depths with respect to other subduction zones. This result also implied that the deep subducting plate boundary could also be seismogenic, which might trigger rupture at the typical middle-depth stress-locked zone and develop into rare composite megathrust events.

  13. 3-D Deformation Field Of The 2010 El Mayor-Cucapah (Mexico) Earthquake From Matching Before To After Aerial Lidar Point Clouds

    NASA Astrophysics Data System (ADS)

    Hinojosa-Corona, A.; Nissen, E.; Arrowsmith, R.; Krishnan, A. K.; Saripalli, S.; Oskin, M. E.; Arregui, S. M.; Limon, J. F.

    2012-12-01

    The Mw 7.2 El Mayor-Cucapah earthquake (EMCE) of 4 April 2010 generated a ~110 km long, NW-SE trending rupture, with normal and right-lateral slip in the order of 2-3m in the Sierra Cucapah, the northern half, where the surface rupture has the most outstanding expression. Vertical and horizontal surface displacements produced by the EMCE have been addressed separately by other authors with a variety of aerial and satellite remote sensing techniques. Slip variation along fault and post-seismic scarp erosion and diffusion have been estimated in other studies using terrestrial LiDAR (TLS) on segments of the rupture. To complement these other studies, we computed the 3D deformation field by comparing pre- to post-event point clouds from aerial LiDAR surveys. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3-dimensional surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising a translation and a rotation) that best aligns the pre- to post-event points. Testing on synthetic datasets perturbed with displacements of known magnitude showed that windows with dimensions of 100-200m gave the best results for datasets with these densities. Here we present the deformation field with detailed displacements in segments of the surface rupture where its expression was recognized by ICP from the point cloud matching, mainly the scarcely vegetated Sierra Cucapah with the Borrego and Paso Superior fault segments the most outstanding, where we are able to compare our results with values measured in the field and results from TLS reported in other works. EMC simulated displacement field for a 2m right lateral normal (east block down) slip on the pre-event point cloud along the Borrego fault on Sierra Cucapah. Shaded DEM from post-event point cloud as backdrop.

  14. Effect of Squareness of Initial γ' Precipitates on Creep-Rupture Life of a Ni-Base Single Crystal Superalloy at 760/982 °C

    NASA Astrophysics Data System (ADS)

    Shi, Zhenbin; Peng, Zhifang; Luo, Yushi; Xie, Hongji; Jin, Haipeng; Zhao, Yunsong; Mei, Qingsong

    2018-05-01

    An approach to determination of squareness of initial γ' precipitates (S 2D) is proposed to evaluate its effect on creep-rupture life (t r) of nickel-base single crystal (SC) superalloys. It is found that the 760/982 °C rupture life varied with the change in regional S 2D caused by redistribution of W when 1st-step aging temperature changed in full heat treatment on superalloy DD83 investigated. The longest creep-rupture life occurred at the highest value/the lowest difference in S 2D in the interdendritic regions/between the typical dendritic regions in DD83. It is also found that S 2D is a weighted function of the area fraction (F 2D), spacing (h), and size (d) of γ' precipitates and is closely related to t r in a series of SC superalloys. In addition, the variation of S 2D with F 2D (here, thermodynamic mole fraction is approximately expressed by F 2D) through lattice misfit (δ) in the SC superalloys with F 2D ranging from 60 to 75 pct is well correlated. Therefore, to reveal and to better understand these relationships and correlations may help to optimize the phase variables in order to achieve a long rupture life of SC superalloys. In addition, functions to reveal the interrelationships of F 2D, volume fraction (F 3D), S 2D, and cuboidness (S 3D) of initial γ' precipitates are derived considering their shape changes. All of these are hoped to be helpful in practical applications and in understanding the true meaning of the related variables.

  15. Multimodality Imaging-based Evaluation of Single-Lumen Silicone Breast Implants for Rupture.

    PubMed

    Seiler, Stephen J; Sharma, Pooja B; Hayes, Jody C; Ganti, Ramapriya; Mootz, Ann R; Eads, Emily D; Teotia, Sumeet S; Evans, W Phil

    2017-01-01

    Breast implants are frequently encountered on breast imaging studies, and it is essential for any radiologist interpreting these studies to be able to correctly assess implant integrity. Ruptures of silicone gel-filled implants often occur without becoming clinically obvious and are incidentally detected at imaging. Early diagnosis of implant rupture is important because surgical removal of extracapsular silicone in the breast parenchyma and lymphatics is difficult. Conversely, misdiagnosis of rupture may prompt a patient to undergo unnecessary additional surgery to remove the implant. Mammography is the most common breast imaging examination performed and can readily depict extracapsular free silicone, although it is insensitive for detection of intracapsular implant rupture. Ultrasonography (US) can be used to assess the internal structure of the implant and may provide an economical method for initial implant assessment. Common US signs of intracapsular rupture include the "keyhole" or "noose" sign, subcapsular line sign, and "stepladder" sign; extracapsular silicone has a distinctive "snowstorm" or echogenic noise appearance. Magnetic resonance (MR) imaging is the most accurate and reliable means for assessment of implant rupture and is highly sensitive for detection of both intracapsular and extracapsular rupture. MR imaging findings of intracapsular rupture include the keyhole or noose sign, subcapsular line sign, and "linguine" sign, and silicone-selective MR imaging sequences are highly sensitive to small amounts of extracapsular silicone. © RSNA, 2017.

  16. Modeling 3D Dynamic Rupture on Arbitrarily-Shaped faults by Boundary-Conforming Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.

    2008-12-01

    We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.

  17. Role of intramural platelet thrombus in the pathogenesis of wall rupture and intra-ventricular thrombosis following acute myocardial infarction.

    PubMed

    Du, Xiao-Jun; Shan, Leonard; Gao, Xiao-Ming; Kiriazis, Helen; Liu, Yang; Lobo, Abhirup; Head, Geoffrey A; Dart, Anthony M

    2011-02-01

    Left ventricular thrombus (LVT) and rupture are important mechanical complications following myocardial infarction (MI) and are believed to be due to unrelated mechanisms. We studied whether, in fact, wall rupture and LVT are closely related in their pathogenesis with intramural platelet thrombus (IMT) playing a pivotal role. Male 129sv and C57Bl/6 mice underwent operation to induce MI, and autopsy was performed to confirm rupture deaths. Haemodynamic features of rupture events were monitored by telemetry in conscious mice. Detailed histological examination was conducted with special attention to the presence of IMT in relation to rupture location and LVT formation. IMT was detected in infarcted hearts of 129sv (82%) and C57Bl/6 (39%) mice with rupture in the form of a narrow streak spanning the wall or an occupying mass dissecting the infarcted myofibers apart. IMT often contained dense inflammatory cells and blood clot, indicating a dynamic process of thrombus formation and destruction. Notably, IMT was found extending into the cavity to form LVT. Haemodynamic monitoring by telemetry revealed that rupture occurred either as a single event or recurrent episodes. Importantly, the anti-platelet drug clopidogrel, but not aspirin, reduced the prevalence of rupture (10% vs. 45%) and IMT, and suppressed the degree of inflammation. Thus, IMT is a key pathological element in the infarcted heart closely associated with the complications of rupture and LVT. IMT could be either triggered by a wall tear or act as initiator of rupture. IMT may propagate towards the ventricular chamber to trigger LVT.

  18. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  19. Near-Field Deformation Associated with the M6.0 South Napa Earthquake Surface Rupture

    NASA Astrophysics Data System (ADS)

    Brooks, B. A.; Hudnut, K. W.; Glennie, C. L.; Ericksen, T.

    2014-12-01

    We characterize near-field deformation associated with the surface rupture of the M6.0 South Napa earthquake from repeat mobile laser scanning (MLS) surveys. Starting the day after the main shock, we operated, sometime simultaneously, short (~75 m range) and medium (~400m range) range laser scanners on a truck or backpack. We scanned most of the length of the principal and secondary surface ruptures at speeds less than 10 km/hr. Scanning occurred primarily in either suburban subdivisions or cultivated vineyards of varying varietals with differing leaf patterns and stages of maturity. Spot-spacing is dense enough (100s of points/m^2) to permit creation of 10-25cm digital elevation models of much of the surface rupture. Scanned features of the right-lateral rupture include classic mole tracks through a variety of soil types, en echelon cracks, offset vine rows, and myriad types of pavement-related deformation. We estimate coseismic surface displacements ranging from 5 to 45 cm by examining offset cultural features and vine rows and by comparing the MLS data with preexisting airborne laser scans from 2003 using point-cloud and solid-modeling methodologies. Additionally, we conducted repeat MLS scans to measure the magnitude and spatial variation of fault afterslip, exceeding 20 cm in some places, particularly in the southern portion of the rupture zone. We anticipate these data sets, in conjunction with independently collected ground-based alinement arrays and space-based geodetic data will contribute significant insight into topics of current debate including assessing the most appropriate material models for shallow fault zones and how shallow and deeper fault slip relate to one another.

  20. Airway reopening through catastrophic events in a hierarchical network

    PubMed Central

    Baudoin, Michael; Song, Yu; Manneville, Paul; Baroud, Charles N.

    2013-01-01

    When you reach with your straw for the final drops of a milkshake, the liquid forms a train of plugs that flow slowly initially because of the high viscosity. They then suddenly rupture and are replaced with a rapid airflow with the characteristic slurping sound. Trains of liquid plugs also are observed in complex geometries, such as porous media during petroleum extraction, in microfluidic two-phase flows, or in flows in the pulmonary airway tree under pathological conditions. The dynamics of rupture events in these geometries play the dominant role in the spatial distribution of the flow and in determining how much of the medium remains occluded. Here we show that the flow of a train of plugs in a straight channel is always unstable to breaking through a cascade of ruptures. Collective effects considerably modify the rupture dynamics of plug trains: Interactions among nearest neighbors take place through the wetting films and slow down the cascade, whereas global interactions, through the total resistance to flow of the train, accelerate the dynamics after each plug rupture. In a branching tree of microchannels, similar cascades occur along paths that connect the input to a particular output. This divides the initial tree into several independent subnetworks, which then evolve independently of one another. The spatiotemporal distribution of the cascades is random, owing to strong sensitivity to the plug divisions at the bifurcations. PMID:23277557

  1. Studying the secondary coolant circuit rupture protection algorithm for the Novovoronezh NPP Unit 5 on a full-scale training simulator

    NASA Astrophysics Data System (ADS)

    Kharchenko, K. S.; Vitkovskii, I. L.

    2014-02-01

    Performance of the secondary coolant circuit rupture algorithm in different operating modes of the Novovoronezh NPP Unit 5 is considered by carrying out studies on a full-scale training simulator. The revealed shortcomings of the algorithm causing excessive actuations of the protection are pointed out, and recommendations for removing them are outlined.

  2. Spontaneous puerperal extraperitoneal bladder wall rupture in young woman with diagnostic dilemma

    PubMed Central

    Sabat, Debabrat Kumar; Panigrahi, Pradeep Kumar; Sahoo, Ranjan Kumar; Acharya, Mousumi; Sahu, Mahesh Ch

    2015-01-01

    A young female presented with an acute abdominal pain and oliguria for 1 week following normal vaginal delivery. No history of hematuria was present. Patient was having lochia rubra. Sealed uterine rupture was suspected clinically. Initial ultrasound of the patient showed distended urinary bladder containing Foley catheter ballon with clamping of Foley catheter and particulate ascites. Abdominal paracentesis revealed hemorrhagic fluid. Contrast-enhanced computed tomography of abdomen revealed ascites, distended urinary bladder and no extraluminal contrast extravasation in delayed scan. As patient condition deteriorated, repeat ultrasound guided abdominal paracentesis was done which revealed transudative peritoneal collection with distended bladder. Cystoscopy revealed urinary bladder ruptures with exudate sealing the rupture site. Exploratory laparotomy was done and a diagnosis of extraperitoneal bladder rupture was confirmed. The rent was repaired in layers. She was put on continuous bladder drainage for 3 weeks followed by bladder training. It presented in a unique way as there was hemorrhagic peritoneal tap, no macroscopic hematuria and urinary bladder was distended in spite of urinary bladder wall rupture which delayed the diagnosis and treatment. Complete emptying of urinary bladder before second stage of labor and during postpartum period with perineal repair is mandatory to prevent urinary bladder rupture. PMID:26985426

  3. Spontaneous puerperal extraperitoneal bladder wall rupture in young woman with diagnostic dilemma.

    PubMed

    Sabat, Debabrat Kumar; Panigrahi, Pradeep Kumar; Sahoo, Ranjan Kumar; Acharya, Mousumi; Sahu, Mahesh Ch

    2015-01-01

    A young female presented with an acute abdominal pain and oliguria for 1 week following normal vaginal delivery. No history of hematuria was present. Patient was having lochia rubra. Sealed uterine rupture was suspected clinically. Initial ultrasound of the patient showed distended urinary bladder containing Foley catheter ballon with clamping of Foley catheter and particulate ascites. Abdominal paracentesis revealed hemorrhagic fluid. Contrast-enhanced computed tomography of abdomen revealed ascites, distended urinary bladder and no extraluminal contrast extravasation in delayed scan. As patient condition deteriorated, repeat ultrasound guided abdominal paracentesis was done which revealed transudative peritoneal collection with distended bladder. Cystoscopy revealed urinary bladder ruptures with exudate sealing the rupture site. Exploratory laparotomy was done and a diagnosis of extraperitoneal bladder rupture was confirmed. The rent was repaired in layers. She was put on continuous bladder drainage for 3 weeks followed by bladder training. It presented in a unique way as there was hemorrhagic peritoneal tap, no macroscopic hematuria and urinary bladder was distended in spite of urinary bladder wall rupture which delayed the diagnosis and treatment. Complete emptying of urinary bladder before second stage of labor and during postpartum period with perineal repair is mandatory to prevent urinary bladder rupture.

  4. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  5. Macroscopic Asymmetry of Dynamic Rupture on a Bimaterial Interface With Velocity- Weakening Friction

    NASA Astrophysics Data System (ADS)

    Ampuero, J.; Ben-Zion, Y.

    2006-12-01

    Large faults typically separate rocks of different elastic properties. In-plane ruptures on bimaterial interfaces have remarkable dynamic properties that may be relevant to many issues of basic and applied science (e.g., Ben-Zion, 2001). In contrast to slip between similar media, slip along a bimaterial interface generates dynamic changes of normal stress that modify the local fault strength (e.g., Weertman, 1980). One important issue is whether rupture on a bimaterial interface evolves toward a unilateral wrinkle-like pulse in the direction of motion of the compliant medium (the "preferred" direction), or whether it propagates as a symmetric bilateral crack. Some field data suggest that bimaterial interfaces in natural fault zones produce macroscopic rupture asymmetry (Dor et al., 2006; Lewis et al., 2005, 2006); however, this is a subject of ongoing debate. Rubin and Ampuero (2006) performed numerical simulations of bimaterial ruptures under pure slip-weakening friction. They found bilateral crack-like ruptures without significant asymmetry of slip. For ruptures that stopped in low stress areas, there was asymmetry in the final stress distribution, induced by a small scale pulse that detaches from the crack when it stops. This may provide a mechanism for the observed asymmetry of microearthquakes on segments of the San Andreas fault (Rubin and Gillard, 2000). In addition, the results included very prominent asymmetry of slip velocities at the opposite rupture fronts. In calculations with slip-weakening friction the strong asymmetry of slip velocities can not manifest itself into macroscopic rupture asymmetry. However, incorporating in the simulations rate-dependent friction may produce larger stress drop in the preferred direction, leading to macroscopically asymmetric rupture (Ben-Zion, 2006). In this work we study the effect of velocity-weakening friction on rupture along a bimaterial interface, using 2D in-plane simulations with a spectral boundary integral method and a rate-and-state dependent friction law with strong velocity dependence. The law contains slip-weakening or velocity-weakening as limit cases, depending on the length scale in the state evolution law. The steady-state friction coefficient is inversely proportional to slip-rate, mimicking the weakening mechanisms thought to operate on natural faults at high velocities. We examine the behavior of ruptures triggered by a slightly overstressed nucleation zone of size larger than a critical size derived by linear stability analysis. We characterize the range of friction parameters and initial stress values for which ruptures behave as cracks or pulses, decaying or sustained, with subshear or super-shear speeds. All sustained ruptures are initially bilateral. In the range where sub-shear pulse-like rupture is observed, the ruptures develop strong macroscopic asymmetry with continuing propagation along the bimaterial interface. This is manifested by significantly larger seismic potency and propagation distance in the preferred direction, similar to what was found by Shi and Ben-Zion (2006) with strong nucleation phases and slip-weakening friction. The stress asymmetry mechanism described by Rubin and Ampuero (2006) remains in our velocity-weakening simulations as a super-imposed small-scale feature.

  6. A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake

    NASA Astrophysics Data System (ADS)

    Ruppert, Stanley D.; Yomogida, Kiyoshi

    1992-09-01

    Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.

  7. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and documented offset landforms including fluvial terrace risers near Dumay (6.3 +0.9/-1.3 m) and Chauffard/Jameau (32.2 +1.8/-3.1 m), a channel (52 +18/-13 m) ~500 m east of the Chauffard/Jameau site, and an alluvial fan near Fayette (8.6 +2.8/-2.5 m). Based on the fault-trace morphology and distribution of sites where we see 6-8 m offsets, we estimate the probable along-strike extent of past surface rupture was 40 to 60 km along this fault reach. Application of moment-rupture area relationships to these observations suggest that an earthquake similar to, or larger than the Mw 7.0 2010 event is possible along the Enriquillo fault near Port-au-Prince. We deduce that the 2010 earthquake was a relatively small event on a boundary between fault segments that ruptured in 1751 and 1770, based on new analysis of historical damage reports and the gap of well-defined fault-zone morphology where the 2010 earthquake occurred.

  8. Rupture complexity and the supershear transition on rough faults

    NASA Astrophysics Data System (ADS)

    Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.

    2016-01-01

    Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.

  9. Comparison between real and modeled maregraphic data obtained using a simple dislocation model of the 27.02.2010 Chilian seismic source

    NASA Astrophysics Data System (ADS)

    Roger, J.; Simao, N.; Ruegg, J.-C.; Briole, P.; Allgeyer, S.

    2010-05-01

    On the 27th February 2010, a magnitude Mw=8.8 earthquake shook a wide part of Chile. It was the result of a release of energy due to a rupture on the subduction fault plane of the Pacific oceanic plate beneath the South-American plate. It generated a widespread tsunami that struck the whole Pacific Ocean Coasts. In addition to the numerous casualties and destructions fathered by the earthquake itself, the tsunami reached several meters high in some near-field locations inundating important urban areas (for example in Talcahano). In some far-field places as in the Marquesas Islands (FR), it reached several meters high too. This tsunami has been recorded by numerous coastal tide gages and DART buoys and, more particularly, some sea level records are available in the rupture area (Valparaiso, Talcahano, Arica, Ancud, Corral, Coquimbo). The aim of this study is to use a simple dislocation model determined from a moment tensor solution, aftershocks locations and GPS measurements, to calculate the initial offshore bottom deformation. This deformation is introduced in a tsunami propagation code to produce synthetic mareogramms on specific points that are compared to the real recorded maregraphic data.

  10. Immunological consequences of kidney cell death.

    PubMed

    Sarhan, Maysa; von Mässenhausen, Anne; Hugo, Christian; Oberbauer, Rainer; Linkermann, Andreas

    2018-01-25

    Death of renal cells is central to the pathophysiology of acute tubular necrosis, autoimmunity, necrotizing glomerulonephritis, cystic kidney disease, urosepsis, delayed graft function and transplant rejection. By means of regulated necrosis, immunogenic damage-associated molecular patterns (DAMPs) and highly reactive organelles such as lysosomes, peroxisomes and mitochondria are released from the dying cells, thereby causing an overwhelming immunologic response. The rupture of the plasma membrane exhibits the "point of no return" for the immunogenicity of regulated cell death, explaining why apoptosis, a highly organized cell death subroutine with long-lasting plasma membrane integrity, elicits hardly any immune response. Ferroptosis, an iron-dependent necrotic type cell death, results in the release of DAMPs and large amounts of lipid peroxides. In contrast, anti-inflammatory cytokines are actively released from cells that die by necroptosis, limiting the DAMP-induced immune response to a surrounding microenvironment, whereas at the same time, inflammasome-associated caspases drive maturation of intracellularly expressed interleukin-1β (IL-1β). In a distinct setting, additionally interleukin-18 (IL-18) is expressed during pyroptosis, initiated by gasdermin-mediated plasma membrane rupture. As all of these pathways are druggable, we provide an overview of regulated necrosis in kidney diseases with a focus on immunogenicity and potential therapeutic interventions.

  11. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to themore » point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.« less

  12. Kinetics of the Multistep Rupture of Fibrin ‘A-a’ Polymerization Interactions Measured Using Atomic Force Microscopy

    PubMed Central

    Averett, Laurel E.; Schoenfisch, Mark H.; Akhremitchev, Boris B.; Gorkun, Oleg V.

    2009-01-01

    Abstract Fibrin, the structural scaffold of blood clots, spontaneously polymerizes through the formation of ‘A-a’ knob-hole bonds. When subjected to external force, the dissociation of this bond is accompanied by two to four abrupt changes in molecular dimension observable as rupture events in a force curve. Herein, the configuration, molecular extension, and kinetic parameters of each rupture event are examined. The increases in contour length indicate that the D region of fibrinogen can lengthen by ∼50% of the length of a fibrin monomer before rupture of the ‘A-a’ interaction. The dependence of the dissociation rate on applied force was obtained using probability distributions of rupture forces collected at different pull-off velocities. These distributions were fit using a model in which the effects of the shape of the binding potential are used to quantify the kinetic parameters of forced dissociation. We found that the weak initial rupture (i.e., event 1) was not well approximated by these models. The ruptured bonds comprising the strongest ruptures, events 2 and 3, had kinetic parameters similar to those commonly found for the mechanical unfolding of globular proteins. The bonds ruptured in event 4 were well described by these analyses, but were more loosely bound than the bonds in events 2 and 3. We propose that the first event represents the rupture of an unknown interaction parallel to the ‘A-a’ bond, events 2 and 3 represent unfolding of structures in the D region of fibrinogen, and event 4 is the rupture of the ‘A-a’ knob-hole bond weakened by prior structural unfolding. Comparison of the activation energy obtained via force spectroscopy measurements with the thermodynamic free energy of ‘A-a’ bond dissociation indicates that the ‘A-a’ bond may be more resistant to rupture by applied force than to rupture by thermal dissociation. PMID:19917237

  13. A Composite Source Model With Fractal Subevent Size Distribution

    NASA Astrophysics Data System (ADS)

    Burjanek, J.; Zahradnik, J.

    A composite source model, incorporating different sized subevents, provides a pos- sible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock) . The subevents are distributed randomly over the fault. Each subevent is modeled as a finite source, using kinematic approach (radial rupture propagation, constant rupture velocity, boxcar slip-velocity function, with constant rise time on the subevent). The final slip at each subevent is related to its characteristic dimension, using constant stress-drop scaling. Variation of rise time with subevent size is a free parameter of modeling. The nucleation point of each subevent is taken as the point closest to mainshock hypocentre. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally lay- ered crustal model in a relatively coarse grid of points covering the fault plane. The Green's functions needed for the kinematic model in a fine grid are obtained by cu- bic spline interpolation. As different frequencies may be efficiently calculated with different sampling, the interpolation simplifies and speeds-up the procedure signifi- cantly. The composite source model described above allows interpretation in terms of a kinematic model with non-uniform final slip and rupture velocity spatial distribu- tions. The 1994 Northridge earthquake (Mw = 6.7) is used as a validation event. The strong-ground motion modeling of the 1999 Athens earthquake (Mw = 5.9) is also performed.

  14. Comparing slow and fast rupture in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Brantut, N.; David, E.; Mitchell, T. M.

    2017-12-01

    During the brittle failure of rock, elastically stored energy is converted into a localized fracture plane and surrounding fracture damage, seismic radiation, and thermal energy. However, the partitioning of energy might vary with the rate of elastic energy release during failure. Here, we present the results of controlled (slow) and dynamic (fast) rupture experiments on dry Lanhélin granite and Westerly granite samples, performed under triaxial stress conditions at confining pressures of 50 and 100 MPa. During the tests, we measured sample shortening, axial load and local strains (with 2 pairs of strain gauges glued directly onto the sample). In addition, acoustic emissions (AEs) and changes in seismic velocities were monitored. The AE rate was used as an indicator to manually control the axial load on the sample to stabilize rupture in the quasi-static failure experiments. For the dynamic rupture experiments a constant strain rate of 10-5 s-1 was applied until sample failure. A third experiment, labeled semi-controlled rupture, involved controlled rupture up to a point where the rupture became unstable and the remaining elastic energy was released dynamically. All experiments were concluded after a macroscopic fracture had developed across the whole sample and frictional sliding commenced. Post-mortem samples were epoxied, cut and polished to reveal the macroscopic fracture and the surrounding damage zone. The samples failed with average rupture velocities varying from 5x10-6 m/s up to >> 0.1 m/s. The analyses of AE locations on the slow ruptures reveal that within Westerly granite samples - with a smaller grain size - fracture planes are disbanded in favor of other planes when a geometrical irregularity is encountered. For the coarser grained Lanhélin granite a single fracture plane is always formed, although irregularities are recognized as well. The semi-controlled experiments show that for both rock types the rupture can become unstable in response to these irregularities. In Westerly granite, slow rupture experiments tend to produce complex fracture patterns while during the dynamic rupture experiments secondary rupture planes are not formed. These findings show that grain or flaw size, flaw distribution, and rupture speed strongly influence fracture localization and propagation.

  15. 3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko

    2017-11-01

    Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also observed that the free surface encouraged the slip evolution of the main shock.[Figure not available: see fulltext.

  16. Extracorporeal cardiopulmonary resuscitation for blunt cardiac rupture.

    PubMed

    Kudo, Shunsuke; Tanaka, Keiji; Okada, Kunihiko; Takemura, Takahiro

    2017-11-01

    Extracorporeal cardiopulmonary resuscitation (ECPR) followed by operating room sternotomy, rather than resuscitative thoracotomy, might be life-saving for patients with blunt cardiac rupture and cardiac arrest who do not have multiple severe traumatic injuries. A 49-year-old man was injured in a vehicle crash and transferred to the emergency department. On admission, he was hemodynamically stable, but a plain chest radiograph revealed a widened mediastinum, and echocardiography revealed hemopericardium. A computed tomography scan revealed hemopericardium and mediastinal hematoma, without other severe traumatic injuries. However, the patient's pulse was lost soon after he was transferred to the intensive care unit, and cardiopulmonary resuscitation was initiated. We initiated ECPR using femorofemoral veno-arterial extracorporeal membrane oxygenation (ECMO) with heparin administration, which achieved hemodynamic stability. He was transferred to the operating room for sternotomy and cardiac repair. Right ventricular rupture and pericardial sac laceration were identified intraoperatively, and cardiac repair was performed. After repairing the cardiac rupture, the cardiac output recovered spontaneously, and ECMO was discontinued intraoperatively. The patient recovered fully and was discharged from the hospital on postoperative day 7. In this patient, ECPR rapidly restored brain perfusion and provided enough time to perform operating room sternotomy, allowing for good surgical exposure of the heart. Moreover, open cardiac massage was unnecessary. ECPR with sternotomy and cardiac repair is advisable for patients with blunt cardiac rupture and cardiac arrest who do not have severe multiple traumatic injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Thermoplastic fusion bonding using a pressure-assisted boiling point control system.

    PubMed

    Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C

    2012-08-21

    A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.

  18. Seismic constraints on the architecture of the Newport-Inglewood/Rose Canyon fault: Implications for the length and magnitude of future earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve

    2017-03-01

    The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.

  19. Slip History of the 2008 Mw 7.9 Wenchuan Earthquake Constrained by Joint Inverting Seismic, Geodetic, and Geological Observations

    NASA Astrophysics Data System (ADS)

    Shao, G.; Ji, C.; Lu, Z.; Hudnut, K. W.; Liu, J.; Zhang, W.

    2009-12-01

    We study the kinematic rupture process of the 2008 Mw 7.9 Wenchuan earthquake using all geophysical and geological datasets that we are able to access, including the waveforms of teleseismic long period surface waves, broadband body waves and local strong motions, GPS vectors, interferometic radar (INSAR) images, and geological surface offsets. The relocated aftershock locations have also been included to constrain the potential fault geometry. These datasets have very different sensitivities to not only the slip on the fault but also the “a priori” information of the source inversions, such as the local velocity structure and the details of irregular fault surface. Effects have then been made to reconcile these datasets by reasonably perturbing the velocity structure and fault geometry, which are both poorly constrained. We have used two 1D velocity models, one for the Tibet plateau and the other for Sichuan basin, to calculate the static and dynamic earth responses; and developed a complex fault system including two irregular fault planes for Beichuan and Pengguan faults, respectively. The long wavelength errors of the INSAR LOS displacements have also been considered and been corrected simultaneously during the joint inversions. Our preferred model not only explains the geodetic and tele-seismic data very well, but also reasonably matches most strong motion waveforms. According to this result, the Wenchuan earthquake has an unprecedented complex rupture process. It initiated southwest of the town of Yingxiu at a depth of about 12 km, where the low-angle Pengguan fault and the high-angle Beichuan fault intersect. The rupture initiated on the low angle Pengguan fault and then later triggered the rupture on the high angle Beichuan fault. It then unilaterally ruptured northeastward for 270 km, mainly on the Beichuan fault. The entire rupture duration is over 95 seconds with an average rupture velocity of 3.0 km/s. Except for the region near the hypocenter and the region near the northeast end of the rupture, the majority of slip occurred at depths less than 12 km. The total seismic moment released by this earthquake was 1.02 x 1021 Nm, with ~36% on the Pengguan fault. Our analysis also indicates that the aftershock zone along the extension of the Xiaoyudong fault is consistent with the theory of static stress triggering due to the co-seismic rupture.

  20. Rupture behaviors of the 2010 Jiashian and 2016 Meinong Earthquakes: Implication for interaction of two asperities on the Chishan Transfer Fault Zone in SW Taiwan.

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Chen, Y. L.; Meng, L.; Tseng, T. L.

    2017-12-01

    After about 45 years of seismic quiescence, southwest Taiwan was imperiled by two strong earthquakes, the 2010 Mw 6.2 Jiashian and deadly 2016 Mw 6.4 Meinong earthquakes in the last decade. The focal mechanisms and their aftershock distributions imply that both events occurred on NW-SE striking, shallow-dipping fault planes but at different depths of 21 and 16 km, respectively. Here we present the MUSIC back projection images using high-frequency P- and sP-waves recorded in the European and Australian seismic networks, the directivity analysis using global teleseismic P waves and relocated aftershocks to characterize the rupture behaviors of the two mainshocks and explore the potential connection between them. The results for the Meinong event indicate a unilateral, subhorizontal rupture propagating NW-ward 17 km and lasting for 6-7 s [Jian et al., 2017]. For the Jiashian event, the rupture initiated at a greater depth of 21 km and then propagated both NW-ward and up-dip ( 16o) on the fault plane, with a shorter rupture length of 10 km and duration of 4-5 s. The up-dip propagation is corroborated by the 3-D directivity analysis that leads to the widths of P-wave pulses increasing linearly with the directivity parameter. Moreover, relocation of aftershocks reveals that the Jiashian sequence is confined in a NW-SE elongated zone extending 15 km and 5 km shallower than the hypocenter. The Meinong aftershock sequence shows three clusters: one surrounding the mainshock hypocenter, another one distributed northwestern and deeper (>20 km) off the rupture plane beneath Tainan, and the other distant shallow-focus one (<10 km) beneath the southern Central Mountain Range. As evidenced by similar focal mechanism, rupture behaviors, as well as the spatial configuration of the mainshock rupture zones and aftershock distributions, we attribute the Jiashian and Meinong earthquakes to two asperities on a buried oblique fault that has been reactivated recently, the NW-SE striking Chishan Transfer Fault Zone as a likely candidate rupture plane. In 2010, the Jiasian earthquake initiated at the deeper NE asperity and propagated NW-ward and up-dip. Six years later, the stronger shallower asperity responsible for the Meinong event was statically triggered, which consequently caused the ruinous destruction in SW Taiwan.

  1. Rupture process of the M 7.9 Denali fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions

    USGS Publications Warehouse

    Frankel, A.

    2004-01-01

    Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with the observed surface rupture on the Susitna Glacier fault. Inversion of the remainder of the waveforms (0.02-0.5 Hz) for moment release along the Denali and Totschunda faults shows that rupture proceeded eastward on the Denali fault, with two strike-slip subevents (numbers 2 and 3) centered about 90 and 210 km east of the hypocenter. Subevent 2 was located across from the station at PS 10 (Trans-Alaska Pipeline Pump Station #10) and was very localized in space and time. Subevent 3 extended from 160 to 230 km east of the hypocenter and had the largest moment of the subevents. Based on the timing between subevent 2 and the east end of subevent 3, an average rupture velocity of 3.5 km/sec, close to the shear wave velocity at the average rupture depth, was found. However, the portion of the rupture 130-220 km east of the epicenter appears to have an effective rupture velocity of about 5.0 km/ sec, which is supershear. These two subevents correspond approximately to areas of large surface offsets observed after the earthquake. Using waveforms of the M 6.7 Nenana Mountain earthquake as empirical Green's functions, the high-frequency (1-10 Hz) envelopes of the M 7.9 earthquake were inverted to determine the location of high-frequency energy release along the faults. The initial thrust subevent produced the largest high-frequency energy release per unit fault length. The high-frequency envelopes and acceleration spectra (>0.5 Hz) of the M 7.9 earthquake can be simulated by chaining together rupture zones of the M 6.7 earthquake over distances from 30 to 180 km east of the hypocenter. However, the inversion indicates that there was relatively little high-frequency energy generated along the 60-km portion of the Totschunda fault on the east end of the rupture.

  2. Induction of cell death by the lysosomotropic detergent MSDH.

    PubMed

    Li, W; Yuan, X; Nordgren, G; Dalen, H; Dubowchik, G M; Firestone, R A; Brunk, U T

    2000-03-17

    Controlled lysosomal rupture was initiated in lysosome-rich, macrophage-like cells by the synthetic lysosomotropic detergent, O-methyl-serine dodecylamide hydrochloride (MSDH). When MSDH was applied at low concentrations, resulting in partial lysosomal rupture, activation of pro-caspase-3-like proteases and apoptosis followed after some hours. Early during apoptosis, but clearly secondary to lysosomal destabilization, the mitochondrial transmembrane potential declined. At high concentrations, MSDH caused extensive lysosomal rupture and necrosis. It is suggested that lysosomal proteases, if released to the cytosol, may cause apoptosis directly by pro-caspase activation and/or indirectly by mitochondrial attack with ensuing discharge of pro-apoptotic factors.

  3. Turbulent breakage of ductile aggregates.

    PubMed

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  4. Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul

    NASA Astrophysics Data System (ADS)

    Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin

    2017-12-01

    This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

  5. Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor–Cucapah earthquake surface rupture

    USGS Publications Warehouse

    Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander

    2015-01-01

    We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.

  6. Electrical Burns and Late Spontaneous Artery Ruptures: About Three Cases.

    PubMed

    Reinbold, C; Serror, K; Mimoun, M; Chaouat, M; Marco, O; Boccara, D

    2018-05-15

    Electrical burns are responsible for arterial and venous thrombosis, as well as weakening of the arteries. Immediate or delayed arterial occlusions, secondary to the aggression of the intima, or aneurysms, secondary to the aggression of the media, sometimes lead to artery ruptures without any warning signs. Such ruptures may trigger a hemorrhagic shock whose period of onset is variable and unpredictable. We are presenting here three cases treated in our department for electrical burns, whose complications were marked by hemorrhagic shock, secondary to late artery ruptures, sometimes occurring several months following the event. These case reports required performance of emergency hemostasis in order to control sudden bleeding, with first approach being placement of a tourniquet at the base of the limb and/or a compression point. Through these cases, we thought it is crucial to closely monitor for a few weeks all patients who were victims of electrical injury, even more so if it was associated with a compartment syndrome of one or more limbs and high rhabdomyolysis, which seem to be predictive factors of late artery ruptures in our case reports.

  7. Investigation of UF/sub 6/ behavior in a fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    Reactions between UF/sub 6/ and combustible gases and the potential for UF/sub 6/-filled cylinders to rupture when exposed to fire are addressed. Although the absence of kinetic data prevents specific identification and quantification of the chemical species formed, potential reaction products resulting from the release of UF/sub 6/ into a fire include UF/sub 4/, UO/sub 2/F/sub 2/, HF, C, CF/sub 4/,COF/sub 2/, and short chain, fluorinated or partially fluorinated hydrocarbons. Such a release adds energy to a fire relative to normal combustion reactions. Time intervals to an assumed point of rupture for UF/sub 6/-filled cylinders exposed to fire are estimatedmore » conservatively. Several related studies are also summarized, including a test series in which small UF/sub 6/-filled cylinders were immersed in fire resulting in valve failures and explosive ruptures. It is concluded that all sizes of UF/sub 6/ cylinders currently in use may rupture within 30 minutes when totally immersed in a fire. For cylinders adjacent to fires, rupture of the larger cylinders appears much less likely.« less

  8. Numerical study of liquid film rupture after droplet spreading on a superhydrophilic surface

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng

    2017-11-01

    When a droplet impacts onto a solid surface, different outcomes can be observed, such as rebound, spreading and splashing. We present numerical simulation results on liquid film rupture after spreading of a droplet impact on a smooth superhydrophilic surface. The Navier-Stokes equations are solved using the variable density pressure projection method and the moment-of-fluid method is used to track the droplet interface. A superhydrophilic or superwetting surface has strong affinity to liquid and we assume the contact angle between solid and liquid is almost zero degree. The droplet spreading and film rupture process occurs in two stages: the droplet first spreads onto the surface and flattens into a thin film as it reaches the maximum diameter, then the film rim becomes unstable and the film rupture initiates from the rim toward the center gradually until the entire film breaks up into secondary droplets. The duration of the film rupture stage is much shorter than the spreading stage. The simulation result is compared with experiment and good agreement is achieved. We investigate the film thickness evolution during spreading and the effect of surface wettability on film rupture.

  9. Effect of off-fault low-velocity elastic inclusions on supershear rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Elbanna, A. E.

    2015-10-01

    Heterogeneous velocity structures are expected to affect fault rupture dynamics. To quantitatively evaluate some of these effects, we examine a model of dynamic rupture on a frictional fault embedded in an elastic full space, governed by plane strain elasticity, with a pair of off-fault inclusions that have a lower rigidity than the background medium. We solve the elastodynamic problem using the Finite Element software Pylith. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We primarily consider embedded soft inclusions with 20 per cent reduction in both the pressure wave and shear wave speeds. The embedded inclusions are placed at different distances from the fault surface and have different sizes. We show that the existence of a soft inclusion may significantly shorten the transition length to supershear propagation through the Burridge-Andrews mechanism. We also observe that supershear rupture is generated at pre-stress values that are lower than what is theoretically predicted for a homogeneous medium. We discuss the implications of our results for dynamic rupture propagation in complex velocity structures as well as supershear propagation on understressed faults.

  10. Evaluation of anticollagen type I antibody titers in synovial fluid of both stifle joints and the left shoulder joint of dogs with unilateral cranial cruciate disease.

    PubMed

    de Bruin, Tanya; de Rooster, Hilde; van Bree, Henri; Cox, Eric

    2007-03-01

    To evaluate anticollagen type I antibodies in synovial fluid of the affected stifle joint, the contralateral stifle joint, and the left shoulder joint of dogs with unilateral cranial cruciate ligament (CrCL) rupture during an extended period of 12 to 18 months. 13 client-owned dogs with CrCL rupture and 2 sham-operated dogs. All dogs were examined and arthrocentesis of all 3 joints was performed every 6 months after surgery. Synovial fluid samples were tested for anticollagen type I antibodies by use of an ELISA. Dogs with partial CrCL rupture had higher antibody titers than dogs with complete rupture. Six of 13 dogs ruptured the contralateral CrCL during the study, whereby higher antibody titers were found for the stifle joints than for the shoulder joint. Seronegative dogs or dogs with extremely low antibody titers and 2 dogs with high antibody titers did not sustain a CrCL rupture in the contralateral stifle joint. In most dogs that had a CrCL rupture of the contralateral stifle joint, a distinct antibody titer gradient toward the stifle joints was detected, suggesting that there was a local inflammatory process in these joints. However, only a small number of sham-operated dogs were used to calculate the cutoff values used to determine the anticollagen type I antibody titers in these patients. Synovial fluid antibodies against collagen type I alone do not initiate CrCL rupture because not all dogs with high antibody titers sustained a CrCL rupture in the contralateral stifle joint.

  11. Linkages Between the Megathrust and Upper-plate Deformation: Lessons From the Deformational Dichotomy of the 2016 Kaikoura New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Herman, M. W.

    2017-12-01

    Following the 2016 Mw 7.8 Kaikoura earthquake, the nature of the coseismic rupture was unclear. Seismological and tsunami evidence pointed to significant involvement of the subduction megathrust, while geodetic and field observations pointed to a shallow set of intra-crustal faults as the main participants during the earthquake. It now appears that the Kaikoura earthquake produced synchronous faulting on the plate boundary subduction interface - the megathrust - and on a suite of crustal faults above the rupture zone in the overlying plate. This Kaikoura-style earthquake, involving synchronous ruptures on multiple components of the plate boundary, may be an important mode of plate boundary deformation affecting seismic hazard along subduction zones. Here we propose a model to explain how these upper-plate faults are loaded during the periods between megathrust earthquakes and subsequently can rupture synchronously with the megathrust. Between megathrust earthquakes, horizontal compression, driven by plate convergence, locks the upper-plate faults, particularly those at higher angles to the convergence direction and the oblique plate motion of the subducting Pacific plate deforms the upper-plate in bulk shear. During the time interval of megathrust rupture, two things happen which directly affect the stress conditions acting on these upper-plate faults: (1) slip on the megathrust and the associated `rebound' of the upper plate reduces the compressive or normal stress acting on the upper plate faults, and (2) the base of the upper plate faults (and the upper plate itself) is decoupled from the slab in the region above rupture area. The reduction in normal stress acting on these faults increases their Coulomb Stress state to strongly favor strike-slip fault slip, and the basal decoupling of the upper plate allows it to undergo nearly complete stress recovery in that region; enabling the occurrence of very large offsets on these faults - offsets that exceed the slip on the plate interface. With these results it is clear that the 2016 Kaikoura NZ earthquake represents a mode of subduction zone rupture that must be considered in other regions.

  12. Insights into the Fault Geometry and Rupture History of the 2016 MW 7.8 Kaikoura, New Zealand, Earthquake

    NASA Astrophysics Data System (ADS)

    Adams, M.; Ji, C.

    2017-12-01

    The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the east coast of the northern part of the South Island. The local tectonic setting is complicated. The central South Island is dominated by oblique continental convergence, whereas the southern part of this island experiences eastward subduction of the Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) indicate that this earthquake involved multiple fault segments of the Marlborough fault system (MFS) as the rupture propagated northwards for more than 150 km. Additional slip might also occur on the subduction interface of the Pacific plate under the Australian plate, beneath the MFS. However, the exact number of involved fault segments as well as the temporal co-seismic rupture sequence has not been fully determined with geodetic and geological observations. Knowledge of the kinematics of complex fault interactions has important implications for our understanding of global seismic hazards, particularly to relatively unmodeled multisegment ruptures. Understanding the Kaikoura earthquake will provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. We propose to apply a multiple double-couple inversion to determine the fault geometry and spatiotemporal rupture history using teleseismic and strong motion waveforms, before constraining the detailed slip history using both seismic and geodetic data. The Kaikoura earthquake will be approximated as the summation of multiple subevents—each represented as a double-couple point source, characterized by i) fault geometry (strike, dip and rake), ii) seismic moment, iii) centroid time, iv) half-duration and v) location (latitude, longitude and depth), a total of nine variables. We progressively increase the number of point sources until the additional source cannot produce significant improvement to the observations. Our preliminary results using only teleseismic data indicate that, broadly speaking, the sequence of fault planes dips towards the northwest and the motion of slip is largely to the northeast. Sequence and timing of the rupturing faults is still to be determined.

  13. Self-Healing Wire Insulation

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  14. Ruptured Baker's cyst with compartment syndrome: an extremely unusual complication.

    PubMed

    Hamlet, Mark; Galanopoulos, Ilias; Mahale, Avinash; Ashwood, Neil

    2012-12-20

    A 69-year-old man presented with sudden onset of pain with acute tense swelling of his left leg. Initially he was treated empirically with antibiotics for cellulitis while the possibility of deep vein thrombosis was ruled out. His symptoms gradually worsened with progressive distal neurological deficit and increasing pain. Further investigations suggested that he had a ruptured Baker's cyst in the calf with development of compartment syndrome.

  15. Kinematic inversion of the 2008 Mw7 Iwate-Miyagi (Japan) earthquake by two independent methods: Sensitivity and resolution analysis

    NASA Astrophysics Data System (ADS)

    Gallovic, Frantisek; Cirella, Antonella; Plicka, Vladimir; Piatanesi, Alessio

    2013-04-01

    On 14 June 2008, UTC 23:43, the border of Iwate and Miyagi prefectures was hit by an Mw7 reverse-fault type crustal earthquake. The event is known to have the largest ground acceleration observed to date (~4g), which was recorded at station IWTH25. We analyze observed strong motion data with the objective to image the event rupture process and the associated uncertainties. Two different slip inversion approaches are used, the difference between the two methods being only in the parameterization of the source model. To minimize mismodeling of the propagation effects we use crustal model obtained by full waveform inversion of aftershock records in the frequency range between 0.05-0.3 Hz. In the first method, based on linear formulation, the parameters are represented by samples of slip velocity functions along the (finely discretized) fault in a time window spanning the whole rupture duration. Such a source description is very general with no prior constraint on the nucleation point, rupture velocity, shape of the velocity function. Thus the inversion could resolve very general (unexpected) features of the rupture evolution, such as multiple rupturing, rupture-propagation reversals, etc. On the other hand, due to the relatively large number of model parameters, the inversion result is highly non-unique, with possibility of obtaining a biased solution. The second method is a non-linear global inversion technique, where each point on the fault can slip only once, following a prescribed functional form of the source time function. We invert simultaneously for peak slip velocity, slip angle, rise time and rupture time by allowing a given range of variability for each kinematic model parameter. For this reason, unlike to the linear inversion approach, the rupture process needs a smaller number of parameters to be retrieved, and is more constrained with a proper control on the allowed range of parameter values. In order to test the resolution and reliability of the retrieved models, we present a thorough analysis of the performance of the two inversion approaches. In fact, depending on the inversion strategy and the intrinsic 'non-uniqueness' of the inverse problem, the final slip maps and distribution of rupture onset times are generally different, sometimes even incompatible with each other. Great emphasis is devoted to the uncertainty estimate of both techniques. Thus we do not compare only the best fitting models, but their 'compatibility' in terms of the uncertainty limits.

  16. Delineation of Rupture Propagation of Large Earthquakes Using Source-Scanning Algorithm: A Control Study

    NASA Astrophysics Data System (ADS)

    Kao, H.; Shan, S.

    2004-12-01

    Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.

  17. Rupture of the gravid uterus in a tertiary health facility in the Niger delta region of Nigeria: A 5-year review.

    PubMed

    Nyengidiki, T K; Allagoa, D O

    2011-10-01

    Ruptured uterus is a major life-threatening condition encountered mostly in developing countries and is an index of failure of obstetric care at a point in time in a woman's reproductive career. With worsening economic condition, increasing caesarean section rates, and patients' aversion for operative delivery this condition would still remain a major obstetric matter for discussion. To identify the incidence, sociodemographic variables, clinical characteristics, causes, and outcome of ruptured uterus at the University of Port Harcourt Teaching Hospital. A 5-year retrospective study of cases of ruptured uterus at the University of Port Harcourt Teaching Hospital was carried out. The case notes of 40 patients with uterine rupture during the period 2003-2007 were analyzed. Data collected included sociodemographic characteristics, etiologic factors, clinical presentation, and outcome. Data were analyzed using Microsoft Excel version 2007 and SPSS 14.0 computer software. The incidence of rupture of the gravid uterus was 1:258 deliveries. In patients with rupture of the gravid uterus, 65% (26) of patients were unbooked; 37.5% (15) were aged between 25 and 29 years. A total of 42.5% (17) of patients had secondary education and 21 (52.5%) were housewives. Rupture of a previous scar was the commonest etiologic factor accounting for 32.5% (11). The commonest presentation was abdominal pain in 92.5% of cases. Perinatal mortality and maternal mortality were 80% and 17.5% respectively. Rupture of the gravid uterus still remains a major cause of maternal mortality. Injudicious use of oxytocics should be discouraged in peripheral health facilities and reinforcement of the need for hospital based deliveries in patients with previous caesarean sections should also be intensified to improve outcome.

  18. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    NASA Astrophysics Data System (ADS)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  19. Horizonal and Vertical Spatial Patterns of Radon and Other Soil-gases Across the El Pilar Fault Trace at Guaraphiche, Edo. Surce (Venezuela)

    NASA Astrophysics Data System (ADS)

    LaBrecque, J. J.

    2002-05-01

    Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214

  20. Source Process of the 2007 Niigata-ken Chuetsu-oki Earthquake Derived from Near-fault Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Sekiguchi, H.; Morikawa, N.; Ozawa, T.; Kunugi, T.; Shirasaka, M.

    2007-12-01

    The 2007 Niigata-ken Chuetsu-oki earthquake occurred on July 16th, 2007, 10:13 JST. We performed a multi- time window linear waveform inversion analysis (Hartzell and Heaton, 1983) to estimate the rupture process from the near fault strong motion data of 14 stations from K-NET, KiK-net, F-net, JMA, and Niigata prefecture. The fault plane for the mainshock has not been clearly determined yet from the aftershock distribution, so that we performed two waveform inversions for north-west dipping fault (Model A) and south-east dipping fault (Model B). Their strike, dip, and rake are set to those of the moment tensor solutions by F-net. Fault plane model of 30 km length by 24 km width is set to cover aftershock distribution within 24 hours after the mainshock. Theoretical Green's functions were calculated by the discrete wavenumber method (Bouchon, 1981) and the R/T matrix method (Kennett, 1983) with the different stratified medium for each station based on the velocity structure including the information form the reflection survey and borehole logging data. Convolution of moving dislocation was introduced to represent the rupture propagation in an each subfault (Sekiguchi et al., 2002). The observed acceleration records were integrated into velocity except of F-net velocity data, and bandpass filtered between 0.1 and 1.0 Hz. We solved least-squared equation to obtain slip amount of each time window on each subfault to minimize squared residual of the waveform fitting between observed and synthetic waveforms. Both models provide moment magnitudes of 6.7. Regarding Model A, we obtained large slip in the south-west deeper part of the rupture starting point, which is close to Kashiwazaki-city. The second or third velocity pulses of observed velocity waveforms seem to be composed of slip from the asperity. Regarding Model B, we obtained large slip in the southwest shallower part of the rupture starting point, which is also close to Kashiwazaki-city. In both models, we found small slip near the rupture starting point, and largest slip at about ten kilometer in the south-west of the rupture starting point with the maximum slip of 2.3 and 2.5 m for Models A and B, respectively. The difference of the residual between observed and synthetic waveforms for both models is not significant, therefore it is difficult to conclude which fault plane is appropriate to explain. The estimated large-slip regions in the inverted source models with the Models A and B are located near the cross point of the two fault plane models, which should have similar radiation pattern. This situation may be one of the reasons why judgment of the fault plane orientation is such difficult. We need careful examinations not only strong motion data but also geodetic data to further explore the fault orientation and the source process of this earthquake.

  1. Superselective Wada test for ruptured spontaneous fusiform middle cerebral artery aneurysm: a technical case report.

    PubMed

    Rajpal, Sharad; Moftakhar, Roham; Bauer, Andrew M; Turk, Aquilla S; Niemann, David B

    2011-09-01

    Spontaneous fusiform aneurysms of the middle cerebral artery (sfaMCA) are quite uncommon and tend to occur in young adults. The use of superselective angiography for ruptured and unruptured aneurysms can help delineate vital angioarchitecture and assist with perioperative planning and treatment modality. The use of superselective Wada testing (SWT) for treatment of a ruptured sfaMCA involving the dominant hemisphere, however, has never been described in the English literature. We report a case of a ruptured sfaMCA involving the dominant hemisphere where superselective angiography and SWT were utilized to predict the ability to occlude a major vessel without adverse neurological sequelae. A healthy young patient presented with subarachnoid hemorrhage. Initial CT-angiogram of the head identified a left-sided fusiform MCA aneurysm measuring 1.3 cm by 0.5 cm in maximum dimensions. Diagnostic angiography evaluation demonstrated an irregular, fusiform aneurysm involving the central (Rolandic) trunk of the left MCA. An SWT was then performed through an SL 10 microcatheter with injection of sodium amytal. Verbal, motor and cognitive testing were performed twice and revealed no neurological defects. The patient underwent subsequent coil embolization of the aneurysm. Formal post-procedure evaluation revealed no speech, language or cognitive deficits. She was eventually discharged home and remained without neurological deficits at her follow-up appointment 12 months after her initial presentation. Intraoperative SWT can be performed as part of the initial evaluation for patients with sfaMCA of the dominant cerebral hemisphere to help choose the appropriate treatment algorithm and predict post-treatment neurological deficits.

  2. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  3. Rupture of the subscapularis tendon after shoulder arthroplasty: diagnosis, treatment, and outcome.

    PubMed

    Miller, Bruce S; Joseph, Thomas A; Noonan, Thomas J; Horan, Marilee P; Hawkins, Richard J

    2005-01-01

    The purpose of this study was to document the diagnosis, surgical treatment, and functional outcome in patients with subscapularis ruptures after shoulder arthroplasty. Prospective objective and subjective data were collected on 7 patients with symptomatic rupture of the subscapularis tendon after shoulder arthroplasty. Presenting signs and symptoms included pain, weakness in internal rotation, increased external rotation, and anterior instability. All patients were treated with surgical repair of the ruptured tendon. Four required repair augmentation with a transfer of the pectoralis major tendon. After subscapularis repair and pectoralis transfer, 2 patients continued to have anterior instability and required an additional operation to address the instability. At a mean follow-up of 2.3 years (range, 18-55 months), the mean American Shoulder and Elbow Surgeons shoulder score in this study group was 63.2. The mean patient satisfaction rating, on a 10-point scale, was 6.2. Factors associated with post-arthroplasty subscapularis ruptures included subscapularis lengthening techniques used to address internal rotation contracture and previous surgery that violated the subscapularis tendon. Symptomatic subscapularis rupture after shoulder arthroplasty introduces the need for additional surgery and a period of protected or delayed rehabilitation after arthroplasty. Although symptoms were adequately addressed with appropriate surgical treatment, decreased functional outcomes were observed.

  4. [Outcome of operative treatment for supination-external rotation Lauge-Hansen stage IV ankle fractures].

    PubMed

    Kołodziej, Łukasz; Boczar, Tomasz; Bohatyrewicz, Andrzej; Zietek, Paweł

    2010-01-01

    Ankle fractures are among the most common musculoskeletal injures. These fractures occur with an overall age- and sex-adjusted incidence rate around 180 per 100 000 person-years. The most frequent mechanism is considered to be supination-external rotation (60 to 80% of all ankle fractures) consisting of pathologic external rotation of the foot initially placed in some degree of supination. According to Lauge-Hansen classification, ankle joint structures are damaged in a sequence where the final, stage IV injuries, represents transverse fracture of the medial malleolus or its equivalent-rupture of the deltoid ligament. The aim of this study is to compare the results of two subtypes of supination-external rotation stage IV fractures. 43 patients treated surgically in 2006 to 2007 at Authors institution because of stage IV supination-external rotation ankle fracture were submitted to retrospective analysis. There were 25 patients with bimalleolar fracture (type 1) and in 18 patients with lateral malleolar fracture with accompanying rupture of the deltoid ligament (type 2). The mean age was 46 years (from 20 to 82 years). Average follow up period was 37 months (from 24 to 46 months). For the evaluation of treatment AOFAS hind-foot score (American Orthopedic Foot and Ankle Society) was used. The mean AOFAS score scale for Type 1 fractures was 85 points and for type 2 was significantly higher and amounted to 91 points (p < 0.05). Supination-external rotation stage IV ankle fractures with medial malleolar fracture, requires the implementation of additional diagnostic and therapeutic strategies and procedures in order to improve the outcome of results.

  5. Ruptured Pulmonary Cystic Echinococcosis Mimicking Tuberculosis in Childhood: A Case Report.

    PubMed

    Ünver Korğalı, Elif; Kaymak Cihan, Meriç; Ceylan, Özgür; Kaptanoğlu, Melih

    2017-06-01

    Cystic echinococcosis (CE) is a zoonotic disease; in places such as Turkey where livestock is common, it is an endemic health concern. The most commonly involved organ is the lungs in children. Pulmonary cysts can be asymptomatic; in some cases, they may rupture and become symptomatic. Ruptured lung hydatid cysts may often be confused with tuberculosis (Tbc) radiologically and clinically. . In this report, we present an 8-year-old female patient admitted with cough, fever, and sputum persisting since 2 weeks; her chest radiography and computed tomography (CT) findings initially indicated Tbc, but the follow-up surgery led to a diagnosis of ruptured lung CE. We want to emphasize that in children belonging to places where livestock is common, if respiratory symptoms are observed, CE and tuberculosis must be considered in the differential diagnosis, and the final diagnosis should be supported by other microbiological-serological tests.

  6. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  7. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  8. Source rupture process of the 2016 Kaikoura, New Zealand earthquake estimated from the kinematic waveform inversion of strong-motion data

    NASA Astrophysics Data System (ADS)

    Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo

    2018-03-01

    On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.

  9. Process for Self-Repair of Insulation Material

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2007-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured reactants witlun the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  10. Process for self-repair of insulation material

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2007-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  11. [Spontaneous splenic rupture as complication of infective mononucleosis: a clinical case].

    PubMed

    Delle Monache, Guido; Orlando, Dante; Frassanito, Salvatore; Sciarra, Roberto; Rinaldi, Manlio Tullio

    2003-01-01

    Spontaneous splenic rupture is a very rare complication of infectious mononucleosis, already described by other authors. In this case report we show the findings occurring in a young man who presented with sudden left thoracic pain and dyspnea. The initial work-up was oriented towards a suspected diagnosis of left spontaneous pneumothorax. Initially, little attention was paid to the clinical history that was characterized by flu-like symptoms during the previous 2 weeks; this, along with a rushed physical examination, could have had dramatic consequences, due to the unavoidable diagnostic delay. A thorough clinical evaluation by Internists, coupled with the essential ultrasonographic diagnostic support, allowed an earlier diagnosis followed by definitive cure, i.e. splenectomy.

  12. Urethral injury in the multiple-injured patient.

    PubMed

    Cass, A S

    1984-10-01

    A total of 74 patients with urethral injury due to external trauma consisted of 48 posterior urethral injuries (25 complete rupture, 23 partial rupture) and 26 anterior urethral injuries (two complete rupture, 16 partial rupture, and eight contusion). The diagnosis was made by retrograde urethrography. All 48 patients with posterior urethral injury had associated injuries, including a fractured pelvis in 46, and a mortality rate of 33%. Only seven of the 26 patients with anterior urethral injury had associated injuries and a mortality rate of 14%. The management of posterior urethral injury is changing from primary realignment of the ruptured urethra to suprapubic cystostomy alone and followed later by urethral surgery for the resulting stricture. The impotence rate is significantly lower with management with suprapubic cystostomy alone. However, the type of pelvic fracture, the urethral injury itself disrupting neurovascular structures, and the surgical dissection (initial primary realignment or delayed urethroplasty) must be investigated before it can be determined whether the impotence associated with pelvic trauma is caused by the injury itself or by the surgical dissection undertaken to reconstruct the urethra.

  13. Rupture processes of the 2010 Canterbury earthquake and the 2011 Christchurch earthquake inferred from InSAR, strong motion and teleseismic datasets

    NASA Astrophysics Data System (ADS)

    Yun, S.; Koketsu, K.; Aoki, Y.

    2014-12-01

    The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity structure of this region into account.

  14. Cross cultural adaptation of the Achilles tendon Total Rupture Score with reliability, validity and responsiveness evaluation.

    PubMed

    Carmont, Michael R; Silbernagel, Karin Grävare; Nilsson-Helander, Katarina; Mei-Dan, Omer; Karlsson, Jon; Maffulli, Nicola

    2013-06-01

    The Achilles tendon Total Rupture Score (ATRS) was developed because of the need for a reliable, valid and sensitive instrument to evaluate symptoms and their effects on physical activity in patients following either conservative or surgical management of an Achilles tendon rupture. Prior to using the score in larger randomized trial in an English-speaking population, we decided to perform reliability, validity and responsiveness evaluations of the English version of the ATRS. Even though the score was published in English, the actual English version has not be validated and compared to the results of the Swedish version. From 2009 to 2010, all patients who received treatment for Achilles tendon rupture were followed up using the English version of the ATRS. Patients were asked to complete the score at 3, 6 and 12 months following treatment for Achilles tendon rupture. The ATRS was completed on arrival in the outpatient clinic and again following consultation. The outcomes of 49 (13 female and 36 male) patients were assessed. The mean (SD) age was 49 (12) years, and 27 patients had treatment for a left-sided rupture, 22 the right. All patients received treatment for ruptured Achilles tendons: 38 acute percutaneous repair, 1 open repair, 5 an Achilles tendon reconstruction using a Peroneus Brevis tendon transfer for delayed presentation, 1 gracilis augmented repair for re-rupture and 4 non-operative treatment for mid-portion rupture. The English version of ATRS was shown to have overall excellent reliability (ICC = 0.986). There was no significant difference between the results with the English version and the Swedish version when compared at the 6-month- or 12-month (n.s.) follow-up appointments. The effect size was 0.93. The minimal detectable change was 6.75 points. The ATRS was culturally adapted to English and shown to be a reliable, valid and responsive method of testing functional outcome following an Achilles tendon rupture.

  15. Study on the fixed point in crustal deformation before strong earthquake

    NASA Astrophysics Data System (ADS)

    Niu, A.; Li, Y.; Yan, W. Mr

    2017-12-01

    Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.

  16. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  17. A Benchmarking setup for Coupled Earthquake Cycle - Dynamic Rupture - Tsunami Simulations

    NASA Astrophysics Data System (ADS)

    Behrens, Joern; Bader, Michael; van Dinther, Ylona; Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Uphoff, Carsten; Vater, Stefan; Wollherr, Stephanie; van Zelst, Iris

    2017-04-01

    We developed a simulation framework for coupled physics-based earthquake rupture generation with tsunami propagation and inundation on a simplified subduction zone system for the project "Advanced Simulation of Coupled Earthquake and Tsunami Events" (ASCETE, funded by the Volkswagen Foundation). Here, we present a benchmarking setup that can be used for complex rupture models. The workflow begins with a 2D seismo-thermo-mechanical earthquake cycle model representing long term deformation along a planar, shallowly dipping subduction zone interface. Slip instabilities that approximate earthquakes arise spontaneously along the subduction zone interface in this model. The absolute stress field and material properties for a single slip event are used as initial conditions for a dynamic earthquake rupture model.The rupture simulation is performed with SeisSol, which uses an ADER discontinuous Galerkin discretization scheme with an unstructured tetrahedral mesh. The seafloor displacements resulting from this rupture are transferred to the tsunami model with a simple coastal run-up profile. An adaptive mesh discretizing the shallow water equations with a Runge-Kutta discontinuous Galerkin (RKDG) scheme subsequently allows for an accurate and efficient representation of the tsunami evolution and inundation at the coast. This workflow allows for evaluation of how the rupture behavior affects the hydrodynamic wave propagation and coastal inundation. We present coupled results for differing earthquake scenarios. Examples include megathrust only ruptures versus ruptures with splay fault branching off the megathrust near the surface. Coupling to the tsunami simulation component is performed either dynamically (time dependent) or statically, resulting in differing tsunami wave and inundation behavior. The simplified topographical setup allows for systematic parameter studies and reproducible physical studies.

  18. Biomechanical Indices for Rupture Risk Estimation in Abdominal Aortic Aneurysms.

    PubMed

    Leemans, Eva L; Willems, Tineke P; van der Laan, Maarten J; Slump, Cornelis H; Zeebregts, Clark J

    2017-04-01

    To review the use of biomechanical indices for the estimation of abdominal aortic aneurysm (AAA) rupture risk, emphasizing their potential use in a clinical setting. A search of the PubMed, Embase, Scopus, and Compendex databases was made up to June 2015 to identify articles involving biomechanical analysis of AAA rupture risk. Outcome variables [aneurysm diameter, peak wall stress (PWS), peak wall shear stress (PWSS), wall strain, peak wall rupture index (PWRI), and wall stiffness] were compared for asymptomatic intact AAAs vs symptomatic or ruptured AAAs. For quantitative analysis of the pooled data, a random effects model was used to calculate the standard mean differences (SMDs) with the 95% confidence interval (CI) for the biomechanical indices. The initial database searches yielded 1894 independent articles of which 19 were included in the analysis. The PWS was significantly higher in the symptomatic/ruptured group, with a SMD of 1.11 (95% CI 0.93 to 1.26, p<0.001). Likewise, the PWRI was significantly higher in the ruptured or symptomatic group, with a SMD of 1.15 (95% CI 0.30 to 2.01, p=0.008). After adjustment for the aneurysm diameter, the PWS remained higher in the ruptured or symptomatic group, with a SMD of 0.85 (95% CI 0.46 to 1.23, p<0.001). Less is known of the wall shear stress and wall strain indices, as too few studies were available for analysis. Biomechanical indices are a promising tool in the assessment of AAA rupture risk as they incorporate several factors, including geometry, tissue properties, and patient-specific risk factors. However, clinical implementation of biomechanical AAA assessment remains a challenge owing to a lack of standardization.

  19. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence

    NASA Astrophysics Data System (ADS)

    Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne

    2015-02-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency (< 0.1 Hz), while back-projection shows a steady increase of high frequency power (> 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of subducting seamounts that promote high-frequency generation. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.

  20. Study Of The Rupture Process Of The 2015 Mw7.8 Izu-Bonin Earthquake And Its Implication To Deep-Focus Earthquake Genesis.

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2015-12-01

    On May 30, 2015, a major Mw7.8 great deep earthquake occurred at the base of the mantle transition zone (MTZ), approximately 680 km deep within the Pacific Plate which subducts westward under the Philippine Sea Plate along the Izu-Bonin trench. A global P wave tomographic image indicates that a tabular high-velocity structure delineated by ~1% faster than the ambient mantle plunges nearly vertical to a depth at most 600 km and afterword flattens and stagnates within the MTZ. Almost all the deep earthquakes in this region are clustered inside this fast anomaly corresponding to the cold core of the subducting slab. Those occurring at depth between 400~500 km close to the hinge of the bending slab show down-dip compressional focal mechanisms and reflect episodic release of compressive strain accumulated in the slab. The 2015 deep event, however, separated from the others, occurred uniquely near the base of the lithosphere with a down-dip extension mechanism, consistent with the notion that the outer portion of the folded slab experiences extensional bending stress. Here we perform a 3D MUSIC back-projection (BP) rupture imaging for this isolated deep event using P and pP waveforms individually from the European, North American and Australian array data. By integrating P- and pP- BP images in frequencies of 0.1-1 Hz obtained from three array observations with different azimuth, we first ascertain the most possible fault plan is the SW-dipping subhorizontal one. Then, from back-projecting higher frequency waveforms at 1-1.5 Hz onto the obtained fault plane, we find the rupture initially propagates slowly along the strike (SW-direction), and makes a turn to the NNW-direction at ~12s after the onset of rupture. The MUSIC psudospectrum over totally 20s rupture duration reveals that most seismic energy radiation takes place at the initial 8s of the first rupture along the strike, 10-15 km long region, while the along-updip second rupture lasting for 6-10s has a rupture length of 15-20 km and weaker radiated energy. The overall rupture speed is about 1.5-2 km/s. As it rarely struck the area close to the outer periphery of the slab under the condition of relatively high-temperature and downdip extension, thermally-induced shear instability may play an important role in the genesis of this deep-focus earthquake.

  1. Evidence for and implications of self-healing pulses of slip in earthquake rupture

    USGS Publications Warehouse

    Heaton, T.H.

    1990-01-01

    Dislocation time histories of models derived from waveforms of seven earthquakes are discussed. In each model, dislocation rise times (the duration of slip for a given point on the fault) are found to be short compared to the overall duration of the earthquake (??? 10%). However, in many crack-like numerical models of dynamic rupture, the slip duration at a given point is comparable to the overall duration of the rupture; i.e. slip at a given point continues until information is received that the rupture has stopped propagating. Alternative explanations for the discrepancy between the short slip durations used to model waveforms and the long slip durations inferred from dynamic crack models are: (1) the dislocation models are unable to resolve the relatively slow parts of earthquake slip and have seriously underestimated the dislocations for these earthquakes; (2) earthquakes are composed of a sequence of small-dimension (short duration) events that are separated by locked regions (barriers); (3) rupture occurs in a narrow self-healing pulse of slip that travels along the fault surface. Evidence is discussed that suggests that slip durations are indeed short and that the self-healing slip-pulse model is the most appropriate explanation. A qualitative model is presented that produces self-healing slip pulses. The key feature of the model is the assumption that friction on the fault surface is inversely related to the local slip velocity. The model has the following features: high static strength of materials (kilobar range), low static stress drops (in the range of tens of bars), and relatively low frictional stress during slip (less than several hundreds of bars). It is suggested that the reason that the average dislocation scales with fault length is because large-amplitude slip pulses are difficult to stop and hence tend to propagate large distances. This model may explain why seismicity and ambient stress are low along fault segments that have experienced large earthquakes. It also qualitatively explains why the recurrence time for large earthquakes may be irregular. ?? 1990.

  2. Ultrasound elastography of the lower uterine segment in women with a previous cesarean section: Comparison of in-/ex-vivo elastography versus tensile-stress-strain-rupture analysis.

    PubMed

    Seliger, Gregor; Chaoui, Katharina; Lautenschläger, Christine; Jenderka, Klaus-Vitold; Kunze, Christian; Hiller, Grit Gesine Ruth; Tchirikov, Michael

    2018-06-01

    The purpose of this study was to assess, if the biomechanical properties of the lower uterine segment (LUS) in women with a previous cesarean section (CS) can be determined by ultrasound (US) elastography. The first aim was to establish an ex-vivo LUS tensile-stress-strain-rupture(break point) analysis with the possibility of simultaneously using US elastography. The second aim was to investigate the relationship between measurement results of LUS stiffness using US elastography in-/ex-vivo with results of tensile-stress-strain-rupture analysis, and to compare different US elastography LUS-stiffness-measurement methods ex-vivo. An explorative experimental, in-/ex-vivo US study of women with previous CS was conducted. LUS elasticity was measured by point Shear Wave Elastography (pSWE) and bidimensional Shear-Wave-Elastography (2D-SWE) first in-vivo during preoperative examination within 24 h before repeat CS (including resection of the thinnest part of the LUS = uterine scar area during CS), second within 1 h after operation during the ex-vivo experiment, followed by tensile-stress-strain-rupture analysis. Pearson's correlation coefficient and scatter plots, Bland-Altman plots and paired T-tests, were used. Thirty three women were included in the study; elastography measurements n = 1412. The feasibility of ex-vivo assessment of LUS by quantitative US elastography using pSWE and 2D-SWE to detect stiffness of LUS was demonstrated. The strongest correlation with tensile-stress-strain analysis was found in the US elastography examination carried out with 2D-SWE (0.78, p < 0.001, 95%CI [0.48, 0.92]). The laboratory experiment illustrated that, the break point - as a surrogate marker for the risk of rupture of the LUS after CS - is linearly dependent on the thickness of the LUS in the scar area (Coefficient of correlation: 0.79, p < 0.001, 95%CI [0.55, 0.91]). Two extremely stiff LUS-specimens (outlier or extreme values) rupture even at less stroke/strain than would be expected by their thickness. This study confirms that US elastography can help in determining viscoelastic properties of the LUS in women with a previous CS. The data from our small series are promising. However whether individual extreme values of high stiffness and consecutive restricted biomechanical resilience can explain the phenomenon of rupture during TOLAC in cases of LUS with adequate thickness remains a question which prospective trials have to analyze before US elastography can be introduced into clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Estimation of source processes of the 2016 Kumamoto earthquakes from strong motion waveforms

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Suzuki, W.; Aoi, S.; Sekiguchi, H.

    2016-12-01

    In this study, we estimated the source processes for two large events of the 2016 Kumamoto earthquakes (the M7.3 event at 1:25 JST on April 16, 2016 and the M6.5 event at 21:26 JST on April 14, 2016) from strong motion waveforms using multiple-time-window linear waveform inversion (Hartzell and Heaton 1983; Sekiguchi et al. 2000). Based on the observations of surface ruptures, the spatial distribution of aftershocks, and the geodetic data, a realistic curved fault model was developed for the source-process analysis of the M7.3 event. The source model obtained for the M7.3 event with a seismic moment of 5.5 × 1019 Nm (Mw 7.1) had two significant ruptures. One rupture propagated toward the northeastern shallow region at 4 s after rupture initiation, and continued with large slips to approximately 16 s. This rupture caused a large slip region with a peak slip of 3.8 m that was located 10-30 km northeast of the hypocenter and reached the caldera of Mt. Aso. The contribution of the large slip region to the seismic waveforms was large at many stations. Another rupture propagated toward the surface from the hypocenter at 2-6 s, and then propagated toward the northeast along the near surface at 6-10 s. This rupture largely contributed to the seismic waveforms at the stations south of the fault and close to the hypocenter. A comparison with the results obtained using a single fault plane model demonstrate that the use of the curved fault model led to improved waveform fit at the stations south of the fault. The extent of the large near-surface slips in this source model for the M7.3 event is roughly consistent with the extent of the observed large surface ruptures. The source model obtained for the M6.5 event with a seismic moment of 1.7 × 1018 Nm (Mw 6.1) had large slips in the region around the hypocenter and in the shallow region north-northeast of the hypocenter, both of which had a maximum slip of 0.7 m. The rupture of the M6.5 event propagated from the former region to the latter region at 1-6 s after rupture initiation, which is expected to have caused the strong ground motions due to the forward directivity effect at KMMH16 and surroundings. The occurrence of the near-surface large slips in this source model for the M6.5 event is consistent with the appearance of small surface cracks, which were observed by some residents.

  4. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  5. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  6. High resolution shallow co-seismic and post-seismic slip from the 2016 central Italy earthquake sequence captured using terrestrial laser scanning, structure from motion and low-cost near-field GNSS

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M.; Walters, R. J.

    2017-12-01

    Coseismic fault slip in the shallow crust is poorly constrained by many of the conventional tools used to record deformation during earthquakes. GNSS stations are often distributed too far from faults and radar images tend to decorrelate across earthquake surface ruptures. As a result, our understanding of near-field fault slip, shallow slip deficits, and off-fault deformation is limited. We present evidence from the 2016 central Italy earthquake sequence, during which we captured shallow coseismic and post-seismic slip using a combination of terrestrial laser scanning (TLS), structure-from-motion (SfM), and near-field low-cost GNSS recording at 1Hz. Three Mw>6 earthquakes on the 24th August, 26th and 30th October all involved slip on the Mt Vettore-Mt Bove fault system. We collected TLS and SfM point clouds across three separate segments of this system. Each segment experienced a different record of slip during the earthquake sequence; all three ruptured in the largest event (Mw 6.6. on October 30th) but two segments also ruptured during either the 24th August or the 26th October earthquakes. Following the Mw 6.6 earthquake, the faults were repeatedly surveyed using TLS, with the first scan collected c. 5 hours following the earthquake. This represents the first known instance where shallow co-seismic slip has been recorded by pre- and post-event terrestrial laser scanning. Displacement continuously measured across GNSS pairs at 1 Hz demonstrates that permanent near field displacement developed across the fault in the immediate seconds following the initiation of the rupture. However, a discrepancy between on-fault field measurements of surface displacement and the GNSS recorded displacement over 1km long baselines hints at a more complex rupture processes and the possibility of high slip gradients in the shallow subsurface. Displacement measured by differential TLS confirms the presence of these shallow slip deficits but suggests that shallow slip gradient may be controlled by the pattern and timing of slip in the preceding earthquakes. Postseismic afterslip captured by repeated TLS surveys hints at more complicated temporal evolution of nearfield afterslip than is currently predicted by logarithmic models for this process.

  7. Achilles tendon rupture--treatment and complications: a systematic review.

    PubMed

    Holm, C; Kjaer, M; Eliasson, P

    2015-02-01

    Achilles tendon rupture is a frequent injury with an increasing incidence. Until now, there is no consensus regarding optimal treatment. The aim of this review was to illuminate and summarize randomized controlled trials comparing surgical and non-surgical treatment of Achilles tendon ruptures during the last 10 years. Seven articles were found and they were all acceptable according to international quality assessment guidelines. Primary outcomes were re-ruptures, other complications, and functional outcomes. There was no significant difference in re-ruptures between the two treatments, but a tendency to favoring surgical treatment. Further, one study found an increased risk of soft-tissue-related complications after surgery. Patient satisfaction and time to return to work were significantly different in favor of surgery in one study, and there was also better functional outcome after surgery in some studies. These seven studies indicate that surgical patients have a faster rehabilitation. However, the differences between surgical and non-surgical treatment appear to be subtle and it could mean that rehabilitation is more important, rather than the actual initial treatment. Therefore, further studies will be needed in regard to understanding the interplay between acute surgical or non-surgical treatment, and the rehabilitation regimen for the overall outcome after Achilles tendon ruptures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Is Statin Use Associated With Tendon Rupture? A Population-Based Retrospective Cohort Analysis.

    PubMed

    Contractor, Tahmeed; Beri, Abhimanyu; Gardiner, Joseph C; Tang, Xiaoqin; Dwamena, Francesca C

    2015-01-01

    Previous case reports and small studies have suggested that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (HMG-CoA-Is) may increase the risk of tendon rupture. We conducted a population-based retrospective cohort evaluation to better assess this relationship. From approximately 800,000 enrollees of a private insurance database, those who were aged ≤64 years with at least 1 year of continuous enrollment were selected. Exposure was defined as initiation of HMG-CoA-I after the beginning of the study period. Each exposed person was matched with 2 controls of similar age and gender. Baseline characteristics, including known risk factors for tendon rupture, were compared between exposed and control cohorts with fidelity to the study's matched design. After adjusting for differences in follow-up and baseline characteristics, incidence rate ratios for tendon rupture was assessed in HMG-CoA-I users and nonusers. A total of 34,749 exposed patients were matched with 69,498 controls. There was no difference in the occurrence of tendon ruptures in HMG-CoA-I users versus nonusers. The results remained unchanged after adjustment for age and gender. In conclusion, this population-based retrospective cohort evaluation suggests that use of HMG-CoA-Is as a group are not associated with tendon rupture.

  9. Mortality outcomes of ruptured abdominal aortic aneurysms and rural presentation.

    PubMed

    Munday, Emily; Walker, Stuart

    2016-10-01

    Centralisation of vascular surgery services has coincided with a move towards endovascular repair of ruptured abdominal aortic aneurysms with the goal to improve patient outcomes. The aim of this study was to assess the effect of rural presentation and transfer times on survival from ruptured abdominal aortic aneurysm. A retrospective review. All patients presenting with ruptured abdominal aortic aneurysm to public hospitals in Tasmania between July 2006 and April 2013. Demographic data, Glasgow aneurysm score, Hardman index, transfer times, operative technique and 30-day mortality were collected from medical records. Over the study period 127 patients presented to public hospitals in Tasmania with ruptured abdominal aortic aneurysm. A total of 27 presented to north west hospitals where no vascular surgery service is provided (NWRH), 23 to a northern hospital where an intermittent vascular surgery service is provided (LGH) and 77 to the state tertiary vascular surgery service (RHH). Of these, 4 (14.8%) died at NWRH, 6 (26.1%) died at LGH and 43 (55.8%) died at RHH without operation. Of the 35 patients transferred from NWRH and LGH to RHH, 5 died without operation. Median time from presentation to theatre at RHH if transferred from NWRH was 6.25 hours, from the LGH 4.75 hours, compared to 2.75 hours when presenting directly to RHH. Open repair was performed in 41 patients and endovascular repair in 23 patients. Overall 30-day mortality in those treated at RHH was 26.6% (39.0% for open repair, 4.3% for endovascular repair). Mortality for intended operative patients initially presenting to non-RHH hospitals was 33.3% vs. 32.3% for those initially presenting to RHH. p Value 0.93. There was no clinical or statistical disadvantage to rural presentation and transfer for patients presenting with ruptured abdominal aortic aneurysm in Tasmania. Endovascular repair has a role despite long transfer times. © The Author(s) 2015.

  10. Kinematic and Dynamic Source Rupture Scenario for Potential Megathrust Event along the Southernmost Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Hu, F.; Chen, X.; Lee, S. J.; Hung, S. H.

    2017-12-01

    Kinematic source model is widely used for the simulation of an earthquake, because of its simplicity and ease of application. On the other hand, dynamic source model is a more complex but important tool that can help us to understand the physics of earthquake initiation, propagation, and healing. In this study, we focus on the southernmost Ryukyu Trench which is extremely close to northern Taiwan. Interseismic GPS data in northeast Taiwan shows a pattern of strain accumulation, which suggests the maximum magnitude of a potential future earthquake in this area is probably about magnitude 8.7. We develop dynamic rupture models for the hazard estimation of the potential megathrust event based on the kinematic rupture scenarios which are inverted using the interseismic GPS data. Besides, several kinematic source rupture scenarios with different characterized slip patterns are also considered to constrain the dynamic rupture process better. The initial stresses and friction properties are tested using the trial-and-error method, together with the plate coupling and tectonic features. An analysis of the dynamic stress field associated with the slip prescribed in the kinematic models can indicate possible inconsistencies with physics of faulting. Furthermore, the dynamic and kinematic rupture models are considered to simulate the ground shaking from based on 3-D spectral-element method. We analyze ShakeMap and ShakeMovie from the simulation results to evaluate the influence over the island between different source models. A dispersive tsunami-propagation simulation is also carried out to evaluate the maximum tsunami wave height along the coastal areas of Taiwan due to coseismic seafloor deformation of different source models. The results of this numerical simulation study can provide a physically-based information of megathrust earthquake scenario for the emergency response agency to take the appropriate action before the really big one happens.

  11. [A Case of Cervical Spinal Dural Arteriovenous Fistula with Extradural Drainage Presenting with Subarachnoid Hemorrhage due to a Ruptured Anterior Spinal Artery Aneurysm].

    PubMed

    Kurokawa, Yasuharu; Ikawa, Fusao; Hamasaki, Osamu; Hidaka, Toshikazu; Yonezawa, Ushio; Komiyama, Masaki

    2015-09-01

    We report a rare case of a cervical spinal dural arteriovenous fistula(AVF)at the C2 level presenting with subarachnoid hemorrhage(SAH)due to a ruptured anterior spinal artery aneurysm. A 61-year-old man presented with sudden onset headache. Initial computed tomography revealed SAH around the brainstem. Digital subtraction angiography(DSA)demonstrated a cervical dural AVF that was fed by the left C1 radicular, left C2 radicular, and anterior spinal arteries, and drained into the epidural plexus. An aneurysm in the branch of the cervical anterior spinal artery was considered the bleeding point. A left lateral suboccipital craniotomy and C1 hemilaminectomy were performed on day 43. The feeding arteries were clipped, followed by coagulation of the draining veins. However, the aneurysm was not clipped because we deemed that obliteration of the aneurysm would be difficult without disrupting the blood flow of the parent artery. The patient showed no neurological deterioration after the operation. Postoperative DSA revealed residual dural AVF. Therefore, a second surgery was performed. After the second open surgery, DSA showed that the dural AVF and aneurysm disappeared. The patient also showed no neurological deterioration after the second surgery.

  12. Superficial Tunica Albuginea Rupture as Initial Starting Point of Peyronie's Disease: A Topic for Interdisciplinary Consideration

    PubMed Central

    Bayerl, Manfred

    2015-01-01

    Peyronie's disease is a connective tissue disorder in the soft tissue of the penis. The underlying cause of Peyronie's disease is not well understood but is thought to be caused by trauma or injury to the penis during sexual intercourse. The purpose of the interdisciplinary cooperation between urological surgery and physics is the development of a physical simulation tool in order to give prognosis of possible tunica albuginea fibre rupture at a certain degree of deviation of the penis. For our group the first challenge was to translate the human organ of the penis into a physical model. Starting and marginal parameters had to be defined, whereby some of them had to be based on assumption, as physical data of the human living tissue have rarely been measured up to now. The algorithm and its dependencies had to be developed. This paper is a first step of a three-dimensional mathematical-physical simulation with the assumption of a 100% filled rigid penis. The calculation gives proof of the hypothesis that the fibre-load-angle of the penis is less than 12 degrees. Thus physical simulation is able to provide the surgeon with a simple instrument to calculate and forecast the risk of the individual patient. PMID:25648614

  13. Seismic source characteristics of the intraslab 2017 Chiapas-Mexico earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Jiménez, César

    2018-07-01

    Inversion of the parameters characterising the seismic source of the instraslab 2017 Chiapas Mexico earthquake (Mw 8.2) shows a simple rupture process with a unidirectional propagation and directivity towards the North-West and a duration of the rupture process around 75 s. The initial point source values of strike, dip and rake are 316°, 80° and -91° respectively. The focal mechanism indicates a normal fault type within the oceanic Cocos plate, with an almost vertical fault plane for a focal depth of 59 km. The seismic data was obtained from 51 seismic stations of the global seismic network IRIS for the epicentral distances between 30° and 90°. In the finite-fault inversion, 75 seismic signals between P and SH waves were used. The epicenter is on the southeast margin of the large slip zone which extends 75 km to the northwest, this large slip zone is located to the south of the city of Arriaga. The scalar seismic moment was estimated at 2.55 ×1021Nm , equivalent to a moment magnitude of Mw 8.2. The maximum dislocation or slip is 14.5 m. As a coseismic effect, a local tsunami was generated, recorded by several tidal gauges and offshore buoys. The deformation pattern shows a coastal uplift and subsidence.

  14. Longitudinal MRI Study on the Natural History of Carotid Artery Plaques in Symptomatic Patients

    PubMed Central

    Kwee, Robert M.; Truijman, Martine T. B.; van Oostenbrugge, Robert J.; Mess, Werner H.; Prins, Martin H.; Franke, Cees L.; Korten, Arthur G. G. C.; Wildberger, Joachim E.; Kooi, M. Eline

    2012-01-01

    Purpose To investigate the natural history of carotid atherosclerosis in patients who experienced a TIA or ischemic stroke. Patients and Methods Ninety-two TIA/stroke patients (57 men, mean age 67.7±9.8 years) with ipsilateral <70% carotid stenosis underwent multisequence MRI of the plaque ipsilateral to the symptomatic side at baseline and after one year. For each plaque, several parameters were assessed at both time points. Results Carotid lumen, wall and total vessel ( = carotid lumen and wall) volume did not significantly change. Forty-four patients had a plaque with a lipid-rich necrotic core (LRNC) at baseline, of which 34 also had a LRNC after one year. In three patients a LRNC appeared after one year. Thirty patients had a plaque with a thin and/or ruptured fibrous cap (FC) at both time points. In seven patients, FC status changed from thin and/or ruptured into thick and intact. In three patients, FC status changed from thick and intact into thin and/or ruptured. Twenty patients had intraplaque hemorrhage (IPH) at both time points. In four patients, IPH disappeared, whereas in three patients, new IPH appeared at follow-up. Conclusion In TIA/stroke patients, carotid plaque morphology does not significantly change over a one-year period. IPH and FC status change in a minority of patients. PMID:22860130

  15. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  16. Predictors of residual flow in embolized intracranial ruptured aneurysms at early follow-up.

    PubMed

    Serafin, Zbigniew; Strześniewski, Piotr; Beuth, Wojciech

    2014-01-01

    The possibility of recanalization and the need for retreatment are the most important drawbacks of intracranial aneurysm embolization. The purpose of the study was to prospectively analyze the results of early follow-up angiography of embolized ruptured aneurysms in an attempt to determine factors predicting the presence of residual flow. Evaluation included 72 patients with 72 aneurysms, which were followed-up 3 months after the treatment. Analysis of residual flow predictors included: age and gender, clinical state in Hunt-Hess scale, aneurysm localization, aneurysm three dimensions and volume, neck width, sac-to-neck ratio, initial result of embolization, number of coils used and the use of hydrogel coils and stents. Mean sac diameter was 6.5±3.9 mm, and mean neck width was 2.9±1.4 mm. Follow-up angiography presented residual flow in 26 aneurysms (36.1%): class 2 in 8 aneurysms (11.1%), and class 3 in 18 cases (25.0%). Stable aneurysm filling was observed in 45 cases (62.5%), progression of residual flow in 25 cases (34.7%), and regression in 2 cases (2.8%). According to ROC analysis independent predictors of residual flow were aneurysm neck diameter (AUC 0.857, 95% CI: 0.755-0.928, p<0.0001) and sac-to-neck ratio (AUC 0.817, 95% CI: 0.708-0.898, p<0.0001). Cut-off point of the ROC curve was established at 2.8 mm for neck diameter, and 1.73 for sac-to-neck ratio. Aneurysm neck diameter and sac-to-neck ratio are independently related to the residual flow in embolized ruptured aneurysms at early follow-up.

  17. Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu

    2018-05-01

    Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.

  18. High-frequency envelope inversion analysis of the 2003 Tokachi-Oki, JAPAN, earthquake (Mw8.0)

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2004-12-01

    The 2003 Tokachi-Oki earthquake (Mw 8.0) took place on September 26, 2003 at the plate interface between the subducting Pacific plate and the Hokkaido island, northern Japan. The focal depth is around 30km and the focal mechanism is thrust type. This earthquake caused 2 missings, more than 100 injures, 2000 collapsed houses, and so on. Slip distribution on the fault plane was already estimated by inversion analyses of low-frequency seismograms. However, source characteristics for the earthquake in frequencies higher than 1 Hz is not so far clarified. In this study, we execute an envelope inversion analysis based on the method by Nakahara et al. (1998) and clarify the spatial distribution of high-frequency seismic energy radiation on the fault plane of this earthquake. We use three-component sum of mean squared velocity seismograms multiplied by a density of earth medium, which is called envelopes here, for the envelope inversion analysis. Three frequency bands of 1-2, 2-4, and 4-8 Hz are adopted. We use envelopes in the time window from the onset of S waves to the lapse time of 128 sec. Green functions of envelopes representing the energy propagation process through a scattering medium are calculated based on the radiative transfer theory, which are characterized by parameters of scattering attenuation and intrinsic absorption. We use the values obtained for eastern Hokkaido (Hoshiba, 1993). We assume the fault plane as follows: strike=249o, dip=15o, rake=130o, length=150km, width=165km with reference to a waveform inversion analysis in low frequencies (e.g. Yagi, 2003). We divide this fault plane into 110 subfaults, each of which is a 15km x 15km square. Rupture velocity is assumed to be constant. Seismic energy is radiated from a point source as soon as the rupture front passes the center of each subfault. Time function of energy radiation is assumed as a box-car function. The amount of seismic energy from all the subfaults and site amplification factors for all the stations are estimated by the envelope inversion method. Rupture velocity and the duration time of a box-car function should be estimated by a grid search. Theoretical envelopes calculated with best-fit parameters generally fit to observed ones. The rupture velocity and duration time were estimated as 3.0 km/s and 6 sec, respectively. The high-frequency seismic energy was found to be radiated mainly from two spots on the fault plane: The first one is the deeper part beneath the initial rupture point and the second is the southern shallow part of the fault plane. Radiated energy was estimated to be 7.2 × 1016J in the 1-8Hz band. Acknowledgements: We used strong-motion seismograms recorded by the K-NET and KiK-net of NIED, JAPAN.

  19. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris G.

    2014-05-01

    Today, frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength for confined conditions corresponding to the seismogenic layer. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism, the rock failure associated with consecutive creation of small slabs (known as ‘domino-blocks') from the intact rock in the rupture tip is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance, self-sustaining stress intensification, and self-unbalancing conditions. Due to this the failure process caused by the mechanism is very dynamic and violent. This makes it impossible to directly observe and study the mechanism and can explain why the mechanism has not been detected before. This paper provides physical motivation for the mechanism, based upon side effects accompanying the failure process. Physical and mathematical models of the mechanism presented in the paper explain unique and paradoxical features of the mechanism. The new shear rupture mechanism allows a novel point of view for understanding the nature of spontaneous failure processes in hard rocks including earthquakes.

  20. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  1. Outcomes of functional weight-bearing rehabilitation of Achilles tendon ruptures.

    PubMed

    Jackson, Gillian; Sinclair, Victoria F; McLaughlin, Charles; Barrie, James

    2013-08-01

    The introduction of functional rehabilitation for patients with Achilles tendon rupture has dramatically changed treatment programs for this condition. The authors introduced a functional weight-bearing protocol for patients with an acute Achilles tendon rupture treated operatively and nonoperatively in 2002. They hypothesized that no significant differences would exist in the rerupture rates and functional outcomes between the groups. Between 2002 and 2008, the authors collected data on 80 consecutive patients treated with a weight-bearing functional orthosis for complete Achilles tendon rupture. Following evidence-based counseling, 51 patients chose nonoperative treatment and 29 chose operative treatment. Outcome measures included rerupture rates, other complications, and functional scoring. The nonoperative group was a decade older (median age, 47 years [range, 27-80 years]) than the operative group (median age, 37 years [range, 24-55 years]). Rerupture was noted in 2 (4%) patients in the nonoperative treatment group and 1 (3%) patient in the operative group. Two (7%) patients in the operative group developed superficial wound infections and reported no nerve injuries. Median Achilles Tendon Total Rupture Score was 82 points in the nonoperative group and 94 in the operative group. Median Victorian Institute of Sports Assessment-Achilles tendinopathy questionnaire scores were 60 and 91 for the nonoperative and operative groups, respectively. Both groups had low rerupture rates. Functional scores, using the newly validated Achilles Tendon Total Rupture Score, were lower in the nonoperative group. Copyright 2013, SLACK Incorporated.

  2. A Nonlinear Viscoelastic Model for Ceramics at High Temperatures

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.

    2002-01-01

    High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.

  3. Acute appendiceal abscess and atraumatic splenic rupture: A case of dual pathology.

    PubMed

    Ananthavarathan, Piriyankan; Patel, Kamlesh; Doran, Catherine; Suggett, Nigel

    2016-01-01

    Atraumatic splenic rupture is a rare surgical emergency that is often attributed to neoplastic or infectious causes. Rarely, it has been identified to also occur in the setting of an acute severe sepsis and in cases of pelvic or splenic abscess formation post-appendicectomy. However, to our knowledge, the co-presentation of acute appendiceal abscess and splenic rupture has not been previously described. We present the case of a 67-year old male with decompensating haemorrhagic shock secondary to atraumatic splenic rupture on a background of an inadequately treated complicated appendicitis originally managed as diverticulitis with antibiotics in the community. Intra-operatively, in addition to a de-gloved, ruptured spleen; an acutely inflamed appendiceal abscess was also identified. A concomitant splenectomy, washout and appendicectomy and was therefore performed. Histopathological examination revealed a normal spleen with a stripped capsular layer. Mucosal ulceration, transmural inflammation and serositis of the appendix appeared to be consistent with acute appendicitis. Our case demonstrates how inadequately treated sepsis may predispose to an acute presentation of splenic rupture with associated haemorrhagic shock; which may initially be interpreted as septic shock. However, we demonstrate how insults such as sepsis and haemorrhagic shock may co-exist warranting careful consideration of possible dual pathologies in complex presentations which may be life-threatening. While the causal relationship between acute appendicitis and atraumatic spontaneous splenic rupture remains unclear, our case considers and highlights the importance of considering dual pathology in patients presenting in the acute setting. Copyright © 2016. Published by Elsevier Ltd.

  4. Prediction of the bending behavior after pre-strain of an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Pradeau, A.; Thuillier, S.; Yoon, J. W.

    2016-10-01

    The present work is focused on the modeling of sheet metal mechanical behavior up to rupture, including anisotropy and hardening. The mechanical behavior of an AA6016 alloy was characterized at room temperature in tension, simple shear and hydraulic bulging. The initial anisotropy was described with the Yld2004-18p yield criterion coupled to a mixed hardening law. Concerning rupture, an uncoupled phenomenological criterion of Mohr-Coulomb type will be used. For the material parameter identification, an inverse methodology was used with the objective of reducing the gap between experimental and numerical data. Finally, validation of the results was performed on bending tests with different amplitudes of tension pre-strain in order to reach or not rupture in the bent area.

  5. Biomechanics of the anterior cruciate ligament: Physiology, rupture and reconstruction techniques

    PubMed Central

    Domnick, Christoph; Raschke, Michael J; Herbort, Mirco

    2016-01-01

    The influences and mechanisms of the physiology, rupture and reconstruction of the anterior cruciate ligament (ACL) on kinematics and clinical outcomes have been investigated in many biomechanical and clinical studies over the last several decades. The knee is a complex joint with shifting contact points, pressures and axes that are affected when a ligament is injured. The ACL, as one of the intra-articular ligaments, has a strong influence on the resulting kinematics. Often, other meniscal or ligamentous injuries accompany ACL ruptures and further deteriorate the resulting kinematics and clinical outcomes. Knowing the surgical options, anatomic relations and current evidence to restore ACL function and considering the influence of concomitant injuries on resulting kinematics to restore full function can together help to achieve an optimal outcome. PMID:26925379

  6. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  7. Do athletes alter their running mechanics after an Achilles tendon rupture?

    PubMed

    Jandacka, Daniel; Silvernail, Julia Freedman; Uchytil, Jaroslav; Zahradnik, David; Farana, Roman; Hamill, Joseph

    2017-01-01

    Over the past thirty years, there has been dramatic increase in incidence of Achilles tendon rupture in the athletic population. The purpose of this study was to compare the lower extremity mechanics of Achilles tendon ruptured runners with healthy controls. The participants with a past history of an Achilles tendon repair ( n  = 11) and healthy control ( n  = 11) subgroups were matched on sex, age, type of regular physical activity, mass, height, footfall pattern and lateral dominancy. Running kinetics and kinematics of the ankle, knee and hip were recorded using a high-speed motion capture system interfaced with a force platform. Achilles tendon length was measured using ultrasonography. Main outcome measures were lower extremity joint angles and moments during stance phase of running and Achilles tendon lengths. Athletes from Achilles tendon group had an affected gastro-soleus complex. Athletes with history of Achilles tendon rupture had reduced ankle range of motion during second half of the stance phase of running (Δ7.6°), an overextended knee during initial contact (Δ5.2°) and increased affected knee range of motion (Δ4.4°) during the first half of stance phase on their affected limb compared to the healthy control group. There was a 22% increase in the maximal hip joint moment on contralateral side of the Achilles tendon group compared to the healthy controls. These results suggest a compensation mechanism, relatively extended knee at initial ground contact against the deficit in the muscle-tendon complex of the triceps surae. Overextension during sporting activities may place the knee at risk for further injury. Avoidance of AT lengthening and plantarflexion strength deficit after surgery and during rehabilitation might help to manage AT rupture since these factors may be responsible for altered running kinematics.

  8. Rupture process of the 2009 L'Aquila, central Italy, earthquake, from the separate and joint inversion of Strong Motion, GPS and DInSAR data.

    NASA Astrophysics Data System (ADS)

    Cirella, A.; Piatanesi, A.; Tinti, E.; Chini, M.; Cocco, M.

    2012-04-01

    In this study, we investigate the rupture history of the April 6th 2009 (Mw 6.1) L'Aquila normal faulting earthquake by using a nonlinear inversion of strong motion, GPS and DInSAR data. We use a two-stage non-linear inversion technique. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage the algorithm performs a statistical analysis of the ensemble providing us the best-fitting model, the average model, the associated standard deviation and coefficient of variation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. The application to the 2009 L'Aquila main-shock shows that both the separate and joint inversion solutions reveal a complex rupture process and a heterogeneous slip distribution. Slip is concentrated in two main asperities: a smaller shallow patch of slip located up-dip from the hypocenter and a second deeper and larger asperity located southeastward along strike direction. The key feature of the source process emerging from our inverted models concerns the rupture history, which is characterized by two distinct stages. The first stage begins with rupture initiation and with a modest moment release lasting nearly 0.9 seconds, which is followed by a sharp increase in slip velocity and rupture speed located 2 km up-dip from the nucleation. During this first stage the rupture front propagated up-dip from the hypocenter at relatively high (˜ 4.0 km/s), but still sub-shear, rupture velocity. The second stage starts nearly 2 seconds after nucleation and it is characterized by the along strike rupture propagation. The largest and deeper asperity fails during this stage of the rupture process. The rupture velocity is larger in the up-dip than in the along-strike direction. The up-dip and along-strike rupture propagation are separated in time and associated with a Mode II and a Mode III crack, respectively. Our results show that the 2009 L'Aquila earthquake featured a very complex rupture, with strong spatial and temporal heterogeneities suggesting a strong frictional and/or structural control of the rupture process.

  9. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.

  10. The 2017 Mw8.2 Tres Picos, Mexico Earthquake, an intraslab rupture crossing the Tehuantepec Fracture Zone stopped by a tear in the Cocos Plate

    NASA Astrophysics Data System (ADS)

    Wei, S.; Zeng, H.; WANG, X.; Qiu, Q.; Wang, T.; Li, L.; Chen, M.; Hermawan, I.; Wang, Y.; Tapponnier, P.; Barbot, S.

    2017-12-01

    On September 7th 2017, an Mw 8.2 intraslab earthquake ruptured beneath the Tehuantepec seismic gap in the Mexico subduction zone. We conducted a comprehensive investigation to characterize the earthquake rupture, including high-resolution back-projection, mainshock and large aftershocks relocation, aftershock moment tensor inversion, finite rupture model inversion jointly inverted from seismic waveform, static/high-rate GPS and InSAR images, and tsunami modeling. The back-projection results delineate a unilateral northwestward rupture about 150 km in length and 60s in duration, with a stable average rupture speed of 2.8 km/s. To reconcile multiple datasets, we used a two-segment fault geometry with near vertical dip angle (78°), and the second segment strikes slightly northward oriented, to mimic the rupture across the Tehuantepec Fracture Zone (FTZ) that separates the rupture into two segments. The joint inversion shows that the slip southeastern of TFZ dominates the moment release in the depth range of 30-50km during the first 40s. The second rupture segment released about 15% of the total moment, but with relatively larger contribution to the high-rate GPS, static geodetic and tide gauges data. Most of the large aftershocks occurred in the shallower part of the slab, with dominant thrust focal mechanism in agreement with slab bending. In contrast, the mainshock initiated at greater depth inside the slab, on a fault that may have formed near the trench and was reactivated by slab unbending, and was perhaps facilitated by dehydration. The comparison between the rupture model and the free air gravity anomaly suggests that the rupture was blocked westward by a low gravity anomaly zone. We interpret the difference in subducting speed and slab age across the TFZ and the Cocos plate gravity anomaly to be responsible for the abrupt stopping of the rupture at a tear zone inside the diving Cocos plate. Whether this earthquake will enhance future rupture on the plate interface in Tehuantepec seismic gap is not clear, as the corresponding stress change clamped the megathrust up-dip. Still, the recent seismic activity raises concern about the imminent seismic hazards in the region.

  11. Application of Second-Moment Source Analysis to Three Problems in Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2011-12-01

    Though earthquake forecasting models have often represented seismic sources as space-time points (usually hypocenters), a more complete hazard analysis requires the consideration of finite-source effects, such as rupture extent, orientation, directivity, and stress drop. The most compact source representation that includes these effects is the finite moment tensor (FMT), which approximates the degree-two polynomial moments of the stress glut by its projection onto the seismic (degree-zero) moment tensor. This projection yields a scalar space-time source function whose degree-one moments define the centroid moment tensor (CMT) and whose degree-two moments define the FMT. We apply this finite-source parameterization to three forecasting problems. The first is the question of hypocenter bias: can we reject the null hypothesis that the conditional probability of hypocenter location is uniformly distributed over the rupture area? This hypothesis is currently used to specify rupture sets in the "extended" earthquake forecasts that drive simulation-based hazard models, such as CyberShake. Following McGuire et al. (2002), we test the hypothesis using the distribution of FMT directivity ratios calculated from a global data set of source slip inversions. The second is the question of source identification: given an observed FMT (and its errors), can we identify it with an FMT in the complete rupture set that represents an extended fault-based rupture forecast? Solving this problem will facilitate operational earthquake forecasting, which requires the rapid updating of earthquake triggering and clustering models. Our proposed method uses the second-order uncertainties as a norm on the FMT parameter space to identify the closest member of the hypothetical rupture set and to test whether this closest member is an adequate representation of the observed event. Finally, we address the aftershock excitation problem: given a mainshock, what is the spatial distribution of aftershock probabilities? The FMT representation allows us to generalize the models typically used for this purpose (e.g., marked point process models, such as ETAS), which will again be necessary in operational earthquake forecasting. To quantify aftershock probabilities, we compare mainshock FMTs with the first and second spatial moments of weighted aftershock hypocenters. We will describe applications of these results to the Uniform California Earthquake Rupture Forecast, version 3, which is now under development by the Working Group on California Earthquake Probabilities.

  12. The Size of the Radial Tuberosity is Not Related to the Occurrence of Distal Biceps Tendon Ruptures: A Case-Control Study.

    PubMed

    Kodde, Izaäk F; van den Bekerom, Michel P J; Mulder, Paul G H; Eygendaal, Denise

    2016-01-01

    Hypertrophic changes at the radial tuberosity have traditionally been related to distal biceps tendon degeneration and rupture. From supination to pronation of the forearm, the space available for the distal biceps tendon between de lateral ulna and radial bicipital tuberosity (RBT) decreases by almost 50%. A hypertrophic change at the radial tuberosity further reduces this space with impingement of the distal biceps tendon as a result. The purpose of this study was to evaluate whether the size of the RBT plays a role in the pathophysiology of distal biceps tendon ruptures. Twenty-two consecutive patients with a surgically proven distal biceps tendon rupture were matched to controls, in a 1:1 ratio. The size of the RBT was expressed as a ratio of the maximum diameter of the radius at the RBT to the diameter of the diaphysis just distal to the RBT (RD ratio), measured on standard radiographs of the elbow. The RD ratio of patients and matched controls were compared. The mean RD ratio in control group was 1.25 and not significantly different from the mean 1.30 in the group of patients with a distal biceps tendon rupture. Each 0.1 point increase in RD ratio results in an estimated 60% increase of the rupture odds, which was not significant either. Based on the RD ratio on conventional radiographs of the elbow, there was no significant difference in RBT size between patients with a distal biceps tendon rupture and matched controls without biceps tendon pathology.

  13. Comparisons of Serum Total IgE, IgG, and IgG1 Levels in Patients with and without Echinococcosis-Induced Anaphylactic Shock

    PubMed Central

    Li, Yimei; Zheng, Hong; Gu, Meilin; Cao, Xinghua; Wen, Hao; Liu, Zaoling; Liu, Tao

    2012-01-01

    We investigated serum total immunoglobulin E (IgE), IgG, and IgG1 levels in patients with and without echinococcosis-induced anaphylactic shock. This was a case-control study of 11 patients with echinococcosis-induced anaphylactic shock and 22 echinococcosis patients with cyst rupture but without anaphylactic shock. Blood was collected before surgery (T0), at the time of cyst rupture (T1), and shock (Tx), 1 h (T2), 1 day (T3), and 1 week (T4) after cyst rupture. Serum IgE, IgG, and IgG1 were determined by enzyme-linked immunosorbent assay. Serum IgE, IgG, and IgG1 levels were significantly higher in patients who developed anaphylactic shock at all time points. Increased pre-surgical IgG and IgG1 levels were identified to be a significant risk factors for developing anaphylactic shock. The results showed that a serum IgG concentration of 312.25 μg/mL could be used as a cut-off point to predict whether an echinococcosis patient would develop anaphylactic shock. PMID:22764299

  14. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  15. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    USGS Publications Warehouse

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  16. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top ofmore » thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.« less

  17. Computational simulation of the creep-rupture process in filamentary composite materials

    NASA Technical Reports Server (NTRS)

    Slattery, Kerry T.; Hackett, Robert M.

    1991-01-01

    A computational simulation of the internal damage accumulation which causes the creep-rupture phenomenon in filamentary composite materials is developed. The creep-rupture process involves complex interactions between several damage mechanisms. A statistically-based computational simulation using a time-differencing approach is employed to model these progressive interactions. The finite element method is used to calculate the internal stresses. The fibers are modeled as a series of bar elements which are connected transversely by matrix elements. Flaws are distributed randomly throughout the elements in the model. Load is applied, and the properties of the individual elements are updated at the end of each time step as a function of the stress history. The simulation is continued until failure occurs. Several cases, with different initial flaw dispersions, are run to establish a statistical distribution of the time-to-failure. The calculations are performed on a supercomputer. The simulation results compare favorably with the results of creep-rupture experiments conducted at the Lawrence Livermore National Laboratory.

  18. Amebiasis Presenting as Pleuropulmonary Disease

    PubMed Central

    Kubitschek, Kenneth R.; Peters, Jay; Nickeson, David; Musher, Daniel M.

    1985-01-01

    Seven patients with amebic liver abscess presenting as pleuropulmonary disease were admitted to hospital initially because of pulmonary symptoms and were found to have amebic liver disease. Three categories of pleuropulmonary involvement included reactive inflammation of the pleura or lung, rupture of a hepatic abscess into the pleural space and rupture of a hepatic abscess into the bronchial airways. The preferred medical treatment is with metronidazole, but rupture of hepatic amebic abscess into the pleural space requires drainage in addition to medical therapy. In contrast, rupture into the bronchus may provide spontaneous drainage so that only medical therapy is needed. Recovery from amebiasis in all three categories is generally complete. Morbidity and mortality increase with failure to correctly identify amebic infection of the liver as the underlying cause. Because, in new cases, no findings specifically suggest that pleuropulmonary disease is a complication of hepatic amebic abscess, this possibility needs to be considered, especially in persons who are at risk of having been infected with amebae. ImagesFigure 1.Figure 2. PMID:4013249

  19. Management of hepatocellular adenoma: Solitary-uncomplicated, multiple and ruptured tumors

    PubMed Central

    Toso, Christian; Majno, Pietro; Andres, Axel; Rubbia-Brandt, Laura; Berney, Thierry; Buhler, Léo; Morel, Philippe; Mentha, Gilles

    2005-01-01

    AIM: While hepatocellular adenomas (HAs) have often been studied as a unique entity, we aimed to better define current management of the various forms of HAs. METHODS: Twenty-five consecutive patients operated for solitary-uncomplicated (9), multiple (6), and ruptured (10) HAs were reviewed according to management strategies and outcomes. RESULTS: All solitary-uncomplicated HAs (ranged 2.2-14 cm in size) were removed. Out of 25 HAs, 2 (8%) included foci of carcinoma. In the multiple HA group, previously undiagnosed tumors were identified during surgery in 5/6 cases. In three cases with multiple spread HA, several lesions had to be left unresected. They remained unmodified after 4-, 6-, and 6-year radiological follow-up. Patients with ruptured HA (ranged 1.7-10 cm in size) were initially managed with hemodynamic support and angiography, allowing the embolization of actively bleeding tumors in two patients. All ruptured tumors were subsequently removed 5.5 d (range 4-70 d) after admission. CONCLUSION: Tumors suspected of HA, regardless of the size, should be resected, because of high chances of rupture causing bleeding, and/or containing malignant foci. Although it is desirable to remove all lesions of multiple HA, this may not be possible in some patients, for whom long-term radiological follow-up is advised. Ruptured HA can be managed by hemodynamic support and angiography, allowing scheduled surgery. PMID:16237767

  20. Modelling earthquake ruptures with dynamic off-fault damage

    NASA Astrophysics Data System (ADS)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban

    2017-04-01

    Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for modelling earthquake ruptures. We then modelled earthquake ruptures allowing for coseismic off-fault damage with appropriate fracture nucleation and growth criteria. We studied the effect of different conditions such as rupture speed (sub-Rayleigh or supershear), the orientation of the initial maximum principal stress with respect to the fault and the magnitude of the initial stress (to mimic depth). The comparison between the sub-Rayleigh and supershear case shows that the coseismic off-fault damage is enhanced in the supershear case when compared with the sub-Rayleigh case. The orientation of the maximum principal stress also has significant difference such that the dynamic off-fault cracking is more likely to occur on the extensional side of the fault for high principal stress orientation. It is found that the coseismic off-fault damage reduces the rupture speed due to the dissipation of the energy by dynamic off-fault cracking generated in the vicinity of the rupture front. In terms of the ground motion amplitude spectra it is shown that the high-frequency radiation is enhanced by the coseismic off-fault damage though it is quickly attenuated. This is caused by the intricate superposition of the radiation generated by the off-fault damage and the perturbation of the rupture speed on the main fault.

  1. Earthquake Source Inversion Blindtest: Initial Results and Further Developments

    NASA Astrophysics Data System (ADS)

    Mai, P.; Burjanek, J.; Delouis, B.; Festa, G.; Francois-Holden, C.; Monelli, D.; Uchide, T.; Zahradnik, J.

    2007-12-01

    Images of earthquake ruptures, obtained from modelling/inverting seismic and/or geodetic data exhibit a high degree in spatial complexity. This earthquake source heterogeneity controls seismic radiation, and is determined by the details of the dynamic rupture process. In turn, such rupture models are used for studying source dynamics and for ground-motion prediction. But how reliable and trustworthy are these earthquake source inversions? Rupture models for a given earthquake, obtained by different research teams, often display striking disparities (see http://www.seismo.ethz.ch/srcmod) However, well resolved, robust, and hence reliable source-rupture models are an integral part to better understand earthquake source physics and to improve seismic hazard assessment. Therefore it is timely to conduct a large-scale validation exercise for comparing the methods, parameterization and data-handling in earthquake source inversions.We recently started a blind test in which several research groups derive a kinematic rupture model from synthetic seismograms calculated for an input model unknown to the source modelers. The first results, for an input rupture model with heterogeneous slip but constant rise time and rupture velocity, reveal large differences between the input and inverted model in some cases, while a few studies achieve high correlation between the input and inferred model. Here we report on the statistical assessment of the set of inverted rupture models to quantitatively investigate their degree of (dis-)similarity. We briefly discuss the different inversion approaches, their possible strength and weaknesses, and the use of appropriate misfit criteria. Finally we present new blind-test models, with increasing source complexity and ambient noise on the synthetics. The goal is to attract a large group of source modelers to join this source-inversion blindtest in order to conduct a large-scale validation exercise to rigorously asses the performance and reliability of current inversion methods and to discuss future developments.

  2. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  3. The Internationalisation of Tobacco Control, 1950–2010

    PubMed Central

    Reubi, David; Berridge, Virginia

    2016-01-01

    This article explores the internationalisation of tobacco control as a case study in the history of international health regulation. Contrary to the existing literature on the topic, it argues that the history of international anti-smoking efforts is longer and richer than the making of the World Health Organisation’s Framework Convention on Tobacco Control in the early twenty-first century. It thereby echoes the point made by other scholars about the importance of history when making sense of contemporary global health. Specifically, the article shows how the internationalisation of tobacco control started in the 1950s through informal contacts between scientists working on cancer research and how these initial interactions were followed by a growing number of more formal initiatives, from the World Conferences on Tobacco or Health to the Bloomberg Initiative to Reduce Tobacco Use. Rather than arranging these efforts in a linear narrative of progress culminating with the Framework Convention on Tobacco Control, we take anthropological claims about global health’s uneven terrain seriously and portray a history of international tobacco control marked by ruptures and discontinuities. Specifically, we identify three successive periods, with each of them characterised by specific understandings of international action, tobacco control expertise, advocacy networks and funding strategies. PMID:27628857

  4. Fulminant myocardial bleeding: another clinical course of vascular Ehlers-Danlos Syndrome.

    PubMed

    Tokue, Masahide; Hara, Hidehiko; Kurosawa, Kenji; Nakamura, Masato

    2017-09-23

    Vascular Ehlers-Danlos Syndrome (vEDS) is a dominantly inherited connective tissue disorder characterised by colon rupture and arterial aneurysm, dissection and rupture. A patient was diagnosed with vEDS after a spontaneous colon rupture when he was brought to our institute because of sudden chest pain. An ECG revealed wide regional ST elevation, which was initially suggestive of acute myocarditis. On the second day, haemodynamics suddenly deteriorated because of a rapid accumulation of bloody pericardial effusion, and the patient died. Autopsy revealed an excessive spontaneous myocardial haemorrhage owing to fragility, which suggested an underlying disease-vEDS. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Rupture simultanée du ligament croisé antérieur et du ligament patellaire: à propos d'un cas

    PubMed Central

    Achkoun, Abdessalam; Houjairi, Khalid; Quahtan, Omar; Hassoun, Jalal; Arssi, Mohamed; Rahmi, Mohamed; Garch, Abdelhak

    2016-01-01

    La rupture simultanée du tendon rotulien et du ligament croisé antérieur est une lésion relativement rare. Son diagnostic peut facilement manquer lors de l'examen initial. Les options de traitement incluent la réparation immédiate du tendon rotulien avec soit la reconstruction simultanée ou différée de ligament croisé antérieur. Nous rapportons le cas d'une rupture combinée du tendon rotulien et du ligament croisé antérieur chez un jeune footballeur de 22 ans. Une approche de traitement en deux temps a été effectuée avec un excellent résultat fonctionnel. PMID:27366288

  6. Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture

    PubMed Central

    Holmes, D. F.; Lu, Y.; Purslow, P. P.; Kadler, K. E.; Bechet, D.; Wess, T. J.

    2012-01-01

    Scaling relationships have been formulated to investigate the influence of collagen fibril diameter (D) on age-related variations in the strain energy density of tendon. Transmission electron microscopy was used to quantify D in tail tendon from 1.7- to 35.3-mo-old (C57BL/6) male mice. Frequency histograms of D for all age groups were modeled as two normally distributed subpopulations with smaller (DD1) and larger (DD2) mean Ds, respectively. Both DD1 and DD2 increase from 1.6 to 4.0 mo but decrease thereafter. From tensile tests to rupture, two strain energy densities were calculated: 1) uE [from initial loading until the yield stress (σY)], which contributes primarily to tendon resilience, and 2) uF [from σY through the maximum stress (σU) until rupture], which relates primarily to resistance of the tendons to rupture. As measured by the normalized strain energy densities uE/σY and uF/σU, both the resilience and resistance to rupture increase with increasing age and peak at 23.0 and 4.0 mo, respectively, before decreasing thereafter. Multiple regression analysis reveals that increases in uE/σY (resilience energy) are associated with decreases in DD1 and increases in DD2, whereas uF/σU (rupture energy) is associated with increases in DD1 alone. These findings support a model where age-related variations in tendon resilience and resistance to rupture can be directed by subtle changes in the bimodal distribution of Ds. PMID:22837169

  7. False negative pericardial Focused Assessment with Sonography for Trauma examination following cardiac rupture from blunt thoracic trauma: a case report.

    PubMed

    Baker, Laura; Almadani, Ammar; Ball, Chad G

    2015-07-15

    The Focused Assessment with Sonography for Trauma examination is an invaluable tool in the initial assessment of any injured patient. Although highly sensitive and accurate for identifying hemoperitoneum, occasional false negative results do occur in select scenarios. We present a previously unreported case of survival following blunt cardiac rupture with associated negative pericardial window due to a concurrent pericardial wall laceration. A healthy 46-year-old white woman presented to our level 1 trauma center with hemodynamic instability following a motor vehicle collision. Although her abdominal Focused Assessment with Sonography for Trauma windows were positive for fluid, her pericardial window was negative. After immediate transfer to the operating room in the setting of persistent instability, a subsequent thoracotomy identified a blunt cardiac rupture that was draining into the ipsilateral pleural space via an adjacent tear in the pericardium. The cardiac injury was controlled with digital pressure, resuscitation completed, and then repaired using standard cardiorrhaphy techniques. Following repair of her injuries (left ventricle, left atrial appendage, and liver), her postoperative course was uneventful. Evaluation of the pericardial space using Focused Assessment with Sonography for Trauma is an important component in the initial assessment of the severely injured patient. Even in cases of blunt mechanisms however, clinicians must be wary of occasional false negative pericardial ultrasound evaluations secondary to a concomitant pericardial laceration and subsequent decompression of hemorrhage from the cardiac rupture into the ipsilateral pleural space.

  8. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence

    USGS Publications Warehouse

    Keranen, Katie M.; Savage, Heather M.; Abers, Geoffrey A.; Cochran, Elizabeth S.

    2013-01-01

    Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. Concurrently, the volume of fluid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an Mw 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of Mw 5.0 and a prolific sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fluid was injected into effectively sealed compartments, and we interpret that a net fluid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Significantly, this case indicates that decades-long lags between the commencement of fluid injection and the onset of induced earthquakes are possible, and modifies our common criteria for fluid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the first.

  9. Suppression of slip and rupture velocity increased by thermal pressurization: Effect of dilatancy

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2013-11-01

    investigated the effect of dilatancy on dynamic rupture propagation on a fault where thermal pressurization (TP) is in effect, taking into account permeability varying with porosity; the study is based on three-dimensional (3-D) numerical simulations of spontaneous ruptures obeying a slip-weakening friction law and Coulomb failure criterion. The effects of dilatancy on dynamic ruptures interacting with TP have been often investigated in one- or two-dimensional numerical simulations. The sole 3-D numerical simulation gave attention only to the behavior at a single point on a fault. Moreover, with the sole exception based on a single-degree-freedom spring-slider model, the previous simulations including dilatancy and TP have not considered changes in hydraulic diffusivity. However, the hydraulic diffusivity, which strongly affects TP, can vary as a power of porosity. In this study, we apply a power law relationship between permeability and porosity. We consider both reversible and irreversible changes in porosity, assuming that the irreversible change is proportional to the slip rate and dilatancy coefficient ɛ. Our numerical simulations suggest that the effects of dilatancy can suppress slip and rupture velocity increased by TP. The results reveal that the amount of slip on the fault decreases with increasing ɛ or exponent of the power law, and the rupture velocity is predominantly suppressed by ɛ. This was observed regardless of whether the applied stresses were high or low. The deficit of the final slip in relation to ɛ can be smaller as the fault size is larger.

  10. Treatment of acute achilles tendon rupture with the panda rope bridge technique.

    PubMed

    Yin, Liangjun; Wu, Yahong; Ren, Changsong; Wang, Yizhong; Fu, Ting; Cheng, Xiangjun; Li, Ruidong; Nie, Mao; Mu, Yuan

    2018-03-01

    Although nonsurgical methods and many surgical techniques have been developed for repairing a ruptured Achilles tendon, there is no consensus on its best treatment. In this article, a novel minimally invasive technique called the Panda Rope Bridge Technique (PRBT) is described. Patient with acute Achilles tendon rupture was operated on in the prone position. The PRBT begin with making the proximal bridge anchor (Krackow sutures in the myotendinous junction), the distal bridge anchor (two suture anchors in the calcaneus bone) and the ropes (threads of the suture anchors) stretched between the anchor sites. Then a small incision was made to debride and reattach the stumps of ruptured tendon. After the surgery, no cast or splint fixation was applied. All patients performed enhanced recovery after surgery (ERAS), which included immediate ankle mobilisation from day 1, full weight-bearing walking from day 5 to 7, and gradually take part in athletic exercises from 8 weeks postoperatively. PBRT was performed in 11patients with acute Achilles tendon rupture between June 2012 and June 2015. No wound infection, fistula, skin necrosis, sural nerve damage, deep venous thrombosis or tendon re-rupture was found. One year after the surgery, all patients reported 100 AOFAS ankle-hindfoot score points and the mean ATRS was 96.6. The PRBT is a simple, effective and minimally invasive technique, with no need for immobilisation of the ankle, making possible immediate and aggressive postoperative rehabilitation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Patients with an Achilles tendon re-rupture have long-term functional deficits in function and worse patient-reported outcome than primary ruptures.

    PubMed

    Westin, Olof; Nilsson Helander, Katarina; Grävare Silbernagel, Karin; Samuelsson, Kristian; Brorsson, Annelie; Karlsson, Jón

    2018-04-24

    The aim of this study was to perform a long-term follow-up of patients treated for an Achilles tendon re-rupture, using established outcome measurements for tendon structure, lower extremity function and symptoms, and to compare the results with those for the uninjured side. A secondary aim was to compare the outcome with that of patients treated for primary ruptures. The hypotheses were that patients with a re-rupture recover well, and have similar long-term outcome as primary ruptures. Twenty patients (4 females) with a mean (SD) age of 44 (10.9) years, ranging from 24 to 64, were included. The patients were identified by reviewing the medical records of all Achilles tendon ruptures at Sahlgrenska University Hospital and Kungsbacka Hospital, Sweden, between 2006 and 2016. All patients received standardised surgical treatment and rehabilitation. The mean (SD) follow-up was 51 (38.1) months. A test battery of validated clinical and functional tests, patient-reported outcome measurements and measurements of tendon elongation were performed at the final follow-up. This cohort was then compared with the 2-year follow-up results from a previous randomised controlled trial of patients treated for primary Achilles tendon rupture. There were deficits on the injured side compared with the healthy side in terms of heel-rise height (11.9 versus 12.5 cm, p = 0.008), repetitions (28.5 versus 31.7, p = 0.004) and drop-jump height (13.2 versus 15.1 cm, p = 0.04).  There was a significant difference in calf circumference (37.1 versus 38.4 cm, p =< 0.001) and ankle dorsiflexion on the injured side compared with the healthy side (35.3° versus 40.8°, p = 0.003). However, no significant differences were found in terms of tendon length 22.5 (2.5) cm on the injured side and 21.8 (2.8) cm on the healthy side. Compared with primary ruptures, the re-rupture cohort obtained significantly worse results for the Achilles tendon total rupture score, with a mean of 78 (21.2) versus 89.5 (14.6) points, (p = 0.007). The re-ruptures showed a higher mean LSI heel-rise height, 94.7% (9.3%) versus 83.5% (11.7%) (p = < 0.0001), and superior mean LSI eccentric-concentic power, 110.4% (49.8%) versus 79.3% (21%) (p = 0.001), than the primary ruptures. The results of this study indicate that patients with an Achilles tendon re-rupture had continued symptoms and functional deficits on the injured side, after a long-term follow-up. Patients with an Achilles tendon re-rupture had worse patient-reported outcomes but similar or superior functional results compared with patients with primary ruptures. Case series, Level IV.

  12. Preslip and cascade processes initiating laboratory stick slip

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.

    2014-01-01

    Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M _6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 μs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.

  13. Magnitude and Surface Rupture Length of Prehistoric Upper Crustal Earthquakes in the Puget Lowland, Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Styron, R. H.

    2016-12-01

    Paleoseismic studies documented prehistoric earthquakes after the last glaciation ended 15 ka on 13 upper-crustal fault zones in the Cascadia fore arc. These fault zones are a consequence of north-directed fore arc block migration manifesting as a series of bedrock uplifts and intervening structural basins in the southern Salish Sea lowland between Vancouver, B.C. to the north and Olympia, WA to the south, and bounded on the east and west by the Cascade Mountains and Olympic Mountains, respectively. Our dataset uses published information and includes 27 earthquakes tabulated from observations of postglacial deformation at 63 sites. Stratigraphic offsets along faults consist of two types of measurements: 1) vertical separation of strata along faults observed in fault scarp excavations, and 2) estimates from coastal uplift and subsidence. We used probabilistic methods to estimate past rupture magnitudes and surface rupture length (SRL), applying empirical observations from modern earthquakes and point measurements from paleoseismic sites (Biasi and Weldon, 2006). Estimates of paleoearthquake magnitude ranged between M 6.5 and M 7.5. SRL estimates varied between 20 and 90 km. Paleoearthquakes on the Seattle fault zone and Saddle Mountain West fault about 1100 years ago were outliers in our analysis. Large offsets observed for these two earthquakes implies a M 7.8 and 200 km SRL, given the average observed ratio of slip/SRL in modern earthquakes. The actual mapped traces of these faults are less than 200km, implying these earthquakes had an unusually high static stress drop or, in the case of the Seattle fault, splay faults may have accentuated uplift in the hanging wall. Refined calculations incorporating fault area may change these magnitude and SRL estimates. Biasi, G.P., and Weldon, R.J., 2006, Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement: B. Seismol. Soc. Am., 96, 1612-1623.

  14. Conditional, Time-Dependent Probabilities for Segmented Type-A Faults in the WGCEP UCERF 2

    USGS Publications Warehouse

    Field, Edward H.; Gupta, Vipin

    2008-01-01

    This appendix presents elastic-rebound-theory (ERT) motivated time-dependent probabilities, conditioned on the date of last earthquake, for the segmented type-A fault models of the 2007 Working Group on California Earthquake Probabilities (WGCEP). These probabilities are included as one option in the WGCEP?s Uniform California Earthquake Rupture Forecast 2 (UCERF 2), with the other options being time-independent Poisson probabilities and an ?Empirical? model based on observed seismicity rate changes. A more general discussion of the pros and cons of all methods for computing time-dependent probabilities, as well as the justification of those chosen for UCERF 2, are given in the main body of this report (and the 'Empirical' model is also discussed in Appendix M). What this appendix addresses is the computation of conditional, time-dependent probabilities when both single- and multi-segment ruptures are included in the model. Computing conditional probabilities is relatively straightforward when a fault is assumed to obey strict segmentation in the sense that no multi-segment ruptures occur (e.g., WGCEP (1988, 1990) or see Field (2007) for a review of all previous WGCEPs; from here we assume basic familiarity with conditional probability calculations). However, and as we?ll see below, the calculation is not straightforward when multi-segment ruptures are included, in essence because we are attempting to apply a point-process model to a non point process. The next section gives a review and evaluation of the single- and multi-segment rupture probability-calculation methods used in the most recent statewide forecast for California (WGCEP UCERF 1; Petersen et al., 2007). We then present results for the methodology adopted here for UCERF 2. We finish with a discussion of issues and possible alternative approaches that could be explored and perhaps applied in the future. A fault-by-fault comparison of UCERF 2 probabilities with those of previous studies is given in the main part of this report.

  15. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake

    USGS Publications Warehouse

    Pollitz, F.F.; Sacks, I.S.

    2002-01-01

    The M 7.3 June 28, 1992 Landers and M 7.1 October 16, 1999 Hector Mine earthquakes, California, both right lateral strike-slip events on NNW-trending subvertical faults, occurred in close proximity in space and time in a region where recurrence times for surface-rupturing earthquakes are thousands of years. This suggests a causal role for the Landers earthquake in triggering the Hector Mine earthquake. Previous modeling of the static stress change associated with the Landers earthquake shows that the area of peak Hector Mine slip lies where the Coulomb failure stress promoting right-lateral strike-slip failure was high, but the nucleation point of the Hector Mine rupture was neutrally to weakly promoted, depending on the assumed coefficient of friction. Possible explanations that could account for the 7-year delay between the two ruptures include background tectonic stressing, dissipation of fluid pressure gradients, rate- and state-dependent friction effects, and post-Landers viscoelastic relaxation of the lower crust and upper mantle. By employing a viscoelastic model calibrated by geodetic data collected during the time period between the Landers and Hector Mine events, we calculate that postseismic relaxation produced a transient increase in Coulomb failure stress of about 0.7 bars on the impending Hector Mine rupture surface. The increase is greatest over the broad surface that includes the 1999 nucleation point and the site of peak slip further north. Since stress changes of magnitude greater than or equal to 0.1 bar are associated with documented causal fault interactions elsewhere, viscoelastic relaxation likely contributed to the triggering of the Hector Mine earthquake. This interpretation relies on the assumption that the faults occupying the central Mojave Desert (i.e., both the Landers and Hector Mine rupturing faults) were critically stressed just prior to the Landers earthquake.

  16. Reconstruction of chronic achilles tendon rupture with the use of interposed tissue between the stumps.

    PubMed

    Yasuda, Toshito; Kinoshita, Mitsuo; Okuda, Ryuzo

    2007-04-01

    The gap between the tendon stumps in chronic Achilles tendon rupture has reportedly been filled with interposed scar tissue. In the authors' clinical experience, this interposed tissue is often thick and resists tension, so they considered it was possible to use the interposed tissue for reconstruction of Achilles tendon rupture. Scar tissue interposed between the tendon stumps has the capacity to form tendon-like repair tissue in patients with chronic Achilles tendon rupture. Case series; Level of evidence, 4. Six patients with chronic rupture of the Achilles tendon underwent tendon reconstruction with the use of interposed tissue between the stumps. The average time from the primary injury to surgery was 22 weeks (range, 9 to 30 weeks). Preoperative magnetic resonance imaging (MRI), histology of the interposed tissue, and clinical results were evaluated. The average postoperative follow-up period was 31 months (range, 24 to 43 months). Preoperative T2-weighted MRI in all cases revealed that chronically ruptured Achilles tendons were thickened and fusiform-shaped with diffuse intratendinous high-signal alterations throughout. Longitudinal high-signal bands were seen throughout the tendon, except at the musculotendinous junction and insertion on the calcaneus. Histologically, scar tissue interposed between the tendon stumps consisted of dense collagen fibers, and degenerative changes were not seen. After surgery, no patient had difficulty in walking or stair climbing, and all were able to perform a single-limb toe raise. The mean preoperative and postoperative American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scores were 88.2 and 98.3 points, respectively; the difference was statistically significant (P = .0277). Interposed tissue between the tendon stumps is suitable for repair of chronic Achilles tendon rupture if preoperative MRI shows a thickened fusiform-shaped Achilles tendon with diffuse intratendinous high-signal alterations throughout.

  17. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  18. Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II

    NASA Astrophysics Data System (ADS)

    Smith, D.; Boese, M.; Heaton, T. H.

    2015-12-01

    Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.

  19. Dynamic fracture network around faults: implications for earthquake ruptures, ground motion and energy budget

    NASA Astrophysics Data System (ADS)

    Okubo, K.; Bhat, H. S.; Rougier, E.; Lei, Z.; Knight, E. E.; Klinger, Y.

    2017-12-01

    Numerous studies have suggested that spontaneous earthquake ruptures can dynamically induce failure in secondary fracture network, regarded as damage zone around faults. The feedbacks of such fracture network play a crucial role in earthquake rupture, its radiated wave field and the total energy budget. A novel numerical modeling tool based on the combined finite-discrete element method (FDEM), which accounts for the main rupture propagation and nucleation/propagation of secondary cracks, was used to quantify the evolution of the fracture network and evaluate its effects on the main rupture and its associated radiation. The simulations were performed with the FDEM-based software tool, Hybrid Optimization Software Suite (HOSSedu) developed by Los Alamos National Laboratory. We first modeled an earthquake rupture on a planar strike-slip fault surrounded by a brittle medium where secondary cracks can be nucleated/activated by the earthquake rupture. We show that the secondary cracks are dynamically generated dominantly on the extensional side of the fault, mainly behind the rupture front, and it forms an intricate network of fractures in the damage zone. The rupture velocity thereby significantly decreases, by 10 to 20 percent, while the supershear transition length increases in comparison to the one with purely elastic medium. It is also observed that the high-frequency component (10 to 100 Hz) of the near-field ground acceleration is enhanced by the dynamically activated fracture network, consistent with field observations. We then conducted the case study in depth with various sets of initial stress state, and friction properties, to investigate the evolution of damage zone. We show that the width of damage zone decreases in depth, forming "flower-like" structure as the characteristic slip distance in linear slip-weakening law, or the fracture energy on the fault, is kept constant with depth. Finally, we compared the fracture energy on the fault to the energy absorbed by the secondary fracture network to better understand the earthquake energy budget. We conclude that the secondary fracture network plays an important role on the dynamic earthquake rupture, its radiated wave field and the overall energy budget.

  20. B4 2 After, 3D Deformation Field From Matching Pre- To Post-Event Aerial LiDAR Point Clouds, The 2010 El Mayor-Cucapah M7.2 Earthquake Case

    NASA Astrophysics Data System (ADS)

    Hinojosa-Corona, A.; Nissen, E.; Limon-Tirado, J. F.; Arrowsmith, R.; Krishnan, A.; Saripalli, S.; Oskin, M. E.; Glennie, C. L.; Arregui, S. M.; Fletcher, J. M.; Teran, O. J.

    2013-05-01

    Aerial LiDAR surveys reconstruct with amazing fidelity the sinuosity of terrain relief. In this research we explore the 3D deformation field at the surface after a big earthquake (M7.2) by comparing pre- to post-event aerial LiDAR point clouds. The April 4 2010 earthquake produced a NW-SE surface rupture ~110km long with right-lateral normal slip up to 3m in magnitude over a very favorable target: scarcely vegetated and unaltered desert mountain range, sierras El Mayor and Cucapah, in northern Baja California, close to the US-México border. It is a plate boundary region between the Pacific and North American plates. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3D surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising translations and rotations) that best aligns the pre- to post-event points. Perturbing the pre- and post-event point clouds independently with a synthetic right lateral inverse displacements of known magnitude along a proposed fault, ICP recovered the synthetically introduced translations. Windows with dimensions of 100-200m gave the best results for datasets with these densities. The simplified surface rupture photo interpreted and mapped in the field, delineates very well the vertical displacements patterns unveiled by ICP. The method revealed block rotations, some with clockwise and others counter clockwise direction along the simplified surface rupture. As ground truth, displacements from ICP have similar values as those measured in the field along the main rupture by Fletcher and collaborators. The vertical component was better estimated than the horizontal having the latter problems in flat areas as expected. Hybrid approaches, as simple differencing, could be taken in these areas. Outliers were removed from results. ICP detected extraction from quarries developed between the two dates of LiDAR collection and expressed as a negative vertical displacement close to the sites. To improve the accuracy of the 3D displacement field, we intend to reprocess the pre-event source survey data to reduce the systematic error introduced by the sensor. Multidisciplinary approach will be needed to make tectonic inferences from the 3D displacement field revealed by ICP, about the processes at depth expressed at surface.

  1. Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Prieto, German; Rivera, Efrain; Ruiz, Sergio

    2016-02-01

    Intermediate depth earthquakes often occur along subducting lithosphere, but despite their ubiquity the physical mechanism responsible for promoting brittle or brittle-like failure is not well constrained. Large concentrations of intermediate depth earthquakes have been found to be related to slab break-off, slab drip, and slab tears. The intermediate depth Hindu Kush nest is one of the most seismically active regions in the world and shows the correlation of a weak region associated with ongoing slab detachment process. Here we study relocated seismicity in the nest to constraint the geometry of the shear zone at the top of the detached slab. The analysis of the rupture process of the Mw 7.5 Afghanistan 2015 earthquake and other several well-recorded events over the past 25 years shows an initially slow, highly dissipative rupture, followed by a dramatic dynamic frictional stress reduction and corresponding large energy radiation. These properties are typical of thermal driven rupture processes. We infer that thermal shear instabilities are a leading mechanism for the generation of intermediated-depth earthquakes especially in presence of weak zone subjected to large strain accumulation, due to ongoing detachment process.

  2. Selective Transcatheter Arterial Embolization for Treatment of Bleeding Complications or Reduction of Tumor Mass of Hepatocellular Adenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan, Deha; Delden, Otto M. van; Busch, Olivier R. C.

    2007-11-15

    Hepatocellular adenomas (HCAs) are benign liver lesions which may be complicated by spontaneous intratumoral bleeding, with or without rupture into the abdominal cavity, or malignant degeneration. Recent advances in radiological interventional techniques now offer selective transcatheter arterial embolization (TAE) as an alternative approach to surgery as the initial treatment to stop the bleeding or as an elective treatment to reduce the tumor mass of the HCA. Herein, we report our initial experience using TAE in the management of HCA. Five female patients and one male patient presented with spontaneous hemorrhage of HCA. Four patients were initially treated with selective TAEmore » to stop the bleeding. In two patients in whom the bleeding stopped spontaneously, TAE was electively undertaken 1 year after presentation to reduce the tumor mass of HCAs >5 cm. Selective TAE as initial treatment in patients with spontaneous bleeding of HCA with or without rupture is effective and will change the need for urgent laparotomy to control bleeding. Selective TAE may also be used as an elective treatment to reduce the tumor mass of larger HCAs.« less

  3. Relation between energy radiation ratio and rupture speed in numerically simulated earthquakes

    NASA Astrophysics Data System (ADS)

    Noda, H.; Lapusta, N.; Kanamori, H.

    2011-12-01

    One of the prominent questions in seismology is energy partitioning during an earthquake. Venkataraman and Kanamori [2004] discussed radiation ratio η_R, the ratio of radiated energy E_R to partial strain energy change ΔW_0 which is the total released strain energy minus the energy that would have been dissipated if a fault had slipped at the final stress. They found positive correlation between η_R and rupture speed in large earthquakes, and compared these data with theoretical estimates from simplified models. The relation between η_R and rupture speed is of great interest since both quantities can be estimated independently although there are large uncertainties. We conduct numerical simulations of dynamic ruptures and study the obtained energy partitioning (and η_R) and averaged rupture speeds V_r. So far, we have considered problems based on TPV103 from the SCEC/USGS Spontaneous Rupture Code Verification Project [Harris et al., 2009, http://scecdata.usc.edu/cvws/], which is a 3-D problem with the possibility of remarkable rate weakening at coseismic slip rates caused by flash heating of microscopic asperities [Rice, 1999]. We study the effect of background shear stress level τ_b and the manner in which rupture is arrested, either in rate-strengthening or unbreakable areas of the fault. Note that rupture speed at each fault point is defined when the rupture is still in progress, while η_R is defined after all dynamic processes such as propagation of a rupture front, healing fronts, and seismic waves have been completed. Those complexities may cause a difference from the theoretical estimates based on simple models, an issue we explore in this study. Overall, our simulations produce the relation between η_R and V_r broadly consistent with the study of Venkataraman and Kanamori (2004) for natural earthquakes and the corresponding theoretical estimates. The model by Mott [1948] agrees best with the cases studied so far, although it is not rigorously correct [Freund, 1990]. For example, a case which is similar to TPV103 except in the nucleation procedure yields a pulse-like rupture with a spatially averaged rupture speed V_r = 0.59 c_s and η_R = 0.32, while the theoretical estimates [Fossum and Freund, 1975 for mode II and Kostrov, 1966; Ehselby, 1969 for mode III] predict η_R of about 0.5 for this rupture speed. This difference is not significant compared with the large observational error. As τ_b increases, V_r increases monotonically, while η_R exhibits more complex behavior: it increases with τ_b for pulse-like ruptures, decreases by about 0.1 at the transition to crack-like ruptures, and then increases again. Frictional dissipation is significant when a rupture front reaches a rate-strengthening region. If the barrier is changed to an unbreakable region, η_R decreases and V_r/c_s increases at most by 0.3 and 0.1, respectively. Although sharper arrest of rupture causes larger E_R per seismic moment due to the stopping phases, ΔW_0 per seismic moment increases more remarkably due to large wavenumber components in final slip distribution.

  4. Dynamics of delayed triggering in multi-segmented foreshock sequence: Evidence from the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Arai, H.; Ando, R.; Aoki, Y.

    2017-12-01

    The 2016 Kumamoto earthquake sequence hit the SW Japan, from April 14th to 16th and its sequence includes two M6-class foreshocks and the main shock (Mw 7.0). Importantly, the detailed surface displacement caused solely by the two foreshocks could be captured by a SAR observation isolated from the mainshock deformation. The foreshocks ruptured the previously mapped Hinagu fault and their hypocentral locations and the aftershock distribution indicates the involvement of two different subparallel faults. Therefore we assumed that the 1st and the 2nd foreshocks respectively ruptured each of the subparallel faults (faults A and B). One of the interesting points of this earthquake is that the two major foreshocks had a temporal gap of 2.5 hours even though the fault A and B are quite close by each other. This suggests that the stress perturbation due to the 1st foreshock is not large enough to trigger the 2nd one right away but that it's large enough to bring about the following earthquake after a delay time.We aim to reproduce the foreshock sequence such as rupture jumping over the subparallel faults by using dynamic rupture simulations. We employed a spatiotemporal-boundary integral equation method accelerated by the Fast Domain Partitioning Method (Ando, 2016, GJI) since this method allows us to construct a complex fault geometry in 3D media. Our model has two faults and a free ground surface. We conducted rupture simulation with various sets of parameters to identify the optimal condition describing the observation.Our simulation results are roughly categorized into 3 cases with regard to the criticality for the rupture jumping. The case 1 (supercritical case) shows the fault A and B ruptured consecutively without any temporal gap. In the case 2 (nearly critical), the rupture on the fault B started with a temporal gap after the fault A finished rupturing, which is what we expected as a reproduction. In the case 3 (subcritical), only the fault A ruptured and its rupture did not transfer to the fault B. We succeed in reproducing rupture jumping over two faults with a temporal gap due to the nucleation by taking account of a velocity strengthening (direct) effect. With a detailed analysis of the case 2, we can constrain ranges of parameters strictly, and this gives us deeper insights into the physics underlying the delayed foreshock activity.

  5. Meteorological factors and timing of the initiating event of human parturition

    NASA Astrophysics Data System (ADS)

    Hirsch, Emmet; Lim, Courtney; Dobrez, Deborah; Adams, Marci G.; Noble, William

    2011-03-01

    The aim of this study was to determine whether meteorological factors are associated with the timing of either onset of labor with intact membranes or rupture of membranes prior to labor—together referred to as `the initiating event' of parturition. All patients delivering at Evanston Hospital after spontaneous labor or rupture of membranes at ≥20 weeks of gestation over a 6-month period were studied. Logistic regression models of the initiating event of parturition using clinical variables (maternal age, gestational age, parity, multiple gestation and intrauterine infection) with and without the addition of meteorological variables (barometric pressure, temperature and humidity) were compared. A total of 1,088 patients met the inclusion criteria. Gestational age, multiple gestation and chorioamnionitis were associated with timing of initiation of parturition ( P < 0.01). The addition of meteorological to clinical variables generated a statistically significant improvement in prediction of the initiating event; however, the magnitude of this improvement was small (less than 2% difference in receiver-operating characteristic score). These observations held regardless of parity, fetal number and gestational age. Meteorological factors are associated with the timing of parturition, but the magnitude of this association is small.

  6. Terahertz NDE of Stressed Composite Overwrapped Pressure Vessels - Initial Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Seebo, Jeffrey P.; Anatasi, Robert F.

    2009-01-01

    Terahertz radiation nondestructive evaluation was applied to a set of Kevlar composite overwrapped pressure vessel bottles that had undergone a series of thermal and pressure tests to simulate stress rupture effects. The bottles in these nondestructive evaluation tests were bottles that had not ruptured but had survived various times at the elevated load and temperature levels. Some of the bottles showed evidence of minor composite failures. The terahertz radiation did detect visible surface flaws, but did not detect any internal chemical or material degradation of the thin overwraps.

  7. Common questions about infectious mononucleosis.

    PubMed

    Womack, Jason; Jimenez, Marissa

    2015-03-15

    Epstein-Barr is a ubiquitous virus that infects 95% of the world population at some point in life. Although Epstein-Barr virus (EBV) infections are often asymptomatic, some patients present with the clinical syndrome of infectious mononucleosis (IM). The syndrome most commonly occurs between 15 and 24 years of age. It should be suspected in patients presenting with sore throat, fever, tonsillar enlargement, fatigue, lymphadenopathy, pharyngeal inflammation, and palatal petechiae. A heterophile antibody test is the best initial test for diagnosis of EBV infection, with 71% to 90% accuracy for diagnosing IM. However, the test has a 25% false-negative rate in the first week of illness. IM is unlikely if the lymphocyte count is less than 4,000 mm3. The presence of EBV-specific immunoglobulin M antibodies confirms infection, but the test is more costly and results take longer than the heterophile antibody test. Symptomatic relief is the mainstay of treatment. Glucocorticoids and antivirals do not reduce the length or severity of illness. Splenic rupture is an uncommon complication of IM. Because physical activity within the first three weeks of illness may increase the risk of splenic rupture, athletic participation is not recommended during this time. Children are at the highest risk of airway obstruction, which is the most common cause of hospitalization from IM. Patients with immunosuppression are more likely to have fulminant EBV infection.

  8. Structure investigation of sertraline drug and its iodine product using mass spectrometry, thermal analyses and MO-calculations

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.; El-Habeeb, Abeer A.

    2007-11-01

    Sertraline (C 17H 17Cl 2N) as an antidepressant drug was investigated using thermal analysis (TA) measurements (TG/DTG and DTA) in comparison with electron impact (EI) mass spectral (MS) fragmentation at 70 eV. Semi-empirical MO-calculations, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution and heats of formation (Δ Hf). Also, in the present work sertraline-iodine product was prepared and its structure was investigated using elemental analyses, IR, 1H NMR, 13C NMR, MS and TA. It was also subjected to molecular orbital calculations (MOC) in order to confirm its fragmentation behavior by both MS and TA in comparison with the sertraline parent drug. In MS of sertraline the initial rupture occurred was CH 3NH 2+ fragment ion via H-rearrangement while in sertraline-iodine product the initial rupture was due to the loss of I + and/or HI + fragment ions followed by CH 2dbnd NH + fragment ion loss. In thermal analyses (TA) the initial rupture in sertraline is due to the loss of C 6H 3Cl 2 followed by the loss of CH 3-NH forming tetraline molecule which thermally decomposed to give C 4H 8, C 6H 6 or the loss of H 2 forming naphthalene molecule which thermally sublimated. In sertraline-iodine product as a daughter the initial thermal rupture is due to successive loss of HI and CH 3NH followed by the loss of C 6H 5HI and HCl. Sertraline biological activity increases with the introduction of iodine into its skeleton. The activities of the drug and its daughter are mainly depend upon their fragmentation to give their metabolites in vivo systems, which are very similar to the identified fragments in both MS and TA. The importance of the present work is also due to the decision of the possible mechanism of fragmentation of the drug and its daughter and its confirmation by MOC.

  9. How quickly do earthquakes get locked in the landscape? One year of erosion on El Mayor-Cucapah rupture scarps imaged by repeat terrestrial lidar scans

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Banesh, D.; Gold, P. O.; Hinojosa-Corona, A.; Styron, R. H.; Taylor, M. H.

    2012-12-01

    Differencing repeat terrestrial lidar scans of the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture reveals the rapid onset of surface processes that simultaneously degrade and preserve evidence of coseismic fault rupture in the landscape and paleoseismic record. We surveyed fresh fault rupture two weeks after the 4 April 2010 earthquake, then repeated these surveys one year later. We imaged fault rupture through four substrates varying in degree of consolidation and scarp facing-direction, recording modification due to a range of aeolian, fluvial, and hillslope processes. Using lidar-derived DEM rasters to calculate the topographic differences between years results in aliasing errors because GPS uncertainty between years (~1.5cm) exceeds lidar point-spacing (<1.0cm) shifting the raster sampling of the point cloud. Instead, we coregister each year's scans by iteratively minimizing the horizontal and vertical misfit between neighborhoods of points in each raw point cloud. With the misfit between datasets minimized, we compute the vertical difference between points in each scan within a specified neighborhood. Differencing results reveal two variables controlling the type and extent of erosion: cohesion of the substrate controls the degree to which hillslope processes affect the scarp, while scarp facing direction controls whether more effective fluvial erosion can act on the scarp. In poorly consolidated materials, large portions (>50% along strike distance) of the scarp crest are eroded up to 5cm by a combination of aeolian abrasion and diffusive hillslope processes, such as rainsplash and mass-wasting, while in firmer substrate (i.e., bedrock mantled by fault gouge) there is no detectable hillslope erosion. On the other hand, where small gullies cross downhill-facing scarps (<5% along strike distance), fluvial erosion has caused 5-50cm of headward scarp retreat in bedrock. Thus, although aeolian and hillslope processes operate over a greater along-strike distance, fluvial processes concentrated in pre-existing bedrock gullies transport a far greater volume of material across the scarp. Substrate cohesiveness dictates the degree to which erosive processes act to relax the scarp (e.g., gravels erode more easily than bedrock). However, scarp locations that favor fluvial processes suffer rapid, localized erosion of vertical scarp faces, regardless of substrate. Differential lidar also reveals debris cones formed at the base of the scarp below locations of scarp crest erosion. These indicate the rapid growth of a colluvial wedge. Where a fissure occupies the base of the scarp we observe nearly complete in-filling by silt and sand moved by both mass wasting and fluvial deposition, indicating that fissure fills observed in paleoseismic trenches likely bracket the age of an earthquake to within one year. We find no evidence of differential postseismic tectonic deformation across the fault within the ~100m aperture of our surveys.

  10. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data

    PubMed Central

    Romano, F.; Trasatti, E.; Lorito, S.; Piromallo, C.; Piatanesi, A.; Ito, Y.; Zhao, D.; Hirata, K.; Lanucara, P.; Cocco, M.

    2014-01-01

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively. PMID:25005351

  11. Ruptured persistent sciatic artery aneurysm managed by endovascular embolization.

    PubMed

    Rezayat, Combiz; Sambol, Elliot; Goldstein, Lee; Broderick, Stephen R; Karwowski, John K; McKinsey, James F; Vouyouka, Ageliki G

    2010-01-01

    Persistent sciatic artery (PSA) is a rare vascular anomaly present in 0.025% to 0.05% of the population. They are particularly prone to aneurysmal degeneration, potentially leading to distal ischemia, sciatic neuropathy, or rarely rupture. Here, we describe a case of a ruptured PSA aneurysm managed by endovascular embolization. A 70-year-old man initially presented with acute left lower extremity ischemia. He was found to have a popliteal embolus originating from a complete persistent sciatic artery aneurysm. He underwent thrombolysis followed by a femoropopliteal bypass and ligation of the proximal popliteal artery to exclude the PSA. Four weeks later he re-presented with severe pain, a pulsatile buttock mass, and anemia in the setting of hemodynamic instability. A ruptured PSA aneurysm was confirmed by computed tomography angiography (CTA). This was managed emergently by endovascular exclusion of the inflow and outflow vessels using Amplatzer vascular plugs. His postoperative course was complicated by both a foot drop, likely secondary to sciatic nerve ischemia, and a buttock abscess. To our knowledge, this is the first report detailing the endovascular management of a ruptured PSA aneurysm. The etiology, management, and complications associated with the treatment of this rare vascular entity are discussed. Copyright 2010 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  12. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data.

    PubMed

    Romano, F; Trasatti, E; Lorito, S; Piromallo, C; Piatanesi, A; Ito, Y; Zhao, D; Hirata, K; Lanucara, P; Cocco, M

    2014-07-09

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively.

  13. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault

    USGS Publications Warehouse

    Andrews, D.J.; Ma, Shuo

    2010-01-01

    Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.

  14. Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt

    NASA Astrophysics Data System (ADS)

    Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.

    2017-12-01

    Geodetic measurements are often sparse in time (e.g. individual interferograms) and/or space (e.g. GNSS stations), adversely affecting our ability to capture the spatiotemporal detail required to study the earthquake cycle in complex tectonic systems such as subaerial fold and thrust belts. In an effort to overcome these limitations we combine 3 generations of SAR satellite data (ERS 1/2, Envisat & Sentinel-1a/b) to obtain a 25 year, high-resolution surface displacement time series over the frontal portion of an active fold and thrust belt near Quetta, Pakistan where a Mw 7.1 earthquake doublet occurred in 1997. With these data we capture a significant portion of the seismic cycle including the interseismic, coseismic and postseismic phases. Each satellite time series has been referenced to the first ERS-1 SAR epoch by fitting a ground deformation model to the data. This allows us to separate deformation associated with each phase and to examine their relative roles in accommodating strain and creating topography, and to explore the relationship between the earthquake cycle and critical taper wedge mechanics. Modeling of the coseismic deformation suggests a long, thin rupture with rupture length 7 times greater than rupture width. Rupture was confined to a 20-30 degree north-northeast dipping reverse fault or ramp at depth, which may be connecting two weak decollements at approximately 8 km and 13 km depth. Alternatively, intersections between the coseismic fault plane and pre-existing steeper splay faults underlying folds may have played a significant role in inhibiting rupture, as evidenced by intersection points bordering the rupture. These fault intersections effectively partition the fault system down-dip and enable long, thin ruptures. Postseismic deformation is manifest as uplift across short-wavelength folds at the thrust front, with displacement rates decreasing with time since the earthquake. Broader patterns of postseismic uplift are also observed surrounding the coseismic rupture in both the down- and up-dip directions. We examine how coseismic stress changes may be driving the postseismic deformation by jointly inverting the InSAR-derived displacements for the rupture and fault friction parameters using a rate-strengthening friction model.

  15. Dynamic ruptures on faults of complex geometry: insights from numerical simulations, from large-scale curvature to small-scale fractal roughness

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.

    2016-12-01

    The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture ceases to be sensible. Finally, the effect of fault geometry on ground-motions, in the near-field, is considered. Our simulations feature a classical linear slip weakening on the fault and a viscoplastic constitutive model off the fault. The benefits of using a more elaborate fast velocity-weakening friction law will also be considered.

  16. Pressure suppression containment system for boiling water reactor

    DOEpatents

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  17. Development of exothermically cast single-crystal Mar-M 247 and derivative alloys

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Hoppin, G. S., III; Phipps, C. M.; Harris, K.; Schwer, R. E.

    1980-01-01

    A low-cost, exothermic directional-solidification (DS) process was developed to produce single-crystal (SC) Mar-M 247 high-pressure turbine blades. Stress-rupture data indicated that SC Mar-M 247 provides only marginal improvements in longitudinal strength relative to the columnar grained DS material. Removal of grain boundary strengthening elements (B, C, Zr, Hf) from the Mar-M 247 composition (which are also melting point depressants) permitted the alloy to be solutioned at significantly higher temperatures. An order of magnitude improvement in rupture life relative to SC Mar-M 247 was observed for several derivative alloys at 103.5 MPa (15 KSI) and 1093 C. Rupture lives of the modified SC alloys were significantly affected by both alloy purity and heat treatment. Critical aspects of vacuum induction refining, exothermic casting technology, alloy development and heat treatment, which contributed to this new class of turbine blades, are reviewed

  18. The "Ethics Rupture" Summit, Fredericton, New Brunswick, Canada, October 25-28, 2012.

    PubMed

    van den Hoonaard, Will C

    2013-02-01

    This report explains the background of the "Ethics Rupture" Summit held in New Brunswick, Canada, October 2012, focusing on the disconnect between research-ethics policies and the nature and purpose of social-science research-an unintended "rupture" in ethics governance. Ethics is about human relationships, and the governance of ethics must reflect that fact rather than function as a bureaucratic, self-legitimating system of control. The themes that emerged from the Summit point to: structural problems with the current system; an undermining of the original, historical mission of some social-science disciplines; a discomfort with new methodologies; ethics committees and the well-being and education of social-science students; the possibilities of reform and renewal; and the next steps. Finally, the report refers in broad outlines to a "New Brunswick Declaration," which is currently being considered by participants of the Summit.

  19. Mast Cells: Pivotal Players in Cardiovascular Diseases

    PubMed Central

    Bot, Ilze; van Berkel, Theo J.C; Biessen, Erik A.L

    2008-01-01

    The clinical outcome of cardiovascular diseases as myocardial infarction and stroke are generally caused by rupture of an atherosclerotic plaque. However, the actual cause of a plaque to rupture is not yet established. Interestingly, pathology studies have shown an increased presence of the mast cell, an important inflammatory effector cell in allergy and host defense, in (peri)vascular tissue during plaque progression, which may point towards a causal role for mast cells. Very recent data in mouse models show that mast cells and derived mediators indeed can profoundly impact plaque progression, plaque stability and acute cardiovascular syndromes such as vascular aneurysm or myocardial infarction. In this review, we discuss recent evidence on the role of mast cells in the progression of cardiovascular disorders and give insight in the therapeutic potential of modulation of mast cell function in these processes to improve the resilience of a plaque to rupture. PMID:19936193

  20. Seismic precursory patterns before a cliff collapse and critical point phenomena

    USGS Publications Warehouse

    Amitrano, D.; Grasso, J.-R.; Senfaute, G.

    2005-01-01

    We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.

  1. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    NASA Astrophysics Data System (ADS)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland, Japan in 2008, for example, seem to support the need for careful mechanical consideration. In this contribution, utilizing two-dimensional dynamic photoelasticity in conjunction with high speed digital cinematography, we try to perform "fully controlled" laboratory experiments of dip-slip faulting and observe the propagation of interface pulses and corner waves mentioned above. A birefringent material containing a (model) dip-slip fault plane is prepared, and rupture is initiated in that material using an Nd:YAG laser system, and the evolution of time-dependent isochromatic fringe patterns (contours of maximum in-plane shear stress) associated with the dynamic process of shallow dip-slip faulting is recorded. Use of Nd:YAG laser pulses, instead of ignition of explosives, for rupture initiation may enhance the safety of laboratory fracture experiments and enable us to evaluate the energy entering the material (and hence the energy balance in the system) more precisely, possibly in a more controlled way.

  2. Quantifying and Qualifying USGS ShakeMap Uncertainty

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-Wan; Quitoriano, Vincent

    2008-01-01

    We describe algorithms for quantifying and qualifying uncertainties associated with USGS ShakeMap ground motions. The uncertainty values computed consist of latitude/longitude grid-based multiplicative factors that scale the standard deviation associated with the ground motion prediction equation (GMPE) used within the ShakeMap algorithm for estimating ground motions. The resulting grid-based 'uncertainty map' is essential for evaluation of losses derived using ShakeMaps as the hazard input. For ShakeMap, ground motion uncertainty at any point is dominated by two main factors: (i) the influence of any proximal ground motion observations, and (ii) the uncertainty of estimating ground motions from the GMPE, most notably, elevated uncertainty due to initial, unconstrained source rupture geometry. The uncertainty is highest for larger magnitude earthquakes when source finiteness is not yet constrained and, hence, the distance to rupture is also uncertain. In addition to a spatially-dependant, quantitative assessment, many users may prefer a simple, qualitative grading for the entire ShakeMap. We developed a grading scale that allows one to quickly gauge the appropriate level of confidence when using rapidly produced ShakeMaps as part of the post-earthquake decision-making process or for qualitative assessments of archived or historical earthquake ShakeMaps. We describe an uncertainty letter grading ('A' through 'F', for high to poor quality, respectively) based on the uncertainty map. A middle-range ('C') grade corresponds to a ShakeMap for a moderate-magnitude earthquake suitably represented with a point-source location. Lower grades 'D' and 'F' are assigned for larger events (M>6) where finite-source dimensions are not yet constrained. The addition of ground motion observations (or observed macroseismic intensities) reduces uncertainties over data-constrained portions of the map. Higher grades ('A' and 'B') correspond to ShakeMaps with constrained fault dimensions and numerous stations, depending on the density of station/data coverage. Due to these dependencies, the letter grade can change with subsequent ShakeMap revisions if more data are added or when finite-faulting dimensions are added. We emphasize that the greatest uncertainties are associated with unconstrained source dimensions for large earthquakes where the distance term in the GMPE is most uncertain; this uncertainty thus scales with magnitude (and consequently rupture dimension). Since this distance uncertainty produces potentially large uncertainties in ShakeMap ground-motion estimates, this factor dominates over compensating constraints for all but the most dense station distributions.

  3. Repair of chronic rupture of the achilles tendon using 2 intratendinous flaps from the proximal gastrocnemius-soleus complex.

    PubMed

    El Shewy, Mohamed Taha; El Barbary, Hassan Magdy; Abdel-Ghani, Hisham

    2009-08-01

    Chronic rupture of the Achilles tendon is a surgical challenge, owing to the presence of a gap between the retracted ends, which renders direct repair almost impossible. In this study, 2 intratendinous distally based flaps fashioned from the proximal gastrocnemiussoleus complex are used to bridge the gap between the retracted edges of the ruptured Achilles tendon. The flaps are placed in the same line of pull of the ruptured tendon, in an effort to make the graft mimic the original biomechanics as much as possible. Case series; Level of evidence, 4. Eleven patients (9 male and 2 female) with neglected ruptures of the Achilles tendon with retracted ends were included in this study. Two flaps fashioned from the proximal gastrocnemiussoleus complex were rotated over themselves, passed through the proximal stump, and then securely inserted into a previously prepared bed in the distal stump. The patients were followed up for a period of 6 to 9 years. At the final follow-up, all patients were able to return to their preinjury level of activity within a period of 6 to 9 months. The mean preoperative American Orthopedic Foot and Ankle Society score was 42.27, whereas it was 98.91 at the final follow-up, with a range of 88 (in 1 patient) to 100 points (in 10 patients). All 11 patients showed statistically significant improvement according to the Holz rating system. This technique allows for a bridging of the defect present in chronic ruptures of Achilles tendons, with a minimum of complications and a good final outcome.

  4. Effects on proprioception by Kinesio taping of the knee after anterior cruciate ligament rupture.

    PubMed

    Bischoff, Lars; Babisch, Christian; Babisch, Jürgen; Layher, Frank; Sander, Klaus; Matziolis, Georg; Pietsch, Stefan; Röhner, Eric

    2018-03-10

    The use of Kinesio tape (KT) to improve proprioception is a matter of considerable debate. In comparison, the rupture of the anterior cruciate ligament is a sufficiently well-investigated injury with a proven compromise of proprioception. The objective of the present study was to assess a supportive effect on proprioception after KT application, taking the anterior cruciate ligament (ACL) rupture as an example. Forty-eight patients who had suffered an ACL rupture, confirmed clinically and by magnetic resonance imaging, and who were treated conservatively or were awaiting surgery were included in this study. In all patients, a gait analysis was performed on the affected leg before and after KT application. In addition, the IKDC score, the Lysholm score, stability using the Rolimeter, and the angle reproduction test were determined. Thirty-nine men and nine women who had had an ACL rupture for at least 3 weeks were included in the study. Significant improvements were achieved on the affected knee joint for the gait analysis parameters touchdown and unrolling, cadence, stability and stance phase as well as an extension of the hip joint. The Lysholm score improved from 79.3 to 85.8 (p < 0.001) and the IKDC score from 60.2 to 71.3 points (p < 0.001). Significant improvements were achieved in the Rolimeter and angle reproduction test. The use of KT has a positive effect on proprioception in patients with an anterior cruciate ligament rupture. Therefore, the application may improve gait pattern as well as the subjective function of the affected knee joint.

  5. Trimming the UCERF2 hazard logic tree

    USGS Publications Warehouse

    Porter, Keith A.; Field, Edward H.; Milner, Kevin

    2012-01-01

    The Uniform California Earthquake Rupture Forecast 2 (UCERF2) is a fully time‐dependent earthquake rupture forecast developed with sponsorship of the California Earthquake Authority (Working Group on California Earthquake Probabilities [WGCEP], 2007; Field et al., 2009). UCERF2 contains 480 logic‐tree branches reflecting choices among nine modeling uncertainties in the earthquake rate model shown in Figure 1. For seismic hazard analysis, it is also necessary to choose a ground‐motion‐prediction equation (GMPE) and set its parameters. Choosing among four next‐generation attenuation (NGA) relationships results in a total of 1920 hazard calculations per site. The present work is motivated by a desire to reduce the computational effort involved in a hazard analysis without understating uncertainty. We set out to assess which branching points of the UCERF2 logic tree contribute most to overall uncertainty, and which might be safely ignored (set to only one branch) without significantly biasing results or affecting some useful measure of uncertainty. The trimmed logic tree will have all of the original choices from the branching points that contribute significantly to uncertainty, but only one arbitrarily selected choice from the branching points that do not.

  6. Asymptotic decay and non-rupture of viscous sheets

    NASA Astrophysics Data System (ADS)

    Fontelos, Marco A.; Kitavtsev, Georgy; Taranets, Roman M.

    2018-06-01

    For a nonlinear system of coupled PDEs, that describes evolution of a viscous thin liquid sheet and takes account of surface tension at the free surface, we show exponential (H^1, L^2) asymptotic decay to the flat profile of its solutions considered with general initial data. Additionally, by transforming the system to Lagrangian coordinates we show that the minimal thickness of the sheet stays positive for all times. This result proves the conjecture formally accepted in the physical literature (cf. Eggers and Fontelos in Singularities: formation, structure, and propagation. Cambridge Texts in Applied Mathematics, Cambridge, 2015), that a viscous sheet cannot rupture in finite time in the absence of external forcing. Moreover, in the absence of surface tension we find a special class of initial data for which the Lagrangian solution exhibits L^2-exponential decay to the flat profile.

  7. Coherent to incoherent transition of precipitates during rupture test in TP347H austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Chang-Whan; Heo, Yoon-Uk, E-mail: yunuk01@postech.ac.kr; Heo, Nam-Hoe

    2016-05-15

    Precipitation of various particles and their growth during rupture test have been investigated in TP347H austenitic stainless steels using a transmission electron microscopy. Various precipitates of MnS, Nb-rich MC, and MnS + MC and MnS + M{sub 2}P complexes are observed in the γ matrix after rupture test at 750 °C. The MnS particles formed independently in the γ matrix show a coherency or semi-coherency with the γ matrix. The Nb-rich MC carbides show also a coherency with the γ matrix. The Nb-rich MC carbides showing a semi-coherency with the MnS also form on the surface of the coherent ormore » semi-coherent MnS particles, and they show a cube-cube orientation relationship with the MnS particles. The MnS + MC complex loses the initial coherency with the γ matrix, as the MC in the complex grows. The Nb-rich M{sub 2}P precipitates formed on the surface of the MnS particles do not show an orientation relationship with the MnS particles or the γ matrix. The MnS particles in the MnS + M{sub 2}P complex hold the initial coherency with the γ matrix. Effects of MnS precipitation followed by the formation of the complexes on rupture life of the TP347H austenitic stainless steels are discussed from the viewpoint of MnS precipitates acting as sinks of free sulfur segregating to the grain boundaries. - Highlights: • Coherent to incoherent transition of precipitates during rupture test in TP347H steels is clarified. • MnS precipitation actively retards the time to intergranular fracture. • Effect of the coherency of secondary precipitates on the coherency loss of the complex particle is compared.« less

  8. Seismicity in the Wake of the April 2016 Pedernales Earthquake

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Beck, S. L.; Ruiz, M. C.; Hernandez, S.; Alvarado, A. P.; Regnier, M. M.; Rietbrock, A.; Font, Y.; Charvis, P.; Yepes, H. A.; Lynner, C.; Porritt, R. W.

    2016-12-01

    On April 16th 2016 a Mw7.8 earthquake struck along the Colombia-Ecuador trench near Pedernales, Ecuador. The epicentral region lies just north of the intersection of the Carnegie Ridge with the subduction zone where the orientation of the trench shifts from N20°E to N32°E. This portion of the subduction zone has ruptured on decadal time scales; Mw7.8 (1942), Mw 7.7 (1958), and Mw 8.8 (1906). The rupture zone of the 2016 Pedernales earthquake falls within the rupture area of the 1906 event and appears to overlap with the previous 1942 event. In the wake of the earthquake an international response coordinated by the Instituto Geofisico EPN in Quito deployed accelerometers, seismometers, OBS, and GPS receivers to record aftershocks and post-seismic deformation. These data provide the opportunity to examine the persistence of asperities for large to great earthquakes over multiple seismic cycles, the role of asperities in promoting or inhibiting rupture propagation, and the relationship between locked and creeping parts of the subduction interface. Onland, a dense array of 64 broadband and intermediate period seismometers cover the 2016 rupture zone, extending north to the section that ruptured in 1958 and covers the contiguous area that ruptured in 1906. The US portion of the response supported by the NSF includes 19 broadband seismic stations to record aftershocks for a year, an eGPS survey, and five cGPS stations to enhance the existing network in Ecuador. Data from the NSF supported stations are open access. We examine the distribution of seismicity from the aftershock deployment in relationship to the 1942, 1958, and 1906 ruptures. Preliminary locations from the IG-EPN aftershock catalog outline the rupture zone and initially exhibited an abrupt termination to the north at 1°N. Along this northern boundary a series of aftershocks that took place over a period of several hours along a very linear trend culminated in one of several ≥Mw 6.0 aftershocks. To the south, a significant cluster of events is observed 100 km south of the area that ruptured in the mainshock. This area lies south of an area of low coupling observed in GPS data suggesting that stress is being transmitted across a zone that is freely slipping. In July a series of events occurred north of the rupture zone close to the edge of the segment that ruptured in 1958.

  9. Observations on Rupture Behaviour of Fluid Induced Events at the Basel EGS Based on Empirical Green's Function Analysis

    NASA Astrophysics Data System (ADS)

    Folesky, J.; Kummerow, J.; Shapiro, S. A.; Asanuma, H.; Häring, M. O.

    2015-12-01

    The Emprirical Green's Function (EGF) method uses pairs of events of high wave form similarity and adjacent hypocenters to decompose the influences of source time function, ray path, instrument site, and instrument response. The seismogram of the smaller event is considered as the Green's Function which then can be deconvolved from the other seismogram. The result provides a reconstructed relative source time function (RSTF) of the larger event of that event pair. The comparison of the RSTFs at different stations of the observation systems produces information on the rupture process of the larger event based on the observation of the directivity effect and on changing RSTFs complexities.The Basel EGS dataset of 2006-2007 consists of about 2800 localized events of magnitudes between 0.0

  10. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.

  11. Near-Source Shaking and Dynamic Rupture in Plastic Media

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Mai, P. M.; Dalguer, L. A.; Ampuero, J. P.

    2012-12-01

    Recent well recorded earthquakes show a high degree of complexity at the source level that severely affects the resulting ground motion in near and far-field seismic data. In our study, we focus on investigating source-dominated near-field ground motion features from numerical dynamic rupture simulations in an elasto-visco-plastic bulk. Our aim is to contribute to a more direct connection from theoretical and computational results to field and seismological observations. Previous work showed that a diversity of rupture styles emerges from simulations on faults governed by velocity-and-state-dependent friction with rapid velocity-weakening at high slip rate. For instance, growing pulses lead to re-activation of slip due to gradual stress build-up near the hypocenter, as inferred in some source studies of the 2011 Tohoku-Oki earthquake. Moreover, off-fault energy dissipation implied physical limits on extreme ground motion by limiting peak slip rate and rupture velocity. We investigate characteristic features in near-field strong ground motion generated by dynamic in-plane rupture simulations. We present effects of plasticity on source process signatures, off-fault damage patterns and ground shaking. Independent of rupture style, asymmetric damage patterns across the fault are produced that contribute to the total seismic moment, and even dominantly at high angles between the fault and the maximum principal background stress. The off-fault plastic strain fields induced by transitions between rupture styles reveal characteristic signatures of the mechanical source processes during the transition. Comparing different rupture styles in elastic and elasto-visco-plastic media to identify signatures of off-fault plasticity, we find varying degrees of alteration of near-field radiation due to plastic energy dissipation. Subshear pulses suffer more peak particle velocity reduction due to plasticity than cracks. Supershear ruptures are affected even more. The occurrence of multiple rupture fronts affect seismic potency release rate, amplitude spectra, peak particle velocity distributions and near-field seismograms. Our simulations enable us to trace features of source processes in synthetic seismograms, for example exhibiting a re-activation of slip. Such physical models may provide starting points for future investigations of field properties of earthquake source mechanisms and natural fault conditions. In the long-term, our findings may be helpful for seismic hazard analysis and the improvement of seismic source models.

  12. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  13. A case of acute subdural hematoma due to ruptured aneurysm detected by postmortem angiography.

    PubMed

    Inokuchi, Go; Makino, Yohsuke; Yajima, Daisuke; Motomura, Ayumi; Chiba, Fumiko; Torimitsu, Suguru; Hoshioka, Yumi; Iwase, Hirotaro

    2016-03-01

    Acute subdural hematoma (ASDH) is mostly caused by head trauma, but intrinsic causes also exist such as aneurysm rupture. We describe here a case involving a man in his 70s who was found lying on the bedroom floor by his family. CT performed at the hospital showed ASDH and a forensic autopsy was requested. Postmortem cerebral angiography showed dilatation of the bifurcation of the middle cerebral artery, which coincided with the dilated part of the Sylvian fissure. Extravasation of contrast medium into the subdural hematoma from this site was suggestive of a ruptured aneurysm. Autopsy revealed a fleshy hematoma (total weight 110 g) in the right subdural space and findings of brain herniation. As indicated on angiography, a ruptured saccular aneurysm was confirmed at the bifurcation of the middle cerebral artery. Obvious injuries to the head or face could not be detected on either external or internal examination, and intrinsic ASDH due to a ruptured middle cerebral artery aneurysm was determined as the cause of death. One of the key points of forensic diagnosis is the strict differentiation between intrinsic and extrinsic onset for conditions leading to death. Although most subdural hematomas (SDH) are caused by extrinsic factors, forensic pathologists should consider the possibility of intrinsic SDH. In addition, postmortem angiography can be useful for identifying vascular lesions in such cases.

  14. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  15. The CHESS score: a simple tool for early prediction of shunt dependency after aneurysmal subarachnoid hemorrhage.

    PubMed

    Jabbarli, R; Bohrer, A-M; Pierscianek, D; Müller, D; Wrede, K H; Dammann, P; El Hindy, N; Özkan, N; Sure, U; Müller, O

    2016-05-01

    Acute hydrocephalus is an early and common complication of aneurysmal subarachnoid hemorrhage (SAH). However, considerably fewer patients develop chronic hydrocephalus requiring shunt placement. Our aim was to develop a risk score for early identification of patients with shunt dependency after SAH. Two hundred and forty-two SAH individuals who were treated in our institution between January 2008 and December 2013 and survived the initial impact were retrospectively analyzed. Clinical parameters within 72 h after the ictus were correlated with shunt dependency. Independent predictors were summarized into a new risk score which was validated in a subsequent SAH cohort treated between January and December 2014. Seventy-five patients (31%) underwent shunt placement. Of 23 evaluated variables, only the following five showed independent associations with shunt dependency and were subsequently used to establish the Chronic Hydrocephalus Ensuing from SAH Score (CHESS, 0-8 points): Hunt and Hess grade ≥IV (1 point), location of the ruptured aneurysm in the posterior circulation (1 point), acute hydrocephalus (4 points), the presence of intraventricular hemorrhage (1 point) and early cerebral infarction on follow-up computed tomography scan (1 point). The CHESS showed strong correlation with shunt dependency (P = 0.0007) and could be successfully validated in both internal SAH cohorts tested. Patients scoring ≥6 CHESS points had significantly higher risk of shunt dependency (P < 0.0001) than other patients. The CHESS may become a valuable diagnostic tool for early estimation of shunt dependency after SAH. Further evaluation and external validation will be required in prospective studies. © 2016 EAN.

  16. Lived experiences of women who developed uterine rupture following severe obstructed labor in Mulago hospital, Uganda

    PubMed Central

    2014-01-01

    Background Maternal mortality is a major public health challenge in Uganda. Whereas uterine rupture remains a major cause of maternal morbidity and mortality, there is limited research into what happens to women who survive such severe obstetric complications. Understanding their experiences might delineate strategies to support survivors. Methods This qualitative study used a phenomenological approach to explore lived experiences of women who developed uterine rupture following obstructed labor. In-depth interviews initially conducted during their hospitalization were repeated 3–6 months after the childbirth event to explore their health and meanings they attached to the traumatic events and their outcomes. Data were analyzed using thematic analysis. Results The resultant themes included barriers to access healthcare, multiple “losses” and enduring physical, psychosocial and economic consequences. Many women who develop uterine rupture fail to access critical care needed due to failure to recognise danger signs of obstructed labor, late decision making for accessing care, geographical barriers to health facilities, late or failure to diagnose obstructed labor at health facilities, and failure to promptly perform caesarean section. Secondly, the sequel of uterine rupture includes several losses (loss of lives, loss of fertility, loss of body image, poor quality of life and disrupted marital relationships). Thirdly, uterine rupture has grim economic consequences for the survivors (with financial loss and loss of income during and after the calamitous events). Conclusion Uterine rupture is associated with poor quality of care due to factors that operate at personal, household, family, community and society levels, and results in dire physical, psychosocial and financial consequences for survivors. There is need to improve access to and provision of emergency obstetric care in order to prevent uterine rupture consequent to obstructed labor. There is also critical need to provide counselling and support to survivors to enable them cope with physical, social, psychological and economic consequences. PMID:24758354

  17. Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.

    2017-12-01

    The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.

  18. Effects of Bounded Fault on Seismic Radiation and Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yang, H.

    2016-12-01

    It has been suggested that narrow rectangle fault may emit stopping phases that can largely affect seismic radiation and thus rupture propagation, e.g., generation of short-duration pulse-like ruptures. Here we investigate the effects of narrow along-dip rectangle fault (analogously to 2015 Nepal earthquake with 200 km * 40 km) on seismic radiation and rupture propagation through numerical modeling in the framework of the linear slip-weakening friction law. First, we found the critical slip-weakening distance Dc may largely affect the seismic radiation and other source parameters, such as rupture speed, final slip and stress drop. Fixing all other uniform parameters, decreasing Dc could decrease the duration time of slip rate and increase the peak slip rate, thus increase the seismic radiation energy spectrum of slip acceleration. In addition, smaller Dc could lead to larger rupture speed (close to S wave velocity), but smaller stress drop and final slip. The results show that Dc may control the efficiency of far-field radiation. Furthermore, the duration time of slip rate at locations close to boundaries is 1.5 - 4 s less than that in the center of the fault. Such boundary effect is especially remarkable for smaller Dc due to the smaller average duration time of slip rate, which could increase the high-frequency radiation energy and impede low-frequency component near the boundaries from the analysis of energy spectrum of slip acceleration. These results show high frequency energy tends to be radiated near the fault boundaries as long as Dc is small enough. In addition, ruptures are fragile and easy to self-arrest if the width of the seismogenic zone is very narrow. In other words, the sizes of nucleation zone need to be larger to initiate runaway ruptures. Our results show the critical sizes of nucleation zones increase as the widths of seismogenic zones decrease.

  19. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-02-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m (M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.

  20. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-05-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m ( M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.

  1. Inferring rate and state friction parameters from a rupture model of the 1995 Hyogo-ken Nanbu (Kobe) Japan earthquake

    USGS Publications Warehouse

    Guatteri, Mariagiovanna; Spudich, P.; Beroza, G.C.

    2001-01-01

    We consider the applicability of laboratory-derived rate- and state-variable friction laws to the dynamic rupture of the 1995 Kobe earthquake. We analyze the shear stress and slip evolution of Ide and Takeo's [1997] dislocation model, fitting the inferred stress change time histories by calculating the dynamic load and the instantaneous friction at a series of points within the rupture area. For points exhibiting a fast-weakening behavior, the Dieterich-Ruina friction law, with values of dc = 0.01-0.05 m for critical slip, fits the stress change time series well. This range of dc is 10-20 times smaller than the slip distance over which the stress is released, Dc, which previous studies have equated with the slip-weakening distance. The limited resolution and low-pass character of the strong motion inversion degrades the resolution of the frictional parameters and suggests that the actual dc is less than this value. Stress time series at points characterized by a slow-weakening behavior are well fitted by the Dieterich-Ruina friction law with values of dc ??? 0.01-0.05 m. The apparent fracture energy Gc can be estimated from waveform inversions more stably than the other friction parameters. We obtain a Gc = 1.5??106 J m-2 for the 1995 Kobe earthquake, in agreement with estimates for previous earthquakes. From this estimate and a plausible upper bound for the local rock strength we infer a lower bound for Dc of about 0.008 m. Copyright 2001 by the American Geophysical Union.

  2. A Rare Case of Massive Rotator Cuff Tear and Biceps Tendon Rupture with Posterior Shoulder Dislocation in a Young Adult - Surgical Decision-making and Outcome

    PubMed Central

    Soon, En Loong; Razak, Hamid Rahmatullah Bin Abd; Tan, Andrew Hwee Chye

    2017-01-01

    Introduction: Massive rotator cuff tears (RCTs) in the context of shoulder dislocations are relatively uncommon in the young adult (<40 years) and if reported are more commonly described in association with acute traumatic anterior glenohumeral dislocations. They have rarely been described with posterior dislocations, regardless of patient age. This is the 1st case reported in the context of posterior dislocations, where a triad of biceps tendon rupture, posterior dislocation, and RCTs was observed during surgery. It provides an important reminder to readers about certain injuries commonly overlooked during the assessment of an acute traumatic shoulder. Case Report: We report an atypical case of a massive RCT involving a 34-year-old Asian male who landed on his outstretched hand after falling off a bicycle. A tear involving the supraspinatus and subscapularis was visualized during surgery, along with long head of biceps (LHB) tendon rupture. This was after an initial failure to achieve closed reduction of the posteriorly dislocated left shoulder. Conclusion: It is easy to miss the posterior instability, the associated RCTs or the biceps tendon injuries. Biceps tendon rupture should be a consideration when one is unable to reduce a posteriorly dislocated shoulder. The interposed torn LHB tendon trapped within the glenohumeral joint was the likely physical block in the initial failure to achieve closed reduction. With timely diagnosis, prudent physical examination, early imaging and surgery, and excellent results can potentially be achieved to return a young patient to full functionality. PMID:28819610

  3. Blunt traumatic cardiac rupture: therapeutic options and outcomes.

    PubMed

    Nan, Yu-Yun; Lu, Ming-Shian; Liu, Kuo-Sheng; Huang, Yao-Kuang; Tsai, Feng-Chun; Chu, Jaw-Ji; Lin, Pyng Jing

    2009-09-01

    Cardiac rupture following blunt thoracic trauma is rarely encountered by clinicians, since it commonly causes death at the scene. With advances in traumatology, blunt cardiac rupture had been increasingly disclosed in various ways. This study reviews our experience of patients with suspected blunt traumatic cardiac rupture and proposes treatment protocols for the same. This is a 5-year retrospective study of trauma patients confirmed with blunt traumatic cardiac rupture admitted to a university-affiliated tertiary trauma referral centre. The following information was collected from the patients: age, sex, mechanism of injury, initial effective diagnostic tool used for diagnosing blunt cardiac rupture, location and size of the cardiac injury, associated injury and injury severity score (ISS), reversed trauma score (RTS), survival probability of trauma and injury severity scoring (TRISS), vital signs and biochemical lab data on arrival at the trauma centre, time elapsed from injury to diagnosis and surgery, surgical details, hospital course and final outcome. The study comprised 8 men and 3 women with a median age of 39 years (range: 24-73 years) and the median follow-up was 5.5 months (range: 1-35 months). The ISS, RTS, and TRISS scores of the patients were 32.18+/-5.7 (range: 25-43), 6.267+/-1.684 (range: 2.628-7.841), and 72.4+/-25.6% (range: 28.6-95.5%), respectively. Cardiac injuries were first detected using focused assessment with sonography for trauma (FAST) in 4 (36.3%) patients, using transthoracic echocardiography in 3 (27.3%) patients, chest CT in 1 (9%) patient, and intra-operatively in 3 (27.3%) patients. The sites of cardiac injury comprised the superior vena cava/right atrium junction (n=4), right atrial auricle (n=1), right ventricle (n=4), left ventricular contusion (n=1), and diffuse endomyocardial dissection over the right and left ventricles (n=1). Notably, 2 had pericardial lacerations presenting as a massive haemothorax, which initially masked the cardiac rupture. The in-hospital mortality was 27.3% (3/11) with 1 intra-operative death, 1 multiple organ failure, and 1 death while waiting for cardiac transplantation. Another patient with morbid neurological defects died on the thirty-third postoperative day; the overall survival was 63.6% (7/11). Compared with the surviving patients, the fatalities had higher RTS and TRISS scores, serum creatinine levels, had received greater blood transfusions, and had a worse preoperative conscious state. We proposed a protocol combining various diagnostic tools, including FAST, CT, transthoracic echocardiography, and TEE, to manage suspected blunt traumatic cardiac rupture. Pericardial defects can mask the cardiac lesion and complicate definite cardiac repair. Comorbid trauma, particularly neurological injury, may have an impact on the survival of such patients, despite timely repair of the cardiac lesions.

  4. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    USGS Publications Warehouse

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation of 5%-damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non-Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.

  5. The rupture process of the Manjil, Iran earthquake of 20 june 1990 and implications for intraplate strike-slip earthquakes

    USGS Publications Warehouse

    Choy, G.L.; Zednik, J.

    1997-01-01

    In terms of seismically radiated energy or moment release, the earthquake of 20 January 1990 in the Manjil Basin-Alborz Mountain region of Iran is the second largest strike-slip earthquake to have occurred in an intracontinental setting in the past decade. It caused enormous loss of life and the virtual destruction of several cities. Despite a very large meizoseismal area, the identification of the causative faults has been hampered by the lack of reliable earthquake locations and conflicting field reports of surface displacement. Using broadband data from global networks of digitally recording seismographs, we analyse broadband seismic waveforms to derive characteristics of the rupture process. Complexities in waveforms generated by the earthquake indicate that the main shock consisted of a tiny precursory subevent followed in the next 20 seconds by a series of four major subevents with depths ranging from 10 to 15 km. The focal mechanisms of the major subevents, which are predominantly strike-slip, have a common nodal plane striking about 285??-295??. Based on the coincidence of this strike with the dominant tectonic fabric of the region we presume that the EW striking planes are the fault planes. The first major subevent nucleated slightly south of the initial precursor. The second subevent occurred northwest of the initial precursor. The last two subevents moved progressively southeastward of the first subevent in a direction collinear with the predominant strike of the fault planes. The offsets in the relative locations and the temporal delays of the rupture subevents indicate heterogeneous distribution of fracture strength and the involvement of multiple faults. The spatial distribution of teleseismic aftershocks, which at first appears uncorrelated with meizoseismal contours, can be decomposed into stages. The initial activity, being within and on the periphery of the rupture zone, correlates in shape and length with meizoseismal lines. In the second stage of activity the aftershock zone expands and appears to cluster about the geomorphic and geologic features several tens of kilometres from the rupture zone. The activity is interpreted as a regional response to quasistatic stress migration along zones of tectonic weakness. The radiated energy of the main shock and the estimate of seismic moment yields an apparent stress of 20 bars. High apparent stress may be typical of strike slip earthquakes occurring in intracontinental environments undergoing continental collision.

  6. [PART-KESSLER TECHNIQUE WITH SUTURE ANCHOR IN REPAIR OF SPONTANEOUS Achilles TENDON RUPTURE].

    PubMed

    Qi, Jie; Duan, Liang; Li, Weiwei; Wei, Wenbo

    2016-02-01

    To summarize the application and experience of repairing spontaneous Achilles tendon rupture by part-Kessler technique with suture anchor. Between January 2011 and December 2013, 31 patients with spontaneous Achilles tendon rupture were treated by part-Kessler technique with suture anchor. Of 31 cases, 23 were male and 8 were female, aged 16-53 years (mean, 38 years). The left side was involved in 15 cases and the right side in 16 cases. The causes of injury included sudden heel pain and walking weakness during sports in 22 cases; no surefooted down-stairs, slip, and carrying heavy loads in 9 cases. The distance from broken site to the calcaneus adhension of Achilles tendon was 3-6 cm (mean, 4.2 cm). The time from injury to operation was 7 hours to 4 days (mean, 36.8 hours). All incisions healed by first intention without nerve injury or adhering with skin. The patients were followed up 6-24 months (mean, 15 months). All patients could complete 25 times heel raising without difficulty at 6 months after operation. No Achilles tendon rupture occurred again during follow-up. At 6 months after operation, the range of motion of the ankle joint in dorsiflexion and plantar flexion showed no significant difference between normal and affected sides (t=0.648, P=0.525; t=0.524, P=0.605). The circumference of the affected leg was significantly smaller than that of normal leg at 6 months after operation (t=2.074, P=0.041), but no significant difference was found between affected and normal sides at 12 months after operation (t=0.905, P=0.426). The American Orthopedic Foot and Ankle Society (AOFAS) scores at 6, 12, 18, and 24 months after operation were significantly higher than preoperative score (P<0.05); the score at 6 months after operation was significantly lower than that at other time points (P<0.05), but no significant difference was shown between the other time points (P>0.05). Repairing spontaneous Achilles tendon rupture by part-Kessler technique with suture anchor can supply strong strain and decrease the shear forces of suture. So part-Kessler technique with suture anchor is successful in repairing spontaneous Achilles tendon rupture.

  7. Experimental shear strength of unchecked solid-sawn Douglas-fir

    Treesearch

    D. R. Rammer; L. A. Soltis; P. K. Lebow

    This report presents experimental results of modulus of rupture and shear strength tests on unsplit, green, sawn Douglas-fir lumber. Five different size-matched specimens, ranging from nominal 2-by 4-in (standard 38- by 89-mm) to nominal 4- by 14-in (standard 95-by 343-mm), were tested in third-point bending and five-point beam shear. A total of 120 bending and 160...

  8. Is a high initial World Federation of Neurosurgery (WFNS) grade really associated with a poor clinical outcome in elderly patients with ruptured intracranial aneurysms treated with coiling?

    PubMed

    Iosif, Christina; Di Maria, Federico; Sourour, Nader; Degos, Vincent; Bonneville, Fabrice; Biondi, Alessandra; Jean, Betty; Colonne, Chantal; Nouet, Aurelien; Chiras, Jacques; Clarençon, Frédéric

    2014-05-01

    Coiling of ruptured intracranial aneurysms in elderly patients remains debatable in terms of technical feasibility and clinical outcome. In this observational cohort study we aimed to assess the technical feasibility, complication profile and clinical outcomes of elderly patients with subarachnoid hemorrhage (SAH) treated with endovascular therapy. The study included 59 consecutive patients (47 women) aged ≥70 years (mean age 76 years, range 71-84) admitted to our institution with SAH from January 2002 to July 2011. The patients were treated for 66 aneurysms (regular coiling: n=62 (94%), balloon-assisted technique: n=2 (3%), stent and coil technique: n=2 (3%)). World Federation of Neurosurgery (WFNS) grade at admission was 1 in 13 patients, 2 in 23 patients, 3 in 8 patients, 4 in 11 patients and 5 in 4 patients. We analysed data by univariate and multivariate statistical analyses with an emphasis on the initial clinical situation, complications and clinical outcome. The technical success rate was 98% with a procedure-related deficit rate of 10% and procedure-related death rate of 5%. The Glasgow Outcome Scale score at 6 months was 1 in 15 patients (25.4%), 2 in 8 patients (13.6%), 3 in 14 patients (23.7%), 4 in 11 patients (18.6%) and 5 in 11 patients (18.6%). Patients admitted with a high initial WFNS grade did not differ statistically in terms of clinical outcome. The final clinical outcome was not significantly correlated with age, initial Fisher score or procedure-related complications. Endovascular treatment of elderly patients with ruptured cerebral aneurysms is feasible, safe and beneficial regardless of the presenting WFNS score.

  9. A prototype of the procedure of strong ground motion prediction for intraslab earthquake based on characterized source model

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Sekiguchi, H.

    2011-12-01

    We propose a prototype of the procedure to construct source models for strong motion prediction during intraslab earthquakes based on the characterized source model (Irikura and Miyake, 2011). The key is the characterized source model which is based on the empirical scaling relationships for intraslab earthquakes and involve the correspondence between the SMGA (strong motion generation area, Miyake et al., 2003) and the asperity (large slip area). Iwata and Asano (2011) obtained the empirical relationships of the rupture area (S) and the total asperity area (Sa) to the seismic moment (Mo) as follows, with assuming power of 2/3 dependency of S and Sa on M0, S (km**2) = 6.57×10**(-11)×Mo**(2/3) (Nm) (1) Sa (km**2) = 1.04 ×10**(-11)×Mo**(2/3) (Nm) (2). Iwata and Asano (2011) also pointed out that the position and the size of SMGA approximately corresponds to the asperity area for several intraslab events. Based on the empirical relationships, we gave a procedure for constructing source models of intraslab earthquakes for strong motion prediction. [1] Give the seismic moment, Mo. [2] Obtain the total rupture area and the total asperity area according to the empirical scaling relationships between S, Sa, and Mo given by Iwata and Asano (2011). [3] Square rupture area and asperities are assumed. [4] The source mechanism is assumed to be the same as that of small events in the source region. [5] Plural scenarios including variety of the number of asperities and rupture starting points are prepared. We apply this procedure by simulating strong ground motions for several observed events for confirming the methodology.

  10. Source model of an earthquake doublet that occurred in a pull-apart basin along the Sumatran fault, Indonesia

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Toda, S.; Ando, R.; Yamashina, T.; Inoue, H.; Sunarjo

    2010-04-01

    On 2007 March 6, an earthquake doublet occurred along the Sumatran fault, Indonesia. The epicentres were located near Padang Panjang, central Sumatra, Indonesia. The first earthquake, with a moment magnitude (Mw) of 6.4, occurred at 03:49 UTC and was followed two hours later (05:49 UTC) by an earthquake of similar size (Mw = 6.3). We studied the earthquake doublet by a waveform inversion analysis using data from a broadband seismograph network in Indonesia (JISNET). The focal mechanisms of the two earthquakes indicate almost identical right-lateral strike-slip faults, consistent with the geometry of the Sumatran fault. Both earthquakes nucleated below the northern end of Lake Singkarak, which is in a pull-apart basin between the Sumani and Sianok segments of the Sumatran fault system, but the earthquakes ruptured different fault segments. The first earthquake occurred along the southern Sumani segment and its rupture propagated southeastward, whereas the second one ruptured the northern Sianok segment northwestward. Along these fault segments, earthquake doublets, in which the two adjacent fault segments rupture one after the other, have occurred repeatedly. We investigated the state of stress at a segment boundary of a fault system based on the Coulomb stress changes. The stress on faults increases during interseismic periods and is released by faulting. At a segment boundary, on the other hand, the stress increases both interseismically and coseismically, and may not be released unless new fractures are created. Accordingly, ruptures may tend to initiate at a pull-apart basin. When an earthquake occurs on one of the fault segments, the stress increases coseismically around the basin. The stress changes caused by that earthquake may trigger a rupture on the other segment after a short time interval. We also examined the mechanism of the delayed rupture based on a theory of a fluid-saturated poroelastic medium and dynamic rupture simulations incorporating a rheological velocity hardening effect. These models of the delayed rupture can qualitatively explain the observations, but further studies, especially based on the rheological effect, are required for quantitative studies.

  11. The 2015 April 25 Gorkha Earthquake and its Aftershocks: Implications for lateral heterogeneity on the Main Himalayan Thrust

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kumar, A.; Priestley, K. F.

    2016-12-01

    The 2015 Gorkha earthquake (Mw 7.8) occurred by thrust faulting on a ˜150 km long and ˜70 km wide, locked downdip segment of the Main Himalayan Thrust (MHT), causing the Himalaya to slip SSW over the Indian Plate, and was followed by major-to-moderate aftershocks. Back projection of teleseismic P-wave and inversion of teleseismic body waves provide constraints on the geometry and kinematics of the mainshock rupture and source mechanism of aftershocks. The mainshock initiated ˜80 km west of Katmandu, close to the locking line on the MHT and propagated eastwards, along ˜117° azimuth, for a duration of ˜70 s, in multi-stage rupture. The mainshock has been modeled using four sub-events, propagating from west-to-east. The first sub-event (0-20 s) ruptured at a velocity of ˜3.5 km/s on a ˜6° N dipping flat segment of the MHT with thrust motion. The second sub-event (20-35 s) ruptured a ˜18° W dipping lateral ramp on the MHT in oblique thrust motion. The rupture velocity dropped from 3.5 km/s to 2.5 km/s, as a result of updip propagation of the rupture. The third sub-event (35-50 s) ruptured a ˜7° N dipping, eastward flat segment of the MHT with thrust motion and resulted in the largest amplitude arrivals at teleseismic distances. The fourth sub-event (50-70 s) occurred by left-lateral strike-slip motion on a steeply dipping transverse fault, at high angle to the MHT and arrested the eastward propagation of the mainshock rupture. Eastward stress build-up following the mainshock resulted in the largest aftershock (Mw 7.3), which occurred on the MHT, immediately east of the mainshock rupture. Source mechanism of moderate aftershocks reveal stress adjustment at the edges of the mainshock fault, flexural faulting on top of the downgoing Indian Plate and extensional faulting in the hanging wall of the MHT.

  12. The 2015 April 25 Gorkha (Nepal) earthquake and its aftershocks: implications for lateral heterogeneity on the Main Himalayan Thrust

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Singh, Shashwat K.; Mitra, S.; Priestley, K. F.; Dayal, Shankar

    2017-02-01

    The 2015 Gorkha earthquake (Mw 7.8) occurred by thrust faulting on a ˜150 km long and ˜70 km wide, locked downdip segment of the Main Himalayan Thrust (MHT), causing the Himalaya to slip SSW over the Indian Plate, and was followed by major-to-moderate aftershocks. Back projection of teleseismic P-wave and inversion of teleseismic body waves provide constraints on the geometry and kinematics of the main-shock rupture and source mechanism of aftershocks. The main-shock initiated ˜80 km west of Katmandu, close to the locking line on the MHT and propagated eastwards along ˜117° azimuth for a duration of ˜70 s, with varying rupture velocity on a heterogeneous fault surface. The main-shock has been modelled using four subevents, propagating from west-to-east. The first subevent (0-20 s) ruptured at a velocity of ˜3.5 km s- 1 on a ˜6°N dipping flat segment of the MHT with thrust motion. The second subevent (20-35 s) ruptured a ˜18° W dipping lateral ramp on the MHT in oblique thrust motion. The rupture velocity dropped from 3.5 km s- 1 to 2.5 km s- 1, as a result of updip propagation of the rupture. The third subevent (35-50 s) ruptured a ˜7°N dipping, eastward flat segment of the MHT with thrust motion and resulted in the largest amplitude arrivals at teleseismic distances. The fourth subevent (50-70 s) occurred by left-lateral strike-slip motion on a steeply dipping transverse fault, at high angle to the MHT and arrested the eastward propagation of the main-shock rupture. Eastward stress build-up following the main-shock resulted in the largest aftershock (Mw 7.3), which occurred on the MHT, immediately east of the main-shock rupture. Source mechanisms of moderate aftershocks reveal stress adjustment at the edges of the main-shock fault, flexural faulting on top of the downgoing Indian Plate and extensional faulting in the hanging wall of the MHT.

  13. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.

  14. 3-D Dynamic Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Urata, Y.; Yoshida, K.

    2016-12-01

    On April 16, 2016 at 01:25 (JST), an M7.3 main shock of the 2016 Kumamoto, Japan, earthquake sequence occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred: M6.5 on April 14 at 21:26, M5.8 on April 14 at 22:27, and M6.4 on April 15 at 00:03 (JST). The focal mechanisms of the first and third foreshocks were similar to those of the main shock; therefore, the extensive stress shadow should have been generated on the fault plane of the main shock. The purpose of this study is to illuminate why the rupture of the main shock propagated successfully under such stress conditions by 3-D dynamic rupture simulations, assuming the fault planes estimated by the distributions of aftershocks.First, we investigated time evolution of aftershock hypocenters relocated by the Double Difference method (Waldhauser & Ellsworth, 2000). The result showed that planar distribution of the hypocenters was formed after each M6 event. It allows us to estimate fault planes of the three foreshocks and the main shock.Then, we evaluated stress changes on the fault planes of the main shock due to the three foreshocks. We obtained the slip distributions of the foreshocks by using Eshelby (1957)'s solution, assuming elliptical cracks with constant stress drops on the estimated fault planes. The stress changes on the fault planes of the main shock were calculated by using Okada (1992)'s solution. The obtained stress change distribution showed that the hypocenter of the main shock existed on the region with positive ΔCFF while ΔCFF in the shallower regions than the hypocenter was negative. Therefore, the foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region.Finally, we conducted 3-D dynamic rupture simulations (Hok and Fukuyama, 2011) of the main shock under the initial stresses, which were the sum of the stress changes by these foreshocks and the regional stress field estimated by Yoshida et al. (2016, submitted). We used slip-weakening law with uniform friction parameters. We conducted many simulations varying unknown parameters (the friction parameters and the values of the principal stresses), and we will discuss the conditions for the rupture propagation of the main shock and the effects of the foreshocks on the main shock.

  15. Deformation of the 2002 Denali Fault earthquakes, mapped by Radarsat-1 interferometry

    USGS Publications Warehouse

    Lu, Zhong; Wright, Tim; Wicks, Chuck

    2003-01-01

    The magnitude 7.9 earthquake that struck central Alaska on 3 November 2002 was the largest strike-slip earthquake in North America for more than 150 years. The earthquake ruptured about 340 km of the Denali Fault system with observed right-lateral offsets of up to 9 m [Eberhart-Phillips et al., 2003] (Figure l). The rupture initiated with slip on a previously unknown thrust fault, the 40-km-long Susitna Glacier Fault. The rupture propagated eastward for about 220 km along the right-lateral Denali Fault where right-lateral slip averaged ˜5 m, before stepping southeastward onto the Totschunda Fault for about 70 km, with offsets as large as 2 m. The 3 November earthquake was preceded by a magnitude 6.7 shock on 23 October—the Nenana Mountain Earthquake—which was located about 25 km to the west of the 3 November earthquake.

  16. Service evaluation of aluminum-brazed titanium (ABTi). [aircraft structures

    NASA Technical Reports Server (NTRS)

    Elrod, S. D.

    1981-01-01

    Long term creep-rupture, flight service and jet engine exhaust tests on aluminum-brazed titanium (ABTi), originally initiated under the DOT/SST follow-on program, were completed. These tests included exposure to natural airline service environments for up to 6 years. The results showed that ABTi has adequate corrosion resistance for long time commercial airplane structural applications. Special precautions are required for those sandwich structures designed for sound attenuation that utilize perforated skins. ABTi was also shown to have usable creep-rupture strength and to be metallurgically stable at temperatures up to 425 C (800 F).

  17. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  18. The effect of a therapy protocol for increasing correction of severely contracted proximal interphalangeal joints caused by dupuytren disease and treated with collagenase injection.

    PubMed

    Skirven, Terri M; Bachoura, Abdo; Jacoby, Sidney M; Culp, Randall W; Osterman, A Lee

    2013-04-01

    To determine the effect of a specific orthotic intervention and therapy protocol on proximal interphalangeal (PIP) joint contractures of greater than 40° caused by Dupuytren disease and treated with collagenase injections. All patients with PIP joints contracted at least 40° by Dupuytren disease were prospectively invited to participate in the study. Following standard collagenase injection and cord rupture by a hand surgeon, a certified hand therapist evaluated and treated each patient based on a defined treatment protocol that consisted of orthotic intervention to address residual PIP joint contracture. In addition, exercises were initiated emphasizing reverse blocking for PIP joint extension and distal interphalangeal joint flexion exercises with the PIP joint held in extension to lengthen a frequently shortened oblique retinacular ligament. Patients were assessed before injection, immediately after injection, and 1 and 4 weeks later. There were 22 fingers in 21 patients. The mean age at treatment was 63 years (range, 37-80 y). The mean baseline passive PIP joint contracture was 56° (range, 40° to 80°). At cord rupture, the mean PIP joint contracture became 22° (range, 0° to 55°). One week after cord rupture and therapy, the contracture decreased further to a mean of 12° (range, 0° to 36°). By 4 weeks, the mean contracture was 7° (range, 0° to 35°). The differences in PIP joint contracture were statistically significant at all time points except when comparing the means at 1 week and 4 weeks. The results represent an 88% improvement of the PIP joint contracture. In the short term, it appears that severe PIP joint contractures benefit from specific, postinjection orthotic intervention and targeted exercises. Therapeutic IV. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Infrasonic Observations of Ground Shaking along the 2010 Mw 7.2 El Mayor Rupture

    NASA Astrophysics Data System (ADS)

    Degroot-Hedlin, C. D.; Walker, K.

    2010-12-01

    The Mw 7.2 El Mayor earthquake in northeast Baja California generated seismic waves that were felt for up to 90 seconds throughout southern California and northern Baja. The locations of the epicenter, aftershocks, and surface rupture suggest that the rupture was not focused at one specific location, but initiated near El Mayor, Mexico and extended northwest for roughly 120 km through the U.S. border. We analyze infrasound and seismic data recorded by three arrays and show that the surface shaking in the vicinity of the rupture also generated infrasound that was detected at least 200 km away to the north and west of the epicentral region, despite stratospheric winds from the west that only favor eastward propagation. Frequency domain beamforming of infrasound array signals recorded by an array near San Diego (MRIAR) shows a time progression of signal back azimuth that spans the entire rupture length. Ray trace modeling using 4-D atmospheric velocity models suggests that the observed infrasound signals refracted in the thermosphere. The signals have frequencies from 1 to 12 Hz, which is rather high given the level of thermospheric attenuation predicted by traditional models. A secondary infrasound wavetrain that arrived at MRIAR before the epicentral infrasound appears to have originated from an infrasonic radiator south of the array that was excited by the passing surface waves.

  20. Complex rupture during the 12 January 2010 Haiti earthquake

    USGS Publications Warehouse

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  1. Anterolateral ligament abnormalities in patients with acute anterior cruciate ligament rupture are associated with lateral meniscal and osseous injuries.

    PubMed

    Van Dyck, Pieter; Clockaerts, Stefan; Vanhoenacker, Filip M; Lambrecht, Valérie; Wouters, Kristien; De Smet, Eline; Gielen, Jan L; Parizel, Paul M

    2016-10-01

    To determine the frequency of anterolateral ligament (ALL) injury in patients with acute anterior cruciate ligament (ACL) rupture and to analyse its associated injury patterns. Ninety patients with acute ACL rupture for which MRI was obtained within 8 weeks after the initial trauma were retrospectively identified. Two radiologists assessed the status of the ALL on MRI by consensus. The presence or absence of an ALL abnormality was compared with the existence of medial and lateral meniscal tears diagnosed during arthroscopy. Associated collateral ligament and osseous injuries were documented with MRI. Forty-one of 90 knees (46 %) demonstrated ALL abnormalities on MRI. Of 49 knees with intact ALL, 15 (31 %) had a torn lateral meniscus as compared to 25 torn lateral menisci in 41 knees (61 %) with abnormal ALL (p = 0.008). Collateral ligament (p ≤ 0.05) and osseous injuries (p = 0.0037) were more frequent and severe in ALL-injured as compared with ALL-intact knees. ALL injuries are fairly common in patients with acute ACL rupture and are statistically significantly associated with lateral meniscal, collateral ligament and osseous injuries. • ALL injuries are fairly common in patients with acute ACL rupture. • ALL injuries are highly associated with lateral meniscal and osseous injuries. • MRI assessment of ACL-injured knees should include evaluation of the ALL.

  2. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Titran, Robert H.

    1993-01-01

    The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

  3. Induced Abnormality In Mir- and Earth-Grown Super Dwarf Wheat

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Stieber, Joseph; Campbell, William F.; Salisbury, Frank B.; Levinski, Margarita; Sytchev, Vladimir; Podolsky, Igor; Chernova, Lola; Ivanova, Irene; Kliss, Mark (Technical Monitor)

    1998-01-01

    Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with normal wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen grains however, contain only one nucleus, while normal viable pollen is trinucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was identified - a high level of atmospheric ethylene (1200 ppb). Ground studies conducted exposing "Super-dwarf" wheat to ethylene at just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.

  4. On the efficient and reliable numerical solution of rate-and-state friction problems

    NASA Astrophysics Data System (ADS)

    Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno

    2016-03-01

    We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.

  5. Delayed Exercise Promotes Remodeling in Sub-Rupture Fatigue Damaged Tendons

    PubMed Central

    Bell, R.; Boniello, M.R.; Gendron, N.R.; Flatow, E.L.; Andarawis-Puri, N.

    2015-01-01

    Tendinopathy is a common musculoskeletal injury whose treatment is limited by ineffective therapeutic interventions. Previously we have shown that tendons ineffectively repair early sub-rupture fatigue damage. In contrast, physiological exercise has been shown to promote remodeling of healthy tendons but its utility as a therapeutic to promote repair of fatigue damaged tendons remains unknown. Therefore, the objective of this study was to assess the utility of exercise initiated 1 and 14 days after onset of fatigue damage to promote structural repair in fatigue damaged tendons. We hypothesized that exercise initiated 14 days after fatigue loading would promote remodeling as indicated by a decrease in area of collagen matrix damage, increased procollagen I and decorin, while decreasing proteins indicative of tendinopathy. Rats engaged in 6-week exercise for 30 min/day or 60 min/day starting 1 or 14 days after fatigue loading. Initiating exercise 1-day after onset of fatigue injury led to exacerbation of matrix damage, particularly at the tendon insertion. Initiating exercise 14 days after onset of fatigue injury led to remodeling of damaged regions in the midsubstance and collagen synthesis at the insertion. Physiological exercise applied after the initial biological response to injury has dampened can potentially promote remodeling of damaged tendons. PMID:25732052

  6. A Case Study of Array-based Early Warning System for Tsunami Offshore Ventura, California

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Meng, L.

    2017-12-01

    Extreme scenarios of M 7.5+ earthquakes on the Red Mountain and Pitas Point faults can potentially generate significant local tsunamis in southern California. The maximum water elevation could be as large as 10 m in the nearshore region of Oxnard and Santa Barbara. Recent development in seismic array processing enables rapid tsunami prediction and early warning based on the back-projection approach (BP). The idea is to estimate the rupture size by back-tracing the seismic body waves recorded by stations at local and regional distances. A simplified source model of uniform slip is constructed and used as an input for tsunami simulations that predict the tsunami wave height and arrival time. We demonstrate the feasibility of this approach in southern California by implementing it in a simulated real-time environment and applying to a hypothetical M 7.7 Dip-slip earthquake scenario on the Pitas Point fault. Synthetic seismograms are produced using the SCEC broadband platform based on the 3D SoCal community velocity model. We use S-wave instead of P-wave to avoid S-minus-P travel times shorter than rupture duration. Two clusters of strong-motion stations near Bakersfield and Palmdale are selected to determine the back-azimuth of the strongest high-frequency radiations (0.5-1 Hz). The back-azimuths of the two clusters are then intersected to locate the source positions. The rupture area is then approximated by enclosing these BP radiators with an ellipse or a polygon. Our preliminary results show that the extent of 1294 square kilometers rupture area and magnitude of 7.6 obtained by this approach is reasonably close to the 1849 square kilometers and 7.7 of the input model. The average slip of 7.3 m is then estimated according to the scaling relation between slip and rupture area, which is close to the actual average dislocation amount, 8.3 m. Finally, a tsunami simulation is conducted to assess the wave height and arrival time. The errors of -3 to +9 s in arrival time and 0.4 m in wave amplitude are reasonably small for early warning purpose. The blind zone for early warning is the region north of the outcrop of Pitas Point faults and has a scale close to the length of the fault, 43 km. The warning time is above 15 min in the nearshore region west of Cojo Bay Beach and south of Oxnard.

  7. Interactive Mechanisms of Sliding-Surface Bearings.

    DTIC Science & Technology

    1983-08-01

    lower, upper) bearing surface V Three-dimensional gradient operator ix Two-dimensional surface gradient operator ( ),. Pertaining to the bearing surface...thermal gradients . The tilt-pad feature required the pad inclination to be determined by the condition of moment equilibrium about the pivot point. This...into the computation of pressure and shear in a fluid film. Incipience Point of Film Rupture On page 93 of Appendix A, pressure gradient and pressure of

  8. [A comparative study on repair of acute Achilles tendon rupture using three operating techniques].

    PubMed

    Wang, Ting; Mei, Guohua; Shi, Zhongmin; Chai, Yimin; Zhang, Changqing; Hou, Chunlin

    2012-07-01

    To compare the effectiveness of the 3 methods (traditional open Achilles tendon anastomosis, minimally invasive percutaneous Achilles tendon anastomosis, and Achilles tendon anastomosis limited incision) for acute Achilles tendon rupture so as to provide a reference for the choice of clinical treatment plans. Between December 2007 and March 2010, 69 cases of acute Achilles tendon rupture were treated by traditional open Achilles tendon anastomosis (traditional group, n=23), by minimally invasive percutaneous Achilles tendon anastomosis (minimally invasive group, n=23), and by Achilles tendon anastomosis limited incision (limited incision group, n=23). There was no significant difference in gender, age, mechanism of injury, and American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score between 3 groups (P > 0.05). Minimally invasive group and limited incision group were significantly better than traditional group in hospitalization days and blood loss (P < 0.01). Incision infection occurred in 2 cases of traditional group, and healing of incision by first intention was achieved in all patients of the other 2 groups, showing significant difference in the complication rate (P < 0.05). Re-rupture of Achilles tendon occurred in 1 case (4.3%) of minimally invasive group and limited incision group respectively; no re-rupture was found in traditional group (0), showing significant difference when compared with the other 2 groups (P < 0.05). All cases were followed up 12-18 months with an average of 14.9 months. The function of the joint was restored. The AOFAS score was more than 90 points in 3 groups at 12 months after operation, showing no significant difference among 3 groups (P > 0.05). The above 3 procedures can be used to treat acute Achilles tendon rupture. However, minimally invasive percutaneous Achilles tendon anastomosis and Achilles tendon anastomosis limited incision have the advantages of less invasion, good healing, short hospitalization days, and less postoperative complication, and have the disadvantage of increased risk for re-rupture of Achilles tendon after operations.

  9. Three-dimensional fault framework of the 2014 South Napa Earthquake, San Francisco Bay region, California

    NASA Astrophysics Data System (ADS)

    Graymer, R. W.

    2014-12-01

    Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.

  10. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  11. Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate augmentation.

    PubMed

    Stein, Benjamin E; Stroh, David Alex; Schon, Lew C

    2015-05-01

    Optimal treatment of acute Achilles tendon ruptures remains controversial. Positive results using stem-cell-bearing concentrates have been reported with other soft-tissue repairs, but no studies exist on outcomes of bone marrow aspirate concentrate (BMAC) augmentation in primary Achilles tendon repair. We reviewed patients with sport-related Achilles tendon ruptures treated via open repair augmented with BMAC injection from 2009 to 2011. Data on operative complications, strength, range of motion, rerupture, calf circumference and functional improvement through progressive return to sport and the Achilles tendon Total Rupture Score (ATRS) were analysed. A total of 27 patients (28 tendons) treated with open repair and BMAC injection were identified (mean age 38.3 ± 9.6 years). At mean follow-up of 29.7 ± 6.1 months, there were no reruptures. Walking without a boot was at 1.8 ± 0.7 months, participation in light activity was at 3.4 ± 1.8 months and 92% (25 of 27) of patients returned to their sport at 5.9 ± 1.8 months. Mean ATRS at final follow-up was 91 (range 72-100) points. One case of superficial wound dehiscence healed with local wound care. No soft-tissue masses, bone formation or tumors were observed in the operative extremity. Excellent results, including no re-ruptures and early mobilisation, were observed in this small cohort with open Achilles tendon repair augmented by BMAC. No adverse outcomes of biologic treatment were observed with this protocol. The efficacy of BMAC in the operative repair of acute Achilles tendon ruptures warrants further study. IV - Therapeutic.

  12. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  13. Geometric analysis of ruptured and nonruptured abdominal aortic aneurysms.

    PubMed

    Kimura, Masaru; Hoshina, Katsuyuki; Miyahara, Kazuhiro; Nitta, Jun; Kobayashi, Masaharu; Yamamoto, Sota; Ohshima, Marie

    2018-06-15

    The objective of this study was to use parameters to determine the geometric differences between ruptured abdominal aortic aneurysms (AAAs) and nonruptured AAAs. Computed tomography data of 38 ruptured AAAs and 215 electively repaired (nonruptured) AAAs were collected from multiple institutes. We compared the ruptured AAA group and nonruptured AAA group with 1:1 matching by using the Mahalanobis distance, which was calculated using the patient's age, sex, and AAA diameter. We selected the longitudinal AAA image in multiplanar reconstruction view, placed a hypothetical ellipse on the aneurysm's protruded curve, and placed a circle on the portion connecting the aneurysm and the aorta. We then measured the aspect ratio (the vertical diameter divided by the horizontal diameter) and fillet radius (the radius of arc). The aspect ratio was significantly lower in the ruptured group than in the nonruptured group (2.02 ± 0.53 vs 2.60 ± 1.02; P = .002), as was the fillet radius (0.28 ± 0.18 vs 0.81 ± 0.44; P < .001). Receiver operating characteristic analysis revealed that the area under the curve of the aspect ratio was 0.688, and the optimal cutoff point was 2.23, with sensitivity and specificity of 0.55 and 0.76, respectively. The area under the curve of the fillet radius was 0.933, and the optimal cutoff was 0.347, with sensitivity and specificity of 0.97 and 0.87, respectively. The geometric analysis performed in this study revealed that ruptured AAAs had a smaller fillet radius and smaller aspect ratio than nonruptured AAAs did. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Establishment of borehole observation system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSite Project

    NASA Astrophysics Data System (ADS)

    Ozel, A.; Yalcinkaya, E.; Guralp, C. M.; Tunc, S.; Meral Ozel, N.

    2013-12-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system will be composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station will use the latest update technologies and design ideas to record 'Earth tides' signals to the smallest magnitude -3 events. Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Deploying a borehole system eastern end of the Ganos fault zone may yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture. Keywords: Borehole seismometer; Ganos fault; microearthquakes; western Marmara

  15. Chronic Contained Rupture of an Abdominal Aortic Aneurysm: From Diagnosis to Endovascular Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandini, Roberto, E-mail: marcello.chiocchi@fastwebnet.it; Chiocchi, Marcello; Maresca, Luciano

    2008-07-15

    A male patient, 69 years old, presented with fever, leucocytosis, and persistent low back pain; he also had an abdominal aortic aneurysm (AAA), as previously diagnosed by Doppler UltraSound (US), and was admitted to our hospital. On multislice computed tomography (msCT), a large abdominal mass having no definite border and involving the aorta and both of the psoas muscles was seen. This mass involved the forth-lumbar vertebra with lysis, thus simulating AAA rupture into a paraspinal collection; it was initially considered a paraspinal abscess. After magnetic resonance imaging examination and culture of the fluid aspirated from the mass, no infectivemore » organisms were found; therefore, a diagnosisof chronically contained AAA rupture was made, and an aortic endoprosthesis was subsequently implanted. The patient was discharged with decreased lumbar pain. At 12-month follow-up, no evidence of leakage was observed. To our knowledge, this is the first case of endoprosthesis implantation in a patient, who was a poor candidate for surgical intervention due to renal failure, leucocytosis and high fever, having a chronically contained AAA ruptured simulatingspodilodiscitis abscess. Appropriate diagnosis and therapy resolved potentially crippling pathology and avoided surgical graft-related complications.« less

  16. Umbilical hernia rupture with evisceration of omentum from massive ascites: a case report

    PubMed Central

    2011-01-01

    Introduction The incidence of hernias is increased in patients with alcoholic liver disease with ascites. To the best of our knowledge, this is the first report of an acute rise in intra-abdominal pressure from straining for stool as the cause of a ruptured umbilical hernia. Case presentation An 81-year-old Caucasian man with a history of alcoholic liver disease presented to our emergency department with an erythematous umbilical hernia and clear, yellow discharge from the umbilicus. On straining for stool, after initial clinical assessment, our patient noted a gush of fluid and evisceration of omentum from the umbilical hernia. An urgent laparotomy was performed with excision of the umbilicus and devitalized omentum. Conclusion We report the case of a patient with a history of alcoholic liver disease with ascites. Ascites causes a chronic increase in intra-abdominal pressure. A sudden increase in intra-abdominal pressure, such as coughing, vomiting, gastroscopy or, as in this case, straining for stool can cause rupture of an umbilical hernia. The presence of discoloration, ulceration or a rapid increase in size of the umbilical hernia signals impending rupture and should prompt the physician to reduce the intra-abdominal pressure. PMID:21539740

  17. Evidence for Moho-lower crustal transition depth diking and rifting of the Sierra Nevada microplate

    NASA Astrophysics Data System (ADS)

    Smith, Kenneth D.; Kent, Graham M.; Seggern, David P.; Driscoll, Neal W.; Eisses, Amy

    2016-10-01

    Lithospheric rifting most often initiates in continental extensional settings where "breaking of a plate" may or may not progress to sea floor spreading. Generally, the strength of the lithosphere is greater than the tectonic forces required for rupture (i.e., the "tectonic force paradox"), and it has been proposed that rifting requires basaltic magmatism (e.g., dike emplacement) to reduce the strength and cause failure, except for the case of a thin lithosphere (<30 km thick). Here we isolate two very similar and unprecedented observations of Moho-lower crustal transition dike or fluid injection earthquake swarms under southern Sierra Valley (SV: 2011-2012) and North Lake Tahoe (LT: 2003-2004), California. These planar distributions of seismicity can be interpreted to define the end points, and cover 25% of the length, of an implied 56 km long structure, each striking N45°W and dipping 50°NE. A single event at 30 km depth that locates on the implied dipping feature between the two swarms is further evidence for a single Moho-transition depth structure. We propose that basaltic or fluid emplacement at or near Moho depths weakens the upper mantle lid, facilitating lithospheric rupture of the Sierra Microplate. Similar to the LT sequence, the SV event is also associated with increased upper crustal seismicity. An 27 October 2011, Mw 4.7 earthquake occurred directly above the deep SV sequence at the base of the upper crustal seismogenic zone ( 15 km depth).

  18. Numerical Models of Stopping Ruptures on a Bimaterial Interface

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Ampuero, J.

    2003-12-01

    Using a cross-correlation earthquake relocation technique, Rubin and Gillard (2000) and Rubin (2002) found that the nearest aftershocks of microearthquakes on the San Andreas fault were much more likely (by a ratio of nearly 3:1) to occur to the NW of the mainshock than to the SE. They attributed this asymmetry to the material contrast across the fault and the resulting dynamical reduction in normal stress near the rupture front propagating to the SE (the front moving in the direction of slip of the more compliant medium). Specifically, it was hypothesized that regions of the fault far enough from failure to resist this extra dynamical "kick" would be that much farther from failure once those dynamical stresses decayed. However, analytical (steady-state) models of propagating slip on a bimaterial interface (Weertman, 1980) show that, as with the static stress field, normal stress changes occur only behind the rupture front. The proposed explanation works most simply if the region ahead of the SE rupture front experiences a transient stress favorable for slip. In principal this stress transient could be associated with either rupture growth or arrest. To investigate this further, we ran 2-D numerical models of slip on a bimaterial interface with slip-weakening friction, using the code of Cochard and Rice (2000). The ruptures spontaneously accelerate to the generalized Rayleigh wave speed of the medium, when such exists. During this growth phase, large tensile stresses are indeed restricted to regions of large slip velocity behind the SE-propagating rupture front. Ahead of the rupture front the normal stresses are smaller and compressive. If the rupture front is stopped abruptly, the short-wavelength tensile stress pulse continues to propagate at roughly the same velocity. The above comments also apply in an anti-symmetric sense to the NW rupture front, although there the slip speeds and normal stress changes are lower. If the rupture is stopped by a more gradual reduction in the loading stress, the moving tensile pulse can spawn a decaying slip pulse at the SE front but not the NW. If this slip pulse marks the furthest extent of slip, the resulting static stress field is quite asymmetric even for a symmetric initial stress, lying on the failure envelope at the NW end of the rupture but well below it at the SE end. These results are at least permissive of the explanation proposed by Rubin and Gillard. For weaker slip pulses (due to any of a number of factors contributing to smaller maximum slip speeds), the furthest extent of slip near the SE rupture front can be driven by the stopping phase arriving from the NW end of the crack. Under such conditions the final stress field is more symmetric. We will be running models using heterogeneous stress fields to explore these questions further, and hope to use rate-and-state friction to investigate the observed temporal decay of the aftershock asymmetry.

  19. Pressure suppression containment system for boiling water reactor

    DOEpatents

    Gluntz, D.M.; Nesbitt, L.B.

    1997-01-21

    A system is disclosed for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs. 3 figs.

  20. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  1. Finite Element Creep Damage Analyses and Life Prediction of P91 Pipe Containing Local Wall Thinning Defect

    NASA Astrophysics Data System (ADS)

    Xue, Jilin; Zhou, Changyu

    2016-03-01

    Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.

  2. Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Allen, A. A.; Chen, X.

    2017-12-01

    The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes within the array.

  3. Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964

    USGS Publications Warehouse

    Bufe, C.G.

    2004-01-01

    Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise rotation of the block south of the Denali fault. These observations suggest that the asperity and its recurrent rupture in great earthquakes as in 1964 may have influenced the tectonics of the region during the later stages of evolution of the Denali strike-slip fault system.

  4. 3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah

    NASA Astrophysics Data System (ADS)

    Withers, K.; Moschetti, M. P.

    2017-12-01

    We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.

  5. Holocene behavior of the Brigham City segment: implications for forecasting the next large-magnitude earthquake on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Personius, Stephen F.; DuRoss, Christopher B.; Crone, Anthony J.

    2012-01-01

    The Brigham City segment (BCS), the northernmost Holocene‐active segment of the Wasatch fault zone (WFZ), is considered a likely location for the next big earthquake in northern Utah. We refine the timing of the last four surface‐rupturing (~Mw 7) earthquakes at several sites near Brigham City (BE1, 2430±250; BE2, 3490±180; BE3, 4510±530; and BE4, 5610±650 cal yr B.P.) and calculate mean recurrence intervals (1060–1500  yr) that are greatly exceeded by the elapsed time (~2500  yr) since the most recent surface‐rupturing earthquake (MRE). An additional rupture observed at the Pearsons Canyon site (PC1, 1240±50 cal yr B.P.) near the southern segment boundary is probably spillover rupture from a large earthquake on the adjacent Weber segment. Our seismic moment calculations show that the PC1 rupture reduced accumulated moment on the BCS about 22%, a value that may have been enough to postpone the next large earthquake. However, our calculations suggest that the segment currently has accumulated more than twice the moment accumulated in the three previous earthquake cycles, so we suspect that additional interactions with the adjacent Weber segment contributed to the long elapse time since the MRE on the BCS. Our moment calculations indicate that the next earthquake is not only overdue, but could be larger than the previous four earthquakes. Displacement data show higher rates of latest Quaternary slip (~1.3  mm/yr) along the southern two‐thirds of the segment. The northern third likely has experienced fewer or smaller ruptures, which suggests to us that most earthquakes initiate at the southern segment boundary.

  6. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, A. A.; Madden, E. H.; Ulrich, T.; Wollherr, S.

    2016-12-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  7. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  8. Clinical features and prognosis of eyeball rupture: eye injury vitrectomy study.

    PubMed

    Feng, Kang; Wang, Chang-guan; Hu, Yun-tao; Yao, Yi; Jiang, Yan-rong; Shen, Li-jun; Pang, Xiu-qin; Nie, Hong-ping; Ma, Zhi-zhong

    2015-01-01

    The objective of the study was to delineate clinical characteristics, surgical interventions, anatomic and visual outcomes of ruptured eye balls after trauma, and establish the prognostic indicators, which can assist clinicians in making correct surgical decisions during globe exploration for ruptured eyes. The study design used was a multicentre prospective cohort study, including six university-affiliated tertiary hospitals. We selected 242 cases of ruptured globe from the Eye Injury Vitrectomy Study database, until 31 December 2012. All selected cases underwent vitreoretinal surgery, enucleation or evisceration, and were followed up for at least 6 months. Age, visual acuity (VA) after injury, ocular trauma zone, time to surgery, corneal laceration, scleral wound, extrusion of iris or lens, ciliary body damage, intraocular haemorrhage, retinal detachment or defect, proliferative vitreoretinopathy (PVR) and choroidal damage were the predisposing factors evaluated by logistic regression models. We compared the pre-surgical indicators between cases of anatomically restored eyes with VA of 4/200 or better, or eyes with initial no light perception restored light perception or better, and cases of VA worse than 4/200, silicone oil-sustained eyes, phthisis or enucleation. Nearly 40% of cases with ruptured globe were anatomically restored through vitreoretinal surgery. The closed-funnel retinal detachment or extensive retinal loss (odds ratio [OR] = 3.38, P = 0.026), PVR-C (OR = 3.45, P = 0.008), and choroidal damage (OR = 4.20, P = 0.004) were correlated with poor outcomes. The closed-funnel retinal detachment or extensive retinal loss, PVR-C, and choroidal damage are the risk factors for unfavourable outcomes in globe ruptures. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  9. Prevalence and relevance of antibodies to type-I and -II collagen in synovial fluid of dogs with cranial cruciate ligament damage.

    PubMed

    de Rooster, H; Cox, E; van Bree, H

    2000-11-01

    To measure and compare synovial fluid antibody titers to type-I and -II collagen in stifle joints with instability caused by complete or partial cranial cruciate ligament (CCL) rupture and joints with osteoarthrosis secondary to other pathologic changes in dogs. 82 dogs with diseased stifle joints. Synovial fluid samples were collected from 7 dogs with clinically normal stifles (control group) and 82 dogs with diseased joints (50 stifle joints with complete rupture of the CCL, 20 with partial damage of the CCL, and 12 joints with radiographic signs of osteoarthritis secondary to other arthropathies). Synovial fluid samples were tested for autoantibodies to type-I and -II collagen by an ELISA. In dogs with complete and partial CCL rupture, synovial fluid antibody titers to type-I and -II collagen were significantly increased, compared with control dogs. Forty-eight percent (24/50) of samples from dogs with complete CCL rupture and 35% (7/20) of samples from dogs with partial CCL rupture had antibody titers to type-I collagen that were greater than the mean plus 2 standard deviations of the control group titers. Synovial fluid antibody titers to type-II collagen were high in 40% of the dogs with partial or (8/20) complete (20/50) CCL rupture. Dogs with osteoarthrosis secondary to other pathologic changes had significantly increased synovial fluid antibodies to type-I and -II collagen, compared with control dogs. Increases in autoantibodies to collagen in synovial fluid are not specific for the type of joint disorder. It is unlikely that the anticollagen antibodies play an active role in the initiation of weakening of the CCL.

  10. Similar microearthquakes observed in western Nagano, Japan, and implications for rupture mechanics

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Niu, Fenglin; Silver, Paul G.; Horiuchi, Shigeki; Takai, Kaori; Iio, Yoshihisa; Ito, Hisao

    2007-04-01

    We have applied a waveform cross correlation technique to study the similarity and the repeatability of more than 21,000 microearthquakes (0 < M < 4.5) in the aftershock zone of the 1984 western Nagano earthquake in central Japan. We find that the seismicity in this particular intraplate fault essentially consists of no repeating earthquakes that occurred on the same patch of the fault in a quasiperiodic manner in the study period between 1995 and 2001. On the other hand, we identify a total of 278 doublets and 62 multiplets (807 events) that occurred consecutively within seconds to days. On the basis of the relative arrival times of the P and S waves, we have obtained precise relative locations of these consecutive events with an error between several meters to a few tens of meters. There is a clear lower bound on the distances measured between these consecutive events and the lower bound appears to be proportional to the size of the first events. This feature is consistent with what Rubin and Gillard [2000] have observed near the San Juan Bautista section of the San Andreas Fault. Shear stress increases at the edge of an earthquake rupture, and the rupture edge becomes the most likely place where the second events are initiated. The observed minimum distance thus reflects the rupture size of the first events. The minimum distance corresponds to the rupture size calculated from a circular fault model with a stress drop of 10 MPa. We found that using different time windows results in a slight difference in the delay time estimates and the subsequent projection locations, which may reflect the finite size nature of earthquake ruptures.

  11. Enhanced tendon-to-bone repair through adhesive films.

    PubMed

    Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros

    2018-04-01

    Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold. Experiments using idealized and clinically-relevant repairs validated these models. This work demonstrates an opportunity to dramatically improve tendon-to-bone repair strength using adhesive films with appropriate material properties. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  13. Effect of Hf-Rich Particles on the Creep Life of a High-strength Nial Single Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Raj, S. V.; Darolia, R.

    1995-01-01

    Additions of small amounts of Hf and Si to NiAl single crystals significantly improve their high-temperature strength and creep properties. However, if large Hf-rich dendritic particles formed during casting of the alloyed single crystals are not dissolved completely during homogenization heat treatment, a large variation in creep rupture life can occur. This behavior, observed in five samples of a Hf containing NiAl single crystal alloy tested at 1144 K under an initial stress of 241.4 MPa, is described in detail highlighting the role of interdendritic Hf-rich particles in limiting creep rupture life.

  14. A case report of pancreatic transection by blunt abdominal trauma.

    PubMed

    Braşoveanu, V; Bălescu, I; Anghel, C; Barbu, I; Ionescu, M; Bacalbaşa, N

    2014-01-01

    Posttraumatic pancreatic rupture is associated with high morbidity and mortality. Various management strategies are described, but due to the relative rarity of this pathology no standards exist. We reported a 21 years old male with post traumatic complete rupture of the pancreatic isthmus,devascularization lesion of descending duodenum, right renal artery posttraumatic thrombosis and left lobe of the liver laceration. Laparotomy for hemostasis was initially performed in a different hospital and the patient was then referred to us.Pancreaticoduodenectomy and right nephrectomy were performed. Postoperatively the patient had a pancreaticojejunal anastomosis fistula spontaneously resolved at 45 days.Pancreaticoduodenectomy can in selected cases be a solution in pancreatic trauma. Celsius.

  15. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae.

    PubMed

    Toma, Milan; Bloodworth, Charles H; Pierce, Eric L; Einstein, Daniel R; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2017-03-01

    The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.

  16. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae

    PubMed Central

    Toma, Milan; Bloodworth, Charles H.; Pierce, Eric L.; Einstein, Daniel R.; Cochran, Richard P.; Yoganathan, Ajit P.; Kunzelman, Karyn S.

    2016-01-01

    The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations. PMID:27624659

  17. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  18. Seismic Hazard Assessment of Tehran Based on Arias Intensity

    NASA Astrophysics Data System (ADS)

    Amiri, G. Ghodrati; Mahmoodi, H.; Amrei, S. A. Razavian

    2008-07-01

    In this paper probabilistic seismic hazard assessment of Tehran for Arias intensity parameter is done. Tehran is capital and most populated city of Iran. From economical, political and social points of view, Tehran is the most significant city of Iran. Since in the previous centuries, catastrophic earthquakes have occurred in Tehran and its vicinity, probabilistic seismic hazard assessment of this city for Arias intensity parameter is useful. Iso-intensity contour lines maps of Tehran on the basis of different attenuation relationships for different earthquake periods are plotted. Maps of iso-intensity points in the Tehran region are presented using proportional attenuation relationships for rock and soil beds for 2 hazard levels of 10% and 2% in 50 years. Seismicity parameters on the basis of historical and instrumental earthquakes for a time period that initiate from 4th century BC and ends in the present time are calculated using Tow methods. For calculation of seismicity parameters, the earthquake catalogue with a radius of 200 km around Tehran has been used. SEISRISKIII Software has been employed. Effects of different parameters such as seismicity parameters, length of fault rupture relationships and attenuation relationships are considered using Logic Tree.

  19. Seismic Hazard Assessment of Tehran Based on Arias Intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, G. Ghodrati; Mahmoodi, H.; Amrei, S. A. Razavian

    2008-07-08

    In this paper probabilistic seismic hazard assessment of Tehran for Arias intensity parameter is done. Tehran is capital and most populated city of Iran. From economical, political and social points of view, Tehran is the most significant city of Iran. Since in the previous centuries, catastrophic earthquakes have occurred in Tehran and its vicinity, probabilistic seismic hazard assessment of this city for Arias intensity parameter is useful. Iso-intensity contour lines maps of Tehran on the basis of different attenuation relationships for different earthquake periods are plotted. Maps of iso-intensity points in the Tehran region are presented using proportional attenuation relationshipsmore » for rock and soil beds for 2 hazard levels of 10% and 2% in 50 years. Seismicity parameters on the basis of historical and instrumental earthquakes for a time period that initiate from 4th century BC and ends in the present time are calculated using Tow methods. For calculation of seismicity parameters, the earthquake catalogue with a radius of 200 km around Tehran has been used. SEISRISKIII Software has been employed. Effects of different parameters such as seismicity parameters, length of fault rupture relationships and attenuation relationships are considered using Logic Tree.« less

  20. Maximum magnitude estimations of induced earthquakes at Paradox Valley, Colorado, from cumulative injection volume and geometry of seismicity clusters

    NASA Astrophysics Data System (ADS)

    Yeck, William L.; Block, Lisa V.; Wood, Christopher K.; King, Vanessa M.

    2015-01-01

    The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly MW 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods overpredict maximum magnitude for this area or that long time delays are required for sufficient pore-pressure diffusion to occur to cause rupture along an entire fault segment. We note that earthquake clusters can initiate and grow rapidly over the course of 1 or 2 yr, thus making it difficult to predict maximum earthquake magnitudes far into the future. The abrupt onset of seismicity with injection indicates that pore-pressure increases near the well have been sufficient to trigger earthquakes under pre-existing tectonic stresses. However, we do not observe remote triggering from large teleseismic earthquakes, which suggests that the stress perturbations generated from those events are too small to trigger rupture, even with the increased pore pressures.

  1. Intraprocedural left ventricular free wall rupture diagnosed by left ventriculogram in a patient with infero-posterior myocardial infarction and severe aortic stenosis.

    PubMed

    Konishi, Takao; Funayama, Naohiro; Yamamoto, Tadashi; Nishihara, Hiroshi; Hotta, Daisuke; Kikuchi, Kenjiro; Yokoyama, Hideo; Ohori, Katsumi

    2016-06-06

    Left ventricular wall rupture remains a major lethal complication of acute myocardial infarction and hypertension is a well-known predisposing factor of cardiac rupture after myocardial infarction. An 87-year-old man was admitted to our hospital, diagnosed as acute myocardial infarction (AMI). The echocardiogram showed 0.67-cm(2) aortic valve, consistent with severe aortic stenosis (AS). A coronary angiography showed a chronic occlusion of the proximal left circumflex artery and a 99 % stenosis and thrombus in the mid right coronary artery. During percutaneous angioplasty of the latter, transient hypotension and bradycardia developed at the time of balloon inflation, and low doses of noradrenaline and etilefrine were intravenously administered as needed. The patient suddenly lost consciousness and developed electro-mechanical dissociation. Cardio-pulmonary resuscitation followed by insertion of an intra-aortic balloon pump (IABP) and percutaneous cardiopulmonary support were initiated. The echocardiogram revealed moderate pericardial effusion, though the site of free wall rupture was not distinctly visible. A left ventriculogram clearly showed an infero-posterior apical wall rupture. Surgical treatment was withheld because of the interim development of brain death. In this patient, who presented with severe AS, the administration of catecholamine to stabilize the blood pressure probably increased the intraventricular pressures considerably despite apparently normal measurements of the central aortic pressure. IABP, temporary pacemaker, or both are recommended instead of intravenous catecholamines for patients with AMI complicated with significant AS to stabilize hemodynamic function during angioplasty.

  2. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric

    2013-07-01

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned towards conditions usually encountered in the Marcellus shale play in the Northeastern US at an approximate depth of 1500 m (~;;4,500 feet). Our modeling simulations indicate that when faults are present, micro-seismic events are possible, the magnitude of which is somewhat larger than the one associated with micro-seismic events originating from regular hydraulic fracturing because of the larger surface area that is available for rupture. The results of our simulations indicatedmore » fault rupture lengths of about 10 to 20 m, which, in rare cases can extend to over 100 m, depending on the fault permeability, the in situ stress field, and the fault strength properties. In addition to a single event rupture length of 10 to 20 m, repeated events and aseismic slip amounted to a total rupture length of 50 m, along with a shear offset displacement of less than 0.01 m. This indicates that the possibility of hydraulically induced fractures at great depth (thousands of meters) causing activation of faults and creation of a new flow path that can reach shallow groundwater resources (or even the surface) is remote. The expected low permeability of faults in producible shale is clearly a limiting factor for the possible rupture length and seismic magnitude. In fact, for a fault that is initially nearly-impermeable, the only possibility of larger fault slip event would be opening by hydraulic fracturing; this would allow pressure to penetrate the matrix along the fault and to reduce the frictional strength over a sufficiently large fault surface patch. However, our simulation results show that if the fault is initially impermeable, hydraulic fracturing along the fault results in numerous small micro-seismic events along with the propagation, effectively preventing larger events from occurring. Nevertheless, care should be taken with continuous monitoring of induced seismicity during the entire injection process to detect any runaway fracturing along faults.« less

  3. Rupture history of the 2011 M 9 Tohoku Japan earthquake determined from strong‐motion and high‐rate GPS recordings: Subevents radiating energy in different frequency bands

    USGS Publications Warehouse

    Frankel, Arthur

    2013-01-01

    Strong‐motion records from KiK‐net and K‐NET, along with 1 sample/s Global Positioning System (GPS) records from GEONET, were analyzed to determine the location, timing, and slip of subevents of the M 9 2011 Tohoku earthquake. Timing of arrivals on stations along the coast shows that the first subevent was located closer to the coast than subevent (2), which produced the largest slip. A waveform inversion of data from 0 to 0.2 Hz indicates that the first subevent primarily ruptured down‐dip and north of the hypocenter and had an M of 8.5. The areas of this subevent that generated the low (<0.2  Hz) and high (>0.2  Hz) frequency energy are located in the same vicinity. The inversion result for the second subevent (M 9.0) has large slip on the shallow part of the fault with peak slip of about 65 m above about 25 km depth. This slip generated the tsunami. The preferred inversion has initiation of subevent 2 on the shallow portion of the fault so that rupture proceeded down‐dip and mainly to the south. Subevent 2 started about 35 s after subevent 1, which allows for the possibility of dynamic triggering from subevent 1. The slip model predicts displacements comparable to those found from ocean‐bottom transducers near the epicenter. At frequencies that most affect tall buildings (0.1–0.5 Hz), there is a strong pulse (subevent 3) in the strong‐motion records that arrives after the near‐field ramp from subevent 2. High‐frequency subevent 3 was located down‐dip and south of the high‐slip portion of subevent 2 and was initiated as rupture from subevent 2 proceeded down‐dip. The compact pulse for subevent 3 is modeled with an M 8.0 source in a 75 by 30 km area that ruptured down‐dip and to the south with a high slip velocity, indicating high stress drop.

  4. Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh; Anthony, Christopher; Doshi, Pankaj; Harris, Michael T.; Basaran, Osman A.

    2016-09-01

    Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance each other while capillary force remains negligible, in accordance with the results of Vaynblat, Lister, and Witelski.

  5. Large-magnitude Dextral Slip on the Wairarapa Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Little, T.

    2004-12-01

    Dextral slip associated with an 1855 Ms 8.0+ event on the Wairarapa fault near Wellington, New Zealand was reported to be 12+/-1 m along a rupture length of at least 148km (Grapes, 1999), one of the largest single-event strike-slip offsets documented worldwide. Initial results from a new study involving detailed neotectonic mapping and microtopographic surveys of offset landforms (including many beheaded, inactive streams) strongly suggest that dextral slip was as much as 50% greater than previously measured. 1855 surface ruptures were mapped with certainty where a linear scarp characterized by steep slopes (30-90°) and exposed alluvium cuts across active or inactive stream channels. The fifteen individual strands comprising the Wairarapa fault zone that we have mapped to date are 1200+/-700 m long and typically left-stepping. Slip in the stepover zones between these strands is distributed amongst two or more ruptures and intervening anticlines, a situation that causes along-strike variations in slip and which locally complicates the interpretation of 1855 displacement. We focused on seven of the best-preserved sites where low-discharge streams are disrupted by the fault zone, including five that had been previously attributed by Grapes (1999) to coseismic slip during the 1855 earthquake. One of these (Pigeon Bush) includes two sequentially displaced, now beheaded linear stream channels, oriented perpendicular to the fault scarp, that preserve distinct offsets with respect to a single deeply incised, originally contiguous gorge on the opposite side of the fault. To quantify the minimum fault displacements at each site, we made 1:500 scale topographic maps employing n = 2,000-10,000 points collected with GPS and laser instrumentation. Measured dextral slip values, here attributed to the 1855 earthquake, include 16.4+/-1.0m (Hinaburn), 12.9+/-2.0m (Cross Creek), 17.2+/-2.5m (Lake Meadows), 18.7+/-1.0m (Pigeon Bush), 13.0+/-1.5m (Pigeon Bush 2), 15.1+/-1.0m (Pigeon Bush 3), and 16.0+/-1.5m (Tauwharenikau). Reverse slip at these localities ranged from 0.5 to 3.8+/-0.5m. Tape measurement of two other offset streams in dense bush yielded two further dextral slip measurements of 13.5+/-0.5m and 17.5+/-1.5m. AMS radiocarbon dating was undertaken at two sites to test whether slip occurred during one rupture event in 1855, or possibly could have accrued as a result of two or more earthquake ruptures. At the classic Pigeon Bush site, the youngest, most proximal beheaded stream channel is partially infilled by fluvial conglomerate with abundant charcoal. Two samples at depths of 15cm and 154cm yield calibrated dates of AD 1364+/-63 and AD 1355+/-60 (all dates are 2 sigma intervals). The stream must have been offset and abandoned after this time, and with no historical record of any other local earthquake, the 18.7+/-1.0m offset at Pigeon Bush is inferred to have occurred entirely in 1855. At Tauwharenikau, an abandoned channel is underlain by gravel on the upthrown side, but this gravel is overlain by 30 cm of swamp deposits on the downthrown side. We interpret the swamp deposits to reflect post-rupture incursion of groundwater into the down-thrown block. Basal swamp grasses yield calibrated dates of AD 1709+/-26 (27% probability) or 1869+/-60 (71% probability) for one sample and AD 1723+/-49 (34% probability) or 1871+/-70 (64% probability) for another sample, evidence that the 16.0+/-1.5m of slip at Tauwharenikau occurred entirely in 1855. These initial results strongly support the assertion that the southern Wairarapa fault experienced the largest single-event strike-slip offset yet documented worldwide.

  6. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji

    2013-04-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.

  7. Hazard Forecasting by MRI: A Prediction Algorithm of the First Kind

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.

    2003-12-01

    Seismic gaps do not tell us when and where the next earthquake is due. We present new results on limited earthquake hazard prediction at plate boundaries. Our algorithm quantifies earthquake hazard in seismic gaps. The prediction window found for M7 is on the order of 50 km by 20 years (Lomnitz, 1996a). The earth is unstable with respect to small perturbations of the initial conditions. A prediction of the first kind is an estimate of the time evolution of a complex system with fixed boundary conditions in response to changes in the initial state, for example, weather prediction (Edward Lorenz, 1975; Hasselmann, 2002). We use the catalog of large world earthquakes as a proxy for the initial conditions. The MRI algorithm simulates the response of the system to updating the catalog. After a local stress transient dP the entropy decays as (grad dP)2 due to transient flows directed toward the epicenter. Healing is the thermodynamic process which resets the state of stress. It proceeds as a power law from the rupture boundary inwards, as in a wound. The half-life of a rupture is defined as the healing time which shrinks the size of a scar by half. Healed segments of plate boundary can rupture again. From observations in Chile, Mexico and Japan we find that the half-life of a seismic rupture is about 20 years, in agreement with seismic gap observations. The moment ratio MR is defined as the contrast between the cumulative regional moment release and the local moment deficiency at time t along the plate boundary. The procedure is called MRI. The findings: (1) MRI works; (2) major earthquakes match prominent peaks in the MRI graph; (3) important events (Central Chile 1985; Mexico 1985; Kobe 1995) match MRI peaks which began to emerge 10 to 20 years before the earthquake; (4) The emergence of peaks in MRI depends on earlier ruptures that occurred, not adjacent to but at 10 to 20 fault lengths from the epicentral region, in agreement with triggering effects. The hazard enhancement in space is shaped like a Mexican hat function. The central part is the aftershock region, separated by a ring of quiescence from an outer region of increased rupture probability(Lomnitz, 1996b). In conclusion, we may speak of seismic weather prediction using MRI. Hasselmann, K. (2002). Is climate predictable? In The Science of Disasters, A. Bunde, J. Kropp and H.J. Schellnhuber, eds. (Springer, Berlin, 140-169). Lomnitz, C. (1996a). Predicting earthquakes with the MRI algorithm, Seismol. Res. Letters, 67, 40-46. Lomnitz, C. (1996b). Search of a worldwide catalog for earthquakes triggered at intermediate distances, Bull. Seismol. Soc. Am., 86, 293-298. Lorenz, E. (1975). Climate predictability: The physical basis of climate and climate modeling. World Meteorol. Org., Geneva, Report 16, 132.

  8. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Soppet, W.K.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated tomore » evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep after 50-60% of the rupture life, irrespective of test temperature in the range of 750-950 C. The results showed that the stress dependence of the creep rate followed a power law for both base alloy and weldments. The data also showed that the stress exponent for creep is the same and one can infer that the same mechanism is operative in both base metal and weldments in the temperature range of the current study. SEM fractography analysis indicated that both base metal and weldment showed combined fracture modes consisting of dimple rupture and intergranular cracking. Intergranular cracking was more evident in the weldment specimens, which is consistent with the observation of lower creep ductility in the weldment than in the base metal.« less

  9. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  10. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  11. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  12. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  13. Fault Rupture Model of the 2016 Gyeongju, South Korea, Earthquake and Its Implication for the Underground Fault System

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Song, Seok Goo

    2018-03-01

    The 2016 Gyeongju earthquake (ML 5.8) was the largest instrumentally recorded inland event in South Korea. It occurred in the southeast of the Korean Peninsula and was preceded by a large ML 5.1 foreshock. The aftershock seismicity data indicate that these earthquakes occurred on two closely collocated parallel faults that are oblique to the surface trace of the Yangsan fault. We investigate the rupture properties of these earthquakes using finite-fault slip inversion analyses. The obtained models indicate that the ruptures propagated NNE-ward and SSW-ward for the main shock and the large foreshock, respectively. This indicates that these earthquakes occurred on right-step faults and were initiated around a fault jog. The stress drops were up to 62 and 43 MPa for the main shock and the largest foreshock, respectively. These high stress drops imply high strength excess, which may be overcome by the stress concentration around the fault jog.

  14. Effect of casting geometry on mechanical properties of two nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.

    1976-01-01

    An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.

  15. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle

    PubMed Central

    Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-01-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055

  16. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    PubMed

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  17. Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi

    2017-05-01

    The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.

  18. Video-assisted minithoracotomy for blunt diaphragmatic rupture presenting as a delayed hemothorax.

    PubMed

    Ota, Hideki; Kawai, Hideki; Matsuo, Tsubasa

    2014-01-01

    Diaphragmatic ruptures after blunt trauma are rare life-threatening conditions. Most of them occur on the left-sided hemidiaphragm with herniation or associated organ injuries after a motor vehicle accident. We present an unusual case of blunt diaphragmatic rupture resulting in a delayed hemothorax. A 62-year-old man presented with acute dyspnea that initiated while straining to pass stool. He had a bruise on the lower back region of his right thorax after a slip-and-fall accident 7 days previously. Chest computed tomographic scans revealed a right-sided hemothorax without any evidence of herniation or associated organ injuries. Emergency surgery was performed through a video-assisted minithoracotomy. During surgery, we identified a diaphragmatic laceration with a severed blood vessel originating from the right superior phrenic artery. The lesion was repaired with interrupted horizontal mattress sutures. The total amount of bleeding was approximately 2000 mL. The patient had an uneventful recovery with no further bleeding episodes.

  19. Understanding dynamic friction through spontaneously evolving laboratory earthquakes

    PubMed Central

    Rubino, V.; Rosakis, A. J.; Lapusta, N.

    2017-01-01

    Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876

  20. Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Wesnousky, S.

    2010-12-01

    For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large earthquakes relative to the depth of the seismogenic base. We utilized time series data of aftershock depths for a number of large strike-slip earthquakes, generating aftershock time vs. depth histograms to investigate the temporal variation in depth distribution. Based on hypocenter depth of small earthquakes along the Landers fault (causing the 1992 M7.3 Landers earthquake), we identified the base of the seismogenic layer at ~10km. Aftershocks that occurred only days after the Landers earthquake had maximum depths of ~18km, suggesting that rupture of the main shock extended this far down and therefore went well below the base of the seismogenic layer. Maximum aftershock depth then decayed roughly logarithmically, reaching the previous value of ~10km after about 5.5years. We argue that these observations are a logical consequence of the visco-elastic rheology of crustal rocks: Coseismically highly increased strains elevate the crustal stiffness, temporarily lowering the base of the seismogenic layer and permitting initiation of slip instabilities at depths that are otherwise characterized by viscous behavior. Extrapolation from small to large earthquakes is therefore permitted. No additional stress drop or rupture mechanism is required to explain the data.

  1. Uncertainty Analyses for Back Projection Methods

    NASA Astrophysics Data System (ADS)

    Zeng, H.; Wei, S.; Wu, W.

    2017-12-01

    So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.

  2. Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution

    NASA Astrophysics Data System (ADS)

    Jeandet, L.; Steer, P.; Lague, D.; Davy, P.

    2017-12-01

    It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size distribution.

  3. Low 25-Hydroxyvitamin D and Myofascial Pain: Association of Cancer, Colon Polyps, and Tendon Rupture.

    PubMed

    Hightower, Jane M; Dalessandri, Kathie M; Pope, Karl; Hernández, Germán T

    2017-08-01

    Myofascial pain that has been associated with cancer and increased risk of morbidity and mortality in cancer patients is intrinsically associated with low magnesium and low 25-hydroxyvitamin D (25(OH)D). Therefore, this physical finding was used as a clinical diagnostic proxy. The objective of this study was to assess the association and prevalence of disease in individuals with myofascial pain and low 25(OH)D in a county with low magnesium in the drinking water. This is a retrospective cross-sectional study of a chart review of 269 subjects to assess subjects presenting with myofascial pain (assessed by tender trigger points) and 25(OH)D concentrations below 30 ng/mL or a history of 25(OH)D deficiency compared to those without these exposures. The association between the exposure of low 25(OH)D levels and myofascial pain was compared to all cancers, colon polyps, and tendon ruptures. The odds of having cancer with the combined exposures was 10.14 times the odds of not having either exposure (95% confidence interval [CI], 5.08, 20.25, p < 0.001). For adenomatous colon polyps, the odds ratio (OR) was 7.24 (95% CI, 3.83, 13.69, p < 0.001), and for tendon rupture, the OR was 8.65 (95% CI, 3.76, 19.94, p < 0.001). Of 80 subjects who had both myofascial pain and 25(OH)D less than 30 ng/mL, 74 were tested for red blood cell (RBC) magnesium. Half of those subjects had RBC magnesium concentrations < 4.6 mg/dL, and 23% had levels below the reference range (4.0-6.4 mg/dL). Myofascial pain as assessed by tender trigger points and 25(OH)D deficiency showed a significant association with cancer, adenomatous colon polyps, and tendon rupture. Further studies to verify these results are needed, especially in areas where there is low magnesium in the drinking water.

  4. Variability of Slip Behavior in Simulations of Dynamic Rupture Interaction With Stronger Fault Patches Over Long-Term Deformation Histories

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Liu, Y.

    2007-12-01

    Heterogeneity in fault properties can have significant effect on dynamic rupture propagation and aseismic slip. It is often assumed that a fixed heterogeneity would have similar effect on fault slip throughout the slip history. We investigate dynamic rupture interaction with a fault patch of higher normal stress over several earthquake cycles in a three-dimensional model. We find that the influence of the heterogeneity on dynamic events has significant variation and depends on prior slip history. We consider a planar strike-slip fault governed by rate and state friction and driven by slow tectonic loading on deeper extension of the fault. The 30 km by 12 km velocity-weakening region, which is potentially seismogenic, is surrounded by steady-state velocity-strengthening region. The normal stress is constant over the fault, except in a circular patch of 2 km in diameter located in the seismogenic region, where normal stress is higher than on the rest of the fault. Our simulations employ the methodology developed by Lapusta and Liu (AGU, 2006), which is able to resolve both dynamic and quasi-static stages of spontaneous slip accumulation in a single computational procedure. The initial shear stress is constant on the fault, except in a small area where it is higher and where the first large dynamic event initiates. For patches with 20%, 40%, 60% higher normal stress, the first event has significant dynamic interaction with the patch, creating a rupture speed decrease followed by a supershear burst and larger slip around the patch. Hence, in the first event, the patch acts as a seismic asperity. For the case of 100% higher stress, the rupture is not able to break the patch in the first event. In subsequent dynamic events, the behavior depends on the strength of heterogeneity. For the patch with 20% higher normal stress, dynamic rupture in subsequent events propagates through the patch without any noticeable perturbation in rupture speed or slip. In particular, supershear propagation and additional slip accumulation around the patch are never repeated in the simulated history of the fault, and the patch stops manifesting itself as a seismic asperity. This is due to higher shear stress that is established at the patch after the first earthquake cycle. For patches with higher normal stress, shear stress redistribution also occurs, but it is less effective. The patches with 40% and 60% higher normal stress continue to affect rupture speed and fault slip in some of subsequent events, although the effect is much diminished with respect to the first event. For example, there are no supershear bursts. The patch with 100% higher normal stress is first broken in the second large event, and it retains significant influence on rupture speed and slip throughout the fault history, occasionally resulting in supershear bursts. Additional slip complexity emerges for patches with 40% and higher normal stress contrast. Since higher normal stress corresponds to a smaller nucleation size, nucleation of some events moves from the rheological transitions (where nucleation occurs in the cases with no stronger patch and with the patch of 20% higher normal stress) to the patches of higher normal stress. The patches nucleate both large, model-spanning, events, and small events that arrest soon after exiting the patch. Hence not every event that originates at the location of a potential seismic asperity is destined to be large, as its subsequent propagation is significantly influenced by the state of stress outside the patch.

  5. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

    NASA Astrophysics Data System (ADS)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping

    2013-03-01

    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  6. The fate of H atom adducts to 3'-uridine monophosphate.

    PubMed

    Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A

    2010-07-29

    The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.

  7. Under Pressure: Intraluminal Filling Pressures of Postpartum Hemorrhage Tamponade Balloons

    PubMed Central

    Antony, Kathleen M.; Racusin, Diana A.; Belfort, Michael A.; Dildy, Gary A.

    2017-01-01

    Objective Uterine tamponade by fluid-filled balloons is now an accepted method of controlling postpartum hemorrhage. Available tamponade balloons vary in design and material, which affects the filling attributes and volume at which they rupture. We aimed to characterize the filling capacity and pressure-volume relationship of various tamponade balloons. Study Design Balloons were filled with water ex vivo. Intraluminal pressure was measured incrementally (every 10 mL for the Foley balloons and every 50 mL for all other balloons). Balloons were filled until they ruptured or until 5,000 mL was reached. Results The Foley balloons had higher intraluminal pressures than the larger-volume balloons. The intraluminal pressure of the Sengstaken-Blakemore tube (gastric balloon) was initially high, but it decreased until shortly before rupture occurred. The Bakri intraluminal pressure steadily increased until rupture occurred at 2,850 mL. The condom catheter, BT-Cath, and ebb all had low intraluminal pressures. Both the BT-Cath and the ebb remained unruptured at 5,000 mL. Conclusion In the setting of acute hemorrhage, expeditious management is critical. Balloons that have a low intraluminal pressure-volume ratio may fill more rapidly, more easily, and to greater volumes. We found that the BT-Cath, the ebb, and the condom catheter all had low intraluminal pressures throughout filling. PMID:28497006

  8. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  9. Anosmia after coiling of ruptured aneurysms: prevalence, prognosis, and risk factors.

    PubMed

    Bor, A Stijntje E; Niemansburg, Sophie L; Wermer, Marieke J H; Rinkel, Gabriel J E

    2009-06-01

    Anosmia occurs frequently in patients with subarachnoid hemorrhage (SAH) from a ruptured aneurysm treated with clipping. We analyzed prevalence, prognosis, and potential risk factors for anosmia after coiling for SAH. We interviewed all patients who resumed independent living after SAH treated with coiling between 1997 and 2007. We assessed by means of logistic regression analyses whether risk of anosmia was influenced by site of the ruptured aneurysm, neurological condition on admission, amount of extravasated blood, hydrocephalus, and treatment for hydrocephalus. Of 197 patients, 35 (18%; 95%CI:12 to 23) experienced anosmia. Anosmia had improved in 23 (66%) of them; in 20 the recovery had been complete after a median period of 6 weeks (SD +/-6.5). Intraventricular hemorrhage was a risk factor for anosmia (OR 2.4; 95%CI:1.0 to 5.9). Anterior aneurysm location (OR 1.1; 95%CI:0.5 to 2.3) and high amount of extravasated blood (OR 0.9; 95%CI:0.4 to 2.1) were not related to anosmia. Anosmia occurs after coiling in 1 of every 6 SAH patients, but has a good prognosis in most patients. The cause of anosmia after coiling for ruptured aneurysms remains elusive; severity of the initial hemorrhage or long lasting hydrocephalus may be contributing factors.

  10. In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture.

    PubMed

    Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; He, Jing; Graves, Martin J; Gillard, Jonathan H

    2013-04-23

    Atherosclerotic plaque is subjected to a repetitive deformation due to arterial pulsatility during each cardiac cycle and damage may be accumulated over a time period causing fibrous cap (FC) fatigue, which may ultimately lead to rupture. In this study, we investigate the fatigue process in human carotid plaques using in vivo carotid magnetic resonance (MR) imaging. Twenty seven patients with atherosclerotic carotid artery disease were included in this study. Multi-sequence, high-resolution MR imaging was performed to depict the plaque structure. Twenty patients were found with ruptured FC or ulceration and 7 without. Modified Paris law was used to govern crack propagation and the propagation direction was perpendicular to the maximum principal stress at the element node located at the vulnerable site. The predicted crack initiations from 20 patients with FC defect all matched with the locations of the in vivo observed FC defect. Crack length increased rapidly with numerical steps. The natural logarithm of fatigue life decreased linearly with the local FC thickness (R(2) = 0.67). Plaques (n=7) without FC defect had a longer fatigue life compared with those with FC defect (p = 0.03). Fatigue process seems to explain the development of cracks in FC, which ultimately lead to plaque rupture.

  11. Studying the Effects of Transparent vs. Opaque Shallow Thrust Faults Using Synthetic P and SH Seismograms

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Aagaard, B. T.; Heaton, T. H.

    2001-12-01

    It has been hypothesized (Brune, 1996) that teleseismic inversions may underestimate the moment of shallow thrust fault earthquakes if energy becomes trapped in the hanging wall of the fault, i.e. if the fault boundary becomes opaque. We address this by creating and analyzing synthetic P and SH seismograms for a variety of friction models. There are a total of five models: (1) crack model (slip weakening) with instantaneous healing (2) crack model without healing (3) crack model with zero sliding friction (4) pulse model (slip and rate weakening) (5) prescribed model (Haskell-like rupture with the same final slip and peak slip-rate as model 4). Models 1-4 are all dynamic models where fault friction laws determine the rupture history. This allows feedback between the ongoing rupture and waves from the beginning of the rupture that hit the surface and reflect downwards. Hence, models 1-4 can exhibit opaque fault characteristics. Model 5, a prescribed rupture, allows for no interaction between the rupture and reflected waves, therefore, it is a transparent fault. We first produce source time functions for the different friction models by rupturing shallow thrust faults in 3-D dynamic finite-element simulations. The source time functions are used as point dislocations in a teleseismic body-wave code. We examine the P and SH waves for different azimuths and epicentral distances. The peak P and S first arrival displacement amplitudes for the crack, crack with healing and pulse models are all very similar. These dynamic models with opaque faults produce smaller peak P and S first arrivals than the prescribed, transparent fault. For example, a fault with strike = 90 degrees, azimuth = 45 degrees has P arrivals smaller by about 30% and S arrivals smaller by about 15%. The only dynamic model that doesn't fit this pattern is the crack model with zero sliding friction. It oscillates around its equilibrium position; therefore, it overshoots and yields an excessively large peak first arrival. In general, it appears that the dynamic, opaque faults have smaller peak teleseismic displacements that would lead to lower moment estimates by a modest amount.

  12. The natural history of splanchnic artery aneurysms and outcomes after operative intervention.

    PubMed

    Corey, Michael R; Ergul, Emel A; Cambria, Richard P; English, Sean J; Patel, Virendra I; Lancaster, R Todd; Kwolek, Christopher J; Conrad, Mark F

    2016-04-01

    Splanchnic artery aneurysms (SAAs) are uncommon, and standards for surveillance and intervention are lacking. The goal of this study was to review our 20-year experience with managing SAAs. The Research Patient Data Registry at the Massachusetts General Hospital was queried, and all patients with SAAs identified by axial imaging from 1994 to 2014 were included. Aneurysms were stratified into two cohorts: those that underwent early intervention (<6 months after lesion discovery) and those that received surveillance. Primary study end points included aneurysm growth or rupture during surveillance and patient 30-day morbidity or mortality after aneurysm repair. There were 264 SAAs identified in 250 patients. In 166 patients, 176 SAAs (66.6%) were placed into the surveillance cohort; 38 SAAs (21.6%) did not have subsequent axial imaging and were considered lost to follow-up. Mean aneurysm size in the surveillance cohort at first imaging study was 16.28 mm (8-41 mm), and mean surveillance time was 36.1 months (2-155 months); 126 SAAs (91.3%) remained stable in size over time, and 8 SAAs (5.8%) required intervention for aneurysm growth after a mean of 24 months. There were no ruptures in the surveillance cohort. There were 88 SAAs (33.3%) repaired early. Mean size of SAAs that were repaired early was 31.1 mm (10-140 mm). For intact SAAs, 30-day morbidity and mortality rates after repair were 13% and 3%, respectively. In the early repair cohort, 13 SAAs (14.7%) were ruptured at presentation. The 30-day morbidity and mortality rates after rupture were 54% and 8%, respectively. Five ruptured SAAs (38%) were anatomically located in the pancreaticoduodenal arcade. On univariate analysis, pancreaticoduodenal aneurysms were strongly associated with rupture (P = .0002). Small SAAs (≤25 mm) are not prone to significant expansion and do not require frequent surveillance imaging. Imaging every 3 years for small SAAs is adequate. Aneurysms of the pancreaticoduodenal arcade and gastroduodenal aneurysms are more likely to rupture and therefore warrant a more aggressive interventional approach. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. Retrospective study of long-term outcome after brain arteriovenous malformation rupture: the RAP score.

    PubMed

    Shotar, Eimad; Debarre, Matthieu; Sourour, Nader-Antoine; Di Maria, Federico; Gabrieli, Joseph; Nouet, Aurélien; Chiras, Jacques; Degos, Vincent; Clarençon, Frédéric

    2018-01-01

    OBJECTIVE The authors aimed to design a score for stratifying patients with brain arteriovenous malformation (BAVM) rupture, based on the likelihood of a poor long-term neurological outcome. METHODS The records of consecutive patients with BAVM hemorrhagic events who had been admitted over a period of 11 years were retrospectively reviewed. Independent predictors of a poor long-term outcome (modified Rankin Scale score ≥ 3) beyond 1 year after admission were identified. A risk stratification scale was developed and compared with the intracranial hemorrhage (ICH) score to predict poor outcome and inpatient mortality. RESULTS One hundred thirty-five patients with 139 independent hemorrhagic events related to BAVM rupture were included in this analysis. Multivariate logistic regression followed by stepwise analysis showed that consciousness level according to the Glasgow Coma Scale (OR 6.5, 95% CI 3.1-13.7, p < 10 -3 ), hematoma volume (OR 1.8, 95% CI 1.2-2.8, p = 0.005), and intraventricular hemorrhage (OR 7.5, 95% CI 2.66-21, p < 10 -3 ) were independently associated with a poor outcome. A 12-point scale for ruptured BAVM prognostication was constructed combining these 3 factors. The score obtained using this new scale, the ruptured AVM prognostic (RAP) score, was a stronger predictor of a poor long-term outcome (area under the receiver operating characteristic curve [AUC] 0.87, 95% CI 0.8-0.92, p = 0.009) and inpatient mortality (AUC 0.91, 95% CI 0.85-0.95, p = 0.006) than the ICH score. For a RAP score ≥ 6, sensitivity and specificity for predicting poor outcome were 76.8% (95% CI 63.6-87) and 90.8% (95% CI 81.9-96.2), respectively. CONCLUSIONS The authors propose a new admission score, the RAP score, dedicated to stratifying the risk of poor long-term outcome after BAVM rupture. This easy-to-use scoring system may help to improve communication between health care providers and consistency in clinical research. Only external prospective cohorts and population-based studies will ensure full validation of the RAP scores' capacity to predict outcome after BAVM rupture.

  14. Synergy and Interactions Among Biological Pathways Leading to Preterm Premature Rupture of Membranes

    PubMed Central

    Lannon, Sophia M. R.; Vanderhoeven, Jeroen P.; Eschenbach, David A.; Gravett, Michael G.; Waldorf, Kristina M. Adams

    2014-01-01

    Preterm premature rupture of membranes (PPROM) occurs in 1% to 2% of births. Impact of PPROM is greatest in low- and middle-income countries where prematurity-related deaths are most common. Recent investigations identify cytokine and matrix metalloproteinase activation, oxidative stress, and apoptosis as primary pathways to PPROM. These biological processes are initiated by heterogeneous etiologies including infection/inflammation, placental bleeding, uterine overdistention, and genetic polymorphisms. We hypothesize that pathways to PPROM overlap and act synergistically to weaken membranes. We focus our discussion on membrane composition and strength, pathways linking risk factors to membrane weakening, and future research directions to reduce the global burden of PPROM. PMID:24840939

  15. Ruptured Pseudoaneurysm of the Lateral Plantar Artery After Tibiotalocalcaneal Fusion With Retrograde Nail-A Rare Complication.

    PubMed

    Sundararajan, Silvampatti Ramaswamy; Rajagopalakrishnan, Ramakanth; Rajasekaran, Shanmuganathan

    We report a rare presentation of a ruptured pseudoaneurysm of the lateral plantar artery following tibiotalocalcaneal fusion with a retrograde nail at 1 month after the index surgery. Although case reports of pseudoaneurysms of larger arteries such as the anterior tibial artery and posterior tibial artery after ankle surgery (e.g., ankle arthroscopy, implant removal, Ilizarov application) have been reported, we report a rare complication of a pseudoaneurysm of the lateral plantar artery. We discuss the anatomic considerations of the lateral plantar artery in the foot and the entry point of the retrograde nail to avoid this unusual complication. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Rupture of the pectoralis major: a case report and review.

    PubMed

    Hasegawa, Kohei; Schofer, Joel M

    2010-02-01

    Rupture of the pectoralis major muscle is a rare clinical entity that is becoming more common due to the increasing popularity of weightlifting and recreational sports. Due to the rarity of this condition, it may be missed at initial presentation and inappropriately treated, potentially leading to increased disability. This case highlights the mechanism of injury, clinical features, diagnosis, and treatment of rupture of the pectoralis major. The patient was a 31-year-old male bodybuilder who presented to the Emergency Department with acute pain and swelling in the left axilla after performing a bench press with a 400-pound barbell. The diagnosis of pectoralis major rupture was suspected and confirmed by magnetic resonance imaging, and early surgical repair was performed. The most common mechanism of injury is excessive tension on a maximally contracted pectoralis major muscle. Weightlifting, specifically bench pressing, is a common cause. The diagnosis can usually be made based on a patient's history and physical examination, but shortly after injury, the diagnosis may be obscured by severe pain and swelling. Magnetic resonance imaging is the imaging modality of choice when the diagnosis remains unclear, and can avoid surgical delays. Early diagnosis and treatment within 3 to 8 weeks after the injury has the advantage of avoiding adhesions and muscle atrophy, and can prevent a delayed return to normal activities. Given the trend toward improved results with early surgical repair of complete rupture, it is important to raise awareness about pectoralis major muscle injury among Emergency Physicians to prevent missed or delayed diagnosis and repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  18. Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue

    NASA Astrophysics Data System (ADS)

    Sawaguchi, Tak Ahiro; Kausträter, Gregor; Yawny, Alejandro; Wagner, Martin; Eggeler, Gunther

    2003-12-01

    The structural fatigue of pseudoelastic Ni-Ti wires (50.9 at. pct Ni) was investigated using bending-rotation fatigue (BRF) tests, where a bent and otherwise unconstrained wire was forced to rotate at different rotational speeds. The number of cycles to failure ( N f ) was measured for different bending radii and wire thicknesses (1.0, 1.2, and 1.4 mm). The wires consisted of an alloy with a 50-nm grain size, no precipitates, and some TiC inclusions. In BRF tests, the surface of the wire is subjected to tension-compression cycles, and fatigue lives can be related to the maximum tension and compression strain amplitudes ( ɛ a ) in the wire surface. The resulting ɛ a - N f curves can be subdivided into three regimes. At ɛ a > 1 pct rupture occurs early (low N f ) and the fatigue-rupture characteristics were strongly dependent on ɛ a and the rotational speed (regime 1). For 0.75 pct < ɛ a < 1 pct, fatigue lives strongly increase and are characterized by a significant statistical scatter (regime 2). For ɛ a < 0.75 pct, no fatigue rupture occurs up to cycle numbers of 106 (regime 3). Using scanning electron microscopy (SEM), it was shown that surface cracks formed in regions with local stress raisers (such as inclusions and/or scratches). The growth of surface cracks during fatigue loading produced striations on the rupture surface; during final rupture, ductile voids form. The microstructural details of fatigue-damage accumulation during BRF testing are described and discussed.

  19. Preliminary body-wave analysis of the St. Elias, Alaska, earthquake of February 28, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatwright, J.

    1980-04-01

    Employing a new technique for the body-wave analysis of shallow-focus earthquakes, we have made a preliminary analysis of the St. Elias, Alaska, earthquake of February 28, 1979, using five long-period P and S waves recorded at three WWSSN stations and at Palisades, New York. Using a well determined focal mechanism and an average source depth of approx. = 11 km, the interference of the depth phases (i.e., pP and sP, or sS) has been deconvolved from the recorded pulse shapes to obtain velocity and displacement pulse shapes as they would appear if the earthquake had occurred within an infinite medium.more » These approximate whole space pulse shapes indicate that the rupture contained three distinct subevents as well as a small initial event which preceded this subevent sequence by about 7 sec. From the pulse rise times of the subevents, their rupture lengths are estimated as 12, 27, and 17 km, assuming that the subevent rupture velocity was 3 km/sec. Overall, the earthquake ruptured approx. = 60 km to the southeast with an average rupture velocity of 2.2 km/sec. The cumulative body-wave moment for the whole event, 1.2 x 10/sup 27/ dyne-cm, is substantially smaller than the surface-wave moments reported by Lahr et al. (1979) of 5 x 10/sup 27/ dyne-cm. The moments of the subevents are estimated to be 0.6, 3.2, and 7.5 x 10/sup 26/ dyne-cm, respectively.« less

  20. The Weekend Effect in AAA Repair.

    PubMed

    O'Donnell, Thomas F X; Li, Chun; Swerdlow, Nicholas J; Liang, Patric; Pothof, Alexander B; Patel, Virendra I; Giles, Kristina A; Malas, Mahmoud B; Schermerhorn, Marc L

    2018-04-18

    Conflicting reports exist regarding whether patients undergoing surgery on the weekend or later in the week experience worse outcomes. We identified patients undergoing abdominal aortic aneurysm (AAA) repair in the Vascular Quality Initiative between 2009 and 2017 [n = 38,498; 30,537 endovascular aneurysm repair (EVAR) and 7961 open repair]. We utilized mixed effects logistic regression to compare adjusted rates of perioperative mortality based on the day of repair. Tuesday was the most common day for elective repair (22%), Friday for symptomatic repairs (20%), and ruptured aneurysms were evenly distributed. Patients with ruptured aneurysms experienced similar adjusted mortality whether they underwent repair during the week or on weekends. Transfers of ruptured AAA were more common over the weekend. However, patients transferred on the weekend experienced higher adjusted mortality than those transferred during the week (28% vs 21%, P = 0.02), despite the fact that during the week, transferred patients actually experienced lower adjusted mortality than patients treated at the index hospital (21% vs 31%, P < 0.01). Among symptomatic patients, adjusted mortality was higher for those undergoing repair over the weekend than those whose surgeries were delayed until a weekday (7.9% vs 3.1%, P = 0.02). Adjusted mortality in elective cases did not vary across the days of the week. Results were consistent between open and EVAR patients. We found no evidence of a weekend effect for ruptured or symptomatic AAA repair. However, patients with ruptured AAA transferred on the weekend experienced higher mortality than those transferred during the week, suggesting a need for improvement in weekend transfer processes.

  1. Novel device and technique for minimally invasive intracerebral hematoma evacuation in the same setting of a ruptured intracranial aneurysm: combined treatment in the neurointerventional angiography suite.

    PubMed

    Turner, Raymond D; Vargas, Jan; Turk, Aquilla S; Chaudry, M Imran; Spiotta, Alejandro M

    2015-03-01

    The presence of intracerebral hematoma from aneurysm rupture is an indication for craniotomy for clot evacuation and aneurysm clipping. Some centers have begun securing aneurysms with coil embolization followed by clot evacuation in the operating room. This approach requires transporting a patient from the angiography suite to the operating room, which can take valuable time and resources. To report our experience with 3 cases in which a novel technique for minimally invasive evacuation of intracerebral hematomas after endovascular treatment of ruptured intracranial aneurysms was used. The Penumbra Apollo system can be used in the angiography suite in conjunction with neuroendovascular techniques to simultaneously address a symptomatic hematoma associated with a ruptured aneurysm. Standard preoperative computed tomography angiography was performed on arrival to the emergency department. The patients underwent diagnostic cerebral angiography followed by balloon-assisted coil embolization and then remained in the neurointerventional suite for intracerebral hematoma evacuation with the Apollo system. All patients tolerated coil embolization and hematoma evacuation well. The combined procedures lasted <3 hours in both cases. Two patients were eventually discharged to acute rehabilitation facilities less than a month after their initial insult, and 1 has been cleared to return to work. The other patient was transferred to hospice care. The Apollo aspiration system appears to be a safe and effective minimally invasive option for intracerebral hematoma evacuation, particularly when coupled with endovascular embolization of ruptured intracranial aneurysms. Future work will address which patient population is most likely to benefit from this promising technique.

  2. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.; Ma, K.-F.

    2003-01-01

    We investigate the rupture process of the 1999 Chi-Chi, Taiwan, earthquake using extensive near-source observations, including three-component velocity waveforms at 36 strong motion stations and 119 GPS measurements. A three-plane fault geometry derived from our previous inversion using only static data [Ji et al., 2001] is applied. The slip amplitude, rake angle, rupture initiation time, and risetime function are inverted simultaneously with a recently developed finite fault inverse method that combines a wavelet transform approach with a simulated annealing algorithm [Ji et al., 2002b]. The inversion results are validated by the forward prediction of an independent data set, the teleseismic P and SH ground velocities, with notable agreement. The results show that the total seismic moment release of this earthquake is 2.7 ?? 1020 N m and that most of the slip occured in a triangular-shaped asperity involving two fault segments, which is consistent with our previous static inversion. The rupture front propagates with an average rupture velocity of ???2.0 km s-1, and the average slip duration (risetime) is 7.2 s. Several interesting observations related to the temporal evolution of the Chi-Chi earthquake are also investigated, including (1) the strong effect of the sinuous fault plane of the Chelungpu fault on spatial and temporal variations in slip history, (2) the intersection of fault 1 and fault 2 not being a strong impediment to the rupture propagation, and (3 the observation that the peak slip velocity near the surface is, in general, higher than on the deeper portion of the fault plane, as predicted by dynamic modeling.

  3. Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen M. S.

    Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond themore » specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.« less

  4. Quadriceps tendon rupture - treatment results.

    PubMed

    Popov, Iva; Ristić, Vladimir; Maljanović, Mirsad; Milankov, Vukadin

    2013-01-01

    Quadriceps tendon rupture is a rare but rather serious injury. If this injury is not promptly recognized and early operated, it may lead to disability. This research was aimed at pointing out the results and complications of the quadriceps tendon rupture surgical treatment. This retrospective multicentric study was conducted in a group of 29 patients (mostly elderly men). Lysholm knee scoring scale was used to evaluate the surgical results. The post-operative results were compared in relation to the type of tendon rupture reconstructions (acute or chronic), various surgical techniques, type of injuries (unilateral or bilateral) as well as the presence or absence of comorbid risk factors in the patients. The average value of a Lysholm score was 87.6. Excellent and satisfactory Lysholm score results dominated in our sample of patients. Better post-operative results were recorded in the group of patients without risk factors, in case of a bilateral injury, and in case of an acute injury. The best result was obtained after performing the reconstruction using anchors, and the worst result came after using Codivilla technique. Early diagnosis and surgical treatment are an absolute imperative in management of this injury. We have not proven that a certain surgical technique has an advantage over the others. A comorbid risk factor is related to a lower Lysholm score. Despite a few cases of complications, we can conclude that the surgical treatment yields satisfactory results.

  5. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.

  6. The SCEC/USGS dynamic earthquake rupture code verification exercise

    USGS Publications Warehouse

    Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.

    2009-01-01

    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous rupture (hereafter called “spontaneous rupture”) solutions. For these types of numerical simulations, rather than prescribing the slip function at each location on the fault(s), just the friction constitutive properties and initial stress conditions are prescribed. The subsequent stresses and fault slip spontaneously evolve over time as part of the elasto-dynamic solution. Therefore, spontaneous rupture computer simulations of earthquakes allow us to include everything that we know, or think that we know, about earthquake dynamics and to test these ideas against earthquake observations.

  7. How material contrast around subduction faults may control coseismic slip and rupture dynamics: tsunami applications for the case study of Tohoku

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Murphy, Shane; Romano, Fabrizio; Lorito, Stefano; Festa, Gaetano; Volpe, Manuela; Piatanesi, Alessio

    2017-04-01

    Recent megathrust tsunamigenic events, e.g. Maule 2010 (M8.8) and Tohoku 2011 (M9.0), generated huge tsunami waves as a consequence of high slip in the shallow part of the respective subduction zone. Other events, (e.g. the recent Mentawai 2010, M7.8, or the historical Meiji 1896, M8.2), referred to as tsunami earthquakes, produced unexpectedly large tsunami waves, probably due to large slip at shallow depth over longer rupture durations compared to deeper thrust events. Subduction zone earthquakes originate and propagate along bimaterial interfaces separating materials having different elastic properties, e.g. continental and oceanic crust, a stiffer deep mantle wedge, shallow compliant accretionary prism etc. Bimaterial interfaces have been showed, through observations (seismological and laboratory) and theoretical studies, to affect the rupture: introducing a preferred rupture direction as well as asymmetric rupture velocities and shear stress redistributions. Such features are predominantly due to the break of symmetry between the two sides of the interface in turn ascribable to the complex coupling between the frictional interfacial sliding and the slip-induced normal stress perturbations. In order to examine the influence of material contrast on a fault plane on the seismic source and tsunami waves, we modelled a Tohoku-like subduction zone to perform a large number of 2D along-dip rupture dynamics simulations in the framework of linear slip weakening both for homogeneous and bimaterial fault. In this latter model, the rupture acts as the interface between the subducting oceanic crust and the overriding layers (accretionary prism, continental crust and mantle wedge), varying the position of the shear stress asperity acting as nucleation patch. Initial results reveal that ruptures in homogeneous media produce earthquakes with large slip at depth compared to the case where bi-material interface is included. However the opposite occurs for events nucleating at intermediate depths: the compliant accretionary prism favours slip up to the free surface leading to larger events compared to the homogeneous case. These preliminary findings will be further investigated considering different material contrasts between the slab and the overriding accretionary prism to mimic the slowness of the sedimentary wedge. This will contribute to assess the influence of these contrasts in more realistic environment on the seismic source features and, in turn, on the conditional probability of exceedance for maximum tsunami wave height for a M9 event. Several source parameters, such as coseismic slip, rupture duration, rupture velocity and stress conditions, derived from the numerical simulations will be compared to those inferred from real events using existing finite fault catalogues (e.g. USGS, SRCMOD, etc.).

  8. Microstructural and petrophysical characterization of a "structurally oversimplified" fault zone in poorly lithified sands: evidence for a coseismic rupture?

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio

    2010-05-01

    We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.

  9. Earthquake fracture energy inferred from kinematic rupture models on extended faults

    USGS Publications Warehouse

    Tinti, E.; Spudich, P.; Cocco, M.

    2005-01-01

    We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.

  10. Isolated abducens nerve palsy associated with subarachnoid hemorrhage: a localizing sign of ruptured posterior inferior cerebellar artery aneurysms.

    PubMed

    Burkhardt, Jan-Karl; Winkler, Ethan A; Lasker, George F; Yue, John K; Lawton, Michael T

    2018-06-01

    OBJECTIVE Compressive cranial nerve syndromes can be useful bedside clues to the diagnosis of an enlarging intracranial aneurysm and can also guide subsequent evaluation, as with an acute oculomotor nerve (cranial nerve [CN] III) palsy that is presumed to be a posterior communicating artery aneurysm and a surgical emergency until proven otherwise. The CN VI has a short cisternal segment from the pontomedullary sulcus to Dorello's canal, remote from most PICA aneurysms but in the hemodynamic pathway of a rupturing PICA aneurysm that projects toward Dorello's canal. The authors describe a cranial nerve syndrome for posterior inferior cerebellar artery (PICA) aneurysms that associates subarachnoid hemorrhage (SAH) and an isolated abducens nerve (CN VI) palsy. METHODS Clinical and radiological data from 106 surgical patients with PICA aneurysms (66 ruptured and 40 unruptured) were retrospectively reviewed. Data from a group of 174 patients with other aneurysmal SAH (aSAH) were analyzed in a similar manner to control for nonspecific effects of SAH. Univariate statistical analysis compared incidence and risk factors associated with CN VI palsy in subarachnoid hemorrhage. RESULTS Overall, 13 (4.6%) of 280 patients had CN VI palsy at presentation, and all of them had ruptured aneurysms (representing 13 [5.4%] of the 240 cases of ruptured aneurysms). CN VI palsies were observed in 12 patients with ruptured PICA aneurysms (12/66 [18.1%]) and 1 patient with other aSAH (1/174 [0.1%], p < 0.0001). PICA aneurysm location in ruptured aneurysms was an independent predictor for CN VI palsy on multivariate analysis (p = 0.001). PICA aneurysm size was not significantly different in patients with or without CN VI palsy (average size 4.4 mm and 5.2 mm, respectively). Within the PICA aneurysm cohort, modified Fisher grade (p = 0.011) and presence of a thick cisternal SAH (modified Fisher Grades 3 and 4) (p = 0.003) were predictors of CN VI palsy. In all patients with ruptured PICA aneurysms and CN VI palsy, dome projection and presumed direction of rupture were directed toward the ipsilateral and/or contralateral Dorello's canal, in agreement with laterality of the CN palsy. In patients with bilateral CN VI palsies, a medial projection with extensive subarachnoid blood was observed near bilateral canals. CONCLUSIONS This study establishes a localizing connection between an isolated CN VI palsy, SAH, and an underlying ruptured PICA aneurysm. CN VI palsy is an important clinical sign in aSAH and when present on initial clinical presentation may be assumed to be due to ruptured PICA aneurysms until proven otherwise. The deficit may be ipsilateral, contralateral, or bilateral and is determined by the direction of the aneurysm dome projection and extent of subarachnoid bleeding toward Dorello's canal, rather than by direct compression.

  11. Nonlinear Inversion for Dynamic Rupture Parameters from the 2004 Mw6.0 Parkfield Earthquake

    NASA Astrophysics Data System (ADS)

    Jimenez, R. M.; Olsen, K. B.

    2007-12-01

    The Parkfield section of the San Andreas Fault has produced repeated moderate-size earthquakes at fairly regular intervals and is therefore an important target for investigations of rupture initiation, propagation and arrest, which could eventually lead to clues on earthquake prediction. The most recent member of the Parkfield series of earthquakes, the 2004 Mw6.0 event, produced a considerable amount of high-resolution strong motion data, and provides an ideal test bed for analysis of the dynamic rupture propagation. Here, we use a systematic nonlinear direct-search method to invert strong-ground motion data (less than 1 Hz) at 37 stations to obtain models of the slip weakening distance and spatially-varying stress drop (8 by 4 subfaults) on the (vertical) causative segment of the San Andreas fault (40 km long by 15 km wide), along with spatial-temporal coseismic slip distributions. The rupture and wave propagation modeling is performed by a three-dimensional finite-difference method with a slip- weakening friction law and the stress-glut dynamic-rupture formulation (Andrews, 1999), and the inversion is carried out by a neighborhood algorithm (Sambridge, 1999), minimizing the least-squares misfit between the calculated and observed seismograms. The dynamic rupture is nucleated artificially by lowering the yield stress in a 3 km by 3 km patch centered at the location of the hypocenter estimated from strong motion data. Outside the nucleation patch the yield stress is kept constant (5-10 MPa), and we constrain the slip-weakening distance to values less than 1 m. We compare the inversion results for two different velocity models: (1) a 3-D model based on the P-wave velocity structure by Thurber (2006), with S-wave and density relations based on Brocher (2005), and (2) a combination of two different 1-D layered velocity structures on either side of the fault, as proposed by Liu et al. (2006). Due to the non-uniqueness of the problem, the inversion provides an ensemble of equally valid rupture models that produce synthetics with comparable fit to the observed strong motion data. Our preliminary results with the smallest misfits, out of about 3000 tested rupture models, suggest an average slip-weakening distance of 19-81 cm and an average stress drop across the fault of 6.7 - 8.4 MPa. Compared to the kinematic inversion results by Liu et al. (2006) our models with the smallest misfits produce a larger maximum slip (up to about 81 cm) and smaller rupture area, but similar rupture duration (5-7s). The inversions carried out for the layered models tend to produce smaller misfit between data and synthetics as compared to the results using the 3D structure. This suggests that our 3D structure needs improvement, including the Vs-Vp and density-Vp relation. We expect further decrease in the misfit values by increasing the number of tested rupture models.

  12. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity. Earthquake cycle and dynamic rupture models containing deep asperities reproduce the slower spectral decay found in teleseismic spectra of the Gorkha earthquake and in subduction events in the deeper edge of the seismogenic zone.

  13. The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.

    2014-12-01

    The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip distribution likely to be lithologically controlled in depth by the Hormuz salt at the base of the sedimentary cover, and the Kazhdumi Formation mudrocks at upper-levels (5 km), and aftershocks constrained largely beneath the main coseismic rupture planes.

  14. Surface Deformation Associated with the 1983 Borah Peak Earthquake Measured from Digital Surface Model Differencing

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Briggs, R.; Gold, R. D.; DuRoss, C. B.

    2015-12-01

    Post-earthquake, field-based assessments of surface displacement commonly underestimate offsets observed with remote sensing techniques (e.g., InSAR, image cross-correlation) because they fail to capture the total deformation field. Modern earthquakes are readily characterized by comparing pre- and post-event remote sensing data, but historical earthquakes often lack pre-event data. To overcome this challenge, we use historical aerial photographs to derive pre-event digital surface models (DSMs), which we compare to modern, post-event DSMs. Our case study focuses on resolving on- and off-fault deformation along the Lost River fault that accompanied the 1983 M6.9 Borah Peak, Idaho, normal-faulting earthquake. We use 343 aerial images from 1952-1966 and vertical control points selected from National Geodetic Survey benchmarks measured prior to 1983 to construct a pre-event point cloud (average ~ 0.25 pts/m2) and corresponding DSM. The post-event point cloud (average ~ 1 pt/m2) and corresponding DSM are derived from WorldView 1 and 2 scenes processed with NASA's Ames Stereo Pipeline. The point clouds and DSMs are coregistered using vertical control points, an iterative closest point algorithm, and a DSM coregistration algorithm. Preliminary results of differencing the coregistered DSMs reveal a signal spanning the surface rupture that is consistent with tectonic displacement. Ongoing work is focused on quantifying the significance of this signal and error analysis. We expect this technique to yield a more complete understanding of on- and off-fault deformation patterns associated with the Borah Peak earthquake along the Lost River fault and to help improve assessments of surface deformation for other historical ruptures.

  15. The multi-parameter borehole system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSITE Project.

    NASA Astrophysics Data System (ADS)

    Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref

    2016-04-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Deploying a borehole system eastern end of the Ganos fault zone may yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture.

  16. ICESat Observations of Topographic Change in the Northern Segment of the 2004 Sumatra-Andaman Islands Earthquake Rupture Zone

    NASA Technical Reports Server (NTRS)

    Harding, David; Sauber, J.; Luthcke, S.; Carabajal, C.; Muller, J

    2005-01-01

    The Andaman Islands are located 120 km east of the Sunda trench in the northern quarter of the 1300 km long rupture zone of the 2004 Sumatra-Andaman Islands earthquake inferred from the distribution of aftershocks. Initial field reports indicate that several meters of uplift and up to a meter of submergence occurred on the western and eastern shorelines of the Andaman Islands, respectively, associated with the earthquake (Bilham, 2005). Satellite images also document uplift of western shoreline coral reef platforms above sea level. Body-wave (Ji, 2005; Yamamaka, 2005) and tide-gauge (Ortiz, 2005) slip inversions only resolve coseismic slip in the southern one-third to one-half of the rupture zone. The amount of coseismic slip in the Andaman Islands region is poorly constrained by these inversions. The Ice, Cloud, and land Elevation Satellite (ICESat), a part of the NASA Earth Observing System, is being used to document the spatial pattern of Andaman Islands vertical displacements in order to constrain models of slip distribution in the northern part of the rupture zone. ICESat carries the Geoscience Laser Altimeter System (GLAS) that obtains elevation measurements from 80 m diameter footprints spaced 175 m apart along profiles. For surfaces of low slope, single-footprint absolute elevation and horizontal accuracies of 10 cm and 6 m (1 sigma), respectively, referenced to the ITRF 2002 TOPEX/Poseidon ellipsoid are being obtained. Laser pulse backscatter waveforms enable separation of ground topography and overlying vegetation cover. During each 33-day observing period ICESat acquires three profiles crossing the Andaman Islands. A NNE-SSW oriented track consists of 1600 laser footprints along the western side of North, Middle, and South Andaman Islands and 240 laser footprints across the center of Great Andaman Island. Two NNW-SSE tracks consist of 440 footprints across Middle Andaman Island and 25 footprints across the west side of Sentinel Island. Cloud-free profiles were acquired in the fall of 2003 and 2004. During February-March, 2005 ICESat's precise pointing capability will be used to exactly repeat these three profiles, with a cross-track accuracy of better than 100 m, providing trench- parallel and -perpendicular observations of topographic change of the Andaman Islands that will compliment geodetic field surveys. The observed elevation changes will be compared to models of coseismic deformation associated with the mainshock and large aftershocks in the Andaman Islands region.

  17. Acute traumatic rupture of the patellar tendon in pediatric population: Case series and review of the literature.

    PubMed

    Ali Yousef, Mohamed Abdelhamid; Rosenfeld, Scott

    2017-11-01

    Intact knee extensor mechanism is required for the normal function of the lower extremity. Patellar tendon rupture is a relatively rare injury with peak age incidence around 40 years and usually occurs midsubstance. The occurrence of pure patellar tendon rupture without bony avulsion is an extremely rare injury in the pediatric population with few cases reported in the literature with limited information regarding frequency, complications, and outcomes in children. However, due to increased participation in sports and high-energy recreational activities during childhood, the frequency of such injuries has progressively increased. To evaluate the frequency of pediatric patellar tendon rupture injuries and describe the radiological findings, treatment modalities, and outcome of such injuries. Demographic and clinical data on a series of patients who sustained patellar tendon rupture were reviewed. These data included age at time of injury, sex, laterality, mechanism of injury, associated injuries, complications, presence or absence of Osgood-Schlatter disease, diagnostic imaging such as plain radiographs and magnetic resonance images (MRI), surgical technique, method of fixation, period of postoperative immobilization, total duration of physiotherapy, time to return to sports activities and follow-up duration. Insall-Salvati ratio was calculated on the preoperative lateral x-ray. The functional outcome was evaluated with regard to final knee active range of motion (AROM), manual quadriceps muscle testing, and presence or the absence of terminal extension lag. Clinical outcome rating using knee society score (KSS) was performed and functional outcome was further classified according to the calculated score. Five male patients with patellar tendon rupture (7%) were identified among 71 pediatric patients who sustained acute traumatic injury of the knee extensor mechanism. The mean age at the time of injury was 13.6 years (range: 12-15 years). The injury occurred in relation to sports activities in 4 patients. Osteogenesis imperfecta and Osgood-Schlatter disease were identified in 2 patients. High riding patella is the hallmark diagnostic sign detected in plain x-ray with preoperative Insall-Salvati ratio ranged from 1.7 to 2.5. Three patients had pure soft tissue avulsion distally from the proximal tibia, 1 patient had pure soft tissue avulsion proximally from the inferior patellar pole, and 1 patient with midsubstance tendinous disruption. No associated intra-articular lesions were identified. Suture bridge double row technique, transpatellar suturing, and transosseous suturing through the proximal tibia were used for patellar tendon reinsertion. After a mean follow-up period of 18. 4 weeks (range: 10-30 weeks), patients achieved AROM ranging from 0 to 120° to 0-137° without terminal extension lag. The mean time to return to sports activity was 22 weeks (range: 13-30 weeks). Quadriceps muscle strength was 5/5 at the final follow-up visit in all patients; however, relative muscle atrophy was noted in comparison to the other side in one patient. The mean KSS was 91.8 points (range: 79-100 points) with excellent outcome in 4 patients and good outcome in 1 patient. Patellar tendon rupture is rare in the pediatric population and represents 7% of pediatric patients who sustained acute traumatic injury of the knee extensor mechanism. Ruptures may occur midsubstance, or from proximal or distal insertions. High riding patella is the hallmark diagnostic sign for such injury. Although rare, it is considered a serious injury that necessitates early diagnosis and surgical intervention. Functional range of motion was obtained in all patients with different modalities of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Degenerative rupture of the hip abductors. Missed diagnosis with therapy-resistant trochanteric pain of the hips and positive Trendelenburg sign in elderly patients].

    PubMed

    Aepli-Schneider, N; Treumann, T; Müller, U; Schmid, L

    2012-01-01

    The cases of four elderly patients with persistent trochanteric pain and tears of the gluteus medius and/or gluteus minimus tendons detected in magnetic resonance imaging (MRI) are presented. There was no history of local trauma in any patient but three patients had a positive Trendelenburg sign. Magnetic resonance imaging showed either an obvious discontinuity of the affected tendon or an increased T2 signal above, or less specifically lateral to the greater trochanter. The presence of an elongated tendon on MRI is most likely indicative of a partial rupture of the tendon. Pain and local tenderness over the lateral aspect of the hip in clinical examination is commonly attributed to trochanteric bursitis or trochanteric pain syndrome. Partial or complete tears of the gluteus medius and/or gluteus minimus tendons are thought to represent an unusual finding. However, the true incidence and the clinical significance of hip abductor degeneration and rupture remain to be determined. More studies are needed to examine the prevalence of ruptures in asymptomatic patients, to evaluate the subsequent risk for developing osteoarthritis of the hip (caused by impaired protective reflexes originating from proprioceptive nerve endings in muscle spindles) and to determine the risk for falls related to weakness of hip abduction. Furthermore, no data exist regarding the success rate of conservative treatment. Tears of the gluteus medius and minimus tendons in the elderly population are likely to be a more common cause of pain in the greater trochanteric region than previously thought. In patients who do not respond to conservative treatment, weakness of hip abduction (positive Trendelenburg sign) and new limping should point to the possibility of hip abductor ruptures. The most useful examination technique for diagnosis is MRI.

  19. Repair of Chronic Tibialis Anterior Tendon Rupture With a Major Defect Using Gracilis Allograft.

    PubMed

    Burton, Alex; Aydogan, Umur

    2016-08-01

    Tibialis anterior tendon (TAT) rupture is an uncommon injury, however, it can cause substantial deficit. Diagnosis is often delayed due to lack of initial symptoms; yet loss of function over time typically causes the patient to present for treatment. This delay usually ends up with major defects creating a great technical challenge for the operating surgeon. We present a novel technique and operative algorithm for the management of chronic TAT ruptures with a major gap after a delayed diagnosis not otherwise correctable with currently described techniques in the literature. This technique has been performed in 4 cases without any complications with fairly successful functional outcomes. For the reconstruction of chronic TAT rupture with an average delay of nine weeks after initial injury and gap of greater than 10 cm, a thorough operative algorithm was implemented in 4 patients using a double bundle gracilis allograft. Patients were then kept nonweightbearing for 6 weeks followed by weightbearing as tolerated. They began physical therapy with a focus on ankle exercises and gradual return to normal activity at 8 weeks, with resistance training exercises allowed at 12 weeks. At a mean follow-up time of 24.5 months, all patients reported significant pain relief with normal gait pattern. There were no reported intra- or postoperative complications. The average Foot and Ankle Ability Measure score increased to 90 from 27.5 in the postoperative period. All patients were able to return their previous activity levels. Gracilis allograft reconstruction as used in this study is a viable and reproducible alternative to primary repair with postoperative results being favorable without using complex tendon transfer techniques or autograft use necessitating the functional sacrifice of transferred or excised tendon. To the best of our knowledge, this is the first study demonstrating a successful technique and operative algorithm of gracilis allograft reconstruction of the TAT with a substantial deficit of greater than 10 cm with favorable results. Level IV: Operative algorithm with case series. © 2016 The Author(s).

  20. Reexamination of the subsurface fault structure in the vicinity of the 1989 moment-magnitude-6.9 Loma Prieta earthquake, central California, using steep-reflection, earthquake, and magnetic data

    USGS Publications Warehouse

    Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus

    2018-06-13

    We reexamine the geometry of the causative fault structure of the 1989 moment-magnitude-6.9 Loma Prieta earthquake in central California, using seismic-reflection, earthquake-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas Fault (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of fault geometry in the vicinity of the Loma Prieta earthquake was that the mainshock did not rupture the SAF, but rather a secondary fault within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a fault plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the fault geometry somewhat, with steeply dipping faults in the upper crust possibly connecting to the more moderately southwest-dipping mainshock rupture in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust fault-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal Faults can be mapped using these features and the aftershock clusters. The San Andreas and Sargent Faults appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal faults appear to project into the moderately southwest-dipping, planar mainshock rupture. The change to a planar dipping rupture at 6–9 km is similar to fault geometry seen in the Coachella Valley.

  1. Shake, Rupture And Flow: Hydraulic Constraints On The Formation Of Europa’s Chaos

    NASA Astrophysics Data System (ADS)

    Schmidt, Britney E.; Gooch, B. T.; Blankenship, D. D.; Soderlund, K. M.

    2012-10-01

    Europa’s chaos terrains may have formed above shallow water lenses formed by melting of the upper ice shell with ascending thermo-compositional plumes. A key factor in the creation of chaos terrain may be dramatic disruption and collapse of the ice lid above the forming melt lens along with potentially violent mixing upon its rupture; this is analogous to the collapse of terrestrial ice shelves in which massive ice bodies disintegrate in a few days. At Thera Macula, there is evidence for modification by water immediately external to the scarp that bounds the collapsed region. Since water runs either subaerially down hill or from high pressure to low when below or within ice, the swollen appearance of bands entering Thera Macula, which are uphill in terms of hydraulic and topographic gradients, raises the possibility that this steep scarp represents the place where the lens initially broke. As the ice lid ruptures, the overpressure within the lens may create sufficient pressure within the fracture to drive water through it, allowing water to escape into and modify surrounding terrain. Similar effects are seen when aquifers or subglacial water sources are tapped: water flows up the pipe until the pressure in the water body is relieved and the hydraulic “pressure head” in the pipe is lowered. We have modeled the hydraulic potential associated with a rupturing lens in order to investigate the range of parameters for overpressure, fracture width, and lid thickness that could produce such modification as is observed at Thera Macula. These place important constraints on the pressure within the lens and the energetics of a collapse event. These estimates may explain how ice masses within chaos are initially disrupted and provide a means for quantifying the vigor of surface-subsurface mixing that could be critical to Europa’s habitability.

  2. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.

    2012-12-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.

  3. Explosive Leidenfrost droplets

    NASA Astrophysics Data System (ADS)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  4. Bubble bursting at an interface

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  5. Induced abnormality in Mir- and Earth grown Super Dwarf wheat.

    PubMed

    Bubenheim, D L; Stieber, J; Campbell, W F; Salisbury, F B; Levinski, M; Sytchev, V; Podolsky, I; Chernova, L; Pdolsky, I

    2003-01-01

    Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  6. Induced abnormality in Mir- and Earth grown Super Dwarf wheat

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Stieber, J.; Campbell, W. F.; Salisbury, F. B.; Levinski, M.; Sytchev, V.; Podolsky, I.; Chernova, L.; Pdolsky, I.

    2003-01-01

    Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  7. Electric conductance of a mechanically strained molecular junction from first principles: Crucial role of structural relaxation and conformation sampling

    NASA Astrophysics Data System (ADS)

    Nguyen, Huu Chuong; Szyja, Bartłomiej M.; Doltsinis, Nikos L.

    2014-09-01

    Density functional theory (DFT) based molecular dynamics simulations have been performed of a 1,4-benzenedithiol molecule attached to two gold electrodes. To model the mechanical manipulation in typical break junction and atomic force microscopy experiments, the distance between two electrodes was incrementally increased up to the rupture point. For each pulling distance, the electric conductance was calculated using the DFT nonequilibrium Green's-function approach for a statistically relevant sample of configurations extracted from the simulation. With increasing mechanical strain, the formation of monoatomic gold wires is observed. The conductance decreases by three orders of magnitude as the initial twofold coordination of the thiol sulfur to the gold is reduced to a single S-Au bond at each electrode and the order in the electrodes is destroyed. Independent of the pulling distance, the conductance was found to fluctuate by at least two orders of magnitude depending on the instantaneous junction geometry.

  8. The origins of microstructure in phase inversion coatings or membranes: Snapshots of the transient from time-sectioning cryo-SEM

    NASA Astrophysics Data System (ADS)

    Prakash, Sai Sivasankaran

    2001-11-01

    Time-sectioning cryogenic scanning electron microscopy (cryo-SEM) is a unique method of visualizing how the microstructure of liquid coatings evolves during processing. Time-sectioning means rapidly freezing (nearly) identical specimens at successively later stages of the process; doing this requires that coating and drying be well controlled in the dry phase inversion process, and solvents exchange likewise in the wet phase inversion process. With control, frozen specimens are fractured, etched by limited sublimation, sputter-coated, and imaged at temperatures of ca -175°C. The coatings examined were of cellulose acetate, of high and low molecular weights, and polysulfone in mixed solvents and nonsolvents: acetone and water with cellulose acetate undergoing dry phase inversion; and tetrahydrofuran, dimethylacetamide, ethanol with polysulfone undergoing dry-wet phase inversion. All coatings, cast on silicon substrates, were initially homogeneous. The initial compositions of the high and low molecular weight cellulose acetate ternary solutions were "off-critical" and "near-critical", respectively, connoting their proximities to the critical or plait point of the phase diagram. The initial composition of the polysulfone quaternary solution was located near the binodal of the pseudo-ternary phase diagram. It appeared that as the higher molecular weight cellulose acetate coating dries, it nucleates and grows polymer-poor droplets that coalesce into a bicontinuous structure underlying a thin, dense skin. Bicontinuity of structure was verified by stereomicroscopy of the dry sample. The lower molecular weight cellulose acetate coating phase-separates, seemingly spinodally, directly into a bicontinuous structure whose polymer-rich network, stressed by frustrated in-plane shrinkage, ruptures far beneath the skin in some locales to form macrovoids. When, after partial drying, the polysulfone coating was immersed in a bath of water, a nonsolvent, it appeared to swell in thickness as it phase-separates. A dense skin, thinner than a micron, appeared to overlie a two-phase substructure that is punctuated with pear-shaped macrovoids. At early immersion times, this substructure is visibly bicontinuous or open-celled near the bath-side, and dispersion-like (droplets dispersed in a polymeric matrix) or closed-celled near the substrate-side. Moreover, in the bicontinuous regions, length-scales of the individual phases seem to increase across the coating thickness from the bath-side to the substrate-side. After prolonged immersion, the substructure, excluding the macrovoids, is entirely bicontinuous. The bicontinuity presumably results from a combination of spinodal decomposition and nucleation and growth plus coalescence. Quite strikingly, macrovoids are present exclusively in regions where phases are bicontinuous, and are absent where droplets are dispersed in the polymeric matrix. Evidence suggests that macrovoids result from an instability caused by a progressive rupture of polymer-rich links deeper and deeper beneath the skin, aggravated by stress localization in the rupturing network and a buildup of pressure in the polymer-poor phase (the pore space), as suspected by Grobe and Meyer in 1959.

  9. Long-period spectral features of the Sumatra-Andaman 2004 earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Clévédé, E.; Bukchin, B.; Favreau, P.; Mostinskiy, A.; Aoudia, A.; Panza, G. F.

    2012-12-01

    The goal of this study is to investigate the spatial variability of the seismic radiation spectral content of the Sumatra-Andaman 2004 earthquake. We determine the integral estimates of source geometry, duration and rupture propagation given by the stress glut moments of total degree 2 of different source models. These models are constructed from a single or a joint use of different observations including seismology, geodesy, altimetry and tide gauge data. The comparative analysis shows coherency among the different models and no strong contradictions are found between the integral estimates of geodetic and altimetric models, and those retrieved from very long period seismic records (up to 2000-3000 s). The comparison between these results and the integral estimates derived from observed surface wave spectra in period band from 500 to 650 s suggests that the northern part of the fault (to the north of 8°N near Nicobar Islands) did not radiate long period seismic waves, that is, period shorter than 650 s at least. This conclusion is consistent with the existing composite short and long rise time tsunami model: with short rise time of slip in the southern part of the fault and very long rise time of slip at the northern part. This complex space-time slip evolution can be reproduced by a simple dynamic model of the rupture assuming a crude phenomenological mechanical behaviour of the rupture interface at the fault scales combining an effective slip-controlled exponential weakening effect, related to possible friction and damage breakdown processes of the fault zone, and an effective linear viscous strengthening effect, related to possible interface lubrication processes. While the rupture front speed remains unperturbed with initial short slip duration, a slow creep wave propagates behind the rupture front in the case of viscous effects accounting for the long slip duration and the radiation characteristics in the northern segment.

  10. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption.

    PubMed

    Lee, Regent; Fischer, Roman; Charles, Philip D; Adlam, David; Valli, Alessandro; Di Gleria, Katalin; Kharbanda, Rajesh K; Choudhury, Robin P; Antoniades, Charalambos; Kessler, Benedikt M; Channon, Keith M

    2017-01-01

    Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation. We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption. We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption. This novel approach for biomarker discovery in human coronary artery plaque disruption can identify new biomarkers related to human coronary artery plaque composition and disruption.

  11. Sonography in patients with gunshot wounds of the scrotum: imaging findings and their value.

    PubMed

    Learch, T J; Hansch, L P; Ralls, P W

    1995-10-01

    The purposes of this study were to characterize sonographic findings in patients with scrotal injuries caused by gunshot wounds and to determine if sonography can be used to detect and differentiate various scrotal abnormalities. If patients are managed conservatively, less serious injuries (hydroceles, hematoceles, and scrotal hematomas) must be separated from those requiring urgent surgical repair (testicular rupture). Sonograms obtained in 19 patients to evaluate gunshot wounds to the scrotum were studied for evidence of testicular rupture, extratesticular soft-tissue abnormalities, and the presence and location of foreign bodies. The results were compared with clinical (19 patients) and surgical (six patients) findings. Retrospective review of the sonograms showed normal testicles without evidence of rupture in 11 patients, eight of whom had scrotal hematomas, hydroceles, or hematoceles. Nine of the 11 patients were treated conservatively, and their symptoms resolved. In one of the other two patients, a prominent vessel was initially mistaken for a fracture plane; the testicle was found to be intact at surgery. The other patient was taken to surgery to remove a bullet in the peritesticular soft tissues; surgery demonstrated intact, viable testicles bilaterally, but both epididymides had through-and-through tracts from the bullet. Two patients had sonolucent tracks from missile pathways in otherwise normal appearing testicles. Testicular rupture was sonographically detected in six patients. Sonograms in all patients with surgically confirmed testicular rupture showed heterogeneous echogenicity and loss of smooth oval contour. In one patient, the sonogram showed a fracture plane. Sonograms showed foreign bodies in five patients and localized them to the testicular parenchyma (one patient) and to extratesticular soft tissues (four patients). Sonography can distinguish various scrotal abnormalities caused by ballistic trauma, information that can be useful to the urologist if conservative management is considered. Sonography can be used to distinguish less serious injuries such as scrotal hematomas, hydroceles, and hematoceles from surgical emergencies such as testicular rupture. Foreign body presence and location can also be determined. Epididymal injuries were not well visualized.

  12. Modeling Of Spontaneous Multiscale Roughening And Branching of Ruptures Propagating On A Slip-Weakening Frictional Fault

    NASA Astrophysics Data System (ADS)

    Elbanna, A. E.

    2013-12-01

    Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.

  13. Simultaneous bilateral distal biceps tendon ruptures repaired using an endobutton technique: a case report.

    PubMed

    Dacambra, Mark P; Walker, Richard Ea; Hildebrand, Kevin A

    2013-08-23

    The simultaneous rupture of both distal biceps tendons is a rare clinical entity that is difficult to treat and can have poor outcomes. A variety of treatment and rehabilitation options exist and have been reported for single sided and staged bilateral repairs, but none have described an approach for acute bilateral ruptures. Repairing distal biceps tendon ruptures using a single anterior incision and a cortical suspensory button technique has become increasingly popular in recent years. We present a report of our surgical approach using an endobutton technique and rehabilitation algorithm for this unusual injury pattern. A 43-year-old Caucasian man presented with acute onset bilateral elbow pain while lifting a large sheet of drywall off the ground. He initially felt a 'pop' on the right and almost immediately felt another on the left after having to quickly shift the weight. He was unable to continue working and sought medical attention. His pain was predominantly in his bilateral antecubital fossae and he had significant swelling and ecchymoses. His clinical examination demonstrated no palpable tendon, a retracted biceps muscle belly, and clear supination weakness. Magnetic resonance imaging was performed and showed bilateral distal biceps tendon ruptures with retraction on both sides. After discussion with our patient, we decided that both sides would be repaired using a single anterior incision with endobutton fixation, first his right followed by his left six weeks later. Overall, our patient did very well and had returned to full manual work by our last follow-up at 30 months. Although he was never able to return to competitive recreational hockey and was left with mild lateral antebrachial cutaneous nerve dysesthesias on his right, he felt he was at 85% of his premorbid level of function. We describe what we believe to be, to the best of our knowledge, the first case of simultaneous bilateral distal biceps tendon ruptures successfully treated with a single-incision endobutton technique, which represents a valid option in managing this difficult problem.

  14. Strong Ground Motion Analysis and Afterslip Modeling of Earthquakes near Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Gong, J.; McGuire, J. J.

    2017-12-01

    The Mendocino Triple Junction (MTJ) is one of the most seismically active regions in North America in response to the ongoing motions between North America, Pacific and Gorda plates. Earthquakes near the MTJ come from multiple types of faults due to the interaction boundaries between the three plates and the strong internal deformation within them. Understanding the stress levels that drive the earthquake rupture on the various types of faults and estimating the locking state of the subduction interface are especially important for earthquake hazard assessment. However due to lack of direct offshore seismic and geodetic records, only a few earthquakes' rupture processes have been well studied and the locking state of the subducted slab is not well constrained. In this study we first use the second moment inversion method to study the rupture process of the January 28, 2015 Mw 5.7 strike slip earthquake on Mendocino transform fault using strong ground motion records from Cascadia Initiative community experiment as well as onshore seismic networks. We estimate the rupture dimension to be of 6 km by 3 km and a stress drop of 7 MPa on the transform fault. Next we investigate the frictional locking state on the subduction interface through afterslip simulation based on coseismic rupture models of this 2015 earthquake and a Mw 6.5 intraplate eathquake inside Gorda plate whose slip distribution is inverted using onshore geodetic network in previous study. Different depths for velocity strengthening frictional properties to start at the downdip of the locked zone are used to simulate afterslip scenarios and predict the corresponding surface deformation (GPS) movements onshore. Our simulations indicate that locking depth on the slab surface is at least 14 km, which confirms that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected near the coast.

  15. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  16. Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Pike, D. Q.

    2011-12-01

    Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from < 0.001 to approximately 0.47 of the domain size. The addition of spatial correlation to the compressibility significantly alters the model results including: 1) Accumulation of larger amounts of strain prior to the first rupture event; 2) Initiation of the percolating backbone at lower amounts of cumulative strain; 3) Changes in the event size distribution to a combined power-law and exponential distribution with a smaller power; and 4) Evolution of the spatial-temporal distribution of rupture event locations from a purely Poisson process to a complex pattern of clustered events with periodic patterns indicative of emergent phenomena. Switching the stress field from compressive to quiescent, or extensional, during the CA simulation results in a fault zone with a complex permeability pattern and disconnected zones of over-pressured fluid that serves as the initial conditions for simulation of capillary invasion of a separate fluid phase. We use Modified Invasion Percolation to simulate the invasion of a less dense fluid into the fault zone. Results show that the variability in fluid displacement measures caused by the heterogeneous permeability field and initial pressure conditions are significant. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  17. Should tsunami simulations include a nonzero initial horizontal velocity?

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.[Figure not available: see fulltext.

  18. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  19. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome.

    PubMed

    Byers, Peter H; Belmont, John; Black, James; De Backer, Julie; Frank, Michael; Jeunemaitre, Xavier; Johnson, Diana; Pepin, Melanie; Robert, Leema; Sanders, Lynn; Wheeldon, Nigel

    2017-03-01

    Vascular Ehlers Danlos syndrome (vEDS) is an uncommon genetic disorders characterized by arterial aneurysm, dissection and rupture, bowel rupture, and rupture of the gravid uterus. The frequency is estimated as 1/50,000-1/200,000 and results from pathogenic variants in COL3A1, which encodes the chains of type III procollagen, a major protein in vessel walls and hollow organs. Initial diagnosis depends on the recognitions of clinical features, including family history. Management is complex and requires multiple specialists who can respond to and manage the major complications. A summary of recommendations for management include: Identify causative variants in COL3A1 prior to application of diagnosis, modulate life style to minimize injury, risk of vessel/organ rupture, identify and create care team, provide individual plans for emergency care ("vascular EDS passport") with diagnosis and management plan for use when traveling, centralize management at centers of excellence (experience) when feasible, maintain blood pressure in the normal range and treat hypertension aggressively, surveillance of vascular tree by doppler ultrasound, CTA (low radiation alternatives) or MRA if feasible on an annual basis. These recommendations represent a consensus of an international group of specialists with a broad aggregate experience in the care of individuals with vascular EDS that will need to be assessed on a regular basis as new information develops. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin.

    PubMed

    Brown, Richard G; Marchesi, Julian R; Lee, Yun S; Smith, Ann; Lehne, Benjamin; Kindinger, Lindsay M; Terzidou, Vasso; Holmes, Elaine; Nicholson, Jeremy K; Bennett, Phillip R; MacIntyre, David A

    2018-01-24

    Preterm prelabour rupture of the fetal membranes (PPROM) precedes 30% of preterm births and is a risk factor for early onset neonatal sepsis. As PPROM is strongly associated with ascending vaginal infection, prophylactic antibiotics are widely used. The evolution of vaginal microbiota compositions associated with PPROM and the impact of antibiotics on bacterial compositions are unknown. We prospectively assessed vaginal microbiota prior to and following PPROM using MiSeq-based sequencing of 16S rRNA gene amplicons and examined the impact of erythromycin prophylaxis on bacterial load and community structures. In contrast to pregnancies delivering at term, vaginal dysbiosis characterised by Lactobacillus spp. depletion was present prior to the rupture of fetal membranes in approximately a third of cases (0% vs. 27%, P = 0.026) and persisted following membrane rupture (31%, P = 0.005). Vaginal dysbiosis was exacerbated by erythromycin treatment (47%, P = 0.00009) particularly in women initially colonised by Lactobacillus spp. Lactobacillus depletion and increased relative abundance of Sneathia spp. were associated with subsequent funisitis and early onset neonatal sepsis. Our data show that vaginal microbiota composition is a risk factor for subsequent PPROM and is associated with adverse short-term maternal and neonatal outcomes. This highlights vaginal microbiota as a potentially modifiable antenatal risk factor for PPROM and suggests that routine use of erythromycin for PPROM be re-examined.

  1. Combined uterine and urinary bladder rupture: an unusual complication of obstructed labor in a primigravida

    PubMed Central

    Takai, Idris Usman; Abubakar, Abdulkadir

    2016-01-01

    Background Combined uterine and urinary bladder rupture following prolonged obstructed labor is indeed a momentous uro-obstetric emergency. The urinary bladder involvement is distinctly rare in the absence of factors that predispose the bladder to be adherent to the lower uterine segment and is quite unusual in a primigravida. Objective To report a rare case of uterine rupture involving urinary bladder secondary to a prolonged obstructed labor in a primigravida from a low resource setting. Case A 17-year-old married unbooked primigravida who presented with a 3-day history of spontaneous onset of labor at term that was initially managed at home and later in a primary health care center where she had fundal pressure and oxytocin augmentation, respectively. The labor was complicated by combined uterine and urinary bladder rupture with sepsis. She was resuscitated and had exploratory laparotomy with uterine and urinary bladder repair. The postoperative period was uneventful and she was followed-up at the gynecology and family planning clinics. Conclusion There is a need for community reawakening on the inherent risks of teenage pregnancy, bad obstetric practices, and unsupervised pregnancy, labor, and delivery, particularly in the rural settings as in the index patient. A high index of suspicion and prompt appropriate intervention will reduce the sequel of morbidity and occasional mortality from this predicament. PMID:27499647

  2. Slow Unlocking Processes Preceding the 2015 Mw 8.4 Illapel, Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Meng, Lingsen

    2018-05-01

    On 16 September 2015, the Mw 8.4 Illapel earthquake occurred in central Chile with no intense foreshock sequences documented in the regional earthquake catalog. Here we employ the matched-filter technique based on an enhanced template data set of previously catalogued events. We perform a continuous search over an 4-year period before the Illapel mainshock to recover the uncatalogued small events and repeating earthquakes. Repeating earthquakes are found both to the north and south of the mainshock rupture zone. To the south of the rupture zone, the seismicity and repeater-inferred aseismic slip progressively accelerate around the Illapel epicenter starting from 140 days before the mainshock. This may indicate an unlocking process involving the interplay of seismic and aseismic slip. The acceleration culminates in a M 5.3 event of low-angle thrust mechanism, which occurred 36 days before the Mw 8.4 mainshock. It is then followed by a relative quiescence in seismicity until the mainshock occurred. This quiescence might correspond to an intermediate period of stable slip before rupture initiation. In addition, to the north of the mainshock rupture area, the last aseismic-slip episode occurs within 175-95 days before the mainshock and accumulates the largest amount of slip in the observation period. The simultaneous occurrence of aseismic-slip transients over a large area is consistent with large-scale slow unlocking processes preceding the Illapel mainshock.

  3. [Effect of the association of inhibitors of the H 1 and H 2 histamine receptors in the mechanism of rupture of the gastric barrier in the dog in vivo].

    PubMed

    Ceriani, T; Moggio, R; Gnes, F; Ventura, U

    1980-09-30

    Two specific inhibitors of histamine receptors, H1 mepiramine (Mp) and H2 cimetidine (Cm), were used in combination to define the role of histamine in the mechanisms of gastric barrier rupture in the dog "in vivo". A gastrolesive substance butyric acid (Ac.B. 75 mM) in hydrocloric acid solution (HCl 75 mM) was perfused through Heidenhain pouches in the presence or absence of Mp (10 mg/Kg i.m.) and Cm (1 mg/Kg/h i.v.). The results obtained showed: 1) Ac.B. caused a remarkable increase in H+ and Na+ fluxes, enhanced K+ secretion and decreased transparietal potential difference (D.P.). 2) Histamine inhibitors in combination uneffected changes of the ionic fluxes and D.P. produced by Ac.B. 3) Reversal to normal of both ionic fluxes and D.P. was not accelerated by the combination of Mp and Cm. The conclusion was reached that in the initial phase of gastric barrier rupture damage of gastric mucosa occurs by mechanisms non histamine-dependent.

  4. Probabilistic approach for earthquake scenarios in the Marmara region from dynamic rupture simulations

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo

    2014-05-01

    The Marmara region (Turkey) along the North Anatolian fault is known as a high potential of large earthquakes in the next decades. For the purpose of seismic hazard/risk evaluation, kinematic and dynamic source models have been proposed (e.g. Oglesby and Mai, GJI, 2012). In general, the simulated earthquake scenarios depend on the hypothesis and cannot be verified before the expected earthquake. We then introduce a probabilistic insight to give the initial/boundary conditions to statistically analyze the simulated scenarios. We prepare different fault geometry models, tectonic loading and hypocenter locations. We keep the same framework of the simulation procedure as the dynamic rupture process of the adjacent 1999 Izmit earthquake (Aochi and Madariaga, BSSA, 2003), as the previous models were able to reproduce the seismological/geodetic aspects of the event. Irregularities in fault geometry play a significant role to control the rupture progress, and a relatively large change in geometry may work as barriers. The variety of the simulate earthquake scenarios should be useful for estimating the variety of the expected ground motion.

  5. Physical Factors Effecting Cerebral Aneurysm Pathophysiology

    PubMed Central

    Sadasivan, Chander; Fiorella, David J.; Woo, Henry H.; Lieber, Baruch B.

    2013-01-01

    Many factors that are either blood-, wall-, or hemodynamics-borne have been associated with the initiation, growth, and rupture of intracranial aneurysms. The distribution of cerebral aneurysms around the bifurcations of the circle of Willis has provided the impetus for numerous studies trying to link hemodynamic factors (flow impingement, pressure, and/or wall shear stress) to aneurysm pathophysiology. The focus of this review is to provide a broad overview of such hemodynamic associations as well as the subsumed aspects of vascular anatomy and wall structure. Hemodynamic factors seem to be correlated to the distribution of aneurysms on the intracranial arterial tree and complex, slow flow patterns seem to be associated with aneurysm growth and rupture. However, both the prevalence of aneurysms in the general population and the incidence of ruptures in the aneurysm population are extremely low. This suggests that hemodynamic factors and purely mechanical explanations by themselves may serve as necessary, but never as necessary and sufficient conditions of this disease’s causation. The ultimate cause is not yet known, but it is likely an additive or multiplicative effect of a handful of biochemical and biomechanical factors. PMID:23549899

  6. Pregnancy Luteoma in Ectopic Pregnancy: A Case Report.

    PubMed

    Brar, Rupinder Kaur; Bharti, Jyotsna Naresh; Nigam, Jitendra Singh; Sehgal, Sahil; Singh, Hena Paul; Ojha, Pushpanjali

    2017-01-01

    Pregnancy luteoma is a rare non neoplastic condition of the ovary. It is usually asymptomatic and found incidentally during imaging in pregnancy or during cesarean section. Pregnancy luteoma can also occur after ectopic pregnancy. A 30 year old female presented to G.B. Pant Hospital, Andaman and Nicobar Islands institute of Medical Sciences, Port Blair in October 2015 with abdominal pain. After initial investigations, exploratory laporotomy was done for ruptured ectopic pregnancy. Enlarged ovary was removed along with the ruptured portion of fallopian tube. Histopathological examination revealed solid aggregates of large cells with abundant eosinophilic cytoplasm; diagnosis of pregnancy luteoma was given. It must be considered in the differential diagnosis of ovarian masses in pregnant females that early diagnosis of this entity may avoid unnecessary radical surgery.

  7. Spontaneous intraperitoneal rupture of a postpartum rectus sheath haematoma.

    PubMed

    Elmoghrabi, Adel; Mohamed, Mohamed; McCann, Michael; Sachwani-Daswani, Gul

    2016-03-09

    A 35-year-old woman presented to the emergency department (ED) with acute severe abdominal pain at 4 days postpartum. CT of the abdomen revealed a type II rectus sheath haematoma for which she was initially treated conservatively and discharged. A few hours later, she returned to the ED with a picture suggestive of peritonitis. Exploratory laparoscopy was performed and revealed haemoperitoneum and a ruptured area on the posterior rectus sheath. Approximately 2 L of blood was aspirated. Haemostatic control was achieved and closed suction drains secured in position. The patient was discharged in stable condition on postadmission day 6. She continued to follow-up on an outpatient basis and was doing well 3 months postoperatively. 2016 BMJ Publishing Group Ltd.

  8. Spontaneous intraperitoneal rupture of a postpartum rectus sheath haematoma

    PubMed Central

    Elmoghrabi, Adel; McCann, Michael; Sachwani-Daswani, Gul

    2016-01-01

    A 35-year-old woman presented to the emergency department (ED) with acute severe abdominal pain at 4 days postpartum. CT of the abdomen revealed a type II rectus sheath haematoma for which she was initially treated conservatively and discharged. A few hours later, she returned to the ED with a picture suggestive of peritonitis. Exploratory laparoscopy was performed and revealed haemoperitoneum and a ruptured area on the posterior rectus sheath. Approximately 2 L of blood was aspirated. Haemostatic control was achieved and closed suction drains secured in position. The patient was discharged in stable condition on postadmission day 6. She continued to follow-up on an outpatient basis and was doing well 3 months postoperatively. PMID:26961567

  9. Musculoskeletal management of a patient with a history of chronic ankle sprains: identifying rupture of peroneal brevis and peroneal longus with diagnostic ultrasonography.

    PubMed

    Bruin, Dick B; von Piekartz, Harry

    2014-09-01

    The purpose of this case report is to describe the use of mobilization and eccentric exercise training for a patient with ankle pain and a history of chronic ankle sprains and discuss the course of diagnostic decision making when the patient did not respond to care. A 48-year-old police officer who had sustained multiple ankle sprains throughout his life presented with pain and restriction in his ability to walk, run, and work. The Global Rating of Change Scale score was - 6, the Numeric Pain Rating Scale score was 7/10, and the Lower Extremity Functional Scale score was - 33. Palpation of the peroneus longus and brevis muscles and inversion with overpressure reproduced the chief concern (Numeric Pain Rating Scale 7/10). The patient was initially diagnosed with chronic peroneal tendinopathy. Treatment included lateral translation mobilization of the talocrural joint combined with eccentric exercise using an elastic band for the peroneal muscles. The patient reported improvement in pain and function during the course of intervention but not as rapidly as expected. Therefore, follow-up ultrasonographic imaging and radiography were performed. These studies revealed partial rupture of the peroneal brevis muscle and total rupture of the peroneal longus muscle. A patient with long-term concerns of the foot complex with a diagnosis of peroneal tendinopathy showed slight improvement with eccentric exercises combined with manual therapy of the talocrural joint. After a course of treatment but minimal response, a diagnosis of tendon rupture was confirmed with diagnostic ultrasonography. Clinicians should be aware that when injuries do not improve with care, tendon rupture should be considered.

  10. Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks

    NASA Astrophysics Data System (ADS)

    Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.

    2017-12-01

    The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.

  11. Fan-structure waves in shear ruptures

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  12. Cytokine mRNA expression in synovial fluid of affected and contralateral stifle joints and the left shoulder joint in dogs with unilateral disease of the stifle joint.

    PubMed

    de Bruin, Tanya; de Rooster, Hilde; van Bree, Henri; Duchateau, Luc; Cox, Eric

    2007-09-01

    To examine mRNA expression of cytokines in synovial fluid (SF) cells from dogs with cranial cruciate ligament (CrCL) rupture and medial patellar luxation (MPL) and determine mRNA expression for 3 joints (affected stifle, unaffected contralateral stifle, and left shoulder joints) in dogs with unilateral CrCL rupture. 29 stifle joints with CrCL rupture (29 dogs), 8 stifle joints with MPL (7 dogs), and 24 normal stifle joints (16 clinically normal dogs). Immediately before reconstructive surgery, SF was aspirated from the cruciate-deficient stifle joint or stifle joint with MPL. Fourteen of 29 dogs had unilateral CrCL rupture; SF was also aspirated from the unaffected contralateral stifle joint and left shoulder joint. Those 14 dogs were examined 6 and 12 months after reconstructive surgery. Total RNA was extracted from SF cells and reverse transcription-PCR assay was performed to obtain cDNA. Canine-specific cytokine mRNA expression was determined by use of a real-time PCR assay. Interleukin (IL)-8 and -10 and interferon-gamma expression differed significantly between dogs with arthropathies and dogs with normal stifle joints. For the 14 dogs with unilateral CrCL rupture, a significant difference was found for IL-8 expression. Before reconstructive surgery, IL-8 expression differed significantly between the affected stifle joint and left shoulder joint or contralateral stifle joint. Six months after surgery, IL-8 expression was significantly increased in the unaffected contralateral stifle joint, compared with the shoulder joint. No conclusions can be made regarding the role of the examined cytokines in initiation of CrCL disease.

  13. Constraining earthquake source inversions with GPS data: 2. A two-step approach to combine seismic and geodetic data sets

    USGS Publications Warehouse

    Custodio, S.; Page, M.T.; Archuleta, R.J.

    2009-01-01

    We present a new method to combine static and wavefield data to image earthquake ruptures. Our combined inversion is a two-step procedure, following the work of Hernandez et al. (1999), and takes into account the differences between the resolutions of the two data sets. The first step consists of an inversion of the static field, which yields a map of slip amplitude. This inversion exploits a special irregular grid that takes into account the resolution of the static data. The second step is an inversion of the radiated wavefield; it results in the determination of the time evolution of slip on the fault. In the second step, the slip amplitude is constrained to resemble the static slip amplitude map inferred from the GPS inversion. Using this combined inversion, we study the source process of the 2004 M6 Parkfield, California, earthquake. We conclude that slip occurred in two main regions of the fault, each of which displayed distinct rupture behaviors. Slip initiated at the hypocenter with a very strong bilateral burst of energy. Here, slip was localized in a narrow area approximately 10 km long, the rupture velocity was very fast (???3.5 km/s), and slip only lasted a short period of time (<1 s). Then the rupture proceeded to a wider region 12-20 km northwest of the hypocenter. Here, the earthquake developed in a more moderated way: the rupture velocity slowed to ???3.0 km/s and slip lasted longer (1-2 s). The maximum slip amplitude was 0.45 m. Copyright 2009 by the American Geophysical Union.

  14. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  15. Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment.

    PubMed

    Smith, T O; Postle, K; Penny, F; McNamara, I; Mann, C J V

    2014-03-01

    The purpose of this study was to determine the optimal clinical and cost-effective strategy for managing people following ACL rupture. A systematic review of the published (AMED, CINAHL, MEDLINE, EMBASE, PubMed, psycINFO and the Cochrane Library) and unpublished literature (OpenGrey, the WHO International Clinical Trials Registry Platform, Current Controlled Trials and the UK National Research Register Archive) was conducted on April 2013. All randomised and non-randomised controlled trials evaluating clinical or health economic outcomes of isolated ligament reconstruction versus non-surgical management following ACL rupture were included. Methodological quality was assessed using the PEDro appraisal tool. When appropriate, meta-analysis was conducted to pool data. From a total of 943 citations, sixteen studies met the eligibility criteria. These included 1397 participants, 825 who received ACL reconstruction versus 592 who were managed non-surgically. The methodological quality of the literature was poor. The findings indicated that whilst reconstructed ACL offers significantly greater objective tibiofemoral stability (p<0.001), there appears limited evidence to suggest a superiority between reconstruction versus non-surgical management in functional outcomes. There was a small difference between the management strategies in respect to the development of osteoarthritis during the initial 20 years following index management strategy (Odds Ratio 1.56; p=0.05). The current literature is insufficient to base clinical decision-making with respect to treatment opinions for people following ACL rupture. Whilst based on a poor evidence, the current evidence would indicate that people following ACL rupture should receive non-operative interventions before surgical intervention is considered. © 2013.

  16. Initial presentations and final outcomes of primary pyogenic liver abscess: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Although pyogenic liver abscess (PPLA) fatalities are decreasing owing to early diagnosis and effective treatments, PPLA-associated complications still exist. The purpose of this study was to analyze the characteristic features of initial presentations and final outcomes of PPLA caused by different pathogens. Methods This retrospective study collected and analyzed information regarding initial presentations and final outcomes in patients diagnosed with PPLA at admitted at Changhua Christian Hospital from January 1 to December 31, 2010. Results During the study period, we analyzed the records of a total of 134 patients with documented PPLA. There were no significant causative pathogen-related differences in symptoms at initial presentation. Compared with the survivor group, patients in the mortality group were characterized by male gender (p < 0.001), malignancy (p < 0.001), respiratory distress (p =0.007), low blood pressure (p = 0.024), jaundice (p = < 0.001), rupture of liver abscess (p < 0.001), endophthalmitis (p = 0.003), and multiple organ failure (p < 0.001). No patients received liver transplantation or were diagnosed with HIV during the study period. According to univariate logistic regression analysis, gender (OR = 1.185, 95% CI: 0.284–11.130, p = 0.006), malignancy (OR = 2.067, 95% CI: 1.174–13.130, p = 0.004), respiratory distress (OR = 1.667, 95% CI: 1.164–14.210, p = 0.006), low blood pressure (OR = 2.167, 95% CI: 2.104–13.150, p = 0.003), jaundice (OR = 1.9, 95% CI: 1.246–3.297, p = 0.008), rupture of liver abscess (OR = 5.167, 95% CI: 2.194–23.150, p = 0.003), endophthalmitis (OR = 2.167, 95% CI: 1.234–13.140, p = 0.005), and multiple organ failure (OR = 3.067, 95% CI: 1.184–15.150, p = 0.001) differed significantly between the mortality and survivor groups. Conclusion Although the initial presentations of PPLA caused by different pathogens were similar, there were significant differences in mortality in cases involving: (1) male patients, (2) malignancy, (3) initial respiratory distress, (4) initial low blood pressure, (5) jaundice, (6) rupture of liver abscess, (7) endophthalmitis, , and (8) multiple organ failure. We strongly recommend using a severity score of the disease to determine the risk of mortality for each patient with PPLA. In order to prevent complications and reduce mortality, more attention must be paid to high-risk PPLA patients. PMID:25066384

  17. Should tsunami models use a nonzero initial condition for horizontal velocity?

    NASA Astrophysics Data System (ADS)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.

  18. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian noise where the duration of the time window and the starting rupture is determined by the slip rate function at each point in the fault (Dalguer et al, 2002). Finally, to validate this method we compare the synthetic seismograms with the recorded ground motion for the 2011 Tohoku earthquake up to 10 Hz.

  19. A model for predicting high-temperature fatigue failure of a W/Cu composite

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1991-01-01

    The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system.

  20. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  1. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    USGS Publications Warehouse

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  2. Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks

    USGS Publications Warehouse

    Mueller, K.; Hough, S.E.; Bilham, R.

    2004-01-01

    Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois-an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large midplate earthquake sequences may extend over a much broader region than previously suspected.

  3. [Clinical evaluation of propess for induction of term pregnancy].

    PubMed

    Gai, Ming-ying; Zhang, Jian-ping; Li, Yang; Han, Hong-jing; Yang, Jian-qiu; Wang, Shan-mi; Su, Qi-feng; Wu, Lian-fang

    2003-04-01

    To explore the efficacy and safety of continuously released prostaglandin E(2) (PGE(2)) suppository-propess used for induction of term pregnancy. A multicenter, prospective, case control clinical study was carried out, propess was used in 100 cases as study group, the suppository without PGE(2) was used in 49 cases as control group. The cervical maturity (by Bishop scoring), the time to labor starting, membrane rupture and delivery, the application of oxytocin, ceserean section rate, fetal and neonatal condition were compared between 2 groups after inserting of the suppository. At the same time, side effects caused by propess were investigated. Bishop score was increased >or= 2 points in 93% cases, >or= 3 points in 87% cases in study group, whereas only 4% cases whose Bishop score increased >or= 2 points in control group. The time to labor starting, membrane rupture, and delivery was shortened obviously in study group than that in control group after inserting suppository. The application of oxytocin was much less in study group, cesarean section rate was reduced in study group (32% vs 61%). There was no significant difference between 2 groups in fetal and neonatal conditions. The overstimulation of uterine contraction and mild gastrointestinal tract reaction occurred in 3 cases and 2 cases respectively in study groups. Propess can be used for induction of term pregnancy effectively and safely.

  4. Texture Studies and Compression Behaviour of Apple Flesh

    NASA Astrophysics Data System (ADS)

    James, Bryony; Fonseca, Celia

    Compressive behavior of fruit flesh has been studied using mechanical tests and microstructural analysis. Apple flesh from two cultivars (Braeburn and Cox's Orange Pippin) was investigated to represent the extremes in a spectrum of fruit flesh types, hard and juicy (Braeburn) and soft and mealy (Cox's). Force-deformation curves produced during compression of unconstrained discs of apple flesh followed trends predicted from the literature for each of the "juicy" and "mealy" types. The curves display the rupture point and, in some cases, a point of inflection that may be related to the point of incipient juice release. During compression these discs of flesh generally failed along the centre line, perpendicular to the direction of loading, through a barrelling mechanism. Cryo-Scanning Electron Microscopy (cryo-SEM) was used to examine the behavior of the parenchyma cells during fracture and compression using a purpose designed sample holder and compression tester. Fracture behavior reinforced the difference in mechanical properties between crisp and mealy fruit flesh. During compression testing prior to cryo-SEM imaging the apple flesh was constrained perpendicular to the direction of loading. Microstructural analysis suggests that, in this arrangement, the material fails along a compression front ahead of the compressing plate. Failure progresses by whole lines of parenchyma cells collapsing, or rupturing, with juice filling intercellular spaces, before the compression force is transferred to the next row of cells.

  5. Investigation of possibility of surface rupture derived from PFDHA and calculation of surface displacement based on dislocation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Irikura, K.

    2013-12-01

    A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.

  6. Scale-Dependent Friction and Damage Interface law: implications for effective earthquake rupture dynamics and radiation

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Vilotte, Jean-Pierre; Raous, Michel; Henninger, Carole

    2010-05-01

    Propagation and radiation of an earthquake rupture is commonly considered as a friction dominated process on fault surfaces. Friction laws, such as the slip weakening and the rate-and-state laws are widely used in the modeling of the earthquake rupture process. These laws prescribe the traction evolution versus slip, slip rate and potentially other internal variables. They introduce a finite cohesive length scale over which the fracture energy is released. However faults are finite-width interfaces with complex internal structures, characterized by highly damaged zones embedding a very thin principal slip interface where most of the dynamic slip localizes. Even though the rupture process is generally investigated at wavelengths larger than the fault zone thickness, which should justify a formulation based upon surface energy, a consistent homogeneization, a very challenging problem, is still missing. Such homogeneization is however be required to derive the consistent form of an effective interface law, as well as the appropriate physical variables and length scales, to correctly describe the coarse-grained dissipation resulting from surface and volumetric contributions at the scale of the fault zone. In this study, we investigate a scale-dependent law, introduced by Raous et al. (1999) in the context of adhesive material interfaces, that takes into account the transition between a damage dominated and a friction dominated state. Such a phase-field formalism describes this transition through an order parameter. We first compare this law to standard slip weakening friction law in terms of the rupture nucleation. The problem is analyzed through the representation of the solution of the quasi-static elastic problem onto the Chebyshev polynomial basis, generalizing the Uenishi-Rice solution. The nucleation solutions, at the onset of instability, are then introduced as initial conditions for the study of the dynamic rupture propagation, in the case of in-plane rupture, using high-order Spectral Element Methods and non-smooth contact mechanics. In particular, we investigate the implications of this new interface law in terms of the rupture propagation and arrest. Special attention is focused on radiation and supershear transition. Comparison with the classical slip weakening friction law is provided. Finally, first results toward a dynamic consistent homogeneization of damaged fault zones will be discussed. Raous, M., Cangémi, L. and Cocou, M. (1999). A consistent model coupling adhesion, friction and unilateral contact', Computer Methods in Applied Mechanics and Engineering, Vol. 177, pp.383-399.

  7. Dynamic analysis of an inflatable dam subjected to a flood

    NASA Astrophysics Data System (ADS)

    Lowery, K.; Liapis, S.

    A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.

  8. Rupture of thin liquid films on structured surfaces

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Gatapova, Elizaveta Ya.; Kabov, Oleg A.

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  9. A laboratory nanoseismological study on deep-focus earthquake micromechanics

    PubMed Central

    Wang, Yanbin; Zhu, Lupei; Shi, Feng; Schubnel, Alexandre; Hilairet, Nadege; Yu, Tony; Rivers, Mark; Gasc, Julien; Addad, Ahmed; Deldicque, Damien; Li, Ziyu; Brunet, Fabrice

    2017-01-01

    Global earthquake occurring rate displays an exponential decay down to ~300 km and then peaks around 550 to 600 km before terminating abruptly near 700 km. How fractures initiate, nucleate, and propagate at these depths remains one of the greatest puzzles in earth science, as increasing pressure inhibits fracture propagation. We report nanoseismological analysis on high-resolution acoustic emission (AE) records obtained during ruptures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to the dominant mineral (Mg,Fe)2SiO4 olivine in the upper mantle, using state-of-the-art seismological techniques, in the laboratory. AEs’ focal mechanisms, as well as their distribution in both space and time during deformation, are carefully analyzed. Microstructure analysis shows that AEs are produced by the dynamic propagation of shear bands consisting of nanograined spinel. These nanoshear bands have a near constant thickness (~100 nm) but varying lengths and self-organize during deformation. This precursory seismic process leads to ultimate macroscopic failure of the samples. Several source parameters of AE events were extracted from the recorded waveforms, allowing close tracking of event initiation, clustering, and propagation throughout the deformation/transformation process. AEs follow the Gutenberg-Richter statistics with a well-defined b value of 1.5 over three orders of moment magnitudes, suggesting that laboratory failure processes are self-affine. The seismic relation between magnitude and rupture area correctly predicts AE magnitude at millimeter scales. A rupture propagation model based on strain localization theory is proposed. Future numerical analyses may help resolve scaling issues between laboratory AE events and deep-focus earthquakes. PMID:28776024

  10. Epistemic uncertainty in California-wide synthetic seismicity simulations

    USGS Publications Warehouse

    Pollitz, Fred F.

    2011-01-01

    The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock–mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ∼12 square kilometers in size, has been rediscretized into Graphic patches, each of ∼1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M∼5–8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.

  11. Epistemic uncertainty in California-wide synthetic seismicity simulations

    USGS Publications Warehouse

    Pollitz, F.F.

    2011-01-01

    The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock-mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ~12 square kilometers in size, has been rediscretized into ~100;000 patches, each of ~1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M ~ 5-8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.

  12. Generation of the September 29, 2009 Samoa Tsunami: Examination of a Possible Non-Double Couple Component (Invited)

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Kirby, S. H.; Ross, S.; Dartnell, P.

    2009-12-01

    A non-double couple component associated with the Mw=8.0 September 29, 2009 Samoa earthquake is investigated to explain direct tsunami arrivals at deep-ocean pressure sensors (i.e., DART stations). In particular, we seek a tsunami generation model that correctly predicts the polarity of first motions: negative at the Apia station (#51425) NW of the epicenter and positive at the Tonga (#51426) and Aukland (#54401) stations south of the epicenter. Slip on a single, finite fault corresponding to either nodal plane of the best-fitting double couple fails to predict the positive first-motion polarity observed at the southerly (Tonga and Aukland) DART stations. The Samoa earthquake has a significant non-double component as measured by the compensated linear vector dipole (CLVD) ratio that ranges from |ɛ|=0.15 (USGS CMT) to |ɛ| =0.37 (Global CMT). To test what effect the non-double component has on tsunami generation, the static elastic displacement field at the sea floor is computed from the full moment tensor. This displacement field represents the initial conditions for tsunami propagation computed using a finite-difference approximation to the linear shallow-water wave equations. The tsunami waveforms calculated from the full moment tensor are consistent with the observed polarities at all of the DART stations. The static displacement field is then decomposed into double-couple and non-double couple components to determine the relative contribution of each to the tsunami wavefield. Although a point-source approximation to the tsunami source is typically inadequate at near-field and regional distances, finite-fault inversions of the 2009 Samoa earthquake indicate that peak slip is spatially concentrated near the hypocenter, suggesting that the point-source representation may be acceptable in this case. Generation of the 2009 Samoa tsunami may involve earthquake rupture on multiple faults and/or along curved faults, both of which are observed from multibeam bathymetry in the epicentral region. The exact rupture path of the earthquake is presently unclear. It is evident from seismological and tsunami observations of the 2009 Samoa event, however, that uniform slip on a single, planar fault cannot explain all aspects of the observed tsunami wavefield.

  13. Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Lienkaemper, James J.; Pickering, Alexandra J; Avdievitch, Nikita N.

    2015-01-01

    The A.D. 2014 M6.0 South Napa earthquake, despite its moderate magnitude, caused significant damage to the Napa Valley in northern California (USA). Surface rupture occurred along several mapped and unmapped faults. Field observations following the earthquake indicated that the magnitude of postseismic surface slip was likely to approach or exceed the maximum coseismic surface slip and as such presented ongoing hazard to infrastructure. Using a laser scanner, we monitored postseismic deformation in three dimensions through time along 0.5 km of the main surface rupture. A key component of this study is the demonstration of proper alignment of repeat surveys using point cloud–based methods that minimize error imposed by both local survey errors and global navigation satellite system georeferencing errors. Using solid modeling of natural and cultural features, we quantify dextral postseismic displacement at several hundred points near the main fault trace. We also quantify total dextral displacement of initially straight cultural features. Total dextral displacement from both coseismic displacement and the first 2.5 d of postseismic displacement ranges from 0.22 to 0.29 m. This range increased to 0.33–0.42 m at 59 d post-earthquake. Furthermore, we estimate up to 0.15 m of vertical deformation during the first 2.5 d post-earthquake, which then increased by ∼0.02 m at 59 d post-earthquake. This vertical deformation is not expressed as a distinct step or scarp at the fault trace but rather as a broad up-to-the-west zone of increasing elevation change spanning the fault trace over several tens of meters, challenging common notions about fault scarp development in strike-slip systems. Integrating these analyses provides three-dimensional mapping of surface deformation and identifies spatial variability in slip along the main fault trace that we attribute to distributed slip via subtle block rotation. These results indicate the benefits of laser scanner surveys along active faults and demonstrate that fine-scale variability in fault slip has been missed by traditional earthquake response methods.

  14. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - A probabilistic approach

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.

    2009-01-01

    A key step in many earthquake source inversions requires knowledge of the geometry of the fault surface on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocentre and CMT mechanism can be problematic when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. Here, we attempt to improve the quality of fast finite-fault inversion results by combining several independent and complementary data sets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the ‘most-likely’ fault plane. Examples are shown for the trench in the source region of the Mw 8.6 Southern Sumatra earthquake of March 2005, and for the Northern Chile Trench in the source region of the November 2007 Antofagasta earthquake. We also show examples using only the historic catalogues in regions without recent great earthquakes, such as the Japan and Kamchatka Trenches. In most cases, this method produces a fault plane that is more consistent with all of the data available than is the plane implied by the initial hypocentre and CMT mechanism. Using the aggregated data sets, we have developed an algorithm to rapidly determine more accurate initial fault plane geometries for source inversions of future earthquakes.

  15. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  16. Adventitial adipogenic degeneration is an unidentified contributor to aortic wall weakening in the abdominal aortic aneurysm.

    PubMed

    Doderer, Stefan A; Gäbel, Gabor; Kokje, Vivianne B C; Northoff, Bernd H; Holdt, Lesca M; Hamming, Jaap F; Lindeman, Jan H N

    2018-06-01

    The processes driving human abdominal aortic aneurysm (AAA) progression are not fully understood. Although antiinflammatory and proteolytic strategies effectively quench aneurysm progression in preclinical models, so far all clinical interventions failed. These observations hint at an incomplete understanding of the processes involved in AAA progression and rupture. Interestingly, strong clinical and molecular associations exist between popliteal artery aneurysms (PAAs) and AAAs; however, PAAs have an extremely low propensity to rupture. We thus reasoned that differences between these aneurysms may provide clues toward (auxiliary) processes involved in AAA-related wall debilitation. A better understanding of the pathophysiologic processes driving AAA growth can contribute to pharmaceutical treatments in the future. Aneurysmal wall samples were collected during open elective and emergency repair. Control perirenal aorta was obtained during kidney transplantation, and reference popliteal tissue obtained from the anatomy department. This study incorporates various techniques including (immuno)histochemistry, Western Blot, quantitative polymerase chain reaction, microarray, and cell culture. Histologic evaluation of AAAs, PAAs, and control aorta shows extensive medial (PAA) and transmural fibrosis (AAA), and reveals abundant adventitial adipocytes aggregates as an exclusive phenomenon of AAAs (P < .001). Quantitative polymerase chain reaction, immunohistochemistry, Western blotting, and microarray analysis showed enrichment of adipogenic mediators (C/EBP family P = .027; KLF5 P < .000; and peroxisome proliferator activated receptor-γ, P = .032) in AAA tissue. In vitro differentiation tests indicated a sharply increased adipogenic potential of AAA adventitial mesenchymal cells (P < .0001). Observed enrichment of adipocyte-related genes and pathways in ruptured AAA (P < .0003) supports an association between the extent of fatty degeneration and rupture. This translational study identifies extensive adventitial fatty degeneration as an ignored and distinctive feature of AAA disease. Enrichment of adipocyte genesis and adipocyte-related genes in ruptured AAA point to an association between the extent of fatty degeneration and rupture. This observation may (partly) explain the failure of medical therapy and could provide a lead for pharmaceutical alleviation of AAA progression. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Verification of SORD, and Application to the TeraShake Scenario

    NASA Astrophysics Data System (ADS)

    Ely, G. P.; Day, S.; Minster, J.

    2007-12-01

    The Support Operator Rupture Dynamics (SORD) code provides a highly scalable (up to billions of nodes) computational tool for modeling spontaneous rupture on a non-planar fault surface embedded in a heterogeneous medium with surface topography. SORD successfully performs the SCEC Rupture Dynamics Code Validation Project tests, and we have undertaken further dynamic rupture tests assessing the effects of distorted hexahedral meshes on code accuracy. We generate a family of distorted meshes by simple shearing (applied both parallel and normal to the fault plane) of an initially Cartesian mesh. For shearing normal to the fault, shearing angle was varied, up to a maximum of 73-degrees. For SCEC Validation Problem 3, grid-induced errors increase with mesh-shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73-degrees, RMS misfits are about 10% for peak slip rate, and 0.5% for both rupture time and total slip, indicating that the method--which up to now we have applied mainly to near-vertical strike-slip faulting-- also is capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. The SORD code was used to reexamine the TeraShake 2 dynamics simulations of a M7.7 earthquake on the southern San Andreas Fault. Relative to the original (Olsen et al, 2007) TeraShake 2 simulations, our spontaneous rupture models find decreased peak ground velocities in the Los Angles basin, principally due to a shallower eastward connecting basin chain in the SCEC Velocity Model Version 4 (used in our simulations) compared to Version 3 (used by Olsen et al.). This is partially offset by including the effects of surface topography (which was not included in the Olsen et al. models) in the simulation, which increases PGV at some basin sites by as much as a factor of two. Some non-basin sites showed comparable decreases in PGV. These predicted topographic effects are quite large, so it is important to quantify SORD accuracy in the presence of non-planar free surface geometry. We test the case of a semi-circular canyon to an incident P wave, and find close agreement with boundary element methods, for surface amplification at wavelengths comparable to the canyon width.

  18. High-frequency seismic energy radiation from the 2003 Miyagi-Oki, JAPAN, earthquake (M7.0) as revealed from an envelope inversion analysis

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2003-12-01

    The 2003 Miyagi-Oki earthquake (M 7.0) took place on May 26, 2003 in the subducting Pacific plate beneath northeastern Japan. The focal depth is around 70km. The focal mechanism is reverse type on a fault plane dipping to the west with a high angle. There was no fatality, fortunately. However, this earthquake caused more than 100 injures, 2000 collapsed houses, and so on. To the south of this focal area by about 50km, an interplate earthquake of M7.5, the Miyagi-Ken-Oki earthquake, is expected to occur in the near future. So the relation between this earthquake and the expected Miyagi-Ken-Oki earthquake attracts public attention. Seismic-energy distribution on earthquake fault planes estimated by envelope inversion analyses can contribute to better understanding of the earthquake source process. For moderate to large earthquakes, seismic energy in frequencies higher than 1 Hz is sometimes much larger than a level expected from the omega-squared model with source parameters estimated by lower-frequency analyses. Therefore, an accurate estimation of seismic energy in such high frequencies has significant importance on estimation of dynamic source parameters such as the seismic energy or the apparent stress. In this study, we execute an envelope inversion analysis based on the method by Nakahara et al. (1998) and clarify the spatial distribution of high-frequency seismic energy radiation on the fault plane of this earthquake. We use three-component sum of mean squared velocity seismograms multiplied by a density of earth medium, which is called envelopes here, for the envelope inversion analysis. Four frequency bands of 1-2, 2-4, 4-8, and 8-16 Hz are adopted. We use envelopes in the time window from the onset of S waves to the lapse time of 51.2 sec. Green functions of envelopes representing the energy propagation process through a scattering medium are calculated based on the radiative transfer theory, which are characterized by parameters of scattering attenuation and intrinsic absorption. We use the values obtained for the northeastern Japan (Sakurai, 1995). We assume the fault plane as follows: strike=193,a, dip=69,a, rake=87,a, length=30km, width=25km with referrence to a waveform inversion analysis in low-frequencies (e.g. Yagi, 2003). We divide this fault plane into 25 subfaults, each of which is a 5km x 5km square. Rupture velocity is assumed to be constant. Seismic energy is radiated from a point source as soon as the rupture front passes the center of each subfault. Time function of energy radiation is assumed as a box-car function. The amount of seismic energy from all the subfaults and site amplification factors for all the stations are estimated by the envelope inversion method. Rupture velocity and the duration time of a box-car function should be estimated by a grid search. Theoretical envelopes calculated with best-fit parameters generally fit to observed ones. The rupture velocity and duration time were estimated as 3.8 km/s and 1.6 sec, respectively. The high-frequency seismic energy was found to be radiated mainly from two spots on the fault plane: The first one is around the initial rupture point and the second is the northern part of the fault plane. These two spots correspond to observed two peaks on envelopes. Amount of seismic energy increases with increasing frequency in the 1-16Hz band, which contradicts an expectation from the omega-squared model. Therefore, stronger radiation of higher-frequency seismic energy is a prominent character of this earthquake. Acknowledgements: We used strong-motion seismograms recorded by the K-NET and KiK-net of NIED, JAPAN.

  19. Comprehensive investigation of the metal in drums of boilers at thermal power stations

    NASA Astrophysics Data System (ADS)

    Ozhigov, L. S.; Mitrofanov, A. S.; Tolstolutskaya, G. D.; Vasilenko, R. L.; Rudenko, A. G.; Ruzhytskyi, V. V.; Ribalchenko, N. D.; Shramchenko, S. V.

    2017-05-01

    A comparative investigation of the metal of drums of two TP-100 boilers at the Starobeshevskaya and the Lugansk thermal power stations (TPS) was performed. Their operation time was approximately 300000 hours; the shell of one drum was ruptured during a hydraulic test, and the other drum is in operation. According to the results of the technical diagnostics and a strength analysis, both drums comply with the applicable regulatory requirements. The objects of the investigation were fragments of the ruptured drum and a "plug" cut out of the shell during a scheduled inspection. The investigation was carried out by microscopic metallography methods and the scanning electron microscopy technique. Mechanical tests of metal specimens were performed, and the hydrogen content in these specimens was measured. Prior to the material research, the metal was examined using a magnetic memory method. The investigation yielded specifics of the metal microstructure, mechanical properties, and fracture patterns of the metal specimens at various temperatures. An investigation performed by the method of thermal-desorption mass spectrometry revealed no considerable difference in the hydrogen content in the metal of both drums, thereby excluding the effect of hydrogenation in analyzing the rupture causes. It was established that the drum at the Starobeshevskaya TPS had been damaged due to its low impact strength at room temperature and high brittle-ductile transition point. Comparison of the metallographic study data with the results obtained using the magnetic memory method suggests that the fracture was caused by local formation of the Widmannstatten pattern at points where accessories are welded to the shell. The prospects are demonstrated of the comprehensive approach to nondestructive examination (NDE) of TPS drums using the magnetic memory technique and metallographic methods.

  20. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  1. The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction

    USGS Publications Warehouse

    Oppenheimer, D.; Beroza, G.; Carver, G.; Dengler, L.; Eaton, J.; Gee, L.; Gonzalez, F.; Jayko, A.; Li, W.H.; Lisowski, M.; Magee, M.; Marshall, G.; Murray, M.; McPherson, R.; Romanowicz, B.; Satake, K.; Simpson, R.; Somerville, P.; Stein, R.; Valentine, D.

    1993-01-01

    The 25 April 1992 magnitude 7.1 Cape Mendocino thrust earthquake demonstrated that the North America—Gorda plate boundary is seismogenic and illustrated hazards that could result from much larger earthquakes forecast for the Cascadia region. The shock occurred just north of the Mendocino Triple Junction and caused strong ground motion and moderate damage in the immediate area. Rupture initiated onshore at a depth of 10.5 kilometers and propagated up-dip and seaward. Slip on steep faults in the Gorda plate generated two magnitude 6.6 aftershocks on 26 April. The main shock did not produce surface rupture on land but caused coastal uplift and a tsunami. The emerging picture of seismicity and faulting at the triple junction suggests that the region is likely to continue experiencing significant seismicity.

  2. Pregnancy Luteoma in Ectopic Pregnancy: A Case Report

    PubMed Central

    Brar, Rupinder Kaur; Bharti, Jyotsna Naresh; Nigam, Jitendra Singh; Sehgal, Sahil; Singh, Hena Paul; Ojha, Pushpanjali

    2017-01-01

    Background: Pregnancy luteoma is a rare non neoplastic condition of the ovary. It is usually asymptomatic and found incidentally during imaging in pregnancy or during cesarean section. Pregnancy luteoma can also occur after ectopic pregnancy. Case Presentation: A 30 year old female presented to G.B. Pant Hospital, Andaman and Nicobar Islands institute of Medical Sciences, Port Blair in October 2015 with abdominal pain. After initial investigations, exploratory laporotomy was done for ruptured ectopic pregnancy. Enlarged ovary was removed along with the ruptured portion of fallopian tube. Histopathological examination revealed solid aggregates of large cells with abundant eosinophilic cytoplasm; diagnosis of pregnancy luteoma was given. Conclusion: It must be considered in the differential diagnosis of ovarian masses in pregnant females that early diagnosis of this entity may avoid unnecessary radical surgery. PMID:29062798

  3. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  4. Spontaneous rupture of the bladder during vomiting.

    PubMed

    Crawford, Ruairidh; Oliver, Thomas Richard William; Abboudi, Hamid; Shah, Shahzad

    2017-06-28

    A 46-year-old woman with no urological history or comorbidities presented with an acute abdomen with haematuria after a spell of protracted vomiting. The initial cystogram was negative; however, CT imaging highly suggested an intraperitoneal bladder perforation, which was confirmed during laparotomy and subsequently repaired. Cystoscopic evaluation prior to laparotomy revealed no concurrent bladder pathology, and the ureteric orifices were intact. A cystogram 2 weeks after repair demonstrated no leaks, and her catheters were removed. She recovered well, with expectant postoperative pain and lower urinary tract symptoms settling on 3-month review. Spontaneous bladder rupture is a rare entity, with very few reports in the literature. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Validation of Air-Backed Underwater Explosion Experiments with ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, L D

    2005-02-04

    This paper summarizes an exercise carried out to validate the process of implementing LLNL's ALE3D to predict the permanent deformation and rupture of an air-backed steel plate subjected to underwater shock. Experiments were performed in a shock tank at the Naval Science and Technology Laboratory in Visakhapatnam India, and the results are documented in reference. A consistent set of air-backed plates is subjected to shocks from increasing weights of explosives ranging from 10g-80g. At 40g and above, rupture is recorded in the experiment and, without fracture mechanics implemented in ALE3D, only the cases of 10g, 20g, and 30g are presentedmore » here. This methodology applies the Jones-Wilkins-Lee (JWL) Equation of State (EOS) to predict the pressure of the expanding detonation products, the Gruneisein EOS for water under highly dynamic compressible flow - both on 1-point integrated 3-d continuum elements. The steel plates apply a bilinear elastic-plastic response with failure and are simulated with 3-point integrated shell elements. The failure for this exercise is based on effective (or equivalent) plastic strain.« less

  6. High pressurized CO2 release CFD calculations from onshore pipeline leakages

    NASA Astrophysics Data System (ADS)

    Herzog, Nicoleta; Gorenz, Paul; Egbers, Christoph

    2013-04-01

    Emissions from high pressurized pipelines can be determined on the basis of hydrodynamical and thermophysical calculations of the escaped fluid. If a rupture occurs when CO2 is onshore transported in liquid form there will be initially a large pressure drop in the pipeline, the pressure will fall until the liquid becomes a mixture of saturated vapor/liquid. In the vicinity of the rupture, liquid CO2 will escape and immediately vaporize and expand, some of the liquid will desublimate into dry ice, which will precipitate onto the ground [1, 2]. The period of time taken for a large amount of carbon dioxide to be discharged would be short. Initially CO2 will escape by pushing the overlying soil upwards at an explosion-like speed. After the pressure in the pipe fell the flow profile of the escaping gas will almost be as described for gaseous material transport. The expansion of carbon dioxide will occur at sonic speed and will continue to do so until the pressure ratio between the CO2 and the ambient air is lower than about 1.9 [3]. As a result of the expansion also the temperature of the escaping gas will fall drastically and a cloud of cold gas will form which is then dispersed and slowly mixed with ambient air. The rate of emptying the pipeline is controlled by the pipe cross-section area and the speed of the escaping gas, or by the pressure difference between the pipeline and the atmosphere. Therefore the mass flow will be largest immediately after the accident with an exponential decay in time. In this study a two-phase model is applied to a high pressurized pipeline through which liquid carbon dioxide flows. A leakage is considered to be at different positions along the pipeline and the release pressure is calculated over several parameter ranges. It is also intended to characterize from hydrodynamical point of view the dispersion of released CO2 in the ambient medium by means of CFD simulations which includes multiphase flow treatment. For that a turbulent two-phase CFD model is used to analyze the influence of the jet release pressure and leakage dimension on the harmful gaseous CO2 concentration distances. Mazzoldi A., Hill T., Colls J.J.: CO2 transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank, Int. J. Greenhouse Gas Control, 2, 210-218 (2008) M. Molag, C. Dam: Modelling of accidental releases from a high pressure CO2 pipelines, Energy Procedia, 4, 2301-2307, (2011) Kruse H., Tekiela M.: Calculating the consequences of a CO2-pipeline rupture, Energy Conversion and Management, 37(68), 1013-1018 (1996)

  7. Constraining fault constitutive behavior with slip and stress heterogeneity

    USGS Publications Warehouse

    Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these conditions following rupture, so that the stress field is compatible with the generation of aftershocks and facilitates heterogeneous slip in subsequent events. Our three-dimensional fmite element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the dynamic stress drop (initial shear stress) and breakdown work (fracture energy) are spatially heterogeneous. In these models the breakdown work is on the order of MJ/m2, which is comparable to the radiated energy. These conditions producing slip heterogeneity also tend to produce narrower slip pulses independent of a slip rate dependence in the fault constitutive model. An alternative mechanism for generating these confined slip pulses appears to be fault constitutive models that have a stronger rate dependence, which also makes them difficult to implement in numerical models. We hypothesize that self-consistent ruptures could also be produced by very narrow slip pulses propagating in a self-sustaining heterogeneous stress field with breakdown work comparable to fracture energy estimates of kJ/M2. Copyright 2008 by the American Geophysical Union.

  8. Spatio-Temporal b Value Trends For a PMMA-PMMA Frictional Interface

    NASA Astrophysics Data System (ADS)

    Parker, J.; Selvadurai, P. A.; Glaser, S. D.

    2016-12-01

    We develop a catalog of seismic events observed on a well-characterized PMMA-PMMA frictional interface to allow for an in depth study of spatio-temporal trends in along-fault b values. Recent studies of the 2009 L'Aquila [Gulia et al., GRL, 2016] and 2011 Tohoku-oki [Tormann et al., Nature Geo., 2015] events have found significant decrease in b values near the epicenters in the months leading up to rupture. Here, a fault is experimentally modeled using two Poly(methyl methacrylate) samples in a direct shear configuration. The initial, non-uniform distribution of asperities along the frictional interface was measured using a pressure sensitive film. Prior to a stick-slip event, localized seismicity was captured using 16 acoustic emission (AE) sensors, which provide the catalog events and b value analysis. We observe similar decreasing trends in b values prior to failure as observed in nature. We discuss the spatio-temporal variations in b values with respect to a slowly expanding shear rupture captured using dense `along-strike' arrays of 9 slip sensors and 24 strain gauges. The rate at which the shear rupture moved along the interface depended on the shear strength heterogeneity characterized by the non-uniform distribution of asperities. In the latter stages of nucleation, b values decrease primarily in a region with larger and more densely distributed asperities. The combined analysis will help confirm recent field observations and provide insight into the mechanics of foreshock sequences leading to earthquake rupture.

  9. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.

    PubMed

    Speelman, Lambert; Teng, Zhongzhao; Nederveen, Aart J; van der Lugt, Aad; Gillard, Jonathan H

    2016-03-01

    Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.

  10. Regularization of rupture dynamics along bi-material interfaces: a parametric study and simulations of the Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre

    2015-04-01

    Faults are often interfaces between materials with different elastic properties. This is generally the case of plate boundaries in subduction zones, where the ruptures extend for many kilometers crossing materials with strong impedance contrasts (oceanic crust, continental crust, mantle wedge, accretionary prism). From a physical point of view, several peculiar features emerged both from analogic experiments and numerical simulations for a rupture propagating along a bimaterial interface. The elastodynamic flux at the rupture tip breaks its symmetry, inducing normal stress changes and an asymmetric propagation. This latter was widely shown for rupture velocity and slip rate (e.g. Xia et al, 2005) and was supposed to generate an asymmetric distribution of the aftershocks (Rubin and Ampuero, 2007). The bimaterial problem coupled with a Coulomb friction law is ill-posed for a wide range of impedance contrasts, due to a missing length scale in the instantaneous response to the normal traction changes. The ill-posedness also results into simulations no longer independent of the grid size. A regularization can be introduced by delaying the tangential traction from the normal traction as suggested by Cochard and Rice (2000) and Ranjith and Rice (2000) δσeff α|v|+-v* δt = δσ (σn - σeff) where σeff represents the effective normal stress to be used in the Coulomb friction. This regularization introduces two delays depending on the slip rate and on a fixed time scale. In this study we performed a large number of 2D numerical simulations of in plane rupture with the spectral element method dynamic and we systematically investigated the effect of parameter selection on the rupture propagation, dissipation and radiation, by also performing a direct comparison with solutions provided by numerical and experimental results. We found that a purely time-dependent regularization requires a fine tuning rapidly jumping from a too fast, ineffective delay to a slow, invasive, regularization as a function of the actual slip rate. Conversely, the choice of a fixed relaxation length, smaller than the critical slip weakening distance, provides a reliable class of solutions for a wide range of elastic and frictional parameters. Nevertheless critical rupture stages, such as the nucleation or the very fast steady-state propagation may show resolution problems and may take advantage of adaptive schemes, with a space/time variation of the parameters. We used recipes for bimaterial regularization to perform along-dip dynamic simulations of the Tohoku earthquake in the framework of a slip weakening model, with a realistic description of the geometry of the interface and the geological structure. We finely investigated the role of the impedance contrasts on the evolution of the rupture and short wavelength radiation. We also show that pathological effects may arise from a bad selection of regularization parameters.

  11. The Achilles tendon total rupture score: a study of responsiveness, internal consistency and convergent validity on patients with acute Achilles tendon ruptures

    PubMed Central

    2012-01-01

    Background The Achilles tendon Total Rupture Score was developed by a research group in 2007 in response to the need for a patient reported outcome measure for this patient population. Beyond this original development paper, no further validation studies have been published. Consequently the purpose of this study was to evaluate internal consistency, convergent validity and responsiveness of this newly developed patient reported outcome measure within patients who have sustained an isolated acute Achilles tendon rupture. Methods Sixty-four eligible patients with an acute rupture of their Achilles tendon completed the Achilles tendon Total Rupture Score alongside two further patient reported outcome measures (Disability Rating Index and EQ 5D). These were completed at baseline, six weeks, three months, six months and nine months post injury. The Achilles tendon Total Rupture Score was evaluated for internal consistency, using Cronbach's alpha, convergent validity, through correlation analysis and responsiveness, by analysing floor and ceiling effects and calculating its relative efficiency in comparison to the Disability Rating Index and EQ 5D scores. Results The Achilles tendon Total Rupture Score demonstrated high internal consistency (Cronbachs alpha > 0.8) and correlated significantly (p < 0.001) with the Disability Rating Index at five time points (pre-injury, six weeks, three, six and nine months) with correlation coefficients between -0.5 and -0.9. However, the confidence intervals were wide. Furthermore, the ability of the new score to detect clinically important changes over time (responsiveness) was shown to be greater than the Disability Rating Index and EQ 5D. Conclusions A universally accepted outcome measure is imperative to allow comparisons to be made across practice. This is the first study to evaluate aspects of validity of this newly developed outcome measure, outside of the developing centre. The ATRS demonstrated high internal consistency and responsiveness, with limited convergent validity. This research provides further support for the use of this outcome measure, however further research is required to advocate its universal use in patients with acute Achilles tendon ruptures. Such areas include inter-rater reliability and research to determine the minimally clinically important difference between scores. All authors have read and concur with the content of this manuscript. The material presented has not been and will not be submitted for publication elsewhere, except as an abstract. All authors have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content and (3) final approval of the submitted version. This research has been funded by Arthritis Research UK, no conflicts of interests have been declared by the authors. Kind Regards Rebecca Kearney (corresponding author) Research Physiotherapist PMID:22376047

  12. Upwardly Mobile Working-Class Adolescents: A Biographical Approach on Habitus Dislocation

    ERIC Educational Resources Information Center

    Christodoulou, Michael; Spyridakis, Manos

    2017-01-01

    Habitus dislocation is a much debatable term. By presenting life-histories of working-class adolescents, this article argues (i) that not all upwardly mobile working-class adolescents experience habitus dislocation and, (ii) that habitus dislocation has its roots in the self-initiated ruptures that face some of those who want to be upwardly mobile…

  13. Analysis of the variability in ground-motion synthesis and inversion

    USGS Publications Warehouse

    Spudich, Paul A.; Cirella, Antonella; Scognamiglio, Laura; Tinti, Elisa

    2017-12-07

    In almost all past inversions of large-earthquake ground motions for rupture behavior, the goal of the inversion is to find the “best fitting” rupture model that predicts ground motions which optimize some function of the difference between predicted and observed ground motions. This type of inversion was pioneered in the linear-inverse sense by Olson and Apsel (1982), who minimized the square of the difference between observed and simulated motions (“least squares”) while simultaneously minimizing the rupture-model norm (by setting the null-space component of the rupture model to zero), and has been extended in many ways, one of which is the use of nonlinear inversion schemes such as simulated annealing algorithms that optimize some other misfit function. For example, the simulated annealing algorithm of Piatanesi and others (2007) finds the rupture model that minimizes a “cost” function which combines a least-squares and a waveform-correlation measure of misfit.All such inversions that look for a unique “best” model have at least three problems. (1) They have removed the null-space component of the rupture model—that is, an infinite family of rupture models that all fit the data equally well have been narrowed down to a single model. Some property of interest in the rupture model might have been discarded in this winnowing process. (2) Smoothing constraints are commonly used to yield a unique “best” model, in which case spatially rough rupture models will have been discarded, even if they provide a good fit to the data. (3) No estimate of confidence in the resulting rupture models can be given because the effects of unknown errors in the Green’s functions (“theory errors”) have not been assessed. In inversion for rupture behavior, these theory errors are generally larger than the data errors caused by ground noise and instrumental limitations, and so overfitting of the data is probably ubiquitous for such inversions.Recently, attention has turned to the inclusion of theory errors in the inversion process. Yagi and Fukahata (2011) made an important contribution by presenting a method to estimate the uncertainties in predicted large-earthquake ground motions due to uncertainties in the Green’s functions. Here we derive their result and compare it with the results of other recent studies that look at theory errors in a Bayesian inversion context particularly those by Bodin and others (2012), Duputel and others (2012), Dettmer and others (2014), and Minson and others (2014).Notably, in all these studies, the estimates of theory error were obtained from theoretical considerations alone; none of the investigators actually measured Green’s function errors. Large earthquakes typically have aftershocks, which, if their rupture surfaces are physically small enough, can be considered point evaluations of the real Green’s functions of the Earth. Here we simulate smallaftershock ground motions with (erroneous) theoretical Green’s functions. Taking differences between aftershock ground motions and simulated motions to be the “theory error,” we derive a statistical model of the sources of discrepancies between the theoretical and real Green’s functions. We use this model with an extended frequency-domain version of the time-domain theory of Yagi and Fukahata (2011) to determine the expected variance 2 τ caused by Green’s function error in ground motions from a larger (nonpoint) earthquake that we seek to model.We also differ from the above-mentioned Bayesian inversions in our handling of the nonuniqueness problem of seismic inversion. We follow the philosophy of Segall and Du (1993), who, instead of looking for a best-fitting model, looked for slip models that answered specific questions about the earthquakes they studied. In their Bayesian inversions, they inductively derived a posterior probability-density function (PDF) for every model parameter. We instead seek to find two extremal rupture models whose ground motions fit the data within the error bounds given by 2 τ , as quantified by using a chi-squared test described below. So, we can ask questions such as, “What are the rupture models with the highest and lowest average rupture speed consistent with the theory errors?” Having found those models, we can then say with confidence that the true rupture speed is somewhere between those values. Although the Bayesian approach gives a complete solution to the inverse problem, it is computationally demanding: Minson and others (2014) needed 1010 forward kinematic simulations to derive their posterior probability distribution. In our approach, only about107 simulations are needed. Moreover, in practical application, only a small set of rupture models may be needed to answer the relevant questions—for example, determining the maximum likelihood solution (achievable through standard inversion techniques) and the two rupture models bounding some property of interest.The specific property that we wish to investigate is the correlation between various rupturemodel parameters, such as peak slip velocity and rupture velocity, in models of real earthquakes. In some simulations of ground motions for hypothetical large earthquakes, such as those by Aagaard and others (2010) and the Southern California Earthquake Center Broadband Simulation Platform (Graves and Pitarka, 2015), rupture speed is assumed to correlate locally with peak slip, although there is evidence that rupture speed should correlate better with peak slip speed, owing to its dependence on local stress drop. We may be able to determine ways to modify Piatanesi and others’s (2007) inversion’s “cost” function to find rupture models with either high or low degrees of correlation between pairs of rupture parameters. We propose a cost function designed to find these two extremal models.

  14. Towards a robust framework for Probabilistic Tsunami Hazard Assessment (PTHA) for local and regional tsunami in New Zealand

    NASA Astrophysics Data System (ADS)

    Mueller, Christof; Power, William; Fraser, Stuart; Wang, Xiaoming

    2013-04-01

    Probabilistic Tsunami Hazard Assessment (PTHA) is conceptually closely related to Probabilistic Seismic Hazard Assessment (PSHA). The main difference is that PTHA needs to simulate propagation of tsunami waves through the ocean and cannot rely on attenuation relationships, which makes PTHA computationally more expensive. The wave propagation process can be assumed to be linear as long as water depth is much larger than the wave amplitude of the tsunami. Beyond this limit a non-linear scheme has to be employed with significantly higher algorithmic run times. PTHA considering far-field tsunami sources typically uses unit source simulations, and relies on the linearity of the process by later scaling and combining the wave fields of individual simulations to represent the intended earthquake magnitude and rupture area. Probabilistic assessments are typically made for locations offshore but close to the coast. Inundation is calculated only for significantly contributing events (de-aggregation). For local and regional tsunami it has been demonstrated that earthquake rupture complexity has a significant effect on the tsunami amplitude distribution offshore and also on inundation. In this case PTHA has to take variable slip distributions and non-linearity into account. A unit source approach cannot easily be applied. Rupture complexity is seen as an aleatory uncertainty and can be incorporated directly into the rate calculation. We have developed a framework that manages the large number of simulations required for local PTHA. As an initial case study the effect of rupture complexity on tsunami inundation and the statistics of the distribution of wave heights have been investigated for plate-interface earthquakes in the Hawke's Bay region in New Zealand. Assessing the probability that water levels will be in excess of a certain threshold requires the calculation of empirical cumulative distribution functions (ECDF). We compare our results with traditional estimates for tsunami inundation simulations that do not consider rupture complexity. De-aggregation based on moment magnitude alone might not be appropriate, because the hazard posed by any individual event can be underestimated locally if rupture complexity is ignored.

  15. Source Mechanism and Near-field Characteristics of the 2011 Tohoku-oki Tsunami

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Cheung, K.; Lay, T.

    2011-12-01

    The Tohoku-oki great earthquake ruptured the megathrust fault offshore of Miyagi and Fukushima in Northeast Honshu with moment magnitude of Mw 9.0 on March 11, 2011, and generated strong shaking across the region. The resulting tsunami devastated the northeastern Japan coasts and damaged coastal infrastructure across the Pacific. The extensive global seismic networks, dense geodetic instruments, well-positioned buoys and wave gauges, and comprehensive runup records along the northeast Japan coasts provide datasets of unprecedented quality and coverage for investigation of the tsunami source mechanism and near-field wave characteristics. Our finite-source model reconstructs detailed source rupture processes by inversion of teleseismic P waves recorded around the globe. The finite-source solution is validated through comparison with the static displacements recoded at the ARIA (JPL-GSI) GPS stations and models obtained by inversion of high-rate GPS observations. The rupture model has two primary slip regions, near the hypocenter and along the trench; the maximum slip is about 60 m near the trench. Together with the low rupture velocity, the Tohoku-oki event has characteristics in common with tsunami earthquakes, although it ruptured across the entire megathrust. Superposition of the deformation of the subfaults from the planar fault model according to their rupture initiation and rise times specifies the seafloor vertical displacement and velocity for tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami from the time histories of the seafloor deformation using the dispersive long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs). The computed results are compared with data from six GPS gauges and three wave gauges near the source at 120~200-m and 50-m water depth, as well as DART buoys positioned across the Pacific. The shock-capturing model reproduces near-shore tsunami bores and the runup data gathered by the 2011 Tohoku Earthquake Tsunami Joint Survey Group. Spectral analysis of the computed surface elevation reveals a series of resonance modes and areas prone to tsunami hazards. This case study improves our understanding of near-field tsunami waves and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.

  16. Simulation of broad-band strong ground motion for a hypothetical Mw 7.1 earthquake on the Enriquillo Fault in Haiti

    NASA Astrophysics Data System (ADS)

    Douilly, Roby; Mavroeidis, George P.; Calais, Eric

    2017-10-01

    The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground shaking for the city of Port-au-Prince than during the already very damaging 2010 Haiti earthquake.

  17. Simultaneous bilateral distal biceps tendon ruptures repaired using an endobutton technique: a case report

    PubMed Central

    2013-01-01

    Introduction The simultaneous rupture of both distal biceps tendons is a rare clinical entity that is difficult to treat and can have poor outcomes. A variety of treatment and rehabilitation options exist and have been reported for single sided and staged bilateral repairs, but none have described an approach for acute bilateral ruptures. Repairing distal biceps tendon ruptures using a single anterior incision and a cortical suspensory button technique has become increasingly popular in recent years. We present a report of our surgical approach using an endobutton technique and rehabilitation algorithm for this unusual injury pattern. Case presentation A 43-year-old Caucasian man presented with acute onset bilateral elbow pain while lifting a large sheet of drywall off the ground. He initially felt a ‘pop’ on the right and almost immediately felt another on the left after having to quickly shift the weight. He was unable to continue working and sought medical attention. His pain was predominantly in his bilateral antecubital fossae and he had significant swelling and ecchymoses. His clinical examination demonstrated no palpable tendon, a retracted biceps muscle belly, and clear supination weakness. Magnetic resonance imaging was performed and showed bilateral distal biceps tendon ruptures with retraction on both sides. After discussion with our patient, we decided that both sides would be repaired using a single anterior incision with endobutton fixation, first his right followed by his left six weeks later. Conclusion Overall, our patient did very well and had returned to full manual work by our last follow-up at 30 months. Although he was never able to return to competitive recreational hockey and was left with mild lateral antebrachial cutaneous nerve dysesthesias on his right, he felt he was at 85% of his premorbid level of function. We describe what we believe to be, to the best of our knowledge, the first case of simultaneous bilateral distal biceps tendon ruptures successfully treated with a single-incision endobutton technique, which represents a valid option in managing this difficult problem. PMID:23972255

  18. Joint inversion of teleseismic body-waves and geodetic data for the Mw6.8 aftershock of the Balochistan earthquake with refined epicenter location

    NASA Astrophysics Data System (ADS)

    Wei, S.; Wang, T.; Jonsson, S.; Avouac, J. P.; Helmberger, D. V.

    2014-12-01

    Aftershocks of the 2013 Balochistan earthquake are mainly concentrated along the northeastern end of the mainshock rupture despite of much larger coseismic slip to the southwest. The largest event among them is an Mw6.8 earthquake which occurred three days after the mainshock. A kinematic slip model of the mainshock was obtained by joint inversion of the teleseismic body-waves and horizontal static deformation field derived from remote sensing optical and SAR data, which is composed of seven fault segments with gradually changing strikes and dips [Avouac et al., 2014]. The remote sensing data provide well constraints on the fault geometry and spatial distribution of slip but no timing information. Meanwhile, the initiation of the teleseismic waveform is very sensitive to fault geometry of the epicenter segment (strike and dip) and spatial slip distribution but much less sensitive to the absolute location of the epicenter. The combination of the two data sets allows a much better determination of the absolute epicenter location, which is about 25km to the southwest of the NEIC epicenter location. The well located mainshock epicenter is used to establish path calibrations for teleseismic P-waves, which are essential for relocating the Mw6.8 aftershock. Our grid search shows that the refined epicenter is located right at the northeastern end of the mainshock rupture. This is confirmed by the SAR offsets calculated from images acquired after the mainshock. The azimuth and range offsets display a discontinuity across the rupture trace of the mainshock. Teleseismic only and static only, as well as joint inversions all indicate that the aftershock ruptured an asperity with 25km along strike and range from 8km to 20km in depth. The earthquake was originated in a positive Coulomb stress change regime due to the mainshock and has complementary slip distribution to the mainshock rupture at the northeastern end, suggesting that the entire seismic generic zone in the crust was ruptured during the earthquake sequence.

  19. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  20. Irregularities in Early Seismic Rupture Propagation for Large Events in a Crustal Earthquake Model

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Rice, J. R.; Rice, J. R.

    2001-12-01

    We study early seismic propagation of model earthquakes in a 2-D model of a vertical strike-slip fault with depth-variable rate and state friction properties. Our model earthquakes are obtained in fully dynamic simulations of sequences of instabilities on a fault subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many earthquakes, far-field velocity seismograms during initial stages of dynamic rupture propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) rupture propagation over regions of stress concentrations and (2) partial arrest of rupture in neighboring creeping regions. As rupture approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the rupture sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If rupture starts sufficiently far from a creeping region, then partial arrest of rupture in the creeping region causes a decrease in moment acceleration. As the other parts of rupture continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent rupture propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the fault zone, and is caused by the temperature-induced transition from seismogenic to creeping behavior at depth. Small events appear in our model at that transition as we decrease the characteristic slip distance for evolution of frictional strength (but not if that distance is unrealistically large). Such clustering of small events at transitions from seismogenic to creeping behavior seems to occur on real faults as well, as we show in examples. To compute moment acceleration that can be compared with data, we translate the results of our 2-D fault model to a 3-D model with essentially radial symmetry on the fault plane. We will discuss limitations of that interpretation; in particular, it may overestimate the effect of partial arrest of rupture in creeping regions. Our present work cannot resolve whether there are any differences in the early phases of seismic moment release, i.e. in the seismic nucleation phase, that would make the beginning of larger events look different from smaller ones that are about to arrest. We have shown that the aseismic nucleation phase and the earliest phases of dynamic breakout are virtually identical for small and large events in our simulations. If early moment release is mostly affected by stress heterogeneities left by previous small events and by creep processes, as our present study suggests, then any such differences would have to be related to as yet unidentified properties of the pre-stress field that might determine the ultimate event size. See http://esag.harvard.edu/lapusta/Lapusta_Rice_Jun01.pdf, Lapusta and Rice, submitted to JGR, 2001.

Top