Sample records for initial science plan

  1. 78 FR 69462 - National Nanotechnology Initiative Strategic Plan; National Science and Technology Council...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY OFFICE National Nanotechnology Initiative Strategic Plan; National Science and Technology Council; National Nanotechnology Coordination Office AGENCY: Executive... Nanotechnology Initiative (NNI) Strategic Plan. The draft plan will be posted at www.nano.gov/2014strategy...

  2. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  3. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    ERIC Educational Resources Information Center

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  4. 75 FR 67149 - Request for Public Comment on the Draft 2010 National Nanotechnology Initiative Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Nanotechnology Initiative Strategic Plan AGENCY: White House Office of Science and Technology Policy. ACTION... Nanotechnology Initiative (NNI) Strategic Plan. The draft plan is posted at http://strategy.nano.gov . Comments... information. Overview: The National Nanotechnology Initiative (NNI) Strategic Plan is the framework that...

  5. Strategic implementation plan

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.

  6. Mixed-Initiative Activity Planning for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna

    2005-01-01

    One of the ground tools used to operate the Mars Exploration Rovers is a mixed-initiative planning system called MAPGEN. The role of the system is to assist operators building daily plans for each of the rovers, maximizing science return, while maintaining rover safety and abiding by science and engineering constraints. In this paper, we describe the MAPGEN system, focusing on the mixed-initiative planning aspect. We note important challenges, both in terms of human interaction and in terms of automated reasoning requirements. We then describe the approaches taken in MAPGEN, focusing on the novel methods developed by our team.

  7. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    USGS Publications Warehouse

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  8. National transportation technology plan

    DOT National Transportation Integrated Search

    2000-05-01

    The National Science and Technology Council (NSTC) Committee on Technology, Subcommittee on Transportation Research and Development (R&D), has created a National Transportation Technology Plan that builds on the initial Technology Plan released in 19...

  9. Review of the Draft 2014 Science Mission Directorate Science Plan

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At the request of NASA's Science Mission Directorate (SMD), the National Research Council's (NRC's) Space Studies Board (SSB) initiated a study to review a draft of the SMD's 2014 Science Plan. The request for this review was made at a time when NASA is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan and at a time when NASA's budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines-astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities-than is possible in the agency-wide Strategic Plan. In conducting its review of the draft Science Plan, the Committee on the Assessment of the NASA Science Mission Directorate 2014 Science Plan was charged to comment on the following specific areas: (1) Responsiveness to the NRC's guidance on key science issues and opportunities in recent NRC reports; (2) Attention to interdisciplinary aspects and overall scientific balance; (3) Identification and exposition of important opportunities for partnerships as well as education and public outreach; (4) Integration of technology development with the science program; (5) Clarity on how the plan aligns with SMD's strategic planning process; (6) General readability and clarity of presentation; and (7) Other relevant issues as determined by the committee. The main body of the report provides detailed findings and recommendations relating to the draft Science Plan. The highest-level, crosscutting issues are summarized here, and more detail is available in the main body of the report.

  10. Mission to Planet Earth Strategic Enterprise Plan 1996-2002

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mission to Planet Earth's (MTPE's) first Strategic Enterprise Plan, issued in May 1995, defined the Agency's major goals and objectives as well as constraints. This update of the Strategic Enterprise Plan identifies the following major changes: a focused Science Research Plan that integrates space-based and in situ observational critical science to address critical science uncertainties; a technology infusion plan to reduce the cost of future missions; a series of flight opportunities to infuse new science into the overall program; and a tighter coupling between NASA and NOAA to reduce costs and to improve the overall program. Three important new initiatives are also under development and are described briefly in this plan: MTPE Education Strategy, MTPE Commercial Strategy, and an emerging concept for an Integrated Global Observing Strategy. This first update to the MTPE Strategic Enterprise Plan captures these new developments, and takes a significant step forward in planning this complex Earth system science endeavor. The plan and other information on MTPE may be viewed via the Internet at http://www.hq.nasa.gov/office/mtpe/.

  11. A Legacy of Leadership and Lessons Learned: Results from the Rural Systemic Initiatives for Improving Mathematics and Science Education

    ERIC Educational Resources Information Center

    Harmon, Hobart L.; Smith, Keith

    2007-01-01

    This report pays tribute to the National Science Foundation's (NSF) Rural Systemic Initiatives (RSIs), an investment of more than $140 million to improve mathematics and science education in some of rural America's most impoverished communities. The report illustrates the impact of NSF's RSI program on a national scale. Each RSI planned a project…

  12. Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered.

  13. The Integration of English Language Development and Science Instruction in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Zwiep, Susan Gomez; Straits, William J.; Stone, Kristin R.; Beltran, Dolores D.; Furtado, Leena

    2011-12-01

    This paper explores one district's attempt to implement a blended science and English Language Development (ELD) elementary program, designed to provide English language learners opportunities to develop proficiency in English through participation in inquiry-based science. This process resulted in blended program that utilized a combined science/ELD lesson plan format to structure and guide teachers' efforts to use science as the context for language development. Data, collected throughout the first 2 years of the program, include teacher-generated lesson plans, observation notes, and interviews with teachers and principals. The process by which the blended program was developed, the initial implementation of the program, the resulting science/ELD lesson plan format, and teachers' perceptions about the program and its impact on their students are described.

  14. MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Charest, Len; Jonsson, Ari; Hsu, Jennifer; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey

    2003-01-01

    The Mars Exploration Rovers Mars '03 mission is one of NASA's most ambitious science missions to date. The rovers will be launched in the summer of 2003 with each rover carrying instruments to conduct remote and in-situ observation to elucidate the planet's past climate, water activity, and habitability. Science is the primary driver of MER and, as a consequence, making best use of the scientific instruments, within the available resources, is a crucial aspect of the mission. To address this critically, the MER project has selected MAPGEN (Mixed-Initiative Activity Plan GENerator) as an activity planning tool. MAPGEN combines two exiting systems, each with a strong heritage: APGEN the Activity Planning tool from the Jet Propulsion Laboratory and the Europs Planning/Scheduling system from NASA Ames Research Center. This paper discusses the issues arising from combining these tools in the context of this mission.

  15. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  16. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  17. Activity Planning for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2004-01-01

    Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.

  18. 75 FR 30874 - National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office, Nanoscale... Technology; The National Nanotechnology Initiative (NNI) Strategic Planning Stakeholder Workshop: Public Meeting ACTION: Notice of public meeting. SUMMARY: The National Nanotechnology Coordination Office (NNCO...

  19. A Science Products Inventory for Citizen-Science Planning and Evaluation

    PubMed Central

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867254

  20. A Science Products Inventory for Citizen-Science Planning and Evaluation

    PubMed Central

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867253

  1. A science products inventory for citizen-science planning and evaluation

    USGS Publications Warehouse

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K.; Weltzin, Jake F.

    2018-01-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  2. A Science Products Inventory for Citizen-Science Planning and Evaluation.

    PubMed

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-06-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  3. Coordinated study of Solar-Terrestrial Observatory (STO) payloads on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Since the publication of the final report of the science study group in October 1984 on the Solar Terrestrial Observatory (STO), its science goals and objectives have been clearly defined and a conceptual design and analysis was carried out by MSFC/NASA. Plans for the possible placing of the STO aboard the Space Station were made. A series of meetings for the STO science study group were held to review the instruments to be placed on the initial STO at Space Station IOC, and the placement of these instruments on the manned space station, polar platform, and the co-orbiting platform. A summary of these initial STO instruments is presented in Section 2. A brief description of the initial plan for the placement of STO instruments is included in Section 3. Finally, in Section 4, the scenario for the operation of the STO is discussed. These results were obtained from the report of the Solar Terrestrial Observatory mini-workshop held at MSFC on 6 June 1985.

  4. Mixed-Initiative Planning and Scheduling for Science Missions

    NASA Technical Reports Server (NTRS)

    Myers, Karen L.; Wolverton, Michael J.

    2004-01-01

    The objective of this joint NASA Ames/JPL/SRI project was to develop mixed-initiative planning and scheduling technology that would enable more effective and efficient planning of science missions. The original intent behind the project was to have all three organizations work closely on the overall research and technology development objectives. Shortly after the project began, however, the Ames and JPL project members made a commitment to develop and field an operational mixed-initiative planning and scheduling tool called MAPGEN for the 2003 Mars Exploration Rover (MER) mission [Ai-Chang et al. 2003]. Because of the tremendous amounts of time and effort that went into making that tool a success, the Ames and JPL personnel were mostly unavailable for collaboration on the joint objectives of the original proposal. Until November of 2002, SRI postponed work on the project in the hope that the Ames and JPL personnel would be able to find time for the planned collaborative research. During discussions between Dr. Karen Myers (the SRI institutional PI) and Dr. John Bresina (the project PI) during November of 2002, it was mutually agreed that SRI should work independently to achieve some of the research objectives for the project. In particular, Dr. Bresina identified explanation of plans and planner behavior as a critical area for research, based on feedback from demonstrating an initial prototype of MAPGEN to the operational community. For that reason, our focus from November of 2002 through the end of the project was on designing explanation methods to address this need.

  5. Introduction of International Microgravity Strategic Planning Group

    NASA Technical Reports Server (NTRS)

    Rhome, Robert

    1998-01-01

    Established in May 6, 1995, the purpose of this International Strategic Planning Group for Microgravity Science and Applications Research is to develop and update, at least on a biennial basis, an International Strategic Plan for Microgravity Science and Applications Research. The member space agencies have agreed to contribute to the development of a Strategic Plan, and seek the implementation of the cooperative programs defined in this Plan. The emphasis of this plan is the coordination of hardware construction and utilization within the various areas of research including biotechnology, combustion science, fluid physics, materials science and other special topics in physical sciences. The Microgravity Science and Applications International Strategic Plan is a joint effort by the present members - ASI, CNES, CSA, DLR, ESA, NASA, and NASDA. It represents the consensus from a series of discussions held within the International Microgravity Strategic Planning Group (IMSPG). In 1996 several space agencies initiated multilateral discussions on how to improve the effectiveness of international microgravity research during the upcoming Space Station era. These discussions led to a recognition of the need for a comprehensive strategic plan for international microgravity research that would provide a framework for cooperation between international agencies. The Strategic Plan is intended to provide a basis for inter-agency coordination and cooperation in microgravity research in the environment of the International Space Station (ISS) era. This will be accomplished through analysis of the interests and goals of each participating agency and identification of mutual interests and program compatibilities. The Plan provides a framework for maximizing the productivity of space-based research for the benefit of our societies.

  6. To Strengthen American Cognitive Science for the Twenty-First Century. Report of a Planning Workshop for the Cognitive Science Initiative at the National Science Foundation (Washington, D.C., April 20-21, 1991).

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Cognitive science, the study of both biological and artificial intelligent systems, is an inherently interdisciplinary activity that embraces aspects of psychology, linguistics, artificial intelligence, neuroscience, engineering, and other behavioral and social sciences. This document reports the results of a workshop designed to provide advice to…

  7. Principles of effective USA federal fire management plans

    USGS Publications Warehouse

    Meyer, Marc D.; Roberts, Susan L.; Wills, Robin; Brooks, Matthew L.; Winford, Eric M.

    2015-01-01

    Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their consistency with guiding principles based on current science information and federal policy guidance, and provide recommendations for the development of future fire management plans. Based on our review, we recommend that future fire management plans be: (1) consistent and compatible, (2) collaborative, (3) clear and comprehensive, (4) spatially and temporally scalable, (5) informed by the best available science, and (6) flexible and adaptive. In addition, we identify and describe several strategic guides or “tools” that can enhance these core principles and benefit future fire management plans in the following areas: planning and prioritization, science integration, climate change adaptation, partnerships, monitoring, education and communication, and applied fire management. These principles and tools are essential to successfully realize fire management goals and objectives in a rapidly changing world.

  8. West Antarctic Ice Sheet Initiative. Volume 1: Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The Science and Implementation Plan of the West Antarctic Ice Sheet Initiative (WAIS) is described. The goal of this initiative is the prediction of the future behavior of this ice sheet and an assessment of its potential to collapse, rapidly raising global sea level. The multidisciplinary nature of WAIS reflects the complexity of the polar ice sheet environment. The project builds upon past and current polar studies in many fields and meshes with future programs of both the U.S. and other countries. Important tasks in each discipline are described and a coordinated schedule by which the majority of these tasks can be accomplished in 5 years is presented. The companion report (Volume 2) contains seven discipline review papers on the state of knowledge of Antarctica and opinions on how that knowledge must be increased to attain the WAIS goal.

  9. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  10. Erectable space platform for space sciences and applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The specific objectives of the study were to: (1) identify a viable conceptual design for the service module/platform; (2) assess the technology issues that must be faced in planning development; and (3) prepare an initial plan for bringing critical technologies up to acceptable levels.

  11. Strategic Planning and NRC Decadal Survey Experience

    NASA Astrophysics Data System (ADS)

    Lautenbacher, C. C., Jr.

    2015-12-01

    Strategic planning exercises are routinely undertaken by a wide variety of organizations that span the private, public and academic sectors and with a wide variety of corporate goals. It is difficult to single out best procedures as the purposes of strategic planning are as varied as the organizations. As a former head of a governmental agency that requested such a NRC study, namely the first "Earth Sciences and Applications from Space" study, I will examine the process, provide my definitions and assessments of the good and the not-so-good, and compare to my experiences with other similar strategic planning exercises during my Navy, NOAA, and private sector careers. I find that there is always room for improvement, but there is no one process or procedure that can guarantee success. Overarching initial considerations that can position the effort for overall "success" will be defined and applied to the recent NSC Study: "Sea Change: 2015-2025 Decadal Survey of Ocean Science", for which I was neither an initiator nor a participant, but a very interested observer.

  12. Physical sciences research plans for the International Space Station.

    PubMed

    Trinh, E H

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  13. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  14. Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimization

    DTIC Science & Technology

    2014-08-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology,Computer Science and Artificial Intellegence Laboratory,Cambridge,MA,02139...the MIT Energy Initiative, MIT CSAIL, and the DARPA Robotics Challenge. 1Robin Deits is with the Computer Science and Artificial Intelligence Laboratory

  15. GEWEX America Prediction Project (GAPP) Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.

  16. Does Funding for Arctic Research Align with Research Priorities and Policy Needs? Trends in the USA, Canada and Europe

    NASA Astrophysics Data System (ADS)

    Murray, M. S.; Ibarguchi, G.; Rajdev, V.

    2015-12-01

    Over the past twenty years, increasing awareness and understanding of changes in the Arctic system, the stated desires of Arctic Peoples to be engaged in the research process, and a growing international interest in the region's resources have informed various stakeholders to undertake many Arctic science planning activities. Some examples of science planning include priority-setting for research, knowledge translation, stakeholder engagement, improved coordination, and international collaboration. The International Study of Arctic Change recently initiated an analysis of the extent to which alignment exists among stated science priorities, recognized societal needs, and funding patterns of the major North American and European agencies. In this paper, we present a decade of data on international funding patterns and data on two decades of science planning. We discuss whether funding patterns reflect the priority research questions and identified needs for information that are articulated in a myriad of Arctic research planning documents. The alignment in many areas remains poor, bringing into question the purpose of large-scale science planning if it does not lead to funding of those priorities identified by Arctic stakeholder communities (scientists, Arctic Peoples, planners, policy makers, the private sector, and others).

  17. Factors related to the decision of men and women to continue taking science courses in college

    NASA Astrophysics Data System (ADS)

    Deboer, George E.

    The purpose of this study was to determine the importance of the transition between a student's initial collegiate science experience and the decision to continue in science, and whether the reasons students give to explain their success or failure in their first course are related to that decision. Attribution theory provided the framework for investigating these factors. The results showed that for unsuccessful students, the plan to continue in science was unrelated to gender, mathematical aptitude, performance in the first science course, or attributions to luck, effort, ability, or task difficulty. For successful students, the plan to continue in science was directly related to attributions to ability, and inversely related to task difficulty. The results demonstrate the importance of a sense of competence for students who continue in science.

  18. 78 FR 56952 - Notice of Meetings: Public Meetings of the National Science and Technology Council; Committee on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Subcommittee; National Nanotechnology Coordination Office AGENCY: Office of Science and Technology Policy. ACTION: Notice of public meetings. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on... Nanotechnology Initiative Strategic Plan: ``Develop tools and procedures for . . . international outreach and...

  19. "Do-It-Ourselves Science": Case Studies of Volunteer-Initiated Citizen Science Involvement

    NASA Astrophysics Data System (ADS)

    Raddick, Jordan; Bracey, G.; Gay, P. L.

    2009-05-01

    Galaxy Zoo is a citizen science website in which members of the public volunteer to classify galaxies, thereby helping astronomers conduct publishable research into galaxy morphologies and environments. Although the site was originally created to answer a few specific questions, some members of the community - both scientists and volunteers - have spontaneously developed an interest in a wider variety of questions. Volunteers have pursued answers to these questions with guidance from professional astronomers; in completing these projects, volunteers have independently used some of the same data viewing and analysis tools that professional astronomers use, and have even developed their own online tools. They have created their own research questions and their own plans for data analysis, and are planning to write scientific papers with the results to be submitted to peer-reviewed scientific journals. Volunteers have identified a number of such projects. These volunteer-initiated projects have extended the scientific reach of Galaxy Zoo, while also giving volunteers first-hand experience with the process of science. We are interested in the process by which volunteers become interested in volunteer-initiated projects, and what tasks they participate in, both initially and as their involvement increases. What motivates a volunteer to become involved in a volunteer-initiated project? How does his or her motivation change with further involvement? We are conducting a program of qualitative education research into these questions, using as data sources the posts that volunteers have made to the Galaxy Zoo forum and transcripts of interviews with volunteers.

  20. Implementing Knowledge Management as a Strategic Initiative

    DTIC Science & Technology

    2003-12-01

    Quality Management (TQM); Development Metrics Standards; Philosophy Hierarchical, Centralized or Decentralized; Sociolinguistics ...disciplines of operations research, logic, psychology, philosophy, sociolinguistics , management science, management information science, organizational...needs of customers for America and its Allies.” (CECOM AC Strategic Plan, 2001) Given the mission and vision statements, an organization needs to

  1. CU’s Department of Geological Sciences - Science Education Initiative Project (GEOL-SEI): A five-year plan for introducing and supporting an evidence-based and scientific approach to teaching

    NASA Astrophysics Data System (ADS)

    Arthurs, L.; Budd, D. A.

    2009-12-01

    The Science Education Initiative (SEI) at the University of Colorado at Boulder was conceived in 2006 with the goal of improving science education at the undergraduate level by changing the basic approach to teaching in science departments. Five departments were selected on a competitive basis for participation in the SEI. The SEI is operating as a five year plan with funding of ~$1 million/year for the five departments. The goal of the SEI is to implement sustainable department-level change for an evidence-based and scientific approach to teaching. Among the five departments receiving funding for discipline-specific SEI projects is the Department of Geological Sciences (GEOL-SEI). The GEOL-SEI has worked to transform geology courses beginning with lower division large enrollment courses and moving towards upper division courses. They are transformed on the basis of existing research into how people learn, and they are characterized by the use of learning goals and effective instructional approaches. Furthermore, a natural component of the transformation towards evidence-based and scientific approaches to teaching is geocognition and geoscience education research. This research focuses on how students think about geologic concepts (e.g. misconceptions) and the effectiveness of different instructional approaches (e.g. the implementation of instructional technologies, peer learning activities, homework, and labs). The research is conducted by post-doctoral fellows (with PhDs in geology and pedagogical training) in collaboration with the instructional faculty members. The directorate of CU’s Science Education Initiative provides the fellows with training useful for conducting the research. Currently, into the 4th year of its 5-year plan, the GEOL-SEI is working towards publishing its findings and exploring options for sustaining various changes made to courses and new departmental programs that support student learning (e.g. GEOL Tutoring & Study Room).

  2. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  3. From the Northern Eurasia Earth Science Partnership Initiative (NEESPI) towards the Northern Eurasia Future Initiative (NEFI)

    NASA Astrophysics Data System (ADS)

    Groisman, Pavel; Gutman, Garik; Gulev, Sergey; Maksyutov, Shamil

    2015-04-01

    Northern Eurasia Earth Science Partnership Initiative (NEESPI, http://neespi.org) was launched in 2004. With its multidisciplinary focus, the internationally funded NEESPI (more than 170 individual international projects during the past decade) has challenged participants to research climate-ecosystem interactions, societal impacts from extreme events in Northern Eurasia, and the feedbacks of these interactions and impacts to the global Earth system. NEESPI was endorsed by major ESSP Programs and Projects and the cornerstone support for the NEESPI studies was provided by the NASA Land Cover and Land Use Change Program and the Russian Academy of Sciences. Now it is the time to synthesis the main achievements of the NEESPI researchers and to re-assess its Science Questions and Objectives of the regional research within the new Future Earth Program paradigm with the focus on interdisciplinary solution-oriented approach that will allow effective policy-making in environment management and control. At the sequence of Workshops (the last of them will be in Prague one week prior to this Assembly) we formulated a major Science Question of the new Northern Eurasia Future Initiative (NEFI): "What will the changes in the regional ecosystems dynamics and interactions mean for the societal well-being, activities, health, and strategic planning in Northern Eurasia?" The major NEFI challenge will be the services aimed on providing in Northern Eurasia a sustainable societal development in changing climate, ecosystems, and societies. At this presentation we shall brief the audience about the main results of the NEESPI researchers, and lay down the plans for the future NEFI studies. At the side event of the Meeting, we shall initiate preparation of the book which will synthesize major NEESPI achievements.

  4. A Smooth Trajectory: Developing Continuity and Progression between Primary and Secondary Science Education through a Jointly-Planned Projectiles Project

    ERIC Educational Resources Information Center

    Davies, Dan; McMahon, Kendra

    2004-01-01

    This article reports on findings from a two-year project--'Improving Science Together'--undertaken in 20 primary and four secondary schools in and around Bristol, UK. The project was funded by the pharmaceutical company AstraZeneca PLC as part of their national Science Teaching Trust initiative, and had as one of its aims the development of…

  5. Onboard Science Data Analysis: Opportunities, Benefits, and Effects on Mission Design

    NASA Technical Reports Server (NTRS)

    Stolorz, P.; Cheeseman, P.

    1998-01-01

    Much of the initial focus for spacecraft autonomy has been on developing new software and systems concepts to automate engineering functions of the spacecraft: guidance, navigation and control, fault protection, and resources management. However, the ultimate objectives of NASA missions are science objectives, which implies that we need a new framework for perfoming science data evaluation and observation planning autonomously onboard spacecraft.

  6. Near East/South Asia Report, No. 2778.

    DTIC Science & Technology

    1983-07-08

    and Behavioral Sciences Life Sciences: Effects of Nonionizing Electromagnetic Radiation Materials Science and Metallurgy Meteorology and Hydrology...for the utilization of oil shales. The new facility, located not far from Arad in the Northern Negev , was built and will be operated by PAMA (Energy...the current fiscal year. Also during this fiscal year, Delek Oil Exploration plans to participate in and initiate drillings in the Negev region

  7. From the Northern Eurasia Earth Science Partnership Initiative to the Northern Eurasia Future Initiative

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Groisman, P. Y.; Shugart, H. H., Jr.; Gulev, S.; Maksyutov, S. S.; Qi, J.

    2017-12-01

    Since 2004, the Northern Eurasia Earth Science Partnership Initiative (NEESPI) - an interdisciplinary program of internationally-supported Earth systems and science research - has addressed large-scale and long-term manifestations of climate and environmental changes over Northern Eurasia and their impact on the Global Earth system. With 40 books and more than 1500 peer-reviewed journal publications to its credit, NEESPI's output can now be used to directly support decision-making for societal needs. Specifically, it was decided to shift gradually the foci of regional studies in Northern Eurasia towards applications with the following major Science Question: "What dynamic and interactive change(s) will affect societal well-being, activities, and health, and what might be the mitigation and adaptation strategies that could support sustainable development and decision-making activities in Northern Eurasia?" To answer this question requires a stronger socio-economic component in the ongoing and future regional studies focused on sustainable societal development under changing climatic and environmental conditions. The NEESPI Research Team has reorganized itself into "Northern Eurasia Future Initiative" (NEFI) and developed a new Science Plan released in June 2016. The Plan underwent a 6-month-long public review and was finalized at the end of 2016. Its description was thereafter split between two review papers: Groisman et al. (2017) and Monier et al. (2017). The first paper describes the Plan rationale and a new set of topical questions. The second paper describes a major modeling approach that will be employed in addressing the "what to do" questions of the NEFI Research (cf., presentation by Monier et al. at this Session). In the current presentation, we outline the new NEFI research foci and present latest NEFI findings including international projects in the Eurasian Arctic, boreal zone, and the Dry Land Belt of Northern Eurasia (cf., also presentations at sister-Session GC027). References:Groisman, P.Y. et al. 2017: Northern Eurasia Future Initiative (NEFI): Facing the Challenges and Pathways of Global Change in the 21st Century. Progress Earth and Planet Sci in review.Monier, E., et al: 2017: A Review of and Perspectives on Global Change Modeling for Northern Eurasia. Enviro. Res Lett in press.

  8. Agile Science Operations: A New Approach for Primitive Exploration Bodies

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Thompson, David R.; Castillo-Rogez, Julie C.; Doyle, Richard; Estlin, Tara; Mclaren, David

    2012-01-01

    Primitive body exploration missions such as potential Comet Surface Sample Return or Trojan Tour and Rendezvous would challenge traditional operations practices. Earth-based observations would provide only basic understanding before arrival and many science goals would be defined during the initial rendezvous. It could be necessary to revise trajectories and observation plans to quickly characterize the target for safe, effective observations. Detection of outgassing activity and monitoring of comet surface activity are even more time constrained, with events occurring faster than round-trip light time. "Agile science operations" address these challenges with contingency plans that recognize the intrinsic uncertainty in the operating environment and science objectives. Planning for multiple alternatives can significantly improve the time required to repair and validate spacecraft command sequences. When appropriate, time-critical decisions can be automated and shifted to the spacecraft for immediate access to instrument data. Mirrored planning systems on both sides of the light-time gap permit transfer of authority back and forth as needed. We survey relevant science objectives, identifying time bottlenecks and the techniques that could be used to speed missions' reaction to new science data. Finally, we discuss the results of a trade study simulating agile observations during flyby and comet rendezvous scenarios. These experiments quantify instrument coverage of key surface features as a function of planning turnaround time. Careful application of agile operations techniques can play a significant role in realizing the Decadal Survey plan for primitive body exploration

  9. Conference Model: Guidelines...for Science Supervisors on How to Conduct a Successful Leadership Conference.

    ERIC Educational Resources Information Center

    DeBlasi, Robert V.

    Guidelines of a four-phase model for conducting leadership conferences are outlined. Phase I focuses on initial conference planning, including (1) identifying need and purpose for the conference; (2) selecting a conference chairperson; (3) forming the conference planning committee, listing suggested committees and their responsibilities (program,…

  10. Alberta Biodiversity Monitoring Program - monitoring effectiveness of sustainable forest management planning

    Treesearch

    J. John Stadt; Jim Schieck; Harry Stelfox

    2006-01-01

    The Alberta Biodiversity Monitoring Program is a rigorous science-based initiative that is being developed to monitor and report on biodiversity status and trends throughout the province of Alberta, Canada. Forest management plans in Alberta are required to monitor and report on the achievement of stated sustainable forest management objectives; however, the...

  11. Purposeful Action Research: Reconsidering Science and Technology Teacher Professional Development

    ERIC Educational Resources Information Center

    vanOostveen, Roland

    2017-01-01

    Initial plans for this project arose from a need to address issues of professional development of science and technology teachers that went beyond the norm available within school board settings. Two teams of 4 teachers responded to an invitation to participate in a collaborative action research project. Collaborative action research was chosen in…

  12. Science Planning and Orbit Classification for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  13. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focusmore » research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.« less

  15. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  16. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  17. Riparian restoration framework for the Upper Gila River, Arizona

    USGS Publications Warehouse

    Orr, Bruce K.; Leverich, Glen L.; Diggory, Zooey E.; Dudley, Tom L.; Hatten, James R.; Hultine, Kevin R.; Johnson, Matthew P.; Orr, Devyn A.

    2014-01-01

    This technical report summarizes the methods and results of a comprehensive riparian restoration planning effort for the Gila Valley Restoration Planning Area, an approximately 53-mile portion of the upper Gila River in Arizona (Figure 1-1). This planning effort has developed a Restoration Framework intended to deliver science-based guidance on suitable riparian restoration actions within the ecologically sensitive river corridor. The framework development was conducted by a restoration science team, led by Stillwater Sciences with contributions from researchers at the Desert Botanical Garden (DBG), Northern Arizona University (NAU), University of California at Santa Barbara (UCSB), and U.S. Geological Survey (USGS). All work was coordinated by the Gila Watershed Partnership of Arizona (GWP), whose broader Upper Gila River Project Area is depicted in Figure 1-1, with funding from the Walton Family Foundation’s Freshwater Initiative Program.

  18. Progress in European CELSS activities

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.

    1987-01-01

    The European Controlled Ecological Life Support System (CELSS) activities started in the late 1970's with system analysis and feasibility studies of Biological Life Support Systems (BLSS). The initiation for CELSS came from the industry side in Europe, but since then planning and hardware feasibility analyses have been initiated also from customer/agency side. Despite this, it is still too early to state that a CELSS program as a concerted effort has been agreed upon in Europe. However, the general CELSS objectives were accepted as planning and possible development goals for the European effort for manned space activities, and as experimental planning topics in the life sciences community for the next decades. It is expected that ecological life support systems can be tested and implemented on a space station towards the end of this century or early in the next. For the European activities a possible scenario can be projected based on ongoing life support system development activities and the present life sciences goals.

  19. Small grant management in health and behavioral sciences: Lessons learned.

    PubMed

    Sakraida, Teresa J; D'Amico, Jessica; Thibault, Erica

    2010-08-01

    This article describes considerations in health and behavioral sciences small grant management and describes lessons learned during post-award implementation. Using the components by W. Sahlman [Sahlman, W. (1997). How to write a great business plan. Harvard Business Review, 75(4), 98-108] as a business framework, a plan was developed that included (a) building relationships with people in the research program and with external parties providing key resources, (b) establishing a perspective of opportunity for research advancement, (c) identifying the larger context of scientific culture and regulatory environment, and (d) anticipating problems with a flexible response and rewarding teamwork. Small grant management included developing a day-to-day system, building a grant/study program development plan, and initiating a marketing plan. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Learning about the Nature of Science Using Newspaper Articles with Scientific Content

    ERIC Educational Resources Information Center

    García-Carmona, Antonio; Acevedo Díaz, José Antonio

    2016-01-01

    This article presents a study aiming at assessing the efficacy of reading newspaper articles with scientific content in order to incorporate nature of science (NOS) aspects in initial primary teacher education. To this aim, a short teaching intervention based on newspaper articles was planned and performed under regular class conditions. First,…

  1. Contributions from the Philosophy of Science to the Education of Science Teachers

    ERIC Educational Resources Information Center

    Mellado, Vicente; Ruiz, Constantino; Bermejo, Maria Luisa; Jimenez, Roque

    2006-01-01

    One of the most important topics on the international agenda in educational research is to gain an understanding of the processes of educational change in teachers and of the factors that favour or hinder it. Such understanding is, for instance, an essential element in planning and putting into practice initial and ongoing teacher education…

  2. The Conversational Framework and the ISE "Basketball Shot" Video Analysis Activity

    ERIC Educational Resources Information Center

    English, Vincent; Crotty, Yvonne; Farren, Margaret

    2015-01-01

    Inspiring Science Education (ISE) (http://www.inspiringscience.eu/) is an EU funded initiative that seeks to further the use of inquiry-based science learning (IBSL) through the medium of ICT in the classroom. The Basketball Shot is a scenario (lesson plan) that involves the use of video capture to help the student investigate the concepts of…

  3. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  4. Solar System Exploration Division Strategic Plan, volume 1. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This first document is the first of a six-volume series presenting the Solar System Exploration Division's Strategic Plan for the 10-year period FY 1994 to FY 2003. The overall strategy is characterized by five fundamental precepts: (1) execute the current program; (2) improve the vitality of the program and the planetary science community; (3) initiate innovative, small, low-cost planetary missions; (4) initiate new major and moderate missions; and (5) prepare for the next generation of missions. This Strategic Plan describes in detail our proposed approach to accomplish these goals. Volume 1 provides first an Executive Summary of highlights of each of the six volumes, and then goes on to present an overview of the plan, including a discussion of the planning context and strategic approach. Volumes 2, 3, 4, and 5 describe in detail the initiatives proposed. An integral part of each of these volumes is a set of responses to the mission selection criteria questions developed by the Space and Earth Science Advisory Committee. Volume 2, Mission From Planet Earth, describes a strategy for exploring the Moon and Mars and sets forth proposed moderate missions--Lunar Observer and a Mars lander network. Volume 3, Pluto Flyby/Neptune Orbiter, discusses our proposed major new start candidate for the FY 1994 to FY 1998 time frame. Volume 4, Discovery, describes the Near-Earth Asteroid Rendezvous, as well as other candidates for this program of low-cost planetary missions. Volume 5, Toward Other Planetary Systems, describes a major research and analysis augmentation that focuses on extrasolar planet detection and the study of planetary system processes. Finally, Volume 6 summarizes the technology program that the division has structured around these four initiatives.

  5. Fuels planning: science synthesis and integration; economic uses fact sheet 05: NEPA and economics

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The National Environmental Policy Act (NEPA) is the law that requires Federal agencies to consider the environmental impacts of their actions, involve the public in the decisionmaking process, and disclose information, starting at the initial stages of planning. This fact sheet discusses when you should consider economics in the NEPA process, when to do an analysis,...

  6. Social science informing forest management — bringing new knowledge to fuels managers

    Treesearch

    Pamela Jakes

    2007-01-01

    To improve access, interpretability, and use of the full body of research, a pilot project was initiated by the USDA Forest Service to synthesize relevant scientific information and develop publications and decision support tools that managers can use to inform fuels treatment plans. This article provides an overview of the work of the Social Science Core Team. Team...

  7. This Is Who I Want to Be! Exploring Possible Selves by Interviewing Women in Science

    ERIC Educational Resources Information Center

    Early, Jessica Singer

    2017-01-01

    This article shares a study of an interview/writing project for adolescent girls, which was a component of the Girls Writing Science Project at a diverse urban high school in the Southwestern United States. The group of high school girls planned, initiated, conducted, and wrote interview profiles of women scientists from their local community.…

  8. Earth Science Education for the 21st Century Conference (Alexandria, Virginia, April 19-23, 1988). Executive Summary.

    ERIC Educational Resources Information Center

    American Geological Inst., Alexandria, VA.

    This meeting initiates the planning of new guidelines and a framework for teaching the earth sciences from kindergarten through grade 12. The conference report serves as a discussion paper for a series of American Geological Institute (AGI) regional conferences scheduled for fall and winter, 1988-89. It also provides background for an advisory…

  9. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  10. Adding "Missed" Science to Cassini's Ops Plan

    NASA Technical Reports Server (NTRS)

    Roy, Mou; Burton, Marcia E.; Edgington, Scott; Pitesky, Jo E.; Steadman, Kimberly B.; Ray, Trina L.; Evans, Mike

    2014-01-01

    The phenomenal success of the Cassini Mission at Saturn is largely due to flagship instruments, in a target rich environment, for a long period of time, executing almost error free complex mission operations. A smooth transition from cruise operations through the prime science mission and extended science (Equinox) mission culminating in the currently executing Solstice mission has folded in necessary procedural alterations due to improved understanding of the spacecraft, instruments, uplink and planning systems as well as additional science objectives. These have come with the maturation of the mission along with management of workforce reductions. One important set of operational changes has been initiated due to scientific findings highlighting "missed" science opportunities. This is the case for the Titan Meteorology Campaigns and Saturn Storm Watch Campaigns. These observations involve long term monitoring of the atmospheres of Titan and Saturn while the spacecraft and science teams are focused on other high priority targets of opportunity (like Enceladus). Our objective in this paper is to emphasize how a non-invasive strategy to get additional remarkable science was conceived and implemented in a mission with an already well defined operational plan. To illustrate this we will detail Titan Meteorology Campaign and Saturn Storm Watch Campaign integration and implementation strategies as well as the scientific goals and achievements of both.

  11. Developing a heart institute: the execution of a strategic plan.

    PubMed

    Krawczeski, Catherine D; McDonald, Mark B

    2013-01-01

    The Heart Institute at Cincinnati Children's Hospital Medical Center was chartered in July 2008 with the purpose of integrating clinical cardiovascular medicine with basic science research to foster innovations in care of patients with congenital heart problems. The initial administrative steering committee included representation from a basic scientist, a cardiologist, and a cardiothoracic surgeon and was charged with the development of a strategic plan for the evolution of the Institute over a five-year horizon. Using structured focus groups and staff interviews, the vision, mission, and goals were identified and refined. An integrated implementation plan addressing recruitment, capitalization, infrastructure, and market opportunities was created and executed. The preliminary results demonstrated clinical outcome improvements, increased scientific and academic productivity, and financial sustainability. All of the goals identified in the initial planning sequence were achieved within the five-year time frame, prompting an early evaluation and revision of the strategic plan.

  12. Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.

    NASA Astrophysics Data System (ADS)

    Chilton, L. A.; Rindge, H.

    2017-12-01

    Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.

  13. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    NASA Technical Reports Server (NTRS)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  14. Defense Technology Objectives of the Joint Warfighting Science and Technology Plan and the Defense Technology Area Plan.

    DTIC Science & Technology

    1997-01-01

    isolated targets, significantly reduce false alarms ( PFA = 0.01/km2), and recognize force structure (e.g., maneuver battalions). During FY97, a laboratory...probability of false alarm ( Pfa ) of 0.3 at an altitude of 500-1,000 ft and at airspeeds of 60-100 kn is planned. Enhanced COBRA optics-including a...hibiting the desired properties and initiate agent sorption assessments. The FY00 goal is to com- plete performance evaluations of candidate

  15. ESNIB (European Science Notes Information Bulletin): Reports on Current European/Middle Eastern Science

    DTIC Science & Technology

    1989-11-01

    tool for planning, programming , The TERMOS is a digital terrain modeling system and simulating, initiating, and surveying small-scale was developed ...workshop fea- (FRG) turing the European Strategic Program for Research and Conference Language: English Development in Information Technologies...self- * Research and Development in the Numerical addressed mailer and return it to ONREUR. Aerodynamic Systems Program , R. Bailey, NASA

  16. Genesis of an oak-fire science consortium

    Treesearch

    Keith W. Grabner; Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey; Gary D. Wilson

    2012-01-01

    With respect to fire management and practices, one of the most overlooked regions lies in the middle of the country. In this region there is a critical need for both recognition of fire’s importance and sharing of fire information and expertise. Recently we proposed and were awarded funding by the Joint Fire Science Program to initiate the planning phase for a regional...

  17. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    NASA Astrophysics Data System (ADS)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  18. Science and Technology in Africa: The African Union New Initiative and Financial Support Perspectives

    NASA Astrophysics Data System (ADS)

    Ezin, Jean-Pierre

    2010-02-01

    Physics, which is widely touted as the most fundamental of the sciences, underpins the progress in all other branches of science and has a wide range of applications in economic development, including in health, energy research, food security, communication technology and climate change. The African Union (AU) Commission articulates the continental vision of its Member States and its programs are designed to directly contribute to its social and economic development and integration efforts. In the area of science and technology the Department has developed Africa's Science and Technology Consolidated Plan of Action as a strategic policy document through the AU system of conference of ministers responsible for science to guide the continent on common priority programs. The programs in this plan of action that have been transformed into bankable projects under the Book of ``lighthouse projects Phase 1'', adequately respond to Africa's challenges and development needs using science. They can be summarized into three main themes: a pan-African university (PAU) initiative (to combine higher education and scientific research as a network of differentiated PAU in each of the five African regions), African research grants (to strengthen the research capacity of the African institutions and upgrading infrastructures, consolidating their accumulated asset of scientific knowledge), popularization of science and technology and promotion of public participation (to build public understanding and raising awareness on science and technology as a driving agent for social and economic progress for Africa and its integration process) and a science and technology institutional capacity building program). This talk will review these programs as well as the vision of the African Development Bank role in it. )

  19. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  20. Space Science for the 21st Century: The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Throughout its history, the U.S. Space Science technologies program has been enormously productive. Its accomplishments have rewritten the textbooks. But now, the economic environment has changed dramatically. The Nation's scientific and technological goals are being reexamined and redefined.And the social contract between the scientific community and the Federal Government is being rewritten. There is an expectation that the American public should receive more direct benefits from its investment in science and technology. This Strategic Plan reflects this new paradigm. It presents a carefully selected set of new scientific initiatives that build on past accomplishments to continue NASA's excellence in Space Science. At the same time, it responds to fiscal constraints by defining a new approach to planning, developing, and operating Space Science missions. In particular, investments in new technologies will permit major scientific advances to be made with smaller, more focused, and less costly missions. With the introduction of advanced technologies, smaller does not have to mean less capable. The focus on new technologies also provides and opportunity for the Space Science program to enhance its direct contribution to the country's economic base. At the same time, the program can build on public interest to strengthen its contributions to education and scientific literacy. With this plan we are taking the first steps toward shaping the Space Science program of the 21st century. In doing so, we face major challenges. It will be a very different program than might have been envisioned even a few years ago. But it will be a program that remains at the forefront of science, technology, and education. We intend to continue rewriting the textbooks.

  1. Sierra Nevada Science Review. Report of the Science Review Team charged to synthesize new information of rangewide urgency to the national forests of the Sierra Nevada.

    Treesearch

    Constance Millar; Amy Lind; Rowan Rowntree; Carl Skinner; Jared Verner; William J. Zielinski; Robert R. Ziemer

    1998-01-01

    In January, 1998, the Pacific Southwest Region and Pacific Southwest Research Station of the Forest Service initiated a collaborative effort to incorporate new information into planning future management of Sierra Nevada national forests. The project, known as the Sierra Nevada Framework for Conservation and Collaboration, will incorporate the latest scientific...

  2. "I Know This Is Supposed to Be More Like the Real World, but . . .": Student Perceptions of a PBL Implementation in an Undergraduate Materials Science Course

    ERIC Educational Resources Information Center

    Henry, Holly R.; Tawfik, Andrew A.; Jonassen, David H.; Winholtz, Robert A.; Khanna, Sanjeev

    2012-01-01

    This qualitative case study examines the initial implementation of a problem-based version of an undergraduate course in materials science for the purpose of identifying areas of improvement to the curriculum prior to a planned second implementation. The course was designed around problems that students work in small teams to solve under the…

  3. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries.

    PubMed

    Johnson, Layne M; Butler, John T; Johnston, Lisa R

    2012-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed.

  4. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries

    PubMed Central

    Johnson, Layne M.; Butler, John T.; Johnston, Lisa R.

    2013-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed. PMID:23585706

  5. Space science curriculum design and research at NC A&T state university

    NASA Astrophysics Data System (ADS)

    Kebede, Abebe; Nair, Jyoti; Smith, Galen

    2007-12-01

    Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.

  6. A new DoD initiative: the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program

    NASA Astrophysics Data System (ADS)

    Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.

    2008-07-01

    In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.

  7. The TRUST Project: A Formal-Informal Teacher Education Partnership for the Promotion of Earth Science Teacher Certification

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.

    2004-12-01

    The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and renewal. Details of the program's structure and preliminary results from the first two years will be presented.

  8. Level-2 Milestone 3244: Deploy Dawn ID Machine for Initial Science Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, D

    2009-09-21

    This report documents the delivery, installation, integration, testing, and acceptance of the Dawn system, ASC L2 milestone 3244: Deploy Dawn ID Machine for Initial Science Runs, due September 30, 2009. The full text of the milestone is included in Attachment 1. The description of the milestone is: This milestone will be a result of work started three years ago with the planning for a multi-petaFLOPS UQ-focused platform (Sequoia) and will be satisfied when a smaller ID version of the final system is delivered, installed, integrated, tested, accepted, and deployed at LLNL for initial science runs in support of SSP mission.more » The deliverable for this milestone will be a LA petascale computing system (named Dawn) usable for code development and scaling necessary to ensure effective use of a final Sequoia platform (expected in 2011-2012), and for urgent SSP program needs. Allocation and scheduling of Dawn as an LA system will likely be performed informally, similar to what has been used for BlueGene/L. However, provision will be made to allow for dedicated access times for application scaling studies across the entire Dawn resource. The milestone was completed on April 1, 2009, when science runs began running on the Dawn system. The following sections describe the Dawn system architecture, current status, installation and integration time line, and testing and acceptance process. A project plan is included as Attachment 2. Attachment 3 is a letter certifying the handoff of the system to a nuclear weapons stockpile customer. Attachment 4 presents the results of science runs completed on the system.« less

  9. A science and technology initiative within the office of civilian radioactive waste management

    USGS Publications Warehouse

    Budnitz, R.J.; Kiess, T.E.; Peters, M.; Duncan, D.

    2003-01-01

    In 2002, by following a national decision-making process that had been specified in the 1982 Nuclear Waste Policy Act, Yucca Mountain (YM) was designated as the site for the nation's geologic repository for commercial spent nuclear fuel (SNF). The U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) must now obtain regulatory approval to construct and operate a repository there, and to develop transportation and infrastructure needed to support operations. The OCRWM has also recently begun a separate Science and Technology (S&T) initiative, whose purposes, beginnings, current projects, and future plans are described here.

  10. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    NASA Astrophysics Data System (ADS)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and explanation construction. Student opportunities to engage in practices that prioritize scientific discourse also occurred when interns were using dialogic voice and the tools designed to foster development of teacher knowledge for facilitating investigation-based science discussions. However, several intern characteristics likely moderated or mediated intern use of tools, dialogic voice, and productive teaching practices to capitalize on student contributions. These characteristics included intern knowledge of the science content and practices and initial beliefs about science teaching. Missed opportunities to use a combination of several teaching practices and tools designed to foster the development of knowledge for science teaching resulted in fewer opportunities for students to engage in data analysis, argumentation based on evidence, and construction of scientific explanations. These findings highlight the potential of teacher-educator provided tools for supporting beginning teachers in learning to facilitate investigation-based discussions that capitalize on student contributions. These findings also help the field conceptualize how beginning teachers use tools and teaching practices to plan and enact investigation-based science lessons, and how intern characteristics relate to tool use and planned and enacted lessons. By analyzing the investigation-based science lessons holistically, this study begins to unpack the complexities of facilitating investigation-based discussions including the interplay between intern characteristics and tool use, and the ways intern engagement in synergistic teaching practices provide opportunities for students to engage in data analysis, explanation construction, and argumentation. This study also describes methodological implications for this type of whole-lesson analysis and comments on the need for further research investigating beginning teachers' use of tools over time. Finally, I propose the need for iterative design of scaffolds to further support beginning teacher facilitation of investigation-based science lessons.

  11. Science Initiatives of the US Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  12. A user interface for a knowledge-based planning and scheduling system

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1988-01-01

    The objective of EMPRESS (Expert Mission Planning and Replanning Scheduling System) is to support the planning and scheduling required to prepare science and application payloads for flight aboard the US Space Shuttle. EMPRESS was designed and implemented in Zetalisp on a 3600 series Symbolics Lisp machine. Initially, EMPRESS was built as a concept demonstration system. The system has since been modified and expanded to ensure that the data have integrity. Issues underlying the design and development of the EMPRESS-I interface, results from a system usability assessment, and consequent modifications are described.

  13. The AGU Data Management Maturity Model Initiative

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2015-12-01

    In September 2014, the AGU Board of Directors approved two initiatives to help the Earth and space sciences community address the growing challenges accompanying the increasing size and complexity of data. These initiatives are: 1) Data Science Credentialing: development of a continuing education and professional certification program to help scientists in their careers and to meet growing responsibilities and requirements around data science; and 2) Data Management Maturity (DMM) Model: development and implementation of a data management maturity model to assess process maturity against best practices, and to identify opportunities in organizational data management processes. Each of these has been organized within AGU as an Editorial Board and both Boards have held kick off meetings. The DMM model Editorial Board will recommend strategies for adapting and deploying a DMM model to the Earth and space sciences create guidance documents to assist in its implementation, and provide input on a pilot appraisal process. This presentation will provide an overview of progress to date in the DMM model Editorial Board and plans for work to be done over the upcoming year.

  14. Status of the Advanced Virgo gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Adams, T.; Agatsuma, K.; Aiello, L.; Allocca, A.; Amato, A.; Antier, S.; Arnaud, N.; Ascenzi, S.; Astone, P.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Barone, F.; Barsuglia, M.; Barta, D.; Basti, A.; Bawaj, M.; Bazzan, M.; Bejger, M.; Belahcene, I.; Bersanetti, D.; Bertolini, A.; Bitossi, M.; Bizouard, M. A.; Bloemen, S.; Boer, M.; Bogaert, G.; Bondu, F.; Bonnand, R.; Boom, B. A.; Boschi, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Branchesi, M.; Briant, T.; Brillet, A.; Brisson, V.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Buy, C.; Cagnoli, G.; Calloni, E.; Canepa, M.; Canizares, P.; Capocasa, E.; Carbognani, F.; Casanueva Diaz, J.; Casentini, C.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chassande-Mottin, E.; Chincarini, A.; Chiummo, A.; Christensen, N.; Chua, S.; Ciolfi, R.; Cirone, A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Conti, L.; Cortese, S.; Coulon, J.-P.; Cuoco, E.; D'Antonio, S.; Dattilo, V.; Davier, M.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; De Rosa, R.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Dolique, V.; Ducrot, M.; Fafone, V.; Farinon, S.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Flaminio, R.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frey, V.; Gammaitoni, L.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Germain, V.; Ghosh, A.; Ghosh, S.; Giazotto, A.; Gonzalez Castro, J. M.; Gosselin, M.; Gouaty, R.; Grado, A.; Granata, M.; Greco, G.; Groot, P.; Gruning, P.; Guidi, G. M.; Harms, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Hoak, D.; Hofman, D.; Huet, D.; Intini, G.; Isac, J.-M.; Jacqmin, T.; Jaranowski, P.; Jonker, R. J. G.; Kéfélian, F.; Khan, I.; Koley, S.; Kowalska, I.; Królak, A.; Kutynia, A.; Lartaux-Vollard, A.; Lazzaro, C.; Leaci, P.; Leonardi, M.; Leroy, N.; Letendre, N.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Lumaca, D.; Majorana, E.; Maksimovic, I.; Man, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Martelli, F.; Martellini, L.; Masserot, A.; Mastrogiovanni, S.; Meidam, J.; Merzougui, M.; Metzdorff, R.; Mezzani, F.; Michel, C.; Milano, L.; Miller, A.; Minazzoli, O.; Minenkov, Y.; Moggi, A.; Mohan, M.; Montani, M.; Mours, B.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Neri, M.; Nichols, D.; Nissanke, S.; Nocera, F.; Palomba, C.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pedurand, R.; Perreca, A.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pillant, G.; Pinard, L.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Prodi, G. A.; Punturo, M.; Puppo, P.; Rapagnani, P.; Razzano, M.; Regimbau, T.; Rei, L.; Ricci, F.; Robinet, F.; Rocchi, A.; Rolland, L.; Romano, R.; Rosińska, D.; Ruggi, P.; Salconi, L.; Sassolas, B.; Schmidt, P.; Sentenac, D.; Sequino, V.; Sieniawska, M.; Singhal, A.; Sorrentino, F.; Stratta, G.; Swinkels, B. L.; Tacca, M.; Tiwari, S.; Tonelli, M.; Travasso, F.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.; Vardaro, M.; Vasúth, M.; Vedovato, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vocca, H.; Walet, R.; Wang, G.; Was, M.; Yvert, M.; Zadrożny, A.; Zelenova, T.; Zendri, J.-P.

    2017-10-01

    Advanced Virgo is the French-Italian second generation laser gravitational wave detector, successor of the Initial Virgo. This new interferometer keeps only the infrastructure of its predecessor and aims to be ten times more sensitive, with its first science run planned for 2017. This article gives an overview of the Advanced Virgo design and the technical choices behind it. Finally, the up-to-date progresses and the planned upgrade for the following years are detailed.

  15. Path to a Research Plan

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    2003-01-01

    This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.

  16. International Year of Planet Earth - Activities and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for enhancing international cooperation and to ensure increased effective use by society of Earth sciences.

  17. Strategies for Augmentation Initiatives for Leadership Self-Development Program

    DTIC Science & Technology

    1994-08-01

    sensitive to ethical matters. Leaders must not tolerate unethical behavior by subordinates, peers, or superic s. This can be an area of great ambiguity, if... planned with the intent of the reader becoming reliably informed and conversant with the topic, while maintaining a high level of motivation and interest...Soc;it Sciences Distribution Is restricted. U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES A Field Operating Agency Under the

  18. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary ‘VoxTox’ research programme

    PubMed Central

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila EA; Bond, Simon J; Forman, Julia R; Hoole, Andrew CF; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael PD; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon YK; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael PF; Parker, Michael A

    2017-01-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose. PMID:29177202

  19. Comet rendezvous mission design using Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Hastrup, R. C.; Yen, C.-W. L.; Wood, L. J.

    1979-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, which is planned to be the first to use the Solar Electric Propulsion System (SEPS), is to be launched in 1985. The purpose of this paper is to describe how the mission design attempts to maximize science return while working within spacecraft and other constraints. Science requirements and desires are outlined and specific instruments are considered. Emphasis is on the strategy for operations in the vicinity of Tempel 2, for which a representative profile is described. The mission is planned to extend about one year past initial rendezvous. Because of the large uncertainty in the comet environment the Tempel 2 operations strategy must be highly adaptive.

  20. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary 'VoxTox' research programme.

    PubMed

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila Ea; Bond, Simon J; Forman, Julia R; Hoole, Andrew Cf; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael Pd; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon Yk; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael Pf; Parker, Michael A

    2017-06-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.

  1. Fort Collins Science Center: Fiscal Year 2007 Accomplishments

    USGS Publications Warehouse

    Wilson, J.T.

    2008-01-01

    In Fiscal Year 2007 (FY07), the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) continued research vital to U.S. Department of the Interior science and management needs and associated USGS programmatic goals. FORT work also supported the science needs of other government agencies as well as private cooperators. Specifically, FORT scientific research and technical assistance focused on client and partner needs and goals in the areas of biological information management, fisheries and aquatic systems, invasive species, status and trends of biological resources, terrestrial ecosystems, and wildlife resources. In addition, FORT's 5-year strategic plan was refined to incorporate focus areas identified in the USGS strategic science plan, including ecosystem-landscape analysis, global climate change, and energy and mineral resource development. As a consequence, several science projects initiated in FY07 were either entirely new research dor amplifications of existing work. Highlights of FORT project accomplishments are described below under the USGS science program with which each task is most closely associated. The work of FORT's 6 branches (Aquatic Systems and Technology Applications, Ecosystem Dynamics, Information Science, Invasive Species Science, Policy Analysis and Science Assistance, and Species and Habitats of Federal Interest) often involves major partnerships with other agencies or cooperation with other USGS disciplines (Geology, Geography, Water Resources) and the Geospatial Information Office.

  2. The Way Point Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2012-01-01

    Airborne real time observation are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientist, planning a research aircraft mission within the context of meeting the science objective is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircraft are often involved in the NASA field campaigns the coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving dynamic weather conditions often determine the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientist and help them plan and modify the flight tracks successfully. Scientists at the University of Alabama Huntsville and the NASA Marshal Space Flight Center developed the Waypoint Planning Tool (WPT), an interactive software tool that enables scientist to develop their own flight plans (also known as waypoints), with point and click mouse capabilities on a digital map filled with time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analyses during and after each campaign helped identify both issues and new requirements, initiating the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities to the Google Earth Plugin and Java Web Start/Applet on web platform, as well as to the rising open source GIS tools with new JavaScript frameworks, the Waypoint planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed JavaScript-controled Waypoint tool is planned to be integrated with the NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives. This presentation will discuss the development process of the Waypoint Planning Tool in responding to field campaign challenges, identifying new information technologies, and describing the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.

  3. Preparing tomorrow's health sciences librarians: feasibility and marketing studies.

    PubMed Central

    Moran, B B; Jenkins, C G; Friedman, C P; Lipscomb, C E; Gollop, C J; Moore, M E; Morrison, M L; Tibbo, H R; Wildemuth, B M

    1996-01-01

    The University of North Carolina at Chapel Hill is devising and evaluating five curricular models designed to improve education for health sciences librarianship. These models fit into a continual learning process from the initial professional preparation to lifelong learning opportunities. Three of them enhance existing degree and certificate programs in the School of Information and Library Science (SILS) with a health sciences specialization, and two are new programs for working information professionals. The approaches involve partnerships among SILS, the Health Sciences Library, and the program in Medical Informatics. The planning process will study the feasibility of the proposed programs, test the marketability of the models to potential students and employers, and make recommendations about implementation. PMID:8913557

  4. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  5. Digital chat reference in health science libraries: challenges in initiating a new service.

    PubMed

    Dee, Cheryl R; Newhouse, Joshua D

    2005-01-01

    Digital reference service adds a valuable new dimension to health science reference services, but the road to implementation can present questions that require carefully considered decisions. This article incorporates suggestions from the published literature, provides tips from interviews with practicing academic health science librarians, and reports on data from students' exploration of academic health science library Web sites' digital reference services. The goal of this study is to provide guidelines to plan new services, assess user needs, and select software, and to showcase potential benefits of collaboration and proactive and user-friendly marketing. In addition, tips for successful operation and evaluation of services are discussed.

  6. Sierra Nevada Science Review

    Treesearch

    Constance Millar; Amy Lind; Rowan Rowntree; Carl Skinner; Jared Verner; Bill Zielinski; Robert Ziemer

    1998-01-01

    In January, 1998, the Pacific Southwest Region and Pacific Southwest Research Station of the Forest Service initiated a collaborative effort to incorporate new information into planning future management of Sierra Nevada national forests. The project, known as the Sierra Nevada Framework for Conservation and Collaboration, will incorporate the latest scientific...

  7. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  8. News

    NASA Astrophysics Data System (ADS)

    2002-05-01

    Physics on Stage: Physics on the political stage Women in Physics: Allez les girls! Curriculum: Students want ethics debate in school science Physics on Stage: Buzzing around the tulips Events: GIREP 2002 Competition: Schumacher in the shower! Higher Education: Universities consider conceptual physics courses Resources: Evaluation of Advancing Physics Research Frontiers: Physics Teachers @ CERN 2002 UK Curriculum: Preparing useful citizens China: Changing the approach NSTA Annual Convention: Innovations and simplicity Europe: European Community Science and Society Action Plan Citizenship: ASE-Wellcome Trust citizenship education initiative

  9. The Lunar Scout Program: An international program to survey the Moon from orbit for geochemistry, mineralogy, imagery, geodesy, and gravity

    NASA Technical Reports Server (NTRS)

    Morrison, Donald A. (Editor)

    1994-01-01

    The Lunar Scout Program was one of a series of attempts by NASA to develop and fly an orbiting mission to the moon to collect geochemical, geological, and gravity data. Predecessors included the Lunar Observer, the Lunar Geochemical Orbiter, and the Lunar Polar Orbiter - missions studied under the auspices of the Office of Space Science. The Lunar Scout Program, however, was an initiative of the Office of Exploration. It was begun in late 1991 and was transferred to the Office of Space Science after the Office of Exploration was disbanded in 1993. Most of the work was done by a small group of civil servants at the Johnson Space Center; other groups also responsible for mission planning included personnel from the Charles Stark Draper Laboratories, the Lawrence Livermore National Laboratory, Boeing, and Martin Marietta. The Lunar Scout Program failed to achieve new start funding in FY 93 and FY 94 as a result of budget downturns, the de-emphasis of the Space Exploration Initiative, and the fact that lunar science did not rate as high a priority as other planned planetary missions, and was cancelled. The work done on the Lunar Scout Program and other lunar orbiter studies, however, represents assets that will be useful in developing new approaches to lunar orbit science.

  10. Automating Mission Scheduling for Space-Based Observatories

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Muscettola, Nicola; Hansson, Othar; Mohan, Sunil

    1998-01-01

    In this paper we describe the use of our planning and scheduling framework, HSTS, to reduce the complexity of science mission planning. This work is part of an overall project to enable a small team of scientists to control the operations of a spacecraft. The present process is highly labor intensive. Users (scientists and operators) rely on a non-codified understanding of the different spacecraft subsystems and of their operating constraints. They use a variety of software tools to support their decision making process. This paper considers the types of decision making that need to be supported/automated, the nature of the domain constraints and the capabilities needed to address them successfully, and the nature of external software systems with which the core planning/scheduling engine needs to interact. HSTS has been applied to science scheduling for EUVE and Cassini and is being adapted to support autonomous spacecraft operations in the New Millennium initiative.

  11. IAIMS development at Harvard Medical School.

    PubMed Central

    Barnett, G O; Greenes, R A; Zielstorff, R D

    1988-01-01

    The long-range goal of this IAIMS development project is to achieve an Integrated Academic Information Management System for the Harvard Medical School, the Francis A. Countway Library of Medicine, and Harvard's affiliated institutions and their respective libraries. An "opportunistic, incremental" approach to planning has been devised. The projects selected for the initial phase are to implement an increasingly powerful electronic communications network, to encourage the use of a variety of bibliographic and information access techniques, and to begin an ambitious program of faculty and student education in computer science and its applications to medical education, medical care, and research. In addition, we will explore means to promote better collaboration among the separate computer science units in the various schools and hospitals. We believe that our planning approach will have relevance to other educational institutions where lack of strong central organizational control prevents a "top-down" approach to planning. PMID:3416098

  12. Bringing climate sciences to the general public with the Climanosco initiative

    NASA Astrophysics Data System (ADS)

    Bourqui, Michel; Bolduc, Cassandra; Charbonneau, Paul; Charrière, Marie; Hill, Daniel; Lòpez Gladko, Angélica; Loubet, Enrique; Roy, Philippe; Winter, Barbara

    2016-04-01

    This paper presents the first months of operation of the scientists-initiated Climanosco.org platform. The goal of this initiative is to bridge climate sciences with the general public by building a network of climate scientists and citizens around the world, by stimulating the writing of quality climate science articles in non-scientific language, and by publishing these articles in an open-access, multilingual format. For the climate scientist, this platform will offer a simple and reliable channel to disseminate research results to the general public. High standards are enforced by: a) requiring that the main author is an active climate scientist, and b) an innovative peer-review process involving scientific and non-scientific referees with distinct roles. Direct participation of non-scientists is allowed through co-authoring, peer-reviewing, language translation. Furthermore, public engagement is stimulated by allowing non-scientists to invite manuscripts to be written by scientists on topics of their concern. The targeted public includes journalists, teachers, students, local politicians, economists, members of the agriculture sector, and any other citizens from around the world with an interest in climate sciences. The initiative is now several months into operations. In this paper, I will discuss what we have achieved so far and what we plan for the next future.

  13. Social conditions and trends in southeast Alaska.

    Treesearch

    Rhonda Mazza; Linda E. Kruger

    2005-01-01

    In 1997, scientists at the Pacific Northwest Research Station initiated several social science studies in response to information gaps identified while developing the Tongass Land Management Plan. Results presented here summarize findings from studies of demographic trends and tourism trends in the region based on data available through 2002. Demographic...

  14. Ideology and Encyclopedism: Reflections and Implications (SIG HFIS: History and Foundations of Information Science)

    ERIC Educational Resources Information Center

    Warner, Julian

    2000-01-01

    Presents an abstract for a planned session on historical perspectives on encyclopedism, from 17th century initiatives to modern thought. Presentations include: "Concepts of Encyclopedia and the Organisation and Retrieval of Knowledge: Historical Perspectives" (W. Boyd Rayward); "Encyclopedism at the End of Modernity" (Mikel…

  15. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  16. Relay Sequence Generation Software

    NASA Technical Reports Server (NTRS)

    Gladden, Roy E.; Khanampompan, Teerapat

    2009-01-01

    Due to thermal and electromagnetic interactivity between the UHF (ultrahigh frequency) radio onboard the Mars Reconnaissance Orbiter (MRO), which performs relay sessions with the Martian landers, and the remainder of the MRO payloads, it is required to integrate and de-conflict relay sessions with the MRO science plan. The MRO relay SASF/PTF (spacecraft activity sequence file/ payload target file) generation software facilitates this process by generating a PTF that is needed to integrate the periods of time during which MRO supports relay activities with the rest of the MRO science plans. The software also generates the needed command products that initiate the relay sessions, some features of which are provided by the lander team, some are managed by MRO internally, and some being derived.

  17. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  18. The PNC-CAT insertion device beamline at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Heald, S. M.; Stern, E. A.; Brown, F. C.; Kim, K. H.; Barg, B.; Crozier, E. D.

    1996-09-01

    The PNC-CAT is a consortium of Pacific Northwest institutions formed to instrument a sector (number 20) at the Advanced Photon Source (APS). Research is planned in a variety of areas, with an emphasis on environmentally based problems. The insertion device beamline is based on the APS undulator A and will be optimized for producing microbeams as well as for applications requiring energy scanning capabilities. This paper describes the basic layout and some special features of the beamline. Two experimental stations are planned: one general purpose and one dedicated to MBE and surface science problems. Both tapered capillaries and Kirkpatrick-Baez optics will be used for producing microbeams, and a large optical bench is planned for the main station to allow for easy accommodation of new optics developments. Design calculations and initial capillary tests indicate that flux densities exceeding 1011 photons/sec/mm2 should be achievable. All major components are under construction or in procurement, and initial testing is planned for late 1996.

  19. MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey

    2004-01-01

    This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.

  20. Educational affairs plan: A five-year strategy

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A five-year plan is presented to guide the use of NASA resources in administering a focused and consistent set of aeronautics and space science education programs. Major initiatives outlined in this plan fall into two categories: programmatic priorities and institutional priorities. Programmatic priorities for this plan include elementary education, teacher education, underrepresented minority participation, educational technology and the Aerospace Education Services Project (AESP). Institutional priorities highlighted in this plan include university programs, educational publications and their distribution, educational partnerships with public and private organizations, educational research and evaluation, and activities of the educational affairs administration. The plan's aim is to directly and indirectly help to ensure an adequate pool of talented scientists, engineers and technical personnel to keep NASA at the forefront of advancements for the 21st century.

  1. Biodiversity and ecosystem services science for a sustainable planet: the DIVERSITAS vision for 2012-20.

    PubMed

    Larigauderie, Anne; Prieur-Richard, Anne-Hélène; Mace, Georgina M; Lonsdale, Mark; Mooney, Harold A; Brussaard, Lijbert; Cooper, David; Cramer, Wolfgang; Daszak, Peter; Díaz, Sandra; Duraiappah, Anantha; Elmqvist, Thomas; Faith, Daniel P; Jackson, Louise E; Krug, Cornelia; Leadley, Paul W; Le Prestre, Philippe; Matsuda, Hiroyuki; Palmer, Margaret; Perrings, Charles; Pulleman, Mirjam; Reyers, Belinda; Rosa, Eugene A; Scholes, Robert J; Spehn, Eva; Turner, Bl; Yahara, Tetsukazu

    2012-02-01

    DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: "Biodiversity and Ecosystem Services Science for a Sustainable Planet". This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network - GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services - IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011-2020). This article presents the vision and its core scientific challenges.

  2. Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.

    2006-01-01

    According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.

  3. Fire Prevention, Detection and Suppression

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    In mid-1999, the Space and Life Sciences Directorate at Johnson Space Center was challenged to develop a new paradigm for NASA human life sciences: space medicine, space biomedical research and countermeasures, advanced human support technology. A new thrust - Bioastronautics - was formulated with a budget augmentation request. The objective are: expanded extramural community participation through the National Space Biomedical Research Institute, initiated the detailed planning and implementation of Bioastronautics, an integrated approach to ensure healthy and safe human space travel, assist in the solution of earth-based problems.

  4. Analysis of Stakeholder-Defined Needs in Northeast U.S. Coastal Communities to Determine Gaps in Research Informing Coastal Resilience Planning

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Kenney, M. A.; Sutton-Grier, A.; Penn, K.

    2017-12-01

    The impacts of climate change on our coastlines are increasing pressure on communities, ecosystems, infrastructure, and state-to-local economies in the northeastern United States (U.S.). As a result of current or imminent risk of acute and chronic hazards, local, state and regional entities have taken steps to identify and address vulnerabilities to climate change. Decisions to increase coastal infrastructure resilience and grey, green, and cultural infrastructure solutions requires physical, natural, and social science that is useful for decision-making and effective science translation mechanisms. Despite the desire to conduct or fund science that meets the needs of communities, there has been no comprehensive analysis to determine stakeholder-defined research needs. To address this gap, this study conducts a stakeholder needs analysis in northeast U.S. coastal communities to determine gaps in information and translation processes supporting coastal resilience planning. Documents were sourced from local, state, and regional organizations in both the public and private sectors, using the northeast region defined by the third National Climate Assessment. Modeled after Dilling et al. (2015), a deductive coding schema was developed that categorized documents using specific search terms such as "Location and condition of infrastructure" and "Proactive planning". A qualitative document analysis was then executed using NVivo to formally identify patterns and themes present in stakeholder surveys, workshop proceedings, and reports. Initial stakeholder priorities centered around incorporation of climate science into planning and decision making regarding vulnerabilities of infrastructure, enhanced emergency planning and response, and communication of key information.

  5. Using a concept map as a tool for strategic planning: The Healthy Brain Initiative.

    PubMed

    Anderson, Lynda A; Day, Kristine L; Vandenberg, Anna E

    2011-09-01

    Concept mapping is a tool to assist in strategic planning that allows planners to work through a sequence of phases to produce a conceptual framework. Although several studies describe how concept mapping is applied to various public health problems, the flexibility of the methods used in each phase of the process is often overlooked. If practitioners were more aware of the flexibility, more public health endeavors could benefit from using concept mapping as a tool for strategic planning. The objective of this article is to describe how the 6 concept-mapping phases originally outlined by William Trochim guided our strategic planning process and how we adjusted the specific methods in the first 2 phases to meet the specialized needs and requirements to create The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health. In the first stage (phases 1 and 2 of concept mapping), we formed a steering committee, convened 4 work groups over a period of 3 months, and generated an initial set of 42 action items grounded in science. In the second stage (phases 3 and 4), we engaged stakeholders in sorting and rating the action items and constructed a series of concept maps. In the third and final stage (phases 5 and 6), we examined and refined the action items and generated a final concept map consisting of 44 action items. We then selected the top 10 action items, and in 2007, we published The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health, which represents the strategic plan for The Healthy Brain Initiative.

  6. A Shovel-Ready Solution to Fill the Nursing Data Gap in the Interdisciplinary Clinical Picture.

    PubMed

    Keenan, Gail M; Lopez, Karen Dunn; Sousa, Vanessa E C; Stifter, Janet; Macieira, Tamara G R; Boyd, Andrew D; Yao, Yingwei; Herdman, T Heather; Moorhead, Sue; McDaniel, Anna; Wilkie, Diana J

    2018-01-01

    To critically evaluate 2014 American Academy of Nursing (AAN) call-to-action plan for generating interoperable nursing data. Healthcare literature. AAN's plan will not generate the nursing data needed to participate in big data science initiatives in the short term because Logical Observation Identifiers Names and Codes and Systematized Nomenclature of Medicine - Clinical Terms are not yet ripe for generating interoperable data. Well-tested viable alternatives exist. Authors present recommendations for revisions to AAN's plan and an evidence-based alternative to generating interoperable nursing data in the near term. These revisions can ultimately lead to the proposed terminology goals of the AAN's plan in the long term. © 2017 NANDA International, Inc.

  7. Mars habitat modules: launch, scaling and functional design considerations.

    PubMed

    Bell, Larry; Hines, Gerald D

    2005-07-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts. c2005 Elsevier Ltd. All rights reserved.

  8. Tactical Satellite 3

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  9. eGY-Africa: addressing the digital divide for science in Africa

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Barton, Charles; Chukwuma, Victor; Cottrell, Les

    2010-05-01

    As the world of science becomes increasingly Internet-dependent, so the African scientists become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this digital divide by a campaign of advocacy for better institutional facilities. The present status of Internet services, problems, and plans are being mapped via a combination of a survey questionnaire-based survey and direct measurement of Internet performance (the PingER Project). Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide. eGY-Africa is establishing National groups of concerned scientists and engaging with those initiatives with related goals. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide - either as a direct policy objective, or indirectly as a means to an end, such as the development of capabilities in science and technology in Africa. The expectation is that informed opinion from the scientific community at the institutional, national, and international levels can be used to influence the decision makers and donors who are in a position to deliver better Internet capabilities.

  10. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    NASA Astrophysics Data System (ADS)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to biological understanding, and that the construction of scientific knowledge depends upon first hand experiences with organisms, as much as it does dialogical interaction, "acts of inquiry", and reflective exploration of multiple sources of information.

  11. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    ERIC Educational Resources Information Center

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  12. "Educate to Innovate": How the Obama Plan for STEM Education Falls Short. Backgrounder. No. 2504

    ERIC Educational Resources Information Center

    Burke, Lindsey M.; McNeill, Jena Baker

    2011-01-01

    President Obama's Educate to Innovate initiative has provided billions in additional federal funding for science, technology, engineering, and mathematics (STEM) education programs across the country. The Administration's recognition of the importance of STEM education-- for global competitiveness as well as for national security--is good and…

  13. How Teachers Learn: The Roles of Formal, Informal, and Independent Learning

    ERIC Educational Resources Information Center

    Jones, W. Monty; Dexter, Sara

    2014-01-01

    A qualitative study of math and science teachers at two middle schools identifies how their system for learning to integrate technology into their teaching goes beyond what school leaders typically consider when planning for teachers' learning. In addition to (a) the district-initiated, or formal, system of professional development (PD) and…

  14. The EPOS Architecture: Integrated Services for solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2013-04-01

    The European Plate Observing System (EPOS) represents a scientific vision and an IT approach in which innovative multidisciplinary research is made possible for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes and tsunamis as well as those driving tectonics and Earth surface dynamics. EPOS has a long-term plan to facilitate integrated use of data, models and facilities from existing (but also new) distributed research infrastructures, for solid Earth science. One primary purpose of EPOS is to take full advantage of the new e-science opportunities coming available. The aim is to obtain an efficient and comprehensive multidisciplinary research platform for the Earth sciences in Europe. The EPOS preparatory phase (EPOS PP), funded by the European Commission within the Capacities program, started on November 1st 2010 and it has completed its first two years of activity. EPOS is presently mid-way through its preparatory phase and to date it has achieved all the objectives, milestones and deliverables planned in its roadmap towards construction. The EPOS mission is to integrate the existing research infrastructures (RIs) in solid Earth science warranting increased accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations. This is expected to enhance worldwide interoperability in the Earth Sciences and establish a leading, integrated European infrastructure offering services to researchers and other stakeholders. The Preparatory Phase aims at leveraging the project to the level of maturity required to implement the EPOS construction phase, with a defined legal structure, detailed technical planning and financial plan. We will present the EPOS architecture, which relies on the integration of the main outcomes from legal, governance and financial work following the strategic EPOS roadmap and according to the technical work done during the first two years in order to establish an effective implementation plan guaranteeing long term sustainability for the infrastructure and the associated services. We plan to describe the RIs to be integrated in EPOS and to illustrate the initial suite of integrated and thematic core services to be offered to the users. We will present examples of combined data analyses and we will address the importance of opening our research infrastructures to users from different communities. We will describe the use-cases identified so far in order to allow stakeholders and potential future users to understand and interact with the EPOS infrastructure. In this framework, we also discuss the global perspectives for data infrastructures in order to verify the coherency of the EPOS plans and present the EPOS contributions. We also discuss the international cooperation initiatives in which EPOS is involved emphasizing the implications for solid Earth data infrastructures. In particular, EPOS and the satellite Earth Observation communities are collaborating in order to promote the integration of data from in-situ monitoring networks and satellite observing systems. Finally, we will also discuss the priorities for the third year of activity and the key actions planned to better involve users in EPOS. In particular, we will discuss the work done to finalize the design phase as well as the activities to start the validation and testing phase of the EPOS infrastructure.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Kathleen S.; Judd, Chaeli; Engel-Cox, Jill A.

    This report presents the results of the Gulf of Mexico Regional Collaborative (GoMRC), a year-long project funded by NASA. The GoMRC project was organized around end user outreach activities, a science applications team, and a team for information technology (IT) development. Key outcomes are summarized below for each of these areas. End User Outreach; Successfully engaged federal and state end users in project planning and feedback; With end user input, defined needs and system functional requirements; Conducted demonstration to End User Advisory Committee on July 9, 2007 and presented at Gulf of Mexico Alliance (GOMA) meeting of Habitat Identification committee;more » Conducted significant engagement of other end user groups, such as the National Estuary Programs (NEP), in the Fall of 2007; Established partnership with SERVIR and Harmful Algal Blooms Observing System (HABSOS) programs and initiated plan to extend HABs monitoring and prediction capabilities to the southern Gulf; Established a science and technology working group with Mexican institutions centered in the State of Veracruz. Key team members include the Federal Commission for the Protection Against Sanitary Risks (COFEPRIS), the Ecological Institute (INECOL) a unit of the National Council for science and technology (CONACYT), the Veracruz Aquarium (NOAA’s first international Coastal Ecology Learning Center) and the State of Veracruz. The Mexican Navy (critical to coastal studies in the Southern Gulf) and other national and regional entities have also been engaged; and Training on use of SERVIR portal planned for Fall 2007 in Veracruz, Mexico Science Applications; Worked with regional scientists to produce conceptual models of submerged aquatic vegetation (SAV) ecosystems; Built a logical framework and tool for ontological modeling of SAV and HABs; Created online guidance for SAV restoration planning; Created model runs which link potential future land use trends, runoff and SAV viability; Analyzed SAV cover change at five other bays in the Gulf of Mexico to demonstrate extensibility of the analytical tools; and Initiated development of a conceptual model for understanding the causes and effects of HABs in the Gulf of Mexico IT Tool Development; Established a website with the GoMRC web-based tools at www.gomrc.org; Completed development of an ArcGIS-based decision support tool for SAV restoration prioritization decisions, and demonstrated its use in Mobile Bay; Developed a web-based application, called Conceptual Model Explorer (CME), that enables non-GIS users to employ the prioritization model for SAV restoration; Created CME tool enabling scientists to view existing, and create new, ecosystem conceptual models which can be used to document cause-effect relationships within coastal ecosystems, and offer guidance on management solutions; Adapted the science-driven advanced web search engine, Noesis, to focus on an initial set of coastal and marine resource issues, including SAV and HABs; Incorporated map visualization tools with initial data layers related to coastal wetlands and SAVs; and Supported development of a SERVIR portal for data management and visualization in the southern Gulf of Mexico, as well as training of end users in Mexican Gulf States.« less

  16. Strategies for Improving Diversity at Bell Labs, Lucent Technologies

    NASA Astrophysics Data System (ADS)

    Murray, Cherry A.

    2001-03-01

    Over the last quarter century, top management in Bell Labs Research has initiated efforts to train, recruit, and encourage underrepresented minorities into science and engineering positions, and in hiring and retaining underrepresented minority scientists and engineers. I will give some historical background of some of the programs which have worked over the years and some of the new programs in recruiting, mentoring and career planning that we have recently initiated in order to better create a workplace that is accepting and even welcoming of diversity.

  17. Science for avian conservation: Priorities for the new millennium

    USGS Publications Warehouse

    Ruth, J.M.; Petit, D.R.; Sauer, J.R.; Samuel, M.D.; Johnson, F.A.; Fornwall, M.D.; Korschgen, C.E.; Bennett, J.P.

    2003-01-01

    Over the past decade, bird conservation activities have become the preeminent natural resource conservation effort in North America. Maturation of the North American Waterfowl Management Plan (NAWMP), establishment of Partners in Flight (PIF), and creation of comprehensive colonial waterbird and shorebird conservation plans have stimulated unprecedented interest in, and funding for, bird conservation in the United States, Canada, Mexico, and other countries in the western hemisphere. Key to that success in the United States has been active collaboration among federal, state and local governments, conservation organizations, academia, and industry. The U.S. Department of the Interior (DOI), which has primary statutory responsibility for migratory bird conservation and management, has been a key partner.Despite the great strides that have been made in bird conservation science, historical approaches to research and monitoring have often failed to provide sufficient information and understanding to effectively manage bird populations at large spatial scales. That shortcoming, and the lack of an integrated strategy and comprehensive set of research priorities, is more evident in light of the goals established by the North American Bird Conservation Initiative (NABCI). The NABCI is a trinational, coalition-driven effort to provide an organizational umbrella for existing conservation initiatives. The expanded focus of NABCI and individual bird conservation initiatives is to work together in an integrated, holistic fashion to keep common birds common and to increase populations of declining, threatened, and endangered species.To assist bird conservation initiatives in defining goals and developing new approaches to effective research, the U.S. Geological Survey (USGS), the research agency of DOI, convened a workshop, “Science for Avian Conservation: Understanding, Modeling, and Applying Ecological Relationships,” on 31 October–2 November 2000, which brought together 51 scientists from USGS, as well as scientists and conservationists from other agencies and organizations actively participating in NABCI. As the lead federal agency involved in bird conservation research, USGS has a clear legislative mandate to provide scientific information upon which future management plans and actions will be built.This article summarizes key issues and recommendations that arose from that workshop. The principal goal of the workshop was to guide USGS in defining its role, assessing capabilities, and directing future agency planning in support of bird conservation. A major component was to identify key areas of research needed in this new era of bird conservation science. Although tailored to the mission of USGS, workshop recommendations visualize a bold direction for future avian conservation science in which research and monitoring work in tandem with management to increase our understanding of avian populations and the processes that affect them. The USGS is a science agency whose role is to provide objective scientific information to management agencies and therefore is not directly involved in high-level resource policy-making or on-the-ground management decision making. Nevertheless, it is important to note that effective policy decision making must integrate the best available science with political and economic realities to achieve successful avian conservation—an important subject acknowledged in the workshop, but largely beyond its scope of discussion. Williams (2003) questions regarding how scientific information can be effectively communicated to decision makers and incorporated into natural resource policy. Without an aggressive vision and the willingness of researchers, managers, and policy makers to implement it, conservation of North American birds is likely to proceed without the full benefit of scientific investigation. These recommendations represent the principal conclusions drawn by workshop participants and do not necessarily reflect official USGS policy.

  18. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  19. Icarus Institute for Interstellar Sciences (IIS)

    NASA Astrophysics Data System (ADS)

    Cress, B.

    2012-09-01

    In this paper, a vision for a proposed interstellar research center, to be developed in the United States, will be presented. The major focus will be on an innovative approach to the planning and achieving a new sustainable world class facility devoted to the technologies and various science missions of multi-disciplined teams reaching for the stars. The project will provide the personnel, feature sets, facilities and equipment needed to initiate and support an aggressive program of advanced interstellar vehicle and propulsion design and implementation. Also shared will be personal insights and economic considerations gained during prior planning for a private research institute in Nevada, home to more than 300 international scientists. The views expressed in this discussion paper are the personal views of the author and not necessarily representing the entire Icarus team.

  20. Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A. (Editor)

    1991-01-01

    In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  1. Mixed-Initiative Constraint-Based Activity Planning for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2004-01-01

    In January, 2004, two NASA rovers, named Spirit and Opportunity, successfully landed on Mars, starting an unprecedented exploration of the Martian surface. Power and thermal concerns constrained the duration of this mission, leading to an aggressive plan for commanding both rovers every day. As part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to'the effectiveness of the MAPGEN tool is an underlying artificial intelligence plan and constraint reasoning engine. In this paper we outline the design and functionality of the MAEPGEN tool and focus on some of the key capabilities it offers to the MER mission engineers.

  2. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  3. The impact of economic issues on Nigerian health sciences libraries.

    PubMed Central

    Belleh, G S; Akhigbe, O O

    1991-01-01

    Economic issues are among the most important factors affecting health sciences libraries in Nigeria. These issues are influenced by the political, cultural, geographic, and demographic characteristics of the country. Significant economic issues are the dependence of the national economy on a single commodity, large foreign debt and spiraling inflation, stringent foreign exchange control measures, and inadequate realization by authorities of the role and importance of health sciences libraries. With shrinking budgets, resources, and staff, health sciences libraries can neither grow nor afford library automation. Health sciences librarians must take initiatives for cooperative activities to increase and make the most of resources, pursue nontraditional methods of fund-raising, educate authorities about the role and importance of libraries, and develop and implement a plan for the development and growth of health sciences libraries in the country. PMID:1884083

  4. Development of Waypoint Planning Tool in Response to NASA Field Campaign Challenges

    NASA Technical Reports Server (NTRS)

    He, Matt; Hardin, Danny; Conover, Helen; Graves, Sara; Meyer, Paul; Blakeslee, Richard; Goodman, Michael

    2012-01-01

    Airborne real time observations are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientists, planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircrafts are often involved in NASA field campaigns. The coordination of the aircrafts with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point -and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin and Java Web Start/Applet on web platform, and to the rising open source GIS tools with new JavaScript frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. The newly innovated, cross ]platform, modular designed JavaScript ]controlled Way Point Tool is planned to be integrated with NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientists reach their mission objectives. This presentation will discuss the development processes of the Waypoint Planning Tool in responding to field campaign challenges, identify new information technologies, and describe the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.

  5. Development of Way Point Planning Tool in Response to NASA Field Campaign Challenges

    NASA Astrophysics Data System (ADS)

    He, M.; Hardin, D. M.; Conover, H.; Graves, S. J.; Meyer, P.; Blakeslee, R. J.; Goodman, M. L.

    2012-12-01

    Airborne real time observations are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientists, planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircrafts are often involved in NASA field campaigns. The coordination of the aircrafts with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin and Java Web Start/Applet on web platform, and to the rising open source GIS tools with new JavaScript frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed JavaScript-controlled Way Point Tool is planned to be integrated with NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientists reach their mission objectives. This presentation will discuss the development processes of the Waypoint Planning Tool in responding to field campaign challenges, identify new information technologies, and describe the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.

  6. Implications of the 21st Century Cures Act for the Behavioral and Social Sciences at the National Institutes of Health.

    PubMed

    Riley, William T; Blizinsky, Katherine D

    2017-06-01

    The 21st Century Cures Act provides funding for key initiatives relevant to the behavioral and social sciences and includes administrative provisions that facilitate health research and increase the privacy protections of research participants. At about the same time as the passage of the Act, the National Institutes of Health Office of Behavioral and Social Sciences Research released its Strategic Plan 2017-2021, which addresses three scientific priorities: (a) improve the synergy of basic and applied behavioral and social sciences research; (b) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences; and (c) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary describes the implications of the Cures Act on these scientific priorities and on the behavioral and social sciences more broadly.

  7. ICESat Science Investigator led Processing System (I-SIPS)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, S.; Bay, J.; Brenner, A.; Dimarzio, J.; Hancock, D.; Sherman, M.

    2003-12-01

    The ICESat Science Investigator-led Processing System (I-SIPS) generates the GLAS standard data products. It consists of two main parts the Scheduling and Data Management System (SDMS) and the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software. The system has been operational since the successful launch of ICESat. It ingests data from the GLAS instrument, generates GLAS data products, and distributes them to the GLAS Science Computing Facility (SCF), the Instrument Support Facility (ISF) and the National Snow and Ice Data Center (NSIDC) ECS DAAC. The SDMS is the Planning, Scheduling and Data Management System that runs the GLAS Science Algorithm Software (GSAS). GSAS is based on the Algorithm Theoretical Basis Documents provided by the Science Team and is developed independently of SDMS. The SDMS provides the processing environment to plan jobs based on existing data, control job flow, data distribution, and archiving. The SDMS design is based on a mission-independent architecture that imposes few constraints on the science code thereby facilitating I-SIPS integration. I-SIPS currently works in an autonomous manner to ingest GLAS instrument data, distribute this data to the ISF, run the science processing algorithms to produce the GLAS standard products, reprocess data when new versions of science algorithms are released, and distributes the products to the SCF, ISF, and NSIDC. I-SIPS has a proven performance record, delivering the data to the SCF within hours after the initial instrument activation. The I-SIPS design philosophy gives this system a high potential for reuse in other science missions.

  8. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  9. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  10. Community input requested

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.; Walker, Dan

    In June 1996, the National Research Council (NRC) formed the Committee on Major U.S. Oceanographic Research Programs to foster coordination among the large programs (e.g., World Ocean Circulation Experiment, Ocean Drilling Program, Ridge Interdisciplinary Global Experiment, and others) and examine their role in ocean research. In particular, the committee is charged with (1) enhancing information sharing and the coordinated implementation of the research plans of the major ongoing and future programs; (2) assisting the federal agencies and ocean sciences community in identifying gaps, as well as appropriate followon activities to existing programs; (3) making recommendations on how future major ocean programs should be planned, structured and organized; and (4) evaluating the impact of major ocean programs on the understanding of the oceans, development of research facilities, education, and collegiality in the academic community. The activity was initiated at the request of the National Science Foundation (NSF) Division of Ocean Sciences, is overseen by the NRC's Ocean Studies Board (OSB), and is funded by both NSF and the Office of Naval Research.

  11. Conservation mycology in Australia and the potential role of citizen science.

    PubMed

    Irga, Peter J; Barker, Katherine; Torpy, Fraser R

    2018-04-23

    Fungi are undoubtedly important for ecosystem functioning, however they are relatively poorly considered in biodiversity conservation planning. Fungi have been omitted or given scant attention in most biodiversity policy documents, management plans and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community, compounded by a scarcity of mycology-associated curricula at the tertiary level, along with a lack of mycologists in research institutions. While molecular advancements the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts. Conversely, citizen science initiatives are making significant contributions to the mycology discipline, by both increasing awareness as well as extending the scope of fungal surveys. Future research by professional and amateur mycologists into the distribution and functionality in ecosystems will help us identify wider, and more effective conservation goals. This article is protected by copyright. All rights reserved.

  12. Creating a Role for Embedded Librarians Within an Active Learning Environment.

    PubMed

    Hackman, Dawn E; Francis, Marcia J; Johnson, Erika; Nickum, Annie; Thormodson, Kelly

    2017-01-01

    In 2013, the librarians at a small academic health sciences library reevaluated their mission, vision, and strategic plan to expand their roles. The school was transitioning to a new pedagogical culture and a new building designed to emphasize interprofessional education and active learning methodologies. Subsequent efforts to implement the new strategic plan resulted in the librarians joining curriculum committees and other institutional initiatives, such as an Active Learning Task Force, and participating in faculty development workshops. This participation has increased visibility and led to new roles and opportunities for librarians.

  13. Earthworks: Educating Teachers in Earth System Sciences

    NASA Technical Reports Server (NTRS)

    Spetzler, H.; Weaver, A.; Buhr, S.

    2000-01-01

    Earthworks is a national community of teachers and scientists. Initiated in 1998 with funding from NASA, our summer workshops in the Rocky Mountains each year provide unique opportunities for teachers to design and conduct field research projects, working closely with scientists. Teachers then develop plans for classroom implementation during the school year, sharing their ideas and experiences with other community members through e-mail and a listserv. Scientists, from graduate students to expert senior researchers, share their knowledge of field methods in environmental science, and learn how to better communicate and teach about their research.

  14. Moving Up to the Top of the Landfill: A Field-Validated, Science-Based Methane Emissions Inventory Model for California Landfills

    USDA-ARS?s Scientific Manuscript database

    California is typically at the forefront of innovative planning & regulatory strategies for environmental protection in the U.S. Two years ago, a research project was initiated by the California Energy Commission to develop an improved method for landfill methane emissions for the state greenhouse ...

  15. Pre-Service Teachers' Knowledge for Teaching Algebra for Equity in the Middle Grades: A Preliminary Report

    ERIC Educational Resources Information Center

    Brown, Irving A.; Davis, Trina J.; Kulm, Gerald

    2011-01-01

    This article presents our plans and initial work to explore how mathematics teacher education programs can prepare teachers for diverse middle grades classrooms. It describes the start-up of a five-year National Science Foundation project to design, develop, and test technology-enriched teacher preparation strategies to address equity in algebra…

  16. Looking Back at the Sputnik Era and Its Impact on Science Education

    ERIC Educational Resources Information Center

    Wissehr, Cathy; Concannon, Jim; Barrow, Lloyd H.

    2011-01-01

    Two years and seven months after the initiation of the U.S. satellite program, Soviet Russia launched a rocket north of the Caspian Sea carrying the now famous "Sputnik I" satellite. U.S. scientists were aware that Soviet Russia was planning on putting an artificial satellite into orbit; however, secrecy surrounding the timing and the…

  17. [Development, science, and politics: the debate surrounding creation of the Instituto Internacional da Hiléia Amazônica].

    PubMed

    Magalhães, Rodrigo Cesar da Silva; Maio, Marcos Chor

    2007-12-01

    The article uses the debate surrounding creation of the Instituto Internacional da Hiléia Amazônica (International Institute of the Hylean Amazon--IIHA) as a point of departure for analyzing the topic of development. We first address post-World War II relations between science and development. Next, we examine the Brazilian government's initiatives in the Amazon during the 1940s and how the IIHA project was received. Lastly, we analyze the controversies ignited in Brazil by Unesco's plan. The IIHA project was a catalyst of the development debate in post-World War II Brazil. The discussions then sparked in Brazil and the project's denouement solidified a development model for the Amazon that even today underpins initiatives taken in the region.

  18. Mitigating Mosquito Disease Vectors with Citizen Science: a Review of the GLOBE Observer Mosquito Habitat Mapper Pilot and Implications for Wide-scale Implementation

    NASA Astrophysics Data System (ADS)

    Riebeek Kohl, H.; Low, R.; Boger, R. A.; Schwerin, T. G.; Janney, D. W.

    2017-12-01

    The spread of disease vectors, including mosquitoes, is an increasingly significant global environmental issue driven by a warming climate. In 2017, the GLOBE Observer Program launched a new citizen science initiative to map mosquito habitats using the free GLOBE Observer App for smart phones and tablets. The app guides people to identify mosquito larvae and breeding sites, and then once documented, to eliminate or treat the site to prevent further breeding. It also gives citizen scientists the option to identify the mosquito larvae species to determine whether it is one of three genera that potentially could transmit Zika, dengue fever, yellow fever, chikungunya, and other diseases. This data is uploaded to an international database that is freely available to the public and science community. GLOBE Observer piloted the initiative with educators in the United States, Brazil, and Peru, and it is now open for global participation. This presentation will discuss lessons learned in the pilot phase as well as plans to implement the initiative worldwide in partnership with science museums and science centers. GLOBE Observer is the non-student citizen science arm of the Global Learning and Observations to Benefit the Environment (GLOBE) Program, a long-standing, international science and education program that provides students and citizen scientists with the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. GLOBE Observer data collection also includes cloud cover and cloud type and land cover/land use (in late 2017).

  19. MARGINS: Toward a novel science plan

    NASA Astrophysics Data System (ADS)

    Mutter, John C.

    A science plan to study continental margins has been in the works for the past 3 years, with almost 200 Earth scientists from a wide variety of disciplines gathering at meetings and workshops. Most geological hazards and resources are found at continental margins, yet our understanding of the processes that shape the margins is meager.In formulating this MARGINS research initiative, fundamental issues concerning our understanding of basic Earth-forming processes have arisen. It is clear that a business-as-usual approach will not solve the class of problems defined by the MARGINS program; the solutions demand approaches different from those used in the past. In many cases, a different class of experiment will be required, one that is well beyond the capability of individual principle investigators to undertake on their own. In most cases, broadly based interdisciplinary studies will be needed.

  20. US National Committee for the International Year of the Planet Earth: Plans and Activities

    NASA Astrophysics Data System (ADS)

    Hess, J. W.

    2007-12-01

    The International Year of the Planet Earth, as proclaimed by Resolution 60/192 of the United Nations General Assembly at its 60th Session, is a 3-year event (2007-2009) aimed at promoting the contribution to sustainable development of society by using geoscience knowledge and information. It is a joint initiative by the International Union of Geological Sciences (IUGS and UNESCO. The US National Committee (USNC) for the International Year of the Planet Earth is responsible for developing national science and outreach activities that contribute to the success of the global awareness on the use of geosociety for society. The USNC plans for a launch activity early in 2008 and a national outreach activity in the fall. Various US based geoscience societies and federal agencies will be conducting IYPE branded activities in support of the year.

  1. Preservice elementary teachers' use of a discursive model of meaning making in the co-construction of science understanding

    NASA Astrophysics Data System (ADS)

    Boyer, Elisebeth C.

    This research investigates how three preservice elementary teachers were prepared to teach science using a Discursive Model of Meaning Making. The research is divided into two parts. The first consists of the nature of the participants’ learning experiences in a science methods course within a school-university Professional Development School partnership. This part of the investigation used Constant Comparative Analysis of field notes gathered through participant observation of the methods course. The analysis investigated how the methods instructors employed productive questioning, talk moves, and a coherent research based Teaching Science as Argument Framework. The second part of the study consisted of an investigation into how the participants applied what they experienced during the methods course in their initial science teaching experiences, as well as how the participants made sense of their initial science teaching. Data consisted of teaching videos of the participants during their initial science teaching experiences and self-analysis videos created by the participants. This part of the research used Discourse Analysis of the teaching and self-analysis videos. These inquiries provide insight into what aspects of the methods course were taken up by the participants and how they made sense of their practices. Findings are: 1) Throughout the methods course, instructors modeled how the Teaching Science as Argument Framework can be used to negotiate scientific understanding by employing a Discursive Model of Meaning Making. 2) During lesson plan conferences the Discursive Model was emphasized as participants planned classroom discussion and explored possible student responses enabling them to anticipate how they could attempt to increase student understanding. 3) Participants displayed three distinct patterns of adoption of the Teaching Science as Argument Framework (TSAF), involving different discursive practices. They were, • Detached Discursive Approach: Use of some discursive strategies without an apparent connection to the TSAF. • Connected Approach with a Focus on Student Thinking: Intentional use of the Discursive Model informed by aspects of the TSAF. • TSAF Approach: Priority is given to the TSAF supported by substantial application of the Discursive Model. 4) The evidence participants chose to highlight in their self-analysis videos is reflective of their patterns of adoption of the Teaching Science as Argument Framework and their differing discursive practices. Analysis led to the formation of the middle theory that when learning to teach science in the elementary school, teacher commitment to the discourse and practices of science is constructed through participation in a learning community where a discursive model of meaning making is the norm. Curricular and methodological implications, as well as implications for future research are presented.

  2. Evaluation of the Healthy Lifestyles Initiative for Improving Community Capacity for Childhood Obesity Prevention.

    PubMed

    Berman, Marcie; Bozsik, Frances; Shook, Robin P; Meissen-Sebelius, Emily; Markenson, Deborah; Summar, Shelly; DeWit, Emily; Carlson, Jordan A

    2018-02-22

    Policy, systems, and environmental approaches are recommended for preventing childhood obesity. The objective of our study was to evaluate the Healthy Lifestyles Initiative, which aimed to strengthen community capacity for policy, systems, and environmental approaches to healthy eating and active living among children and families. The Healthy Lifestyles Initiative was developed through a collaborative process and facilitated by community organizers at a local children's hospital. The initiative supported 218 partners from 170 community organizations through training, action planning, coalition support, one-on-one support, and the dissemination of materials and sharing of resources. Eighty initiative partners completed a brief online survey on implementation strategies engaged in, materials used, and policy, systems, and environmental activities implemented. In accordance with frameworks for implementation science, we assessed associations among the constructs by using linear regression to identify whether and which of the implementation strategies were associated with materials used and implementation of policy, systems, and environmental activities targeted by the initiative. Each implementation strategy was engaged in by 30% to 35% of the 80 survey respondents. The most frequently used materials were educational handouts (76.3%) and posters (66.3%). The most frequently implemented activities were developing or continuing partnerships (57.5%) and reviewing organizational wellness policies (46.3%). Completing an action plan and the number of implementation strategies engaged in were positively associated with implementation of targeted activities (action plan, effect size = 0.82; number of strategies, effect size = 0.51) and materials use (action plan, effect size = 0.59; number of strategies, effect size = 0.52). Materials use was positively associated with implementation of targeted activities (effect size = 0.35). Community-capacity-building efforts can be effective in supporting community organizations to engage in policy, systems, and environmental activities for healthy eating and active living. Multiple implementation strategies are likely needed, particularly strategies that involve a high level of engagement, such as training community organizations and working with them on structured action plans.

  3. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  4. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    NASA Astrophysics Data System (ADS)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  5. The use of tacit and explicit knowledge in public health: a qualitative study

    PubMed Central

    2012-01-01

    Background Planning a public health initiative is both a science and an art. Public health practitioners work in a complex, often time-constrained environment, where formal research literature can be unavailable or uncertain. Consequently, public health practitioners often draw upon other forms of knowledge. Methods Through use of one-on-one interviews and focus groups, we aimed to gain a better understanding of how tacit knowledge is used to inform program initiatives in public health. This study was designed as a narrative inquiry, which is based on the assumption that we make sense of the world by telling stories. Four public health units were purposively selected for maximum variation, based on geography and academic affiliation. Results Analysis revealed different ways in which tacit knowledge was used to plan the public health program or initiative, including discovering the opportunity, bringing a team together, and working out program details (such as partnering, funding). Conclusions The findings of this study demonstrate that tacit knowledge is drawn upon, and embedded within, various stages of the process of program planning in public health. The results will be useful in guiding the development of future knowledge translation strategies for public health organizations and decision makers. PMID:22433980

  6. Ten Years of Northern Eurasia Earth Science Partnership Initiative (NEESPI): Results and Future Plans

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Gutman, G.; Gulev, S.; Maksyutov, S. S.

    2014-12-01

    During recent decades, Northern Eurasia was affected by unprecedented climate and environmental changes. Several droughts and heat waves alternated with hazardous extreme precipitation and flood events. Permafrost thaw, retreating Arctic sea ice, increasing areas of forest fire, and dramatic regional warming buffeted this region, tossing northern Eurasia from one extreme condition to the next. The region stores nearly half of the Earth's terrestrial carbon in permafrost, wetlands, and forested land, so ecosystem changes that release stored carbon could profoundly affect the world's climate. Furthermore, changes to climate and to hydrological and biogeochemical cycles are starting to affect daily life. For example, infrastructure is collapsing as permafrost thaws, severe winter storms increasingly bring businesses to a halt, and a growing water deficit is beginning to strain agricultural production and forestry. To pool resources and facilitate research, the Northern Eurasia Earth Science Partnership Initiative (NEESPI, http://neespi.org) was launched in 2004. With its multidisciplinary focus, the internationally funded NEESPI (more than165 individual international projects during the past decade) has challenged participants to research climate-ecosystem interactions, societal impacts from extreme events in Northern Eurasia, and the feedbacks of these interactions and impacts to the global Earth system. Among the numerous Institutional and private sponsors from the United States, European Union, Russia, China, and Japan, the cornerstone support for the NEESPI studies was provided by the NASA Land Cover and Land Use Change Program and the Russian Academy of Sciences. At this presentation we shall overview the environmental studies conducted by the NEESPI community, brief the audience about the main achievements of the NEESPI researchers, and lay down the plans for the future studies. At the side event of the Meeting, we are going to initiate preparation of the book which will synthesize major NEESPI achievements.

  7. The HSP, the QCN, and the Dragon: Developing inquiry-based QCN instructional modules in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Liang, W.; Chang, C.; Yen, E.; Lin, C.; Lin, G.

    2012-12-01

    High Scope Program (HSP) is a long-term project funded by NSC in Taiwan since 2006. It is designed to elevate the quality of science education by means of incorporating emerging science and technology into the traditional curricula in senior high schools. Quake-Catcher Network (QCN), a distributed computing project initiated by Stanford University and UC Riverside, encourages the volunteers to install the low-cost, novel sensors at home and school to build a seismic network. To meet both needs, we have developed a model curriculum that introduces QCN, earthquake science, and cloud computing into high school classrooms. Through professional development workshops, Taiwan cloud-based earthquake science learning platform, and QCN club on Facebook, we have worked closely with Lan-Yang Girl's Senior High School teachers' team to design workable teaching plans through a practical operation of seismic monitoring at home or school. However, some obstacles to learning appear including QCN installation/maintain problems, high self-noise of the sensor, difficulty of introducing earthquake sciences for high school teachers. The challenges of QCN outreach in Taiwan bring out our future plans: (1) development of easy, frequently updated, physics-based QCN-experiments for high school teachers, and (2) design of an interactive learning platform with social networking function for students.

  8. National Spherical Torus Experiment (NSTX) and Planned Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yueng Kay Martin; Ono, M.; Kaye, S.

    1998-01-01

    The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less

  9. Multi-actor involvement for integrating ecosystem services in strategic environmental assessment of spatial plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozas-Vásquez, Daniel, E-mail: danielrozas@gmail.com; Laboratorio de Planificación Territorial, Universidad Católica de Temuco, Rudecindo ortega, 02950 Temuco; Fürst, Christine

    Integrating an ecosystem services (ES) approach into Strategic Environmental Assessment (SEA) of spatial plans potentially enhances the consideration of the value of nature in decision making and policy processes. However, there is increasing concern about the institutional context and a lack of a common understanding of SEA and ecosystem services for adopting them as an integrated framework. This paper addresses this concern by analysing the current understanding and network relations in a multi-actor arrangement as a first step towards a successful integration of ES in SEA and spatial planning. Our analysis focuses on a case study in Chile, where wemore » administered a questionnaire survey to some of the main actors involved in the spatial planning process. The questionnaire focused on issues such as network relations among actors and on conceptual understanding, perceptions and challenges for integrating ES in SEA and spatial planning, knowledge on methodological approaches, and the connections and gaps in the science-policy interface. Our findings suggest that a common understanding of SEA and especially of ES in a context of multiple actors is still at an initial stage in Chile. Additionally, the lack of institutional guidelines and methodological support is considered the main challenge for integration. We conclude that preconditions exist in Chile for integrating ES in SEA for spatial planning, but they strongly depend on appropriate governance schemes that promote a close science-policy interaction, as well as collaborative work and learning. - Highlights: • Linking ecosystem services in SEA is an effective framework for sustainability. • Multi-actor understanding and networks in ecosystem services and SEA were analyzed. • Understanding of SEA and especially of ES is still in an initial stage in Chile. • A lack of institutional guidelines is one of the key challenges for this link.« less

  10. National Institute of Environmental Health Sciences: 50 Years of Advancing Science and Improving Lung Health.

    PubMed

    Antony, Veena B; Redlich, Carrie A; Pinkerton, Kent E; Balmes, John; Harkema, Jack R

    2016-11-15

    The American Thoracic Society celebrates the 50th anniversary of the National Institute of Environmental Health Sciences (NIEHS). The NIEHS has had enormous impact through its focus on research, training, and translational science on lung health. It has been an advocate for clean air both in the United States and across the world. The cutting-edge science funded by the NIEHS has led to major discoveries that have broadened our understanding of the pathogenesis and treatment for lung disease. Importantly, the NIEHS has developed and fostered mechanisms that require cross-cutting science across the spectrum of areas of inquiry, bringing together environmental and social scientists with clinicians to bring their expertise on specific areas of investigation. The intramural program of the NIEHS nurtures cutting-edge science, and the extramural program encourages investigator-initiated research while at the same time providing broader direction through important initiatives. Under the umbrella of the NIEHS and guided by Dr. Linda Birnbaum, the director of the NIEHS, important collaborative programs, such as the Superfund Program and the National Toxicology Program, work to discover mechanisms to protect from environmental toxins. The American Thoracic Society has overlapping goals with the NIEHS, and the strategic plans of both august bodies converge to synergize on population lung health. These bonds must be tightened and highlighted as we work toward our common goals.

  11. Enhancing The National Map Through Tactical Planning and Performance Monitoring

    USGS Publications Warehouse

    ,

    2008-01-01

    Tactical planning and performance monitoring are initial steps toward improving 'the way The National Map works' and supporting the U.S. Geological Survey (USGS) Science Strategy. This Tactical Performance Planning Summary for The National Map combines information from The National Map 2.0 Tactical Plan and The National Map Performance Milestone Matrix. The National Map 2.0 Tactical Plan is primarily a working document to guide The National Map program's execution, production, and metrics monitoring for fiscal years (FY) 2008 and 2009. The Tactical Plan addresses data, products, and services, as well as supporting and enabling activities. The National Map's 2-year goal for FY 2008 and FY 2009 is to provide a range of geospatial products and services that further the National Spatial Data Infrastructure and underpin USGS science. To do this, the National Geospatial Program will develop a renewed understanding during FY 2008 of key customer needs and requirements, develop the infrastructure to support The National Map business model, modernize its business processes, and reengineer its workforce. Priorities for The National Map will be adjusted if necessary to respond to changes to the project that may impact resources, constrain timeframes, or change customer needs. The supporting and enabling activities that make it possible to produce the products and services of The National Map will include partnership activities, improved compatibility of systems, outreach, and integration of data themes.

  12. Northern Eurasia Earth Science Partnership Initiative in 2013: An Update

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.

    2013-12-01

    Eight years ago Northern Eurasia Earth Science Partnership Initiative (NEESPI) was launched with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects launched in EU, Russia, the United States, Canada, Japan, and China. Throughout its duration, NEESPI served and is serving as an umbrella for more than 160 individual international research projects. Currently, the Initiative is in full swing. The total number of the ongoing NEESPI projects (as on July 2013) is 50 and has changed but slightly compared to its peak (87 in 2008). The past one and one-half years (2012-through mid-2013) were extremely productive in the NEESPI outreach. We organized five Open Science Sessions at the three major Geoscience Unions/Assembly Meetings (AGU, EGU, and JpGU) and four International NEESPI Workshops. The programs of two of these Workshops (in Irkutsk and Petrozavodsk, Russia) included Summer Schools for early career scientists. The list of publications of NEESPI scientists was still incomplete at the time of preparation of this abstract. A large suite of NEESPI articles (59) is currently at different stages of review process for the Forth Special NEESPI Issue of "Environmental Research Letters" (http://iopscience.iop.org/1748-9326/focus/NEESPI4). In the past 12 months, we continued releases of the latest findings in the NEESPI domain in regional monographs with publication of two such monographs devoted to Siberia and Dryland East Asia (Groisman and Gutman eds. 2013 and Chen et al. 2013). Keeping in mind an orderly completion of NEESPI in 2015 and a desire of the NEESPI project leaders and their numerous associates to continue studies of the Northern Eurasia role in the Earth System within the FUTURE EARTH Mega Program, we have begun development of the new set of scientific ideas for regional projects for the post-NEESPI period. The goal is to formulate these ideas (science questions) in such way that they will secure fruitful regional and global research for the next decade (as the NEESPI Science Plan did in 2004) and will use new tools that became available (such as Earth System Models, new remote sensing products and field campaigns). These ideas will be discussed at the Meeting. Cited references: Groisman and Gutman (eds), 2013: Environmental Changes in Siberia: Regional Changes and their Global Consequences. Springer, Amsterdam, The Netherlands, 357 pp. Chen J, Wan S, Henebry G, Qi J, Gutman G, Sun G and Kappas M (eds), 2013: Dryland East Asia: Land Dynamics Amid Social and Climate Change. Beijing: Higher Education Press and Berlin: De Gruyter.

  13. A critical review of existing innovative science and drilling proposals within IODP

    NASA Astrophysics Data System (ADS)

    Behrmann, J. H.

    2009-04-01

    In the present phase of the Integrated Ocean Drilling Program (IODP) activities are guided by the Initial Science Plan that identified three major themes: The Deep Biosphere and the Subseafloor Ocean; Environmental Change, Processes and Effects; and Solid Earth Cycles and Geodynamics. New initiatives and complex drilling proposals were developed that required major advances in drilling platforms and technologies, and expansion of the drilling community into new areas of specialization. The guiding themes in the Initial Science Plan are instrumental for the proposal development and evaluation, and will continue to represent the goals of IODP until 2013. A number of innovative and highly ranked individual proposals and coordinated sets of proposals ready to be drilled has been forwarded by the Science Planning Committee (SPC) to the IODP Operations Task Force (OTF) for scoping, planning and scheduling. For the Deep Biosphere theme these include proposals to drill targets in the Central Atlantic, the Okinawa Trough, and the Southern Pacific. The Environmental Change, Processes and Effects theme is proposed to - among others - be studied by a coordinated approach regarding the Southeast Asian Monsoon, but also by proposals addressing sdimentation, facies evolution and the paleoclimate record in the Atlantic and Indian Oceans. The Solid Earth Cycles and Geodynamics theme is represented by several proposals addressing subduction processes, seismogenesis, and oceanic crust formation mainly in the Pacific. Some of these have shaped drilling programs that are already in the process of being carried out, such as drilling in the Nankai Trough off Japan (the NantroSEIZE project), or drilling in oceanic crust created in a superfast spreading environment in the Eastern Pacific. There are many remaining issues to be addressed, and drilling programs to be completed before the end of the present phase of IODP in 2013. Planning of expeditions needs to be done in such a way that a balance between risk, cost, and scientific impact is achieved. At least part of the dilling also is required to be a necessary precursor for future investigations in coming phases of Ocean Drilling. Presently IODP faces the challenges of tight budgetary constraints, increasing operating costs of their platforms, and the need to develop drilling schedules that allow off-contract work of the R/V Chikyu and R/V Joides Resolution drilling vessels. Chikyu will operate within IODP for an average of 7 months per year over a 5-year period with the goals of achieving major milestones in NantroSEIZE, maximizing the use of the vessel for riser drilling, and start a new IODP project that requires riser drilling. Joides Resolution will also operate an average of 7 months per year with the goal of optimizing operating days within the restrictions imposed by the prioritized science. Mission Specific Platform expeditions will be carried out once every two years on average, with the goal of pioneering drilling in new, challenging environments. For the first time in IODP history, operations of Chikyu, Joides Resolution and Mission Specific Platform expeditions will be conducted simultaneously in 2009. This new phase of operations provides an unprecedented chance of progress in scientific ocean drilling.

  14. Climate Modeling Computing Needs Assessment

    NASA Astrophysics Data System (ADS)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  15. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  16. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  17. Optics professional development in North Carolina

    NASA Astrophysics Data System (ADS)

    Gilchrist, Pamela O.; Hilliard-Clark, Joyce; Bowles, Tuere

    2010-08-01

    Using the Photonics Leaders (PL2) program model of recruitment and retention, photonics content, parental engagement, internship, and a hybrid virtual format, the session's goal is to inform outreach coordinators and scientists of strategies used to develop teachers' awareness and skills in teaching Optics to ethnically diverse students who lack traditional experiences in the discipline. The National Science Foundation (NSF) Innovative Technology Experiences for Students and Teachers (ITEST) funded program highlights initial findings of a pilot study with middle and high school teachers from The Science House at North Carolina State University sharing lessons learned and future scale-up plans.

  18. Future Marine Polar Research Capacities - Science Planning and Research Services for a Multi-National Research Icebreaker

    NASA Astrophysics Data System (ADS)

    Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.

    2011-12-01

    Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research Icebreaker and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The icebreaker is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen on- and offshore science support infrastructure, recommended operational and scientific support structures and the relevance of AURORA BOREALIS for other present and future Antarctic science programmes and initiatives.

  19. Applying the Scientific Method of Cybersecurity Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardiff, Mark F.; Bonheyo, George T.; Cort, Katherine A.

    The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cybersecurity research emerged to address adversarial attacks interfering with or preventing normal cyber activities. Historical response to cybersecurity attacks is heavily skewed to tactical responses with an emphasis on rapid recovery. While threat mitigation is important and can be time critical, a knowledge gap exists with respect to developing the sciencemore » of cybersecurity. Such a science will enable the development and testing of theories that lead to understanding the broad sweep of cyber threats and the ability to assess trade-offs in sustaining network missions while mitigating attacks. The Asymmetric Resilient Cybersecurity Initiative at Pacific Northwest National Laboratory is a multi-year, multi-million dollar investment to develop approaches for shifting the advantage to the defender and sustaining the operability of systems under attack. The initiative established a Science Council to focus attention on the research process for cybersecurity. The Council shares science practices, critiques research plans, and aids in documenting and reporting reproducible research results. The Council members represent ecology, economics, statistics, physics, computational chemistry, microbiology and genetics, and geochemistry. This paper reports the initial work of the Science Council to implement the scientific method in cybersecurity research. The second section describes the scientific method. The third section in this paper discusses scientific practices for cybersecurity research. Section four describes initial impacts of applying the science practices to cybersecurity research.« less

  20. Perspectives on Open Science and scientific data sharing:an interdisciplinary workshop.

    PubMed

    Destro Bisol, Giovanni; Anagnostou, Paolo; Capocasa, Marco; Bencivelli, Silvia; Cerroni, Andrea; Contreras, Jorge; Enke, Neela; Fantini, Bernardino; Greco, Pietro; Heeney, Catherine; Luzi, Daniela; Manghi, Paolo; Mascalzoni, Deborah; Molloy, Jennifer; Parenti, Fabio; Wicherts, Jelte; Boulton, Geoffrey

    2014-01-01

    Looking at Open Science and Open Data from a broad perspective. This is the idea behind "Scientific data sharing: an interdisciplinary workshop", an initiative designed to foster dialogue between scholars from different scientific domains which was organized by the Istituto Italiano di Antropologia in Anagni, Italy, 2-4 September 2013.We here report summaries of the presentations and discussions at the meeting. They deal with four sets of issues: (i) setting a common framework, a general discussion of open data principles, values and opportunities; (ii) insights into scientific practices, a view of the way in which the open data movement is developing in a variety of scientific domains (biology, psychology, epidemiology and archaeology); (iii) a case study of human genomics, which was a trail-blazer in data sharing, and which encapsulates the tension that can occur between large-scale data sharing and one of the boundaries of openness, the protection of individual data; (iv) open science and the public, based on a round table discussion about the public communication of science and the societal implications of open science. There were three proposals for the planning of further interdisciplinary initiatives on open science. Firstly, there is a need to integrate top-down initiatives by governments, institutions and journals with bottom-up approaches from the scientific community. Secondly, more should be done to popularize the societal benefits of open science, not only in providing the evidence needed by citizens to draw their own conclusions on scientific issues that are of concern to them, but also explaining the direct benefits of data sharing in areas such as the control of infectious disease. Finally, introducing arguments from social sciences and humanities in the educational dissemination of open data may help students become more profoundly engaged with Open Science and look at science from a broader perspective.

  1. Scenario Planning to Identify Science Needs for the Management of Energy and Resource Development in the Arctic

    NASA Astrophysics Data System (ADS)

    Lassuy, D.

    2013-12-01

    The North Slope Science Initiative (NSSI) is an intergovernmental science collaboration forum in Arctic Alaska (USA). NSSI has initiated a 'Scenario Planning' effort with the focal question: 'What is the future of energy development, resource extraction, and associated support activities on the North Slope and adjacent seas through 2040?' With over 500 thousand square kilometers of land and sea, the area of the North Slope and adjacent seas is believed to have some of the largest oil, gas, and coal potential remaining in the United States, but it is also home to a diverse array of fish, wildlife, and plant resources that support a vibrant subsistence culture. Our scenario planning will involve a full and collaborative dialogue among a wide range of U.S. Arctic stakeholders, including Alaska Native subsistence users, local communities, academia, non-governmental organizations, and a variety of industries (oil and gas, mining, transportation, etc.) and government agencies (federal, state, local). The formulation of development scenarios and an understanding of their implications will provide a practical context for NSSI member agencies to make informed decisions about the research and monitoring that will be needed to sustain these resources and to plan for safe energy and resource development in the face of impending changes. The future of Arctic America is difficult to accurately predict, particularly in an era of intense pressures from both energy development and climate warming. However, it will almost surely be characterized by highly consequential and unprecedented changes. Complex and uncertain are appropriate descriptors of the Arctic and its future; and scenario planning has proven an effective tool to help engage diverse stakeholders in a focused dialogue and systematic thinking about plausible futures in complex and uncertain settings. The NSSI leadership recognized the critical need for this dialogue and has begun a scenario planning effort for the North Slope of Alaska and the adjacent Beaufort and Chukchi Seas. As currently designed, this NSSI scenario planning effort will encompass two broadly defined steps. We will engage local communities along with resource agencies, industry, non-governmental organizations, academia, and others with Arctic interests in exploring plausible future development activity (scenarios). Then we will undertake science- and traditional knowledge-informed explorations of the relevant research and monitoring that will be needed to detect, assess, and respond to the identified range of plausible development-driven changes on the North Slope and adjacent seas (strategies). The intent is for these strategies to then inform agency decisions about future investment in research and monitoring, and particularly to identify opportunities to collaborate in a manner that will benefit all involved parties. However, it is also important to note that the most important short- and long-term benefit of this scenario planning exercise may in fact be the strengthening of an involved and informed community of stakeholder participants, regardless of specific informational or strategic outcomes.

  2. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  3. Strategies for application of scientific findings in prevention.

    PubMed

    Wei, S H

    1995-07-01

    Dental research in the last 50 years has accomplished numerous significant advances in preventive dentistry, particularly in the area of research in fluorides, periodontal diseases, restorative dentistry, and dental materials, as well as craniofacial development and molecular biology. The transfer of scientific knowledge to clinical practitioners requires additional effort. It is the responsibility of the scientific communities to transfer the fruits of their findings to society through publications, conferences, media, and the press. Specific programs that the International Association for Dental Research (IADR) has developed to transmit science to the profession and the public have included science transfer seminars, the Visiting Lecture Program, and hands-on workshops. The IADR Strategic Plan also has a major outreach goal. In addition, the Federation Dentaire Internationale (FDI) and the World Health Organization (WHO) have initiated plans to celebrate World Health Day and the Year of Oral Health in 1994. These are important strategies for the application of scientific findings in prevention.

  4. International Space Station: becoming a reality.

    PubMed

    David, L

    1999-07-01

    An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.

  5. Duchenne Regulatory Science Consortium Meeting on Disease Progression Modeling for Duchenne Muscular Dystrophy.

    PubMed

    Larkindale, Jane; Abresch, Richard; Aviles, Enrique; Bronson, Abby; Chin, Janice; Furlong, Pat; Gordish-Dressman, Heather; Habeeb-Louks, Elizabeth; Henricson, Erik; Kroger, Hans; Lynn, Charles; Lynn, Stephen; Martin, Dana; Nuckolls, Glen; Rooney, William; Romero, Klaus; Sweeney, Lee; Vandenborne, Krista; Walter, Glenn; Wolff, Jodi; Wong, Brenda; McDonald, Craig M; Duchenne Regulatory Science Consortium Imaging-Dmd Consortium And The Cinrg Investigators, Members Of The

    2017-01-12

    The Duchenne Regulatory Science Consortium (D-RSC) was established to develop tools to accelerate drug development for DMD.  The resulting tools are anticipated to meet validity requirements outlined by qualification/endorsement pathways at both the U.S. Food and Drug Administration (FDA) and European Medicines Administration (EMA), and will be made available to the drug development community. The initial goals of the consortium include the development of a disease progression model, with the goal of creating a model that would be used to forecast changes in clinically meaningful endpoints, which would inform clinical trial protocol development and data analysis.  Methods: In April of 2016 the consortium and other experts met to formulate plans for the development of the model.  Conclusions: Here we report the results of the meeting, and discussion as to the form of the model that we plan to move forward to develop, after input from the regulatory authorities.

  6. Light Microscopy Module: On-Orbit Microscope Planned for the Fluids Integrated Rack on the International Space Station

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.

  7. Water Science and Technology Board Annual Report 2001-2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2002-10-01

    This annual report marks the twentieth anniversary of the Water Science and Technology Board (WSTB) (1982-2002). The WSTB oversees studies of water issues. The principal products of studies are written reports. These reports cover a wide range of water resources issues of national concern. The following three recently issued reports illustrate the scope of the WSTB's studies: Envisioning the Agenda for Water Resources Research in the Twenty-first Century. The Missouri River Ecosystem: Exploring the Prospects for Recovery, and Assessing the TMDL Approach to Water Quality Management. The WSTB generally meets three times each year where discussions are held on ongoingmore » projects, strategic planning, and developing new initiatives. The meetings also foster communication within the water resources community. The annual report includes a discussion on current studies, completed studies 2001-2002, and future plans, as well as a listing of published reports (1983-2002).« less

  8. Can medical schools teach high school students to be scientists?

    PubMed

    Rosenbaum, James T; Martin, Tammy M; Farris, Kendra H; Rosenbaum, Richard B; Neuwelt, Edward A

    2007-07-01

    The preeminence of science in the United States is endangered for multiple reasons, including mediocre achievement in science education by secondary school students. A group of scientists at Oregon Health and Science University has established a class to teach the process of scientific inquiry to local high school students. Prominent aspects of the class include pairing of the student with a mentor; use of a journal club format; preparation of a referenced, hypothesis driven research proposal; and a "hands-on" laboratory experience. A survey of our graduates found that 73% were planning careers in health or science. In comparison to conventional science classes, including chemistry, biology, and algebra, our students were 7 times more likely to rank the scientific inquiry class as influencing career or life choices. Medical schools should make research opportunities widely available to teenagers because this experience dramatically affects one's attitude toward science and the likelihood that a student will pursue a career in science or medicine. A federal initiative could facilitate student opportunities to pursue research.

  9. NASA's Big Data Task Force

    NASA Astrophysics Data System (ADS)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  10. Investigation into avian mortality in the Playa Lakes region of southeastern New Mexico: Final Report - June 1997

    USGS Publications Warehouse

    Dein, F. Joshua; Baeten, Laurie A.; Moore, Melody K.; Samuel, Michael D.; Miller, Paul D.; Murphy, Christopher; Sissler, Steven; Jeske, Clinton W.; Jehl, Joseph R.; Yaeger, J. S.; Bauer, B.; Mahoney, Shiela A.

    1997-01-01

    This Final Report is a review of work on a cooperative study undertaken by the USGS Biological Resources Division's National Wildlife Health Center (NWHC) and National Wetlands Research Center (NWRC; formerly the Southern Science Center) from 1994 through 1997. The study was initiated at the request of the Bureau of Land Management (BLM), through a request to the former National Biological Service. The Southeastern New Mexico Playa Lakes Coordinating Committee (SENMPLCC) played an important role in outlining the research needs. The initial Study Plan document, which outlines the background, objectives and methods for the first two years is available as Appendix 1. A letter indicating modifications to the Study Plan was sent to the SENMPLCC chair on April 25,1995, and is Appendix 2. An Interim Report, covering this work was completed and submitted in September 1995. The Literature Review section of the study was completed and presented to SENMPLCC in August, 1995. Following SENMPLCC review, NWHC was asked to develop a series of questions that could be posed from information gained in the initial phase (Appendix 3). The NWHC and NWRC were then directed to begin work to answer the top three questions, within the available fiscal resources. NWRC could continue with work outlined under the original Study Plan (Appendix 1), however an additional Study Plan for experiments performed by NWHC and collaborators and is available as Appendix 4.

  11. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    NASA Astrophysics Data System (ADS)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing volunteer resources, (4) meeting new state curricular standards, (5) developing publicly available lesson plans for other teachers and outreach programs, (6) institutionalizing the outreach program within the DEEPS community, and (7) cultivating STEM retention at the grassroots level.

  12. Development of an expert planning system for OSSA

    NASA Technical Reports Server (NTRS)

    Groundwater, B.; Lembeck, M. F.; Sarsfield, L.; Diaz, Alphonso

    1988-01-01

    This paper presents concepts related to preliminary work for the development of an expert planning system for NASA's Office for Space Science and Applications (OSSA). The expert system will function as a planner's decision aid in preparing mission plans encompassing sets of proposed OSSA space science initiatives. These plans in turn will be checked against budgetary and technical constraints and tested for constraint violations. Appropriate advice will be generated by the system for making modifications to the plans to bring them in line with the constraints. The OSSA Planning Expert System (OPES) has been designed to function as an integral part of the OSSA mission planning process. It will be able to suggest a best plan, be able to accept and check a user-suggested strawman plan, and should provide a quick response to user request and actions. OPES will be written in the C programming language and have a transparent user interface running under Windows 386 on a Compaq 386/20 machine. The system's sorted knowledge and inference procedures will model the expertise of human planners familiar with the OSSA planning domain. Given mission priorities and budget guidelines, the system first sets the launch dates for each mission. It will check to make sure that planetary launch windows and precursor mission relationships are not violated. Additional levels of constraints will then be considered, checking such things as the availability of a suitable launch vehicle, total mission launch mass required vs. the identified launch mass capability, and the total power required by the payload at its destination vs. the actual power available. System output will be in the form of Gantt charts, spreadsheet hardcopy, and other presentation quality materials detailing the resulting OSSA mission plan.

  13. Alternative funding for academic medicine: experience at a Canadian Health Sciences Center.

    PubMed

    Rosenbaum, Paul; Shortt, S E D; Walker, D M C

    2004-03-01

    In 1994 the School of Medicine of Queen's University in Kingston, Ontario, its clinical teachers, and the three principal teaching hospitals initiated a new approach to funding, the Alternative Funding Plan, a pragmatic response to the inability of fee-for-service billing by clinical faculty to subsidize the academic mission of the health sciences center. The center was funded to provide a package of service and academic deliverables (outputs), rather than on the basis of payment for physician clinical activity (inputs). The new plan required a new governance structure representing stakeholders and raised a number of important issues: how to reconcile the preservation of physician professional autonomy with corporate responsibilities; how to gather requisite information so as to equitably allocate resources; and how to report to the Ontario Ministry of Health and Long-term Care in order to demonstrate accountability. In subsequent iterations of the agreement it was necessary to address issues of flexibility resulting from locked-in funding levels and to devise meaningful performance measures for departments and the center as a whole. The authors conclude that the Alternative Funding Plan represents a successful innovation in funding for an academic health sciences center in that it has created financial stability, as well as modest positive effects for education and research. The Ontario government hopes to replicate the model at the province's other four health sciences centers, and it may have applicability in any jurisdiction in which the costs of medical education outstrip the capacity of faculty clinical earnings.

  14. Argumentation in Science Class: Its Planning, Practice, and Effect on Student Motivation

    NASA Astrophysics Data System (ADS)

    Taneja, Anju

    Studies have shown an association between argumentative discourse in science class, better understanding of science concepts, and improved academic performance. However, there is lack of research on how argumentation can increase student motivation. This mixed methods concurrent nested study uses Bandura's construct of motivation and concepts of argumentation and formative feedback to understand how teachers orchestrate argumentation in science class and how it affects motivation. Qualitative data was collected through interviews of 4 grade-9 science teachers and through observing teacher-directed classroom discourse. Classroom observations allowed the researcher to record the rhythm of discourse by characterizing teacher and student speech as teacher presentation (TP), teacher guided authoritative discussion (AD), teacher guided dialogic discussion (DD), and student initiation (SI). The Student Motivation Towards Science Learning survey was administered to 67 students before and after a class in which argumentation was used. Analysis of interviews showed teachers collaborated to plan argumentation. Analysis of discourse identified the characteristics of argumentation and provided evidence of students' engagement in argumentation in a range of contexts. Student motivation scores were tested using Wilcoxon signed rank tests and Mann-Whitney U-tests, which showed no significant change. However, one construct of motivation---active learning strategy---significantly increased. Quantitative findings also indicate that teachers' use of multiple methods in teaching science can affect various constructs of students' motivation. This study promotes social change by providing teachers with insight about how to engage all students in argumentation.

  15. NEPTUNE Canada-status and planning

    NASA Astrophysics Data System (ADS)

    Bornhold, Brian D.

    2005-04-01

    Stage 1 of the joint Canada-U.S. NEPTUNE seafloor observatory has been funded by the Canada Foundation for Innovation and the British Columbia Knowledge Development Fund with an overall budget of $62.4 million. The network is designed to provide as close to real-time data and images as possible to be distributed to the research community, government agencies, educational institutions and the public via the Internet. Covering much of the northern segment of the Juan de Fuca Plate, this first phase of the NEPTUNE project is scheduled to be installed, with an initial suite of ``community experiments'', in 2008. As part of the planning, NEPTUNE Canada held a series of three workshops to develop the science plans for these ``community experiments'' these experiments have a budget of approximately $13 million. The experiments will cover the gamut of oceanographic science themes including various aspects of: ocean climate and marine productivity, seabed environments and biological communities, fluids at ocean ridges, gas hydrates and fluids on continental margins, plate tectonics processes, associated earthquakes and tsunamis. The next three years will be spent developing and testing the necessary instrumentation for deployment on the network.

  16. The Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Nall, M.; French, R.; Noble, S.; Muery, K.

    2010-01-01

    The Lunar Mapping and Modeling Project (LMMP) is managing a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, de-sign, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. Although the project was initiated primarily to serve the needs of the Constellation program, it is equally suited for supporting landing site selection and planning for a variety of robotic missions, including NASA science and/or human precursor missions and commercial missions such as those planned by the Google Lunar X-Prize participants. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public out-reach (E/PO) activities.

  17. SeaQuaKE: Sea-optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-06-01

    is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13-001...In addition, we discuss our initial progress towards the free - space quantum channel model and planning for the experimental validation effort. 15...SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as

  18. Fuels planning: science synthesis and integration; social issues fact sheet 17: Considering social acceptability of fuels treatments

    Treesearch

    Christine Esposito

    2006-01-01

    When making decisions about fuels treatments, forest managers need to assess not only the biological impacts of a treatment, but the social impacts as well. Social acceptability is based on value judgments by people-their notions of what is "good" and what is "better." This fact sheet discusses six questions that may be useful for framing initial...

  19. Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The space station automation study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions. The initial step taken by NASA in organizing the SSAS was to form and convene a panel of recognized expert technologists in automation, space sciences and aerospace engineering to produce a space station automation plan.

  20. Fuels planning: science synthesis and integration; environmental consequences fact sheet 14: Fuels reduction and compaction

    Treesearch

    Deborah Page-Dumroese

    2005-01-01

    Moving equipment and logs over the surface of forest soils causes gouges and ruts in the mineral soil, displaces organic matter, and can cause compaction. Compaction is the component of soil productivity most influenced by forest management, but the degree to which soils may be compacted depends on initial soil bulk density. For example, low bulk density soils (such as...

  1. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning infrastructure, processes and automation in order to support science planning of this scale throughout the TGO mission. We also detail how the re-use and further development of ESA's multi-mission planning software tool is being implemented in order to provide the necessary additional functionality for the SOC's planning team to exploit, and to therefore ensure the optimum scientific return of the TGO mission. Finally, we provide an overview and status of the real science planning activities taking place in the first weeks of the nominal science phase in the first half of 2018.

  2. Novice High School Science Teachers: Lesson Plan Adaptations

    ERIC Educational Resources Information Center

    Scharon, Aracelis Janelle

    2013-01-01

    The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process…

  3. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.

  4. Efforts to Recruit Secondary STEM Teachers at Columbus State University

    NASA Astrophysics Data System (ADS)

    Webster, Zodiac T.; MaSST Preparation Council

    2006-12-01

    Physics as a discipline is not alone in having difficulty finding qualified teachers. Under-qualified teachers are present in high school Mathematics, Chemistry, Biology, and Earth-science classrooms as well. Columbus State University (CSU) has formed the Mathematics and Science Secondary Teachers (MaSST) Preparation Council to recruit more majors into our existing secondary teaching programs: Mathematics, Biology, Chemistry, and Geology. College of Education and College of Science faculty are working together to create a higher profile for these majors at our institution within the state of Georgia. In addition, we are planning an aggressive campaign to recruit from within by implementing a peer-tutoring program using outstanding students who have completed introductory math and science courses. Our group’s organization and initiatives can serve as a model for other institutions concerned about recruiting more high-school teachers.

  5. Drug development and nonclinical to clinical translational databases: past and current efforts.

    PubMed

    Monticello, Thomas M

    2015-01-01

    The International Consortium for Innovation and Quality (IQ) in Pharmaceutical Development is a science-focused organization of pharmaceutical and biotechnology companies. The mission of the Preclinical Safety Leadership Group (DruSafe) of the IQ is to advance science-based standards for nonclinical development of pharmaceutical products and to promote high-quality and effective nonclinical safety testing that can enable human risk assessment. DruSafe is creating an industry-wide database to determine the accuracy with which the interpretation of nonclinical safety assessments in animal models correctly predicts human risk in the early clinical development of biopharmaceuticals. This initiative aligns with the 2011 Food and Drug Administration strategic plan to advance regulatory science and modernize toxicology to enhance product safety. Although similar in concept to the initial industry-wide concordance data set conducted by International Life Sciences Institute's Health and Environmental Sciences Institute (HESI/ILSI), the DruSafe database will proactively track concordance, include exposure data and large and small molecules, and will continue to expand with longer duration nonclinical and clinical study comparisons. The output from this work will help identify actual human and animal adverse event data to define both the reliability and the potential limitations of nonclinical data and testing paradigms in predicting human safety in phase 1 clinical trials. © 2014 by The Author(s).

  6. Development of Waypoint Planning Tool in Response to NASA Field Campaign Challenges

    NASA Technical Reports Server (NTRS)

    He, Matt; Hardin, Danny; Mayer, Paul; Blakeslee, Richard; Goodman, Michael

    2012-01-01

    Airborne real time observations are a major component of NASA 's Earth Science research and satellite ground validation studies. Multiple aircraft are involved in most NASA field campaigns. The coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. Planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. A flight planning tools is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama ]Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point -and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin on web platform, and to the rising open source GIS tools with New Java Script frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives.

  7. Individual and dyadic planning predicting pelvic floor exercise among prostate cancer survivors.

    PubMed

    Keller, Jan; Burkert, Silke; Wiedemann, Amelie U; Luszczynska, Aleksandra; Schrader, Mark; Knoll, Nina

    2015-08-01

    [Correction Notice: An Erratum for this article was reported in Vol 60(3) of Rehabilitation Psychology (see record 2015-40319-001). Aleksandra Luszczynska's institutional affiliation was incorrectly set as Warsaw School of Social Sciences and Humanities. It should have been University of Social Sciences and Humanities. All versions of this article have been corrected.] Radical prostatectomy, a standard treatment for localized prostate cancer, is often followed by a recommendation to initiate and maintain pelvic floor exercise (PFE), to control postsurgery urinary incontinence. Previous studies showed that planning facilitated the uptake and maintenance of a new behavior. Whereas individual planning addresses the setting of plans by 1 person, dyadic planning refers to creating plans together with a partner on when, where, and how the individual target person will perform a behavior. Individual and dyadic planning of PFE, their development over time, and their associations with PFE were investigated. In a correlational study, 175 prostate-cancer patients provided data at 1, 3, 5, and 7 months following the onset of incontinence. Individual planning of PFE by patients and dyadic planning of PFE between patients and their partners, PFE, and incontinence were assessed by patients' self-reports. Two-level models with repeated assessments nested in individuals revealed stable levels of individual planning of PFE over time in patients with higher incontinence severity, whereas patients with receding incontinence showed decreases. Independent of incontinence severity, a curvilinear increase followed by a decrease of dyadic planning of PFE across time emerged. Sequential associations of both planning strategies with PFE were found. Whereas individual planning was steadily associated with PFE, associations between dyadic planning and PFE were nonsignificant in the beginning, but increased over time. Findings point to the importance of individual planning for the adoption and maintenance of PFE, with dyadic planning being relevant for PFE maintenance only. (c) 2015 APA, all rights reserved).

  8. Human Mars Surface Science Operations

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2014-01-01

    Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.

  9. Towards consolidated science requirements for a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Pail, R.; Braitenberg, C. F.; Eicker, A.; Floberghagen, R.; Forsberg, R.; Haagmans, R.; Horwath, M.; Kusche, J.; Labrecque, J. L.; Panet, I.; Rolstad Denby, C.; Schröter, J.; Wouters, B.

    2013-12-01

    As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), we target on the consolidation of science requirements for a next generation gravity field mission (beyond GRACE-FO). Several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+), and a consolidation within the different user groups is required, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. Therefore, this initiative shall concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which is planned for the second half of 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.

  10. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernandomore » Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.« less

  11. WFIRST: Update on the Coronagraph Science Requirements

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Cahoy, Kerri; Carlton, Ashley; Macintosh, Bruce; Turnbull, Margaret; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams

    2018-01-01

    The WFIRST Coronagraph instrument (CGI) will enable direct imaging and low resolution spectroscopy of exoplanets in reflected light and imaging polarimetry of circumstellar disks. The CGI science investigation teams were tasked with developing a set of science requirements which advance our knowledge of exoplanet occurrence and atmospheric composition, as well as the composition and morphology of exozodiacal debris disks, cold Kuiper Belt analogs, and protoplanetary systems. We present the initial content, rationales, validation, and verification plans for the WFIRST CGI, informed by detailed and still-evolving instrument and observatory performance models. We also discuss our approach to the requirements development and management process, including the collection and organization of science inputs, open source approach to managing the requirements database, and the range of models used for requirements validation. These tools can be applied to requirements development processes for other astrophysical space missions, and may ease their management and maintenance. These WFIRST CGI science requirements allow the community to learn about and provide insights and feedback on the expected instrument performance and science return.

  12. 36 CFR 219.22 - The overall role of science in planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false The overall role of science... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.22 The overall role of science in planning. (a) The responsible official must ensure that the best...

  13. 36 CFR 219.22 - The overall role of science in planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false The overall role of science... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.22 The overall role of science in planning. (a) The responsible official must ensure that the best...

  14. Enhancing science teaching in an elementary school: A case study of a school-initiated Teacher Professional Development Program

    NASA Astrophysics Data System (ADS)

    Brooks, Clare M.

    1998-12-01

    This naturalistic case study documents a year long Teacher Professional Development Program (TPDP) initiated by an elementary school staff in British Columbia. The TPDP was designed to enable the teachers to meet their objective of making science instruction more frequent, more active, and more student-centered in all classrooms in the school. This case study addresses two research questions: (1) What attributes of the Teacher Professional Development Program supported the school's "objective" for improved science instruction? (2) How did the outcomes of the Teacher Professional Development Program relate to the achievement of the school's educational objective? The site for the research was a kindergarten--Grade 7 school. A university professor and the researcher were invited to visit the school on a bi-weekly basis during one school year (1993--94) to facilitate a series of science workshops involving the entire teaching staff and to provide classroom support to teachers. Teachers were offered university course credit for their participation. This case study draws on qualitative data including: audio recordings of planning/debriefing sessions, workshop discussions, and interviews with participants; field notes and written observations; a survey of teachers' opinions about the TPDP; and documents relating to the school accreditation process in 1994--95. The results of the study show that teachers, administrators, and parents were satisfied that the school's objective for science instruction was met, and that the TPDP contributed significantly to this outcome. The study identifies TPDP attributes which supported the school's objective with reference to the teachers and their context, the planning process, and the organizational context, that is, the school. This study contributes to our understanding of teacher professional development by examining an alternative to more common approaches to elementary teacher science inservice in British Columbia, which are typically short-term, designed by inservice providers with little input from participants, and removed physically and conceptually from the classroom. Such inservice experiences often lack administrative and collegial support for the teacher who attempts classroom implementation. While this study relates to science; the discussion is relevant to other curriculum areas such as fine arts or physical education.

  15. Generic procedure for designing and implementing plan management systems for space science missions operations

    NASA Astrophysics Data System (ADS)

    Chaizy, P. A.; Dimbylow, T. G.; Allan, P. M.; Hapgood, M. A.

    2011-09-01

    This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA's methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and will be relevant only for some specific mission requirements. In other words, each mission that shares the same type of requirements that lead to a list of specific catalogued scenarii can use this latter list of scenarii (regardless of whether the mission is a plasma, planetary, astronomy, etc. mission). The main advantages of such a catalogue are that it speeds-up the execution of the procedure and makes the latter more reliable. Ultimately, the information associated to each relevant scenario (from the catalogue or freshly generated by the procedure) will then be used by mission designers to make informed decisions, including the modification of the mission requirements, for any missions. In addition, to illustrate the use of such a procedure, the latter is applied to a case study, i.e. the Cross-Scale mission. One of the outcomes of this study is an initial set of generic functional scenarii. Finally, although border line with the above purpose of this paper, we also discuss multi-spacecraft specific issues and issues related to the on-board execution of the plan update system (PUS). In particular, we show that the operation planning cost of N spacecraft is not equal to N times the cost of 1 spacecraft and that on-board non-synchronised operation will not require inter-spacecraft communication. We also believe that on-board PUS should be made possible for all missions as a standard.

  16. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  17. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  18. The Wetland and Aquatic Research Center strategic science plan

    USGS Publications Warehouse

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  19. Welcome Remarks and Introduction from the DOE Under Secretary for Science, Steve Koonin (2011 EFRC Summit)

    ScienceCinema

    Koonin, Steve

    2018-01-04

    In this video the DOE Under Secretary for Science, Steve Koonin, opened the 2011 EFRC Summit and Forum with welcoming remarks and an introduction of the keynote address. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Geoffrey Wayne; Leonard, Philip; Hartline, Ernest Leon

    High Explosives Science and Technology (M-7) completed all required formulation and testing of Remediated Nitrate Salt (RNS) surrogates on April 27, 2016 as specified in PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. This report summarizes the results of the work and also includes additional documentation required in that test plan. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. The work was carried out in three rounds, with the full matrix of samples formulated and tested in each round. Results from the first round of formulation andmore » testing were documented in memorandum M7-J6-6042, " Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Results from the second round of formulation and testing were documented in M7-16-6053 , "Results from the Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Initial results from the third round were documented in M7-16-6057, "Initial Results from the Third Round of Remediated Nitrate Salt Formulation and Testing."« less

  1. 36 CFR 219.3 - Role of science in planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Role of science in planning. 219.3 Section 219.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.3 Role of science in planning. The...

  2. 36 CFR 219.3 - Role of science in planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Role of science in planning. 219.3 Section 219.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.3 Role of science in planning. The...

  3. 36 CFR 219.3 - Role of science in planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Role of science in planning. 219.3 Section 219.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.3 Role of science in planning. The...

  4. Human Capital: DOD Should Fully Develop Its Civilian Strategic Workforce Plan to Aid Decision Makers

    DTIC Science & Technology

    2014-07-01

    Series (0185) Medical Officer Series (0602) Nurse Series (0610) Pharmacist Series (0660) Social Science N/Ab Financial Management Financial...contractor support. The pilot study involved three high-risk mission-critical occupations— Nursing , Fire Protection and Prevention, and Contracting...initial pilot study was limited to the three mission-critical occupation series that DOD has identified as high risk ( Nurse , Fire Protection and

  5. Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Year 2006

    DTIC Science & Technology

    2005-11-01

    any remaining uncertainties for the Amazon region of South America.These results are expected to greatly reduce errors and uncertainties concerning...changing the concentration of atmospheric CO2 are fossil -fuel burning, deforestation, land-use change, and cement production.These processes have...the initial phases of work on the remaining products. Specific plans for enhanced decision-support resources include: – Developing decision-support

  6. Engaging the broader community in biodiversity research: the concept of the COMBER pilot project for divers in ViBRANT

    PubMed Central

    Arvanitidis, Christos; Faulwetter, Sarah; Chatzigeorgiou, Georgios; Penev, Lyubomir; Bánki, Olaf; Dailianis, Thanos; Pafilis, Evangelos; Kouratoras, Michail; Chatzinikolaou, Eva; Fanini, Lucia; Vasileiadou, Aikaterini; Pavloudi, Christina; Vavilis, Panagiotis; Koulouri, Panayota; Dounas, Costas

    2011-01-01

    Abstract This paper discusses the design and implementation of a citizen science pilot project, COMBER (Citizens’ Network for the Observation of Marine BiodivERsity, http://www.comber.hcmr.gr), which has been initiated under the ViBRANT EU e-infrastructure. It is designed and implemented for divers and snorkelers who are interested in participating in marine biodiversity citizen science projects. It shows the necessity of engaging the broader community in the marine biodiversity monitoring and research projects, networks and initiatives. It analyses the stakeholders, the industry and the relevant markets involved in diving activities and their potential to sustain these activities. The principles, including data policy and rewards for the participating divers through their own data, upon which this project is based are thoroughly discussed. The results of the users analysis and lessons learned so far are presented. Future plans include promotion, links with citizen science web developments, data publishing tools, and development of new scientific hypotheses to be tested by the data collected so far. PMID:22207815

  7. Spallation Neutron Source Second Target Station Integrated Systems Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankner, John Francis; An, Ke; Blokland, Willem

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts thatmore » could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.« less

  8. Public Health as a Catalyst for Interprofessional Education on a Health Sciences Campus

    PubMed Central

    Curry, Susan J.; Benz, Loretta; Aquilino, Mary Lober

    2015-01-01

    Although interprofessional education (IPE) has existed in various formats for several decades, the need for IPE recently has taken on renewed interest and momentum. Public health has a critical role to play in furthering IPE, yet schools of public health are often underrepresented in IPE initiatives. The University of Iowa College of Public Health is serving as a catalyst for IPE activities on our health sciences campus, which includes colleges of dentistry, medicine, nursing, pharmacy, and public health. IPE-related activities have included campus visit by IPE leaders, administration of the Survey of Critical Elements for Implementing IPE, administration of the Interprofessional Learning Opportunities Inventory survey, the development of a comprehensive strategic plan, and the pilot of an IPE course for all first-year prelicensure students and Master of Health Administration students. Although more work is needed to more fully integrate IPE into the curriculum, success to date of the University of Iowa IPE initiative demonstrates that public health can play a critical role as a convener and catalyst for IPE curricular innovations on a health sciences campus. PMID:25706001

  9. DOE planning workshop advanced biomedical technology initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    The Department of Energy has mad major contributions in the biomedical sciences with programs in medical applications and instrumentation development, molecular biology, human genome, and computational sciences. In an effort to help determine DOE`s role in applying these capabilities to the nation`s health care needs, a planning workshop was held on January 11--12, 1994. The workshop was co-sponsored by the Department`s Office of Energy Research and Defense Programs organizations. Participants represented industry, medical research institutions, national laboratories, and several government agencies. They attempted to define the needs of the health care industry. identify DOE laboratory capabilities that address these needs,more » and determine how DOE, in cooperation with other team members, could begin an initiative with the goals of reducing health care costs while improving the quality of health care delivery through the proper application of technology and computational systems. This document is a report of that workshop. Seven major technology development thrust areas were considered. Each involves development of various aspects of imaging, optical, sensor and data processing and storage technologies. The thrust areas as prioritized for DOE are: (1) Minimally Invasive Procedures; (2) Technologies for Individual Self Care; (3) Outcomes Research; (4) Telemedicine; (5) Decision Support Systems; (6) Assistive Technology; (7) Prevention and Education.« less

  10. Earth observing system - Concepts and implementation strategy

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  11. Facing Our Energy Challenges in a New Era of Science (2011 EFRC Forum)

    ScienceCinema

    Dehmer, Patricia M.

    2018-04-26

    Patricia Dehmer, Deputy Director for Science Programs at DOE, opened the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research,' with the talk, 'Facing Our Energy Challenges in a New Era of Science.' In her presentation, Dr. Dehmer gave a tutorial on the energy challenges facing our Nation and showed how the DOE research portfolio addresses those issues. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  12. Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Supinski, B R; Alam, S R; Bailey, D H

    2009-05-27

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measuredmore » the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less

  13. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.

    2009-06-26

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less

  14. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Supinski, Bronis R.; Alam, Sadaf R; Bailey, David

    2009-01-01

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfilll our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less

  15. The ERESE project: Bridging the gap between Digital Science Libraries and Education through Professional Development of Teachers and Database Development

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Helly, M.; Helly, J.; Koppers, A.; Massel-Symons, C.; Miller, S.

    2004-12-01

    The ERESE (Enduring Resources in Earth Science Education) project involves a close collaboration between teachers, librarians, educators, data archive managers and scientists in Earth sciences and information technology, to create a digital library environment for Earth science education. We report here on an ongoing (NSF-NSDL) project involving teachers' professional development in the pedagogy of plate tectonics in middle and high schools. This work included efforts in scientific database development in terms of contents and search tools, the development of an inquiry based learning approach, a two week professional development workshop attended by 15 teachers from across the nation, a classroom implementation of lesson plans developed by the teachers at the workshop and an evaluation/validation process for the success of their pedagogic approaches. This ERESE project offers a novel path for both science teaching and professional outreach for scientists, and includes four key components: (1) A true, long-term research partnership between educators and scientists, guiding each other with respect to the authenticity of the science taught and the educational soundness of a scientists' elaborations on science concepts. (2) Expansion of existing scientific databases through the use of metadata that tie scientific materials to a particular expert level and teaching goal. (3) The design of interfaces that make data accessible to the educational community. (4) The use of an inquiry based teaching approach that integrates the scientist-educator collaboration and the data base developments. Our pedagogic approach includes the development of a central hypotheses by the student in response to an initial general orientation and presentation of a well chosen central provocative phenomenon by the teacher. Then, the student develops a research plan that is devoted to address this hypothesis through the use of the materials provided by a scientific database allowing a students prove or disprove their hypothesis and to explore the limits of the (current) understanding of a particular science question. Our first experience with this ERESE project involved a steep learning curve, but the initial results are very promising, providing true professional development for educators as well as for the scientists, whereby the former learn about new ways of teaching science and the latter learn to communicate with teachers.

  16. Preserved Entropy, quantum criticality and fragile magnetism

    NASA Astrophysics Data System (ADS)

    Canfield, Paul

    A large swath of strongly correlated electron systems can be associated with the phenomenon of preserved entropy and fragile magnetism. In this talk I will present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism or grow out of preserved entropy. This talk is based on work published in This work was supported by the U.S. Dept. of Energy, Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358 as well as by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4411.

  17. Evaluation of the Healthy Lifestyles Initiative for Improving Community Capacity for Childhood Obesity Prevention

    PubMed Central

    Berman, Marcie; Bozsik, Frances; Shook, Robin P.; Meissen-Sebelius, Emily; Markenson, Deborah; Summar, Shelly; DeWit, Emily

    2018-01-01

    Purpose and Objectives Policy, systems, and environmental approaches are recommended for preventing childhood obesity. The objective of our study was to evaluate the Healthy Lifestyles Initiative, which aimed to strengthen community capacity for policy, systems, and environmental approaches to healthy eating and active living among children and families. Intervention Approach The Healthy Lifestyles Initiative was developed through a collaborative process and facilitated by community organizers at a local children’s hospital. The initiative supported 218 partners from 170 community organizations through training, action planning, coalition support, one-on-one support, and the dissemination of materials and sharing of resources. Evaluation Methods Eighty initiative partners completed a brief online survey on implementation strategies engaged in, materials used, and policy, systems, and environmental activities implemented. In accordance with frameworks for implementation science, we assessed associations among the constructs by using linear regression to identify whether and which of the implementation strategies were associated with materials used and implementation of policy, systems, and environmental activities targeted by the initiative. Results Each implementation strategy was engaged in by 30% to 35% of the 80 survey respondents. The most frequently used materials were educational handouts (76.3%) and posters (66.3%). The most frequently implemented activities were developing or continuing partnerships (57.5%) and reviewing organizational wellness policies (46.3%). Completing an action plan and the number of implementation strategies engaged in were positively associated with implementation of targeted activities (action plan, effect size = 0.82; number of strategies, effect size = 0.51) and materials use (action plan, effect size = 0.59; number of strategies, effect size = 0.52). Materials use was positively associated with implementation of targeted activities (effect size = 0.35). Implications for Public Health Community-capacity–building efforts can be effective in supporting community organizations to engage in policy, systems, and environmental activities for healthy eating and active living. Multiple implementation strategies are likely needed, particularly strategies that involve a high level of engagement, such as training community organizations and working with them on structured action plans. PMID:29470168

  18. EverVIEW: a visualization platform for hydrologic and Earth science gridded data

    USGS Publications Warehouse

    Romañach, Stephanie S.; McKelvy, James M.; Suir, Kevin J.; Conzelmann, Craig

    2015-01-01

    The EverVIEW Data Viewer is a cross-platform desktop application that combines and builds upon multiple open source libraries to help users to explore spatially-explicit gridded data stored in Network Common Data Form (NetCDF). Datasets are displayed across multiple side-by-side geographic or tabular displays, showing colorized overlays on an Earth globe or grid cell values, respectively. Time-series datasets can be animated to see how water surface elevation changes through time or how habitat suitability for a particular species might change over time under a given scenario. Initially targeted toward Florida's Everglades restoration planning, EverVIEW has been flexible enough to address the varied needs of large-scale planning beyond Florida, and is currently being used in biological planning efforts nationally and internationally.

  19. Presenting Bionic: Broader Impacts and Outreach Network for Institutional Collaboration

    NASA Astrophysics Data System (ADS)

    Storm, K.

    2014-12-01

    Broader Impact plans are required of all NSF proposals. In 2011 the National Science Board, which oversees NSF, reconfirmed NSF's commitment to Broader Impacts in its task force report on the merit review system. At many institutions there are professionals that focus their work on supporting the Broader Impact work of researchers. This session will share the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC) plan to create a professional network of individuals and offices committed to planning and carrying out effective Broader Impact programming. BIONIC is an NSF Research Coordination Network that is recommended for funding through the Biology Directorate. In this session we will share the goals of BIONIC, and the progress to date in reaching those goals (of which one aspect is the curating of effective Broader Impact initiatives).

  20. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.

    2017-04-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.

  1. The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.

    2017-01-01

    The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.

  2. A Bibliometric Analysis on Cancer Population Science with Topic Modeling.

    PubMed

    Li, Ding-Cheng; Rastegar-Mojarad, Majid; Okamoto, Janet; Liu, Hongfang; Leichow, Scott

    2015-01-01

    Bibliometric analysis is a research method used in library and information science to evaluate research performance. It applies quantitative and statistical analyses to describe patterns observed in a set of publications and can help identify previous, current, and future research trends or focus. To better guide our institutional strategic plan in cancer population science, we conducted bibliometric analysis on publications of investigators currently funded by either Division of Cancer Preventions (DCP) or Division of Cancer Control and Population Science (DCCPS) at National Cancer Institute. We applied two topic modeling techniques: author topic modeling (AT) and dynamic topic modeling (DTM). Our initial results show that AT can address reasonably the issues related to investigators' research interests, research topic distributions and popularities. In compensation, DTM can address the evolving trend of each topic by displaying the proportion changes of key words, which is consistent with the changes of MeSH headings.

  3. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  4. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE)

    NASA Astrophysics Data System (ADS)

    Crowley, G.

    2015-12-01

    The Scintillation Observations and Response of The Ionosphere to Electrodynamics, or SORTIE, mission is a 6U NASA Heliophysics CubeSat designed to study the ionosphere at altitudes below 400km. The SORTIE mission is being developed by a team including ASTRA (lead institution), AFRL, University of Texas at Dallas (UTD), COSMIAC (Satellite Integrator), and Boston College. SORTIE will address cutting-edge science in the area of ionospheric dynamics. The SORTIE mission will address the following science questions: Q1) Discover the sources of wave-like plasma perturbations in the F-region ionosphere. Q2) Determine the relative role of dynamo action and more direct mechanical forcing in the formation of wave-like plasma perturbations. To address these questions we plan to fly a CubeSat with novel sensors that measure key plasma parameters in a circular, low to middle inclination orbit near 350-400 km altitude. The sensors include an ion velocity meter (built by UTD) and a Planar Langmuir Probe (built by AFRL). The SORTIE mission plan is to describe the distribution of wave-like structures in the plasma density of the ionospheric F-region. In doing so, the SORTIE team will determine the possible role of these perturbations in aiding the growth of plasma instabilities. SORTIE will provide (1) the initial spectrum of wave perturbations which are the starting point for the RT calculation; (2) measured electric fields which determine the magnitude of the instability growth rate near the region where plasma bubbles are generated; (3) initial observations of irregularities in plasma density which result from RT growth. SORTIE results will be used as input to PBMOD, an assimilative first-principles physical model of the ionosphere, in order to predict evolution of EPBs. In this presentation, we will review the science objectives, provide an overview of the spacecraft and instrument design, and present a concept of operations plan.

  6. 36 CFR 219.24 - Science consistency evaluations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Science consistency... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.24 Science consistency evaluations. (a) The responsible official must ensure that plan amendments...

  7. 36 CFR 219.24 - Science consistency evaluations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Science consistency... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.24 Science consistency evaluations. (a) The responsible official must ensure that plan amendments...

  8. Recruitment of racial/ethnic minority older adults through community sites for focus group discussions.

    PubMed

    Northridge, Mary E; Shedlin, Michele; Schrimshaw, Eric W; Estrada, Ivette; De La Cruz, Leydis; Peralta, Rogelina; Birdsall, Stacia; Metcalf, Sara S; Chakraborty, Bibhas; Kunzel, Carol

    2017-06-09

    Despite a body of evidence on racial/ethnic minority enrollment and retention in research, literature specifically focused on recruiting racially/ethnically diverse older adults for social science studies is limited. There is a need for more rigorous research on methodological issues and the efficacy of recruitment methods. Cultural obstacles to recruitment of racial/ethnic minority older adults include language barriers, lack of cultural sensitivity of target communities on the part of researchers, and culturally inappropriate assessment tools. Guided by the Consolidated Framework for Implementation Research (CFIR), this study critically appraised the recruitment of racial/ethnic minority older adults for focus groups. The initial approach involved using the physical and social infrastructure of the ElderSmile network, a community-based initiative to promote oral and general health and conduct health screenings in places where older adults gather, to recruit racial/ethnic minority adults for a social science component of an interdisciplinary initiative. The process involved planning a recruitment strategy, engaging the individuals involved in its implementation (opinion leaders in senior centers, program staff as implementation leaders, senior community-based colleagues as champions, and motivated center directors as change agents), executing the recruitment plan, and reflecting on the process of implementation. While the recruitment phase of the study was delayed by 6 months to allow for ongoing recruitment and filling of focus group slots, the flexibility of the recruitment plan, the expertise of the research team members, the perseverance of the recruitment staff, and the cultivation of change agents ultimately resulted in meeting the study targets for enrollment in terms of both numbers of focus group discussions (n = 24) and numbers of participants (n = 194). This study adds to the literature in two important ways. First, we leveraged the social and physical infrastructure of an existing program to recruit participants through community sites where older adults gather. Second, we used the CFIR to guide the appraisal of the recruitment process, which underscored important considerations for both reaching and engaging this underserved population. This was especially true in terms of understanding the disparate roles of the individuals involved in implementing and facilitating the recruitment plan.

  9. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  10. Achieving Health Equity Through Community Engagement in Translating Evidence to Policy: The San Francisco Health Improvement Partnership, 2010-2016.

    PubMed

    Grumbach, Kevin; Vargas, Roberto A; Fleisher, Paula; Aragón, Tomás J; Chung, Lisa; Chawla, Colleen; Yant, Abbie; Garcia, Estela R; Santiago, Amor; Lang, Perry L; Jones, Paula; Liu, Wylie; Schmidt, Laura A

    2017-03-23

    The San Francisco Health Improvement Partnership (SFHIP) promotes health equity by using a novel collective impact model that blends community engagement with evidence-to-policy translational science. The model involves diverse stakeholders, including ethnic-based community health equity coalitions, the local public health department, hospitals and health systems, a health sciences university, a school district, the faith community, and others sectors. We report on 3 SFHIP prevention initiatives: reducing consumption of sugar sweetened beverages (SSBs), regulating retail alcohol sales, and eliminating disparities in children's oral health. SFHIP is governed by a steering committee. Partnership working groups for each initiative collaborate to 1) develop and implement action plans emphasizing feasible, scalable, translational-science-informed interventions and 2) consider sustainability early in the planning process by including policy and structural interventions. Through SFHIP's efforts, San Francisco enacted ordinances regulating sale and advertising of SSBs and a ballot measure establishing a soda tax. Most San Francisco hospitals implemented or committed to implementing healthy-beverage policies that prohibited serving or selling SSBs. SFHIP helped prevent Starbucks and Taco Bell from receiving alcohol licenses in San Francisco and helped prevent state authorization of sale of powdered alcohol. SFHIP increased the number of primary care clinics providing fluoride varnish at routine well-child visits from 3 to 14 and acquired a state waiver to allow dental clinics to be paid for dental services delivered in schools. The SFHIP model of collective impact emphasizing community engagement and policy change accomplished many of its intermediate goals to create an environment promoting health and health equity.

  11. Toward late career transitioning: a proposal for academic surgeons.

    PubMed

    Richards, Robin; McLeod, Robin; Latter, David; Keshavjee, Shaf; Rotstein, Ori; Fehlings, Michael G; Ahmed, Najma; Nathens, Avery; Rutka, James

    2017-09-01

    In the absence of a defined retirement age, academic surgeons need to develop plans for transition as they approach the end of their academic surgical careers. The development of a plan for late career transition represents an opportunity for departments of surgery across Canada to initiate a constructive process in cooperation with the key stakeholders in the hospital or institution. The goal of the process is to develop an individual plan for each faculty member that is agreeable to the academic surgeon; informs the surgical leadership; and allows the late career surgeon, the hospital, the division and the department to make plans for the future. In this commentary, the literature on the science of aging is reviewed as it pertains to surgeons, and guidelines for late career transition planning are shared. It is hoped that these guidelines will be of some value to academic programs and surgeons across the country as late career transition models are developed and adopted.

  12. Concept of Science Data Management for the Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon

    2016-10-01

    South Korea has a plan to explore the Moon in 2018 or 2019. For the plan, the Korea Aerospace Research Institute which is a government funded research institute kicked off the Korea Lunar Exploration Development Program in January, 2016 in support of Ministry of Science, ICT and Future Planning, South Korea.As the 1st stage mission of the program, named as the Korea Pathfinder Lunar Orbiter(KPLO), will perform acquisition of high resolution images and science data for investigation of lunar environment as well as the core technology demonstration and validation for space explorations. The scientific instruments consists of three Korean domestic developed science instruments except an imaging instrument and several foreign provided instruments. We are developing a science data management plan to encourage scientific activities using science data acquired by the science instruments.I introduce the Korean domestic developed science instruments and present concept of the science data management plan for data delivery, processing, and distribution for the science instruments.

  13. A New Paradigm of Engineering Education for the 21st Century:Perspectives of Rose-Hulman Institute of Technology

    NASA Astrophysics Data System (ADS)

    Western, Arthur; Stamper, Richard

    Strategic initiatives for engineering education in the next decade as planned by the Rose-Hulman Institute of Technology are presented. The Rose-Hulman Institute of Technology is a private college in the United States that specializes in undergraduate engineering, mathematics and science education. The initiatives are in response to broad changes in the practice of the engineering profession in its modern global context. The initiatives comprise five strategic thrust areas and five programmatic themes. The thrust areas are: Energy and Environment; Health and Safety; Transportation; Materials; and Information, Computation, and Communication. The programmatic themes are: Excellence in Education; International Awareness; Business Awareness;Service Learning; and Life-long Learning. The objective of these initiatives is to prepare students to meet the challenges of the 21st century and to serve as leaders in society.

  14. A global regulatory science agenda for vaccines.

    PubMed

    Elmgren, Lindsay; Li, Xuguang; Wilson, Carolyn; Ball, Robert; Wang, Junzhi; Cichutek, Klaus; Pfleiderer, Michael; Kato, Atsushi; Cavaleri, Marco; Southern, James; Jivapaisarnpong, Teeranart; Minor, Philip; Griffiths, Elwyn; Sohn, Yeowon; Wood, David

    2013-04-18

    The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable regulators, academics, and other stakeholders to converge around transformative actions for innovation in the regulatory process to support global immunization goals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    NASA Technical Reports Server (NTRS)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique scientific opportunities for temporal assessment across historical missions. Support from the NASA Space Biology Program and the NASA Human Research Program is gratefully acknowledged.

  16. Development of EarthCube Governance: An Agile Approach

    NASA Astrophysics Data System (ADS)

    Pearthree, G.; Allison, M. L.; Patten, K.

    2013-12-01

    Governance of geosciences cyberinfrastructure is a complex and essential undertaking, critical in enabling distributed knowledge communities to collaborate and communicate across disciplines, distances, and cultures. Advancing science with respect to 'grand challenges," such as global climate change, weather prediction, and core fundamental science, depends not just on technical cyber systems, but also on social systems for strategic planning, decision-making, project management, learning, teaching, and building a community of practice. Simply put, a robust, agile technical system depends on an equally robust and agile social system. Cyberinfrastructure development is wrapped in social, organizational and governance challenges, which may significantly impede progress. An agile development process is underway for governance of transformative investments in geosciences cyberinfrastructure through the NSF EarthCube initiative. Agile development is iterative and incremental, and promotes adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness. A project Secretariat acts as the coordinating body, carrying out duties for planning, organizing, communicating, and reporting. A broad coalition of stakeholder groups comprises an Assembly (Mainstream Scientists, Cyberinfrastructure Institutions, Information Technology/Computer Sciences, NSF EarthCube Investigators, Science Communities, EarthCube End-User Workshop Organizers, Professional Societies) to serve as a preliminary venue for identifying, evaluating, and testing potential governance models. To offer opportunity for broader end-user input, a crowd-source approach will engage stakeholders not involved otherwise. An Advisory Committee from the Earth, ocean, atmosphere, social, computer and library sciences is guiding the process from a high-level policy point of view. Developmental evaluators from the social sciences embedded in the project provide real-time review and adjustments. While a large number of agencies and organizations have agreed to participate, in order to ensure an open and inclusive process, community selected leaders yet to be identified will play key roles through an Assembly Advisory Council. Once consensus is reached on a governing framework, a community-selected demonstration governance pilot will help facilitate community convergence on system design.

  17. The Utilization of the Behavioral Sciences in Long Range Forecasting and Policy Planning

    DTIC Science & Technology

    1973-07-30

    73 - December 31, 1973. The report will be divided into six major sections. The first will describe the analysis initiated and completed dur- ing...the half year. Results of special significance will be highlighted. Methodological problems that have arisen during the analysis will be discussed...of this analysis has been the development of a modular computer simula- tion of such operations. The oil simulation module Is then to be used

  18. Analysis of reference transactions using packaged computer programs.

    PubMed

    Calabretta, N; Ross, R

    1984-01-01

    Motivated by a continuing education class attended by the authors on the measurement of reference desk activities, the reference department at Scott Memorial Library initiated a project to gather data on reference desk transactions and to analyze the data by using packaged computer programs. The programs utilized for the project were SPSS (Statistical Package for the Social Sciences) and SAS (Statistical Analysis System). The planning, implementation and development of the project are described.

  19. The attitudinal and cognitive effects of interdisciplinary collaboration on elementary pre-service teachers development of biological science related lesson plans

    NASA Astrophysics Data System (ADS)

    Mills, Jada Jamerson

    There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of the lesson plans.

  20. Neutrinos and dark matter in the Black Hills

    NASA Astrophysics Data System (ADS)

    McMahan Norris, Margaret; Sayler, Bentley

    2010-02-01

    Where in the U.S. could you walk into a hardware store and be asked about neutrinos? It happens regularly in the Black Hills of South Dakota, where preliminary design is in progress for the Deep Underground Science and Engineering Laboratory (DUSEL), a planned NSF Major Research Experimental Facility Construction (MREFC) initiative to be located at the former Homestake gold mine in Lead, SD. DUSEL has physicists buzzing too, as the particle, astro-, and nuclear physics communities have all identified the need for a new laboratory deep beneath the Earth's surface to address some of the most compelling, transformational science at the frontiers of their disciplines. Elusive particles such as neutrinos and WIMPS (a possible candidate for dark matter) -- though they spark the imagination - are equally elusive when trying to explain to students and the public. That will be the task of the Sanford Center for Science Education, planned to be the education arm of DUSEL. Early prototypes of future programs at the education center are now under development, ranging from professional development for teachers to classroom tours to working with American Indian educators. These programs, which are building capacity for the future education center, will be discussed. )

  1. Can psychology walk the walk of open science?

    PubMed

    Hesse, Bradford W

    2018-01-01

    An "open science movement" is gaining traction across many disciplines within the research enterprise but is also precipitating consternation among those who worry that too much disruption may be hampering professional productivity. Despite this disruption, proponents of open data collaboration have argued that some of the biggest problems of the 21st century need to be solved with the help of many people and that data sharing will be the necessary engine to make that happen. In the United States, a national strategic plan for data sharing encouraged the federally funded scientific agencies to (a) publish open data for community use in discoverable, machine-readable, and useful ways; (b) work with public and civil society organizations to set priorities for data to be shared; (c) support innovation and feedback on open data solutions; and (d) continue efforts to release and enhance high-priority data sets funded by taxpayer dollars. One of the more visible open data projects in the psychological sciences is the presidentially announced "Brain Research Through Advancing Innovative Neurotechnologies" (BRAIN) initiative. Lessons learned from initiatives such as these are instructive both from the perspective of open science within psychology and from the perspective of understanding the psychology of open science. Recommendations for creating better pathways to "walk the walk" in open science include (a) nurturing innovation and agile learning, (b) thinking outside the paradigm, (c) creating simplicity from complexity, and (d) participating in continuous learning evidence platforms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Duchenne Regulatory Science Consortium Meeting on Disease Progression Modeling for Duchenne Muscular Dystrophy

    PubMed Central

    Larkindale, Jane; Abresch, Richard; Aviles, Enrique; Bronson, Abby; Chin, Janice; Furlong, Pat; Gordish-Dressman, Heather; Habeeb-Louks, Elizabeth; Henricson, Erik; Kroger, Hans; Lynn, Charles; Lynn, Stephen; Martin, Dana; Nuckolls, Glen; Rooney, William; Romero, Klaus; Sweeney, Lee; Vandenborne, Krista; Walter, Glenn; Wolff, Jodi; Wong, Brenda; McDonald, Craig M.; Duchenne Regulatory Science Consortium, Imaging-DMD Consortium and the CINRG Investigators, members of the

    2017-01-01

    Introduction: The Duchenne Regulatory Science Consortium (D-RSC) was established to develop tools to accelerate drug development for DMD.  The resulting tools are anticipated to meet validity requirements outlined by qualification/endorsement pathways at both the U.S. Food and Drug Administration (FDA) and European Medicines Administration (EMA), and will be made available to the drug development community. The initial goals of the consortium include the development of a disease progression model, with the goal of creating a model that would be used to forecast changes in clinically meaningful endpoints, which would inform clinical trial protocol development and data analysis.  Methods: In April of 2016 the consortium and other experts met to formulate plans for the development of the model.  Conclusions: Here we report the results of the meeting, and discussion as to the form of the model that we plan to move forward to develop, after input from the regulatory authorities. PMID:28228973

  3. Eclipse 2017: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Heliophysics Education Consortium

    2017-10-01

    The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.

  4. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  5. Bridging the Expert and Citizen Divide: Integrating Public Deliberation to Inform NASA's Asteroid Initiative

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Tomblin, D. C.; Sittenfeld, D.

    2017-12-01

    The demand for public engagement in upstream science and technology is fast becoming mainstream. From the National Academies to the European Commission, from geoengineering to gene editing, from artificial intelligence to synthetic biology—there is a growing recognition of the socio-technical nature of the inherent challenges and a variety of calls for earlier and sustained engagement with diverse stakeholders and the general public. Despite a significant increase in the number and sophistication of approaches, institutional and cultural barriers remain, particularly in linking techno-scientific discourse with socio-political discourse. We will report on a 2014 study to use Participatory Technology Assessment (pTA), a method for eliciting informed, deliberative, diverse, and representative citizen views prior to making decisions about science and technology, to inform upstream decisions concerning NASA's Asteroid Initiative. In partnership with NASA, the Expert and Citizen Assessment of Science and Technology (ECAST) network conducted pTA forums in Boston and Phoenix to assess citizens' preferences and values about potential options for asteroid detection, mitigation, and retrieval and the deployment of the Capability Driven Framework as a planning instrument for a journey to Mars. We describe the three-step trans-disciplinary research process applied for (a) issue framing and deliberation design, (b) content development and participant recruitment, and (c) value assessments and results integration. We present result highlights, describe how they were used, and what kind of impact they had on decisions made by NASA. We discuss the influence this project had on subsequent initiatives by NOAA for climate resilience planning and by DOE for nuclear waste management. We conclude with our thoughts on (i) a new institutional model and (ii) research, application and adaptation opportunities going forward focusing on the role pTA can play to bridge the divide between societal needs and experts decision-making.

  6. Science sequence design

    NASA Technical Reports Server (NTRS)

    Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.

    1973-01-01

    The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.

  7. Science data archives of Indian Space Research Organisation (ISRO): Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Gopala Krishna, Barla; Singh Nain, Jagjeet; Moorthi, Manthira

    The Indian Space Research Organisation (ISRO) has started a new initiative to launch dedicated scientific satellites earmarked for planetary exploration, astronomical observation and space sciences. The Chandrayaan-1 mission to Moon is one of the approved missions of this new initiative. The basic objective of the Chandrayaan-1 mission, scheduled for launch in mid 2008, is photoselenological and chemical mapping of the Moon with better spatial and spectral resolution. Consistent with this scientific objective, the following baseline payloads are included in this mission: (i) Terrain mapping stereo camera (TMC) with 20 km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m. (ii) Hyper Spectral Imager in the 400- 920 nm band with 64 channels and spatial resolution of 80m (20 km swath) for mineralogical mapping. (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40 km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m. ISRO offered opportunity to the international scientific community to participate in Chandrayaan- 1 mission and six payloads that complement the basic objective of the Chandrayaan-1 mission have been selected and included in this mission viz., (i) a miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region, (ii) a near infrared spectrometer (SIR-2) from Max Plank Institute, Germany, (iii) a Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 - 3.0 micron), (iv) a sub-keV atom reflecting analyzer (SARA) from Sweden, India, Switzerland and Japan for detection of low energy neutral atoms emanated from the lunar surface,(v) a radiation dose monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (vi) a collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20 km for chemical mapping of the lunar surface from RAL, UK. Science data from the Chandrayaan-1 instruments is planned to be archived by combined efforts from all the instrument and Payload Operations Centre (POC) teams, the Indian Space Science Data Centre (ISSDC), the Chandrayaan-1 Spacecraft Control Centre (SCC). Chandrayaan-1 Science Data Archive (CSDA) is planned at ISSDC is the primary data center for the payload data archives of Indian Space Science Missions. This data center is responsible for the Ingest, Archive, and Dissemination of the payload and related ancillary data for Space Science missions like Chandrayaan-1. The archiving process includes the design, generation, validation and transfer of the data archive. The archive will include raw and reduced data, calibration data, auxiliary data, higher-level derived data products, documentation and software. The CSDA will make use of the well-proven archive standards of the Planetary Data System (PDS) and planned to follow IPDA guidelines. This is to comply with the global standards for long term preservation of the data, maintain their usability and facilitate scientific community with the high quality data for their analysis. The primary users of this facility will be the principal investigators of the science payloads initially till the lock-in period. After this, the data will be made accessible to scientists from other institutions and also to the general public. The raw payload data received through the data reception stations is further processed to generate Level-0 and Level-1 data products, which are stored in the CSDA for subsequent dissemination. According to the well documented Chandrayaan-1 archive plan agreed by the experiment teams, the data collection period is decided to be six months. The first data delivery to long term archive of CSDA after peer review is expected to be eighteen months after launch. At present, Experimenter to Archive ICDs of the instrument data are under the process of review.

  8. Experimental Research on the Sterilization of Escherichia Coli and Bacillus Subtilis in Drinking Water by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yi, Chengwu; Li, Jingjing; Yi, Rongjie; Wang, Huijuan

    2016-02-01

    The bactericidal effect on the representative type of Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge (DBD) advanced oxidation technology. The sterilizing rates under different conditions of reaction time t, input voltage V, pH value, and initial concentration of bacteria C0 were investigated to figure out the optimum sterilization conditions. Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms. The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V. The optimal sterilization effect was achieved when the pH value was 7.1. As the initial concentration of bacteria rose, the sterilizing rate decreased. When the input voltage was 2.2 kV and the initial concentration of bacteria was relatively low, the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution. The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O3, OH and the accumulation of active species produced by DBD. The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment. supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province, China (No. BE2011732), the Science and Technology Support Project Plan and Social Development of Zhenjiang, Jiangsu Province, China (No. SH2012013)

  9. An instructional package integrating science and social studies instruction at the fifth-grade level

    NASA Astrophysics Data System (ADS)

    Hulley, Kathy Louise Sullivan

    Integrative education is being implemented by classroom teachers who want to immerse students in an environment rich in problem-solving skills, critical analysis skills, ethics, valuing of knowledge, and communication of learning. Several subject areas in the curriculum have been integrated, such as literature with social studies and mathematics with science. The focus of this dissertation is on the integration of science and social studies at the fifth grade level using the Mississippi State Department of Education Curriculum Guidelines and Objectives (MSDE, 1995) and the National Science Education Standards (National Research Council (NRC), 1996). An instructional package of lesson plans that teachers can use as ideas to create their own plans for an integrated curriculum of science and social studies was devised. The Mississippi State Department of Education Curriculum Guidelines and Objectives for Social Studies (MSDE, 1995) at the fifth grade level contain fifteen competencies. Three standards from the National Science Education Standards (NRC, 1996) were chosen. They include (a) science and technology, (b) science in personal and social perspectives, and (c) the history and nature of science. Each competency for social studies has three lesson plans written that integrate the three chosen standards from the National Science Education Standards. A total of forty-five lesson plans were written integrating science and social studies. Each lesson plan includes an objective, materials, procedures, and evaluation for teachers. Teachers are encouraged to use the lesson plans as a guide in creating their own lesson plans that would correspond to their school's particular curriculum guidelines. Consideration should be given to the learning levels and styles of their classroom. This qualitative study was done to create lesson plans that integrate science and social studies with the hope that teachers will expand upon them and implement them into their curricula.

  10. The Process of Sensemaking in Complex Human Endeavors

    DTIC Science & Technology

    2008-06-01

    encompassing Joint, Interagency, and Multinational capabilities. The Art and Science of Battle Command LeadUnderstand CDR / Staff ART / Science In short, we...operations. Staff Running Estimates t ff i i Visualize CDR / Staff ART / Science •Planning guidance •Planning guidance •Cdr ’s Intent Describe CDR...Staff ART / Science •Plans & Orders •Preparation •Plans & Orders •Preparation •Execution WF • Intelligence •Maneuver •Fire Support • Protection

  11. Society Influencing Science: The role of the Transdisciplinary Advisory Board (TAB) of the European Joint Programming Initiative on Climate.

    NASA Astrophysics Data System (ADS)

    Noone, K. J.; Manderscheid, P.; Monfray, P.

    2017-12-01

    It is becoming increasingly apparent that the separation between science and the rest of society is not helping us find solutions to "wicked" problems like climate change or achieving the Sustainable Development Goals. It is clear that a broader approach to research is necessary - one that includes stakeholders in the research process itself. What is unclear is how best to do this. The Transdisciplinary Advisory Board (TAB) of the European Joint Programming Initiative on Climate (JPI Climate) is an example of scientists and stakeholders working together to frame climate research and move the results of scientific research into decision support. JPI Climate is a consortium of 12 European countries (with partners from nine more countries) and is a major funding channel and forum for climate research in Europe. The TAB has an equal number of stakeholders and researchers from 10 different European countries, has an even gender balance, and its members have widely differing backgrounds. The TAB provides input and advice to the governing board of JPI Climate, and influences both the strategic planning for this funding initiative as well as specific calls for proposals issued through the consortium. In addition to its advisory role, the TAB explores the transdisciplinary process itself, expanding the boundaries of how stakeholders and science can interact positively. The TAB is a two-way mechanism through which stakeholders can help improve research and science can help improve society. We will give examples of the spectrum of how the TAB provides mutual influence between stakeholders and science - from helping to draft 10-year research strategies to helping advance the uptake of climate research into the private and policy sectors.

  12. Vision 2015: The West Virginia Science and Technology Strategic Plan. Progress Report

    ERIC Educational Resources Information Center

    West Virginia Higher Education Policy Commission, 2014

    2014-01-01

    In 2005, West Virginia science and education leaders developed a strategic plan entitled: "Vision 2015: The West Virginia Science and Technology Strategic Plan." The plan is comprised of five (5) target areas for infrastructure development, with 14 goals for action by designated leaders from higher education, state government, and…

  13. SURE (Science User Resource Expert): A science planning and scheduling assistant for a resource based environment

    NASA Technical Reports Server (NTRS)

    Thalman, Nancy E.; Sparn, Thomas P.

    1990-01-01

    SURE (Science User Resource Expert) is one of three components that compose the SURPASS (Science User Resource Planning and Scheduling System). This system is a planning and scheduling tool which supports distributed planning and scheduling, based on resource allocation and optimization. Currently SURE is being used within the SURPASS by the UARS (Upper Atmospheric Research Satellite) SOLSTICE instrument to build a daily science plan and activity schedule and in a prototyping effort with NASA GSFC to demonstrate distributed planning and scheduling for the SOLSTICE II instrument on the EOS platform. For the SOLSTICE application the SURE utilizes a rule-based system. Development of a rule-based program using Ada CLIPS as opposed to using conventional programming, allows for capture of the science planning and scheduling heuristics in rules and provides flexibility in inserting or removing rules as the scientific objectives and mission constraints change. The SURE system's role as a component in the SURPASS, the purpose of the SURE planning and scheduling tool, the SURE knowledge base, and the software architecture of the SURE component are described.

  14. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    NASA Astrophysics Data System (ADS)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  15. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  16. Robotic Assembly of Truss Structures for Space Systems and Future Research Plans

    NASA Technical Reports Server (NTRS)

    Doggett, William

    2002-01-01

    Many initiatives under study by both the space science and earth science communities require large space systems, i.e. with apertures greater than 15 m or dimensions greater than 20 m. This paper reviews the effort in NASA Langley Research Center's Automated Structural Assembly Laboratory which laid the foundations for robotic construction of these systems. In the Automated Structural Assembly Laboratory reliable autonomous assembly and disassembly of an 8 meter planar structure composed of 102 truss elements covered by 12 panels was demonstrated. The paper reviews the hardware and software design philosophy which led to reliable operation during weeks of near continuous testing. Special attention is given to highlight the features enhancing assembly reliability.

  17. Vision 21: The NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Strategic Plan, Vision 21, is a living roadmap to the future to guide the men and women of the NASA team as they ensure U.S. leadership in space exploration and aeronautics research. This multiyear plan consists of a set of programs and activities that will retain our leadership in space science and the exploration of the solar system; help rebuild our nation's technology base and strengthen our leadership in aviation and other key industries; encourage commercial applications of space technology; use the unique perspective of space to better understand our home planet; provide the U.S. and its partners with a permanent space based research facility; expand on the legacy of Apollo and initiate precursor activities to establish a lunar base; and allow us a journey into tomorrow, journey to another planet (Mars), and beyond.

  18. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  19. Exploring PCK ability of prospective science teachers in reflective learning on heat and transfer

    NASA Astrophysics Data System (ADS)

    Nurmatin, S.; Rustaman, N. Y.

    2016-02-01

    Learning can be planned by the person him/herself when he or she tries to reflect his/her learning. A study involving prospective science teachers in junior secondary schools was carried out to analyze their ability on Pedagogical Content Knowledge (PCK) in reflective learning after teaching practice. The study was focused especially in creating Pedagogical and Professional Repertoires (PaP-eRs) as part of resource-folios. PaP-eRs as a narrative writing in the learning activities are created by prospective science teachers after lesson plan implementation. Making the narrative writing is intended that prospective science teachers can reflect their learning in teaching. Research subjects are six prospective science teachers who are implementing "Program Pengalaman Lapangan" (PPL) in two junior secondary schools in Bandung, West Java, Indonesia. All of them were assigned by supervisor teachers to teach VII grade students on certain topic "heat and its transfer". Instruments used as a means of collecting data in this study is PaP-eRs. Collected PaP-eRs were then analyzed using PaP-eRs analysis format as instruments for analysis. The result of analyzing PaP-eRs indicates that learning activities, which narrated, involve initial activities, core activities and final activities. However, any activity, which is narrated just superficial as its big line so the narration cannot be, used as reflective learning. It indicates that PCK ability of prospective science teachers in creating narrative writing (PaP-eRs) for reflective learning is still low.

  20. LANL continuity of operations plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senutovitch, Diane M

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratorymore » EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may be required to support an allhazards event, including a national security emergency, major fire, catastrophic natural disaster, man-made disaster, terrorism event, or technological disaster by rendering LANL buildings, infrastructure, or Technical Areas unsafe, temporarily unusable, or inaccessible.« less

  1. On the use of Space Station Freedom in support of the SEI - Life science research

    NASA Technical Reports Server (NTRS)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  2. NSF Perspective on Engaging the NRC and the Community in Developing Priorities

    NASA Astrophysics Data System (ADS)

    Wakimoto, R. M.

    2015-12-01

    NSF pursued a new strategy to assess the balance between funding for core research and infrastructure in a time of limited budgets in the Division of Ocean Sciences (OCE). The latter constraint uniquely distinguished this report from previous community attempts to define future research priorities. The process that ultimately led to "Sea Change: 2015-2025: Decadal Survey of Ocean Sciences" report was closely monitored by Congress, OMB/OSTP, the National Science Board, NSF Senior Management, and the community. The Sea Change recommendations were specific and difficult but highly strategic. They also recommended immediate implementation. NSF and GEO were pleased with the outcome of a process that was initially viewed with some trepidation. Additional thoughts on the report and the process will be presented as well as future plans to engage the NAS and community in defining research priorities.

  3. Undergraduate Research Collaborations with Government Agencies Involving the Effects of Climate Change

    NASA Astrophysics Data System (ADS)

    Gurtler, G.

    2017-12-01

    We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.

  4. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  5. Hinode/EIS science planning and operations tools

    NASA Astrophysics Data System (ADS)

    Rainnie, Jonn A.

    2016-07-01

    We present the design, implementation and maintenance of the suite of software enabling scientists to design and schedule Hinode/EIS1 operations. The total of this software is the EIS Science Planning Tools (EISPT), and is predominately written in IDL (Interactive Data Language), coupled with SolarSoft (SSW), an IDL library developed for solar missions. Hinode is a multi-instrument and wavelength mission designed to observe the Sun. It is a joint Japan/UK/US consortium (with ESA and Norwegian involvement). Launched in September 2006, its principal scientific goals are to study the Sun's variability and the causes of solar activity. Hinode operations are coordinated at ISAS (Tokyo, Japan). A daily Science Operations meeting is attended by the instrument teams and the spacecraft team. Nominally, science plan uploads cover periods of two or three days. When the forthcoming operations have been agreed, the necessary spacecraft operations parameters are created. These include scheduling for spacecraft pointing and ground stations. The Extreme UV Imaging Spectrometer (EIS) instrument, led by the UK (the PI institute is MSSL), is designed to observe the emission spectral lines of the solar atmosphere. Observations are composed of reusable, hierarchical components, including lines lists (wavelengths of spectral lines), rasters (exposure times, line list, etc.) and studies (defines one or more rasters). Studies are the basic unit of "timeline" scheduling. They are a useful construct for generating more complex sequences of observations, reducing the planning burden. Instrument observations must first be validated. An initial requirement was that operations be shared equally by the 3 main EIS teams (Japan, UK and US). Hence, a major design focus of the software was "Remote Operations", whereby any scientist in any location can run the software, schedule a science plan and send it to the spacecraft commanding team. It would then be validated and combined with the science plans of the other instruments. Then uploaded to the spacecraft. As for any space mission, telemetry size and rate are important constraints. For each planning cycle the instruments are issued a maximum data allocation. EISPT interactively calculates the telemetry requirements of each observation and plan. Autonomous operations was a challenging concept designed to observe the early onset of various dynamic events, including solar flares. The planning cycle precluded observers responding to such short-term events. Hence, the instrument can be run in a (low-telemetry) "hunter" mode at a suitable target. Upon detecting an event the current observation ceases and another automatically begins at the event location. This "response" observation involves a smaller field-of-view and higher cadence. It's impossible to predict if this mechanism will be activated, and if so how much telemetry is acquired. The EISPT has operated successfully since it was deployed in November 2006. Nominally it is used six days a week. It has been maintained and updated as required to take account of changing mission operations. A large update was made in 2013/14 to develop the facility to coordinate observations with other solar missions (SDO/AIA and IRIS).

  6. International strategy for Nanotechnology Research

    NASA Astrophysics Data System (ADS)

    Roco, M. C.

    2001-12-01

    The worldwide nanotechnology research and development (R&D) investment reported by government organizations has increased by a factor of 3.5 between 1997 and 2001, and the highest rate of 90% is in 2001. At least 30 countries have initiated or are beginning national activities in this field. Scientists have opened a broad net of discoveries that does not leave any major research area untouched in physical, biological, and engineering sciences. Industry has gained confidence that nanotechnology will bring competitive advantages. The worldwide annual industrial production is estimated to exceed 1 trillion in 10-15 years from now, which would require about 2 million nanotechnology workers. U.S. has initiated a multidisciplinary strategy for development of science and engineering fundamentals through the National Nanotechnology Initiative. Japan and Europe have broad programs, and their current plans look ahead to four to five years. Other countries have encouraged their own areas of strength, several of them focusing on fields of the potential markets. Differences among countries are observed in the research domain they are aiming for, the level of program integration into various industrial sectors, and in the time scale of their R & D targets. Nanotechnology is growing in an environment where international interactions accelerate in science, education and industrial R & D. A global strategy of mutual interest is envisioned by connecting individual programs of contributing countries, professional communities, and international organizations.

  7. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.

  8. A storied-identity analysis approach to teacher candidates learning to teach in an urban setting

    NASA Astrophysics Data System (ADS)

    Ibourk, Amal

    While many studies have investigated the relationship between teachers' identity work and their developing practices, few of these identity focused studies have honed in on teacher candidates' learning to teach in an urban setting. Drawing upon narrative inquiry methodology and a "storied identity" analytic framework, I examined how the storied identities of science learning and becoming a science teacher shape teacher candidates' developing practice. In particular, I examined the stories of three interns, Becky, David, and Ashley, and I tell about their own experiences as science learners, their transitions to science teachers, and the implications this has for the identity work they did as they navigated the challenges of learning to teach in high-needs schools. Initially, each of the interns highlighted a feeling of being an outsider, and having a difficult time becoming a fully valued member of their classroom community in their storied identities of becoming a science teacher in the beginning of their internship year. While the interns named specific challenges, such as limited lab materials and different math abilities, I present how they adapted their lesson plans to address these challenges while drawing from their storied identities of science learning. My study reveals that the storied identities of becoming a science teacher informed how they framed their initial experiences teaching in an urban context. In addition, my findings reveal that the more their storied identities of science learning and becoming a science teacher overlapped, the more they leveraged their storied identity of science learning in order to implement teaching strategies that helped them make sense of the challenges that surfaced in their classroom contexts. Both Becky and Ashley leveraged their storied identities of science learning more than David did in their lesson planning and learning to teach. David's initial storied identity of becoming a science teacher revealed how he highlighted his struggle with navigating talkativeness in the class, but also his struggle being an authority figure in his classroom. At present, only Becky and Ashley pursued teaching in a high needs setting. A storied identity analysis provided as well an insight into their storied strategies, or the teaching strategies shaped by the stories the interns told about how they made sense of the challenges they faced in their teaching practice. There were five teaching strategies the interns named that were important in supporting their learning to teach were (1) building relationships with their students, (2) being resourceful and creative when faced with limited lab materials, (3) making science relevant to their students, (4) scaffolding their students in their learning, and (5) having a network of people as resources in helping them be better teachers and helping their students learn. Out of these five teaching strategies, I called those they named and highlighted as helping them teach in ways they valued and that connected back to their storied identity of science learning their storied strategies. Implications for further pushing storied identities as a tool for teacher educators to help pinpoint priorities that surface in teacher candidates' practice are discussed. An insight into the priorities that teacher candidates highlight in their practice as well as the storied strategies they name and use to deal with challenges that surface in their practice has potential in better helping teacher candidates navigate their developing practice.

  9. EMMA, a Recoil Mass Spectrometer for TRIUMF's ISAC-II Facility

    NASA Astrophysics Data System (ADS)

    Davids, Barry; EMMA Collaboration

    2016-09-01

    EMMA is a recoil mass spectrometer for TRIUMF's ISAC-II facility in the final stages of installation and commissioning. In this talk I will briefly review the spectrometer's design capabilities, describe recent progress in its installation and commissioning, and discuss plans for its initial experimental program. This work was supported by the Natural Sciences and Engineering Council of Canada. TRIUMF receives federal funds through a contribution agreement with the National Research Council of Canada.

  10. Annual Report of Monitoring at Barnes, Kansas, in 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M.

    In 2006, the CCC/USDA assumed responsibility for the site investigation relating to potential carbon tetrachloride contamination. Initially, the CCC/USDA developed and implemented a work plan for targeted groundwater sampling and monitoring well installation (KDHE 2009). The investigation and subsequent monitoring (Argonne 2008a-d, 2009a,b, 2010, 2011, 2012, 2013, 2015a,b, 2016) were performed by the Environmental Science Division of Argonne National Laboratory. The reports of environmental investigations at Barnes are summarized.

  11. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    2011-05-25

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies ofmore » the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  12. HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler

    NASA Technical Reports Server (NTRS)

    Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2012-01-01

    HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.

  13. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2003-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.

  14. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  15. Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports

    NASA Astrophysics Data System (ADS)

    Jung, Karl G.; Brown, Julie C.

    2016-12-01

    To engage in the practices of science, students must have a strong command of science academic language. However, content area teachers often make academic language an incidental part of their lesson planning, which leads to missed opportunities to enhance students' language development. To support pre-service elementary science teachers (PSTs) in making language planning an explicit part of their science lessons, we created the Academic Language Planning Organizer (ALPO). The purpose of this study was to determine the effectiveness of the ALPO on two levels: first, by examining participants' interactions with the ALPO as they identified academic language features, objectives and supports; and second, by exploring the ways that participants translated identified language supports to planned science activities. Findings indicated that, when using the ALPO, PSTs identified clear language functions and relevant vocabulary terms, and also frequently developed clear, observable and measurable language objectives. When lesson planning, PSTs were largely successful in translating previously identified language supports to their lesson plans, and often planned additional language supports beyond what was required. We also found, however, that the ALPO did not meet its intended use in supporting PSTs in identifying discourse and syntax demands associated with specific academic language functions, suggesting that revisions to the ALPO could better support PSTs in identifying these academic language demands. Implications for supporting PSTs' planning for and scaffolding of science academic language use are presented.

  16. Astrophysics science operations - Near-term plans and vision

    NASA Technical Reports Server (NTRS)

    Riegler, Guenter R.

    1991-01-01

    Astrophysics science operations planned by the Science Operations branch of NASA Astrophysics Division for the 1990s for the purpose of gathering spaceborne astronomical data are described. The paper describes the near-future plans of the Science Operations in the areas of the preparation of the proposal; the planning and execution of spaceborne observations; the collection, processing, and analysis data; and the dissemination of results. Also presented are concepts planned for introduction at the beginning of the 20th century, including the concepts of open communications, transparent instrument and observatory operations, a spiral requirements development method, and an automated research assistant.

  17. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  18. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  19. Automation of Cassini Support Imaging Uplink Command Development

    NASA Technical Reports Server (NTRS)

    Ly-Hollins, Lisa; Breneman, Herbert H.; Brooks, Robert

    2010-01-01

    "Support imaging" is imagery requested by other Cassini science teams to aid in the interpretation of their data. The generation of the spacecraft command sequences for these images is performed by the Cassini Instrument Operations Team. The process initially established for doing this was very labor-intensive, tedious and prone to human error. Team management recognized this process as one that could easily benefit from automation. Team members were tasked to document the existing manual process, develop a plan and strategy to automate the process, implement the plan and strategy, test and validate the new automated process, and deliver the new software tools and documentation to Flight Operations for use during the Cassini extended mission. In addition to the goals of higher efficiency and lower risk in the processing of support imaging requests, an effort was made to maximize adaptability of the process to accommodate uplink procedure changes and the potential addition of new capabilities outside the scope of the initial effort.

  20. Ruminant methane reduction through livestock development in Tanzania. Final report for US Department of Energy and US Initiative on Joint Implementation--Activities Implemented Jointly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Roderick

    1999-07-01

    This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranchmore » in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions.« less

  1. Exploring the Oceans With OOI and IODP: A New Partnership in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Gröschel, H.; Robigou, V.; Whitman, J.; Jagoda, S. K.; Randle, D.

    2003-12-01

    The Ocean Observatories Initiative (OOI), a new program supported by the National Science Foundation (NSF), will investigate ocean and Earth processes using deep-sea and coastal observatories, as well as a lithospheric plate-scale cabled observatory that spans most of the geological and oceanographic processes of our planet. October 2003 marked the beginning of the Integrated Ocean Drilling Program (IODP), the third phase of a scientific ocean drilling effort known for its international cooperation, multidisciplinary research, and technological innovation. A workshop exploring the scientific, technical, and educational linkages between OOI and IODP was held in July 2003. Four scientific thematic groups discussed and prioritized common goals of the two programs, and identified experiments and technologies needed to achieve these objectives. The Education and Outreach (E&O) group attended the science sessions and presented seed ideas on activities for all participants to discuss and evaluate. A multidisciplinary dialogue between E&O facilitators, research scientists, and technology specialists was initiated. OOI/IODP participants support the recommendation of the IODP Education Workshop (May 2003) that the IODP and US Science Support Program (USSSP)-successor program have clear commitments to education and outreach. Specific organizational recommendations for OOI/IODP are: (1) E&O should have equal status with science and engineering in the OOI management/planning structure, and enjoy adequate staffing at a US program office; (2) an E&O Advisory Committee of scientists, engineers, technology experts, and educators should be established to develop and implement a viable, vibrant E&O plan; (3) E&O staff and advisors should (a) provide assistance to researchers in fulfilling E&O proposal requirements from preparation to review stages, (b) promote submittal of proposals to government agencies specifically for OOI/IODP-related E&O activities, and (c) identify and foster partners, networks, and funding opportunities. Specific E&O strategies include: (1) present observatory science and ocean drilling content, and the sense of discovery and international cooperation unique to OOI/IODP, to a broad audience; (2) develop and maintain an effective website with distinct resources for K-20 educators, students, and the public; (3) provide pre-service, in-service, and in-residence programs for K-12 teachers that are synergistic with national and local education standards; (4) focus K-12 education efforts on middle school students in grades 5-8; (5) continue and expand existing, successful Ocean Drilling Program activities for undergraduate and graduate students and educators; and (6) try to avoid redundancy with existing E&O efforts within the ocean sciences community by adopting successful models and exploring partnership opportunities with other NSF-funded ocean science education centers and initiatives.

  2. Science Unit Plans. PACE '94.

    ERIC Educational Resources Information Center

    Schoon, Kenneth J., Ed.; Wiles, Clyde A., Ed.

    This booklet contains mathematics unit plans for Biology, Chemistry, and Physical Science developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each unit plan contains suggested timing, objectives, skills to be acquired, workplace relationships, learning activities with suggested…

  3. Proceedings of Symposium on Cost Estimating for Water Supply Planning Studies Held at Tampa, Florida on 14-16 March 1983.

    DTIC Science & Technology

    1983-09-01

    Science, Art, or Witchcraft ?" which summarizes the state of the art and describes some important issues in planning level estimates in water resources...REPORT: AD#: P1o 902 TITLE:Panning Level Cost Estimating--Science, Art, or Witchcraft . P01 903 Planning Water Supply Projects: The Systems Estimate...OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 PLANNING LEVEL COST ESTIMATING--SCIENCE, ART, OR WITCHCRAFT by * PLANNING WATER

  4. Applying a Cognitive-Affective Model of Conceptual Change to Professional Development

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen K.; Crippen, Kent J.

    2010-04-01

    This study evaluated Gregoire’s (2003) Cognitive-Affective Conceptual Change model (CAMCC) for predicting and assessing conceptual change in science teachers engaged in a long-term professional development project set in a large school district in the southwestern United States. A multiple case study method with data from three teacher participants was used to understand the process of integrating and applying a reform message of inquiry based science teaching. Data sources included: responses to example teaching scenarios, reflective essays, lesson plans, classroom observations, and action research projects. Findings show that the CAMCC functioned well in predicting how these teachers made decisions that impacted how they processed the reform message. When the reform message was communicated in such a way as to initiate stress appraisal, conceptual change occurred, producing changes in classroom practice. If the reform message did not initiate stress appraisal, teachers rejected the professional development message and developed heuristic responses. In order to further research and improve practice, propositions for assessments related to the CAMCC are provided.

  5. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  6. 75 FR 20843 - Notice of Workshop To Discuss Policy-Relevant Science to Inform EPA's Integrated Plan for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Policy-Relevant Science to Inform EPA's Integrated Plan for the Review of the Lead National Ambient Air...-Relevant Science to Inform EPA's Integrated Plan for Review of the National Ambient Air Quality Standards... review focuses on the key policy-relevant issues and considers the most meaningful new science to inform...

  7. Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports

    ERIC Educational Resources Information Center

    Jung, Karl G.; Brown, Julie C.

    2016-01-01

    To engage in the practices of science, students must have a strong command of science academic language. However, content area teachers often make academic language an incidental part of their lesson planning, which leads to missed opportunities to enhance students' language development. To support pre-service elementary science teachers (PSTs) in…

  8. Differentiated Instruction for K-8 Math and Science: Activities and Lesson Plans

    ERIC Educational Resources Information Center

    Hamm, Mary; Adams, Dennis

    2008-01-01

    This book offers practical recommendations to reach every student in a K-8 classroom. Research-based and written in a teacher-friendly style, it will help teachers with classroom organization and lesson planning in math and science. Included are math and science games, activities, ideas, and lesson plans based on the math and science standards.…

  9. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-SP Mountain Area of the San Francisco Volcanic Field

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2015-01-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  10. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-Sp Mountain Area of the San Francisco Volcanic Field

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Eppler, D. B.; Needham, D. H.; Evans, C. A.; Skinner, J. A.; Feng, W.

    2015-12-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  11. A review of plan library approaches in adaptive radiotherapy of bladder cancer.

    PubMed

    Collins, Shane D; Leech, Michelle M

    2018-05-01

    Large variations in the shape and size of the bladder volume are commonly observed in bladder cancer radiotherapy (RT). The clinical target volume (CTV) is therefore frequently inadequately treated and large isotropic margins are inappropriate in terms of dose to organs at risk (OAR); thereby making adaptive radiotherapy (ART) attractive for this tumour site. There are various methods of ART delivery, however, for bladder cancer, plan libraries are frequently used. A review of published studies on plan libraries for bladder cancer using four databases (Pubmed, Science Direct, Embase and Cochrane Library) was conducted. The endpoints selected were accuracy and feasibility of initiation of a plan library strategy into a RT department. Twenty-four articles were included in this review. The majority of studies reported improvement in accuracy with 10 studies showing an improvement in planning target volume (PTV) and CTV coverage with plan libraries, some by up to 24%. Seventeen studies showed a dose reduction to OARs, particularly the small bowel V45Gy, V40Gy, V30Gy and V10Gy, and the rectal V30Gy. However, the occurrence of no suitable plan was reported in six studies, with three studies showing no significant difference between adaptive and non-adaptive strategies in terms of target coverage. In addition, inter-observer variability in plan selection appears to remain problematic. The additional resources, education and technology required for the initiation of plan library selection for bladder cancer may hinder its routine clinical implementation, with eight studies illustrating increased treatment time required. While there is a growing body of evidence in support of plan libraries for bladder RT, many studies differed in their delivery approach. The advent of the clinical use of the MRI-linear accelerator will provide RT departments with the opportunity to consider daily online adaption for bladder cancer as an alternate to plan library approaches.

  12. Plan for a Sierra Nevada Hydrologic Observatory: Science Aims, Measurement Priorities, Research Opportunities and Expected Impacts

    NASA Astrophysics Data System (ADS)

    Bales, R.; Dozier, J.; Famiglietti, J.; Fogg, G.; Hopmans, J.; Kirchner, J.; Meixner, T.; Molotch, N.; Redmond, K.; Rice, R.; Sickman, J.; Warwick, J.

    2004-12-01

    In response to NSF's plans to establish a network of hydrologic observatories, a planning group is proposing a Sierra Nevada Hydrologic Observatory (SNHO). As argued in multiple consensus planning documents, the semi-arid mountain West is perhaps the highest priority for new hydrologic understanding. Based on input from over 100 individuals, it is proposed to initiate a mountain-range-scale study of the snow-dominated hydrology of the region, focusing on representative 1,000-5,000 km2 river basins originating in the Sierra Nevada and tributary to the Sacramento-San-Joaquin Delta. The SNHO objective is to provide the necessary infrastructure for improved understanding of surface-water and ground-water systems, their interactions and their linkages with ecosystems, biogeochemistry, agriculture, urban areas and water resources in semi-arid regions. The SNHO will include east-west transects of hydrological observations across the Sierra Nevada and into the basin and range system, in four distinct latitude bands that span much of the variability found in the semi-arid West. At least one transect will include agricultural and urban landscapes of the Great Central Valley. Investments in measurement systems will address scales from the mountain range down to the basin, headwater catchment and study plot. The intent is to provide representative measurements that will yield general knowledge as opposed to site-specific problem solving of a unique system. The broader, general science question posed by the planning group is: How do mountain hydrologic processes vary across landscapes, spanning a range of latitudes, elevations and thus climate, soils, geology and vegetation zones?\\" Embodied are additional broad questions for the hydrologic science community as a whole: (i) How do hydrologic systems that are subjected to multiple perturbations respond? (ii) How do pulses and changes propagate through the hydrologic system? (iii) What are the time lags and delays of stresses in different systems? (iv) How can the predictive ability for these responses be improved? The water resources question is then "how can new information inform decision-making aimed at achieving water resources sustainability?" The planning group is soliciting participation from the wider community with a stake in mountain hydrology and related fields, in order to develop a focused yet broadly useful infrastructure that will accelerate science scientific progress for years and decades to come.

  13. Introducing Deep Underground Science to Middle Schoolers: Challenges and Rewards

    NASA Astrophysics Data System (ADS)

    McMahan Norris, Margaret

    2010-03-01

    Work is in progress to define the mission, vision, scope and preliminary design of the Sanford Center for Science Education (SCSE), the education arm of the Deep Underground Science and Engineering Laboratory (DUSEL), a proposed major research facility of the National Science Foundation. If final funding is approved, DUSEL will be built at the site of the former Homestake Gold Mine in Lead, South Dakota beginning in 2012. The SCSE is envisioned to serve as a model for the integration of a science education center into the fabric of a new national laboratory. Its broad mission is to share the excitement and promise of deep underground science and engineering at Homestake with learners of all ages worldwide. The science to be pursued at DUSEL, whether in physics, astronomy, geomicrobiology, or geoscience, is transformational and sparks the imagination of learners of all ages. While the SCSE is under design, an early education program has been initiated that is designed to build capacity for the envisioned center, to prototype individual programs, and to build partnerships and community support. This talk will give an overview of the middle school portion of that program and its context within the overall content development plan of the SCSE.

  14. United Nations Basic Space Science Initiative: 2010 Status Report on the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S.; Haubold, H. J.; Danov, D.; Georgieva, K.; Maeda, G.; Yumoto, K.; Davila, J. M.; Gopalswamy, N.

    2011-11-01

    The UNBSSI is a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis. A series of workshops on BSS was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004) Pursuant to resolutions of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, Ro Korea 2009) Starting in 2010, the workshops focus on the International Space Weather Initiative (ISWI) as recommended in a three-year-work plan as part of the deliberations of UNCOPUOS (www.iswi-secretariat.org/). Workshops on the ISWI have been scheduled to be hosted by Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. Currently, fourteen IHY/ISWI instrument arrays with more than five hundred instruments are operational in ninety countries.

  15. From Doing to Learning: Changed focus during a pre-school learning study project on organic decomposition

    NASA Astrophysics Data System (ADS)

    Ljung-Djärf, Agneta; Magnusson, Andreas; Peterson, Sam

    2014-03-01

    We explored the use of the learning study (LS) model in developing Swedish pre-school science learning. This was done by analysing a 3-cycle LS project implemented to help a group of pre-school teachers (n = 5) understand their science educational practice, by collaboratively and systematically challenging it. Data consisted of video recordings of 1 screening (n = 7), 1 initial planning meeting, 3 analysis meetings, 3 interventions, and 78 individual test interviews with the children (n = 26). The study demonstrated that the teachers were initially uncomfortable with using scientific concepts and with maintaining the children's focus on the object of learning without framing it with play. During the project, we noted a shift in focus towards the object of learning and how to get the children to discern it. As teachers' awareness changed, enhanced learning was noted among the children. The study suggests that the LS model can promote pre-school science learning as follows: by building on, re-evaluating, and expanding children's experiences; and by helping the teachers focus on and contrast critical aspects of an object of learning, and to reflect on the use of play, imagination, and concepts and on directing the children's focus when doing so. Our research showed that the LS model holds promise to advance pre-school science learning by offering a theoretical tool useable to shift the focus from doing to learning while teaching science using learning activities.

  16. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption of web-based and telecommunication tools has been critical to the success of Cassini operations.

  17. Space science to the twenty-first century and the technological implications for implementation

    NASA Technical Reports Server (NTRS)

    Herman, D. H.

    1979-01-01

    The paper presents the specific plan for NASA space science missions to the 21st century and highlights the major technological advances that must be effected to accomplish the planned missions. Separate consideration is given to plans for astrophysics, planetary exploration, the solar terrestrial area, and life sciences. The technological consequences of the plans in these separate areas are discussed.

  18. Features of an Emerging Practice and Professional Development in a Science Teacher Team Collaboration with a Researcher Team

    NASA Astrophysics Data System (ADS)

    Olin, Anette; Ingerman, Åke

    2016-10-01

    This study concerns teaching and learning development in science through collaboration between science teachers and researchers. At the core was the ambition to integrate research outcomes of science education—here `didactic models'—with teaching practice, aligned with professional development. The phase where the collaboration moves from initial establishment towards a stable practice is investigated. The study aims to identifying features of formation and exploring consequences for the character of contact between research and teaching. Specific questions are "What may be identified as actions and arrangements impacting the quality and continuation of the emerging practice?" and "What and in what ways may support teacher growth?" The analysis draws on practice architectures as a theoretical framework and specifically investigates the initial meetings as a practice-node for a new practice, empirically drawing on documented reflections on science teaching, primarily from meetings and communication. The results take the form of an analytical-narrative account of meetings that focused planning, enactment and reflection on teaching regarding the human body. We identify enabling actions such as collaborative work with concrete material from the classroom and arrangements such as the regular meetings and that the collaborative group had a core of shared competence—in science teaching and learning. Constraining were actions such as introducing research results with weak connection to practical action in the school practice and arrangements such as differences between school and university practice architectures and the general `oppression' of teachers' classroom practice. The discussion includes reflections on researchers' roles and on a research and practice base for school development.

  19. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  20. Planning for Reform-Based Science: Case Studies of Two Urban Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Mangiante, Elaine Silva

    2018-02-01

    The intent of national efforts to frame science education standards is to promote students' development of scientific practices and conceptual understanding for their future role as scientifically literate citizens (NRC 2012). A guiding principle of science education reform is that all students receive equitable opportunities to engage in rigorous science learning. Yet, implementation of science education reform depends on teachers' instructional decisions. In urban schools serving students primarily from poor, diverse communities, teachers typically face obstacles in providing reform-based science due to limited resources and accountability pressures, as well as a culture of teacher-directed pedagogy, and deficit views of students. The purpose of this qualitative research was to study two white, fourth grade teachers from high-poverty urban schools, who were identified as transforming their science teaching and to investigate how their beliefs, knowledge bases, and resources shaped their planning for reform-based science. Using the Shavelson and Stern's decision model for teacher planning to analyze evidence gathered from interviews, documents, planning meetings, and lesson observations, the findings indicated their planning for scientific practices was influenced by the type and extent of professional development each received, each teacher's beliefs about their students and their background, and the mission and learning environment each teacher envisioned for the reform to serve their students. The results provided specific insights into factors that impacted their planning in high-poverty urban schools and indicated considerations for those in similar contexts to promote teachers' planning for equitable science learning opportunities by all students.

  1. [Science, society and shared expertise: a European issue?].

    PubMed

    Yves, Charpak

    2012-01-01

    In recent years, the MML action plan has funded many projects designed to bring about a rapprochement between science (and scientists) and other civil society actors. The aim was to respond to social concerns about the various issues raised by science and to close the gap between scientific experts and society, especially during periods of crisis, when decisions that have a profound impact on society are taken on the basis of scientific findings. Other recent international organizations and initiatives have had similar objectives. At the same time, a wide range of sources of information and dissemination have emerged and developed in recent years, based on an extensive use of electronic tools and resources. While scientific information is becoming increasingly available, it has also paradoxically become increasingly subject to competition and criticism, and even 'manipulation'. A growing number of societal issues and challenges surrounding science have also emerged, and the capacity to share scientific expertise democratically and consensually has become an issue that transcends national boundaries.

  2. Technical issues in the conduct of large space platform experiments in plasma physics and geoplasma sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1986-01-01

    Large, permanently-manned space platforms can provide exciting opportunities for discoveries in basic plasma and geoplasma sciences. The potential for these discoveries will depend very critically on the properties of the platform, its subsystems, and their abilities to fulfill a spectrum of scientific requirements. With this in mind, the planning of space station research initiatives and the development of attendant platform engineering should allow for the identification of critical science and technology issues that must be clarified far in advance of space station program implementation. An attempt is made to contribute to that process, with a perspective that looks to the development of the space station as a permanently-manned Spaceborne Ionospheric Weather Station. The development of this concept requires a synergism of science and technology which leads to several critical design issues. To explore the identification of these issues, the development of the concept of an Ionospheric Weather Station will necessarily touch upon a number of diverse areas. These areas are discussed.

  3. Brian Davison: Seeking New Challenges, Forging New Connections in Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian

    Brian Davison has advice for anyone planning a long career in science, gleaned from more than three decades in the field: Appreciate the ‘eureka’ moments, both big and small. “You don’t find joy every day in any job, but if I find a moment at least once or twice a month, it makes everything else really worthwhile,” Davison said. “Having those moments when you helped articulate and crystallize something, to come up with a brand-new idea that no one thought of yet, it’s just exciting.” Davison is chief scientist for the Systems Biology and Biotechnology Initiative at the Department ofmore » Energy’s Oak Ridge National Laboratory and an adjunct professor of chemical and biomolecular engineering at the University of Tennessee. He is also a science coordinator in the BioEnergy Science Center, a DOE-funded research organization performing basic and applied science dedicated to improving yields of biofuels.« less

  4. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes OneGeology, translation into Spanish of IYPE thematic leaflets and participation in meetings and outreach activities. A major long-lasting legacy of IYPE is the formation of links/partnerships within Latin America and in the international context. Consolidating and expanding cooperation/partnership in research, education and outreach will then be our major challenges. In addition to future plans in different countries and regions, we consider that IYPE should develop long-term initiatives for enhancing international cooperation and ensuring increased effective use by society of the Earth and space sciences.

  5. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  6. 77 FR 46769 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of... Initiative (NSSI)-- Science Technical Advisory Panel (STAP) will meet as indicated below. DATES: The meeting...

  7. Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…

  8. Integrated Modeling, Mapping, and Simulation (IMMS) Framework for Exercise and Response Planning

    NASA Technical Reports Server (NTRS)

    Mapar, Jalal; Hoette, Trisha; Mahrous, Karim; Pancerella, Carmen M.; Plantenga, Todd; Yang, Christine; Yang, Lynn; Hopmeier, Michael

    2011-01-01

    EmergenCy management personnel at federal, stale, and local levels can benefit from the increased situational awareness and operational efficiency afforded by simulation and modeling for emergency preparedness, including planning, training and exercises. To support this goal, the Department of Homeland Security's Science & Technology Directorate is funding the Integrated Modeling, Mapping, and Simulation (IMMS) program to create an integrating framework that brings together diverse models for use by the emergency response community. SUMMIT, one piece of the IMMS program, is the initial software framework that connects users such as emergency planners and exercise developers with modeling resources, bridging the gap in expertise and technical skills between these two communities. SUMMIT was recently deployed to support exercise planning for National Level Exercise 2010. Threat, casualty. infrastructure, and medical surge models were combined within SUMMIT to estimate health care resource requirements for the exercise ground truth.

  9. Circumpolar Biodiversity Monitoring Programme coastal biodiversity monitoring background paper

    USGS Publications Warehouse

    McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Markon, Carl J.; Christensen, T.; Barry, T.; Price, C.

    2016-01-01

    In 2014, the United States (U.S.) and Canada agreed to act as co-lead countries for the initial development of the Coastal Expert Monitoring Group (CEMG) as part of the Circumpolar Biodiversity Monitoring Program (CBMP, www. cbmp.is) under the Arctic Council’s Conservation of Arctic Flora and Fauna (CAFF, www.caff.is) working group. The CAFF Management Board approved Terms of Reference for the CEMG in the spring of 2014. The primary goal of the CEMG is to develop a long term, integrated, multi-disciplinary, circumpolar Arctic Coastal Biodiversity Monitoring Plan (the Coastal Plan) that relies on science and Traditional Knowledge, and has direct and relevant application for communities, industry, government decision makers, and other users. In addition to the monitoring plan, the CAFF working group has asked the CBMP, and thus the CEMG, to develop an implementation plan that identifies timeline, costs, organizational structure and partners. This background paper provides a platform for the guidance for the development of the Coastal Plan and is produced by the CEMG with assistance from a number of experts in multiple countries.

  10. Using behavioral science to improve fire escape behaviors in response to a smoke alarm.

    PubMed

    Thompson, N J; Waterman, M B; Sleet, D A

    2004-01-01

    Although the likelihood of fire-related death in homes with smoke alarms is about one-half that in homes without alarms, alarm effectiveness is limited by behavior. Only 16% of residents of homes with alarms have developed and practiced plans for escape when the alarm sounds. We reviewed literature to identify behavioral constructs that influence smoke alarm use. We then convened experts in the behavioral aspects of smoke alarms who reviewed the constructs and determined that the appropriate areas for behavioral focus were formulating, practicing, and implementing escape plans should an alarm sound. They subsequently identified important behaviors to be addressed by burn-prevention programs and incorporated the constructs into a behavioral model for use in such programs. Finally, we organized the available literature to support this model and make programmatic recommendations. Many gaps remain in behavioral research to improve fire escape planning and practice. Future research must select the target behavior, apply behavioral theories, and distinguish between initiation and maintenance of behaviors associated with planning, practicing, and implementing home fire escape plans.

  11. Not Just for Big Dogs: the NSF Career Program from AN Undergraduate College Perspective

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.

    2011-12-01

    Relatively few NSF CAREER grants are awarded to faculty at undergraduate colleges, leading to a perception that the program is geared for major research institutions. The goal of this presentation is to dispel this misconception by describing a CAREER grant at a small, liberal arts institution. Because high quality instruction is the primary mission of undergraduate colleges, the career development plan for this proposal was designed to use research as a teaching tool. Instead of distinct sets of objectives for the research and education components, the proposal's research and teaching plans were integrated across the curriculum to maximize opportunities for undergraduate engagement. The driving philosophy was that students learn science by doing it. The proposal plan therefore created opportunities for students to be involved in hands-on, research-driven projects from their first through senior years. The other guiding principle was that students become engaged in science when they experience its real life applications. Stage 1 of the project provided mechanisms to draw students into science in two ways. The first was development of an inquiry-based curriculum for introductory classes, emphasizing practical applications and hands-on learning. The goal was to energize, generate confidence, and provide momentum for early science students to pursue advanced courses. The second mechanism was the development of a science outreach program for area K-9 schools, designed and implemented by undergraduates, an alternative path for students to discover science. Stages 2 and 3 consisted of increasingly advanced project-based courses, with in-depth training in research skills. The courses were designed along chemical, geological, and environmental themes, to capture the most student interest. The students planned their projects within a set of constraints designed to lead them to fundamental concepts and centered on questions of importance to the local community, thereby reinforcing the accessibility and relevance of science. The final stage was independent research with the PI on a focused research question, the equivalent of the research plan in most CAREER proposals. The overarching research objectives had to satisfy 2 criteria: a) questions had to be accessible and compelling (e.g., investigating the origin of volcanic islands in the Galapagos); and b) the project had to be divisible into tractable units for students, yet substantive enough for presentation at national meetings. Together, the projects ultimately addressed the PI's major research questions. The impacts of this grant were far-reaching. First, it supported a multi-year research project for the PI, which ultimately led to publications and successful proposals. More than 25 undergraduates carried out research projects, most presenting at national conferences. The outreach component engaged over 60 undergraduates; at least 20 have pursued science-teaching careers and another 25 have gone on to science graduate studies. The undergraduates brought hands-on science to more than 15,000 school children. Less obviously, the grant provided leverage for the PI to expand projects beyond their initial scope, involving more students and establishing on-going collaboration with colleagues at research institutions that have continued beyond the life of the grant.

  12. Contextualizing Next Generation Science Standards to Guide Climate Education in the U.S. Affiliated Pacific Islands (USAPI)

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.

    2012-12-01

    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts of climate change considerably sooner than other regions. Funded by the National Science Foundation (NSF), the Pacific Islands Climate Education Partnership (PCEP) has developed a detailed strategic plan to collaboratively improve climate knowledge among the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance understanding of climate change, and to adapt to its impacts. Core PCEP partners contribute expertise in climate science, the science of learning, the region's education infrastructure, and the region's cultures and indigenous knowledge and practices. PCEP's strategic education plan is guided by a general, multidisciplinary K-14 Climate Education Framework (CEF) that organizes fundamental science concepts and practices within appropriate grade-span progressions. This CEF is based largely upon the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" and the emerging Next Generation Science Standards. While the CEF is based upon these national Next Generation documents, it is also informed and strongly influenced by the region's geographic, climatic, cultural and socioeconomic contexts, notably indigenous knowledge and practices. Guided by the CEF, the PCEP in its initial development/planning phase has prototyped regional approaches to professional development, contextualizing curricula, and supporting community/school partnerships. With new, multiyear NSF implementation funding, the PCEP is building upon these prototypes and the strategic education plan to transform climate education across the region. Examples include a program of climate education certification being developed among the region's community colleges; research-based professional development focused on improving teachers' pedagogical content knowledge that has demonstrated striking success with both teacher and student outcomes; regional curricula based on local ecosystems and in local languages as well as English; and local school/community partnerships that combine the climate education work with local community climate adaptation projects. PCEP's interactive web-based environment (http://pcep.dsp.wested.org) interlinks the region's locations, organizations and people with information about climate science and climate impacts. This system enables the region's diverse stakeholders to access and contribute to the same information pool. This web-based environment both supports the development of PCEP resources such as the CEF and their continuing evolution and dissemination.

  13. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  14. EarthCube: Advancing Partnerships, Collaborative Platforms and Knowledge Networks in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Stephen, Diggs; Lee, Allison

    2014-05-01

    The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.

  15. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    NASA Technical Reports Server (NTRS)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  16. Remarks from Congressional Leaders: Congressman Daniel Lipinski (2011 EFRC Summit)

    ScienceCinema

    Lipinski, Daniel

    2018-01-09

    Congressman Daniel Lipinski (D-Illinois) spoke during the opening session of the EFRC Summit. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  17. Remarks from Congressional Leaders: Congresswoman Zoe Lofgren (2011 EFRC Summit)

    ScienceCinema

    Lofgren, Zoe (Congresswoman, California)

    2017-12-09

    Congresswoman Zoe Lofgren (D-California) spoke during the opening session of the EFRC Summit. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  18. Water Science and Technology Board annual report 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broadermore » scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingaman, Jeff

    During the opening session of the EFRC Summit, Senator Jeff Bingaman (D-NM) explained how the EFRCs play an important role in the U.S. energy innovation ecosystem. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofitmore » organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  20. Remarks from Congressional Leaders: Congressman Daniel Lipinski (2011 EFRC Summit)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, Daniel

    2011-05-25

    Congressman Daniel Lipinski (D-Illinois) spoke during the opening session of the EFRC Summit. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review.more » They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  1. Application of the Ecosystem Diagnosis and Treatment Method to the Grande Ronde Model Watershed project : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobrand, Lars Erik; Lestelle, Lawrence C.

    In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershedmore » Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action.« less

  2. A Sensemaking Visualization Tool with Military Doctrinal Elements

    DTIC Science & Technology

    2008-06-01

    LeadUnderstand CDR / Staff ART / Science In short, we need to develop an integrated approach for the understanding (framing) and visualizing, describing...directing, assessing, and reframing of unified operations. Staff Running Estimates t ff i i Visualize CDR / Staff ART / Science •Planning guidance...Planning guidance •Cdr ’s Intent Describe CDR / Staff ART / Science •Plans & Orders •Preparation •Plans & Orders •Preparation •Execution WF

  3. Exploring the boundaries: A study of multiple classroom learning environments

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Tobin, Kenneth; Hook, Karl S.

    1995-09-01

    The study of learning environments has developed into a productive field of research in science education. Initially, the design and application of classroom perceptual measures of particular dimensions of science classrooms attracted much attention. More recently, such instruments have been used alongside of qualitative techniques to provide a richer understanding of sub-environments. We continue this trend in the present interpretive study by exploring the nature of multiple environments within a middle school classroom from the different perspectives of teacher, student and participant observer. In particular, we examine the activity settings of lectures and group work, as well as the issues of learning and assessment. We conclude by arguing that teachers need to adopt procedures that enable them to identify and plan for multiple environments.

  4. Teaching Children Science. Second Edition.

    ERIC Educational Resources Information Center

    Abruscato, Joseph

    This book focuses on science teaching at the elementary school level. It includes chapters dealing with various science content areas and teaching processes including: (1) what is science; (2) why teach science; (3) process skills as a foundation for unit and lesson planning; (4) how to plan learning units, daily lessons, and assessment…

  5. 36 CFR 219.25 - Science advisory boards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Science advisory boards. 219... PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.25 Science advisory boards. (a) National science advisory board. The Forest Service Deputy Chief for Research...

  6. 36 CFR 219.25 - Science advisory boards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Science advisory boards. 219... PLANNING National Forest System Land and Resource Management Planning The Contribution of Science § 219.25 Science advisory boards. (a) National science advisory board. The Forest Service Deputy Chief for Research...

  7. Landscape and climate science and scenarios for Florida

    USGS Publications Warehouse

    Terando, Adam; Traxler, Steve; Collazo, Jaime

    2014-01-01

    The Peninsular Florida Landscape Conservation Cooperative (PFLCC) is part of a network of 22 Landscape Conservation Cooperatives (LCCs) that extend from Alaska to the Caribbean. LCCs are regional-applied conservation-science partnerships among Federal agencies, regional organizations, States, tribes, nongovernmental organizations (NGOs), private stakeholders, universities, and other entities within a geographic area. The goal of these conservation-science partnerships is to help inform managers and decision makers at a landscape scale to further the principles of adaptive management and strategic habitat conservation. A major focus for LCCs is to help conservation managers and decision makers respond to large-scale ecosystem and habitat stressors, such as climate change, habitat fragmentation, invasive species, and water scarcity. The purpose of the PFLCC is to facilitate planning, design, and implementation of conservation strategies for fish and wildlife species at the landscape level using the adaptive management framework of strategic habitat conservation—integrating planning, design, delivery, and evaluation. Florida faces a set of unique challenges when responding to regional and global stressors because of its unique ecosystems and assemblages of species, its geographic location at the crossroads of temperate and tropical climates, and its exposure to both rapid urbanization and rising sea levels as the climate warms. In response to these challenges, several landscape-scale science projects were initiated with the goal of informing decision makers about how potential changes in climate and the built environment could impact habitats and ecosystems of concern in Florida and the Southeast United States. In June 2012, the PFLCC, North Carolina State University, convened a workshop at the U.S. Geological Survey (USGS) Coastal and Marine Science Center in St. Petersburg to assess the results of these integrated assessments and to foster an open dialogue about science gaps and future research needs.

  8. Support and Dissemination of Teacher-Authored Lesson Plans: a Digital Library for Earth System Education (DLESE) and Geological Society of America (GSA) Collaboration

    NASA Astrophysics Data System (ADS)

    Devaul, H.; Pandya, R. E.; McLelland, C. V.

    2003-12-01

    The Digital Library for Earth System Education (www.dlese.org) and the Geological Society of America (www.geosociety.org) are working together to publish and disseminate teacher-authored Earth science lesson plans. DLESE is a community-based effort involving teachers, students, and scientists working together to create a library of educational resources and services to support Earth system science education. DLESE offers free access to electronic resources including lesson plans, maps, images, data sets, visualizations, and assessment activities. A number of thematic collections have recently been accessioned, which has substantially increased library holdings. Working in concert with GSA, a non-profit organization dedicated to the advancement of the geosciences, small-scale resource creators such as classroom teachers without access to a web server can also share educational resources of their own design. Following a two-step process, lesson plans are submitted to the GSA website, reviewed and posted to the K-12 resource area: http://www.geosociety.org/educate/resources.htm. These resources are also submitted to the DLESE Community Collection using a simple cataloging tool. In this way resources are available to other teachers via the GSA website as well as via the DLESE collection. GSA provides a template for lesson plan developers which assists in providing the necessary information to help users find and understand the intent of the activity when searching in DLESE. This initial effort can serve as a prototype for important services allowing individual community members to contribute their work to DLESE with little technical overhead.

  9. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadsworth, Jeffrey; Carlson, David E.; Chiang, Yet-Ming

    2011-05-25

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' Inmore » August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  10. Introduction to the Summit Session, "Leading Perspectives in Energy Research", from the Director of the DOE Office of Science, Bill Brinkman (2011 EFRC Summit)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Bill

    2011-05-25

    In this video Bill Brinkman, Director of DOE's Office of Science, introduces the session, "Leading Perspectives in Energy Research," at the 2011 EFRC Summit and Forum. During the introduction of the senior representatives from both the public and private sector, Dr. Brinkman explained the motivation for creating the Energy Frontiers Research Centers program. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs aremore » collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  11. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    ScienceCinema

    Wadsworth, Jeffrey; Carlson, David E.; Chiang, Yet-Ming; Hunt, Catherine T.

    2018-05-08

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  12. Geospatial considerations for a multiorganizational, landscape-scale program

    USGS Publications Warehouse

    O'Donnell, Michael S.; Assal, Timothy J.; Anderson, Patrick J.; Bowen, Zachary H.

    2013-01-01

    Geospatial data play an increasingly important role in natural resources management, conservation, and science-based projects. The management and effective use of spatial data becomes significantly more complex when the efforts involve a myriad of landscape-scale projects combined with a multiorganizational collaboration. There is sparse literature to guide users on this daunting subject; therefore, we present a framework of considerations for working with geospatial data that will provide direction to data stewards, scientists, collaborators, and managers for developing geospatial management plans. The concepts we present apply to a variety of geospatial programs or projects, which we describe as a “scalable framework” of processes for integrating geospatial efforts with management, science, and conservation initiatives. Our framework includes five tenets of geospatial data management: (1) the importance of investing in data management and standardization, (2) the scalability of content/efforts addressed in geospatial management plans, (3) the lifecycle of a geospatial effort, (4) a framework for the integration of geographic information systems (GIS) in a landscape-scale conservation or management program, and (5) the major geospatial considerations prior to data acquisition. We conclude with a discussion of future considerations and challenges.

  13. The role of science in wilderness planning: a state-of-knowledge review

    Treesearch

    Edwin E. Krumpe

    2000-01-01

    Wilderness planning has evolved since the Wilderness Act of 1964 in an atmosphere of intense debate and public scrutiny. Wilderness planning and the role science has played in developing the planning process has been influenced by many complex legal mandates, by thorny social issues, and by emerging planning paradigms. Wilderness planning has at times been inspired by...

  14. Schizophrenia Basics

    MedlinePlus

    ... schizophrenia. National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...

  15. A Review and Framework for Categorizing Current Research and Development in Health Related Geographical Information Systems (GIS) Studies.

    PubMed

    Lyseen, A K; Nøhr, C; Sørensen, E M; Gudes, O; Geraghty, E M; Shaw, N T; Bivona-Tellez, C

    2014-08-15

    The application of GIS in health science has increased over the last decade and new innovative application areas have emerged. This study reviews the literature and builds a framework to provide a conceptual overview of the domain, and to promote strategic planning for further research of GIS in health. The framework is based on literature from the library databases Scopus and Web of Science. The articles were identified based on keywords and initially selected for further study based on titles and abstracts. A grounded theory-inspired method was applied to categorize the selected articles in main focus areas. Subsequent frequency analysis was performed on the identified articles in areas of infectious and non-infectious diseases and continent of origin. A total of 865 articles were included. Four conceptual domains within GIS in health sciences comprise the framework: spatial analysis of disease, spatial analysis of health service planning, public health, health technologies and tools. Frequency analysis by disease status and location show that malaria and schistosomiasis are the most commonly analyzed infectious diseases where cancer and asthma are the most frequently analyzed non-infectious diseases. Across categories, articles from North America predominate, and in the category of spatial analysis of diseases an equal number of studies concern Asia. Spatial analysis of diseases and health service planning are well-established research areas. The development of future technologies and new application areas for GIS and data-gathering technologies such as GPS, smartphones, remote sensing etc. will be nudging the research in GIS and health.

  16. A Review and Framework for Categorizing Current Research and Development in Health Related Geographical Information Systems (GIS) Studies

    PubMed Central

    Nøhr, C.; Sørensen, E. M.; Gudes, O.; Geraghty, E. M.; Shaw, N. T.; Bivona-Tellez, C.

    2014-01-01

    Summary Objectives The application of GIS in health science has increased over the last decade and new innovative application areas have emerged. This study reviews the literature and builds a framework to provide a conceptual overview of the domain, and to promote strategic planning for further research of GIS in health. Method The framework is based on literature from the library databases Scopus and Web of Science. The articles were identified based on keywords and initially selected for further study based on titles and abstracts. A grounded theory-inspired method was applied to categorize the selected articles in main focus areas. Subsequent frequency analysis was performed on the identified articles in areas of infectious and non-infectious diseases and continent of origin. Results A total of 865 articles were included. Four conceptual domains within GIS in health sciences comprise the framework: spatial analysis of disease, spatial analysis of health service planning, public health, health technologies and tools. Frequency analysis by disease status and location show that malaria and schistosomiasis are the most commonly analyzed infectious diseases where cancer and asthma are the most frequently analyzed non-infectious diseases. Across categories, articles from North America predominate, and in the category of spatial analysis of diseases an equal number of studies concern Asia. Conclusion Spatial analysis of diseases and health service planning are well-established research areas. The development of future technologies and new application areas for GIS and data-gathering technologies such as GPS, smartphones, remote sensing etc. will be nudging the research in GIS and health. PMID:25123730

  17. Coherence and Divergence of Megatrends in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Roco, M. C.

    2002-04-01

    Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S&E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach. This paper presents a perspective on the process of identification, planning and program implementation of S&E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S&E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S&E megatrend.

  18. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  19. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, T; Zhou, L; Li, Y

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive results. Conclusion: We have successfully developed a fast and automatic multi-objective optimization for intensity modulated radiotherapy. This work is supported by the National Natural Science Foundation of China (No: 81571771)« less

  20. Teaching science with a multicultural agenda: The challenges and conflicts for preservice teachers

    NASA Astrophysics Data System (ADS)

    Yang, Kimberley

    This dissertation examines the challenges and conflicts that preservice teachers have when teaching science with a multicultural agenda. This study is based on the experience of three preservice teachers who have participated in a one or two semester(s) volunteered commitment teaching science to pre-kindergarten students at a homeless shelter in the South Bronx of New York City. Findings derived from in-depth interviews, observations, lesson planning and debriefing sessions, journals, questionnaires and extracurricular interaction of the researcher and participants, indicate that preservice teachers were initially uncertain about the philosophy and actual practice of teaching science with a multicultural agenda. Their experience at the homeless shelter brings up issues of social class and family background as determinants of access and success in science education, multicultural science as exclusive from the accepted science canon, and the value of practicing science education with a multicultural agenda. The philosophical framework for teaching science from a multicultural framework is based on ideas that stem from feminist theories of valuing the lived social and educational experiences of children, and critical theory that examines the role of school and science as culture. The intention of multicultural science education is to create a science education that is inclusive for students regardless of cultural background. This includes students who have been traditionally marginalized from school science. In many instances, children from severe inner-city economically impoverished environments have been overlooked as science-able within school culture.

  1. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara

    2009-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  2. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara

    2010-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  3. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    ScienceCinema

    Chu, Steven

    2017-12-21

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  4. Library Bulletin [International Planned Parenthood Federation, May 1976].

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    This loose-leaf collection includes a brief discussion of usage procedures for International Planned Parenthood Federation (IPPF) libraries. A set of annotated bibliographies follows, including descriptions of documents on the following topics: family planning and biomedical science, social sciences related to family planning, education and…

  5. IPPF Co-operative Information Service (ICIS). November 1978.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    This is a bibliography of family planning material available from the International Planned Parenthood Cooperative Information Service library and documentation services. Entries are made under the following categories: reference books, biographies, family planning and bio-medical science, social sciences related to family planning, international…

  6. The use of recreation planning tools in U.S. Forest Service NEPA assessments

    Treesearch

    Lee K. Cerveny; Dale J. Blahna; Marc J. Stern; Michael J. Mortimer; S. Andrew Predmore; James Freeman

    2011-01-01

    U.S. Forest Service managers are required to incorporate social and biophysical science information in planning and environmental analysis. The use of science is mandated by the National Environmental Policy Act (NEPA), the National Forest Management Act, and U.S. Forest Service planning rules. Despite the agency's emphasis on "science-based"...

  7. Geology, Geochronology, and EarthScope: The EarthScope AGeS Program and a new idea for a 4D Earth Initiative

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Arrowsmith, R.; Metcalf, J. R.; Rittenour, T. M.; Schoene, B.; Hole, J. A.; Pavlis, T. L.; Wagner, L. S.; Whitmeyer, S. J.; Williams, M. L.

    2015-12-01

    The EarthScope AGeS (Awards for Geochronology Student Research) program is a multi-year educational initiative aimed at enhancing interdisciplinary, innovative, and high-impact science by promoting training and new interactions between students, scientists, and geochronology labs at different institutions. The program offers support of up to $10,000 for graduate students to collect and interpret geochronology data that contribute to EarthScope science targets through visits to participating geochronology labs (www.earthscope.org/geochronology). The program was launched by a 2-day short course held before the 2014 National GSA meeting in Vancouver, at which 16 geochronology experts introduced 43 participants to the basic theory and applications of geochronology methods. By the first proposal submission deadline in spring 2015, 33 labs representing a broad range of techniques had joined the program by submitting lab plans that were posted on the EarthScope website. The lab plans provide information about preparation, realistic time frames for visits, and analytical costs. In the first year of the program, students submitted 47 proposals from 32 different institutions. Proposals were ranked by an independent panel, 10 were funded, and research associated with these projects is currently underway. The next proposal deadline will be held in spring 2016. The 4D-Earth initiative is an idea for a natural successor to the EarthScope program aimed at expanding the primarily 3D geophysical focus that captured a snapshot of present day North America into the 4th dimension of time (hence the connection to the prototypical AGeS program), and illuminating the crustal component that was below the resolution of much of the USArray image. Like EarthScope, the notion is that this initiative would integrate new infrastructure and usher in a new way of doing science. The overarching scientific motivation is to develop a Community Geologic Model for the 4-D Evolution of the North American continent to firmly answer long-standing questions of how the time-integrated processes of plate tectonics and surface processes produce the mantle and crustal structures we see today. A breakout session on this topic was held at the 2015 EarthScope National Meeting, and efforts are underway to solicit feedback to shape these ideas.

  8. History and Nature of Science in High School: Building Up Parameters to Guide Educational Materials and Strategies

    NASA Astrophysics Data System (ADS)

    Forato, Thaís Cyrino de Mello; de Andrade Martins, Roberto; Pietrocola, Maurício

    2012-05-01

    This article presents the main results of a research examining the didactic transposition of history and philosophy of science in high school level. The adaptation of history of science to this particular level, addressing some aspects of the nature of science aiming at the students' critical engagement, was analyzed by examining both the historiographic requirements of history of science and the pedagogical recommendations of science teaching. The research included the elaboration of a pilot course on the history of optics, with historical texts and educational activities, and its application in a high school. We used three episodes of the history of optics, addressing some epistemological points, especially criticizing the naive empirical-inductive view of science. It was possible to identify a series of obstacles in using history of science and conveying philosophical views. Their analysis resulted in devising strategies to surmount or to circumvent them. We implemented those strategies in the classroom and analyzed the data that was obtained. As a result, we substantiated several of our proposals and found that some solutions require improvement. We suggest some generalizations, which can be understood as initial parameters for guiding the use of history and philosophy of science in science teaching. We used a qualitative methodology of educational research to plan, to collect and to analyze the data, examining the interaction between students, teacher and knowledge.

  9. Urban ecosystem services and decision making for a green Philadelphia

    USGS Publications Warehouse

    Hogan, Dianna M.; Shapiro, Carl D.; Karp, David N.; Wachter, Susan M.

    2014-01-01

    Traditional approaches to urban development often do not account for, or recognize, the role of ecosystem services and the benefits these services provide to the health and well-being of city residents. Without such accounting, urban ecosystem services are likely to be degraded over time, with negative consequences for the sustainability of cities and the well-being of their residents (Millennium Ecosystem Assessment, 2005; Hirsch, 2008). On May 23, 2013, the Spatial Integration Laboratory for Urban Systems (SILUS), a collaboration between the U.S. Geological Survey (USGS) Science and Decisions Center and the Wharton GIS Lab, convened a one-day symposium—Urban Ecosystem Services and Decision Making: A Green Philadelphia—at the University of Pennsylvania in Philadelphia, Pennsylvania, to examine the role of green infrastructure in the environmental, economic, and social well-being of cities. Cosponsored by the USGS and the Penn Institute for Urban Research (Penn IUR), the symposium brought together policymakers, practitioners, and researchers from a range of disciplines to advance a research agenda on the use of science in public decision making to inform investment in green infrastructure and ecosystem services in urban areas. The city of Philadelphia has recently implemented a program designed to sustain urban ecosystem services and advance the use of green infrastructure. In 2009, the Philadelphia Mayor’s Office of Sustainability launched its Greenworks plan, establishing a citywide sustainability strategy. Major contributions towards its goals are being implemented in coordination with the Philadelphia Water Department (PWD). The Green City, Clean Waters initiative, the city’s nationally recognized stormwater management plan, was signed into action with the U.S. Environmental Protection Agency (EPA) in April 2012. The plan outlines a 25-year strategy to use green infrastructure to protect and improve the city’s watershed. Widespread support for the plan marks a citywide effort to factor environmental quality concerns into the city’s strategic planning, choosing to replace expensive and aging grey infrastructure, with innovative and resilient green infrastructure. The symposium focused on these city of Philadelphia initiatives and also on two new Federal- local partnership programs: America’s Great Outdoors, initiated to promote conservation and recreation, and the Urban Waters Federal Partnership, a multiagency effort to reconnect urban communities to their waterways. A second goal of the symposium was to advance a research agenda on urban ecosystem services. While there has been considerable work on ecosystem services, the discussion of the benefits provided by urban ecosystems is not as developed. Benefits range from improved water and air quality to quality of life gains, including aesthetic and recreational considerations. There is also need for additional focused research toward furthering the understanding of the multiple indirect benefits provided by urban ecosystem services (Bolund and Hunhammar, 1999). Moreover, there is a need for a greater understanding of how best to inform local decision making in this area, as local decision makers in cities across the country are increasingly recognizing the importance of developing sustainability measures for their immediate and long-term planning (United States Conference of Mayors, 2005). Approaching these local and regional plans from a holistic perspective has become a guiding principle of sustainability and resiliency. Therefore, there is a need to better understand the gains that have been achieved and to advance a research agenda on ecosystem services going forward. The day’s program included presentations on greening initiatives from the Philadelphia’s Mayor’s Office of Sustainability, as well as discussion about using an urban ecosystem services framework to evaluate these initiatives. Panel sessions included discussion of the Green City, Clean Waters initiative; a dialogue about the management of urban trees and green space; and a conversation addressing the needs for future research.

  10. Initial Closed Operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    1995-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown sequentially from seed to harvest in the microgravity environment of the Space Station. Stringent environmental control will be maintained while fundamental crop productivity issues, such as carbon dioxide uptake and oxygen production rates, water transpiration rates, and biomass accumulation rates are obtained for comparison with ground-based data. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the appropriate environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The EDU is a ground-based testbed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper describes the initial closed operational testing of the EDU. Measured performance data are compared with the specified functional requirements and results from initial closed testing are presented. Plans for future science and technology testing are discussed.

  11. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Astrophysics Data System (ADS)

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  12. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  13. What is Bipolar Disorder?

    MedlinePlus

    ... Information National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...

  14. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  15. Gender Differences in High-school Students' Views about Science

    NASA Astrophysics Data System (ADS)

    Miller, Patricia H.; Slawinski Blessing, Jennifer; Schwartz, Stephanie

    2006-03-01

    This study examined gender differences in 79 high-school students’ attitudes towards their science classes, their perceptions of science and scientists, and their views about majoring in science. The study identified some of the subtleties underlying females’ low participation in, and interest in, science documented in previous research. Four themes emerged from responses on the rating scales and questionnaire. First, even when females planned to major in science, they were more interested than males in the people-oriented aspects of their planned majors. Second, biology was the one exception to females’ low interest in science. Third, females often planned a science major mainly because they needed a science background in order to enter a health profession such as medicine or physical therapy. Fourth, females generally found science uninteresting and the scientific lifestyle (as perceived by them) unattractive. Implications for teaching science were discussed.

  16. Revised research plan for the U.S. Climate Change Science Program

    DOT National Transportation Integrated Search

    2008-05-01

    The U.S. Climate Change Science Program (CCSP) released its Strategic Plan in 2003.This Revised Research Plan, in compliance with Section 104(a) of the Global Change Research Act of 1990, is an update to the 2003 Strategic Plan. It reflects both scie...

  17. Northern Eurasia Future Initiative (NEFI): Presentation and Justification of the NEFI Science Plan

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Gutman, G.; Gulev, S.; Maksyutov, S. S.; Qi, J.; Shugart, H. H., Jr.

    2016-12-01

    Since 2004, the Northern Eurasia Earth Science Partnership Initiative (NEESPI) - an interdisciplinary program of internationally-supported Earth systems and science research - has addressed large-scale and long-term manifestations of climate and environmental changes over Northern Eurasia and their impact on the Global Earth system. With more than 1500 peer-reviewed journal publications and 40 books to its credit, NEESPI's activities resulted in significant scientific outreach. This created a new research realm through self-organization of NEESPI scientists in a broad research network, accumulation of knowledge while developing new tools (observations, models, and collaborative networks) and producing new, exciting results that can be applied to directly support decision-making for societal needs. At the Synthesis NEESPI Workshop in Prague, Czechia (April 9-12, 2015) it was decided to shift gradually the foci of regional studies in Northern Eurasia towards applications with the following major Science Question: "What dynamic and interactive change(s) will affect societal well-being, activities, and health, and what might be the mitigation and adaptation strategies that could support sustainable development and decision-making activities in Northern Eurasia?". To answer this question requires a stronger socio-economic component in the ongoing and future regional studies focused on sustainable societal development under changing climatic and environmental conditions. The NEESPI Research Team has reorganized itself into "Northern Eurasia Future Initiative" (NEFI) and began development of the NEFI Programmatic White Paper released at http://neespi.org in June 2016. Presentation will provide justification of the new NEFI research foci and approach examples addressing them. The societal challenges, particularly the socio-economic challenges are the top priority in most of them. Throughout the NEESP Initiative duration, support for it studies has been provided by different national and international Agencies of the United States (in particular, the NASA Land Cover and Land Use Change Program), Russian Federation (in particular, the Ministry of Education and Science, e.g., mega-grant 14.B25.31.0026), European Union, Japan, and China. We anticipate a similar kind of support for NEFI.

  18. Multilateral initiative on malaria: justification, evolution, achievements, challenges, opportunities, and future plans.

    PubMed

    Rugemalila, Joas B; Ogundahunsi, Olumide A T; Stedman, Timothy T; Kilama, Wen L

    2007-12-01

    Malaria is a major public health problem; about half of the world's populations live under exposure. The problem is increasing in magnitude and complexity because it is entwined with low socio-economic status, which makes African women and children particularly vulnerable. Combating malaria therefore requires concerted international efforts with an emphasis on Africa. The Multilateral Initiative on Malaria (MIM) was founded in 1997 to meet that need through strengthening research capacity in Africa, increasing international cooperation and communication, and utilization of research findings to inform malaria prevention, treatment, and control. The review undertaken in 2002 showed that through improved communication and science-focused institutional networks, MIM had brought African scientists together, opened up communication among malaria stakeholders, and provided Internet access to literature. The achievements were made through four autonomous constituents including the coordinating Secretariat being hosted for the first time in Africa by the African Malaria Network Trust (AMANET) for the period 2006-2010. The other constituents are the MIM TDR providing funding for peer-reviewed research; MIMCom facilitating Internet connectivity, access to medical literature, and communication between scientists inside and outside of Africa; and MR4 providing scientists access to research tools, standardized reagents, and protocols. Future plans will mostly consolidate the gains made under the MIM Strategic Plan for the period 2003-2005.

  19. The CASPER Virtual Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Harris, Brandon; Chen, Mudi; Matthews, Lorin; Hyde, Truell

    2013-10-01

    CASPER's Virtual Physics Circus (VPC) is based on the long-running CASPER Physics Circus and is the most recent component in CASPER's ``Seamless Pathway'' educational outreach initiative. The VPC was developed by an interdisciplinary group of physicists, web-designers and educators and employs both web and video game environments to provide students and teachers with engaging, fast-paced educational activities. Access to an integrated curriculum and video library, aligned to both the TEKS (Texas Essentials Knowledge and Skill) and the National Science and Mathematics Standards, is also part of the VPC package. In this talk an initial beta-test of the VPC, conducted for a central Texas independent school district, will be discussed. Future plans for both expansion and translation into Spanish will also be discussed.

  20. Wyoming Landscape Conservation Initiative Science and Management Workshop Proceedings, May 12-14, 2009, Laramie, Wyoming

    USGS Publications Warehouse

    Nuccio, Vito F.; D'Erchia, Frank D.; Parady, K.(compiler); Mellinger, A.

    2010-01-01

    The U.S. Geological Survey (USGS) hosted the second Wyoming Landscape Conservation Initiative (WLCI) Science and Management Workshop at the University of Wyoming Conference Center and Hilton Garden Inn on May 12, 13, and 14, 2009, in Laramie, Wyo. The workshop focused on six topics seen as relevant to ongoing WLCI science and management activities: mapping and modeling resources for decisionmaking; data information and management; fish and wildlife research; changing landscapes; monitoring; and reclamation and offsite mitigation. Panelists gave presentations on ongoing research in these six areas during plenary sessions followed by audience discussions. Three breakout groups focused on discussing wildlife, reclamation, and monitoring. Throughout the plenary sessions, audience discussions, and breakout groups, several needs were repeatedly emphasized by panelists and workshop participants: developing a conservation plan and identifying priority areas and species for conservation actions; gaining a deeper understanding of sagebrush ecology; identifying thresholds for wildlife that can be used to create an 'early warning system' for managers; continuing to collect basic data across the landscape; facilitating even greater communication and partnership across agencies and between scientists and land managers; and engaging proactively in understanding new changes on the landscape such as wind energy development and climate change. Detailed proceedings from the workshop are captured and summarized in this report.

  1. Bipolar Disorder in Children and Teens

    MedlinePlus

    ... health. National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...

  2. SCIENCE EDUCATION: Comprehensive Approach Urged.

    ERIC Educational Resources Information Center

    Krieger, James; Worthy, Ward

    1990-01-01

    Summarizes two initiatives from the American Association for the Advancement of Science and the National Science Foundation to reform science education. The initiatives propose (1) a restructuring of undergraduate college curricula to present science as one of the liberal arts and (2) developing systematic statewide initiatives in science,…

  3. The 1975 report on active and planned spacecraft and experiments. [index

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Davis, L. R. (Editor)

    1975-01-01

    Information is presented on current and planned spacecraft activity for various disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, solar physics, and life sciences. For active orbiting spacecraft, the epoch date, orbit type, orbit period, apoasis, periapsis, and inclination are given along with the spacecraft weight, launch date, launch site, launch vehicle, and sponsoring agency. For each planned orbiting spacecraft, the orbit parameters, planned launch date, launch site, launch vehicle, spacecraft weight, and sponsoring agency are given.

  4. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  5. 78 FR 63481 - Therapeutic Area Standards Initiative Project Plan; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...] Therapeutic Area Standards Initiative Project Plan; Availability AGENCY: Food and Drug Administration, HHS... Therapeutic Area Standards Initiative Project Plan. This therapeutic area (TA) Project Plan will be the primary document for guiding all major aspects of FDA's multi-year initiative to develop and implement TA...

  6. A model for integrating strategic planning and competence-based curriculum design in establishing a public health programme: the UNC Charlotte experience.

    PubMed

    Thompson, Michael E; Harver, Andrew; Eure, Marquis

    2009-08-11

    The University of North Carolina at Charlotte, a doctoral/research-intensive university, is the largest institution of higher education in the Charlotte region. The university currently offers 18 doctoral, 62 master's and 90 baccalaureate programmes. Fall 2008 enrolment exceeded 23,300 students, including more than 4900 graduate students. The university's Department of Health Behavior and Administration was established on 1 July 2002 as part of a transformed College of Health & Human Services. In 2003, the Department initiated a series of stakeholder activities as part of its strategic planning and programmatic realignment efforts. The Department followed an empirically derived top-down/bottom-up strategic planning process that fostered community engagement and coordination of efforts across institutional levels. This process culminated in a vision to transform the unit into a Council on Education for Public Health accredited programme in public health and, eventually, an accredited school of public health. To date, the Department has revised its Master of Science in health promotion into an Master of Science in Public Health programme, renamed itself the Department of Public Health Sciences, launched a Bachelor of Science in Public Health major, laid plans for a doctoral programme, and received accreditation from the Council on Education for Public Health as a public health programme. Furthermore, the campus has endorsed the programme's growth into a school of public health as one of its priorities. It is only through this rigorous and cyclical process of determining what society needs, designing a curriculum specifically to prepare graduates to meet those needs, ensuring that those graduates meet those needs, and reassessing society's needs that we can continue to advance the profession and ensure the public's health. Community stakeholders should be active contributors to programme innovation. Lessons learnt from this process include: being connected to your community and knowing its needs, being responsive to your community, remembering that process is as important as product, and preparing for success. The efforts reported here can be informative to other institutions by exemplifying an integrated top-down/bottom-up process of strategic planning that ensures that a department's degree programmes meet current needs and that students graduate with the competences to address those needs.

  7. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    NASA Astrophysics Data System (ADS)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c) Social interactions such as peer talk and cooperative learning can be a medium for thought development for both teachers and students, and (d) Teacher preparation programs must include informal assessments that evaluate social interactions. Since teachers directly influence student learning through classroom practices and usually act on what they believe, exploring teacher beliefs is crucial to science education reform.

  8. Ethnographic case study of a high school science classroom: Strategies in stem education

    NASA Astrophysics Data System (ADS)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a holistic and sustainable model for development and implementation. This approach brings together the researcher and practitioner to design effective and specific programs tailored to student needs. The implication of using an effective team model to plan and coordinate individualized STEM initiatives is a long-term commitment to overall STEM literacy, thereby fostering increased access to STEM careers for all learners.

  9. 42 CFR 417.920 - Planning and initial development.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Planning and initial development. 417.920 Section... and initial development. (a) Under section 1304 of the PHS Act, grants and loan guarantees were awarded for projects for planning and initial development of HMOs. (b) Planning projects included projects...

  10. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor); Horowitz, R. (Editor)

    1978-01-01

    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  11. International and national initiatives in biobanking.

    PubMed

    Ectors, N

    2011-01-01

    Translational research and biobanking are "in", also in Flanders and in Belgium. In Flanders the Advice report 120 from the Flemish Council for Science and innovation, entitled "Extension of translational research in Flanders" paved the way for the Center for Medical Innovation. The Center for Medical Innovation aims at promoting collaboration between Flemish Universities, university hospitals, pharma and biotech industry and the Flemish Government specifically in the domain of translational research. The Initiative # 27 of the Cancer plan from the Federal Government aims at financing a virtual interuniversity tumor bank in order to promote "cancer" translational research in a collaborative network between academic structures, general hospitals en different industrial partners (pharmacy, biotechnology, diagnostics, ...) active in research in Belgium. However, the scientific interest in the human tissues is not new, at all. This text aims at giving an overview of the development and evolutions of "biobanking" initiatives.

  12. Vulnerability assessment of a port and harbor community to earthquake and tsunami hazards: Integrating technical expert and stakeholder input

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Research suggests that the Pacific Northwest could experience catastrophic earthquakes and tsunamis in the near future, posing a significant threat to the numerous ports and harbors along the coast. A collaborative, multiagency initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to these hazards, involving Oregon Sea Grant, Washington Sea Grant, the National Oceanic and Atmospheric Administration Coastal Services Center, and the U.S. Geological Survey Center for Science Policy. One element of this research, planning, and outreach initiative is a natural hazard mitigation and emergency preparedness planning process that combines technical expertise with local stakeholder values and perceptions. This paper summarizes and examines one component of the process, the vulnerability assessment methodology, used in the pilot port and harbor community of Yaquina River, Oregon, as a case study of assessing vulnerability at the local level. In this community, stakeholders were most concerned with potential life loss and other nonstructural vulnerability issues, such as inadequate hazard awareness, communication, and response logistics, rather than structural issues, such as damage to specific buildings or infrastructure.

  13. [The Potential Role of an Academic Society for Oncology Specialists to Promote Cancer Education in Schools].

    PubMed

    Nishiyama, Masahiko

    2015-08-01

    Cancer mortality in Japan is forecasted to become high; thus, learning about cancer, cancer prevention, and cancer treatment will be indispensable for the Japanese. Recognition of the increasing rates of cancer has initiated a discussion regarding the introduction of cancer education into the regular educational curriculum for the younger generation. The importance of cancer education is noww idely recognized, and the 2nd Basic Plan to Promote Cancer Control Programs is directed at early initiation of education. The Ministry of Education, Culture, Sports, Science and Technology is nowreview ing the detailed plan, with an intention to draw a conclusion by the end of the 2016 business year. However, ongoing debates have revealed that there are many obstacles in the way of this practice. Much effort should be directed at solving these issues in the most realistic way. This paper reviews potential actions by oncology specialists, and attempts to clarify the possible role of an academic society for oncology specialists in the development of cancer education systems at school.

  14. NSF Geosciences Initiatives and Plans Reviewed at Advisory Committee Meeting

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    In its semiannual meeting on 6-7 October, the U.S. National Science Foundation's (NSF) Advisory Committee for Geosciences (GEO) reviewed GEO initiatives, programs, and plans, including the GEO directorate's fast and significant response to support research related to various aspects of the Deepwater Horizon oil spill in the Gulf of Mexico through Rapid Response Research (RAPID) awards and other measures. An undercurrent during the meeting was concern about workload stress among GEO staff. Assistant director of geosciences Tim Killeen noted that the proposed budget for fiscal year (FY) 2011, which began on 1 October, would increase directorate funding 7.4% over FY 2010, if the budget is approved by Congress. A continuing resolution in Congress maintains FY 2010 funding levels until at least 3 December. Killeen said NSF's budget request for FY 2012 has been submitted to the White House Office of Management and Budget, adding that although he cannot discuss details of that budget yet, GEO Vision, a long­range strategy document for the directorate released in October 2009, “is reflected in our thinking going forward.”

  15. Low/Medium Density Biomass, Coastal and Ocean Carbon: A Carbon Cycle Mission

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Gervin, Jan; Kirchman, Frank; Middleton, Elizabeth; Knox, Robert; Gregg, Watson; Mannino, Antonio; McClain, Charles; Herman, Jay; Hall, Forrest

    2003-01-01

    As part of the Global Carbon Cycle research effort, an agency-wide planning initiative was organized between October 2000 and June 2001 by the NASA Goddard Space Flight Center (GSFC) at the behest of the Associate Administrator for Earth Science. The goal was to define future research and technology development activities needed for implementing a cohesive scientific observation plan. A timeline for development of missions necessary to acquire the selected new measurements was laid out, and included missions for low - medium density terrestrial biomass / coastal ocean / and ocean carbon. This paper will begin with the scientific justification and measurement requirements for these specific activities, explore the options for having separate or combined missions, and follow-up with an implementation study centered on a hyperspectral imager at geosynchronous altitudes.

  16. Implementing residential treatment for prison inmates with mental illness.

    PubMed

    O'Connor, Frederica W; Lovell, David; Brown, Linda

    2002-10-01

    There is evidence that mentally ill offenders (MIOs) in prisons commit more infractions, serve longer sentences, and are more likely to be victimized than inmates who are not mentally ill. Humanistic and prison management interests are served if intervention programs minimize symptoms and promote coping and other functional skills. A collaborative agreement was established between Washington State Department of Corrections and a consortium of University of Washington faculty to mutually develop a prison-based program of clinical management and psychoeducation for MIOs. The resulting program is described, along with rationale, planning processes, implementation, and initial evaluation. Most aspects of the planned program are in place. Clinical and behavioral progress by inmates following program participation has been documented. Issues concerning treatment program implementation in prisons are discussed. Copyright 2002, Elsevier Science (USA). All rights reserved.

  17. U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.

  18. Delivering the EarthScope Transportable Array as a Community Asset

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Woodward, R.; Simpson, D. W.; Hafner, K.

    2009-12-01

    The Transportable Array element of EarthScope/USArray is a culmination of years of coordination and planning for a large science initiative via the NSF MREFC program. US researchers and the IRIS Consortium conceived of the science objectives for a continental scale array and, together with the geodetic (PBO) and fault drilling (SAFOD) communities and NSF, successfully merged these scientific objectives with a compelling scientific and technical proposal, accompanied with the budget and schedule to accomplish it. The Transportable Array is now an efficient and exacting execution of an immense technical challenge that, by many measures, is yielding exciting science return, both expected and unanticipated. The technical facility is first-rate in its implementation, yet responsive to science objectives and discovery, actively engaging the community in discussion and new direction. The project is carried out by a core of dedicated and professional staff , guided and advised through considerable feedback from science users who have unprecedented access to high-quality data. This, in a sense, lets seismologists focus on research, rather than be administrators, drivers, shippers, battery mules, electronic technicians and radio hams. Now that USArray is operational, it is interesting to reflect on whether the TA, as a professionally executed project, could succeed as well if it were an independent endeavor, managed and operated outside of the resources developed and available through IRIS and its core programs. We detail how the support the USArray facility provides improves data accessibility and enhances interdisciplinary science. We suggest that the resources and community leadership provided by the IRIS Consortium, and the commitment to the principle of free and open data access, have been basic underpinnings for the success of the TA. This involvement of community-based, scientific leadership in the development of large facilities should be considered in planning future large Earth science or even basic science endeavors. The Global Seismographic Network provides another example where, with strong scientific leadership, the technical objectives have returned far more than expected results from all manner of application of new techniques to high quality data. Again, the key ingredient may be that the project oversight is driven by scientists with free and open access to data and broad and evolving expectations as to how the facility might be applied towards research objectives. Major projects must clearly follow defined plans and budgets; but, while it is important to have managers to motivate schedules and control costs, the energy, vigor and effort to optimize new measures and discover new applications derive from the insights and enthusiasm of the science community.

  19. NASA Structure and Evolution of the Universe Theme: Science Overview

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Margon, Bruce

    2001-01-01

    The NASA Office of Space Science Structure and Evolution of the Universe (SEU) theme covers a wide variety of scientific investigations, from the nearest bodies to the farthest observable distances just after the time of the Big Bang. SEU supports experiments that sense radiation of all wavelengths, together with particle and gravitational wave detection. Recently completed road mapping and strategic planning exercises have identified a number of near- and medium-term space initiatives for the 2003-2023 time frame. Each of these experiments pushes the state of the art technically, but will return incredible new insights on the formation and evolution of the universe, as well as probe fundamental laws of physics in regimes never before tested. The scientific goals and technological highlights of each mission are described.

  20. Co-planning among science and special education teachers: How do different conceptual lenses help to make sense of the process?

    NASA Astrophysics Data System (ADS)

    Swanson, Lauren H.; Bianchini, Julie A.

    2015-12-01

    In this study, we investigated the process of teacher co-planning. We examined two teams of high school science and special education teachers brought together to co-plan inclusive, inquiry-oriented science units as part of a professional development effort. We used three conceptual lenses to help make sense of this process: (1) characteristics of collaboration, (2) small group interactions, and (3) community discourse. Using these lenses individually and collectively, we identified strengths and limitations in teachers' co-planning efforts. A strength was that all teachers, irrespective of discipline, shared ideas and helped make decisions about the content and activities included in unit and lesson plans. A limitation was that teachers, again irrespective of discipline, discussed science education topics in their teams more often than special education ones. We found this latter finding of note as it spoke to issues of parity among teachers during the professional development. In our discussion, we argue that each conceptual lens yielded both unique and common findings on co-planning. We also provide recommendations for professional developers and educational scholars intent on organizing and/or researching co-planning among science and special education teachers.

  1. 76 FR 33726 - National Ocean Council; Strategic Action Plan Content Outlines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ...On July 19, 2010, President Obama signed Executive Order 13547 establishing a National Policy for the Stewardship of the Ocean, our Coasts, and the Great Lakes (``National Ocean Policy''). The National Ocean Policy provides an implementation strategy, which describes nine priority objectives that seek to address some of the most pressing challenges facing the ocean, our coasts, and the Great Lakes. The National Ocean Council is responsible for developing strategic action plans for each of the nine priority objectives. As a first step, Federal interagency writing teams have developed content outlines for each draft strategic action plan. The NOC is seeking public review and comment of these content outlines. The purpose of the draft content outlines (outlines) is to provide the public with an initial view of potential actions that could be taken to further the national priority objectives. As such, they are an interim step toward development of the first full draft of each strategic action plan. In developing the outlines, the writing teams were informed by the comments received during an initial public scoping period that closed on April 29. Each outline presents in bulleted form potential actions to further the particular priority objective. It describes the reasons for taking the action, expected outcomes and milestones, gaps and needs in science and technology, and the timeframe for completing the action. The outlines also provide an overview of the priority objective, greater context for the strategic action plan in implementing the National Ocean Policy, and an overview of the preparation of the plan . Public comments received on the outlines will be collated and posted on the NOC Web site. The comments on the outlines will inform the preparation of full draft strategic action plans, which will be released for public review in the fall of 2011, allowing additional opportunity for the public to provide comments. Final strategic action plans are expected to be completed by early 2012.

  2. Interactive Webmap-Based Science Planning for BepiColombo

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.

    2015-10-01

    For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.

  3. Science: Curriculum Guide for Teaching Gifted Children Science in Grades One Through Three: A Sample Ecology Unit.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Office of Curriculum Services.

    The natural science curriculum guide for gifted primary students includes a sample teaching-learning plan for an ecology unit and eight sample lesson plans. Chapter One provides an overview of the unit, a review of behavioral objectives, and a list of concepts and generalizations. The second chapter cites a teaching-learning plan dealing with such…

  4. Robust and Opportunistic Autonomous Science for a Potential Titan Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Schaffer, Steve; Castano, Rebecca; Elfes, Alberto

    2010-01-01

    We are developing onboard planning and execution technologies to provide robust and opportunistic mission operations for a potential Titan aerobot. Aerobot have the potential for collecting a vast amount of high priority science data. However, to be effective, an aerobot must address several challenges including communication constraints, extended periods without contact with Earth, uncertain and changing environmental conditions, maneuverability constraints and potentially short-lived science opportunities. We are developing the AerOASIS system to develop and test technology to support autonomous science operations for a potential Titan Aerobot. The planning and execution component of AerOASIS is able to generate mission operations plans that achieve science and engineering objectives while respecting mission and resource constraints as well as adapting the plan to respond to new science opportunities. Our technology leverages prior work on the OASIS system for autonomous rover exploration. In this paper we describe how the OASIS planning component was adapted to address the unique challenges of a Titan Aerobot and we describe a field demonstration of the system with the JPL prototype aerobot.

  5. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor)

    1977-01-01

    Information concerning active and planned spacecraft and experiments is reported. The information includes a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  6. Earth Science Education for the 21st Century: A Planning Guide.

    ERIC Educational Resources Information Center

    American Geological Inst., Alexandria, VA.

    In response to the growing national concern about precollege science education, this guide was developed to assist school administrators, curriculum planners, teachers, and scientists in incorporating earth science in K-12 science curricula. The guide is divided into four main sections that provide a framework for planning and implementing earth…

  7. Site Characterization Report (Building 202). Volume 2. Appendicies A-H.

    DTIC Science & Technology

    1996-04-01

    Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and

  8. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Littlefield, R. G. (Editor)

    1983-01-01

    Information concerning active and planned spacecraft and experiments is included. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and fundng of individual countries as well as cooperative arrangements among different countries.

  9. The Economy of Romania: How it Compares to Other Centrally-Planned Economies in Eastern Europe.

    DTIC Science & Technology

    1984-06-01

    moonlighting ," with all the positive connotations of supplementing one’s in- come through industry and initiative. It is a broader, more pervasive...Western Stereotypes ." Christian Science Monitor. March 24, 1983, p. 13. Keefe, Eugene K., Violeta 0. Baluyut, William Giloane, Anne K. Long, James M. Moore...Postgraduate School Monterey, CA 93943 8. Marine Corps Representative, Code 0309 Naval Postgraduate School Monterey, CA 93940 9. Captain Grace M. Charney P.O. Box 7267 APO NY 09012 182 . . . . - FILMED 4-85 * DTIC

  10. Flow velocity, water temperature, and conductivity at selected locations in Shark River Slough, Everglades National Park, Florida; July 1999 - July 2003

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Riscassi, Ami L.

    2005-01-01

    Flow-velocity, water-temperature, and conductivity data were collected at five locations in Shark River Slough, Everglades National Park (ENP), Florida, from 1999 to 2003. The data were collected as part of the U.S. Geological Survey Priority Ecosystems Science Initiative in support of the Comprehensive Everglades Restoration Plan. This report contains digital files and graphical plots of the processed, quality-checked, and edited data. Information pertinent to the locations and monitoring strategy also is presented.

  11. Chronology of KSC and KSC Related Events for 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Much of the activity at the Kennedy Space Center in 1976, particularly during the first 9 months, centered on the planning, construction, maintenance,and operation of the U.S. Bicentennial Exposition on Science and Technology. Since this project began in 1975, the historian has included some dates of key events relating to the Exposition to introduce the 1976 Chronology. Also in 1975 A 3-year program was initiated at KSC to research the electrical characteristics of thunderstorms. This is an international program involving top atmospheric researchers of the free world.

  12. Initial Results from the Third Round of Remediated Nitrate Salt Surrogate Formulation and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Geoffrey Wayne; Leonard, Philip; Hartline, Ernest Leon

    2016-04-20

    High explosives science and technology (M-7) is currently working on the third round of formulation and testing of Remediated nitrate salt (RNS) surrogates. This report summarizes the calorimetry results from the 15% sWheat mixtures. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) surrogate formulation and testing standard procedure", released February 16, 2016. Results from the first and second rounds of formulation and testing were documented in memoranda M7-16-6042 and M7-16-6053.

  13. Energy Frontier Research Centers (EFRCs): A Response to Five Challenges for Science and the Imagination (2011 EFRC Summit, panel session)

    ScienceCinema

    Alivisatos, Paul; Crabtree, George; Dresselhaus, Mildred; Ratner, Mark

    2018-05-14

    A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imagination”, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Attitude and Secondary School Science Students' Intention To Enroll in Physics: An Application of the Theory of Planned Behavior.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Black, Carolyn B.

    This study explores the utility of the theory of planned behavior for understanding and predicting the behavioral intentions of secondary science students. Data were collected from secondary science students enrolling in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade). Cause-effect relations…

  15. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Brecht, J. J. (Editor)

    1974-01-01

    Information dealing with active and planned spacecraft and experiments known to the National Space Science Data Center (NSSDC) is presented. Included is information concerning a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  16. Redefining roles of science in planning and management: ecology as a planning and management tool

    Treesearch

    Greg Mason; Stephen Murphy

    2002-01-01

    Science as a way of knowing has great value to decision-making but there is need to consider all its attributes and assess how science ought to be informing decision-making. Consideration of the critiques of science can make science stronger and more useful to decision-making in an environmental and ecological context. Scientists, planners, and managers need to...

  17. NASA Global Hawk: A Unique Capability for the Pursuit of Earth Science

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2007-01-01

    For more than 2 years, the NASA Dryden Flight Research Center has been preparing for the receipt of two Advanced Concept Technology Demonstration Global Hawk air vehicles from the United States Air Force. NASA Dryden intends to establish a Global Hawk Project Office, which will be responsible for developing the infrastructure required to operate this unmanned aerial system and establishing a trained maintenance and operations team. The first flight of a NASA Global Hawk air vehicle is expected to occur in 2008. The NASA Global Hawk system can be used by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. Initially, the main focus of the research activities is expected to be Earth science related. A combination of the vehicle s range, endurance, altitude, payload power, payload volume, and payload weight capabilities separates the Global Hawk unmanned aerial system from all other platforms available to the science community. This report describes the NASA Global Hawk system and current plans for the NASA air vehicle concept of operations, and provides examples of potential missions with an emphasis on science missions.

  18. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge.

    PubMed

    Rangel, Carolina Netto; Nunn, Rebecca; Dysarz, Fernanda; Silva, Elizabete; Fonseca, Alexandre Brasil

    2014-09-01

    Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE) projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  19. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  20. Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Guffin, O. T.

    1994-01-01

    Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

  1. Collaborations for Building Tribal Resiliency to Climate Change

    NASA Astrophysics Data System (ADS)

    Bamzai, A.; Taylor, A.; Winton, K.

    2015-12-01

    Sixty-eight tribes are located in the U.S. Department of the Interior's South Central Climate Science Center (SCCSC) region. The SCCSC made it a priority to include the tribes as partners from its inception and both the Chickasaw Nation and the Choctaw Nation of Oklahoma participate in the center's activities as consortium members. Under this arrangement, the SCCSC employs a full-time tribal liaison to facilitate relations with the tribes, develop partnerships for climate-relevant projects, build tribal stakeholder capacity, and organize tribal youth programs. In 2014, the SCCSC published its Tribal Engagement Strategy (USGS Circular 1396) to outline its approach for developing tribal relationships. The conceptual plan covers each step in the multi-year process from initial introductory meetings and outreach to demonstrate commitment and interest in working with tribal staff, building tribal capacity in climate related areas while also building researcher capacity in ethical research, and facilitating the co-production of climate-relevant research projects. As the tribes begin to develop their internal capacity and find novel ways to integrate their interests, the plan ultimately leads to tribes developing their own independent research projects and integrating climate science into their various vulnerability assessments and adaptation plans. This presentation will outline the multiple steps in the SCCSC's Tribal Engagement Strategy and provide examples of our ongoing work in support of each step.

  2. Strategic Map for Achieving Enceladus Ocean Exploration in Our Time

    NASA Astrophysics Data System (ADS)

    Sherwood, B.

    2015-12-01

    At AGU 2014, the author presented a decomposition and sequencing of science questions and technical capabilities that define viable programmatic pathways to enable sample return and advanced in situ exploration of the Enceladan ocean, consistent with NASA mission-opportunity constraints. Elaborated and refined in 2015 via JpGU, AbSciCon, IAC, and COSPAR Water, this plan is now specific: discrete and integrated analyses and coordination actions that, if acted on by the community over the next 45 months, could result in Enceladus ocean exploration appearing in the next Planetary Decadal Survey's mission priorities, issued in 2021. At AGU 2015, a product-based, outcome-measurable, stepwise milestone plan is presented to catalyze the next level of community discussion. Topics covered by the action plan include: hypothesis-driven science questions; mission cost as a function of mission capability; mission selectability as a function of programmatic constraints and evaluation process; exploration technologies as a function of funding and schedule; international consensus on forward and backward planetary protection requirements and solutions for exploring worlds with astrobiologically significant liquid water; and strategic balance among major NASA planetary science initiatives. Key Decadal-runup milestones are analyzed with respect to stakeholders, success criteria, and - critically - calendar and precedence. These results then inform a multi-year action plan to generate, vet, and socialize throughout the community a set of technically and fiscally viable mission concepts, respectively enabled by an achievable technology development roadmap also detailed in the presentation. This can begin to align advocate actions toward a broad community goal of exploring the Enceladan ocean. Without such coordination, which must reach fruition by Sep 2019, the probability that the next Decadal could explicitly prioritize mission objectives for Enceladus ocean exploration - as one of the top Flagship or as New Frontiers priorities - will be low. Missing the 2023-2032 Decadal window would in turn force such missions beyond the career horizon even of today's graduate students.

  3. REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy.

    PubMed

    Kareiva, Peter; Groves, Craig; Marvier, Michelle

    2014-10-01

    The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries 'to conserve the lands and waters on which all life depends'. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as 'Conservation by Design' that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted. Synthesis and applications . Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions and strategies, and in turn the evolving practice of conservation has altered the type of science sought by TNC in order to maximize its conservation effectiveness.

  4. REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy

    PubMed Central

    Kareiva, Peter; Groves, Craig; Marvier, Michelle

    2014-01-01

    The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries ‘to conserve the lands and waters on which all life depends’. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as ‘Conservation by Design’ that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted.Synthesis and applications. Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions and strategies, and in turn the evolving practice of conservation has altered the type of science sought by TNC in order to maximize its conservation effectiveness. PMID:25641980

  5. Renovated, repurposed, and still “one sweet library”: a case study on loss of space from the Health Sciences and Human Services Library, University of Maryland, Baltimore

    PubMed Central

    Tooey, Mary Joan (M.J.)

    2010-01-01

    Setting: The Health Sciences and Human Services Library (HS/HSL), University of Maryland, Baltimore (UMB), is located in an urban environment on the west side of downtown Baltimore. Founded in 1813, the library opened its current building in 1998 and is one of the largest health sciences libraries in the United States, with 6 floors and over 180,000 gross square and 118,000 net assignable square feet (NASF). Project: The initial discussions in late 2005 involved moving campus offices into the library. Almost immediately, it was recognized that a much larger renovation was needed due to the scope of the work. The vice president for academic affairs, the library executive director, and campus planners agreed that if the renovation was done thoughtfully, multiple needs could be met, including new office spaces, better user spaces, and synergy with the new campus center being built next door. Planning: The planning, design, and construction process was multifaceted and on a fast track. Although the final piece of the renovation was completed in June 2009, the majority of the planning, design, and construction took place between March 2006 and June 2008. All tenants were involved with office design. Library staff were involved in designing the public spaces and planning the strategy for weeding and shifting. Outcomes: Approximately 8,000 NASF was reallocated to new office space from shelving space, amounting to approximately 6.7% of the building NASF and approximately 10.6% of the public space in the building. The majority of new offices in the building report to the same vice president and are student focused and service oriented, with similar missions to that of the library resulting in a very harmonious cohabitation. Additional units with these missions and reporting structure are located in the new campus center, creating a synergy between the two buildings. PMID:20098653

  6. SOFIA Update and Science Vision

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly

    2017-01-01

    I will present an overview of the SOFIA program, its science vision and upcoming plans for the observatory. The talk will feature several scientific highlights since full operations, along with summaries of planned science observations for this coming year, platform enhancements and new instrumentation.

  7. Remarks from Congressional Leaders: Senator Jeff Bingaman (2011 EFRC Summit)

    ScienceCinema

    Bingaman, Jeff

    2017-12-11

    During the opening session of the EFRC Summit, Senator Jeff Bingaman (D-NM) explained how the EFRCs play an important role in the U.S. energy innovation ecosystem. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  8. Who Owns the Content and Who Runs the Risk? Dynamics of Teacher Change in Teacher-Researcher Collaboration

    NASA Astrophysics Data System (ADS)

    Hamza, Karim; Piqueras, Jesús; Wickman, Per-Olof; Angelin, Marcus

    2017-06-01

    We present analyses of teacher professional growth during collaboration between science teachers and science education researchers, with special focus on how the differential assumption of responsibility between teachers and researchers affected the growth processes. The collaboration centered on a new conceptual framework introduced by the researchers, which aimed at empowering teachers to plan teaching in accordance with perceived purposes. Seven joint planning meetings between teachers and researchers were analyzed, both quantitatively concerning the extent to which the introduced framework became part of the discussions and qualitatively through the interconnected model of teacher professional growth. The collaboration went through three distinct phases characterized by how and the extent to which the teachers made use of the new framework. The change sequences identified in relation to each phase show that teacher recognition of salient outcomes from the framework was important for professional growth to occur. Moreover, our data suggest that this recognition may have been facilitated because the researchers, in initial phases of the collaboration, took increased responsibility for the implementation of the new framework. We conclude that although this differential assumption of responsibility may result in unequal distribution of power between teachers and researchers, it may at the same time mean more equal distribution of concrete work required as well as the inevitable risks associated with pedagogical innovation and introduction of research-based knowledge into science teachers' practice.

  9. Perspectives in Energy Research: How Can We Change the Game? (2011 Summit)

    ScienceCinema

    Isaacs, Eric

    2018-02-12

    Eric Issacs, Director of DOE's Argonne National Laboratory, discussed the role of the EFRC Program and National Laboratories in developing game-changing energy technologies in the EFRC Summit session titled "Leading Perspectives in Energy Research." The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  10. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  11. Reaching for the Horizon: The 2015 NSAC Long Range Plan

    NASA Astrophysics Data System (ADS)

    Geesaman, Donald

    2015-10-01

    In April 2014, the Nuclear Science Advisory Committee was charged to conduct a new study of the opportunities and priorities for United States nuclear physics research and to recommend a long range plan for the coordinated advancement of the Nation's nuclear science program over the next decade. The entire community actively contributed to developing this plan. Ideas and goals, new and old, were examined and community priorities were established. The Long Range Plan Working Group gathered at Kitty Hawk, NC to converge on the recommendations. In this talk I will discuss the vision for the future that has emerged from this process. The new plan, ``Reaching for the Horizon,'' offers the promise of great leaps forward in our understanding of nuclear science and new opportunities for nuclear science to serve society. This work was supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  12. Map, Excite, Jump, and Measure: An Outreach Activity That Utilizes Seismology to Engage Students in Technology, Science, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    van der Lee, S.; Tekverk, K.; Rooney, K.; Boxerman, J.

    2013-12-01

    We designed and will present a lesson plan to teach students STEM concepts through seismology. The plan addresses new generation science standards in the Framework for K-12 Science Education as well AAAS Benchmarks for Science Literacy. The plan can be executed at a facility with a seismometer in a research facility or university, on a field trip, but it can also be used in a school setting with a school seismometer. Within the lesson plan, the students first use technology to obtain earthquake location data and map them. Next, the students learn about the science of earthquakes, which is followed by an engineering activity in which the students design a hypothetical seismometer and interact with the actual seismometer and live data display. Lastly the students use mathematics to locate an earthquake through trilateration. The lesson plan has been fine-tuned through implementation with over 150 students from grades 3-12 from the Chicago area.

  13. Pacific-Australia Climate Change Science and Adaptation Planning program: supporting climate science and enhancing climate services in Pacific Island Countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa

    2013-04-01

    Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the predictive skill of POAMA is consistently higher than skill of statistical-based method. Presently, under the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program, we are developing dynamical model-based seasonal climate prediction for climate extremes. Of particular concern are tropical cyclones which are the most destructive weather systems that impact on coastal areas of Australia and Pacific Island Countries. To analyse historical cyclone data, we developed a consolidate archive for the Southern Hemisphere and North-Western Pacific (http://www.bom.gov.au/cyclone/history/tracks/). Using dynamical climate models (POAMA and Japan Meteorological Agency's model), we work on improving accuracy of seasonal forecasts of tropical cyclone activity for the regions of Western Pacific. Improved seasonal climate prediction based on dynamical models will further enhance climate services in Australia and Pacific Island Countries.

  14. Improving the primary school science learning unit about force and motion through lesson study

    NASA Astrophysics Data System (ADS)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  15. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  16. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  17. 76 FR 55943 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  18. 76 FR 10388 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  19. 75 FR 79017 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  20. 77 FR 21806 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  1. 75 FR 17433 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  2. 75 FR 52370 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...] Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  3. 78 FR 4870 - Notice of Public Meeting, North Slope Science Initiative-Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...] Notice of Public Meeting, North Slope Science Initiative--Science Technical Advisory Panel AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and the...

  4. Automated Scheduling of Science Activities for Titan Encounters by Cassini

    NASA Technical Reports Server (NTRS)

    Ray, Trina L.; Knight, Russel L.; Mohr, Dave

    2014-01-01

    In an effort to demonstrate the efficacy of automated planning and scheduling techniques for large missions, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] and CLASP (Compressed Large-scale Activity Scheduling and Planning) [2] to the domain of scheduling high-level science goals into conflict-free operations plans for Titan encounters by the Cassini spacecraft.

  5. A Framework to Support S&T Planning for Royal Australian Navy Capability Acquisition

    DTIC Science & Technology

    2012-03-01

    for guiding policy and assisting with strategic planning innovation processes. At the commencement of a Foresight Planning exercise the...for many Australian Defence Force (ADF) capability projects . Specifically, the methodology could prove beneficial in the development of science and...27 6.4 Selecting Appropriate Foresight Planning Methods ....................................... 28 7. SCIENCE AND

  6. A Statewide Partnership for Implementing Inquiry Science

    NASA Astrophysics Data System (ADS)

    Lytle, Charles

    The North Carolina Infrastructure for Science Education (NC-ISE) is a statewide partnership for implementing standards-based inquiry science using exemplary curriculum materials in the public schools of North Carolina. North Carolina is the 11th most populous state in the USA with 8,000,000 residents, 117 school districts and a geographic area of 48,718 miles. NC-ISE partners include the state education agency, local school systems, three branches of the University of North Carolina, the state mathematics and science education network, businesses, and business groups. The partnership, based upon the Science for All Children model developed by the National Science Resources Centre, was initiated in 1997 for improvement in teaching and learning of science and mathematics. This research-based model has been successfully implemented in several American states during the past decade. Where effectively implemented, the model has led to significant improvements in student interest and student learning. It has also helped reduce the achievement gap between minority and non-minority students and among students from different economic levels. A key program element of the program is an annual Leadership Institute that helps teams of administrators and teachers develop a five-year strategic plan for their local systems. Currently 33 of the117 local school systems have joined the NC-ISE Program and are in various stages of implementation of inquiry science in grades K-8.

  7. Enhancing Use of Learning Sciences Research in Planning for and Supporting Educational Change: Leveraging and Building Social Networks

    ERIC Educational Resources Information Center

    Penuel, William R.; Bell, Philip; Bevan, Bronwyn; Buffington, Pam; Falk, Joni

    2016-01-01

    This paper explores practical ways to engage two areas of educational scholarship--research on science learning and research on social networks--to inform efforts to plan and support implementation of new standards. The standards, the "Next Generation Science Standards" (NGSS; NGSS Lead States in Next generation science standards: For…

  8. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Treesearch

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  9. Sustaining the Bering Ecosystem: A Social Science Research Plan

    NASA Astrophysics Data System (ADS)

    Fitzhugh, B.; Huntington, H. P.; Pete, M. C.; Sepez, J. A.

    2007-12-01

    The Bering Sea is changing from an ice-dominated to an increasingly open water system. The over-arching goal of the NSF-supported Bering Ecosystem Study (BEST) is to understand the effects of climate variability and change on the Bering Sea ecosystem. To the people who are simultaneously a part of that ecosystem and rely on its productivity for life and work, climate change and its effects are among the top concerns. Sustaining the Bering Ecosystem articulates a vision and approaches for social science research as a component of the BEST Program (www.arcus.org/bering). This science plan seeks to initiate research to elucidate the dynamic relationship between the Bering Sea ecosystem and the humans who constitute an integral component of that system. To do so, this plan delineates a research program focused on three broad themes: 1. Impacts on humans: how past, current, and possible future changes in the Bering Sea ecosystem affect the health and well-being of people living and depending on this region for subsistence, employment, and cultural survival. 2. Human impacts: how changing human uses of the Bering Sea region affect the natural cycles of this ecosystem by moderating and/or accelerating systemic changes. 3. Dynamics of human and non-human natural systems: how the human-environmental dynamic has changed through time and may change in the future due to internal and external opportunities and pressures. These themes are developed in the context of a community-driven approach based on the concerns, goals, and interests of Bering Sea residents and other stakeholders of the region. This plan has been drafted through the collaboration of Bering Sea residents (primarily Alaska Natives) and non-resident stakeholders, social scientists, and natural scientists to focus efforts around research questions important to stakeholders, which in various ways center on issues of sustainability (of resources, economic opportunities, ways of life, and culture itself). The research envisioned by this plan will provide a foundation for resident communities, regional corporations and tribal councils, industry stakeholders, resource managers and policy makers at various levels to plan for and face the future with less uncertainty. To accomplish this goal, research must be developed with attention to concrete and practical outcomes. In this social science effort, and in the broader Bering Sea Ecosystem Study (BEST) of which it is a part, synergies must be explored that harness the strengths of multiple disciplines toward common purposes. For this reason, the research anticipated in this plan will: - generally involve interdisciplinary teams and projects that include a modeling component; - may focus on more than one of the defined research themes; and - require collaboration and partnership with Native and non-Native residents and stakeholders in the Bering Sea.

  10. Asset - An application in mission automation for science planning

    NASA Technical Reports Server (NTRS)

    Finnerty, D. F.; Martin, J.; Doms, P. E.

    1987-01-01

    Recent advances in computer technology were used to great advantage in planning science observation sequences for the Voyager 2 encounter with Uranus in 1986. Despite a loss of experienced personnel, a challenging schedule, workforce limitations, and the complex nature of the Uranus encounter itself, the resultant science observation timelines were the most highly optimized of the five Voyager encounters with the outer planets. In part, this was due to the development of a microcomputer-based system, called ASSET (Automated Science Sequence Encounter Timelines generator), which was used to design those science observation timelines. This paper details the development of that system. ASSET demonstrates several features essential to the design of the first expert systems for science planning which will be applied for future missions.

  11. MISR - Science Data Validation Plan

    NASA Technical Reports Server (NTRS)

    Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.

    2000-01-01

    This Science Data Validation Plan describes the plans for validating a subset of the Multi-angle Imaging SpectroRadiometer (MISR) Level 2 algorithms and data products and supplying top-of-atmosphere (TOA) radiances to the In-flight Radiometric Calibration and Characterization (IFRCC) subsystem for vicarious calibration.

  12. Galileo mission planning for Low Gain Antenna based operations

    NASA Technical Reports Server (NTRS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-01-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include quantifying resource or capabilities to be allocated, prioritizing science observations and estimating resource needs for each, working inter-and intra-orbit trades of these resources among the Project elements, and planning real-time science activity. The first major mission planning activity, a high level, orbit-by-orbit allocation of resources among science objectives, has already been completed; and results are illustrated in the paper. To make efficient use of limited resources, Galileo mission planning will rely on automated mission planning tools capable of dealing with interactions among time-varying downlink capability, real-time science and engineering data transmission, and playback of recorded data. A new generic mission planning tool is being adapted for this purpose.

  13. Galileo mission planning for Low Gain Antenna based operations

    NASA Astrophysics Data System (ADS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-11-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include quantifying resource or capabilities to be allocated, prioritizing science observations and estimating resource needs for each, working inter-and intra-orbit trades of these resources among the Project elements, and planning real-time science activity. The first major mission planning activity, a high level, orbit-by-orbit allocation of resources among science objectives, has already been completed; and results are illustrated in the paper. To make efficient use of limited resources, Galileo mission planning will rely on automated mission planning tools capable of dealing with interactions among time-varying downlink capability, real-time science and engineering data transmission, and playback of recorded data. A new generic mission planning tool is being adapted for this purpose.

  14. Cooperative Science Lesson Plans.

    ERIC Educational Resources Information Center

    Cooperative Learning, 1991

    1991-01-01

    Offers several elementary level cooperative science lesson plans. The article includes a recipe for cooperative class learning, instructions for making a compost pile, directions for finding evidence of energy, experiments in math and science using oranges to test density, and discussions of buoyancy using eggs. (SM)

  15. Understanding change and curriculum implementation

    NASA Astrophysics Data System (ADS)

    de Jong, Gayle Marie

    2000-10-01

    This dissertation is a qualitative case study that examined perceptions of teachers in 2 schools about the process of change used in the implementation of a hands-on science program. Many change initiatives have failed in their implementation, and it may not necessarily be attributed to their quality. A countless number of promising programs have been derailed by a poor understanding of the process of change. This study looks first at the history of science reform to illustrate first the importance of hands-on inquiry as an effective instructional strategy. Then the process of change and its relationship to the implementation of a hands-on science curriculum was examined. The Hands on Science Program (HASP) is modular based and relies heavily on inquiry teaching. The project had been underway in these schools for about 5 years, and the districts are ready to evaluate its success. An interview with the original Project Director and information obtained from a summative evaluation helped explain the HASP. The Project Director shared the thinking that was involved in the program's inception, and the evaluation report served as a summary of the project's progress. Two schools were selected to examine the status of the program. The Organizational Climate Description Questionnaire and the Organizational Health Inventory developed by Hoy and Tarter (1997) were used to enrich the description of the school. Five teachers from each school, who have had leading roles in the implementation, were interviewed in an attempt to understand the insider's view of the change process used in the implementation of the HASP in their schools. Achievement data from the Stanford Achievement Test-9 was also used to provide some additional information. Interviews were used to understand teacher perceptions in each school and then compared in a cross-ease analysis. The results of this study could be used as planning suggestions for educational leaders designing change initiatives, although it should be understood that the results obtained from these 2 schools may not be generalized to others. Efforts to implement new curriculums will fail without sufficient study, planning, and understanding of the process of change.

  16. Summer in the City - Assessing and Communicating the Richmond, VA Urban Heat Island to the Public and Policymakers

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Maurakis, E. G.; Shandas, V.

    2017-12-01

    The local impacts of global climate change are generally underestimated or misunderstood by the public and policymakers as far-off, future problems. However, differential and regional surface warming trends are exacerbated in urban areas due to the radiative properties of impervious surfaces like buildings and roads relative to natural landscapes. Decades of research illustrate that this unnatural radiative imbalance in the built environment gives rise to the well-studied urban heat island effect, whereby air temperatures in urban areas are several degrees warmer than in surrounding non-urbanized areas. In this way, the urban heat island effect presents a unique opportunity to highlight the human influence on Earth systems and at the same time mobilize local community-scale action to mitigate and become resilient to climate change impacts on tangible, experiential time scales. However, public stakeholders, city planners, and policymakers may view the urban heat island effect and its mitigation strategies through varying degrees of climatological, public health, and urban development knowledge and interest. This variation in stakeholder engagement highlights the need for individualized science communication strategies for each audience in order to maximize understanding of the scientific outcomes and tactics for mitigating the urban heat island effect. The City of Richmond, Virginia is currently developing a climate action plan as part of their greenhouse gas emission reduction initiative, RVAgreen 2050, and its recently announced "Richmond 300," a 20-year city development master plan. These initiatives provide the policy backdrop for a public and stakeholder education campaign centered on communicating urban heat island effects and resilience strategies. As such, the Science Museum of Virginia led the city's first urban heat island assessment using citizen science and leveraging a network of local university, non-profit, and city government stakeholders. Here, we will share our tactics for public- and policymaker-centered dissemination of urban heat island science, findings, and mitigation strategies using a variety of techniques including local news stations, 3D visualization technology, NOAA-funded museum media pieces, and policymaker/stakeholder engagement opportunities.

  17. Every teacher an English teacher? Literacy strategy teaching and research in the content area of science education

    NASA Astrophysics Data System (ADS)

    Buckingham, Thomas

    Recent statements from teachers of English and literacy (NCTE, 2007) have voiced the failure of schools to help minority students and ELLs close the literacy achievement gap and the responsibility of all teachers to help with this endeavor. Central to this effort in secondary schools are the content area teachers, as their subjects constitute the bulk of school day instruction. While there have been small studies and field reports of what content teachers are or are not teaching in the way of literacy instruction (Fisher and Ivey, 2005; Verplaste, 1996, 1998; Vacca and Vacca 1989), researchers have not had success measuring the literacy practices of content area teachers in a broad-based study. This study focuses specifically on what many researchers in both the content literacy and ESL fields have emphasized for promoting literacy in the classroom---teaching metacognitive strategies. Twelve metacognitive functions derived from a literacy strategies handbook are employed as a means to ascertain strategy usage within the lessons whether specifically known content strategies are named or not. The initial analysis is performed on over 100 lesson plans hosted at four prominent university science education sites, all within a five year period (2003-7). In addition to the lesson plan analysis, a review of 100 articles taken from five on-line science education journals reveal what the science education field addresses this issue. Findings suggest that while 80% of science teachers include some type of strategic teaching and learning in their lessons, only about 20% of science teachers explicitly utilize strategies as listed in content literacy manuals and promoted by literacy and ESL experts. Rather, most science teachers implicitly include these strategies within their lessons and/or promote their own subject-specific strategies in content teaching. Analysis of science education research and publications shows that there is a focus on literacy and specifically strategic learning; however, the evidence does not suggest that science teachers necessarily follow these suggested offerings---even when it comes to their own national organization's offerings in this area.

  18. Report on Active and Planned Spacecraft and Experiments. [bibliographies

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Horwitz, R. (Editor)

    1979-01-01

    Information concerning concerning active and planned spacecraft and experiments known to the National Space Science Data Center are included. The information contains a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries. Approximately 850 articles are included.

  19. Community-Based Wetland Restoration Workshop in the Lower Ninth Ward, New Orleans

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Craig, L.; Ross, J. A.; Zepeda, L.; Carpenter, Q.

    2010-12-01

    Since 2007 a workshop class of University of Wisconsin-Madison students has participated in a community-based project in New Orleans to investigate the feasibility of restoring the Bayou Bienvenue Wetland Triangle (BBWT), which is adjacent to the Lower 9th Ward in New Orleans. This 440-acre region is currently open water but was a cypress forest until the 1970s. Restoration would provide protection from storm surges, restored ecological services, and recreational use. The workshop introduced students to the multidisciplinary skills needed to work effectively with the complex and interconnected issues within a project involving many stakeholders. The stakeholders included the Center for Sustainable Engagement and Development (CSED), Lower 9th Ward residents, non-profits (e.g., Sierra Club, Environmental Defense, Lake Pontchartrain Basin Foundation, National Wildlife Federation), government agencies (e.g., New Orleans Sewerage and Water Board, Army Corps of Engineers), neighborhood groups (e.g., Holy Cross Neighborhood Association, The Village), and universities (Tulane, U. of New Orleans, LSU, U. Colorado-Denver, Southeastern Louisiana). The course ran initially as a Water Resources Management practicum in the first two summers and then as a broader multidisciplinary project with student expertise in hydrology, social science, law, planning, policy analysis, community development, GIS, public health, environmental education and ecological restoration. The project divided into three main components: wetland science, social science, and land tenure and planning. Principal activities in wetland science were to monitor water levels and water quality, inventory flora and fauna, and plant grasses on small “floating islands.” The principal social science activity was to conduct a neighborhood survey about knowledge of the wetland and interest in its restoration. The land tenure and planning activity was to investigate ownership and transfer of property within the wetland because it had been platted with large areas privately owned. A self-published workshop report was produced each of the first three years. Bayou Bienvenue Wetland Triangle with downtown New Orleans in the background. Photo by Travis Scott, U. of Wisconsin-Madison, 2007.

  20. High priority needs for range-wide monitoring of North American landbirds

    USGS Publications Warehouse

    Dunn, Erica H.; Altman, B.L.; Bart, J.; Beardmore, C.J.; Berlanga, H.; Blancher, P.J.; Butcher, G.S.; Demarest, D.W.; Dettmers, R.; Hunter, W.C.; Iñigo-Elias, Eduardo E.; Panjabi, A.O.; Pashley, D.N.; Ralph, C.J.; Rich, T.D.; Rosenberg, K.V.; Rustay, C.M.; Ruth, J.M.; Will, T.C.

    2005-01-01

    This document is an extension of work done for the Partners in Flight North American Landbird Conservation Plan (Rich et al. 2004). The Continental Plan reviewed conservation status of the 448 native landbird species that regularly breed in the United States and Canada. Two groups of species were identified as having high conservation importance: the PIF Watch List, made up of species for which there is conservation concern, and Stewardship Spices that are particularly characteristic of regional avifaunas. In addition, continental scale monitoring needs were identified for all species. Here we extend the monitoring needs aspect of the Plan, providing additional detail and suggesting the best means of filling the gaps in broad-scale, long-term trend monitoring. This analysis and report was compiled by the Partners in Flight (PIF) Science Committee as a contribution to current work by the North American Bird Conservation Initiative to assess the status of bird population monitoring in North America and to make recommendations for improvements.

  1. Reinvisioning and redesigning “a library for the fifteenth through twenty-first centuries”: a case study on loss of space from the Library and Center for Knowledge Management, University of California, San Francisco*

    PubMed Central

    Persily, Gail L.; Butter, Karen A.

    2010-01-01

    The University of California, San Francisco, is an academic health sciences campus that is part of a state public university system. Space is very limited at this urban campus, and the library building's 90,000 square feet represent extremely valuable real estate. A planning process spanning several years initially proposed creating new teaching space utilizing 10,000 square feet of the library. A collaborative campus-wide planning process eventually resulted in the design of a new teaching and learning center that integrates clinical skills, simulation, and technology-enhanced education facilties on one entire floor of the building (21,000 square feet). The planning process resulted in a project that serves the entire campus and strengthens the library's role in the education mission. The full impact of the project is yet unknown as construction is not complete. PMID:20098654

  2. Smith college secondary math and science outreach program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.A.; Clark, C.

    1994-12-31

    The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returningmore » to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.« less

  3. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  4. Quantum walks on the chimera graph and its variants

    NASA Astrophysics Data System (ADS)

    Sanders, Barry; Sun, Xiangxiang; Xu, Shu; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum

    We study quantum walks on the chimera graph, which is an important graph for performing quantum annealing, and we explore the nature of quantum walks on variants of the chimera graph. Features of these quantum walks provide profound insights into the nature of the chimera graph, including effects of greater and lesser connectivity, strong differences between quantum and classical random walks, isotropic spreading and localization only in the quantum case, and random graphs. We analyze finite-size effects due to limited width and length of the graph, and we explore the effect of different boundary conditions such as periodic and reflecting. Effects are explained via spectral analysis and the properties of stationary states, and spectral analysis enables us to characterize asymptotic behavior of the quantum walker in the long-time limit. Supported by China 1000 Talent Plan, National Science Foundation of China, Hefei National Laboratory for Physical Sciences at Microscale Fellowship, and the Chinese Academy of Sciences President's International Fellowship Initiative.

  5. The Europlanet Prize for Public Engagement with Planetary Science: three years of honouring outstanding achievements

    NASA Astrophysics Data System (ADS)

    Heward Fouchet, T.

    2012-09-01

    Europlanet launched an annual Prize for Public Engagement with Planetary Sciences at the European Planetary Science Congress (EPSC) in 2009. At EPSC 2012, the prize will be presented for the third time. To date, the prize has been awarded to: • 2010 - Dr Jean Lilensten of the Laboratoire de Planétologie de Grenoble for his development and dissemination of his 'planeterrella' experiment; • 2011 - The Austrian Space Forum for their coordinated programme of outreach activities, which range from simple classroom presentations to space exhibitions reaching 15 000 visitors; • 2012 - Yaël Nazé, for the diverse outreach programme she has individually initiated over the years, carefully tailored to audiences across the spectrum of society, including children, artists and elderly people. These three prizes cover a spectrum of different approaches to outreach and provide inspiration for anyone wishing to become engaged in public engagement, whether at an individual and institutional level.

  6. Faculty Development Program Models to Advance Teaching and Learning Within Health Science Programs

    PubMed Central

    Lancaster, Jason W.; Stein, Susan M.; MacLean, Linda Garrelts; Van Amburgh, Jenny

    2014-01-01

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school. PMID:24954939

  7. Faculty development program models to advance teaching and learning within health science programs.

    PubMed

    Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M

    2014-06-17

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.

  8. NINR Centers of Excellence: A logic model for sustainability, leveraging resources and collaboration to accelerate cross-disciplinary science

    PubMed Central

    Dorsey, Susan G.; Schiffman, Rachel; Redeker, Nancy S.; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S.; Grady, Patricia A.

    2014-01-01

    The NINR Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present a NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR Center Directors’ meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. PMID:25085328

  9. State of the Data Union, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is the first report on the State of the Data Union (SDU) for the NASA Office of Space Science and Applications (OSSA). OSSA responsibilities include the collection, analysis, and permanent archival of data critical to space science research. The nature of how this is done by OSSA is evolving to keep pace with changes in space research. Current and planned missions have evolved to be more complex and multidisciplinary, and are generating much more data and lasting longer than earlier missions. New technologies enable global access to data, transfer of huge volumes of data, and increasingly complex analysis. The SDU provides a snapshot of this dynamic environment, identifying trends in capabilities and requirements. The current space science data environment is described and parameters which capture the pulse of key functions within that environment are presented. Continuous efforts of OSSA to improve the availability and quality of data provided to the scientific community are reported, highlighting efforts such as the Data Management Initiative.

  10. Barred from better medicine? Reexamining regulatory barriers to the inclusion of prisoners in research.

    PubMed

    Huang, Elaine; Cauley, Jacqueline; Wagner, Jennifer K

    2017-04-01

    In 2015, President Obama announced plans for the Precision Medicine Initiative ® (PMI), an ambitious longitudinal project aimed at revolutionizing medicine. Integral to this Initiative is the recruitment of over one million Americans into a volunteer research cohort, the All of Us SM Research Program. The announcement has generated much excitement but absent is a discussion of how the All of Us Research Program-to be implemented within the context of social realities of mass incarcerations and racial disparities in criminal justice and healthcare-might excaberate health disparities. We examine how attainment of Initiative's stated goals of reflecting the diversity of the American population and including all who are interested in participating might be impeded by regulatory and administrative barriers to the involvement of participants who become incarcerated during longitudinal studies. Changes have been proposed to the federal policy for human subjects research protections, but current regulations and administrative policies-developed under a protectionist paradigm in response to scandalous research practices with confined populations-dramatically limit research involving prisoners. Our review provides rationale for the development of Initiative policies that anticipate recruitment and retention obstacles that might frustrate inclusivity and exacerbate health disparities. Furthermore, we question the effective ban on biomedical and behavioral research involving prisoners and advocate for regulatory reforms that restore participatory research rights of prisoners. Disparities in health and justice are intertwined, and without regulatory reforms to facilitate participatory research rights of prisoners and careful planning of viable and responsible recruitment, engagement, and retention strategies, Initiative could miss discovery opportunities, exacerbate health disparities, and increase levels of distrust in science.

  11. A New U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, A. M.; Jackson, R.; Marland, G.; Sabine, C.

    2009-05-01

    The report "A U.S. carbon cycle science plan" (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies in the United States for nearly a decade. Building on this framework and subsequent reports (http://www.carboncyclescience.gov/docs.php), a working group comprised of 27 scientists was formed in 2008 under the United States Carbon Cycle Science Program to review the 1999 Science Plan, and to develop an updated strategy for carbon cycle research for the period from 2010 to 2020. This comprehensive review is being conducted with wide input from the research and stakeholder communities. The recommendations of the Carbon Cycle Science Working Group (CCSWG) will go to U.S. agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States. This presentation will provide an update on the ongoing planning process, will outline the steps that the CCSWG is undertaking in building consensus towards an updated U.S. Carbon Cycle Science Plan, and will seek input on the best ways in which to coordinate efforts with ongoing and upcoming research in Canada and Mexico, as well as with ongoing work globally.

  12. Mixed-Initiative Planning in MAPGEN: Capabilities and Shortcomings

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2005-01-01

    MAPGEN (Mixed-initiative Activity Plan GENerator) is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist the Mars Exploration Rover mission operations staff in generating the daily activity plans. This paper describes the mixed-initiative capabilities of MAPGEN, identifies shortcomings with the deployed system, and discusses ongoing work to address some of these shortcomings.

  13. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  14. 75 FR 159 - Notice of Public Meeting, North Slope Science Initiative, Science Technical Advisory Panel, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...] Notice of Public Meeting, North Slope Science Initiative, Science Technical Advisory Panel, Alaska AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science Initiative, Interior. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Land Policy and Management Act (FLPMA) and...

  15. Integrating Science with Technical and Vocational Areas.

    ERIC Educational Resources Information Center

    Snyder, Larry; Shreckengast, Craig

    This guide presents learning activities and lesson plans that integrate science with technical and vocational areas. Activities and plans are organized under broad headings such as Environmental Science and Acid Rain Research; Criminal Justice, Chemistry, and Narcotics; Children's Education and Services; Cosmetology; and Health Professions.…

  16. Oak Ridge National Laboratory Site Sustainability Plan with FY 2016 Performance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Teresa A.; Lapsa, Melissa Voss

    Campus sustainability is part of an ongoing process of modernization at Oak Ridge National Laboratory (ORNL). Initiated in 2002, it grew to include the Sustainable Campus Initiative (SCI) as of 2008. The SCI embodies a diversity of areas, reflecting the multifaceted nature of sustainability and the resulting need for a holistic approach, by tapping ORNL’s multiplatform science and technology expertise in a pathway critical in catalyzing change and shaping the Laboratory’s future. The past year has shown significant progress for the SCI as well as for sustainable development at large, with the 21st Session of the Conference of the Partiesmore » (COP21) in Paris setting a new pace and direction for worldwide mitigation of climate change in the coming decades.« less

  17. Population Health Intervention Research Initiative for Canada: progress and prospects.

    PubMed

    Hawe, Penelope; Samis, Stephen; Di Ruggiero, Erica; Shoveller, Jean A

    2011-04-01

    Actions in Canada are being designed to transform the way research evidence is generated and used to improve population health. Capacity is being built in population health intervention research. The primary target is more understanding and examination of policies and programs that could redress inequities in health. The Population Health Intervention Research Initiative for Canada is a loosely-networked collaboration designed to advance the science of the field as well as the quantity, quality and use of population health intervention research to improve the health of Canadians. In the first few years there have been new training investments, new funding programs, new working guidelines for peer review, symposia and new international collaborations. This has been brought about by the strategic alignment of communication, planning and existing investments and the leveraging of new resources.

  18. ICESat (GLAS) Science Processing Software Document Series. Volume 2; Science Data Management Plan; 4.0

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Hancock, David W., III

    1999-01-01

    This document provides the Data Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Facility (ISF) Software. This Plan addresses the identification, authority, and description of the interface nodes associated with the GLAS Standard Data Products and the GLAS Ancillary Data.

  19. Planning for rover opportunistic science

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.

    2004-01-01

    The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.

  20. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    NASA Astrophysics Data System (ADS)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom instruction to identify and understand what scaffolds are planned and implemented, and how that planning and implementation occurred through an instructional coaching partnership. Findings from this study showed the elementary science teacher planned and implemented a number of scaffolds for science academic language, focusing primarily on the use of sentence starters as a scaffolding strategy. The findings also indicated that the instructional coaching partnership played a vital role as the main resource that assisted the planning of scaffolds. These findings provide insights into the types of scaffolds that elementary science teachers can implement to scaffold science academic language, and the role that instructional coaching can play in supporting teachers as they work to provide instruction that scaffolds their students' language use and development.

  1. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  2. Agile Data Curation Case Studies Leading to the Identification and Development of Data Curation Design Patterns

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.; Lenhardt, W. C.; Young, J. W.; Gordon, L. C.; Hughes, S.; Santhana Vannan, S. K.

    2017-12-01

    The planning for and development of efficient workflows for the creation, reuse, sharing, documentation, publication and preservation of research data is a general challenge that research teams of all sizes face. In response to: requirements from funding agencies for full-lifecycle data management plans that will result in well documented, preserved, and shared research data products increasing requirements from publishers for shared data in conjunction with submitted papers interdisciplinary research team's needs for efficient data sharing within projects, and increasing reuse of research data for replication and new, unanticipated research, policy development, and public use alternative strategies to traditional data life cycle approaches must be developed and shared that enable research teams to meet these requirements while meeting the core science objectives of their projects within the available resources. In support of achieving these goals, the concept of Agile Data Curation has been developed in which there have been parallel activities in support of 1) identifying a set of shared values and principles that underlie the objectives of agile data curation, 2) soliciting case studies from the Earth science and other research communities that illustrate aspects of what the contributors consider agile data curation methods and practices, and 3) identifying or developing design patterns that are high-level abstractions from successful data curation practice that are related to common data curation problems for which common solution strategies may be employed. This paper provides a collection of case studies that have been contributed by the Earth science community, and an initial analysis of those case studies to map them to emerging shared data curation problems and their potential solutions. Following the initial analysis of these problems and potential solutions, existing design patterns from software engineering and related disciplines are identified as a starting point for the development of a catalog of data curation design patterns that may be reused in the design and execution of new data curation processes.

  3. Science in Africa: UNESCO's Contribution to Africa's Plan for Science and Technology to 2010

    ERIC Educational Resources Information Center

    Schneegans, Susan, Ed.; Candau, Anne, Ed.

    2007-01-01

    The United Nations Educational, Scientific and Cultural Organization (UNESCO) has put together this brochure on its contribution to Africa's Plan for Science and Technology to 2010 in the lead up to the forthcoming African Union Summit, in January 2007, and the meeting of African Ministers of Science and Technology November 23-24, 2006. The theme…

  4. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Nostreys, R. W. (Editor)

    1980-01-01

    Information on current and planned spacecraft activity for a broad range of scientific disciplines is presented. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  5. Rising Above the Storm: DIG TEXAS

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Miller, K. C.; Bednarz, S. W.; Mosher, S.

    2011-12-01

    For a decade Texas educators, scientists and citizens have shown a commitment to earth science education through planning at the national and state levels, involvement in earth science curriculum and teacher professional development projects, and the creation of a model senior level capstone Earth and Space Science course first offered in 2010 - 2011. The Texas state standards for Earth and Space Science demonstrate a shift to rigorous content, career relevant skills and use of 21st century technology. Earth and Space Science standards also align with the Earth Science, Climate and Ocean Literacy framework documents. In spite of a decade of progress K-12 earth science education in Texas is in crisis. Many school districts do not offer Earth and Space Science, or are using the course as a contingency for students who fail core science subjects. The State Board for Educator Certification eliminated Texas' secondary earth science teacher certification in 2009, following the adoption of the new Earth and Space Science standards. This makes teachers with a composite teacher certification (biology, physics and chemistry) eligible to teach Earth and Space Science, as well other earth science courses (e.g., Aquatic Science, Environmental Systems/Science) even if they lack earth science content knowledge. Teaching materials recently adopted by the State Board of Education do not include Earth and Space Science resources. In July 2011 following significant budget cuts at the 20 Education Service Centers across Texas, the Texas Education Agency eliminated key staff positions in its curriculum division, including science. This "perfect storm" has created a unique opportunity for a university-based approach to confront the crisis in earth science education in Texas which the Diversity and Innovation in the Geosciences (DIG) TEXAS alliance aims to fulfill. Led by the Texas A&M University College of Geosciences and The University of Texas Jackson School of Geosciences, with initial assistance of the American Geophysical Union, the alliance comprises earth scientists and educators at higher education institutions across the state, and science teachers, united to improve earth science literacy (geoscience-earth, ocean, atmospheric, planetary, and geography) among Texas science teachers in order to attract individuals from groups underrepresented in STEM fields to pursue earth science as a career. Members of the alliance are affiliated with one of eight regional DIG TEXAS hub institutions. With an NSF planning grant, DIG TEXAS leaders created the DIG TEXAS brand, developed a project website, organized and held the first community meeting in March, 2011 at Exxon Mobil's Training Center in Houston. DIG TEXAS members have also delivered testimony to the State Board for Educator Certification in support of a new earth science teacher certification and collaborated on proposals that seek funding to support recommendations formulated at the community meeting.

  6. The Pilot Land Data System: Report of the Program Planning Workshops

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access.

  7. Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Terrie, Greg; Berglund, Judith

    2006-01-01

    This presentation introduces a draft plan for characterizing commercial data products for Earth science research. The general approach to the commercial product verification and validation includes focused selection of a readily available commercial remote sensing products that support Earth science research. Ongoing product verification and characterization will question whether the product meets specifications and will examine its fundamental properties, potential and limitations. Validation will encourage product evaluation for specific science research and applications. Specific commercial products included in the characterization plan include high-spatial-resolution multispectral (HSMS) imagery and LIDAR data products. Future efforts in this process will include briefing NASA headquarters and modifying plans based on feedback, increased engagement with the science community and refinement of details, coordination with commercial vendors and The Joint Agency Commercial Imagery Evaluation (JACIE) for HSMS satellite acquisitions, acquiring waveform LIDAR data and performing verification and validation.

  8. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  9. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  10. Pathways to policy: Lessons learned in multisectoral collaboration for physical activity and built environment policy development from the Coalitions Linking Action and Science for Prevention (CLASP) initiative.

    PubMed

    Politis, Christopher E; Mowat, David L; Keen, Deb

    2017-06-16

    The Canadian Partnership Against Cancer funded 12 large-scale knowledge to action cancer and chronic disease prevention projects between 2009 and 2016 through the Coalitions Linking Action and Science for Prevention (CLASP) initiative. Two projects, Healthy Canada by Design (HCBD) and Children's Mobility, Health and Happiness (CMHH), developed policies to address physical activity and the built environment through a multisectoral approach. A qualitative analysis involving a review of 183 knowledge products and 8 key informant interviews was conducted to understand what policy changes occurred, and the underlying critical success factors, through these projects. Both projects worked at the local level to change physical activity and built environment policy in 203 sites, including municipalities and schools. Both projects brought multisectoral expertise (e.g., public health, land use planning, transportation engineering, education, etc.) together to inform the development of local healthy public policy in the areas of land use, transportation and school travel planning. Through the qualitative analysis of the knowledge products and key informant interviews, 163 policies were attributed to HCBD and CMHH work. Fourteen "pathways to policy" were identified as critical success factors facilitating and accelerating the development and implementation of physical activity and built environment policy. Of the 14 pathways to policy, 8 had a focus on multisectoral collaboration. The lessons learned from the CLASP experience could support enhanced multisectoral collaborations to accelerate the development and implementation of physical activity and built environment policy in new jurisdictions across Canada and internationally.

  11. GLOBE Goes GO with Mosquitoes

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.

    2016-12-01

    The GLOBE Mosquito Larvae protocol and a new citizen science initiative, GLOBE Observers (GO), were both launched in Summer 2016. While the GLOBE Mosquito Larvae Protocol and associated educational materials target K-16 student inquiry and research, the GO protocol version is simplified to enable citizen scientists of all ages from all walks of life to participate. GO allows citizen scientists to collect and submit environmental data through an easy-to-use smart phone app available for both Apple and Android mobile devices. GO mosquito asks for photos of larvae mosquito genus or species, location, and type of water source (e.g., container or pond) where the larvae were found. To initiate the new mosquito GLOBE/GO opportunities, workshops have been held in Barbuda, Thailand, West Indies, US Gulf Coast, New York City, and at the GLOBE Annual Meeting in Colorado. Through these venues, the protocols have been refined and a field campaign has been initiated so that GO and GLOBE citizen scientists (K-16 students and all others) can contribute data. Quality assurance measures are taken through the online training required to participate and the validation of identification by other citizen sciences and mosquito experts. Furthermore, initial research is underway to develop optical recognition software starting with the species that carry the Zika virus (Aedes aegypti and A. albopictus). With this launch, we plan to move forward by providing opportunities throughout the world to engage people in meaningful environmental and public health data collection and to promote citizen scientists to become agents of change in their communities.

  12. An Update on NASA's Arctic Boreal Vulnerability Experiment

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.; Miller, C. E.; Griffith, P. C.; Larson, E. K.; Kasischke, E. S.; Margolis, H. A.

    2016-12-01

    ABoVE is a NASA-led field campaign taking place in Alaska and western Canada over the next 8-10 years, with a wide range of interdisciplinary science objectives designed to address the extent to which ecosystems and society are vulnerable, or resilient, to environmental changes underway and expected. The first phase of ABoVE is underway, with a focus on ecosystem dynamics and ecosystem services objectives. Some 45 core and affiliated projects are currently included, and another 10-20 will be added in late 2016 with initiation of the airborne science component. The ABoVE leadership is fostering partnerships with several other major arctic and boreal research, management and policy initiatives. The Science Team is organized around science themes, with Working Groups (WGs) on vegetation, permafrost and hydrology, disturbance, carbon dynamics, wildlife and ecosystem services, and modeling. Despite the disciplinary science WGs, ABoVE research broadly focuses the complex interdependencies and feedbacks across disciplines. Additional WGs focus on airborne science, geospatial products, core variables and standards, and stakeholder engagement - all supplemented by a range of infrastructure activities such as data management, cloud computing, laboratory and field support. Ultimately ABoVE research will improve our understanding of the consequences of environmental changes occurring across the study domain, as well as increase our confidence in making projections of the ecosystem responses and vulnerability to changes taking place both within and outside the domain. ABoVE will also build a lasting legacy of research through an expanded knowledge base, the provision of key datasets archived for a broader network of researchers and resource managers, and the development of data products and knowledge designed to foster decision support and applied research partnerships with broad societal relevance. We will provide a brief status update of ABoVE activities and plans, including the upcoming airborne campaigns, science team meetings, and the potential for partnerships and engagement.

  13. The Development of a Minority Recruitment Plan for Cancer Clinical Trials

    PubMed Central

    Trevino, Monica; Padalecki, Susan; Karnad, Anand; Parra, Alberto; Weitman, Steve; Nashawati, Melissa; Pollock, Brad H.; Ramirez, Amelie; Thompson, Ian M.

    2014-01-01

    Background Cancer does not occur in all ethnic and racial groups at similar rates. In addition, responses to treatment also vary in certain ethnic and racial groups. For Hispanics, the overall cancer incidence is generally lower yet for some specific tumor types, the incidence rates are higher compared to other populations. Objectives Although disparities are recognized for treatment outcomes and prevention methodologies for Hispanics and other minority populations, specific recruiting and reporting of minorities remains a challenge. In order to circumvent this problem, the Cancer Therapy and Research Center (CTRC) has developed a new minority recruitment plan for all cancer related clinical trials at this Institute. The overall goal of this initiative is to increase the accrual of minorities in cancer clinical trials by implementing several key interventions. Method The Cancer Therapy & Research Center (CTRC) at the University of Texas Health Science Center at San Antonio established the Clinical Trials Accrual Task Force to develop and monitor interventions designed to increase accrual to cancer clinical trials, specifically the accrual of minorities with a focus on the Hispanic population that makes up 68% of the CTRC's catchment area. Results A Minority Accrual Plan (MAP) was implemented in March 2013 as part of the process for initiating and conducting cancer-related clinical trials at the CTRC. The Minority Accrual Plan focuses on Hispanic enrollment due to the characteristics of the South Texas population served by the CTRC but could be easily adapted to other populations. Conclusions The CTRC has designed a process to prospectively address the challenge of deliberately enrolling minority subjects and accurately accounting for the results by implementing a Minority Accrual Plan for every cancer-related clinical trial at CTRC. PMID:25152846

  14. The Development of a Minority Recruitment Plan for Cancer Clinical Trials.

    PubMed

    Trevino, Monica; Padalecki, Susan; Karnad, Anand; Parra, Alberto; Weitman, Steve; Nashawati, Melissa; Pollock, Brad H; Ramirez, Amelie; Thompson, Ian M

    2013-09-01

    Cancer does not occur in all ethnic and racial groups at similar rates. In addition, responses to treatment also vary in certain ethnic and racial groups. For Hispanics, the overall cancer incidence is generally lower yet for some specific tumor types, the incidence rates are higher compared to other populations. Although disparities are recognized for treatment outcomes and prevention methodologies for Hispanics and other minority populations, specific recruiting and reporting of minorities remains a challenge. In order to circumvent this problem, the Cancer Therapy and Research Center (CTRC) has developed a new minority recruitment plan for all cancer related clinical trials at this Institute. The overall goal of this initiative is to increase the accrual of minorities in cancer clinical trials by implementing several key interventions. The Cancer Therapy & Research Center (CTRC) at the University of Texas Health Science Center at San Antonio established the Clinical Trials Accrual Task Force to develop and monitor interventions designed to increase accrual to cancer clinical trials, specifically the accrual of minorities with a focus on the Hispanic population that makes up 68% of the CTRC's catchment area. A Minority Accrual Plan (MAP) was implemented in March 2013 as part of the process for initiating and conducting cancer-related clinical trials at the CTRC. The Minority Accrual Plan focuses on Hispanic enrollment due to the characteristics of the South Texas population served by the CTRC but could be easily adapted to other populations. The CTRC has designed a process to prospectively address the challenge of deliberately enrolling minority subjects and accurately accounting for the results by implementing a Minority Accrual Plan for every cancer-related clinical trial at CTRC.

  15. IPPF Co-operative Information Service (ICIS). August 1978.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    This booklet contains bibliographies on population education and family planning. The following topics are covered: family planning and biomedical science, social sciences related to family planning, international conferences, Africa, the Americas, Asia, Europe, the Middle East, and Oceania. Each entry gives the author, title, publisher, date, and…

  16. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  17. Science Facilities for Mississippi Schools, Grades 1-12.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Div. of Instruction.

    Prepared to assist those planning the construction of new science facilities on the elementary, intermediate, or secondary school level. Standards are outlined and specifications detailed. A statement of fifteen general pricniples for planning science facilities in secondary schools precedes a discussion of--(1) special facilities for different…

  18. ISS Payload Operations: The Need for and Benefit of Responsive Planning

    NASA Technical Reports Server (NTRS)

    Nahay, Ed; Boster, Mandee

    2000-01-01

    International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of science programs and the crew desire for flexibility; the means by which responsive plans readily accommodate ISS communications constraints; manpower efficiencies to be achieved through use of responsive plans; and the implications of responsive planning relative to resource utilization efficiency.

  19. Utilizing the Scientist as Teacher Through the Initiating New Science Partnerships in Rural Education (INSPIRE) Program

    NASA Astrophysics Data System (ADS)

    Pierce, D.; McNeal, K. S.; Radencic, S.

    2011-12-01

    The presence of a scientist or other STEM expert in secondary school science classroom can provide fresh new ideas for student learning. Through the Initiating New Science Partnerships in Rural Education (INSPIRE) program sponsored by NSF Graduate STEM Fellows in K-12 Education (GK-12), scientists and engineers at Mississippi State University work together with graduate students and area teachers to provide hands-on inquiry-based learning to middle school and high school students. Competitively selected graduate fellows from geosciences, physics, chemistry, and engineering spend ten hours per week in participating classrooms for an entire school year, working as a team with their assigned teacher to provide outstanding instruction in science and mathematics and to serve as positive role models for the students. We are currently in the second year of our five-year program, and we have already made significant achievements in science and mathematics instruction. We successfully hosted GIS Day on the Mississippi State University campus, allowing participating students to design an emergency response to a simulated flooding of the Mississippi Delta. We have also developed new laboratory exercises for high school physics classrooms, including a 3-D electric field mapping exercise, and the complete development of a robotics design course. Many of the activities developed by the fellows and teachers are written into formal lesson plans that are made publicly available as free downloads through our project website. All participants in this program channel aspects of their research interests and methods into classroom learning, thus providing students with the real-world applications of STEM principles. In return, participants enhance their own communication and scientific inquiry skills by employing lesson design techniques that are similar to defining their own research questions.

  20. NASA evolution of exploration architectures

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1991-01-01

    A series of charts and diagrams is used to provide a detailed overview of the evolution of NASA space exploration architectures. The pre-Apollo programs including the Werner von Braun feasibility study are discussed and the evolution of the Apollo program itself is treated in detail. The post-Apollo era is reviewed and attention is given to the resurgence of strategic planning exemplified by both ad hoc and formal efforts at planning. Results of NASA's study of the main elements of the Space Exploration Initiative which examined technical scenarios, science opportunities, required technologies, international considerations, institutional strengths and needs, and resource estimates are presented. The 90-day study concludes that, among other things, major investments in challenging technologies are required, the scientific opportunities provided by the program are considerable, current launch capabilities are inadequate, and Space Station Freedom is essential.

Top