Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.
Yang, Jie; Ma, Zhihua; Gao, Weixue; Wei, Mingdeng
2017-01-12
Layered structural Co-MOF nanosheets were synthesized and then used as an electrode material for supercapacitors for the first time. This material exhibited a high specific capacitance, a good rate capability, and an excellent cycling stability. A maximum capacitance of 2564 F g -1 can be achieved at a current density of 1 Ag -1 . Moreover, the capacitance retention can be kept at 95.8 % respectively of its initial value after 3000 cycles. To the best of our knowledge, both the specific capacitance and the capacitance retention were the highest values reported for MOF materials as supercapacitor electrodes until now. Such a high supercapacitive performance might be attributed to the intrinsic characteristics of this kind of Co-MOF material, including its layered structure, conductive network frame, and thin nanosheet. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors
NASA Astrophysics Data System (ADS)
Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo
2017-04-01
Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.
NASA Astrophysics Data System (ADS)
Yao, Wei; Zhou, Hui; Lu, Yun
2013-11-01
Novel MnO2@polypyrrole (PPy) coaxial nanotubes have been prepared via a simple and green approach without any surfactant and additional oxidant. Under the acidic condition, MnO2 nanotubes act as both template and oxidant to initiate the polymerization of pyrrole monomers on its fresh-activated surface. Fourier transform infrared spectra (FT-IR), X-ray diffraction patterns (XRD), thermo-gravimetric analysis data (TG) and X-ray photoelectron spectra (XPS) suggest the formation of composite structure of MnO2@PPy. Also, FESEM and TEM images intuitively confirm that the PPy shell is coated uniformly on the surface of MnO2 nanotubes. Adjusting the concentrations of sulfuric acid or adding oxidant can modulate the morphology of the products accordingly. Due to the synergic effect between MnO2 core and PPy shell, the MnO2@PPy coaxial nanotubes possess better rate capability, larger specific capacitance of 380 F g-1, doubling the specific capacitance of MnO2 nanotubes, and good capacitance retention of 90% for its initial capacitance after 1000 cycles.
NASA Astrophysics Data System (ADS)
Pan, Denghui; Zhang, Mingmei; Wang, Ying; Yan, Zaoxue; Jing, Junjie; Xie, Jimin
2017-10-01
In this article, we synthesize Ni(OH)2 homogeneous grown on nitrogen-doped graphene (Ni(OH)2/NG), subsequently, small and uniform nickel oxide nanoparticle (NiO/NG) is also successfully obtained through tube furnace calcination method. The high specific capacitance of the NiO/NG electrode can reach to 1314.1 F/g at a charge and discharge current density of 2 A/g, meanwhile the specific capacitance of Ni(OH)2/NG electrode is also 1350 F/g. The capacitance of NiO/NG can remain 93.7% of the maximum value after 1000 cycles, while the Ni(OH)2/NG electrode losses 16.9% of the initial capacitance after 1000 cycles. It can be attributed to nickel hydroxide instability during charge-discharge cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbi, Hamdane; Yu, Lei; Wang, Bin
2015-01-15
To determine the best chemical reduction of graphene oxide film with hydriodic acid that gives maximum energy and power density, we studied the effect of two reducing systems, hydriodic acid/water and hydriodic acid/acetic acid, on the morphology and electrochemical features of reduced graphene oxide film. Using acetic acid as solvent results in high electrical conductivity (5195 S m{sup −1}), excellent specific capacitance (384 F g{sup −1}) and good cyclic stability (about 98% of its initial response after 4000 cycles). Using water as a solvent, results in an ideal capacitive behavior and excellent cyclic stability (about 6% increase of its initialmore » response after 2100 cycles). - Graphical abstract: The choice of reducing system determines the morphology and structure of the chemically reduced graphene film and, as a result, affects largely the capacitive behavior. - Highlights: • The structure of the graphene film has a pronounced effect on capacitive behavior. • The use of water/HI as reducing system results in an ideal capacitive behavior. • The use of acetic acid/HI as reducing system results in a high specific capacitance.« less
Zhang, Yu; Du, Dongfeng; Li, Xuejin; Sun, Hongman; Li, Li; Bai, Peng; Xing, Wei; Xue, Qingzhong; Yan, Zifeng
2017-09-20
A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g -1 at 1 A g -1 ), high rate performance (75% retention at 20 A g -1 ), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg -1 at 1.2 kW kg -1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.
Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline
NASA Astrophysics Data System (ADS)
Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun
Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm -1 at 25 °C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H 2SO 4 aqueous solution. Its initial specific capacitance was 500 F g -1 at a constant current density of 1.5 A g -1, and the capacitance still reached about 400 F g -1 after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g -1, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors.
NASA Astrophysics Data System (ADS)
Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai
2017-09-01
Highly porous carbon sheets were prepared from fresh clover stems under air atmosphere via a facile potassium chloride salt-sealing technique, which not only avoids using the high cost inert gas protection but also spontaneously introduce multi-level porosity into the carbon structure taking advantage of the trace of oxygen in the molten salt system. The as-obtained porous carbon sheets possess high specific surface area of 2244 m2 g-1 and interconnected hierarchical pore structures from micro-to macro-scale, which provide abundant storage active sites and fast ion diffusion channels. In addition, the spontaneously formed N (2.55 at%) and O (6.94 at%) doping sites not only improve the electron conductivity of the electrode but also enhance the specific capacitance by introducing pseudocapacitance. When employed as supercapacitor electrodes, a high specific capacitance of 436 F g-1 at 1 A g-1 and an excellent rate capacity with capacitance remaining 290 F g-1 at 50 A g-1 are demonstrated. Furthermore, the assembled symmetric supercapacitor delivers a high specific capacitance of 420 F g-1 at 0.5 A g-1, excellent energy density of 58.4 Wh kg-1 and good cycling stability which retains 99.4% of the initial capacitance at 5 A g-1 after 30,000 cycles.
Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices
NASA Astrophysics Data System (ADS)
Imani, Roghayeh; Pazoki, Meysam; Tiwari, Ashutosh; Boschloo, G.; Turner, Anthony P. F.; Kralj-Iglič, V.; Iglič, Aleš
2015-06-01
Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g-1 was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling, retaining 95% of their initial specific capacitance after 1500 cycles.Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g-1 was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling, retaining 95% of their initial specific capacitance after 1500 cycles. Electronic supplementary information (ESI) available: The HRTEM analysis of TiO2 microbeads, XPS spectra of modified electrodes (Ti 2p and O 1s peaks), total number of surface states vs applied potential (calculated DOS) of modified electrodes, circuit used for EIS data fitting, specific capacitance of FTO/TiO2/DA/DNA calculated from Galvanostatic charge-discharge test versus cycle number. See DOI: 10.1039/c5nr02533h
Jiang, Yaru; Zheng, Xin; Yan, Xiaoqin; Li, Yong; Zhao, Xuan; Zhang, Yue
2017-05-01
Designing and optimizing the electrode materials and studying the electrochemical performance or cycle life of the supercapacitor under different working conditions are crucial to its practical application. Herein, we proposed a rational design of 3D-graphene/CoMoO 4 nanoplates by a facile two-step hydrothermal method. Owing to the high electron transfer rate of graphene and the high activity of the CoMoO 4 nanoplates, the three-dimensional electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (1255.24F/g at 1A/g) and superior cycling stability (91.3% of the original specific capacitance after 3000 cycles at 1A/g). The all-solid-state asymmetric supercapacitor composed of 3D-graphene/CoMoO 4 and activated carbon (AC) exhibited a specific capacitance of 109F/g at 0.2A/g and an excellent cycling stability with only 12.1% of the initial specific capacitance off after 3000 cycles at 2A/g. The effects of temperature and charge-discharge current densities on the charge storage capacity of the supercapacitor were also investigated in detail for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Hydrogenated TiO2 nanotube arrays for supercapacitors.
Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat
2012-03-14
We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society
Shao, Yubo; Zhao, Yongqing; Li, Hua; Xu, Cailing
2016-12-28
Active materials and special structures of the electrode have decisive influence on the electrochemical properties of supercapacitors. Herein, three-dimensional (3D) hierarchical Ni x Co 1-x O/Ni y Co 2-y P@C (denoted as NiCoOP@C) hybrids have been successfully prepared by a phosphorization treatment of hierarchical Ni x Co 1-x O@C grown on nickel foam. The resulting NiCoOP@C hybrids exhibit an outstanding specific capacitance and cycle performance because they couple the merits of the superior cycling stability of Ni x Co 1-x O, the high specific capacitance of Ni y Co 2-y P, the mechanical stability of carbon layer, and the 3D hierarchical structure. The specific capacitance of 2638 F g -1 can be obtained at the current density of 1 A g -1 , and even at the current density of 20 A g -1 , the NiCoOP@C electrode still possesses a specific capacitance of 1144 F g -1 . After 3000 cycles at 10 A g -1 , 84% of the initial specific capacitance is still remained. In addition, an asymmetric ultracapacitor (ASC) is assembled through using NiCoOP@C hybrids as anode and activated carbon as cathode. The as-prepared ASC obtains a maximum energy density of 39.4 Wh kg -1 at a power density of 394 W kg -1 and still holds 21 Wh kg -1 at 7500 W kg -1 .
Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K
2015-04-17
A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong
2014-08-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.
Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong
2014-01-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.
Ma, Lianbo; Shen, Xiaoping; Ji, Zhenyuan; Cai, Xiaoqing; Zhu, Guoxing; Chen, Kangmin
2015-02-15
A composite with porous NiCo2O4 nanosheets attached on reduced graphene oxide (RGO) sheets is synthesized through a facile solution-based method combined with a simple thermal annealing process. The capacitive performances of the as-prepared NiCo2O4/RGO (NCG) composites as electrode materials are investigated. It is found that the NCG composites exhibit a high specific capacitance up to 1186.3 F g(-1) at the current density of 0.5 A g(-1), and superior cycling stability with about 97% of the initial capacitance after 100 cycles. The greatly enhanced capacitive performance of the NCG electrode can be attributed to the existence of RGO support, which serves as both conductive channels and active interface. The approach used in the synthesis provides a facile route for preparing graphene-binary metal oxide electrode materials. The remarkable capacitive performance of NCG composites will undoubtedly make them be attractive for high performance energy storage applications. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Zhenjie; Shu, Dong; Chen, Hongyu; He, Chun; Tang, Shaoqing; Zhang, Jie
2012-10-01
A hydration-layered structure of buserite-type manganese oxide (Mg-buserite) was successfully synthesized by an ion exchange method. The as-prepared Mg-buserite possesses a large basal spacing of 10 Å, and contains Mg2+ ions and two sheets of water molecules in the interlayer region. The supercapacitive behaviors of Mg-buserite were systematically investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (CD) experiments and electrochemical impedance spectroscopy (EIS). The results showed that the specific capacitance of the Mg-buserite electrode sharply increased during the initial 500 cycles and reached a maximum of 164 F g-1 at approximately the 500th cycle at a scan rate of 1 mV s-1, and then it remained an almost constant value and decreased slightly upon prolonged cycling. After 22,000 cycles, the specific capacitance decreased by approximately 6% of the maximum specific capacitance. The superior capacitive behavior and excellent cycling stability of the as-prepared Mg-buserite are attributed to the large basal spacing, which can accommodate a larger amount of electrolyte cations and provide more favorable pathways for electrolyte cations intercalation and deintercalation. The experimental results demonstrate that Mg-buserite is a promising candidate as an electrode material for supercapacitors.
Lee, Hae-Min; Lee, Kangtaek; Kim, Chang-Koo
2014-01-09
Manganese-nickel (Mn-Ni) oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO₂) and nickel oxide (NiO) in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na₂SO₄ electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.
High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong
A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less
High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors
Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; ...
2015-06-08
A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less
A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cao, Qi; Wang, Xianyou; Jing, Bo; Kuang, Hao; Zhou, Ling
2013-03-01
Micropopous chicken feather carbon (CFC) severing as electrode materials for the first time is prepared via the activation with KOH agent to different extents. The structure and electrochemical properties of CFC materials are characterized with N2 adsorption/desorption measurements, X-ray diffraction (XRD), transmission electron microscope (TEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that CFC activated by KOH with KOH/CFC weight ratio of 4/1 (CFCA4) possesses the specific surface area of 1839 m2 g-1, average micropore diameter of 1.863 nm, and exhibits the highest initial specific capacitance of 302 F g-1 at current density of 1 A g-1 in 1 M H2SO4, and that even after 5000 cycles, CFCA4 specific capacitance is still as high as 253 F g-1. Furthermore, CFCA4 also delivers specific capacitance of 181 F g-1 at current density of 5 A g-1 and 168 F g-1 at current density of 10 A g-1. Accordingly, the microporous activated carbon material derived from chicken feather provides favorable prospect in electrode materials application in supercapacitors.
Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V
2015-05-06
We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.
2014-01-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands. PMID:25276099
Nitrogen-doped mesoporous carbons for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Wu, Kai; Liu, Qiming
2016-08-01
The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.
NASA Astrophysics Data System (ADS)
Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli
2017-10-01
Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.
Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli
2017-10-27
Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.
High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.
Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum
2015-06-08
A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2) g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia
2017-12-01
Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.
NASA Astrophysics Data System (ADS)
Yan, Jun; Wei, Tong; Fan, Zhuangjun; Qian, Weizhong; Zhang, Milin; Shen, Xiande; Wei, Fei
Graphene nanosheet/carbon nanotube/polyaniline (GNS/CNT/PANI) composite is synthesized via in situ polymerization. GNS/CNT/PANI composite exhibits the specific capacitance of 1035 F g -1 (1 mV s -1) in 6 M of KOH, which is a little lower than GNS/PANI composite (1046 F g -1), but much higher than pure PANI (115 F g -1) and CNT/PANI composite (780 F g -1). Though a small amount of CNTs (1 wt.%) is added into GNS, the cycle stability of GNS/CNT/PANI composite is greatly improved due to the maintenance of highly conductive path as well as mechanical strength of the electrode during doping/dedoping processes. After 1000 cycles, the capacitance decreases only 6% of initial capacitance compared to 52% and 67% for GNS/PANI and CNT/PANI composites.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Hou, Liqiang; Cao, Yan; Tang, Yushu; Li, Yongfeng
2018-03-01
Boron and nitrogen co-doped graphene-like carbon (BNC) with a gram scale was synthesized via a two-step method including a ball-milling process and a calcination process and used as electrode materials for supercapacitors. High surface area and abundant active sites of graphene-like carbon were created by the ball-milling process. Interestingly, the nitrogen atoms are doped in carbon matrix without any other N sources except for air. The textual and chemical properties can be easily tuned by changing the calcination temperature, and at 900 oC the BNC with a high surface area (802.35 m2/g), a high boron content (2.19 at%), a hierarchical pore size distribution and a relatively high graphitic degree was obtained. It shows an excellent performance of high specific capacitance retention about 78.2% at high current density (199 F/g at 100 A/g) of the initial capacitance (254 F/g at 0.25 A/g) and good cycling stability (90% capacitance retention over 1000 cycles at 100 A/g) measured in a three-electrode system. Furthermore, in a two-electrode system, a specific capacitance of 225 F/g at 0.25 A/g and a good cycling stability (93% capacitance retention over 20,000 cycles at 25 A/g) were achieved by using BNC as electrodes. The strategy of synthesis is facile and effective to fabricate multi-doped graphene-like carbon for promising candidates as electrode materials in supercapacitors.
Liu, Dong; Wang, Xue; Deng, Jinxing; Zhou, Chenglong; Guo, Jinshan; Liu, Peng
2015-01-01
The poor cycling stability of polyaniline (PANI) limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI) composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs), which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor. PMID:28347050
NASA Astrophysics Data System (ADS)
Karthikeyan, K.; Aravindan, V.; Lee, S. B.; Jang, I. C.; Lim, H. H.; Park, G. J.; Yoshio, M.; Lee, Y. S.
Nanoscale carbon-coated Li 2MnSiO 4 powder is prepared using a conventional solid-state method and can be used as the negative electrode in a Li 2MnSiO 4/activated carbon (AC) hybrid supercapacitor. Carbon-coated Li 2MnSiO 4 material presents a well-developed orthorhombic crystal structure with a P mn2 1 space group, although there is a small impurity of MnO. The maximum specific capacitance of the Li 2MnSiO 4/AC hybrid supercapacitor is 43.2 F g -1 at 1 mA cm -2 current density. The cell delivers a specific energy as high as 54 Wh kg -1 at a specific power of 150 W kg -1 and also exhibits an excellent cycle performance with more than 99% columbic efficiency and the maintenance of 85% of its initial capacitance after 1000 cycles.
High voltage electrochemical double layer capacitors using conductive carbons as additives
NASA Astrophysics Data System (ADS)
Michael, M. S.; Prabaharan, S. R. S.
We describe here an interesting approach towards electrochemical capacitors (ECCs) using graphite materials (as being used as conductive additives in rechargeable lithium-ion battery cathodes) in a Li + containing organic electrolyte. The important result is that we achieved a voltage window of >4 V, which is rather large, compared to the standard window of 2.5 V for ordinary electric double layer capacitors (DLCs). The capacitor performance was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge techniques. From charge-discharge studies of the symmetrical device (for instance, SFG6 carbon electrode), a specific capacitance of up to 14.5 F/g was obtained at 16 mA/cm 2 current rate and at a low current rate (3 mA/cm 2), a higher value was obtained (63 F/g). The specific capacitance decreased about 25% after 1000 cycles compared to the initial discharge process. The performances of these graphites are discussed in the light of both double layer capacitance (DLC) and pseudocapacitance (battery-like behavior). The high capacitance obtained was not only derived from the current-transient capacitive behavior but is also attributed to pseudocapacitance associated with some kind of faradaic reaction, which could probably occur due to Li + intercalation/deintercalation reactions into graphitic layers of the carbons used. The ac impedance (electrochemical impedances spectroscopy, EIS) measurements were also carried out to evaluate the capacitor parameters such as equivalent series resistance (ESR) and frequency dependent capacitance ( Cfreq). Cyclic voltammetry measurements were also performed to evaluate the cycling behavior of the carbon electrodes and the non-rectangular shaped voltammograms revealed the non-zero time constant [ τ( RC)≠0] confirming that the current contains a transient as well as steady-state components.
Dai, Chao-Shuan; Chien, Pei-Yi; Lin, Jeng-Yu; Chou, Shu-Wei; Wu, Wen-Kai; Li, Ping-Hsuan; Wu, Kuan-Yi; Lin, Tsung-Wu
2013-11-27
The Ni3S2 nanoparticles with the diameters ranging from 10 to 80 nm are grown on the backbone of conductive multiwalled carbon nanotubes (MWCNTs) using a glucose-assisted hydrothermal method. It is found that the Ni3S2 nanoparticles deposited on MWCNTs disassemble into smaller components after the composite electrode is activated by the consecutive cyclic voltammetry scan in a 2 M KOH solution. Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. Because the synergistic effect of the Ni3S2 nanoparticles and MWCNTs on the capacitive performance of the composite electrode is pronounced, the composite electrode shows a high specific capacitance of 800 F/g and great cycling stability at a current density of 3.2 A/g. To examine the capacitive performance of the composite electrode in a full-cell configuration, an asymmetric supercapacitor device was fabricated by using the composite of Ni3S2 and MWCNTs as the cathode and activated carbon as the anode. The fabricated device can be operated reversibly between 0 and 1.6 V, and obtain a high specific capacitance of 55.8 F/g at 1 A/g, which delivers a maximum energy density of 19.8 Wh/kg at a power density of 798 W/kg. Furthermore, the asymmetric supercapacitor shows great stability based on the fact that the device retains 90% of its initial capacitance after a consecutive 5000 cycles of galvanostatic charge-discharge performed at a current density of 4 A/g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Gang; Deng, Lingjuan; Wang, Jianfang
Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °Cmore » for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.« less
Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Shiyong; Ma, Li; Gan, Mengyu; Fu, Shenna; Dai, Wenqin; Zhou, Tao; Sun, Xiaowu; Wang, Huihui; Wang, Huining
2015-12-01
The research paper describes polyaniline (PANI) nanowires array on flexible polystyrene microsphere/reduced graphene (PS/rGN) film is synthesized by dilute polymerization, and then the PS microspheres are removed to form free-standing three-dimensional (3D) rGN/PANI composite film. The chemical and structural properties of the 3D rGN/PANI film are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and the results confirm the 3D rGN/PANI film is synthesized successfully. When the film is used as a supercapacitor electrode, the maximum specific capacitance is as high as 740 F g-1 (or 581 F cm-3 for volumetric capacitance) at a current density of 0.5 A g-1 and the specific capacitance retains 87% of the initial after constant charge-discharge 1000 cycles at current density of 10 A g-1. It is believed that the free-standing 3D rGN/PANI film will have a great potential for application in supercapacitors.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqin; Li, Qiaoqin; Zhang, Yong; Yang, Yufei; Cao, Zhi; Xiong, Shanxin
2018-06-01
A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9% through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at.%) and oxidized N (7.1 at.%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at.% Ni2O3 components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m2/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining high specific capacitance of 212.4 F/g (84.3% of the initial capacitance) at 5 A/g after 5000 cycles of charge and discharge, attributed to some honeycomb-shaped nanopores of carbon and large specific surface area of NiO nanosheets, and the synergistic effects between electric double-layer capacitance of NPC and pseudocapacitance of NiO. This study may provide a novel approach for the value-added applications of low-rank coal.
NASA Astrophysics Data System (ADS)
Pang, Huan; Li, Xinran; Li, Bing; Zhang, Yizhou; Zhao, Qunxing; Lai, Wen-Yong; Huang, Wei
2016-06-01
Dimanganese trioxide microflowers are easily obtained from a Mn(ii) 8-hydroxyquinoline microcoordination after calcination in air. We also look into the possible formation mechanism of the flower-like morphology, and find that the reaction time affects the morphology of the coordination. Furthermore, the as-prepared porous Mn2O3 microflowers are made of many nanoplates which form many nanogaps and nanochannels. Interestingly, the assembled electrode based on the as-prepared porous Mn2O3 microflowers proves to be a high-performance electrode material for supercapacitors. The electrode shows a specific capacitance of 994 F g-1, which can work well even after 4000 cycles at 0.75 A g-1. More importantly, the porous Mn2O3 microflowers and activated carbons are assembled into a high-performance flexible solid-state asymmetric supercapacitor with a specific capacitance of 312.5 mF cm-2. The cycle test shows that the device can offer 95.6% capacity of the initial capacitance at 2.0 mA cm-2 after 5000 cycles with little decay. The maximum energy density of the device can achieve 6.56 mWh cm-3 and the maximum power density can also achieve 283.5 mW cm-3, which are among the best results for manganese based materials.Dimanganese trioxide microflowers are easily obtained from a Mn(ii) 8-hydroxyquinoline microcoordination after calcination in air. We also look into the possible formation mechanism of the flower-like morphology, and find that the reaction time affects the morphology of the coordination. Furthermore, the as-prepared porous Mn2O3 microflowers are made of many nanoplates which form many nanogaps and nanochannels. Interestingly, the assembled electrode based on the as-prepared porous Mn2O3 microflowers proves to be a high-performance electrode material for supercapacitors. The electrode shows a specific capacitance of 994 F g-1, which can work well even after 4000 cycles at 0.75 A g-1. More importantly, the porous Mn2O3 microflowers and activated carbons are assembled into a high-performance flexible solid-state asymmetric supercapacitor with a specific capacitance of 312.5 mF cm-2. The cycle test shows that the device can offer 95.6% capacity of the initial capacitance at 2.0 mA cm-2 after 5000 cycles with little decay. The maximum energy density of the device can achieve 6.56 mWh cm-3 and the maximum power density can also achieve 283.5 mW cm-3, which are among the best results for manganese based materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02267g
Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.
Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai
2015-12-30
By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.
NASA Astrophysics Data System (ADS)
Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing
2015-12-01
Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.
Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors
Leistenschneider, Desirée; Jäckel, Nicolas; Hippauf, Felix; Presser, Volker
2017-01-01
A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN) and 81% at 10 A g−1 in EMIM-BF4. PMID:28781699
Peng, Shuo; Fan, Lingling; Wei, Chengzhuo; Liu, Xiaohong; Zhang, Hongwei; Xu, Weilin; Xu, Jie
2017-02-10
Polypyrrole (PPy) and copper sulfide (CuS) have been successfully deposited on bacterial cellulose (BC) membranes to prepare nanofibrous composite electrodes of PPy/CuS/BC for flexible supercapacitor applications. The introduction of CuS remarkably improves the specific capacitance and cycling stability of BC-based electrodes. The specific capacitance of the supercapacitors based on the PPy/CuS/BC electrodes can reach to about 580Fg -1 at a current density of 0.8mAcm -2 and can retain about 73% of their initial value after 300 cycles, while the PPy/BC-based device could retain only 21.7% after 300 cycles. This work provides a promising approach to fabricate cost-effective and flexible nanofibrous composite membranes for high-performance supercapacitor electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zuo, Zicheng; Kim, Tae Young; Kholmanov, Iskandar; Li, Huifeng; Chou, Harry; Li, Yuliang
2015-10-07
A mild and environmental-friendly method is developed for fabricating a 3D interconnected graphene electrode with large-scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in-plane pores. Hence, a specific surface area up to 835 m(2) g(-1) and a high powder conductivity up to 400 S m(-1) are achieved. For electrochemical applications, the interlayer pores can serve as "ion-buffering reservoirs" while in-plane ones act as "channels" for shortening the mass cross-plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder-free supercapacitor electrode, it delivers a specific capacitance up to 169 F g(-1) with surface-normalized capacitance close to 21 μF cm(-2) (intrinsic capacitance) and power density up to 7.5 kW kg(-1), in 6 m KOH aqueous electrolyte. In the case of lithium-ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g(-1) at 100 mA g(-1)), and robust long-term retention (93.5% after 600 cycles at 2000 mAh g(-1)). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zou, Wu-yuan; Wang, Wei; He, Ben-lin; Sun, Ming-liang; Yin, Yan-sheng
This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO 2) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO 4 in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO 2 film electro-codeposition. The redox properties of the coated PANI/MnO 2 thin film exhibit ideal capacitive behaviour in 1 M LiClO 4/AN. The specific capacitance (SC) of PANI/MnO 2 hybrid film is as high as 1292 F g -1 and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm -2, and the coulombic efficiency (η) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO 2/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg -1 at a specific power of 172 W kg -1 in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO 2 material application in supercapacitors.
NASA Astrophysics Data System (ADS)
Miao, Fujun; Shao, Changlu; Li, Xinghua; Wang, Kexin; Lu, Na; Liu, Yichun
2016-10-01
Freestanding hierarchically porous carbon electrode materials with favorable features of large surface areas, hierarchical porosity and continuous conducting pathways are very attractive for practical applications in electrochemical devices. Herein, three-dimensional freestanding hierarchically porous carbon (HPC) materials have been fabricated successfully mainly by the facile phase separation method. In order to further improve the energy storage ability, polyaniline (PANI) with high pseudocapacitance has been decorated on HPC through in situ chemical polymerization of aniline monomers. Benefiting from the synergistic effects between HPC and PANI, the resulting HPC/PANI composites as electrode materials present dramatic electrochemical performance with high specific capacitance up to 290 F g-1 at 0.5 A g-1 and good rate capability with ∼86% (248 F g-1) capacitance retention at 64 A g-1 of initial capacitance in three-electrode configuration. Moreover, the as-assembled symmetric supercapacitor based on HPC/PANI composites also demonstrates good capacitive properties with high energy density of 9.6 Wh kg-1 at 223 W kg-1 and long-term cycling stability with 78% capacitance retention after 10 000 cycles. Therefore, this work provides a new approach for designing high-performance electrodes with exceptional electrochemical performance, which are very promising for practical application in the energy storage field.
Wu, Peng; Cheng, Shuang; Yang, Lufeng; Lin, Zhiqiang; Gui, Xuchun; Ou, Xing; Zhou, Jun; Yao, Minghai; Wang, Mengkun; Zhu, Yuanyuan; Liu, Meilin
2016-09-14
Self-standing and flexible films worked as pseudocapacitor electrodes have been fabricated via a simple vacuum-filtration procedure to stack δ-MnO2@carbon nanotubes (CNTs) composite layer and pure CNT layer one by one with CNT layers ended. The lightweight CNTs layers served as both current collector and supporter, while the MnO2@CNTs composite layers with birnessite-type MnO2 worked as active layer and made the main contribution to the capacitance. At a low discharge current of 0.2 A g(-1), the layered films displayed a high areal capacitance of 0.293 F cm(-2) with a mass of 1.97 mg cm(-2) (specific capacitance of 149 F g(-1)) and thickness of only 16.5 μm, and hence an volumetric capacitance of about 177.5 F cm(-3). Moreover, the films also exhibited a good rate capability (only about 15% fading for the capacitance when the discharge current increased to 5 A g(-1) from 0.2 A g(-1)), outstanding cycling stability (about 90% of the initial capacitance was remained after 5,000 cycles) and high flexibility (almost no performance change when bended to different angles). In addition, the capacitance of the films increased proportionally with the stacked layers and the geometry area. E.g., when the stacked layers were three times many with a mass of 6.18 mg cm(-2), the areal capacitance of the films was increased to 0.764 F cm(-2) at 0.5 A g(-1), indicating a high electronic conductivity. It is not overstated to say that the flexible and lightweight layered films emerged high potential for future practical applications as supercapacitor electrodes.
NASA Astrophysics Data System (ADS)
Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2016-02-01
Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g-1, and good rate performance of 126.7 F g-1 at 50 A g-1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g-1 and much improved rate performance (213.4 F g-1 at 50 A g-1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g-1), it still exhibits a very high specific capacitance of 245.8 F g-1, which is 65.2% retention of the initial capacitance (377.0 F g-1 at 1 A g-1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.
Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2016-01-01
Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g−1, and good rate performance of 126.7 F g−1 at 50 A g−1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g−1 and much improved rate performance (213.4 F g−1 at 50 A g−1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g−1), it still exhibits a very high specific capacitance of 245.8 F g−1, which is 65.2% retention of the initial capacitance (377.0 F g−1 at 1 A g−1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds. PMID:26880276
You, Bo; Li, Na; Zhu, Hongying; Zhu, Xiaolan; Yang, Jun
2013-03-01
A MnO2 -CNT-graphene oxide (MCGO) nanocomposite is fabricated using graphene oxide (GO) as a surfactant to directly disperse pristine carbon nanotubes (CNTs) for the subsequent deposition of MnO2 nanorods. The resulting MCGO nanocomposite is used as a supercapacitor electrode that shows ideal capacitive behavior (i.e., rectangular-shaped cyclic voltammograms), large specific capacitance (4.7 times higher than that of free MnO2 ) even at high mass loading (3.0 mg cm(-2) ), high energy density (30.4-14.2 Wh kg(-1) ), large power density (2.6-50.5 kW kg(-1) ), and still retains approximately 94 % of the initial specific capacitance after 1000 cycles. The advanced capacity, rate capability, and cycling stability may be attributed to the unique architecture, excellent ion wettability of GO with enriched oxygen-containing functional groups, high conductivity of CNTs, and their synergistic effects when combined with the other components. The results suggest that the MnO2 -CNT-GO hybrid nanocomposite architecture is very promising for next generation high-performance energy storage devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao
2018-03-31
Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-performance super capacitors based on activated anthracite with controlled porosity
NASA Astrophysics Data System (ADS)
Lee, Hyun-Chul; Byamba-Ochir, Narandalai; Shim, Wang-Geun; Balathanigaimani, M. S.; Moon, Hee
2015-02-01
Mongolian anthracite is chemically activated using potassium hydroxide as an activation agent to make activated carbon materials. Prior to the chemical activation, the chemical agent is introduced by two different methods as follows, (1) simple physical mixing, (2) impregnation. The physical properties such as specific surface area, pore volume, pore size distribution, and adsorption energy distribution are measured to assess them as carbon electrode materials for electric double-layer capacitors (EDLC). The surface functional groups and morphology are also characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses respectively. The electrochemical results for the activated carbon electrodes in 3 M sulfuric acid electrolyte solution indicate that the activated Mongolian anthracite has relatively large specific capacitances in the range of 120-238 F g-1 and very high electrochemical stability, as they keep more than 98% of initial capacitances until 1000 charge/discharge cycles.
Cao, Xin; He, Jin; Li, Huan; Kang, Liping; He, Xuexia; Sun, Jie; Jiang, Ruibing; Xu, Hua; Lei, Zhibin; Liu, Zong-Huai
2018-05-30
Compared with other flexible energy-storage devices, the design and construction of the compressible energy-storage devices face more difficulty because they must accommodate large strain and shape deformations. In the present work, CoNi 2 S 4 nanoparticles/3D porous carbon nanotube (CNT) sponge cathode with highly compressible property and excellent capacitance is prepared by electrodepositing CoNi 2 S 4 on CNT sponge, in which CoNi 2 S 4 nanoparticles with size among 10-15 nm are uniformly anchored on CNT, causing the cathode to show a high compression property and gives high specific capacitance of 1530 F g -1 . Meanwhile, Fe 2 O 3 /CNT sponge anode with specific capacitance of 460 F g -1 in a prolonged voltage window is also prepared by electrodepositing Fe 2 O 3 nanosheets on CNT sponge. An asymmetric supercapacitor (CoNi 2 S 4 /CNT//Fe 2 O 3 /CNT) is assembled by using CoNi 2 S 4 /CNT sponge as positive electrode and Fe 2 O 3 /CNT sponge as negative electrode in 2 m KOH solution. It exhibits excellent energy density of up to 50 Wh kg -1 at a power density of 847 W kg -1 and excellent cycling stability at high compression. Even at a strain of 85%, about 75% of the initial capacitance is retained after 10 000 consecutive cycles. The CoNi 2 S 4 /CNT//Fe 2 O 3 /CNT device is a promising candidate for flexible energy devices due to its excellent compressibility and high energy density. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.
Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen
2014-08-21
In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.
Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors
NASA Astrophysics Data System (ADS)
Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen
2014-07-01
In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.
NASA Technical Reports Server (NTRS)
Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.
2017-01-01
This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.
Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor.
Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng
2018-04-24
The single-phase CoMoO 4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g -1 are 151, 182, 243, 384, and 186 F g -1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g -1 . The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g -1 . The results indicate that CoMoO 4 samples could be a choice of excellent electrode materials for supercapacitor.
Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor
NASA Astrophysics Data System (ADS)
Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng
2018-04-01
The single-phase CoMoO4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g-1 are 151, 182, 243, 384, and 186 F g-1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g-1. The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g-1. The results indicate that CoMoO4 samples could be a choice of excellent electrode materials for supercapacitor.
Carbon aerogel-based supercapacitors modified by hummers oxidation method.
Xu, Yuelong; Ren, Bin; Wang, Shasha; Zhang, Lihui; Liu, Zhenfa
2018-05-14
Carbon aerogels of an inter-connected three-dimensional (3D) structure are a potential carbon material for supercapacitors. We report a new oxidation modification method to prepare a series of modified carbon aerogels (OM-CA) by Hummers oxidation method. Oxidation-modified carbon aerogels (OM-CA) are obtained from carbon aerogel powders oxidized by Hummers method. Sulfuric acid stoichiometry is studied in order to investigate the effect of the surface oxygen group on surface area and electrochemical performance. Additionally, heteroatoms are doped into carbon aerogels in the oxidation process. The effect of heteroatom doping on electrochemical performance as a supercapacitor electrode material is investigated. When the amount of sulfuric acid is 40 wt%, the dopping manganese content is 0.9 mol%, the specific surface area of OM-CA is 450 m 2 /g, and its specific capacitance is 151 F g -1 at 0.5 A g -1 , which is achieved by heteroatom doping and texture properties. In addition, OM-CA composite supercapacitors exhibit a stable cycle life at a current density of 0.5 A g -1 and retain 98.0% of initial capacitance over 500 cycles, and OM-CA-40% still presents a higher capacity, up to 148 F g -1 at 0.5 A g -1 . The high specific surface area and specific capacitance suggest the porous carbon material has potential applications in supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai
2018-08-01
A facile potassium chloride salt-locking technique combined with hydrothermal treatment on precursors was explored to prepare nitrogen-doped hierarchical porous carbon sheets in air from biomass. Benefiting from the effective synthesis strategy, the as-obtained carbon possesses a unique nitrogen-doped thin carbon sheet structure with abundant hierarchical pores and large specific surface areas of 1459 m 2 g -1 . The doped nitrogen in carbon framework has a positive effect on the electrochemical properties of the electrode material, the thin carbon sheet structure benefits for fast ion transfer, the abundant meso-pores provide convenient channels for rapid charge transportation, large specific surface area and lots of micro-pores guarantee sufficient ion-storage sites. Therefore, applied for supercapacitors, the carbon electrode material exhibits an outstanding specific capacitance of 451 F g -1 at 0.5 A g -1 in a three-electrode system. Moreover, the assembled symmetric supercapacitor based on two identical carbon electrodes also displays high specific capacitance of 309 F g -1 at 0.5 A g -1 , excellent rate capacity and remarkable cycling stability with 99.3% of the initial capacitance retention after 10,000 cycles at 5 A -1 . The synthesis strategy avoids expensive inert gas protection and the use of corrosive KOH and toxic ZnCl 2 activated reagents, representing a promising green route to design advanced carbon electrode materials from biomass for high-capacity supercapacitors. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen
2017-09-01
Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.
NiCo2O4 particles with diamond-shaped hexahedron structure for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Li, Yanfang; Hou, Xiaojuan; Zhang, Zengxing; Hai, Zhenyin; Xu, Hongyan; Cui, Danfeng; Zhuiykov, Serge; Xue, Chenyang
2018-04-01
Nickel cobalt oxide (NiCo2O4) particles with a diamond-shaped hexahedral porous sheet structure are successfully synthesized by a facile hydrothermal method, followed by calcination in one step. NiCo2O4-I and NiCo2O4-II particles are prepared using the same method with different contents of urea (CO(NH2)2) and ammonium fluoride (NH4F). The different morphologies of the NiCo2O4-I and NiCo2O4-II particles illustrate that CO(NH2)2 and NH4F play an important role in crystal growth. To verify the influence of NH4F and CO(NH2)2 on the morphology of the NiCo2O4 particles, the theory of crystal growth morphology is analyzed. The electrochemical measurements show that NiCo2O4 particles exhibit a high specific capacitance. At a current density of 1.0 mA cm-2, the mass specific capacitances of the NiCo2O4-I and NiCo2O4-II electrodes are 690.75 and 1710.9 F g-1, respectively, in a 6 M KOH aqueous electrolyte. The specific capacitances of the NiCo2O4-I and NiCo2O4-II electrodes remain ∼95.95% and ∼70.58% of the initial capacitance values after 5000 cycles, respectively. According to the two-electrode test, the NiCo2O4-II//AC asymmetric electrodes exhibited an ultrahigh energy density of 64.67 Wh kg-1 at the power density of 12 kW kg-1, demonstrating its excellent application potential as an electrode material for supercapacitors.
Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.
Parsons, Drew F
2014-08-01
A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Flexible capacitive behavior of hybrid carbon materials prepared from graphene sheets
NASA Astrophysics Data System (ADS)
Ding, Y.-H.; Xie, W.; Zhang, P.; Jiang, Y.
2016-06-01
High frequency ultrasonication was employed to reduce the aggregation of graphene by constructing hybrid carbon materials (HCMs), which are endowed with a large electrochemical reaction area and high energy density. HCMs exhibited a specific capacitance of 168.5 F · g-1 with ˜100% capacitance retention over 500 cycles. Flexible supercapacitors fabricated from HCMs also showed an excellent capacitive behavior even under tough conditions. These outstanding electrochemical properties were ascribed to the increased specific surface area and open structure of HCMs.
Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode
NASA Astrophysics Data System (ADS)
Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk
2015-04-01
Surfactant-treated graphene/polyaniline (G/PANI) nanocomposites were prepared by the MnO2 template-aided oxidative polymerization of aniline (ANI) on the surfactant-treated graphene sheets. The electrochemical performances of the G/PANI nanocomposites in a three-electrode system using an aqueous sulfuric acid as an electrolyte exhibited a specific capacitance of 436 F g-1 at 1 A g-1, which is much higher than the specific capacitance of pure PANI (367 F g-1). Such a higher specific capacitance of the G/PANI nanocomposite inferred an excellent synergistic effect of respective pseudocapacitance and electrical double-layer capacitance of PANI and graphene.
de Lamirande, E; Lamothe, G
2010-07-01
Semenogelin (Sg), the main protein of human semen coagulum, prevents sperm capacitation. The objective of this study was to examine the role of Sg and its mechanism of action. Sg blocked sperm capacitation triggered by various stimuli, via inhibition of superoxide anion (O(2)*-; luminescence assay) and nitric oxide (NO*; tested using diaminofluorescein) generation. Triton-soluble and -insoluble sperm fractions contained Sg and Sg peptides (immunoblotting), the level of which decreased with initiation of capacitation. This drop was prevented by superoxide dismutase and NO* synthase inhibitor and was reproduced by addition of O(2)*- and NO*. Zinc (Zn(2+)) blocked and a zinc chelator (TPEN) promoted the decline in Sg levels. There was a decreased labelling of Sg on the head in capacitating spermatozoa with the two fixation techniques tested (immunocytochemistry). Reactive oxygen species (ROS) (O(2)*- and NO*) caused, these changes, and zinc prevented them. Spermatozoa quickly internalized Sg upon incubation and Sg was then rapidly degraded in a zinc-inhibitable manner. Sg blocked capacitation mainly via inhibition of ROS generation. Spermatozoa appeared permeable to Sg and processed Sg in a zinc-inhibitable fashion. ROS themselves could promote sperm disposal of Sg which maybe one of the mechanisms that allows initiation of capacitation.
Current concepts of molecular events during bovine and porcine spermatozoa capacitation.
Vadnais, Melissa L; Galantino-Homer, Hannah L; Althouse, Gary C
2007-01-01
Spermatozoa are required to undergo the processes of capacitation before they obtain fertilizing ability. The molecular changes of capacitation are still not fully understood. However, it is accepted that capacitation is a sequential process involving numerous physiological changes including destabilization of the plasma membrane, alterations of intracellular ion concentrations and membrane potential, and protein phosphorylation. There are no known morphological changes that occur to the spermatozoon during capacitation. The purpose of this review is to summarize current evidence on the molecular aspects of capacitation both in vivo and in vitro in bovine and porcine spermatozoa. For the purpose of this review, the process of sperm capacitation will encompass maturational events that occur following ejaculation up to binding to the zona pellucida, that triggers acrosomal exocytosis and initiates fertilization.
Peng, Zhikun; Liu, Xu; Meng, Huan; Li, Zhongjun; Li, Baojun; Liu, Zhongyi; Liu, Shouchang
2017-02-08
In this work, RuO 2 honeycomb networks (RHCs) and hollow spherical structures (RHSs) were rationally designed and synthesized with modified-SiO 2 as a sacrificial template via two hydrothermal approaches. At a high current density of 20 A g -1 , the two hierarchical porous RuO 2 ·xH 2 O frameworks showed the specific capacitance as high as 628 and 597 F g -1 ; this is about 80% and 75% of the capacitance retention of 0.5 A g -1 for RHCs and RHSs, respectively. Even after 4000 cycles at 5 A g -1 , the RHCs and RHSs can still remain at 86% and 91% of their initial specific capacitances, respectively. These two hierarchical frameworks have a well-defined pathway that benefits for the transmission/diffusion of electrolyte and surface redox reactions. As a result, they exhibit good supercapacitor performance in both acid (H 2 SO 4 ) and alkaline (KOH) electrolytes. As compared to RuO 2 bulk structure and similar RuO 2 counterpart reported in pseudocapacitors, the two hierarchical porous RuO 2 ·xH 2 O frameworks have better energy storage capabilities, high-rate performance, and excellent cycling stability.
Gao, Zhaodongfang; Yang, Junwei; Huang, Jing; Xiong, Chuanxi; Yang, Quanling
2017-11-23
Conducting polymer based supercapacitors usually suffer from the difficulty of achieving high specific capacitance and good long-term stability simultaneously. In this communication, a long-chain protonic acid doped solvent-free self-suspended polyaniline (S-PANI) fluid and reduced graphene oxide (RGO) were used to fabricate a three-dimensional RGO/S-PANI aerogel via a simple self-assembled hydrothermal method, which was then applied as a supercapacitor electrode. This 3D RGO/S-PANI composite exhibited a high specific capacitance of up to 480 F g -1 at a current density of 1 A g -1 and 334 F g -1 even at a high discharge rate of 40 A g -1 . An outstanding cycling performance, with 96.14% of the initial capacitance remaining after 10 000 charging/discharging cycles at a rate of 10 A g -1 , was also achieved. Compared with the conventional conducting polymer materials, the 3D RGO/S-PANI composite presented more reliable rate capability and cycling stability. Moreover, S-PANI possesses excellent processability, thereby revealing its enormous potential in large scale production. We anticipate that the solvent-free fluid technique is also applicable to the preparation of other 3D graphene/polymer materials for energy storage.
Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin
2017-09-13
A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m 2 /g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.
Novel graphene-like electrodes for capacitive deionization.
Li, Haibo; Zou, Linda; Pan, Likun; Sun, Zhuo
2010-11-15
Capacitive deionization (CDI) is a novel technology that has been developed for removal of charged ionic species from salty water, such as salt ions. The basic concept of CDI, as well as electrosorption, is to force charged ions toward oppositely polarized electrodes through imposing a direct electric field to form a strong electrical double layer and hold the ions. Once the electric field disappears, the ions are instantly released back to the bulk solution. CDI is an alternative low-energy consumption desalination technology. Graphene-like nanoflakes (GNFs) with relatively high specific surface area have been prepared and used as electrodes for capacitive deionization. The GNFs were synthesized by a modified Hummers' method using hydrazine for reduction. They were characterized by atomic force microscopy, N2 adsorption at 77 K and electrochemical workstation. It was found that the ratio of nitric acid and sulfuric acid plays a vital role in determining the specific surface area of GNFs. Its electrosorption performance was much better than commercial activated carbon (AC), suggesting a great potential in capacitive deionisation application. Further, the electrosorptive performance of GNFs electrodes with different bias potentials, flow rates and ionic strengths were measured and the electrosorption isotherm and kinetics were investigated. The results showed that GNFs prepared by this process had the specific surface area of 222.01 m²/g. The specific electrosorptive capacity of the GNFs was 23.18 µmol/g for sodium ions (Na+) when the initial concentration was at 25 mg/L, which was higher than that of previously reported data using graphene and AC under the same experimental condition. In addition, the equilibrium electrosorption capacity was determined as 73.47 µmol/g at 2.0 V by fitting data through the Langmuir isotherm, and the rate constant was found to be 1.01 min⁻¹ by fitting data through pseudo first-order adsorption. The results suggested that the chemically synthesized GNFs can be used as effective electrode materials in CDI process for brackish water desalination.
Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers.
Graniczkowska, Kinga; Pütz, Michael; Hauser, Frank M; De Saeger, Sarah; Beloglazova, Natalia V
2017-06-15
A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo- and UV-initiated polymerization techniques. The obtained particles were compared against commercially available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode's surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formyl amphetamine was determined to be 10μM in this capacitive biosensor system. The obtained results indicate future possible applications of this MIPs-based capacitive biosensor for environmental and forensic analysis. To the best of our knowledge there are no existing MIPs-based sensors toward amphetamine-type stimulants (ATS). Copyright © 2016 Elsevier B.V. All rights reserved.
All-nanotube stretchable supercapacitor with low equivalent series resistance.
Gilshteyn, Evgenia P; Amanbayev, Daler; Anisimov, Anton S; Kallio, Tanja; Nasibulin, Albert G
2017-12-12
We report high-performance, stable, low equivalent series resistance all-nanotube stretchable supercapacitor based on single-walled carbon nanotube film electrodes and a boron nitride nanotube separator. A layer of boron nitride nanotubes, fabricated by airbrushing from isopropanol dispersion, allows avoiding problem of high internal resistance and short-circuiting of supercapacitors. The device, fabricated in a two-electrode test cell configuration, demonstrates electrochemical double layer capacitance mechanism and retains 96% of its initial capacitance after 20 000 electrochemical charging/discharging cycles with the specific capacitance value of 82 F g -1 and low equivalent series resistance of 4.6 Ω. The stretchable supercapacitor prototype withstands at least 1000 cycles of 50% strain with a slight increase in the volumetric capacitance from 0.4 to 0.5 mF cm -3 and volumetric power density from 32 mW cm -3 to 40 mW cm -3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 Ω for the as-fabricated stretchable prototype was obtained, which slightly decreased with the strain applied up to 200 Ω. Simple fabrication process of such devices can be easily extended making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.
Oxygen-Vacancy Abundant Ultrafine Co3O4/Graphene Composites for High-Rate Supercapacitor Electrodes.
Yang, Shuhua; Liu, Yuanyue; Hao, Yufeng; Yang, Xiaopeng; Goddard, William A; Zhang, Xiao Li; Cao, Bingqiang
2018-04-01
The metal oxides/graphene composites are one of the most promising supercapacitors (SCs) electrode materials. However, rational synthesis of such electrode materials with controllable conductivity and electrochemical activity is the topical challenge for high-performance SCs. Here, the Co 3 O 4 /graphene composite is taken as a typical example and develops a novel/universal one-step laser irradiation method that overcomes all these challenges and obtains the oxygen-vacancy abundant ultrafine Co 3 O 4 nanoparticles/graphene (UCNG) composites with high SCs performance. First-principles calculations show that the surface oxygen vacancies can facilitate the electrochemical charge transfer by creating midgap electronic states. The specific capacitance of the UCNG electrode reaches 978.1 F g -1 (135.8 mA h g -1 ) at the current densities of 1 A g -1 and retains a high capacitance retention of 916.5 F g -1 (127.3 mA h g -1 ) even at current density up to 10 A g -1 , showing remarkable rate capability (more than 93.7% capacitance retention). Additionally, 99.3% of the initial capacitance is maintained after consecutive 20 000 cycles, demonstrating enhanced cycling stability. Moreover, this proposed laser-assisted growth strategy is demonstrated to be universal for other metal oxide/graphene composites with tuned electrical conductivity and electrochemical activity.
NASA Astrophysics Data System (ADS)
Wen, Ping; Fan, Mingjin; Yang, Desuo; Wang, Yan; Cheng, Hualei; Wang, Jinqing
2016-07-01
The development of novel electrode materials with high energy density and long cycling life is critical to realize electrochemical capacitive energy storage for practical applications. In this paper, the hybrids of nickle cobalt sulfide/multi-wall carbon nanotubes (NiCo2S4/MWCNTs) with different contents of MWCNTs are prepared using a facile one-pot solvothermal reaction. As novel active materials for supercapacitors, the electrochemistry tests show that the hybrid of NiCo2S4/MWCNTs-5 is able to deliver a high specific capacitance of 2080 F g-1 at the current density of 1 A g-1, even superior rate capability of 61% capacitance retention after a 20-fold increase in current densities, when the content of MWCNTs is up to 5%. More importantly, an asymmetric supercapacitor assembled by NiCo2S4/MWCNTs-5 as positive electrode and reduced graphene oxide (rGO) as negative electrode delivers a high energy density of 51.8 Wh Kg-1 at a power density of 865 W kg-1, and 85.7% of its initial capacitance is retained at the current density of 4 A g-1 after 5000 charge-discharge cycles, exhibiting potential prospect for practical applications.
Chen, Junchen; Wang, Yaming; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang
2017-06-14
A facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm 2 (0.2 mA/cm 2 ) for rGO/PPy films, whereas optimized specific capacitance is as high as 361 F/g (0.2 mA/cm 2 ). All of the composite films exhibit excellent rate capability (at least 175 F/g at the current density of 12 mA/cm 2 ) compared with pure PPy film (only 12 F/g at the current density of 12 mA/cm 2 ). The rGO/PPy composite exhibits excellent cycling stability that maintains 104% of its initial capacitance after cycling for 2000 cycles and 80% for 5000 cycles. The two-electrode solid-state supercapacitor (SC) based on rGO/PPy composite electrodes demonstrates good rate performance, excellent cycling stability, as well as a high area capacitance of 222 mF/cm 2 . The solid-state planar SC based on the rGO/PPy composite exhibits an area capacitance of 9.4 mF/cm 2 , demonstrating great potential for fabrication of microsupercapacitors.
MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.
2014-04-01
Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.
NASA Astrophysics Data System (ADS)
Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua
2016-04-01
Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.
Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan
2014-01-06
Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g(-1) at 1.25 A g(-1)) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h(-1).
NASA Astrophysics Data System (ADS)
Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan
2014-01-01
Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g-1 at 1.25 A g-1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h-1.
Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan
2014-01-01
Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g−1 at 1.25 A g−1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h−1. PMID:24389929
Engineering hierarchical Diatom@CuO@MnO2 hybrid for high performance supercapacitor
NASA Astrophysics Data System (ADS)
Zhang, Yan; Guo, Wan Wan; Zheng, Tian Xu; Zhang, Yu Xin; Fan, Xing
2018-01-01
A rational and hierarchical Diatom@CuO@MnO2 hybrid was fabricated via a facile electroless copper plating technology, following by a one-pot hydrothermal reaction with KMnO4. Such unique architecture acts as a supercapacitor electrode, which exhibits a high specific capacitance (240 F g-1 at a current density of 0.5 A g-1), good rate capability (58.3% retention when the current density increases from 0.5 to 5 A g-1), and excellent electrochemical cycling stability (91.2% retention of the initial specific capacitance after 4000 cycles at a current density of 2 A g-1). The impressive electrochemical performance of this Diatom@CuO@MnO2 electrode ascribed to the synergistic effect between the CuO particles and MnO2 nanosheets. Therefore, it can be expected that this unique Diatom@CuO@MnO2 electrode may have great promise for the application in supercapacitors.
Diamond and Carbon Nanotube Composites for Supercapacitor Devices
NASA Astrophysics Data System (ADS)
Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson
2017-02-01
We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.
NASA Astrophysics Data System (ADS)
Khamlich, S.; Abdullaeva, Z.; Kennedy, J. V.; Maaza, M.
2017-05-01
In this work, zinc hydroxychloride nanosheets (ZHCNs) were deposited on 3d graphene-nickel foam (NiF-G) by employing a simple hydrothermal synthesis method to form NiF-G/ZHCNs composite electrode materials. The fabricated NiF-G/ZHCNs electrode revealed a well-developed pore structures with high specific surface area of 119 m2 g-1, and used as electrode materials for symmetric supercapacitor with aqueous alkaline electrolyte. The specific areal capacitance and electron charge transfer resistance (Rct) were 222 mF cm-2 (at current density of 1.0 mA cm-2) and 1.63 Ω, respectively, in a symmetric two-electrode system. After 5000 cycles with galvanostatic charge/discharge, the device can maintain 96% of its initial capacitance under 1.0 mA cm-2 and showed low Rct of about 9.84 Ω. These results indicate that NiF-G/ZHCNs composite is an excellent electrode material for electrochemical energy storage devices.
Rusi; Chan, P. Y.; Majid, S. R.
2015-01-01
The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg-1 at current density of 1.85 Ag-1 in 0.5M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5M KOH and 0.5M KOH/0.04M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 103 Fg-1 and an energy density of 309 Whkg-1 in a 0.5MKOH/0.04MK3Fe(CN) 6 electrolyte at a current density of 10 Ag-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447
Liang, Bo; Chen, Yule; He, Jiangyu; Chen, Chen; Liu, Wenwen; He, Yuanqing; Liu, Xiaohe; Zhang, Ning; Roy, Vellaisamy A L
2018-01-31
Most reported pristine phosphates, such as NH 4 MPO 4 ·H 2 O (M = Co, Ni), are not very stable as supercapacitor electrodes because of their chemical properties. In this work, KCo x Ni 1-x PO 4 ·H 2 O microplates were fabricated by a facile hydrothermal method at low temperature and used as electrodes in supercapacitors. The Co and Ni content could be adjusted, and optimal electrochemical performance was found in KCo 0.33 Ni 0.67 PO 4 ·H 2 O, which also possessed superior specific capacitance, rate performance, and long-term chemical stability compared with NH 4 Co 0.33 Ni 0.67 PO 4 ·H 2 O because of its unique chemical composition and microstructure. Asymmetric supercapacitor cells based on KCo 0.33 Ni 0.67 PO 4 ·H 2 O and active carbon were assembled, which produce specific capacitance of 34.7 mA h g -1 (227 F g -1 ) under current density of 1.5 A g -1 and retain 82% as initial specific capacitance after charging and discharging approximately 5000 times. The assembled asymmetric supercapacitor cells (ASCs) exhibited much higher power and energy density than most previously reported transition metal phosphate ASCs. The KCo x Ni 1-x PO 4 ·H 2 O electrodes fabricated in this work are efficient, inexpensive, and composed of naturally abundant materials, rendering them promising for energy storage device applications.
Rusi; Chan, P Y; Majid, S R
2015-01-01
The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
A high-performance supercapacitor electrode based on N-doped porous graphene
NASA Astrophysics Data System (ADS)
Dai, Shuge; Liu, Zhen; Zhao, Bote; Zeng, Jianhuang; Hu, Hao; Zhang, Qiaobao; Chen, Dongchang; Qu, Chong; Dang, Dai; Liu, Meilin
2018-05-01
The development of high-performance supercapacitors (SCs) often faces some contradictory and competing requirements such as excellent rate capability, long cycling life, and high energy density. One effective strategy is to explore electrode materials of high capacitance, electrode architectures of fast charge and mass transfer, and electrolytes of wide voltage window. Here we report a facile and readily scalable strategy to produce high-performance N-doped graphene with a high specific capacitance (∼390 F g-1). A symmetric SC device with a wide voltage window of 3.5 V is also successfully fabricated based on the N-doped graphene electrode. More importantly, the as-assembled symmetric SC delivers a high energy density of 55 Wh kg-1 at a power density of 1800 W kg-1 while maintaining superior cycling life (retaining 96.6% of the initial capacitance after 20,000 cycles). Even at a power density as high as 8800 W kg-1, it still retains an energy density of 29 Wh kg-1, higher than those of previously reported graphene-based symmetric SCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal
2014-02-24
On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.
Yuan, Zhao; Qiao, Fei; Wang, Guiqiang; Zhou, Jin; Cui, Hongyou; Zhuo, Shuping; Xing, Ling-Bao
2018-08-01
In present work, reduced graphene oxide hydrogels (RGOHs) with three-dimensional (3D) porous structure are prepared through chemical reduction method by using aminourea (NRGOHs) and aminothiourea (NSRGOHs) as reductants. The as-prepared RGOHs are considered not only as promising electrode materials for supercapacitors, but also the doping of nitrogen (aminourea, NRGOHs) or nitrogen/sulfur (aminothiourea, NSRGOHs) can improve electrochemical performance through faradaic pseudocapacitance. The optimized samples have been prepared by controlling the mass ratios of graphene oxide (GO) to aminourea or aminothiourea to be 1:1, 1:2 and 1:5, respectively. With adding different amounts of aminourea or aminothiourea, the obtained RGOHs exhibited different electrochemical performance in supercapacitors. With increasing the dosage of the reductants, the RGOHs revealed better specific capacitances. Moreover, NSRGOHs with nitrogen, sulfur-codoping exhibited better capacitance performance than that of NRGOHs with only nitrogen-doping. NSRGOHs showed excellent capacitive performance with a very high specific capacitance up to 232.2, 323.3 and 345.6 F g-1 at 0.2 A g-1, while NRGOHs showed capacitive performance with specific capacitance up to 220.6, 306.5 and 332.7 F g-1 at 0.2 A g-1. This provides a strategy to improve the capacitive properties of RGOHs significantly by controlling different doping the materials.
NASA Astrophysics Data System (ADS)
Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.
2015-12-01
Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.
Carbon-polyaniline nanocomposites as supercapacitor materials
NASA Astrophysics Data System (ADS)
Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.
2018-04-01
Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.
Biredox ionic liquids: new opportunities toward high performance supercapacitors.
Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O
2018-01-01
Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO 2 , MnO 2 …) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.
NASA Astrophysics Data System (ADS)
Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an
2012-10-01
A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.
Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Singh, Dinesh Pratap; Yadav, Ram Manohar
2015-07-15
Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.
NASA Astrophysics Data System (ADS)
Hu, Sixiao; Zhang, Sanliang; Pan, Ning; Hsieh, You-Lo
2014-12-01
Highly porous submicron activated carbon fibers (ACFs) were robustly generated from low sulfonated alkali lignin and fabricated into supercapacitors for capacitive energy storage. The hydrophilic and high specific surface ACFs exhibited large-size nanographites and good electrical conductivity to demonstrate outstanding electrochemical performance. ACFs from KOH activation, in particular, showed very high 344 F g-1 specific capacitance at low 1.8 mg cm-2 mass loading and 10 mV s-1 scan rate in aqueous electrolytes. Even at relatively high scan rate of 50 mV s-1 and mass loading of 10 mg cm-2, a decent specific capacitance of 196 F g-1 and a remarkable areal capacitance of 0.55 F cm-2 was obtained, leading to high energy density of 8.1 Wh kg-1 based on averaged electrodes mass. Furthermore, over 96% capacitance retention rates were achieved after 5000 charge/discharge cycles. Such excellent performance demonstrated great potential of lignin derived carbons for electrical energy storage.
NASA Astrophysics Data System (ADS)
Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek
2016-12-01
This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.
Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan
2014-02-01
A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.
Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan
2016-11-14
There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.
Liao, Yaozu; Wang, Haige; Zhu, Meifang; Thomas, Arne
2018-03-01
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m 2 g -1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g -1 in 0.5 m H 2 SO 4 at a current of 1 A g -1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g -1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g -1 of total electrode materials, an energy density of 60 Wh kg -1 at a power density of 1300 W kg -1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Andres, Britta; Engström, Ann-Christine; Blomquist, Nicklas; Forsberg, Sven; Dahlström, Christina; Olin, Håkan
2016-01-01
Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC’s specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes— Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)—and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost. PMID:27658253
Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; ...
2015-08-05
In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less
Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.
Kim, Min Seok; Park, Jong Hyeok
2011-05-01
The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.
Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei
2014-11-01
Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f
Shao, Rong; Niu, Jin; Liang, Jingjing; Liu, Mengyue; Zhang, Zhengping; Dou, Meiling; Huang, Yaqin; Wang, Feng
2017-12-13
Non-aqueous electrolytes (e.g., organic and ionic liquid electrolytes) can undergo high working voltage to improve the energy densities of supercapacitors. However, the large ion sizes, high viscosities, and low ionic conductivities of organic and ionic liquid electrolytes tend to cause the low specific capacitances, poor rate, and cycling performance of supercapacitors based on conventional micropore-dominant activated carbon electrodes, limiting their practical applications. Herein, we propose an effective strategy to simultaneously obtain high power and energy densities in non-aqueous electrolytes via using a cattle bone-derived porous carbon as an electrode material. Because of the unique co-activation of KOH and hydroxyapatite (HA) within the cattle bone, nitrogen-doped hierarchically porous carbon (referred to as NHPC-HA/KOH) is obtained and possesses a mesopore- and macropore-dominant porosity with an ultrahigh specific surface area (2203 m 2 g -1 ) of meso- and macropores. The NHPC-HA/KOH electrodes exhibit superior performance with specific capacitances of 224 and 240 F g -1 at 5 A g -1 in 1.0 M TEABF 4 /AN and neat EMIMBF 4 electrolyte, respectively. The symmetric supercapacitor using NHPC-HA/KOH electrodes can deliver integrated high energy and power properties (48.6 W h kg -1 at 3.13 kW kg -1 in 1.0 M TEABF 4 /AN and 75 W h kg -1 at 3.75 kW kg -1 in neat EMIMBF 4 ), as well as superior cycling performance (over 89% of the initial capacitance after 10 000 cycles at 10 A g -1 ).
Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang
2014-12-10
Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).
NASA Astrophysics Data System (ADS)
Kolosov, V. N.; Orlov, V. M.; Miroshnichenko, M. N.; Prokhorova, T. Yu.; Masloboeva, S. M.; Belyaevskii, A. T.
2009-02-01
The characteristics of the tantalum powders produced by sodium thermal reduction from salt melts based on K2TaF7 and NaCl with various amounts of added oxycompounds K3TaOF6 and K2Ta2O3F6 are studied. At a molar ratio of oxygen to tantalum of 1.25 in the initial melt, capacitor tantalum powders with a specific surface area more than 3 m2/g are produced. The specific capacitance of the anodes made from these powders reaches 58 mC/g.
NASA Astrophysics Data System (ADS)
Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao
2011-05-01
Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.
NASA Astrophysics Data System (ADS)
Rakhi, R. B.; Alshareef, H. N.
2011-10-01
Graphene nanosheets (GNs) dispersed with SnO2 nanoparticles loaded multiwalled carbon nanotubes (SnO2-MWCNTs) were investigated as electrode materials for supercapacitors. SnO2-MWCNTs were obtained by a chemical method followed by calcination. GNs/SnO2-MWCNTs nanocomposites were prepared by ultrasonication of the GNs and SnO2-MWCNTs. Electrochemical double layer capacitors were fabricated using the composite as the electrode material and aqueous KOH as the electrolyte. Electrochemical performance of the composite electrodes were compared to that of pure GNs electrodes and the results are discussed. Electrochemical measurements show that the maximum specific capacitance, power density and energy density obtained for supercapacitor using GNs/SnO2-MWCNTs nanocomposite electrodes were respectively 224 F g-1, 17.6 kW kg-1 and 31 Wh kg-1. The fabricated supercapacitor device exhibited excellent cycle life with ∼81% of the initial specific capacitance retained after 6000 cycles. The results suggest that the hybrid composite is a promising supercapacitor electrode material.
Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting
2015-09-23
Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.
NASA Astrophysics Data System (ADS)
Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang
2013-11-01
Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.
Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode
NASA Astrophysics Data System (ADS)
Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit
2017-09-01
By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong
2015-10-15
Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphenemore » oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.« less
Zhang, Manyu; Ma, Xiaowei; Bi, Han; Zhao, Xuebing; Wang, Chao; Zhang, Jie; Li, Yuesheng; Che, Renchao
2017-09-15
A facile chemical method for Co doping Ni-CNTs@α-Ni(OH) 2 combining with an in situ phase transformation process is successfully proposed and employed to synthesize three-dimensional (3D) hierarchical Ni-CNTs@β-(Ni, Co) binary hydroxides. This strategy can effectively maintain the coaxial-cable-like structure of Ni-CNTs@α-Ni(OH) 2 and meanwhile increase the content of Co as much as possible. Eventually, the specific capacitances and electrical conductivity of the composites are remarkably enhanced. The optimized composite exhibits high specific capacitances of 2861.8F g -1 at 1A g -1 (39.48F cm -2 at 15mAcm -2 ), good rate capabilities of 1221.8F g -1 at 20A g -1 and cycling stabilities (87.6% of capacitance retention after 5000cycles at 5A g -1 ). The asymmetric supercapacitor (ASC) constructed with the as-synthesized composite and activated carbon as positive and negative electrode delivers a high specific capacitance of 287.7F g -1 at 1A g -1 . The device demonstrates remarkable energy density (96Whkg -1 ) and high power density (15829.4Wkg -1 ). The retention of capacitance remains 83.5% at the current density of 5A g -1 after 5000cycles. The charged and discharged samples are further studied by ex situ electron energy loss spectroscopy (EELS) analysis, XRD and SEM to figure out the reasons of capacitance fading. Overall, it is believable that this facile synthetic strategy can be applied to prepare various nanostructured metal hydroxide/CNT composites for high performance supercapacitor electrode materials. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Babakhani, Banafsheh
The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the morphology and crystal structure of electrodeposited Mn oxide were studied. By changing deposition parameters, including deposition current density, electrolyte composition, pH and temperature, a series of nanocrystalline Mn oxide electrodes with various morphologies (continuous coatings, rod-like structures, aggregated rods and thin sheets) and an antifluorite-type crystal structure was obtained. Mn oxide thin sheets showed instantaneous nucleation and single crystalline growth; rods had a mix of instantaneous/progressive nucleation and polycrystalline growth and continuous coatings formed by progressive nucleation and polycrystalline growth. Electrochemical analysis revealed the best capacitance behaviour obtained for Mn oxide thin sheets followed by Mn oxide rods, with dimensions on the microscale, and then continuous coatings. The highest specific capacitance (˜230 Fg-1) and capacitance retention rates (˜88%) were obtained for Mn oxide thin sheets after 250 cycles in 0.5 M Na2 SO4 at 20 mVs-1.
Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin
2015-06-17
Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of -75.4° at 120 Hz with a specific capacitance of 316 µF/cm(2) and a RC time constant of 0.35 ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering.
Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R; Ahamad, Tansir; Alshehri, Saad M; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W
2016-07-12
Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g(-1) in 1 M NaCl at a scan rate of 5 mV·s(-1). Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g(-1).
Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R.; Ahamad, Tansir; Alshehri, Saad M.; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C.-W.
2016-01-01
Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g−1. PMID:27404086
NASA Astrophysics Data System (ADS)
Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching
Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m 2 g -1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N 2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3-49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H 2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H 2SO 4 due to excellent reversibility and high specific capacitance (180 F g -1 measured at 10 mV s -1), which is obviously larger than 100 F g -1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m 2 g -1).
NASA Astrophysics Data System (ADS)
Zhang, Dacheng; Zhang, Xiong; Chen, Yao; Yu, Peng; Wang, Changhui; Ma, Yanwei
Graphene and polypyrrole composite (PPy/GNS) is synthesized via in situ polymerization of pyrrole monomer in the presence of graphene under acid conditions. The structure and morphology of the composite are characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectrometer (FTIR), X-rays photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). It is found that a uniform composite is formed with polypyrrole being homogeneously surrounded by graphene nanosheets (GNS). The composite is a promising candidate for supercapacitors to have higher specific capacitance, better rate capability and cycling stability than those of pure polypyrrole. The specific capacitance of PPy/GNS composite based on the three-electrode cell configuration is as high as 482 F g -1 at a current density of 0.5 A g -1. After 1000 cycles, the attenuation of the specific capacitance is less than 5%, indicating that composite has excellent cycling performance.
NASA Astrophysics Data System (ADS)
He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin
2014-12-01
This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.
Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.
F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff
2003-01-01
The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...
NASA Astrophysics Data System (ADS)
Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei
2017-12-01
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.
Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei
2017-12-19
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g -1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g -1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm -3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.
A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates
Xu, Lizhong
2018-01-01
In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546
A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.
Fu, Xiaorui; Xu, Lizhong
2018-01-26
In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.
NASA Astrophysics Data System (ADS)
Sun, Wei; Zheng, Ruilin; Chen, Xuyuan
To achieve higher energy density and power density, we have designed and fabricated a symmetric redox supercapacitor based on microelectromechanical system (MEMS) technologies. The supercapacitor consists of a three-dimensional (3D) microstructure on silicon substrate micromachined by high-aspect-ratio deep reactive ion etching (DRIE) method, two sputtered Ti current collectors and two electrochemical polymerized polypyrrole (PPy) films as electrodes. Electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatical charge/discharge methods have been carried out on the single PPy electrodes and the symmetric supercapacitor in different electrolytes. The specific capacitance (capacitance per unit footprint area) and specific power (power per unit footprint area) of the PPy electrodes and symmetric supercapacitor can be calculated from the electrochemical test data. It is found that NaCl solution is a good electrolyte for the polymerized PPy electrodes. In NaCl electrolyte, single PPy electrodes exhibit 0.128 F cm -2 specific capacitance and 1.28 mW cm -2 specific power at 20 mV s -1 scan rate. The symmetric supercapacitor presents 0.056 F cm -2 specific capacitance and 0.56 mW cm -2 specific power at 20 mV s -1 scan rate.
High performance supercapacitor from activated carbon derived from waste orange skin
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.
2018-05-01
Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.
Puga Molina, Lis C; Pinto, Nicolas A; Torres, Nicolás I; Gonzalez-Cota, Ana L; Luque, Guillermina M; Balestrini, Paula A; Romarowski, Ana; Krapf, Dario; Santi, Celia M; Trevino, Claudia L; Darszon, Alberto; Buffone, Mariano G
2018-05-09
To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3--dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (Cystic Fibrosis Transmembrane Conductance Regulator Channel) activity and for the modulation of membrane potential (Em). However, the main HCO3- transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na+/HCO3- cotransporter (NBC) and epithelial Na+ channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3- influx, resulting in lower PKA activity, and that events downstream the cAMP-activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3- also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf
2014-09-01
NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.
NASA Astrophysics Data System (ADS)
Hu, Xiaowei; Liu, Sheng; Li, Chenghui; Huang, Jiahao; Luv, Jixing; Xu, Pan; Liu, Jian; You, Xiao-Zeng
2016-06-01
In this article, we report a facile and environmentally friendly glutamic acid-assisted hydrothermal strategy for the preparation of ultrathin two-dimensional (2D) β-Ni(OH)2 nanosheets with a thickness of about 2 nm, which exhibit a maximum specific capacitance of 2537.4 F g-1 at a current density of 1 A g-1, even at 10 A g-1, the specific capacitance is still maintained at 2290.0 F g-1 with 77.6% retention after 3000 cycles.In this article, we report a facile and environmentally friendly glutamic acid-assisted hydrothermal strategy for the preparation of ultrathin two-dimensional (2D) β-Ni(OH)2 nanosheets with a thickness of about 2 nm, which exhibit a maximum specific capacitance of 2537.4 F g-1 at a current density of 1 A g-1, even at 10 A g-1, the specific capacitance is still maintained at 2290.0 F g-1 with 77.6% retention after 3000 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02912d
Tajparast, Mohammad; Glavinović, Mladen I
2018-06-06
Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hou, Xiang-Yang; Yan, Xiao-Li; Wang, Xiao; Zhai, Quan-Guo
2018-07-01
NiO has an unusually high theoretical specific capacitance and possess relatively high electrical conductivity compared to other metal oxides. However, the reported specific capacitance of the NiO-based electrodes is far below the theoretical value up to now. In this paper, three porous NiO materials with different specific surface area were synthesized simply by calcining iso-structural Ni-based MOFs templates. The formation mechanism of NiO was discussed by taking into account the thermal behavior and intrinsic structural features of the Ni-MOFs. Taking advantages of the Ni-MOFs precursors, all prepared NiO compounds are mesoporous and their porosity can be tuned by the structure of MOFs. Specially, due to the high porosity, three NiO exhibited an improved electrochemical performance and the specific discharge capacitances are of 102, 105, and 116 F g-1 at the current density of 1 A g-1, respectively. The specific capacitance of 1-NiO-450 is approximately 93.2% of its maximum value after 3000 cycles, which obviously superior to most of the previously reported NiO electrode materials and suggests their promising applications in supercapacitors.
Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.
Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen
2015-12-01
In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).
Nano ZnO-activated carbon composite electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Selvakumar, M.; Krishna Bhat, D.; Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G.
2010-05-01
A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na 2SO 4 as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm 2. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na 2SO 4 electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.
Qiao, Zhi-jun; Chen, Ming-ming; Wang, Cheng-yang; Yuan, Yun-cai
2014-07-01
Two kinds of hierarchical porous carbons (HPCs) with specific surface areas of 2000 m(2)g(-1) were synthesized using leonardite humic acids (LHA) or biotechnology humic acids (BHA) precursors via a KOH activation process. Humic acids have a high content of oxygen-containing groups which enabled them to dissolve in aqueous KOH and facilitated the homogeneous KOH activation. The LHA-based HPC is made up of abundant micro-, meso-, and macropores and in 6M KOH it has a specific capacitance of 178 F g(-1) at 100 Ag(-1) and its capacitance retention on going from 0.05 to 100 A g(-1) is 64%. In contrast, the BHA-based HPC exhibits a lower capacitance retention of 54% and a specific capacitance of 157 F g(-1) at 100 A g(-1) which is due to the excessive micropores in the BHA-HPC. Moreover, LHA-HPC is produced in a higher yield than BHA-HPC (51 vs. 17 wt%). Copyright © 2014 Elsevier Ltd. All rights reserved.
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2013-05-28
Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.
Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials
NASA Astrophysics Data System (ADS)
Lv, Zhisheng; Xie, Daohai; Li, Fusheng; Hu, Yun; Wei, Chaohai; Feng, Chunhua
2014-01-01
Here, we report that the microbial fuel cell (MFC) containing pseudo-capacitive anode materials such as polypyrrole (PPy)/9,10-anthraquinone-2-sulfonic acid sodium salt (AQS) composite films and RuO2 nanoparticles can function as a biocapacitor, able to store bioelectrons generated from microbial oxidation of substrate and release the accumulated charge upon requirement. Influences of the specific capacitance of the PPy/AQS- and RuO2-modified carbon felt anodes on the extent of accumulated charge are examined. Results show that increasing anode capacitance is responsible for the increases in the amount of electrons stored and released, and thereby leading to more energy stored and average power dissipated. The long-term charging-discharging tests indicate that the RuO2-modified biocapacitor with a specific capacitance of 3.74 F cm-2 exhibits 6% loss in the amount of released charge over 10 cycles for one-month operation, and 40% loss over 60 cycles for six-month operation. Our findings suggest that the MFC anode incorporating pseudo-capacitive materials shows potential for storing energy from waste organic matter and releasing in a short time of high power to the electronic device.
NASA Astrophysics Data System (ADS)
Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong
2015-06-01
Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.
Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.
Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei
2018-01-10
A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.
NASA Astrophysics Data System (ADS)
Kuang, Min; Zhang, Yu Xin; Li, Tong Tao; Li, Kai Feng; Zhang, Sheng Mao; Li, Gang; Zhang, Wei
2015-06-01
We demonstrate a facile and tunable preparative strategy of porous NiCo2O4 nanosheets-decorated Cu-based nanowires hybrids as high-performance supercapacitor electrodes. A fast faradic reaction has been realized by inducing elementary copper core in the composite, which assists in high electric conductivity of the cell and creates intimate channels for fast charge collection and electron transfer. As a result, this hybrid composite electrode displays high specific capacitance (578 F g-1 at current density of 1.0 A g-1) and rate capability (80.1% capacitance retention from 1 A g-1 to 10 A g-1). Additionally, asymmetric device is constructed from NiCo2O4/Cu-based NWs and activated graphene (AG) with an operation potential from 0 to 1.4 V. The asymmetric device exhibits an energy density of 12.6 Wh kg-1 at a power density of 344 W kg-1 and excellent long-term cycling stability (only 1.8% loss of its initial capacitance after 10,000 cycles). These attractive findings suggest that such unique NiCo2O4/Cu-based NWs hybrid architecture is promising for electrochemical applications as efficient electrode material.
Yang, Wanlu; Gao, Zan; Ma, Jing; Wang, Jun; Zhang, Xingming; Liu, Lianhe
2013-11-28
A novel flower-on-sheet hierarchical morphology of α-Co(OH)2 nanostructures was achieved via an easy two-step synthesis strategy. The method is based on first a galvanostatic electrodeposition (GE) of vertically aligned interconnected Co(OH)2 nanosheets to form a branch layer and second a potentiostatic electrodeposition (PE) of Co(OH)2 microflowers on the obtained branch layer from the secondary growth of their sheet-like precursors. The formation mechanism of this special PE time-dependent nanostructure was proposed and their morphology-dependent supercapacitor properties were also investigated. For a given areas mass loading, high specific capacitances of 1822 F g(-1) have been achieved for the electrode obtained after 200 s GE followed by a 300 s PE in a three-electrode configuration, and it maintained 91% of its initial capacity after 1000 constant-current charge/discharge cycles. Even when the discharge current density was increased from 1 to 50 mA cm(-2), the capacitance was still as high as 1499 F g(-1), indicating an excellent rate performance of the fabricated electrodes. The high performances of the electrodes are attributed to the special porous structure, 3D hierarchical morphology, vertical aligned orientation, and low contact resistance between active material and charge collector.
Aradilla, David; Gao, Fang; Lewes-Malandrakis, Georgia; Müller-Sebert, Wolfgang; Gentile, Pascal; Boniface, Maxime; Aldakov, Dmitry; Iliev, Boyan; Schubert, Thomas J S; Nebel, Christoph E; Bidan, Gérard
2016-07-20
A versatile and robust hierarchically multifunctionalized nanostructured material made of poly(3,4-(ethylenedioxy)thiophene) (PEDOT)-coated diamond@silicon nanowires has been demonstrated to be an excellent capacitive electrode for supercapacitor devices. Thus, the electrochemical deposition of nanometric PEDOT films on diamond-coated silicon nanowire (SiNW) electrodes using N-methyl-N-propylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide ionic liquid displayed a specific capacitance value of 140 F g(-1) at a scan rate of 1 mV s(-1). The as-grown functionalized electrodes were evaluated in a symmetric planar microsupercapacitor using butyltrimethylammonium bis((trifluoromethyl)sulfonyl)imide aprotic ionic liquid as the electrolyte. The device exhibited extraordinary energy and power density values of 26 mJ cm(-2) and 1.3 mW cm(-2) within a large voltage cell of 2.5 V, respectively. In addition, the system was able to retain 80% of its initial capacitance after 15 000 galvanostatic charge-discharge cycles at a high current density of 1 mA cm(-2) while maintaining a Coulombic efficiency around 100%. Therefore, this multifunctionalized hybrid device represents one of the best electrochemical performances concerning coated SiNW electrodes for a high-energy advanced on-chip supercapacitor.
NASA Astrophysics Data System (ADS)
Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.
2018-06-01
Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.
Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T
2012-06-01
Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.
Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage
NASA Astrophysics Data System (ADS)
Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison
2015-02-01
Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.
Architecture engineering of supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Li, Gong; Xue, Dongfeng
2016-02-01
The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.
Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao
2011-05-01
Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g(-1) at 1 A g(-1), which remained at 543 F g(-1) when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg(-1)) was maintained even at a high power density of 6000 W kg(-1). An excellent long cycle life of the electrode was observed with a retention of ∼86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO(2) nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications. © The Royal Society of Chemistry 2011
Mechanochemical synthesis of carbon-based nanocomposites for supercapacitors
NASA Astrophysics Data System (ADS)
Mateyshina, Yuliya G.; Ulihin, Artem S.; Uvarov, Nikolai F.
2014-12-01
New nanoporous carbon-SiO2 composite materials were synthesized from organic raw materials (rice shells) and their electrochemical properties were investigated by cyclic voltammetry in liquid electrolytes (6 M KOH or 1 M H2SO4). A correlation between specific capacitance and specific surface area was observed. Due to high specific capacitance of 90 F/g the carbon materials under study may be regarded as promising electrode materials for electrochemical supercapacitors.
NASA Astrophysics Data System (ADS)
Ye, Zhiguo; Li, Tao; Ma, Guang; Peng, Xinyuan; Zhao, Jun
2017-05-01
Four different morphologies of nanostructured MnO2 (nanospheres, nanosheets, nanoflowers and nanonods) were fabricated on a carbon fiber paper (CFP) substrate using a facile method of anodic electrodeposition by varying the H2SO4 concentration and current density. The fabricated composite electrodes were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electrochemical techniques. The composite electrodes with MnO2 nanosphere/CFP, MnO2 nanosheet/CFP, MnO2 nanoflower/CFP and MnO2 nanonod/CFP achieved a relatively high specific capacitance (areal capacitance) of 134.4 F g-1 (0.20 F cm-2), 226.3 F g-1 (0.33 F cm-2), 235.6 F g-1 (0.35 F cm-2) and 362.5 F g-1 (0.54 F cm-2) at 0.5 A g-1, respectively. When the GV charging-discharging rate increased from 0.5 to 5 A g-1, the MnO2 nanorod/CFP composite decreased from 362.5 F g-1 (0.54 F cm-2) to 160.0 F g-1 (0.24 F cm-2), which is a relatively high retention of the original capacitance (i.e., 44.1%). All the composite electrodes with various nanostructured MnO2 morphologies under flat and bent states retained more than 95% and 90% of the initial capacitance after 5000 cycles at 5 A g-1, respectively, which demonstrates outstanding cycling stability. This study provides a novel approach for high-performance, morphology-controllable metal oxide electrodes for supercapacitors.
Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C
2017-11-01
Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation. © 2017 Wiley Periodicals, Inc.
Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.
Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei
2014-11-06
Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.
Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong
2016-11-15
Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi
2018-03-15
Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.
NASA Astrophysics Data System (ADS)
Qiao, Zhensong; Yang, Xiaopeng; Liu, Feng; Duan, Guangbin; Cao, Bingqiang
2017-03-01
Silver nanowires (AgNW) with a small diameter were synthesized by a facile and novel polyol reduction method. Ag nanowires ink was then spun on the surface of F-doped SnO2 (FTO) to form the AgNW/FTO conducting film. Welding treatment of the AgNW/FTO conducting film not only increased the optical transmittance from 71.9 % to 79.3 % at 550 nm and decreased the sheet resistance from 11.4 ohm sq-1 to 9.8 ohm sq-1, but also improved the adhesivity of AgNW network on FTO substrate. Furthermore, MnO2 nanosheets were directly deposited on welded-AgNW/FTO (wAF) substrate to prepare a transparent MnO2/weled-AgNW/FTO (MwAF) composite electrode. The MwAF electrode displayed excellent electrochemical performance, including high specific capacitance (375 F g-1 at 5 mV s-1) and superior cycle stability (173.3 % of the initial capacitance after 20000 GCD cycles).
Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors
NASA Astrophysics Data System (ADS)
Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi
2017-10-01
Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L-1 was found to be 1266 F g-1 at a scan rate of 3 mV s-1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g-1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.
Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices.
Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong
2018-01-01
Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.
Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices
NASA Astrophysics Data System (ADS)
Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong
2018-01-01
Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.
NASA Astrophysics Data System (ADS)
Hu, Huan; Liu, Shuwu; Hanif, Muddasir; Chen, Shuiliang; Hou, Haoqing
2014-12-01
The polyaniline (PANI)-based pseudo-supercapacitor has been extensively studied due to its good conductivity, ease of synthesis, low-cost monomer, tunable properties and remarkable specific capacitance. In this work, a three-dimensional cross-linked carbon network (3D-CCN) was used as a contact-resistance-free substrate for PANI-based pseudo-supercapacitors. The ordered PANI nanowires (PaNWs) were grown on the 3D-CCN to form PaNWs/3D-CCN composites by in-situ polymerization. The PaNWs/3D-CCN composites exhibited a specific capacitance (Cs) of 1191.8 F g-1 at a current density of 0.5 A g-1 and a superior rate capability with 66.4% capacitance retention at 100.0 A g-1. The high specific capacitance is attributed to the thin PaNW coating and the spaced PANI nanowire array, which ensure a higher utilization of PANI due to the ease of diffusion of protons through/on the PANI nanowires. In addition, the unique 3D-CCN was used as a high-conductivity platform (or skeleton) with no contact resistance for fast electron transfer and facile charge transport within the composites. Therefore, the binder-free composites can process rapid gains or losses of electrons and ions, even at a high current density. As a result, the specific capacitance and rate capability of our composites are remarkably higher than those of other PANI composites.
Jayakumar, Anjali; Antony, Rajini P; Wang, Ronghua; Lee, Jong-Min
2017-03-01
Highly optimized nickel cobalt mixed oxide has been derived from zeolite imidazole frameworks. While the pure cobalt oxide gives only 178.7 F g -1 as the specific capacitance at a current density of 1 A g -1 , the optimized Ni:Co 1:1 has given an extremely high and unprecedented specific capacitance of 1931 F g -1 at a current density of 1 A g -1 , with a capacitance retention of 69.5% after 5000 cycles in a three electrode test. This optimized Ni:Co 1:1 mixed oxide is further used to make a composite of nickel cobalt mixed oxide/graphene 3D hydrogel for enhancing the electrochemical performance by virtue of a continuous and porous graphene conductive network. The electrode made from GNi:Co 1:1 successfully achieves an even higher specific capacitance of 2870.8 F g -1 at 1 A g -1 and also shows a significant improvement in the cyclic stability with 81% capacitance retention after 5000 cycles. An asymmetric supercapacitor is also assembled using a pure graphene 3D hydrogel as the negative electrode and the GNi:Co 1:1 as the positive electrode. With a potential window of 1.5 V and binder free electrodes, the capacitor gives a high specific energy density of 50.2 Wh kg -1 at a high power density of 750 W kg -1 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.
Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A
2018-01-15
Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Nantao; Zhang, Liling; Yang, Chao
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo
2013-03-01
Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
NASA Astrophysics Data System (ADS)
Liu, Lifeng
2013-11-01
Nano-aggregates of cobalt nickel oxysulfide (CoNi)OxSy have been synthesized by hydrothermal processing and exhibited specific and areal capacitance as high as 592 F g-1 and 1628 mF cm-2, respectively, at a current density of 0.5 A g-1/1.375 mA cm-2. They also show high capacitance retention upon extended cycling at high rates.Nano-aggregates of cobalt nickel oxysulfide (CoNi)OxSy have been synthesized by hydrothermal processing and exhibited specific and areal capacitance as high as 592 F g-1 and 1628 mF cm-2, respectively, at a current density of 0.5 A g-1/1.375 mA cm-2. They also show high capacitance retention upon extended cycling at high rates. Electronic supplementary information (ESI) available: Experimental details; supplementary tables. See DOI: 10.1039/c3nr03533f
Preparation of Shape-Controlled Graphene/Co3O4 Composites for Supercapacitors
NASA Astrophysics Data System (ADS)
Chen, Jun; Chen, Ningna; Feng, Xiaomiao; Hou, Wenhua
2016-09-01
Graphene/Co3O4 nanocomposites with different morphologies were fabricated by hydrothermal method. The morphology of nanocomposites was characterized by scanning electron microscopy. These composites could be used as the electrode materials for supercapacitors. The eletrochemical behavior of the composite was tested by cyclic voltammetry and galvanostatic charge-discharge measurements in 1.0 mol/L KOH solution. The results showed that the graphene/Co3O4 nanopetal composite exhibited excellent electrochemical performance. The specific capacitance value could reach up to 714 F/g at a scan rate of 2 mV/s. Besides, the capacitance of the graphene/Co3O4 nanopetal composite was 841 F/g at a current density of 0.1 A/g. After galvanostatic charge-discharge 1000 laps at the current density of 0.4 A/g, the specific capacitance could keep 96.7% of original capacitive value, demonstrating its good cycling stability.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
MnO2 nanowires-decorated carbon fiber cloth as electrodes for aqueous asymmetric supercapacitor
NASA Astrophysics Data System (ADS)
Hong, Congcong; Wang, Xing; Yu, Houlin; Wu, Huaping; Wang, Jianshan; Liu, Aiping
Manganese dioxide nanowires (MnO2 NWs) anchored on carbon fiber cloth (CFC) were fabricated through a simple hydrothermal reaction and used as integrated electrodes for supercapacitor. The morphology-dependent electrochemical performance of MnO2 NWs was confirmed, yielding good capacitance performance with a high specific capacitance of 3.88Fṡcm‑2 at a charge-discharge current density of 5mAṡcm‑2 and excellent stability of 91.5% capacitance retention after 3000 cycles. Moreover, the composite electrodes were used to fabricate supercapacitors, which showed a high specific capacitance of 194mFṡcm‑2 at a charge-discharge current density of 2mAṡcm‑2 and high energy density of 0.108mWhṡcm‑2 at power density of 2mWṡcm‑2, foreboding its potential application for high-performance supercapacitor.
Chen, Hui; Wang, Gang; Chen, Long; Dai, Bin; Yu, Feng
2018-06-08
Hierarchical porous structures with surface nitrogen-doped porous carbon are current research topics of interest for high performance supercapacitor electrode materials. Herein, a three-dimensional (3D) honeycomb-like porous carbon with interconnected hierarchical porosity and nitrogen self-doping was synthesized by simple and cost-efficient one-step KOH activation from waste cottonseed husk (a-CSHs). The obtained a-CSHs possessed hierarchical micro-, meso-, and macro-pores, a high specific surface area of 1694.1 m²/g, 3D architecture, and abundant self N-doping. Owing to these distinct features, a-CSHs delivered high specific capacitances of 238 F/g and 200 F/g at current densities of 0.5 A/g and 20 A/g, respectively, in a 6 mol/L KOH electrolyte, demonstrating good capacitance retention of 84%. The assembled a-CSHs-based symmetric supercapacitor also displayed high specific capacitance of 52 F/g at 0.5 A/g, with an energy density of 10.4 Wh/Kg at 300 W/Kg, and 91% capacitance retention after 5000 cycles at 10 A/g.
Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage
NASA Astrophysics Data System (ADS)
Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.
2016-08-01
We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates.
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-16
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
NASA Astrophysics Data System (ADS)
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-01
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Maolong; Ryals, Matthew; Ali, Amir
2016-08-01
A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less
Kline, D; Stewart-Savage, J
1994-03-01
To determine the temporal relationship between cortical granule exocytosis and the repetitive calcium transients, which are characteristic of mammalian fertilization, we monitored membrane addition from exocytosis during fertilization of hamster eggs. Continuous measurement of membrane capacitance by applying a 3.1-nA alternating current at 375 Hz showed addition of cortical granule membrane. Simultaneous measurement of membrane potential revealed each calcium transient by the appearance of transient hyperpolarizing responses due to calcium-activated potassium channels in the egg. The initial membrane capacitance of the eggs averaged 736 +/- 44 pF (mean +/- SD; n = 7) and an increase in capacitance of 61 +/- 19 pF occurred within 4 sec of the start of the first hyperpolarizing response (HR) after fertilization. Immediately after the first increase in capacitance there was a gradual decline in membrane capacitance in all eggs and in five/seven eggs the capacitance returned to the unfertilized level in 7.8 +/- 4.4 min. The gradual decline in capacitance after the first increase indicated endocytosis, which was confirmed by the internalization of fluorescently labeled dextran. Superimposed on the gradual decline in membrane capacitance were smaller increases in capacitance that occurred with the second and later HRs. The total increase in capacitance from the first three events averaged 72 +/- 19 pF, representing an average increase in capacitance of about 10% of the capacitance of the unfertilized egg. By labeling eggs before and after permeabilization with two different fluorochromes attached to Lens culinaris agglutinin, we demonstrate that the dispersal of the cortical granules contents does not occur immediately after exocytosis. Our results demonstrate that cortical granule exocytosis in hamster eggs is closely coupled to the periodic increases in calcium, that the contents of the cortical granules are slow to disperse, and that after exocytosis, the surface area of the egg returns to the unfertilized level because of a period of endocytosis.
Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas
2016-02-10
Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M
2016-12-28
Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.
Enhanced specific capacitance of an electrophoretic deposited MnO2-carbon nanotube supercapacitor
NASA Astrophysics Data System (ADS)
Tagsin, Patin; Klangtakai, Pawinee; Harnchana, Viyada; Amornkitbamrung, Vittaya; Pimanpang, Samuk; Kumnorkaew, Pisist
2017-12-01
MnO2 and MnO2-carbon nanotubes (CNT) composite films were grown directly on stainless- steel substrates using an electrophoretic process employing supercapacitor electrodes. An electrophoretic MnO2 film with a nanoplate-like structure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Supercapacitor performance was studied using cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The specific capacitance (SC) of the electrophoretic MnO2 film was 60 F/g at 1 A/g, with a 38.33% retention of the initial SC values after 1000 cycles. The low SC value of the MnO2 films was attributed to the high series and charge-transfer resistances of 1.70 Ω and 3.20, respectively. The MnO2-CNT composites with the addition of 0.04, 0.06 and 0.08 g CNT to the electrophoretic MnO2 film were found to greatly increase the SC to 300, 206 and 169 F/g at 1 A/g, respectively. The series and charge-transferred resistances of MnO2-CNT composite films decreased to 1.38 - 1.52 Ω and 2.62 - 2.86 Ω, respectively. The SC improvement of the composite electrodes was attributed to presence of two active storage materials (MnO2 and CNT), a high film specific surface area and electrical conductivity.
Design, fabrication, and evaluation of on-chip micro-supercapacitors
NASA Astrophysics Data System (ADS)
Beidaghi, Majid
Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.
NASA Astrophysics Data System (ADS)
Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe
2016-01-01
A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.
Electropolymerized polyazulene as active material in flexible supercapacitors
NASA Astrophysics Data System (ADS)
Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita
2017-07-01
We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).
Capacitive pressure-sensitive composites using nickel-silicone rubber: experiments and modeling
NASA Astrophysics Data System (ADS)
Fan, Yuqin; Liao, Changrong; Liao, Ganliang; Tan, Renbing; Xie, Lei
2017-07-01
Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.
Response to capacitating stimuli indicates extender-related differences in boar sperm function.
Schmid, S; Henning, H; Petrunkina, A M; Weitze, K F; Waberski, D
2013-10-01
Spermatozoa, especially those of the porcine species, are highly susceptible to in vitro chilling and ageing. Extenders are continuously developed to protect boar spermatozoa from chilling injury. New semen extenders and other modified preservation strategies require sensitive testing for essential sperm functions. The key process on the pathway of fertilization is capacitation. The aim of the present study was to examine whether the specific response to capacitating stimuli is sensitive enough to indicate different preservation capacities of extenders during hypothermic storage of boar spermatozoa. Semen was diluted in Beltsville Thawing Solution (BTS) and Androstar Plus and kept for 3 h at 22°C or stored at 17°C, 10°C, and 5°C. Semen was analyzed at 24 and 96 h of storage. Motility and membrane integrity remained at high levels, except for lower values when stored in BTS at 5°C. Washed subsamples were incubated in capacitating medium (Tyrode) and control medium and were assessed for intracellular calcium concentration and integrity of plasma membranes using a flow cytometer. On the basis of the loss of low-calcium live cells in a kinetic approach, the specific response to capacitation stimuli was determined. There was a higher loss of response in semen stored hypothermically in the standard extender BTS compared to Androstar Plus. Assessment of the extent of phospholipid disorder under capacitating and control conditions by use of merocyanine staining did not reveal any significant extender-related differences. A field insemination trial with 778 sows was performed to relate in vitro results to fertility. Fertility parameters did not differ in semen stored up to 48 h at 10°C in Androstar Plus compared to controls stored at 17°C in BTS. In conclusion, assessment of specific reactivity to capacitating stimuli appears to be a sensitive tool for detection of extender-dependent alterations in functionality of chilled boar spermatozoa.
Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M
2013-07-24
A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.
Tiruneh, Sintayehu Nibret; Kang, Bong Kyun; Kwag, Sung Hoon; Lee, YoungHun; Kim, MinSeob; Yoon, Dae Ho
2018-03-02
Nickel cobalt sulfide nanoparticles embedded in holey defect graphene hydrogel (HGH) that exhibit highly porous structures and uniform nickel cobalt sulfide nanoparticle sizes are successfully prepared by a facile solvothermal-hydrothermal method. As an electrode material for supercapacitors, the as-prepared NiCo 2 S 4 @HGH shows ultra-high specific capacitances of 1000 F g -1 and 800 F g -1 at 0.5 and 6 A g -1 , respectively, owing to the outstanding electrical conductivity of HGH and high specific capacitance of NiCo 2 S 4 . After 2100 charge/discharge cycles at a current density of 6 A g -1 , 96.6 % of the specific capacitance was retained, signifying the superb durability of NiCo 2 S 4 @HGH. Moreover, remarkable specific capacitance (312.6 F g -1 ) and capacity retention (87 % after 5000 cycles) at 6 A g -1 were displayed by the symmetric solid-state supercapacitor fabricated by using NiCo 2 S 4 @HGH electrodes. These auspicious supercapacitor performances demonstrate that the as-developed solvothermal-hydrothermal approach can be widely used to prepare graphene-coupled binary metal sulfides for high-performance supercapacitor applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.
Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu
2015-09-01
Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping.
Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.
2016-01-01
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067
Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors
NASA Astrophysics Data System (ADS)
Su, Y.; Zhitomirsky, I.
2014-12-01
Composite materials, containing fibrous VN nanoparticles and multiwalled carbon nanotubes (MWCNT) are prepared by a chemical method for application in electrochemical supercapacitors. We demonstrate for the first time that VN-MWCNT electrodes exhibit good capacitive behavior in 0.5 M Na2SO4 electrolyte in a negative voltage window of 0.9 V. Quartz crystal microbalance studies provide an insight into the mechanism of charge storage. Composite VN-MWCNT materials show significant improvement in capacitance, compared to individual VN and MWCNT materials. Testing results indicate that VN-MWCNT electrodes exhibit high specific capacitance at high mass loadings in the range of 10-30 mg cm-2, good capacitance retention at scan rates in the range of 2-200 mV s-1 and good cycling stability. The highest specific capacitance of 160 F g-1 is achieved at a scan rate of 2 mV s-1. The new findings open a new and promising strategy in the fabrication of hybrid devices based on VN. The proof-of-principle is demonstrated by the fabrication of hybrid supercapacitor devices based on VN-MWCNT negative electrodes and MnO2 -MWCNT positive electrodes with voltage window of 1.8 V in aqueous 0.5 M Na2SO4 electrolyte. The hybrid VN-MWCNT/MnO2-MWCNT supercapacitor cells show promising capacitive and power-energy characteristics.
Bai, Yang; Wang, Ranran; Lu, Xiaoyu; Sun, Jing; Gao, Lian
2016-04-15
We present a facile template method to fabricate NiCo2O4 (NCO) composites with 3D porous structure as electrodes for supercapacitors. SiO2 sol is used as the template to prevent the aggregation of NCO and construct the porous structure with high specific surface area. Meanwhile, the binary metal oxides not only inherit the merits of single nickel oxides or cobalt oxides, but also show superior properties to promote the capacitance. The uniform structure of NCO12 (SiO2/NCO=1:2) is obtained through controlling the mass ratio of SiO2 and NCO. Owing to the dual advantages of porous structure and binary system, NCO12 composites exhibit highly enhanced electrochemical performance compared with those of directly prepared NCO, NCO21 (SiO2/NCO=1:0.5) and NCO14 (SiO2/NCO=1:4). The specific capacitance of NCO12 composite is about 1389 Fg(-1) at 1 Ag(-1). At 4 Ag(-1), the capacitance is still as high as 1090 Fg(-1) together with capacitance retention of 80% over 2500 cycles. The capacitance and stability are higher than those of most previously reported pure NCO composites, which make it a very promising electrode material for energy storage. Copyright © 2016 Elsevier Inc. All rights reserved.
Hu, Nantao; Zhang, Liling; Yang, Chao; ...
2016-01-22
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
Yan, Jian; Khoo, Eugene; Sumboja, Afriyanti; Lee, Pooi See
2010-07-27
In this paper, a very simple solution-based method is employed to coat amorphous MnO2 onto crystalline SnO2 nanowires grown on stainless steel substrate, which utilizes the better electronic conductivity of SnO2 nanowires as the supporting backbone to deposit MnO2 for supercapacitor electrodes. Cyclic voltammetry (CV) and galvanostatic charge/discharge methods have been carried out to study the capacitive properties of the SnO2/MnO2 composites. A specific capacitance (based on MnO2) as high as 637 F g(-1) is obtained at a scan rate of 2 mV s(-1) (800 F g(-1) at a current density of 1 A g(-1)) in 1 M Na2SO4 aqueous solution. The energy density and power density measured at 50 A g(-1) are 35.4 W h kg(-1) and 25 kW kg(-1), respectively, demonstrating the good rate capability. In addition, the SnO2/MnO2 composite electrode shows excellent long-term cyclic stability (less than 1.2% decrease of the specific capacitance is observed after 2000 CV cycles). The temperature-dependent capacitive behavior is also discussed. Such high-performance capacitive behavior indicates that the SnO2/MnO2 composite is a very promising electrode material for fabricating supercapacitors.
Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming
2012-10-05
It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Ling-Bin, E-mail: konglb@lut.cn; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050; Deng, Li
Graphical abstract: Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} nano-flakes materials, which have a flower-like structure, were successfully synthesized by a facile solvothermal method without adding any surfactant. The as-prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} possesses a maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Highlights: ► Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} materials were fabricated in a simple method. ► High specific capacitance of 2212.5 F g{sup −1} has been achieved. ► For the first time the effects of concentration andmore » temperature on its specific capacitance has been studied. -- Abstract: Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} was successfully synthesized by a facile solvothermal method. The microstructure and surface morphology of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} were physically characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electrochemical properties studies were carried out using cyclic voltammetry (CV), chronopotentiometry technology and AC impedance spectroscopy, respectively. The results indicate that the flower-like structure has a profound impact on electrode performance at high discharge capacitance. A maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA could be achieved, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Furthermore, the effects of Ni(NO{sub 3}){sub 2}·6H{sub 2}O concentration and temperature on the microstructure and specific capacitance of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} have also been systematically studied. The results show that flower-like structure can be formed when the concentration is appropriate, while the temperature has just little effect on its electrochemical properties.« less
Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?
NASA Astrophysics Data System (ADS)
Thissandier, Fleur; Gentile, Pascal; Brousse, Thierry; Bidan, Gérard; Sadki, Saïd
2014-12-01
Silicon nanotrees (SiNTrs) have been grown by Chemical Vapor Deposition (CVD) via gold catalysis and a three steps process: trunks and branches growth are separated by a new gold catalyst deposition. The influence of growth conditions and the second gold catalyst deposition method on SiNTrs morphology are investigated. SiNTrs based electrodes show a capacitive behavior and better capacitance than the corresponding silicon nanowires (SiNWs) electrode. Electrode capacitance is increased up to 900 μF cm-2, i.e. 150 fold higher than for bulk silicon. Micro-supercapacitors with SiNTrs electrodes have a remarkable stability (only 1.2% loses of their initial capacitance after more than one million cycles). The use of an ionic liquid based electrolyte leads to a high maximum power density (around 225 mW cm-2) which is competitive with Onion Like Carbon based micro-supercapacitors.
NASA Astrophysics Data System (ADS)
Gu, Lin; Wang, Yewu; Fang, Yanjun; Lu, Ren; Sha, Jian
2013-12-01
In this paper, we report the supercapacitor electrodes with excellent cycle stability, which are made of silicon carbide nanowires (SiC NWs) grown on flexible carbon fabric. A high areal capacitance of 23 mF cm-2 is achieved at a scan rate of 50 mV s-1 at room temperature and capacitances increase with the rise of the working temperature. Owing to the excellent thermal stability of SiC NWs and carbon fabric, no observable decrease of capacitance occurs at room temperature (20 °C) after 105 cycles, which satisfies the demands of the commercial applications. Further increasing the measurement temperature to 60 °C, 90% of the initial capacitance is still retained after 105 cycles. This study shows that silicon carbide nanowires on carbon fabric are a promising electrode material for high temperature and stable micro-supercapacitors.
Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.
Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang
2015-12-01
High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amiri, Ahmad; Ahmadi, Goodarz; Shanbedi, Mehdi; Savari, Maryam; Kazi, S. N.; Chew, B. T.
2015-12-01
Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications.
Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K
2015-02-01
A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.
Tan, Yongtao; Liu, Ying; Tang, Zhenghua; Wang, Zhe; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen
2018-02-13
N-doped carbon nanosheets/vanadium nitride nanoparticles (N-CNS/VNNPs) are synthesized via a novel method combining surface-initiated in-situ intercalative polymerization and thermal-treatment process in NH 3 /N 2 atmosphere. The pH value of the synthesis system plays a critical role in constructing the structure and enhancing electrochemical performance for N-CNS/VNNPs, which are characterized by SEM, TEM, XRD, and XPS, and measured by electrochemical station, respectively. The results show that N-CNS/VNNPs materials consist of 2D N-doped carbon nanosheets and 0D VN nanoparticles. With the pH value decreasing from 2 to 0, the sizes of both carbon nanosheets and VN nanoparticles decreased to smaller in nanoscale. The maximum specific capacitance of 280 F g -1 at the current density of 1 A g -1 for N-CNS/VNNPs is achieved in three-electrode configuration. The asymmetric energy device of Ni(OH) 2 ||N-CNS/VNNPs offers a specific capacitance of 89.6 F g -1 and retention of 60% at 2.7 A g -1 after 5000 cycles. The maximum energy density of Ni(OH) 2 ||N-CNS/VNNPs asymmetric energy device is as high as 29.5 Wh kg -1 .
Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying
2016-01-01
Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asif, Muhammad; Tan, Yi; Pan, Lujun; Rashad, Muhammad; Li, Jiayan; Fu, Xin; Cui, Ruixue
2016-09-29
Graphene based nanocomposites have been investigated intensively, as electrode materials for energy storage applications. In the current work, a graphene-CNT-MnO 2 -PANI (GCM@PANI) nanocomposite has been synthesized on 3D graphene grown on nickel foam, as a highly efficient binder free electrode material for supercapacitors. Interestingly, the specific capacitance of the synthesized electrode increases up to the first 1500 charge-discharge cycles, and is thus referred to as an electrode activation process. The activated GCM@PANI nanocomposite electrode exhibits an extraordinary galvanostatic specific capacitance of 3037 F g -1 at a current density of 8 A g -1 . The synthesized nanocomposite exhibits an excellent cyclic stability with a capacitance retention of 83% over 12 000 charge-discharge cycles, and a high rate capability by retaining a specific capacitance of 84.6% at a current density of 20 A g -1 . The structural and electrochemical analysis of the synthesized nanocomposite suggests that the astonishing electrochemical performance might be attributed to the growth of a novel PANI nanoparticle layer and the synergistic effect of CNT/MnO 2 nanostructures.
Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib
2017-03-15
A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Helically coiled carbon nanotube forests for use as electrodes in supercapacitors
NASA Astrophysics Data System (ADS)
Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao
Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.
NASA Astrophysics Data System (ADS)
Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua
2014-04-01
New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications.
NASA Astrophysics Data System (ADS)
Sui, Yanwei; Zhang, Dongling; Han, Yongpeng; Sun, Zhi; Qi, Jiqiu; Wei, Fuxiang; He, Yezeng; Meng, Qingkun
2018-05-01
This work successfully demonstrates various temperature carbonization of iron based metal organic framework to derive electrode materials for supercapacitors. Furthermore, impacts of calcined temperatures on the nature of as-prepared products are reported, and samples obtained at 300, 400, 500, 600 and 700 °C were investigated respectively. The products reveals excellent electrochemical performance. Carbonized at 600 °C, the composite materials display the highest specific capacitance of 972 F/g at a current density of 1 A/g. Carbonized at 500 °C, the capacitance retention of materials reach up to 93%. The high specific capacitance and excellent cyclic stability of the developed materials would exhibit nice prospect for the practical utilization of electrode materials.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Zhang, Ruijun; Chen, Peng; Ge, Shanhai
2014-01-01
Porous carbide-derived carbons (CDCs) are synthesized from TiC at different chlorination temperatures as electrode materials for electrochemical capacitors. It is found that the microstructure of the produced CDCs has significant influence on both the hydrophilicity in aqueous KOH electrolyte and the resultant electrochemical performance. Because the TiC-CDC synthesized at higher temperature (e.g. 1000 °C) contains well-ordered graphite ribbons, it shows lower hydrophilicity and specific capacitance. It is also found that addition of a small amount of ethanol to KOH electrolyte effectively improves the wettability of the CDCs synthesized at higher temperature and the corresponding specific capacitance. Compared with the CDC synthesized at 600 °C, the CDC synthesized at 1000 °C shows fast ion transport and excellent capacitive behavior in KOH electrolyte with addition of ethanol because of the existences of mesopores and high specific surface area.
Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke
2018-06-15
We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.
NASA Astrophysics Data System (ADS)
Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng
2016-10-01
The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.
NASA Astrophysics Data System (ADS)
Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei
2017-09-01
Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.
Copper oxide nanowires as better performance electrode material for supercapacitor application
NASA Astrophysics Data System (ADS)
Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mian, M. U.; Irshad, M. I.; Mumtaz, A.
2016-11-01
Supercapacitors are highly attractive energy storage devices which are capable of delivering high power, with fast charging and long cycle life. Carbon based material rely on physical charging with less capacitance while metal oxide store charge by fast redox reaction with increased capacitance. Among metal oxide, copper oxide compounds are widely use in the form of nano and micro structures with no definite control over structure. In this work we utilized the well-controlled structure copper wires, originated from AAO template. Such well controlled structure offer better capacitance values due to easily excess of ions to the surface of wires. Performance of material was check in 3 M of potassium hydroxide (KOH). Specific capacitance (Cs) was calculated by using cyclic voltammetry (CV) and Charge discharge (CDC) test. The capacitance calculate on base on CV at 25 mV/s was 101.37 F/g while CDC showed the capacitance of 90 F/g at 2 A/g.
Zhu, Jikui; Jiang, Yuqian; Lu, Zhiyong; Zhao, Chenglan; Xie, Li; Chen, Lingyun; Duan, Jingui
2017-07-15
As one kind of important p-type semiconductors, Cr 2 O 3 has been widely used for optical and electronic devices due to its high electrical conductivity and special optoelectronic characteristics, as well as high chemical and thermal stability. In this paper, single-crystalline Cr 2 O 3 nanoplates embedded in carbon matrix were successfully synthesized through direct thermal decomposition of a trinuclear cluster complex of [Cr 3 O(CH 3 CO 2 ) 6 (H 2 O) 3 ]NO 3 ·CH 3 COOH ([Cr 3 O]) in Ar atmosphere. The synergetic effect of the plate-like structure and embedding in carbon matrix contributes to the enhanced electrochemical performance of the Cr 2 O 3 -C nanoplates. Owing to different crystallinity and composition, the obtained products at 400, 500, 600, and 700°C with different carbon content of 12.52, 8.26, 5.35 and 3.27% exhibited enhanced battery-type electrode materials in three-electrode system with high specific capacitance (823.11, 781.65, 720.72, and 696.73Fg -1 at 1Ag -1 ) and remarkable cycling stability (about 0.3, 2.7, 4.5 and 5.6% loss of its initial capacitance after 5000 charge-discharge cycles at a current density of 5Ag -1 ). Furthermore, an assembled asymmetric device (Cr 2 O 3 -C nanoplates (positive electrode)//activated carbon (AC, negative one)) with an extended operating voltage window of 1.8V achieves a specific capacitance of 58.06Fg -1 at the current density of 1Ag -1 and an energy density of 26.125Whkg -1 at power density of 0.9kWkg -1 , as well as superior cycling stability with 91.4% capacitance retention after 10,000 cycles. The results indicate that the Cr 2 O 3 nanoplates embedded in carbon matrix show promising potential to construct high-performance energy storage devices. Copyright © 2017 Elsevier Inc. All rights reserved.
MEMS for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Li, Lin; Zhang, Yangjian; San, Haisheng; Guo, Yinbiao; Chen, Xuyuan
2008-03-01
In this paper, a capacitive vibration-to-electrical energy harvester was designed. An integrated process flow for fabricating the designed capacitive harvester is presented. For overcoming the disadvantage of depending on external power source in capacitive energy harvester, two parallel electrodes with different work functions are used as the two electrodes of the capacitor to generate a build-in voltage for initially charging the capacitor. The device is a sandwich structure of silicon layer in two glass layers with area of about 1 cm2. The silicon structure is fabricated by using silicon-on-insulator (SOI) wafer. The glass wafers are anodic bonded on to both sides of the SOI wafer to create a vacuum sealed package.
Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj
2005-03-01
Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.
Vertically porous nickel thin film supported Mn3O4 for enhanced energy storage performance.
Li, Xiao-Jun; Song, Zhi-Wei; Zhao, Yong; Wang, Yue; Zhao, Xiu-Chen; Liang, Minghui; Chu, Wei-Guo; Jiang, Peng; Liu, Ying
2016-12-01
Three-dimensionally porous metal materials are often used as the current collectors and support for the active materials of supercapacitors. However, the applications of vertically porous metal materials in supercapacitors are rarely reported, and the effect of vertically porous metal materials on the energy storage performance of supported metal oxides is not explored. To this end, the Mn3O4-vertically porous nickel (VPN) electrodes are fabricated via a template-free method. The Mn3O4-VPN electrode shows much higher volumetric specific capacitances than that of flat nickel film supported Mn3O4 with the same loading under the same measurement conditions. The volumetric specific capacitance of the vertically porous nickel supported Mn3O4 electrode can reach 533Fcm(-3) at the scan rate of 2mVs(-1). The fabricated flexible all-solid microsupercapacitor based on the interdigital Mn3O4-VPN electrode has a volumetric specific capacitance of 110Fcm(-3) at the current density of 20μAcm(-2). The capacitance retention rate of this microsupercapacitor reaches 95% after 5000 cycles under the current density of 20μAcm(-2). The vertical pores in the nickel electrode not only fit the micro/nanofabrication process of the Mn3O4-VPN electrode, but also play an important role in enhancing the capacitive performances of supported Mn3O4 particles. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Kaixiang; Deng, Yuanfu; Chen, Juping; Qian, Yunqian; Yang, Yuewang; Li, Yingwei; Chen, Guohua
2018-02-01
Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m2 g-1), a high porous volume (2.05 mL g-1 with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g-1 at 1.0 A g-1 in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg-1 at power densities of 1.0 and 20 kW kg-1, respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).
Agrawal, Richa; Adelowo, Ebenezer; Baboukani, Amin Rabiei; Villegas, Michael Franc; Henriques, Alexandra; Wang, Chunlei
2017-07-26
In this study, porous manganese oxide (MnO x ) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g -1 to 225 F∙g -1 , with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn₃O₄ to the conducting layered birnessite MnO₂. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnO x /C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm -2 and stack capacitances as high as 7.4 F·cm -3 , with maximal stack energy and power densities of 0.51 mWh·cm -3 and 28.3 mW·cm -3 , respectively. The excellent areal capacitance of the MnO x -MEs is attributed to the pseudocapacitive MnO x as well as the three-dimensional architectural framework provided by the carbon micro-pillars.
Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing
NASA Astrophysics Data System (ADS)
Xiang, Lian; Park, Sang-Shik
2016-12-01
Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.
Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Ke, Qingqing; Tang, Chunhua; Liu, Yanqiong; Liu, Huajun; Wang, John
2014-04-01
A hierarchical nanostructure consisting of graphene sheets intercalated by clusters of Fe3O4 nanocystals is developed for high-performance supercapacitor electrode. Here we show that the negatively charged graphene oxide (GO) and positively charged Fe3O4 clusters enable a strong electrostatic interaction, generating a hierarchical 3D nanostructure, which gives rise to the intercalated composites through a rational hydrothermal process. The electrocapacitive behavior of the resultant composites is systematically investigated by cyclic voltammeter and galvanostatic charge-discharge techniques, where a positive synergistic effect between graphene and Fe3O4 clusters is identified. A maximum specific capacitance of 169 F g-1 is achieved in the Fe3O4 clusters decorated with effectively reduced graphene oxide (Fe3O4-rGO-12h), which is much higher than those of rGO (101 F g-1) and Fe3O4 (68 F g-1) at the current density of 1 Ag-1. Moreover, this intercalated hierarchical nanostructure demonstrates a good capacitance retention, retaining over 88% of the initial capacity after 1000 cycles.
NASA Astrophysics Data System (ADS)
Dalili, N.; Clark, M. P.; Davari, E.; Ivey, D. G.
2016-10-01
Manganese oxide has been investigated extensively as an electrochemical capacitor or supercapacitor electrode material. Manganese oxide is inexpensive to fabricate and exhibits relatively high capacitance values, i.e., in excess of 200 F g-1 in many cases; the actual value depends very much on the fabrication method and test conditions. The cycling behavior of Mn oxide, fabricated using anodic electrodeposition, is investigated using slice and view techniques, via a dual scanning electron microscope (SEM) and focused ion beam (FIB) instrument to generate three-dimensional (3D) images, coupled with electrochemical characterization. The initial as-fabricated electrode has a rod-like appearance, with a fine-scale, sheet-like morphology within the rods. The rod-like structure remains after cycling, but there are significant morphological changes. These include partial dissolution of Mn oxide followed by redeposition of Mn oxide in regions close to the substrate. The redeposited material has a finer morphology than the original as-fabricated Mn oxide. The Mn oxide coverage is also better near the substrate. These effects result in an increase in the specific capacitance.
NASA Astrophysics Data System (ADS)
Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali
2018-01-01
Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.
A highly efficient flocculant for graphene oxide recycling and its applications
NASA Astrophysics Data System (ADS)
Luan, Ruiying; Pan, Hui; Ma, Yuning; Mao, Lin; Li, Yao; Wang, Dawei; Zhang, Di; Zhu, Shenmin
2018-01-01
In this study, we found a novel and efficient way of recycling graphene oxide (GO) by adding ZnO colloid into the GO solution. GO flocculates immediately when mixed with ZnO colloids. Interestingly, the flocculation would disappear and disperse homogeneously in solution if a certain amount of HCl is added. The study offers a solution to recover and reuse GO throughout its production procedures. More importantly, in the obtained reduced GO/ZnO (rGO/ZnO) flocculant, ZnO nanorods are observed self-assembled into an ordered structure in between the rGO sheets. This prevents the rGO sheets from re-stacking and facilitates the movement of the electrolyte into ZnO if the prepared rGO/ZnO is used as an electrode for supercapacitor. Electrochemical measurements have proved that the rGO/ZnO composite with a weight ratio of 1:1 exhibits a gravimetric specific capacitance of 175 F g-1 and the rGO/ZnO electrode maintains 89.6% of the initial capacitance after 5000 cycles of uses.
Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Sun, Wenping; Rui, Xianhong; Ulaganathan, Mani; Madhavi, Srinivasan; Yan, Qingyu
2015-11-01
Few-layered Ni(OH)2 nanosheets (4-5 nm in thickness) are synthesized towards high-performance supercapacitors. The ultrathin Ni(OH)2 nanosheets show high specific capacitance and good rate capability in both three-electrode and asymmetric devices. In the three-electrode device, the Ni(OH)2 nanosheets deliver a high capacitance of 2064 F g-1 at 2 A g-1, and the capacitance still has a retention of 1837 F g-1 at a high current density of 20 A g-1. Such excellent performance is by far one of the best for Ni(OH)2 electrodes. In the two-electrode asymmetric device, the specific capacitance is 248 F g-1 at 1 A g-1, and reaches 113 F g-1 at 20 A g-1. The capacitance of the asymmetric device maintains to be 166 F g-1 during the 4000th cycle at 2 A g-1, suggesting good cycling stability of the device. Besides, the asymmetric device exhibits gravimetric energy density of 22 Wh kg-1 at a power density of 0.8 kW kg-1. The present results demonstrate that the ultrathin Ni(OH)2 nanosheets are highly attractive electrode materials for achieving fast charging/discharging and high-capacity supercapacitors.
Li, Zhuangnan; Gadipelli, Srinivas; Yang, Yuchen; Guo, Zhengxiao
2017-11-01
Graphene-oxide (GO) based porous structures are highly desirable for supercapacitors, as the charge storage and transfer can be enhanced by advancement in the synthesis. An effective route is presented of, first, synthesis of three-dimensional (3D) assembly of GO sheets in a spherical architecture (GOS) by flash-freezing of GO dispersion, and then development of hierarchical porous graphene (HPG) networks by facile thermal-shock reduction of GOS. This leads to a superior gravimetric specific capacitance of ≈306 F g -1 at 1.0 A g -1 , with a capacitance retention of 93% after 10 000 cycles. The values represent a significant capacitance enhancement by 30-50% compared with the GO powder equivalent, and are among the highest reported for GO-based structures from different chemical reduction routes. Furthermore, a solid-state flexible supercapacitor is fabricated by constructing the HPG with polymer gel electrolyte, exhibiting an excellent areal specific capacitance of ≈220 mF cm -2 at 1.0 mA cm -2 with exceptional cyclic stability. The work reveals a facile but efficient synthesis approach of GO-based materials to enhance the capacitive energy storage. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei
2017-03-01
Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.
Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.
Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak
2008-11-01
Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.
Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei
2017-03-08
Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.
Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei
2017-01-01
Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g−1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g−1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g−1) and high energy density (98.1 Wh kg−1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation. PMID:28272474
cGMP and cyclic nucleotide-gated channels participate in mouse sperm capacitation.
Cisneros-Mejorado, Abraham; Sánchez Herrera, Daniel P
2012-01-20
During capacitation of mammalian sperm intracellular [Ca(2+)] and cyclic nucleotides increase, suggesting that CNG channels play a role in the physiology of sperm. Here we study the effect of capacitation, 8Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) and 8Br-cGMP (8-bromoguanosine 3',5'-cyclic monophosphate) on the macroscopic ionic currents of mouse sperm, finding the existence of different populations of sperm, in terms of the recorded current and its response to cyclic nucleotides. Our results show that capacitation and cyclic nucleotides increase the ionic current, having a differential sensitivity to cGMP (cyclic guanosine monophosphate) and cAMP (cyclic adenosine monophosphate). Using a specific inhibitor we determine the contribution of CNG channels to macroscopic current and capacitation. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Dioxythiophene-based polymer electrodes for supercapacitor modules.
Liu, David Y; Reynolds, John R
2010-12-01
We report on the electrochemical and capacitive behaviors of poly(2,2-dimethyl-3,4-propylene-dioxythipohene) (PProDOT-Me2) films as polymeric electrodes in Type I electrochemical supercapacitors. The supercapacitor device displays robust capacitive charging/discharging behaviors with specific capacitance of 55 F/g, based on 60 μg of PProDOT-Me2 per electrode, that retains over 85% of its storage capacity after 32 000 redox cycles at 78% depth of discharge. Moreover, an appreciable average energy density of 6 Wh/kg has been calculated for the device, along with well-behaved and rapid capacitive responses to 1.0 V between 5 to 500 mV s(-1). Tandem electrochemical supercapacitors were assembled in series, in parallel, and in combinations of the two to widen the operating voltage window and to increase the capacitive currents. Four supercapacitors coupled in series exhibited a 4.0 V charging/discharging window, whereas assembly in parallel displayed a 4-fold increase in capacitance. Combinations of both serial and parallel assembly with six supercapacitors resulted in the extension of voltage to 3 V and a 2-fold increase in capacitive currents. Utilization of bipolar electrodes facilitated the encapsulation of tandem supercapacitors as individual, flexible, and lightweight supercapacitor modules.
NASA Astrophysics Data System (ADS)
Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito
2017-01-01
We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.
Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei
2011-08-01
In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.
Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua
2014-01-01
New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. PMID:24769835
Nanotubular polyaniline electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Athira, A. R.; Vimuna, V. M.; Vidya, K.; Xavier, T. S.
2018-05-01
Polyaniline(PANI) nanotubes have been successfully synthesised at room temperature by the chemical oxidative polymerization of aniline with Ammoniumpersulphate(APS) in aqueous acetic acid. Chemically synthesised PANI nanotubes were characterized using Field emission scanning electron microscopy(FESEM), Brunauer - Emmett-Teller (BET) analysis, X ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The super capacitive performance of the synthesised PANI nanotubes was tested using cyclic voltammetry (CV) technique in H2SO4 electrolyte with in potential range of -0.2 to 0.8V. The effect of scan rates on specific capacitance of PANI electrode was studied. The highest specific capacitance of 232.2Fg-1 was obtained for the scan rate of 5mVs-1. This study suggests that the synthesized PANI nanotubes are excellent candidate for developing electrode materials for supercapacitors.
Ren, Xiaochuan; Guo, Chunli; Xu, Liqiang; Li, Taotao; Hou, Lifeng; Wei, Yinghui
2015-09-16
Three-dimensional (3D) hierarchical nanostructures have been demonstrated as one of the most ideal electrode materials in energy storage systems due to the synergistic combination of the advantages of both nanostructures and microstructures. In this study, the honeycomb-like mesoporous NiO microspheres as promising cathode materials for supercapacitors have been achieved using a hydrothermal reaction, followed by an annealing process. The electrochemical tests demonstrate the highest specific capacitance of 1250 F g(-1) at 1 A g(-1). Even at 5 A g(-1), a specific capacitance of 945 F g(-1) with 88.4% retention after 3500 cycles was obtained. In addition, the 3D porous graphene (reduced graphene oxide, rGO) has been prepared as an anode material for supercapacitors, which displays a good capacitance performance of 302 F g(-1) at 1 A g(-1). An asymmetric supercapacitor has been successfully fabricated based on the honeycomb-like NiO and rGO. The asymmetric supercapacitor achieves a remarkable performance with a specific capacitance of 74.4 F g(-1), an energy density of 23.25 Wh kg(-1), and a power density of 9.3 kW kg(-1), which is able to light up a light-emitting diode.
NASA Astrophysics Data System (ADS)
Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin
2018-02-01
Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.
Nitrogen doped activated carbon from pea skin for high performance supercapacitor
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.
2018-04-01
In this work, nitrogen doped porous carbon (NDC) has been synthesized employing a facile two-step process. Firstly, carbon precursor (pea skin) was heated with melamine (acting as nitrogen source) followed by activation with KOH in different ratios. The dependence of porosity and nitrogen content on impregnation ratio was extensively studied. Other textural properties of prepared NDC sample were studied using standard techniques of material characterization. The electrochemical performance of NDC sample as an electrode was studied in two-electrode symmetric supercapacitor system. 1 M LiTFSI (lithium bis-trifluoromethanesulfonimide) solution in IL EMITFSI (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), was used as electrolyte. It was found that the fabricated supercapacitor cell offers high values of specific capacitance (141.1 F g‑1), specific energy (19.6 Wh kg‑1) and specific power (25.4 kW kg‑1) at current density of 1.3 A g‑1. More importantly, the fabricated supercapacitor cell shows capacitance retention of ∼75%, for more than 5000 cycles. The enhanced performance of NDC sample is primarily due to large surface area with favorable surface structure (contributing to double layer capacitance) and presence of nitrogen functionalities (contributing to pseudo-capacitance). Such important features make the synthesized NDC sample, an attractive choice for electrode material in high performance supercapacitor.
Carbon nanotube balls and their application in supercapacitors.
Kang, Da-Young; Moon, Jun Hyuk
2014-01-08
We have provided a design of the macroscopic morphology of carbon nanotubes (CNTs) using emulsion droplet confinement. The evaporation of CNT-dispersed aqueous emulsion droplets in oil produces spherical CNT assemblies, i.e., CNT balls. In this emulsion-assisted method, compact packing of CNT was obtained by the presence of capillary pressure during droplet evaporation. The size of the CNT balls could be controlled by changing the concentration of the CNT dispersion solution; typically, CNT balls with an average size in the range of 8-12 μm were obtained with a Brunauer-Emmett-Teller (BET) specific area of 200 m(2)/g. Heat treatment of the CNT balls, which was required to remove residual solvent, and cement CNTs was followed, and their effect has been characterized; the heat treatment at high temperature desorbed surface oxygenated groups of CNTs and created defective carbon structures, but did not change pore structure. The dispersion of CNT balls was applied to form CNT ball-assembled film for a supercapacitor electrode. The specific capacitance of 80 F/g was obtained at 500 °C heat treatment, but the CNT balls prepared at a higher temperature actually decreased the capacitance, because of the removal of surface oxygenated groups, thereby decreasing the pseudo-capacitance. The capacitive properties of CNT ball-assembled electrodes were compared to CNT films; the CNT ball electrodes showed 40% higher specific electrochemical capacitance and higher rate performance, which is attributed to the compact packing of CNTs in the CNT ball and the hierarchical porous structures in the ball assemblies.
Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung
2014-01-01
The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978
Functionalized graphene hydrogel-based high-performance supercapacitors.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2013-10-25
Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Xubo; Men, Chuanling; Zhang, Xiaohua; Li, Qingwen
2016-09-01
Sulfonated graphenal polymers can be assembled up by poly(vinyl alcohol) adhesion. The porous assembly structure results in a remarkably improved ionic conductivity and thus enhances electrochemical performances such as specific capacitance, capacitance retention, and cycling stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pham, Viet Hung; Nguyen-Phan, Thuy-Duong; Tong, Xiao; ...
2017-10-09
Hydrogenated TiO 2 has recently attracted considerable attention as potential electrode materials for supercapacitors due to its abundance, low cost, high conductivity, remarkable rate capability, and outstanding long-term cycling stability. In this paper, we demonstrate the synthesis of hydrogenated TiO 2 nanoparticles anchored on reduced graphene oxide nanosheets (HTG) in the form of sandwich-like nanosheet composites. Further, we explored their implementation as electrode materials for high voltage, symmetric supercapacitors, operating in the voltage window of 0–1.8 V. The HTGs were prepared by a sol-gel method, followed by hydrogenation in the temperature range 300–500 °C. Of the prepared composites, HTG preparedmore » at 400 °C exhibited the largest specific capacitance of 51 F g -1 at the current density of 1.0 A g -1 and excellent rate capability with 82.5% capacitance retention as the current density increased 40-fold, from 0.5 to 20.0 A g -1. HTG's excellent rate capability was attributed to its sandwich-like nanostructure, in which ultrasmall hydrogenated TiO 2 nanoparticles densely anchored onto both surfaces of the two-dimensional reduced graphene oxide sheets. Moreover, HTG-based supercapacitors also exhibited long-term cycling stability with the retention over 80% of its initial capacitance after 10,000 cycles. Finally, these properties suggest that HTG is a promising electrode material for the scalable manufacture of high-performance supercapacitors.« less
NASA Astrophysics Data System (ADS)
Gao, Hongyan; Xiang, Junjie; Cao, Yan
2017-08-01
A new type of hierarchically mesoporous cobalt ferrite oxide nanosheets, CoFe2O4 nanosheets, has been successfully fabricated via a simple hydrothermal method on the Ni foam followed by a post-annealing treatment. This CoFe2O4 nanosheets was employed as a supercapacitor electrode and exhibited an excellent capacitance of 503 F g-1 at a current density of 2 A g-1. When the current density increased to 20 A g-1, the capacitance of CoFe2O4 nanosheets can maintain 78.5% (395 F g-1) of the initial value, indicating the remarkable rate capability of the as-prepared CoFe2O4 nanosheets. An aqueous asymmetric supercapacitor (ASC) based on CoFe2O4 nanosheets as a positive electrode and the activated carbon (AC) as a negative electrode was assembled for the first time. The as-fabricated ASC delivered a specific capacitance of 73.12 F g-1 at a current density of 1.2 A g-1 in a voltage window of 1.5 V. The CoFe2O4//AC ASC could achieve a high energy density of 22.85 W h kg-1 and good long-term cycling stability (98% retention after 5000 cycles). These results demonstrated that CoFe2O4 nanosheets could be one of the promising electrode material for supercapacitors applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Viet Hung; Nguyen-Phan, Thuy-Duong; Tong, Xiao
Hydrogenated TiO 2 has recently attracted considerable attention as potential electrode materials for supercapacitors due to its abundance, low cost, high conductivity, remarkable rate capability, and outstanding long-term cycling stability. In this paper, we demonstrate the synthesis of hydrogenated TiO 2 nanoparticles anchored on reduced graphene oxide nanosheets (HTG) in the form of sandwich-like nanosheet composites. Further, we explored their implementation as electrode materials for high voltage, symmetric supercapacitors, operating in the voltage window of 0–1.8 V. The HTGs were prepared by a sol-gel method, followed by hydrogenation in the temperature range 300–500 °C. Of the prepared composites, HTG preparedmore » at 400 °C exhibited the largest specific capacitance of 51 F g -1 at the current density of 1.0 A g -1 and excellent rate capability with 82.5% capacitance retention as the current density increased 40-fold, from 0.5 to 20.0 A g -1. HTG's excellent rate capability was attributed to its sandwich-like nanostructure, in which ultrasmall hydrogenated TiO 2 nanoparticles densely anchored onto both surfaces of the two-dimensional reduced graphene oxide sheets. Moreover, HTG-based supercapacitors also exhibited long-term cycling stability with the retention over 80% of its initial capacitance after 10,000 cycles. Finally, these properties suggest that HTG is a promising electrode material for the scalable manufacture of high-performance supercapacitors.« less
Charge storage in β-FeSi2 nanoparticles
NASA Astrophysics Data System (ADS)
Theis, Jens; Bywalez, Robert; Küpper, Sebastian; Lorke, Axel; Wiggers, Hartmut
2015-02-01
We report on the observation of a surprisingly high specific capacitance of β-FeSi2 nanoparticle layers. Lateral, interdigitated capacitor structures were fabricated on thermally grown silicon dioxide and covered with β-FeSi2 particles by drop or spin casting. The β-FeSi2-nanoparticles, with crystallite sizes in the range of 10-30 nm, were fabricated by gas phase synthesis in a hot wall reactor. Compared to the bare electrodes, the nanoparticle-coated samples exhibit a 3-4 orders of magnitude increased capacitance. Time-resolved current voltage measurements show that for short times (seconds to minutes), the material is capable of storing up to 1 As/g at voltages of around 1 V. The devices are robust and exhibit long-term stability under ambient conditions. The specific capacitance is highest for a saturated relative humidity, while for a relative humidity below 40% the capacitance is almost indistinguishable from a nanoparticle-free reference sample. The devices work without the need of a fluid phase, the charge storing material is abundant and cost effective, and the sample design is easy to fabricate.
NASA Astrophysics Data System (ADS)
Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye
2017-07-01
Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.
NASA Astrophysics Data System (ADS)
Wen, Shiyang; Liu, Yu; Zhu, Fangfang; Shao, Rong; Xu, Wei
2018-01-01
The hierarchical MoS2 nanowires/NiCo2O4 nanosheets (MS/NCO) supercapacitor electrode materials supported on Ni foam were synthesized by a two-step hydrothermal method. The capacitance was investigated by using various electrochemical methods including cyclic voltammetry, constant-current galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. The MS/NCO networks show 7 times more capacitance (7.1 F cm-2) than pure NiCo2O4 nanosheets by CV at a scan rate of 2 mV s-1. The specific capacitance of the assembled MS/NCO//active carbon (AC) asymmetric supercapacitor could reach up to 51.7 F g-1 at a current density of 1.5 A g-1. Also, the maximum energy density of 18.4 W h kg-1 at a power density of 1200.2 W kg-1 was achieved, with 98.2% specific capacitance retention after 8000 cycles. These exciting results exhibit potential application in developing energy storage devices with high energy density and high power density.
Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin
2018-03-28
The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.
Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.
Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou
2014-10-01
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Smirnov, Michael A.; Sokolova, Maria P.; Bobrova, Natalya V.; Kasatkin, Igor A.; Lahderanta, Erkki; Elyashevich, Galina K.
2016-02-01
Electroconducting hydrogels (EH) based on copoly(aniline - p-phenylenediamine) grafted to the polyacrylamide for the application as pseudo-supercapacitor's electrodes have been prepared. The influence of preparation conditions on the structure and capacitance properties of the systems were investigated: we determined the optimal amount of p-phenylenediamine to obtain the network of swollen interconnected nanofibrils inside the hydrogel which provides the formation of continuous conducting phase. Structure and morphology of the prepared samples were investigated with UV-VIS spectroscopy, scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The maximal value of capacitance was 364 F g-1 at 0.2 A g-1. It was shown that the EH samples demonstrate the retention of 50% of their capacity at high current density 16 A g-1. Cycle-life measurements show evidence that capacitance of EH electrodes after 1000 cycles is higher than its initial value for all prepared samples. Changes of the copolymer structure during swelling in water have been studied with WAXD.
Resonant capacitive MEMS acoustic emission transducers
NASA Astrophysics Data System (ADS)
Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.
2006-12-01
We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing, E-mail: hqng@163.com; Mao, Xinhua, E-mail: 30400414@qq.com; Chu, Dongliang, E-mail: 569256386@qq.com
This study proposes an optimized frequency adjustment method that uses a micro-cantilever beam-based piezoelectric vibration generator based on a combination of added mass and capacitance. The most important concept of the proposed method is that the frequency adjustment process is divided into two steps: the first is a rough adjustment step that changes the size of the mass added at the end of cantilever to adjust the frequency in a large-scale and discontinuous manner; the second step is a continuous but short-range frequency adjustment via the adjustable added capacitance. Experimental results show that when the initial natural frequency of amore » micro piezoelectric vibration generator is 69.8 Hz, then this natural frequency can be adjusted to any value in the range from 54.2 Hz to 42.1 Hz using the combination of the added mass and the capacitance. This method simply and effectively matches a piezoelectric vibration generator’s natural frequency to the vibration source frequency.« less
Wu, Zhong; Huang, Xiao-Lei; Wang, Zhong-Li; Xu, Ji-Jing; Wang, Heng-Guo; Zhang, Xin-Bo
2014-01-01
Supercapacitors, as one of alternative energy devices, have been characterized by the rapid rate of charging and discharging, and high power density. But they are now challenged to achieve their potential energy density that is related to specific capacitance. Thus it is extremely important to make such materials with high specific capacitances. In this report, we have gained homogenous Ni(OH)2 on graphene by efficiently using of a facile and effective electrostatic induced stretch growth method. The electrostatic interaction triggers advantageous change in morphology and the ordered stacking of Ni(OH)2 nanosheets on graphene also enhances the crystallization of Ni(OH)2. When the as-prepared Ni(OH)2/graphene composite is applied to supercapacitors, they show superior electrochemical properties including high specific capacitance (1503 F g−1 at 2 mV s−1) and excellent cycling stability up to 6000 cycles even at a high scan rate of 50 mV s−1. PMID:24413283
NASA Astrophysics Data System (ADS)
Xiao, Yuanhua; Zhang, Aiqin; Liu, Shaojun; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng
2012-12-01
Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite (Co3O4) nanowalls have been successfully synthesized in large scale by calcining three dimensional (3D) hierarchical nanostructures consisting of single crystalline cobalt carbonate hydroxide hydrate - Co(CO3)0.5(OH)·0.11H2O nanowalls prepared with a solvothermal method. The step-by-step decomposition of the precursor can generate porous Co3O4 nanowalls with BET surface area of 88.34 m2 g-1. The as-prepared Co3O4 nanoarchitectures show superior specific capacitance to the most Co3O4 supercapacitor electrode materials to date. After continuously cycled for 1000 times of charge-discharge at 4 A g-1, the supercapacitors can retain ca 92.3% of their original specific capacitances. The excellent performances of the devices can be attributed to the porous and hierarchical 3D nanostructure of the materials.
NASA Astrophysics Data System (ADS)
Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat
2017-03-01
Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.
Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage
Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Ma, Liqun; Shen, Xiaodong
2015-01-01
Co3O4 nanorods were prepared by a facile hydrothermal method. Eco-friendly deionized water rather than organic solvent was used as the hydrothermal media. The as-prepared Co3O4 nanorods are composed of many nanoparticles of 30–50 nm in diameter, forming a finger-like morphology. The Co3O4 electrode shows a specific capacitance of 265 F g−1 at 2 mV s−1 in a supercapacitor and delivers an initial specific discharge capacity as high as 1171 mAh g−1 at a current density of 50 mA g−1 in a lithium ion battery. Excellent cycling stability and electrochemical reversibility of the Co3O4 electrode were also obtained. PMID:28347124
Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou
2014-07-01
Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.
NASA Astrophysics Data System (ADS)
Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang
2016-01-01
Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d
NASA Astrophysics Data System (ADS)
Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu
2014-06-01
Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.
New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte
Zhang, You; Cui, Xiuguo; Zu, Lei; Cai, Xiaomin; Liu, Yang; Wang, Xiaodong; Lian, Huiqin
2016-01-01
Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ) redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode. PMID:28773855
An Approach to Preparing Ni-P with Different Phases for Use as Supercapacitor Electrode Materials.
Wang, Dan; Kong, Ling-Bin; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long
2015-12-01
Herein, we describe a simple two-step approach to prepare nickel phosphide with different phases, such as Ni2 P and Ni5 P4 , to explain the influence of material microstructure and electrical conductivity on electrochemical performance. In this approach, we first prepared a Ni-P precursor through a ball milling process, then controlled the synthesis of either Ni2 P or Ni5 P4 by the annealing method. The as-prepared Ni2 P and Ni5 P4 are investigated as supercapacitor electrode materials for potential energy storage applications. The Ni2 P exhibits a high specific capacitance of 843.25 F g(-1) , whereas the specific capacitance of Ni5 P4 is 801.5 F g(-1) . Ni2 P possesses better cycle stability and rate capability than Ni5 P4 . In addition, the Fe2 O3 //Ni2 P supercapacitor displays a high energy density of 35.5 Wh kg(-1) at a power density of 400 W kg(-1) and long cycle stability with a specific capacitance retention rate of 96 % after 1000 cycles, whereas the Fe2 O3 //Ni5 P4 supercapacitor exhibits a high energy density of 29.8 Wh kg(-1) at a power density of 400 W kg(-1) and a specific capacitance retention rate of 86 % after 1000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong
2017-03-01
Layer-by-layer V2O5 structures self-assembly by quadrate sheets like "multilayer cake" were successfully synthesized using NH4VO3 as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V2O5 layer-by-layer structures were investigated by the Ultraviolet-visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V2O5 layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g-1 at 1 A g-1 in organic electrolyte, which is improved by 46% compared with 238 F g-1 in aqueous electrolyte. During the cycle performance, the specific capacitances of V2O5 layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer V2O5 structures are an ideal material for supercapacitor electrode in the present work.
Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Kaisheng; Huang, Zhiyuan; Zheng, Lin; Han, Bo; Gao, Qiang; Zhou, Chenggang; Wang, Hongquan; Wu, Jinping
2017-10-01
Improving the energy density of carbon-based supercapacitors is one of the most urgent demands for developing high-power energy supplies, which in general requires delicate engineering of the carbon composition and textures. By pre-functionalization of graphene nanosheets and successive one-step (NH4)3PO4 activation, we prepared a type of nitrogen and phosphorus co-doped graphene (NPG) with high specific surface areas, hierarchical pore structures as well as tunable N and P contents. The as-obtained NPG shows high specific capacitances of 219 F g-1 (123 F cm-3) at 0.25 A g-1 and 175 F g-1 (98 F cm-3) at 10 A g-1, respectively. Accordingly, the NPG-based symmetrical supercapacitor device, working at a potential window of 1.3 V, could deliver an enhanced energy density of 8.2 Wh kg-1 (4.6 Wh L-1) at a power density of 162 W kg-1 (91 W L-1), which still retains 6.7 Wh kg-1 at 6.5 kW kg-1. In particular, under a current density of 5 A g-1, the device endows an 86% capacitance retention of initial after 20,000 cycles, displaying superior cycle stability. Our results imply the feasibility of NPG as a promising candidate for high-performance supercapacitors.
Mu, Xuemei; Du, Jingwei; Zhang, Yaxiong; Liang, Zhilin; Wang, Huan; Huang, Baoyu; Zhou, Jinyuan; Pan, Xiaojun; Zhang, Zhenxing; Xie, Erqing
2017-10-18
Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO 4 composites (CNT/rGO/MnMoO 4 ) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g -1 at the scan rate of 2 mV s -1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO 4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg -1 at the power density of 1367.9 W kg -1 . These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO 4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.
NASA Astrophysics Data System (ADS)
Cui, Huijuan; Zheng, Jianfeng; Zhu, Yanyan; Wang, Zhijian; Jia, Suping; Zhu, Zhenping
2015-10-01
Substrates are normally required in the chemical synthesis of graphene to enhance its formation. However, removing substrates in the post purification stage is difficult, during which harsh reagents are used and the substrates are usually consumed undesirably. In this paper, we report that universal sodium carbonate (Na2CO3) particles can effectively promote the construction of well-structured graphene frameworks based on a quick thermal decomposition of fumaric acids. Notably, the Na2CO3 particles are easily separated from graphene through a simple and green method, namely, washing with water at room temperature. Together with the reused characteristic of the recovered Na2CO3 particles, this approach is undoubtedly beneficial to the low-cost and clean synthesis of graphene. Benefiting from the framework structure, the as-synthesized graphene exhibits excellent performance in the supercapacitor. The specific capacitance of the GFs-modified electrode was calculated to be 242 F g-1 at 0.5 A g-1, which was almost twice that of the RGO-modified electrode (134 F g-1). More importantly, the GFs-modified electrode maintained 92.6% retention of its initial specific capacitance (from current density of 0.5 to 16 A g-1), which was much higher than that of 2D graphene-modified electrode.
Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes
NASA Astrophysics Data System (ADS)
Bhat, Karthik S.; Nagaraja, H. S.
2018-04-01
Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.
Modified allocation capacitated planning model in blood supply chain management
NASA Astrophysics Data System (ADS)
Mansur, A.; Vanany, I.; Arvitrida, N. I.
2018-04-01
Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.
Capacitance discharge system for ignition of Single Bridge Apollo Standard Initiators (SBASI)
NASA Technical Reports Server (NTRS)
Ward, R. D.
1974-01-01
The design support data developed during the single bridge Apollo standard initiator (SBASI) program are presented. A circuit was designed and bread-board tested to verify operational capabilities of the circuit. Test data, design criteria, weight, and reliability trade-off considerations, and final design recommendations are reported.
In vivo skin imaging for hydration and micro relief-measurement.
Kardosova, Z; Hegyi, V
2013-01-01
We present the results of our work with device used for measurement of skin capacitance before and after application of moisturizing creams and results of experiment performed on cellulose filter papers soaked with different solvents. The measurements were performed by a device built on capacitance sensor, which provides an investigator with a capacitance image of the skin. The capacitance values are coded in a range of 256 gray levels then the skin hydration can be characterized using parameters derived from gray level histogram by specific software. The images obtained by device allow a highly precise observation of skin topography. Measuring of skin capacitance brings new, objective, reliable information about topographical, physical and chemical parameters of the skin. The study shows that there is a good correlation between the average grayscale values and skin hydration. In future works we need to complete more comparison studies, interpret the average grayscale values to skin hydration levels and use it for follow-up of dynamics of skin micro-relief and hydration changes (Fig. 6, Ref. 15).
Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles
NASA Astrophysics Data System (ADS)
Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun
2013-08-01
An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.
Influence of nonelectrostatic ion-ion interactions on double-layer capacitance
NASA Astrophysics Data System (ADS)
Zhao, Hui
2012-11-01
Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse-charge dynamics of the double layer with ion specificity and steric effects.
Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy
2014-01-01
Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization. PMID:24852961
Bai, Caihui; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan
2016-10-15
Nickel-Aluminum Layered Double Hydroxide (NiAl-LDH) and nanocomposite of Carbon Nanotubes (CNTs) and NiAl-LDH (CNTs/NiAl-LDH) were prepared by using a facile one-step homogeneous precipitation approach. The morphology, structure and electrochemical properties of the as-prepared CNTs/NiAl-LDH nanocomposite were then systematically studied. According to the galvanostatic charge-discharge curves, the CNTs/NiAl-LDH nanocomposite exhibited a high specific capacitance of 694Fg(-1) at the 1Ag(-1). Furthermore, the specific capacitance of the CNTs/NiAl-LDH nanocomposite still retained 87% when the current density was increased from 1 to 10Ag(-1). These results indicated that the CNTs/NiAl-LDH nanocomposite displayed a higher specific capacitance and rate capability than pure NiAl-LDH. And the participation of CNTs in the NiAl-LDH composite improved the electrochemical properties. Additionally, the capacitance of the CNTs/NiAl-LDH nanocomposite kept at least 92% after 3000cycles at 20Ag(-1), suggesting that the nanocomposite exhibited excellent cycling durability. This strategy provided a facile and effective approach for the synthesis of nanocomposite based on CNTs and NiAl-LDH with enhanced supercapacitor behaviors, which can be potentially applied in energy storage conversion devices. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin
2018-05-30
Fiber-shaped supercapacitors (FSCs) have great promises in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO 2 nanotube arrays (PANI/S-TiO 2 ) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to a much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO 2 electrodes deliver a high specific capacitance of 91.9 mF cm -2 , a capacitance retention of 93.78% after 12 000 charge-discharge cycles, and an areal energy density of 3.2 μW h cm -2 . Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, reduced ion diffusion path, improved electrical conductivity, and engineered interfacial interaction of the rationally designed electrodes.
Santos-Sacchi, Joseph; Song, Lei
2014-04-11
The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.
Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors
NASA Astrophysics Data System (ADS)
Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati
2016-08-01
In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.
Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors.
Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati
2016-08-24
In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.
NASA Astrophysics Data System (ADS)
Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi
2016-01-01
Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640869 m2 g1), large pore volume (0.711.08 cm2 g1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.
NASA Astrophysics Data System (ADS)
Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia
2017-08-01
Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.
Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao
2018-04-26
Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.
Interconnected V2O5 nanoporous network for high-performance supercapacitors.
Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G
2012-09-26
Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.
Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit
2016-07-01
Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.
Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors
Yu, Xiuxiu; Wang, Ying; Li, Li; Li, Hongbian; Shang, Yuanyuan
2017-01-01
Biomass materials are promising precursors for the production of carbonaceous materials due to their abundance, low cost and renewability. Here, a freestanding wrinkled carbon membrane (WCM) electrode material for flexible supercapacitors (SCs) was obtained from flower petal. The carbon membrane was fabricated by a simple thermal pyrolysis process and further activated by heating the sample in air. As a binder and current collector-free electrode, the activated wrinkled carbon membrane (AWCM) exhibited a high specific capacitance of 332.7 F/g and excellent cycling performance with 92.3% capacitance retention over 10000 cycles. Moreover, a flexible all-solid supercapacitor with AWCM electrode was fabricated and showed a maximum specific capacitance of 154 F/g and great bending stability. The development of this flower petal based carbon membrane provides a promising cost-effective and environmental benign electrode material for flexible energy storage. PMID:28361914
Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors
NASA Astrophysics Data System (ADS)
Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc
2013-12-01
We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.
Preparation and the Electrochemical Performance of MnO2/PANI@CNT Composite for Supercapacitors.
Wang, Hongjuan; Wang, Xiaohui; Peng, Cheng; Peng, Feng; Yu, Hao
2015-01-01
Polyaniline (PANI) was settled on the surface of CNTs in advance and then used as self-sacrifice reducing agent that would react with KMnO4 to prepare MnO2/PANI@CNT supercapacitor material. With PANI substituting for CNTs to participant the redox reaction, CNTs was protected from being destroyed and could maintain its original morphology and conductivity. The results of cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) show that the optimal capacitive performance can be reached at the MnO2 loading of 64.4 wt% and the pH of 1 during the deposition of MnO2. With the protective PANI, MnO2/PANI@CNT composite exhibits the superior specific capacitance of 215.8 F/g at a current density of 200 mA/g and remains 86.5% of its maximal specific capacitance at a current density of 1000 mA/g.
NASA Astrophysics Data System (ADS)
Meng, Weijie; Zhao, Gaoling; Song, Bin; Xie, Junliang; Lu, Wangwei; Han, Gaorong
2017-12-01
In this study, kassite was synthesized by employing a simple, green hydrothermal method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy were carried out to study its crystal phases, morphologies and electrochemical performance. With the extension of reaction time, the crystallinity of the samples became higher and the specific capacitance increased correspondingly. The result shows that kassite has a promising application in electrode material for capacitors. To improve the electrical conductivity of kassite and the accessibility of the surface area, graphene nanosheet (GNS) was introduced to form composites with kassite. The capacitive performance improved with increasing weight percentage of GNS and reached an optimum with the specific capacitance of 129.8 F/g at weight percentage of 10%, then decreased with further increasing GNS, showing a synergistic effect of kassite and the GNS.
Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors
NASA Astrophysics Data System (ADS)
Nandhini, S.; Muralidharan, G.
2018-04-01
The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.
SWCNT Supercapacitor Electrode Fabrication Methods
2011-02-01
supercapacitor electrodes out of single-wall carbon nanotubes (SWCNT). We have found that it is best to use SWCNT solutions free from additives that...effect on the resulting specific capacitance, as did the deposition methods compared here. 15. SUBJECT TERMS Carbon nanotube , electrochemical...area may increase the capacitance of supercapacitors. Two materials being studied for this are carbon nanotubes (CNTs) and graphene. Graphene is a
Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu
2015-08-12
Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lin, Sheng-Chi; Lu, Yi-Ting; Chien, Yu-An; Wang, Jeng-An; Chen, Po-Yu; Ma, Chen-Chi M.; Hu, Chi-Chang
2018-07-01
The sodium-pre-intercalated δ-MnO2 is in-situ grown on carbon nanofiber via a simple, one-step method for the application of asymmetric supercapacitors. The pre-intercalation of Na ions into the layered structure of δ-MnO2 reduces the crystallinity, beneficial to Na+ diffusion into/out the interlayer structure and pseudocapacitive utilization of MnO2. This NaxMnO2@CNF nanocomposite with desirable pseudo-capacitance from δ-NaxMnO2 and high electric conductivity from CNF network shows a high specific capacitance of 321 F g-1 at 1 A g-1 with ca. 75.2% capacitance retention from 1 to 32 A g-1. An ASC cell consisting of this nanocomposite and activated carbon as the positive and negative electrodes can be reversibly charged and discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 21 Wh kg-1 and 1 kW kg-1, respectively. This ASC also shows excellent cell capacitance retention (7% decay) in the 2 V, 10,000-cycle stability test, revealing superior performance.
Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors
NASA Astrophysics Data System (ADS)
Shi, C.; Zhitomirsky, I.
2010-03-01
Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).
Shi, C; Zhitomirsky, I
2010-01-08
Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).
High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes
NASA Astrophysics Data System (ADS)
Li, Shuoshuo; Cheng, Pengpeng; Luo, Jiaxian; Zhou, Dan; Xu, Weiming; Li, Jingwei; Li, Ruchun; Yuan, Dingsheng
2017-07-01
A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g-1 at a current density of 1 A g-1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g-1 at a current density of 2 A g-1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm-2 at 2 mA cm-2 and a high energy density of 0.71 mWh cm-2 at a power density of 17.05 mW cm-2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge-discharge cycles).
NASA Astrophysics Data System (ADS)
Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei
2017-09-01
More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.
Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors
2010-01-01
Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g−1 was observed for the sample with a specific mass of 89 μg cm−2 at a scan rate of 2 mV s−1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES). PMID:20672082
NASA Astrophysics Data System (ADS)
Foong, Yee Wei
Solid polymer electrolytes (SPEs) are key enablers for thin and flexible electrochemical capacitors in wearable technologies. Polyacrylamide (PAM) is one such promising hygroscopic polymer host, but its performance had not been optimized. This thesis enhanced PAM with borotungstic acid (BWA) as the heteropolyacid conductors. The BWA-PAM electrolyte achieved a high initial conductivity of ca. 27 mS cm-1, but suffered from a short service life (< 40% conductivity retention after 28 days) due to dehydration. BWA-PAM modified with acidic (H3PO4) and neutral (glycerol) plasticizers showed improved conductivity of ca. 30 mS cm-1 and service life (≥ 70% conductivity retention after 28 days). The high BWA and H3PO4 content accelerated the hydrolysis of PAM to polyacrylic acid, resulting in the undesirable precipitation of NH4+-substituted BWA; whereas, glycerol was found to suppress this reaction. The solid CNT-graphite cells with the optimized electrolytes demonstrated a capacitance of ca. 19.5 mF cm -2; a high rate capability (≥ 75% capacitance retention) at 1Vs -1; excellent cycle life (≥ 90% retention of its initial capacitance); and maintained ca. -85° phase angle over 10,000 charging-discharging cycles.
Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films
Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig
2017-01-01
In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865
Capacitive behavior of highly-oxidized graphite
NASA Astrophysics Data System (ADS)
Ciszewski, Mateusz; Mianowski, Andrzej
2014-09-01
Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.
Liu, Ran; Duay, Jonathon; Lane, Timothy; Bok Lee, Sang
2010-05-07
We report the synthesis of composite RuO(2)/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO(2)/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO(2)/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO(2) and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO(2) into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO(2) from breaking and detaching from the current collector while the rigid RuO(2) keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO(2)/PEDOT nanotube can reach a high power density of 20 kW kg(-1) while maintaining 80% energy density (28 Wh kg(-1)) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO(2), which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 F g(-1)) which is contributed by the RuO(2) in the composite RuO(2)/PEDOT nanotube is realized because of the high specific surface area of the nanotubular structures. Such PEDOT/RuO(2) composite nanotube materials are an ideal candidate for the development of high-energy and high-power supercapacitors.
NASA Astrophysics Data System (ADS)
Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang
2017-11-01
Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.
Boosting the Supercapacitance of Nitrogen-Doped Carbon by Tuning Surface Functionalities.
Biemolt, Jasper; Denekamp, Ilse M; Slot, Thierry K; Rothenberg, Gadi; Eisenberg, David
2017-10-23
The specific capacitance of a highly porous, nitrogen-doped carbon is nearly tripled by orthogonal optimization of the microstructure and surface chemistry. First, the carbons' hierarchical pore structure and specific surface area were tweaked by controlling the temperature and sequence of the thermal treatments. The best process (pyrolysis at 900 °C, washing, and subsequent annealing at 1000 °C) yielded a carbon with a specific capacitance of 117 F g -1 -nearly double that of a carbon made by a typical single-step synthesis at 700 °C. Following the structural optimization, the surface chemistry of the carbons was enriched by applying an oxidation routine based on a mixture of nitric and sulfuric acid in a 1:4 ratio at two different treatment temperatures (0 and 20 °C) and different treatment times. The optimal treatment times were 4 h at 0 °C and only 1 h at 20 °C. Overall, the specific capacitance nearly tripled relative to the original carbon, reaching 168 F g -1 . The inherent nitrogen doping of the carbon comes into interplay with the acid-induced surface functionalization, creating a mixture of oxygen- and nitrogen-oxygen functionalities. The evolution of the surface chemistry was carefully followed by X-ray photoelectron spectroscopy and by N 2 sorption porosimetry, revealing stepwise surface functionalization and simultaneous carbon etching. Overall, these processes are responsible for the peak-shaped capacitance trends in the carbons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shi, HaoTian H.; Naguib, Hani E.
2016-08-01
The creation of a novel flexible nanocomposite fiber with conductive polymer polyaniline (PAni) coating on a polyethylene terephthalate (PET) substrate allowed for increased electrochemical performance while retaining ideal mechanical properties such as very high flexibility. Binder-free PAni-wrapped PET (PAni@PET) fiber with a core-shell structure was successfully fabricated through a novel technique. The PET nanofiber substrate was fabricated through an optimized electrospinning method, while the PAni shell was chemically polymerized onto the surface of the nanofibers. The PET substrate can be made directly from recycled PETE1 grade plastic water bottles. The resulting nanofiber with an average diameter of 121 nm ± 39 nm, with a specific surface area of 83.72 m2 g-1, led to better ionic interactions at the electrode/electrolyte interface. The PAni active layer coating was found to be 69 nm in average thickness. The specific capacitance was found to have increased dramatically from pure PAni with carbon binders. The specific capacitance was found to be 347 F g-1 at a relatively high scan rate of 10 mV s-1. The PAni/PET fiber also experienced very little degradation (4.4%) in capacitance after 1500 galvanostatic charge/discharge cycles at a specific current of 1.2 A g-1. The mesoporous structure of the PAni@PET fibrous mat also allowed for tunable capacitance by controlling the pore sizes. This novel fabrication method offers insights for the utilization of recycled PETE1 based bottles as a high performance, low cost, highly flexible supercapacitor device.
Du, Pengcheng; Dong, Yuman; Liu, Chang; Wei, Wenli; Liu, Dong; Liu, Peng
2018-05-15
Hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets is fabricated by a facile hydrothermal process with the existence of trimesic acid and nickel ions. Various structures of Ni-MOFs can be obtained through adjusting the molar ratio of trimesic acid and nickel ion, the obtained hierarchical porous Ni-MOF exhibits optimal porous structure, which also possesses largest specific surface area. The hierarchical porous structure constructed with nanosheets can supply more active sites for electrochemical reactions to realize the excellent electrochemical properties, thus the hierarchical porous Ni-MOF reveals an outstanding specific capacitance of 1057 F/g at current density of 1 A/g, and delivers high specific capacitance of 649 F/g at current density of 30 A/g, indicating that it exhibits good rate capability of 63.4% even up to 30 A/g. The hierarchical porous Ni-MOF keeps 70% of its original value up to 2 500 charge-discharge cycles at the current density of 10 A/g. Furthermore, asymmetric supercapacitors (ASCs) were assembled based on hierarchical porous Ni-MOF and activated carbon (AC), the ASCs reveal specific capacitance of 87 F/g at current density of 0.5 A/g, and exhibit high energy density of 21.05 Wh/kg and power density of 6.03 kW/kg. Additionally, the tandem ASCs can light up a red LED. The hierarchical porous Ni-MOF exhibits promising applications in high performance supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Leemans, Bart; Gadella, Bart M; Stout, Tom A E; De Schauwer, Catharina; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann
2016-12-01
In contrast to man and many other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucida in vitro is most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media. In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm-oviduct interaction. Equine sperm-oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitation in vivo However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid-base balance. In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these 'capacitating conditions' are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct. © 2016 Society for Reproduction and Fertility.
Guan, Qun; Cheng, Jianli; Wang, Bin; Ni, Wei; Gu, Guifang; Li, Xiaodong; Huang, Ling; Yang, Guangcheng; Nie, Fude
2014-05-28
We synthesized the needle-like cobalt oxide/graphene composites with different mass ratios, which are composed of cobalt oxide (Co3O4 or CoO) needle homogeneously anchored on graphene nanosheets as the template, by a facile hydrothermal method. Without the graphene as the template, the cobalt precursor tends to group into urchin-like spheres formed by many fine needles. When used as electrode materials of aqueous supercapacitor, the composites of the needle-like Co3O4/graphene (the mass ratio of graphene oxide(GO) and Co(NO3)2·6H2O is 1:5) exhibit a high specific capacitance of 157.7 F g(-1) at a current density of 0.1 A g(-1) in 2 mol L(-1) KOH aqueous solution as well as good rate capability. Meanwhile, the capacitance retention keeps about 70% of the initial value after 4000 cycles at a current density of 0.2 A g(-1). The enhancement of excellent electrochemical performances may be attributed to the synergistic effect of graphene and cobalt oxide components in the unique multiscale structure of the composites.
NASA Astrophysics Data System (ADS)
Xiao, Yuanhua; Zhao, Xiaobing; Jin, Qingxian; Su, Dangcheng; Wang, Xuezhao; Wu, Shide; Zhou, Liming; Fang, Shaoming
2017-10-01
3D Hierarchical porous cobalt monoxide (CoO) nanoplates with a book-like structure derive from Co(CO3)0.5(OH)·0.11H2O by a two-steps oriented attachment mechanism in the solvothermal process. Firstly, nanoplates are formed by oriented attachment of nanorods. Secondly, new nanoplates could be generated on the old nanoplates by a sloped oriented attachment of nanorods with the based nanoplates shape into a 3D hierarchical book-like structure. The CoO nanoplates show superior specific capacitance about 1221.7 F g-1 at 1 A g-1 to most of the Co-based supercapacitor materials up to date. An asymmetric supercapacitor (ASC) based on positive electrode CoO and negative electrode active carbon (AC) exhibits an excellent energy density of 50.1 Wh kg-1 at a power density of 589 W kg-1 and gets a satisfactory cycling stability (86.3% of its initial capacitance retention at 10 A g-1 over 10 000 cycles).
NASA Astrophysics Data System (ADS)
Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei
2017-11-01
All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.
Lehtimäki, Suvi; Suominen, Milla; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita; Lupo, Donald
2015-10-14
Composite films consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) were electrochemically polymerized by electrooxidation of EDOT in ionic liquid (BMIMBF4) onto flexible electrode substrates. Two polymerization approaches were compared, and the cyclic voltammetry (CV) method was found to be superior to potentiostatic polymerization for the growth of PEDOT/GO films. After deposition, incorporated GO was reduced to rGO by a rapid electrochemical method of repetitive cathodic potential cycling, without using any reducing reagents. The films were characterized in 3-electrode configuration in BMIMBF4. Symmetric supercapacitors with aqueous electrolyte were assembled from the composite films and characterized through cyclic voltammetry and galvanostatic discharge tests. It was shown that PEDOT/rGO composites have better capacitive properties than pure PEDOT or the unreduced composite film. The cycling stability of the supercapacitors was also tested, and the results indicate that the specific capacitance still retains well over 90% of the initial value after 2000 consecutive charging/discharging cycles. The supercapacitors were demonstrated as energy storages in a room light energy harvester with a printed organic solar cell and printed electrochromic display. The results are promising for the development of energy-autonomous, low-power, and disposable electronics.
Wei, Lu; Nitta, Naoki; Yushin, Gleb
2013-08-27
Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun-Kyung; Bak, Seong-Min; Lee, Suk Woo
Graphene nanomeshes (GNMs) with nanoscale periodic or quasi-periodic nanoholes have attracted considerable interest because of unique features such as their open energy band gap, enlarged specific surface area, and high optical transmittance. These features are useful for applications in semiconducting devices, photocatalysis, sensors, and energy-related systems. We report on the facile and scalable preparation of multifunctional micron-scale GNMs with high-density of nanoperforations by catalytic carbon gasification. The catalytic carbon gasification process induces selective decomposition on the graphene adjacent to the metal catalyst, thus forming nanoperforations. Furthermore, the pore size, pore density distribution, and neck size of the GNMs can bemore » controlled by adjusting the size and fraction of the metal oxide on graphene. The fabricated GNM electrodes exhibit superior electrochemical properties for supercapacitor (ultracapacitor) applications, including exceptionally high capacitance (253 F g -1 at 1 A g -1) and high rate capability (212 F g -1 at 100 A g -1) with excellent cycle stability (91% of the initial capacitance after 50 000 charge/discharge cycles). Moreover, the edge-enriched structure of GNMs plays an important role in achieving edge-selected and high-level nitrogen doping.« less
Duan, Xiaojuan; Deng, Jinxing; Wang, Xue; Guo, Jinshan; Liu, Peng
2016-07-15
A potential approach for sustainable waste management of the spent battery material (SBM) is established for manufacturing conductive polyaniline (PANI) nanocomposites as electrode materials for supercapacitors, following the principle of "What comes from the power should be used for the power". The ternary nanocomposites (G/MnO2/PANI) containing PANI, graphite powder (G) and remanent MnO2 nanoparticles and the binary nanocomposites of polyaniline and graphite powder (G/PANI) are synthesized by the chemical oxidative polymerization of aniline in hydrochloric aqueous solution with the MnO2 nanoparticles in the spent battery powder (SBP) as oxidant. The G/PANI sample, which was prepared with MnO2/aniline mole ratio of 1:1 with 1.0mL aniline in 50mL of 1.0molL(-1) HCl, exhibits the electrical conductivity of 22.22Scm(-1), the highest specific capacitance up to 317Fg(-1) and the highest energy density of 31.0 Wh kg(-1), with retention of as high as 84.6% of its initial capacitance after 1000 cycles, indicating good cyclic stability. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Hyun-Kyung; Bak, Seong-Min; Lee, Suk Woo; ...
2016-01-27
Graphene nanomeshes (GNMs) with nanoscale periodic or quasi-periodic nanoholes have attracted considerable interest because of unique features such as their open energy band gap, enlarged specific surface area, and high optical transmittance. These features are useful for applications in semiconducting devices, photocatalysis, sensors, and energy-related systems. We report on the facile and scalable preparation of multifunctional micron-scale GNMs with high-density of nanoperforations by catalytic carbon gasification. The catalytic carbon gasification process induces selective decomposition on the graphene adjacent to the metal catalyst, thus forming nanoperforations. Furthermore, the pore size, pore density distribution, and neck size of the GNMs can bemore » controlled by adjusting the size and fraction of the metal oxide on graphene. The fabricated GNM electrodes exhibit superior electrochemical properties for supercapacitor (ultracapacitor) applications, including exceptionally high capacitance (253 F g -1 at 1 A g -1) and high rate capability (212 F g -1 at 100 A g -1) with excellent cycle stability (91% of the initial capacitance after 50 000 charge/discharge cycles). Moreover, the edge-enriched structure of GNMs plays an important role in achieving edge-selected and high-level nitrogen doping.« less
NASA Astrophysics Data System (ADS)
Ates, Murat; El-Kady, Maher; Kaner, Richard B.
2018-04-01
Graphene/polyaniline composite hydrogels (GH/PANI) were chemically synthesized by in situ polymerization of aniline monomer. Graphene hydrogels were obtained by a hydrothermal method and used in supercapacitors. The graphene/polyaniline composite hydrogel exhibits better electrochemical performance than the pure individual components as determined by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopic measurements. A remarkable specific capacitance (C sp) of 323.9 F g-1 was measured using CV at a scan rate of 2 mV s-1 at 25 °C. GCD measurements (311.3 F g-1) and electrochemical impedance analysis also support these results. The numbers were obtained at extremely high loading masses: 7.14 mg cm-2 for GH and GH/PANI synthesized at 0 °C, and 8.93 mg cm-2 for GH/PANI synthesized at 25 °C. The corresponding areal capacitances are 1.14, 1.75 and 2.78 F cm-2 for GH, and GH/PANI composite hydrogels synthesized at 0 °C and 25 °C, respectively. These values in F cm-2 are 3.80, 5.83 and 9.27 times higher than commercially available activated carbon supercapacitors (˜0.3 F cm-2 for a two electrode system). Moreover, the GH/PANI composite synthesized at 25 °C exhibits excellent stability with 99% initial capacitance retention after 1000 charge/discharge cycles. GH/PANI composites synthesized at 0 °C and 25 °C therefore hold promise for use in supercapacitor device applications.
Ates, Murat; El-Kady, Maher; Kaner, Richard B
2018-04-27
Graphene/polyaniline composite hydrogels (GH/PANI) were chemically synthesized by in situ polymerization of aniline monomer. Graphene hydrogels were obtained by a hydrothermal method and used in supercapacitors. The graphene/polyaniline composite hydrogel exhibits better electrochemical performance than the pure individual components as determined by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopic measurements. A remarkable specific capacitance (C sp ) of 323.9 F g -1 was measured using CV at a scan rate of 2 mV s -1 at 25 °C. GCD measurements (311.3 F g -1 ) and electrochemical impedance analysis also support these results. The numbers were obtained at extremely high loading masses: 7.14 mg cm -2 for GH and GH/PANI synthesized at 0 °C, and 8.93 mg cm -2 for GH/PANI synthesized at 25 °C. The corresponding areal capacitances are 1.14, 1.75 and 2.78 F cm -2 for GH, and GH/PANI composite hydrogels synthesized at 0 °C and 25 °C, respectively. These values in F cm -2 are 3.80, 5.83 and 9.27 times higher than commercially available activated carbon supercapacitors (∼0.3 F cm -2 for a two electrode system). Moreover, the GH/PANI composite synthesized at 25 °C exhibits excellent stability with 99% initial capacitance retention after 1000 charge/discharge cycles. GH/PANI composites synthesized at 0 °C and 25 °C therefore hold promise for use in supercapacitor device applications.
Electrodes of carbonized MWCNT-cellulose paper for supercapacitor
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Cai, Manyuan; Chen, Long; Qiu, Zhiwen; Liu, Zhenghong
2017-07-01
A flexible composite paper of multi-walled carbon nanotube (MWCNT) and cellulose fiber (CF) were fabricated by traditional paper-making method. Then, the MWCNT/CF papers were carbonized at high temperature in vacuum to remove organic component. The carbonized MWCNT/CF (MWCNT/CCF) papers are consisted of MWCNT and carbon fiber. The papers were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and four-point probe resistance meter. The electrochemical performances of the supercapacitors were tested by cyclic voltammetry and galvanostatic charge/discharge >with 1 moL/L LiPF6 as electrolyte. The MWCNT/CCF electrode yielded a specific capacitance of 156F/g at a current density of 50 mA/g by galvanostatic charge/discharge measurement, which is 1.29 times higher than MWCNT/CF electrode of 68F/g. The MWCNT/CCF electrodes also displayed an excellent specific capacitance retention of 84% after 2000 continuous charge/discharge cycles at a current density of 400 mA/g. The increase of specific capacitance can be attributed to enhanced electrical conductivity of MWCNT/CCF papers and improved contact interface between electrolyte and electrodes.
Supercapacitors based on self-assembled graphene organogel.
Sun, Yiqing; Wu, Qiong; Shi, Gaoquan
2011-10-14
Self-assembled graphene organogel (SGO) with 3-dimensional (3D) macrostructure was prepared by solvothermal reduction of a graphene oxide (GO) dispersion in propylene carbonate (PC). This SGO was used as an electrode material for fabricating supercapacitors with a PC electrolyte. The supercapacitor can be operated in a wide voltage range of 0-3 V and exhibits a high specific capacitance of 140 F g(-1) at a discharge current density of 1 A g(-1). Furthermore, it can still keep a specific capacitance of 90 F g(-1) at a high current density of 30 A g(-1). The maximum energy density of the SGO based supercapacitor was tested to be 43.5 Wh kg(-1), and this value is higher than those of the graphene based supercapacitors with aqueous or PC electrolytes reported previously. Furthermore, at a high discharge current density of 30 A g(-1), the energy and power densities of the supercapacitor were measured to be 15.4 Wh kg(-1) and 16,300 W kg(-1), respectively. These results indicate that the supercapacitor has a high specific capacitance and power density, and excellent rate capability.
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xiuling; Yuan, Anbao; Wang, Yuqin
In the present work, a nanostructured manganese dioxide material was synthesized by a sol-gel method starting with manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, and characterized by X-ray diffraction, infrared spectroscopic and transmission electron microscope techniques. The electrochemical properties and the influence of temperature on supercapacitive behaviors of the nano-MnO 2 electrode in 1 M LiOH electrolyte were investigated using electrochemical methods. Experimental results show that the MnO 2 electrode can exhibit an excellent pseudocapacitive behavior in 1 M LiOH electrolyte, and a high specific capacitance of 317 F g -1 can be obtained at a charge/discharge current rate of 100 mA g -1 and at the temperature of 25 °C. We found that temperature has a crucial influence on the discharge specific capacitance of the electrode. The specific capacitance at 25 °C is higher than that at 15 or 35 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, H., E-mail: hudsonzanin@gmail.com; Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970; Saito, E., E-mail: esaito135@gmail.com
2014-01-01
Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Ramanmore » spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.« less
NASA Astrophysics Data System (ADS)
Huang, Long; Hou, Huijie; Liu, Bingchuan; Zeinu, Kemal; Zhu, Xiaolei; Yuan, Xiqing; He, Xiulin; Wu, Longsheng; Hu, Jingping; Yang, Jiakuan
2017-12-01
In this work, a hierarchical Ni3S2@MoS2 hybrid structure was synthesized by an effective strategy with a combined hydrothermal route and subsequent annealing treatment. When tested as supercapacitor electrodes, the Ni3S2@MoS2 composites exhibited high specific capacitance of 1418.5 F g-1 at 0.5 A g-1, which also showed a good capacitance retention of 75.8% at 5 A g-1 after 1250 cycles. The Ni3S2@MoS2 composites demonstrated 1.9 fold higher specific capacitance compared to the amorphous shell counterpart (NixSy@MoS2). Furthermore, the assembled asymmetric supercapacitor (Ni3S2@MoS2//rGO) also demonstrated a capacitance of 61 F g-1 at 0.5 A g-1, with energy and power densities of 21.7 Wh kg-1 at 400 W kg-1 and 12 Wh kg-1 at 2400 W kg-1 under an operating window of 1.6 V. The asymmetric supercapacitor also showed a favorable cycle stability with 72% capacity retention over 4000 cycles at 10 A g-1. The improved electrochemical performance is attributed to the synergetic effect of the large accessible surface area and optimal contacts between the MoS2 and the electrolyte, as well as high capacitance of the metallic Ni3S2 core.
Zhu, Jiayi; He, Junhui
2012-03-01
Graphene-wrapped MnO(2) nanocomposites were first fabricated by coassembly between honeycomb MnO(2) nanospheres and graphene sheets via electrostatic interaction. The materials were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and thermogravimetric analysis. The novel MnO(2)/graphene hybrid materials were used for investigation of electrochemical capacitive behaviors. The hybrid materials displayed enhanced capacitive performance (210 F/g at 0.5 A/g). Additionally, over 82.4% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The improved electrochemical performance might be attributed to the combination of the pesudocapacitance of MnO(2) nanospheres with the honeycomb-like "opened" structure and good electrical conductivity of graphene sheets. © 2012 American Chemical Society
Porous carbon nanotube/graphene composites for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Li, Jing; Tang, Jie; Yuan, Jinshi; Zhang, Kun; Yu, Xiaoliang; Sun, Yige; Zhang, Han; Qin, Lu-Chang
2018-02-01
Carbon nanotubes (CNTs) are an effective spacer to prevent the re-stacking of graphene layers. However, the aggregation of CNTs always reduces the specific surface area of resulting CNT/graphene composites. Meanwhile, different pores always have different contributions to the specific capacitance. In this study, CNT/graphene composites with different porous structures are synthesized by co-reduction of oxidized CNTs and graphene oxide with different mixing ratios. With an optimized CNT content of 20%, the CNT/graphene composite shows 206 F g-1 in 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. It is found that pores larger than twice the size of electrolyte ions can make greater contributions to the specific capacitance.
Nanoporous graphene obtained by hydrothermal process in H2O2 and its application for supercapacitors
NASA Astrophysics Data System (ADS)
Lv, Jinlong; Liang, Tongxiang
2016-08-01
Nanohole graphene oxide (NHGO) was obtained in a homogeneous aqueous mixture of graphene oxide (GO) and H2O2 at 120 °C. Supercapacitors were fabricated as the electrode material by using NHGO. A specific capacitance of 240.1 F g-1 was obtained at a current density of 1 A g-1 in 6 m KOH electrolyte and specific capacitance remained 193.6 F g-1 at the current density of 20 A g-1. This was attributed to reducing the inner space between the double-layers, enhanced ion diffusion and large specific surface area. Supercapacitor prepared with NHGO electrodes also exhibited an excellent cycle stability.
Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation.
Heller, Jacques; Boulme, Audren; Alquier, Daniel; Ngo, Sophie; Certon, Dominique
2018-04-01
This paper presents the development of a novel acoustic transformer with high galvanic isolation dedicated to power switch triggering. The transformer is based on two capacitive micromachined ultrasonic transducers layered on each side of a silicon substrate; one is the primary circuit, and the other is the secondary circuit. The thickness mode resonance of the substrate is leveraged to transmit the triggering signal. The fabrication and characterization of an initial prototype is presented in this paper. All experimental results are discussed, from the electrical impedance measurements to the power efficiency measurements, for different electrical load conditions. A comparison with a specifically developed finite-element method model is done. Simulations are finally used to identify the optimization rules of this initial prototype. It is shown that the power efficiency can be increased from 35% to 60%, and the transmitted power can be increased from 1.6 to 45 mW/Volt.
Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.
Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi
2016-09-21
In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance.
A facile synthesis of reduced holey graphene oxide for supercapacitors.
Hu, Xinjun; Bai, Dongchen; Wu, Yiqi; Chen, Songbo; Ma, Yu; Lu, Yue; Chao, Yuanzhi; Bai, Yongxiao
2017-12-12
Hydroxyl radicals (˙OH) generated from a UV/O 3 solution reaction is used to efficiently etch graphene oxide nanosheets under moderate conditions. Reduced holey graphene oxide is directly used as a supercapacitor electrode material and exhibits high specific capacitance (224 F g -1 at a current density of 1 A g -1 ) and high volumetric capacitance (up to 206 F cm -3 ).
Superelastic supercapacitors with high performances during stretching.
Zhang, Zhitao; Deng, Jue; Li, Xueyi; Yang, Zhibin; He, Sisi; Chen, Xuli; Guan, Guozhen; Ren, Jing; Peng, Huisheng
2015-01-14
A fiber-shaped supercapacitor that can be stretched over 400% is developed by using two aligned carbon nanotube/polyaniline composite sheets as electrodes. A high specific capacitance of approximately 79.4 F g(-1) is well maintained after stretching at a strain of 300% for 5000 cycles or 100.8 F g(-1) after bending for 5000 cycles at a current density of 1 A g(-1). In particular, the high specific capacitance is maintained by 95.8% at a stretching speed as high as 30 mm s(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activated carbon derived from harmful aquatic plant for high stable supercapacitors
NASA Astrophysics Data System (ADS)
Li, Jiangfeng; Wu, Qingsheng
2018-01-01
Considering cost and environmental protection, the harmful aquatic plant altemanthera philoxeroides derived carbon material with super high specific surface area (2895 m2 g-1) is an ideal electrode material for supercapacitor. The structure and composition of these carbon materials were characterized by SEM, EDS, XPS and BET measurements. The obtained material exhibits a maximum specific capacitance of 275 F g-1 at 0.5 A g-1 and retains a capacitance of 210 F g-1 even at 50 A g-1. In addition, it also shows excellent capacity retention of 5000 cycles at 10 A g-1.
A porous ceramic membrane tailored high-temperature supercapacitor
NASA Astrophysics Data System (ADS)
Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei
2018-03-01
The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.
NASA Astrophysics Data System (ADS)
Ciocanel, C.; Browder, C.; Simpson, C.; Colburn, R.
2013-04-01
The paper presents results associated with the electro-mechanical characterization of a composite material with power storage capability, identified throughout the paper as a structural supercapacitor. The structural supercapacitor uses electrodes made of carbon fiber weave, a separator made of Celgard 3501, and a solid PEG-based polymer blend electrolyte. To be a viable structural supercapacitor, the material has to have good mechanical and power storage/electrical properties. The literature in this area is inconsistent on which electrical properties are evaluated, and how those properties are assessed. In general, measurements of capacitance or specific capacitance (i.e. capacitance per unit area or per unit volume) are made, without considering other properties such as leakage resistance and equivalent series resistance of the supercapacitor. This paper highlights the significance of these additional electrical properties, discusses the fluctuation of capacitance over time, and proposes methods to improve the stability of the material's electric properties over time.
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun
2013-12-01
Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.
NASA Astrophysics Data System (ADS)
Kung, Chung-Wei; Chen, Hsin-Wei; Lin, Chia-Yu; Vittal, R.; Ho, Kuo-Chuan
2012-09-01
A thin film of Co3O4 nanosheets is electrodeposited on a flexible Ti substrate by a one-step potentiostatic method, followed by an UV-ozone treatment for 30 min. The films before and after the UV-ozone treatment are characterized with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The film is composed of Co(OH)2 before UV-ozone treatment, and of Co3O4 after the treatment. The morphologies of both films are examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The obtained films are composed of nanosheets, and there is no change in their sheet-like morphology before and after the UV-ozone treatment. When applied for a supercapacitor, the Co3O4 modified Ti electrode (Co3O4/Ti) shows a far higher capacitance than that of the Co(OH)2 modified Ti electrode. The electrodeposition time and NaOH concentration in the electrolyte are optimized. A remarkably high specific capacitance of 1033.3 F g-1 is obtained for the Co3O4 thin film at a charge-discharge current density of 2.5 A g-1. The long-term stability data shows that there is still 77% of specific capacitance remaining after 3000 repeated charge-discharge cycles. The high specific capacitance and long-term stability suggest the potential use of Co3O4/Ti for making a flexible supercapacitor.
Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko
2017-06-07
A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.
Ai, Yuanfei; Geng, Xuewen; Lou, Zheng; Wang, Zhiming M; Shen, Guozhen
2015-11-04
Effectively composite materials with optimized structures exhibited promising potential in continuing improving the electrochemical performances of supercapacitors in the past few years. Here, we proposed a rational design of branched CoMoO4@CoNiO2 core/shell nanowire arrays on Ni foam by two steps of hydrothermal processing. Owing to the high activity of the scaffold-like CoMoO4 nanowires and the well-defined CoNiO2 nanoneedles, the three-dimensional (3D) electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (5.31 F/cm(2) at 5 mA/cm(2)) and superior cycling stability(159% of the original specific capacitance, i.e., 95.7% of the maximum retained after 5000 cycles at 30 mA/cm(2)). The all-solid-state asymmetric supercapacitors composed of such electrode and activated carbon (AC) exhibited an areal specific capacitance of 1.54 F/cm(2) at 10 mA/cm(2) and a rate capability (59.75 Wh/kg at a 1464 W/kg) comparable with Li-ion batteries. It also showed an excellent cycling stability with no capacitance attenuation after 50000 cycles at 100 mA/cm(2). After rapid charging (1 s), such supercapacitors in series could lighten a red LED for a long time and drive a mini motor effectively, demonstrating advances in energy storage, scalable integrated applications, and promising commercial potential.
Neuron Morphology Influences Axon Initial Segment Plasticity.
Gulledge, Allan T; Bravo, Jaime J
2016-01-01
In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.
Neuron Morphology Influences Axon Initial Segment Plasticity123
2016-01-01
In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619
Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors
Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati
2016-01-01
In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g−1 at a current density of 2 A g−1, which is higher than the capacitance of bare G (145 F g−1) and bare Ni (3 F g−1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g−1 at a current density of 5 A g−1 and a capacitance of 144 F g−1 at a current density of 10 A g−1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor. PMID:27553290
NASA Astrophysics Data System (ADS)
Hong, Xiaodong; Zhang, Binbin; Murphy, Elizabeth; Zou, Jianli; Kim, Franklin
2017-03-01
As a simple and versatile method, diffusion driven Layer-by-Layer assembly (dd-LbL) is developed to assemble graphene oxide (GO) into three-dimensional (3D) structure. The assembled GO macrostructure can be reduced through a hydrothermal treatment and used as a high volumetric capacitance electrode in supercapacitors. In this report we use rGO framework created from dd-LbL as a scaffold for in situ polymerization of aniline within the pores of the framework to form rGO/polyaniline (rGO/PANI) composite. The rGO/PANI composite affords a robust and porous structure, which facilitates electrolyte diffusion and exhibits excellent electrochemical performance as binder-free electrodes in a sandwich-configuration supercapacitor. Combining electric double layer capacitance and pseudo-capacitance, rGO/PANI electrodes exhibit a specific capacitance of 438.8 F g-1 at discharge rate of 5 mA (mass of electrodes were 10.0 mg, 0.5 A g-1) in 1 mol L-1 H2SO4 electrolyte; furthermore, the generated PANI nanoparticles in rGO template achieve a higher capacitance of 763 F g-1. The rGO/PANI composite electrodes also show an improved recyclability, 76.5% of capacitance retains after recycled 2000 times.
NASA Astrophysics Data System (ADS)
Wiebold, Matthew D.
Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.
NASA Astrophysics Data System (ADS)
Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong
2016-09-01
Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g-1 at 1 A g-1, and still keep a high value of 704 F g-1 even at 20 A g-1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg-1 at a power density of 800 W kg-1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min-1 g-1Ni for catalytic hydrolysis of NH3BH3 (AB).
Huang, Wenxin; Li, Jun; Xu, Yunhe
2017-10-19
The nucleation and growth mechanisms of porous MnO₂ coating deposited on graphite in MnSO₄ solution were investigated in detail by cyclic voltammetry, chronoamperometry and scanning electron microscopy. The electrochemical properties of honeycomb-like MnO₂ were evaluated by cycle voltammetry and galvanostatic charge-discharge. Results indicated that MnO₂ was synthesized by the following steps: Mn 2+ → Mn 3+ + e⁻, Mn 3+ +2H2O → MnOOH + 3H⁺, and MnOOH → MnO₂ + H⁺+ e⁻. The deposition of MnO₂ was divided into four stages. A short incubation period (approximately 1.5 s) was observed, prior to nucleation. The decreasing trend of the current slowed as time increased due to nucleation and MnO₂ growth in the second stage. A huge number of nuclei were formed by instantaneous nucleation, and these nuclei grew and connected with one another at an exceedingly short time (0.5 s). In the third stage, the gaps in-between initial graphite flakes were filled with MnO₂ until the morphology of the flakes gradually became similar to that of the MnO₂-deposited layer. In the fourth stage, the graphite electrode was covered completely with a thick and dense layer of MnO₂ deposits. All MnO₂ electrodes at different deposition times obtained nearly the same specific capacitance of approximately 186 F/g, thus indicating that the specific capacitance of the electrodes is not related with deposition time.
Xiao, Wei; Zhou, Wenjie; Feng, Tong; Zhang, Yanhua; Liu, Hongdong; Tian, Liangliang
2016-09-20
MoS₂/RGO composite hollow microspheres were hydrothermally synthesized by using SiO₂/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO₂ microspheres. The structure, morphology, phase, and chemical composition of MoS₂/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS₂/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m²·g -1 . When used as supercapacitor electrode material, MoS₂/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g -1 at the current density of 1 A·g -1 , which was much higher than that of contrastive bare MoS₂ microspheres developed in the present work and most of other reported MoS₂-based materials. The enhancement of supercapacitive behaviors of MoS₂/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS₂/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g -1 , showing excellent application potential.
Huang, Shenggen; Sun, Jian; Yan, Jian; Liu, Jiaqin; Wang, Weijie; Qin, Qingqing; Mao, Wenping; Xu, Wei; Wu, Yucheng; Wang, Junfeng
2018-03-21
In this work, Al-doped MnO 2 (Al-MO) nanoparticles have been synthesized by a simple chemical method with the aim to enhance cycling stability. At room temperature and 50 °C, the specific capacitances of Al-MO are well-maintained after 10 000 cycles. Compared with pure MnO 2 nanospheres (180.6 F g -1 at 1 A g -1 ), Al-MO also delivers an enhanced specific capacitance of 264.6 F g -1 at 1 A g -1 . During the cycling test, Al-MO exhibited relatively stable structure initially and transformed to needlelike structures finally both at room temperature and high temperature. In order to reveal the morphology evolution process, in situ NMR under high magnetic field has been carried out to probe the dynamics of structural properties. The 23 Na spectra and the SEM observation suggest that the morphology evolution may follow pulverization/reassembling process. The Na + intercalation/deintercalation induced pulverization, leading to the formation of tiny MnO 2 nanoparticles. After that, the pulverized tiny nanoparticles reassembled into new structures. In Al-MO electrodes, doping of Al 3+ could slow down this structure evolution process, resulting in a better electrochemical stability. This work deepens the understanding on the structural changes in faradic reaction of pseudocapacitive materials. It is also important for the practical applications of MnO 2 -based supercapacitors.
Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances
NASA Astrophysics Data System (ADS)
Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong
2010-10-01
Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g
Liu, Lifeng
2013-12-07
Nano-aggregates of cobalt nickel oxysulfide (CoNi)OxSy have been synthesized by hydrothermal processing and exhibited specific and areal capacitance as high as 592 F g(-1) and 1628 mF cm(-2), respectively, at a current density of 0.5 A g(-1)/1.375 mA cm(-2). They also show high capacitance retention upon extended cycling at high rates.
Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.
Park, Hae Woong; Na, Byung-Ki; Cho, Byung Won; Park, Sun-Min; Roh, Kwang Chul
2013-10-28
In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1).
NASA Astrophysics Data System (ADS)
Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.
2014-12-01
This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.
NASA Astrophysics Data System (ADS)
Wang, Yifan; Zhang, Yue; Pei, Lei; Ying, Diwen; Xu, Xiaoyun; Zhao, Ling; Jia, Jinping; Cao, Xinde
2017-01-01
Biochar derived from waste biomass has proven as a promising sorbent for removal of heavy metals from wastewater. However, proper disposal of such a heavy metal-containing biochar is challengeable. The major objective of this study is to create a reuse way by converting the heavy metal-loaded biochar into supercapacitor. Two biochars were produced from dairy manure and sewage sludge, respectively, and subjected to sorption of Ni from solution, and then the Ni-loaded biochar underwent microwave treatments for fabrication of supercapacitor. The specific capacitance of biochar supercapacitor increased with Ni loading, especially the Ni-loaded biochar further treated with microwave in which the capacitance increased by over 2 times, compared to the original biochar supercapacitors. The increase of capacitance in the Ni-loaded biochar supercapacitor following microwave treatment was mainly attributed to the conversion of Ni into NiO and NiOOH, which was evidenced by X-ray diffraction and X-ray photoelectron spectroscopy. The biochar supercapacitors, especially microwave-treated Ni-loaded biochar supercapacitors exhibited the high stability of specific capacitance, with less than 2% loss after 1000 charge-discharge cycles. This study demonstrated that Ni-loaded biochar can be further utilized for generation of supercapacitor, providing a potential way for the reuse of exhausted carbonaceous sorbents.
NASA Astrophysics Data System (ADS)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.
2015-03-01
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.
Wang, Yifan; Zhang, Yue; Pei, Lei; Ying, Diwen; Xu, Xiaoyun; Zhao, Ling; Jia, Jinping; Cao, Xinde
2017-01-01
Biochar derived from waste biomass has proven as a promising sorbent for removal of heavy metals from wastewater. However, proper disposal of such a heavy metal-containing biochar is challengeable. The major objective of this study is to create a reuse way by converting the heavy metal-loaded biochar into supercapacitor. Two biochars were produced from dairy manure and sewage sludge, respectively, and subjected to sorption of Ni from solution, and then the Ni-loaded biochar underwent microwave treatments for fabrication of supercapacitor. The specific capacitance of biochar supercapacitor increased with Ni loading, especially the Ni-loaded biochar further treated with microwave in which the capacitance increased by over 2 times, compared to the original biochar supercapacitors. The increase of capacitance in the Ni-loaded biochar supercapacitor following microwave treatment was mainly attributed to the conversion of Ni into NiO and NiOOH, which was evidenced by X-ray diffraction and X-ray photoelectron spectroscopy. The biochar supercapacitors, especially microwave-treated Ni-loaded biochar supercapacitors exhibited the high stability of specific capacitance, with less than 2% loss after 1000 charge-discharge cycles. This study demonstrated that Ni-loaded biochar can be further utilized for generation of supercapacitor, providing a potential way for the reuse of exhausted carbonaceous sorbents. PMID:28128297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Jun; Zhang, Long, E-mail: zhanglongzhl@163.com
2015-01-15
In this paper, we report a simple and controlled synthesis of novel MnOOH–graphene nanocomposites with a one-step facile hydrothermal method. It is template-free and easy to reproduce. Electrochemical properties are investigated in different media. The values of specific capacitance achieved are 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. The assembly of multiple branched MnOOH and graphene flakes results in synergistic effects, forming new electron transfer channels to accelerate electron transfer and provide the pseudocapacitance to increase the overall capacitance. The novel composites have potential applications inmore » the fields of supercapacitors, lithium battery and so on. - Graphical abstract: The MnOOH–graphene nanocomposites shows better specific capacitance with the values achieved 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. - Highlights: • Novel MnOOH–graphene nanocomposites were prepared by a one-step hydrothermal method. • The assembly can form new electron transfer channels to accelerate electron transfer. • The capacitive and rate performances are enhanced in both neutral and alkaline medium.« less
Two dimensional fluid simulation in capacitively coupled silane discharges
NASA Astrophysics Data System (ADS)
Song, Yuan-Hong; Liu, Xiang-Mei; Wang, Yan; Wang, You-Nian
2011-10-01
A two-dimensional (2D) self-consistent fluid model is developed to describe the formation, subsequent growth, transport and charging mechanisms of nanoparticles in a capacitively coupled silane plasma. In this discharge process, large anions are produced by a series of chemical reactions of anions with silane molecules, while the lower limit of the initial nanoparticles are taken as large anions to directly link the coagulation module with the nucleation module. The influences of source parameters on the electron density, electron temperature, nanoparticle uniformity, and deposition rate, are carefully studied. Moreover, the behavior of silicon plasma mixed with SiH4, N2 and O2 in a pulse modulated capacitively coupled plasma has been also investigated. Results showed a strong dependence of the electron density and electron temperature on the duty cycle and the modulated frequency. Supported by NSFC (No.10775025 and No. 10805008), INSTSP (Grant No: 2011ZX02403-001), and PNCETU (NCET-08-0073).
NASA Astrophysics Data System (ADS)
Xin, Zhaopeng; Li, Weixin; Fang, Wei; He, Xuan; Zhao, Lei; Chen, Hui; Zhang, Wanqiu; Sun, Zhimin
2017-12-01
In this work, graphene aerogel/carbon foam is prepared by in situ inducing graphene aerogels in the pores of carbon foam. This novel hierarchical porous structure possesses a higher specific surface area as the introduction of graphene aerogels in carbon foam increases the proportion of micropores thus making it a superior candidate as electrodes for supercapacitors. The characterization and comparison of various properties of carbon foam and graphene aerogels/carbon foam have been investigated systematically. The result shows that specific surface area is up to 682.8 m2/g compared with initial carbon foam which increased about 55%, and the pore distribution curve shows more pore volume at 0.3 nm for F-CF/GA. It is demonstrated that the introduction of graphene aerogels not only increases the specific surface area, but also improves the conductivity, thus resulting in the reduction of the internal resistance and the improvement of the electrochemical performance. Consequently, graphene aerogel/carbon foam shows an excellent specific capacitance of 193.1 F/g at 1 A/g which is 72% higher than that of carbon foam acted as electrodes for supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation hadmore » developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.« less
Development of Electrochemical Supercapacitors for EMA Applications
NASA Technical Reports Server (NTRS)
Kosek, John A.; Dunning, Thomas; LaConti, Anthony B.
1996-01-01
A limitation of the typical electrochemical capacitor is the maximum available power and energy density, and an improvement in capacitance per unit weight and volume is needed. A solid-ionomer electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils has been developed. This capacitor could provide high-current pulses for electromechanical actuation (EMA). Primary project objectives were to develop high-capacitance particulates, to increase capacitor gravimetric and volumetric energy densities above baseline and to fabricate a 10-V capacitor with a repeating element thickness of 6 mils or less. Specific EMA applications were identified and capacitor weight and volume projections made.
NASA Astrophysics Data System (ADS)
Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan
2018-05-01
We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).
Biowaste-Derived Hierarchical Porous Carbon Nanosheets for Ultrahigh Power Density Supercapacitors.
Yu, Dengfeng; Chen, Chong; Zhao, Gongyuan; Sun, Lei; Du, Baosheng; Zhang, Hong; Li, Zhuo; Sun, Ye; Besenbacher, Flemming; Yu, Miao
2018-03-05
Low-cost activated carbons with high capacitive properties remain desirable for supercapacitor applications. Herein, a three-dimensional scaffolding framework of porous carbon nanosheets (PCNSs) has been produced from a typical biowaste, namely, ground cherry calyces, the specific composition and natural structures of which have contributed to the PCNSs having a very large specific surface area of 1612 m 2 g -1 , a hierarchical pore size distribution, a turbostratic carbon structure with a high degree graphitization, and about 10 % oxygen and nitrogen heteroatoms. A high specific capacitance of 350 F g -1 at 0.1 A g -1 has been achieved in a two-electrode system with 6 m KOH; this value is among the highest specific capacitance of biomass-derived carbon materials. More inspiringly, a high energy density of 22.8 Wh kg -1 at a power density of 198.8 W kg -1 can be obtained with 1 m aqueous solution of Li 2 SO 4 , and an ultrahigh energy density of 81.4 Wh kg -1 at a power density of 446.3 W kg -1 is realized with 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Z.B., E-mail: zbwen@jxnu.edu.cn; Yu, F.; College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province
2016-02-15
Highlights: • A core–shell structured NiO@CNTs nanocomposite is synthesized by a simple hydrothermal method. • The CNTs core effectively improves the capacitance, rate and cycling performance of NiO. • A supercapacitor is assembled when activated carbon is used as the negative electrode. • The supercapacitor presents an energy density up to 52.6 Wh kg{sup −1}. - Abstract: A nanocomposite of carbon nanotubes coated with nickel oxide was prepared by a simple hydrothermal method. The structure, morphology and electrochemical performance of the nanocomposite were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, electrochemical tests including cyclic voltammogram, galvanostaticmore » charge–discharge and electrochemical impedance spectroscopy, respectively. It presents the highest specific capacitance of 1844 F g{sup −1} at 1 A g{sup −1} and 1145 F g{sup −1} at current density of 10 A g{sup −1} with 88.9% (at 1 A g{sup −1}) capacitance retention after 1000 cycles. The specific capacitance of the nanocomposite is almost double of that of the virginal NiO (972 F g{sup −1} at 1 A g{sup −1}). Its cycling behavior is also very good. When combined with activated carbon as the negative electrode, the energy density can be up to 52.6 Wh kg{sup −1}. Such good electrochemical behavior indicates that the nanocomposite is a promising electrode material for supercapacitors.« less
Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor
NASA Astrophysics Data System (ADS)
Mary, A. Juliet Christina; Bose, A. Chandra
2017-12-01
Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.
High-Potential Metalless Nanocarbon Foam Supercapacitors Operating in Aqueous Electrolyte.
Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Lee, Ilkeun; Zaera, Francisco; Ozkan, Cengiz S; Ozkan, Mihrimah
2018-04-01
Light-weight graphite foam decorated with carbon nanotubes (dia. 20-50 nm) is utilized as an effective electrode without binders, conductive additives, or metallic current collectors for supercapacitors in aqueous electrolyte. Facile nitric acid treatment renders wide operating potentials, high specific capacitances and energy densities, and long lifespan over 10 000 cycles manifested as 164.5 and 111.8 F g -1 , 22.85 and 12.58 Wh kg -1 , 74.6% and 95.6% capacitance retention for 2 and 1.8 V, respectively. Overcharge protection is demonstrated by repetitive cycling between 2 and 2.5 V for 2000 cycles without catastrophic structural demolition or severe capacity fading. Graphite foam without metallic strut possessing low density (≈0.4-0.45 g cm -3 ) further reduces the total weight of the electrode. The thorough investigation of the specific capacitances and coulombic efficiencies versus potential windows and current densities provides insights into the selection of operation conditions for future practical devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao
2014-07-21
A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2) g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors
NASA Astrophysics Data System (ADS)
Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin
2015-08-01
A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.
Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors.
Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin
2015-08-14
A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g(-1) at a high current density of 6 A g(-1), a good rate capability even at high current density (760 F g(-1) at 20 A g(-1)) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-05-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
NASA Astrophysics Data System (ADS)
Li, Kai; Zhang, Wei-Bin; Zhao, Zhi-Yun; Zhao, Yue; Chen, Xi-Wen; Kong, Ling-Bin
2018-02-01
The porous carbon material is obtained via pyrolysis and activation of fructus cannabis’s shells, an easy-to-get biomass source, and is used as an active electrode material for supercapacitors. The obtained carbon exhibit a high specific surface area of 2389 m2 g-1. And the result of x-ray photoelectron spectroscopy (XPS) shows that the obtained porous carbon possess numerous oxygen groups, which can facilitate the wettability of the electrode. The prepared porous carbon also exhibit remarkable electrochemical properties, such as high specific capacitance of 357 F g-1 at a current density of 0.5 A g-1 in 6 mol L-1 aqueous KOH electrolyte, good rate capability of 77% capacitance retention as the current density increase from 0.5 A g-1 to 10 A g-1. In addition, it also presents a superior cycling stability of 100% capacitance retention after 10 000 cycles at the current density of 1 A g-1.
NASA Astrophysics Data System (ADS)
Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin
2014-11-01
A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.
Synthesis of carbon core–shell pore structures and their performance as supercapacitors
Ariyanto, Teguh; Dyatkin, Boris; Zhang, Gui-Rong; ...
2015-07-15
High-power supercapacitors require excellent electrolyte mobility within the pore network and high electrical conductivity for maximum capacitance and efficiency. Achieving high power typically requires sacrificing energy densities, as the latter demands a high specific surface area and narrow porosity that impedes ion transport. Here, we present a novel solution for this optimization problem: a nanostructured core–shell carbonaceous material that exhibits a microporous carbon core surrounded by a mesoporous, graphitic shell. The tunable synthesis parameters yielded a structure that features either a sharp or a gradual transition between the core and shell sections. Electrochemical supercapacitor testing using organic electrolyte revealed thatmore » these novel core–shell materials outperform carbons with homogeneous pore structures. The hybrid core–shell materials showed a combination of good capacitance retention, typical for the carbon present in the shell and high specific capacitance, typical for the core material. These materials achieved power densities in excess of 40 kW kg -1 at energy densities reaching 27 Wh kg -1.« less
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-07-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes.
Fong, Kara D; Wang, Tiesheng; Kim, Hyun-Kyung; Kumar, R Vasant; Smoukov, Stoyan K
2017-09-08
Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.
Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.
Mirvakili, Seyed M; Hunter, Ian W
2017-07-01
Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shi, HaoTian Harvey; Naguib, Hani E.
2016-04-01
Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.
Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals
NASA Astrophysics Data System (ADS)
Poonguzhali, R.; Shanmugam, N.; Gobi, R.; Senthilkumar, A.; Viruthagiri, G.; Kannadasan, N.
2015-10-01
In this work, the influence of Fe doping on the capacitance behavior of MnO2 nanoparticles synthesized by chemical precipitation was investigated. During the doping process the concentration of Fe was increased from 0.025 M to 0.125 M in steps of 0.025 M. The products obtained were characterized by X-ray diffraction, Fourier infrared spectroscopy, scanning electron microscopy and N2 adsorption-desorption isotherms. To demonstrate the suitability of Fe-doped MnO2 for capacitor applications, cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance were recorded. Among the different levels of doping, the specific capacitance of 912 F/g was delivered by 0.075 M of Fe-doped MnO2 at a scan rate of 10 mV/s, which is almost more than fourfold that of the bare MnO2 electrode (210 F/g). Moreover, for the same concentration the charge, discharge studies revealed the highest specific capacitance of 1084 F/g at a current density of 10 A/g.
Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.
Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding
2015-08-15
A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.
Nagamuthu, S; Vijayakumar, S; Muralidharan, G
2014-12-14
Silver incorporated Mn3O4/amorphous carbon (AC) nanocomposites are synthesized by a green chemistry method. X-ray diffraction studies revealed the structural changes in Mn3O4/AC nanocomposites attributable to the addition of silver. Cyclic voltammetry, charge-discharge and ac-impedance studies indicated that the Ag-Mn3O4/AC-5 electrode was the most suitable candidate for supercapacitor applications. From the galvanostatic charge-discharge studies, a higher specific capacitance of 981 F g(-1) at a specific current of 1 A g(-1) was obtained. An Ag-Mn3O4/AC-symmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as an anode as well as a cathode, and an asymmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as a cathode and an activated carbon as an anode have been fabricated. The symmetric device exhibits a specific cell capacitance of 72 F g(-1) at a specific current of 1 A g(-1) whereas the asymmetric device delivers a specific cell capacitance of 180 F g(-1) at a high current rate of 10 A g(-1). The asymmetric supercapacitor device yields a high energy density of 81 W h kg(-1). This is higher than that of lead acid batteries and comparable with that of nickel hydride batteries.
NASA Astrophysics Data System (ADS)
Do, Quyet H.; Fielitz, Thomas R.; Zeng, Changchun; Arda Vanli, O.; Zhang, Chuck; Zheng, Jim P.
2013-08-01
Vanadium pentoxide (V2O5) deposited on porous multiwalled carbon nanotube (MWCNT) buckypaper using supercritical fluid CO2(scCO2) deposition shows excellent performance for electrochemical capacitors. However, the low weight loading of V2O5 is one of the main problems. In this paper, design of experiments and response surface methods were employed to explore strategies for improving the active material loading by increasing the organo-vanadium precursor adsorption. A second-order response surface model was fitted to the designed experiments to predict the loading of the vanadium precursors onto carbon nanotube buckypaper as a function of time, temperature and pressure of CO2, buckypaper functionalization, precursor type, initial precursor mass and stir speed. Operation conditions were identified by employing a model that led to a precursor loading of 19.33%, an increase of 72.28% over the initial screening design. CNTs-V2O5 composite electrodes fabricated from deposited samples using the optimized conditions demonstrated outstanding electrochemical performance (947.1 F g-1 of V2O5 at a high scan rate 100 mV s-1). The model also predicted operation conditions under which light precursor aggregation took place. The V2O5 from aggregated precursor still possessed considerable specific capacitance (311 F g-1 of V2O5 at a scan rate 100 mV s-1), and the significantly higher V2O5 loading (˜81%) contributed to an increase in overall electrode capacitance.
NASA Astrophysics Data System (ADS)
Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao
2012-01-01
This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.
NASA Astrophysics Data System (ADS)
Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.
2013-03-01
Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.
Giri, Soumen; Ghosh, Debasis; Das, Chapal Kumar
2013-10-28
NiMnO3-nitrogen doped graphene composite has been synthesized by a simple hydrothermal method and its supercapacitor performance investigated. The composite exhibits a specific capacitance of 750.2 F g(-1) in 1 M Na2SO4 at a scan rate of 1 mV s(-1). Nitrogen insertion inside the carbon lattice plays a crucial role in the enhancement of the overall specific capacitance and its long-term stability. This reproducible and superior performance of NiMnO3-nitrogen doped graphene composite make it attractive as a candidate for energy storage materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delnick, F.M.
1993-11-01
Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).
Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro
2016-06-01
Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life.
NASA Astrophysics Data System (ADS)
Taer, E.; Dewi, P.; Sugianto, Syech, R.; Taslim, R.; Salomo, Susanti, Y.; Purnama, A.; Apriwandi, Agustino, Setiadi, R. N.
2018-02-01
The synthesis of carbon electrode from durian shell based on variations in the activation time has been carried out. Synthesis of carbon electrode was started by a carbonization process at a temperature of 600°C in nitrogen gas and then followed by physical activation process using water vapor at a temperature of 900°C by varying time of 1, 2 and 3 h. All of the variations of the samples were chemically activated using an activator of ZnCl2 with a concentration of 0.4 M. The physical properties such as density, surface morphology, degree of crystallinity and elemental content were analyzed. Moreover, the electrochemical properties such as specific capacitance of supercapacitor cells were studied using Cyclic Voltammetry methods. The density, stack height and carbon content were increased as activation time increases, while the specific capacitance of the supercapacitor cell decreases against the increase of activation time. Specific capacitances for 1, 2 and 3 h activation time are 88.39 F/g, 80.08 F/g and 74.61 F/g, respectively. Based on the surface morphology study it was shown that the increased in activation time causes narrowing of the pores between particles.
NASA Astrophysics Data System (ADS)
Dong, Jinyang; Lu, Gang; Wu, Fan; Xu, Chenxi; Kang, Xiaohong; Cheng, Zhiming
2018-01-01
A flower-like MnO2 nanocomposite embedded in nitrogen-doped graphene (NG-MnO2) is fabricated by a hydrothermal method. It is a mesoporous nanomaterial with a pore size of approximately 0.765 cm3 g-1 and specific surface area of 201.8 m2 g-1. NG-MnO2 exhibits a superior average specific capacitance of 220 F g-1 at 0.5 A g-1 and a preferable capacitance of 189.1 F g-1, even at 10 A g-1. After 1000 cycles, over 98.3% of the original specific capacitance retention of the NG-MnO2 electrode is maintained, and it can even activate a red light emitting diode (LED) after being charged, which indicates that it has excellent cycling stability as an electrode material. This prominent electrochemical performance is primarily attributed to the nitrogen doping and mesoporous structures of NG-MnO2, which can be attributed to its numerous electroactive sites as well as faster ion and electron transfer for redox reactions than general graphene-MnO2 nanocomposites (G-MnO2).
NASA Astrophysics Data System (ADS)
Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You
2016-09-01
Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.
Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Xu, Jinling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhang, Chi; Ma, Xin; Qi, Chunling; Zhang, Lu; Jia, Dianzeng
2018-03-01
Transition metal sulfide compounds with carbon materials are promising for high-performance supercapacitors. Carbon nanofibers (CNFs) wrapped with NiS nanoparticles were herein obtained through electrospinning and calcination. NiS nanoparticles in composite nanofibers are covered by a layer of graphitic carbon, which not only increase the conductivity but also provide active regions for nanoparticle growth to prevent aggregation. The CNFs-NiS electrode has high specific capacity of 177.1 mAh g-1 at 1 A g-1 (0.41 mAh cm-2 at a current density of 2.3 mA cm-2) and long-term cycling stability, with 88.7% capacitance retention after 5000 cycles. The excellent electrochemical activity may be attributed to the accessible specific surface, unique porous structure of CNFs and high specific capacitance of NiS. In addition, the asymmetric supercapacitor has an enhanced volumetric energy density of 13.32 mWh cm-3 at a volumetric power density of 180 mW cm-3 and high cycling stability, with 89.5% capacitance retention after 5000 cycles. It also successfully lights up a light-emitting diode. The CNFs-NiS composite has significant potential applications in supercapacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong; Miao, Wang; Li, Chen
Highlights: • Birnessite-type MnO{sub 2} nanoparticles were prepared by the microwave-assisted reflux. • The microwave reaction duration was only 5 min. • A specific capacitance of 329 F g{sup −1} was obtained for birnessite-type MnO{sub 2}. - Abstract: Birnessite-type MnO{sub 2} nanoparticles have been successfully synthesized by the microwave-assisted reflux as short as 5 min. The microstructure and morphology of the products were characterized by X-ray diffraction, N{sub 2} adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy. The electrochemical properties of the as-prepared MnO{sub 2} as an electrode material for supercapacitor were investigated by cyclic voltammetry and galvanostatic charge-discharge measurementsmore » in 1 M Na{sub 2}SO{sub 4} electrolyte, and a high specific capacitance of 329 F g{sup −1} was achieved at a current density of 0.2 A g{sup −1}. The specific capacitance retention was 92% after 1000 cycles at 2 A g{sup −1}, suggesting that it is a promising electrode material for supercapacitors.« less
Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides
NASA Astrophysics Data System (ADS)
Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.
2013-12-01
Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.
NASA Astrophysics Data System (ADS)
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-11-01
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d
NASA Astrophysics Data System (ADS)
Chen, Xia; Zhao, Bote; Cai, Yong; Tadé, Moses O.; Shao, Zongping
2013-11-01
Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m2 g-1 was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m2 g-1). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g-1 at 1 A g-1. V10 was also able to retain a specific capacitance of 380 F g-1, even at a current density of 10 A g-1. Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g-1 at 5 A g-1 after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications.Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m2 g-1 was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m2 g-1). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g-1 at 1 A g-1. V10 was also able to retain a specific capacitance of 380 F g-1, even at a current density of 10 A g-1. Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g-1 at 5 A g-1 after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications. Electronic supplementary information (ESI) available: FE-SEM image. See DOI: 10.1039/c3nr04484j
Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon
2017-05-23
A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).
NASA Astrophysics Data System (ADS)
Kou, Liang; Liu, Zheng; Huang, Tieqi; Zheng, Bingna; Tian, Zhanyuan; Deng, Zengshe; Gao, Chao
2015-02-01
Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors.Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors. Electronic supplementary information (ESI) available: The schematic diagram for fabricating graphene oxide hydrogel films, stress-strain curves and TGA curves of three GHFs, a digital photo of the test device for the two-electrode system, and comparison of the electrochemical performance of our GHF-HZ supercapacitors. See DOI: 10.1039/c4nr07038k
NASA Astrophysics Data System (ADS)
Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2017-10-01
Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.
Experimental study of a variable-capacitance micromotor with electrostatic suspension
NASA Astrophysics Data System (ADS)
Han, F. T.; Wu, Q. P.; Wang, L.
2010-11-01
A variable-capacitance micromotor where the rotor is supported electrostatically in five degrees of freedom was designed, fabricated and tested in order to study the behavior of this electrostatic motor. The micromachined device is based on a glass/silicon/glass stack bonding structure, fabricated by bulk micromachining and initially operated in atmospheric environment. The analytical torque model is obtained by calculating the capacitances between different stator electrodes and the rotor. Capacitance values in the order of 10-13 pF and torque values in the order of 10-10 N m have been calculated from the motor geometry and attainable drive voltage. A dynamic model of the motor is proposed by further estimating the air-film damping effect in an effort to explain the experimental rotation measurements. Experimental results of starting voltage, continuous operation, switching response and electric bearing of the micromotor are presented and discussed. Preliminary measurements indicate that a rotor rotating speed of 73.3 r min-1 can be achieved at a drive voltage of 28.3 V, equivalent to a theoretical motive torque of 517 pN m. Starting voltage results obtained from experimental measurement are in agreement with the developed dynamic model.
Nano-structured variable capacitor based on P(VDF-TrFE) copolymer and carbon nanotubes
NASA Astrophysics Data System (ADS)
Lakbita, I.; El-Hami, K.
2018-02-01
A newly organic capacitor was conceived with a variable capacitance using the inverse piezoelectric effect. The device consists of two parallel plates of carbon nanotubes (CNTs), known for their large surface area, high sensitivity and high electric conductivity, separated by a thin film of a dielectric layer of Polyinylidene fluoride and trifluoroehtylene (P(VDF-TrFE)) promising material for piezoelectric and ferroelectric properties. The obtained architecture is the CNT/PVDF-TrFE/CNT capacitor device. In this study, an ultra-thin film of P(VDF-TrFE) (54/46) with thickness of 20 nm was elaborated on highly oriented pyrolytic graphite (HOPG) by spin-coating. The morphology of the ultra-thin film and the mechanical behavior of CNT/P(VDF-TrFE)/CNT system were studied using the atomic force microscopy (AFM) combined with a lock-in amplifier in contact mode. All changes in applied voltage induce a change in thin film thickness according to the inverse piezoelectric effect that affect, consequently the capacitance. The results showed that the ratio of capacitance change ΔC to initial capacitance C0 is ΔC/C0=5%. This value is sufficient to use P(VDF-TrFE) as variable organic capacitor.
NASA Astrophysics Data System (ADS)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita
2016-11-01
Two new methods adopted from methods commonly used in the field of transportation and logistics are proposed to solve a specific issue of investment allocation problem. Vehicle routing problem and capacitated vehicle routing methods are applied to optimize the fund allocation of a portfolio of investment assets. This is done by determining the sequence of the assets. As a result, total investment risk is minimized by this sequence.
Effect of polyaniline on MWCNTs supercapacitor properties prepared by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Razak, Rozelia Azila Abd; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla
2017-08-01
Multi-walled carbon nanotubes (MWCNTs) is widely used as supercapacitor electrode material. However, the specific capacitance of MWCNTs cannot achieve optimum value to facilitate required demand. Conducting polymers have been introduced to achieve optimum energy density and power density of supercapacitor electrode material. Previous work had demonstrated the effects of adding conducting polymer into carbon base material to get pseudocapacitance effect. Nevertheless the effects specifically of polyaniline (PANi) to MWCNTs were significantly low. This work describes the effect of PANi adding on MWCNTs film prepared by electrophoretic deposition (EPD) technique in order to increase the specific capacitance of MWCNTs. The commercial MWCNTs is dispersed in deionized water by using crystal violet. The admixtures without PANi (sample A), 5wt.% of PANi (sample B) and 10wt.% of PANi (sample C) have been prepared by ex-situ polymerization. The voltage supplied for film deposition is 8 V for 5 minutes. The morphology, functional group and electrochemical properties of MWCNTs due to the presence of PANi had been studied. From FESEM analysis, the presence of PANi can be clearly observed for sample B and sample C while FTIR analysis, proves PANi structure on MWCNTs with its functional group presence in sample B and sample C through the absorbtion band which obviously shifted to higher value compare to sample A. Cyclic voltammogram (CV) analysis shown redox activity occurred in sample B and sample C with identical anodic and cathodic peaks. Sample B hold the higher specific capacitance and higher energy density compared than sample A and sample B. From galvanostatic charge-discharge (CD) measurement, the charge and discharge process for sample B is longer than sample A and sample C which consequently lower its power density. The presence of PANi at 5wt.% is able to increase specific capacitance as well as energy density to optimum value.
Chen, Chen; Wu, Meng-Ke; Tao, Kai; Zhou, Jiao-Jiao; Li, Yan-Li; Han, Xue; Han, Lei
2018-04-24
Metal-organic frameworks (MOFs) show great advantages as new kinds of active materials for energy storage. In this study, bimetallic metal-organic frameworks (Ni/Co-MOFs) with nanosheet-assembled flower-like structures were synthesized by etching Ni-MOF microspheres in a cobalt nitrate solution. It can be clearly observed that the amount of Co(NO3)2 and etching time play crucial roles in the formation of Ni/Co-MOF nanosheets. The Ni/Co-MOFs were used as electrode materials for supercapacitors and the optimized Ni/Co-MOF-5 exhibited the highest capacitances of 1220.2 F g-1 and 986.7 F g-1 at current densities of 1 A g-1 and 10 A g-1, respectively. Ni/Co-MOF-5 was further sulfurized, and the derived Ni-Co-S electrode showed a higher specific capacitance of 1377.5 F g-1 at a current density of 1 A g-1 and a retention of 89.4% when the current density was increased to 10 A g-1, indicating superior rate capability. Furthermore, Ni/Co-MOF-5 and Ni-Co-S showed excellent cycling stability, i.e. about 87.8% and 93.7% of initial capacitance can be still maintained after 3000 cycles of charge-discharge. More interestingly, the Ni/Co-MOF-5//AC ASC shows an energy density of 30.9 W h kg-1 at a power density of 1132.8 W kg-1, and the Ni-Co-S//AC ASC displays a high energy density of 36.9 W h kg-1 at a power density of 1066.42 W kg-1. These results demonstrate that the as-synthesized bimetallic Ni/Co-MOF nanosheets and their derived nickel-cobalt sulfides have promising applications in electrochemical supercapacitors.
Li, Xiang-Chun; Zhang, Yizhou; Wang, Chun-Yu; Wan, Yi
2017-01-01
Conjugated polymers (CPs) have been intensively explored for various optoelectronic applications in the last few decades. Nevertheless, CP based electrochemical energy storage devices such as supercapacitors remain largely unexplored. This is mainly owing to the low specific capacitance, poor structural/electrochemical stability, and low energy density of most existing CPs. In this contribution, a novel set of redox-active conjugated microporous polymers, TAT-CMP-1 and TAT-CMP-2, based on nitrogen-rich and highly conductive triazatruxene building blocks, were successfully designed and synthesized to explore their potential application as efficient and stable electrode materials for supercapacitors. Despite a moderate surface area of 88 m2 g–1 for TAT-CMP-1 and 106 m2 g–1 for TAT-CMP-2, exceptional specific capacitances of 141 F g–1 and 183 F g–1 were achieved at a current density of 1 A g–1. The resulting polymers exhibited unusually high areal specific capacitance (>160 μF cm–2), which is attributed to the pseudocapacitance resulting from redox-active structures with high nitrogen content. More importantly, the TAT-CMP-2 electrode exhibits excellent cycling stability: only 5% capacitance fading is observed after 10 000 cycles at a high current density of 10 A g–1, enabling the possible use of these materials as electrodes in electrochemical devices. PMID:28451362
Hao, Zhi-Qiang; Cao, Jing-Pei; Zhao, Xiao-Yan; Wu, Yan; Zhu, Jun-Sheng; Dang, Ya-Li; Zhuang, Qi-Qi; Wei, Xian-Yong
2018-03-01
A novel strategy is proposed for the increase of specific surface area (SSA) of porous carbon sphere (PCS) by oxidation and activation. 2-keto-l-gulonic acid mother liquor (GAML) as a high-pollution waste has a relatively high value of reutilization. For its high value-added utilization, GAML is used as the precursor for preparation of PCS as carbon-based electrode materials for electric double-layer capacitor. PCS is prepared by hydrothermal carbonization, carbonization and KOH activation, and Fe(NO 3 ) 3 9H 2 O is used as an oxidizing agent during carbonization. The as-prepared PCS has excellent porosity and high SSA of 2478 m 2 g -1 . Meanwhile, the pore structure of PCS can be controlled by the adjustment of carbonization parameters (carbonization temperature and the loading of Fe(NO 3 ) 3 9H 2 O). Besides, the SSA and specific capacitance of PCS can be increased remarkably when Fe(NO 3 ) 3 9H 2 O is added in carbonization. The specific capacitance of PCS can reach 303.7 F g -1 at 40 mA g -1 . PCSs as electrode material have superior electrochemical stability. After 8000 cycles, the capacitance retention is 98.3% at 2 A g -1 . The electric double-layer capacitance of PCS is improved when CS is carbonized with Fe(NO 3 ) 3 9H 2 O, and the economic and environmental benefits are achieved by the effective recycle of GAML. Copyright © 2017 Elsevier Inc. All rights reserved.
Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi
2016-01-01
Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283
Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
Biesheuvel, P M; Bazant, M Z
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Bazant, M. Z.
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Mihailescu, Carmen-Marinela; Stan, Dana; Iosub, Rodica; Moldovan, Carmen; Savin, Mihaela
2015-01-01
The fabrication of a capacitive interdigitated immunosensor (CID) based on a mixed self-assembled monolayer (mSAM) film for the direct detection of heart fatty-acid binding protein (h-FABP) without any labeling is described. The capacitance changes of mSAMs vs. homogenous ordered self-assembled monolayers (hSAMs) on gold work electrodes/covalently bonded antibodies/buffered medium are utilized for monitoring the specific antibody-antigen interaction. Capacitance measurements in the absence and presence of Faradaic currents were performed. The electrochemical properties of mixed monolayers were compared with those of a pure monolayer of 11-mercaptoundecanoic acid (MUA) self-assembled on gold surfaces. Taking into account the stability of the studied monolayers during the electrochemical experiments with the Faradaic process, the best SAM functionalization method was used for developing a sensitive capacitive immunosensor with a non-Faradaic process for direct immune detection of human h-FABP. Under the optimized conditions, the proposed mixed self-assembled monolayer (mSAM1) on gold electrode exhibited good insulating properties such as a capacitive behavior when detecting h-FABP from human serum in the range of 98 pg ml(-1)-100 ng ml(-1), with a detection limit of 0.836 ng ml(-1) comparative with a homogenous self-assembled monolayer (hSAM). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi
2016-03-01
Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.
Kargupta, Roli; Puttaswamy, Sachidevi; Lee, Aiden J; Butler, Timothy E; Li, Zhongyu; Chakraborty, Sounak; Sengupta, Shramik
2017-06-10
Multiple techniques exist for detecting Mycobacteria, each having its own advantages and drawbacks. Among them, automated culture-based systems like the BACTEC-MGIT™ are popular because they are inexpensive, reliable and highly accurate. However, they have a relatively long "time-to-detection" (TTD). Hence, a method that retains the reliability and low-cost of the MGIT system, while reducing TTD would be highly desirable. Living bacterial cells possess a membrane potential, on account of which they store charge when subjected to an AC-field. This charge storage (bulk capacitance) can be estimated using impedance measurements at multiple frequencies. An increase in the number of living cells during culture is reflected in an increase in bulk capacitance, and this forms the basis of our detection. M. bovis BCG and M. smegmatis suspensions with differing initial loads are cultured in MGIT media supplemented with OADC and Middlebrook 7H9 media respectively, electrical "scans" taken at regular intervals and the bulk capacitance estimated from the scans. Bulk capacitance estimates at later time-points are statistically compared to the suspension's baseline value. A statistically significant increase is assumed to indicate the presence of proliferating mycobacteria. Our TTDs were 60 and 36 h for M. bovis BCG and 20 and 9 h for M. smegmatis with initial loads of 1000 CFU/ml and 100,000 CFU/ml respectively. The corresponding TTDs for the commercial BACTEC MGIT 960 system were 131 and 84.6 h for M. bovis BCG and 41.7 and 12 h for M smegmatis, respectively. Our culture-based detection method using multi-frequency impedance measurements is capable of detecting mycobacteria faster than current commercial systems.
The rod-driven a-wave of the dark-adapted mammalian electroretinogram.
Robson, John G; Frishman, Laura J
2014-03-01
The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scholkmann, F.; Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.
2017-03-01
Recently we reported (Milián-Sánchez V. et al., Nucl. Instrum. Methods A, 828 (2016) 210) our experimental results involving 226Ra decay rate and capacitance measurements inside a modified Faraday cage. Our measurements exhibited anomalous effects of unknown origin. In this letter we report new results regarding our investigation into the origins of the observed effects. We report preliminary findings of a correlation analysis between the radioactive decay rates and capacitance time series and space weather related variables (geomagnetic field disturbances and cosmic-ray neutron counts). A significant correlation was observed for specific data sets. The results are presented and possible implications for future work discussed.
Tracking ion irradiation effects using buried interface devices
NASA Astrophysics Data System (ADS)
Cutshall, D. B.; Kulkarni, D. D.; Miller, A. J.; Harriss, J. E.; Harrell, W. R.; Sosolik, C. E.
2018-05-01
We discuss how a buried interface device, specifically a metal-oxide-semiconductor (MOS) capacitor, can be utilized to track effects of ion irradiation on insulators. We show that the exposure of oxides within unfinished capacitor devices to ions can lead to significant changes in the capacitance of the finished devices. For multicharged ions, these capacitive effects can be traced to defect production within the oxide and ultimately point to a role for charge-dependent energy loss. In particular, we attribute the stretchout of the capacitance-voltage curves of MOS devices that include an irradiated oxide to the ion irradiation. The stretchout shows a power law dependence on the multicharged ion charge state (Q) that is similar to that observed for multicharged ion energy loss in other systems.
Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin
2012-01-11
We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling. © 2011 American Chemical Society
Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors
NASA Astrophysics Data System (ADS)
Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz
2014-06-01
Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.
Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi
2018-02-26
In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.
Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects
NASA Astrophysics Data System (ADS)
Plaksin, Michael; Shapira, Einat; Kimmel, Eitan; Shoham, Shy
2018-01-01
Modern advances in neurotechnology rely on effectively harnessing physical tools and insights towards remote neural control, thereby creating major new scientific and therapeutic opportunities. Specifically, rapid temperature pulses were shown to increase membrane capacitance, causing capacitive currents that explain neural excitation, but the underlying biophysics is not well understood. Here, we show that an intramembrane thermal-mechanical effect wherein the phospholipid bilayer undergoes axial narrowing and lateral expansion accurately predicts a potentially universal thermal capacitance increase rate of ˜0.3 % /°C . This capacitance increase and concurrent changes in the surface charge related fields lead to predictable exciting ionic displacement currents. The new MechanoElectrical Thermal Activation theory's predictions provide an excellent agreement with multiple experimental results and indirect estimates of latent biophysical quantities. Our results further highlight the role of electro-mechanics in neural excitation; they may also help illuminate subthreshold and novel physical cellular effects, and could potentially lead to advanced new methods for neural control.
NASA Astrophysics Data System (ADS)
Achour, Amine; Porto, Raul Lucio; Soussou, Mohamed-Akram; Islam, Mohammad; Boujtita, Mohammed; Aissa, Kaltouma Ait; Le Brizoual, Laurent; Djouadi, Abdou; Brousse, Thierry
2015-12-01
Electrochemical capacitors (EC) in the form of packed films can be integrated in various electronic devices as power source. A fabrication process of EC electrodes, which is compatible with micro-fabrication, should be addressed for practical applications. Here, we show that titanium nitride films with controlled porosity can be deposited on flat silicon substrates by reactive DC-sputtering for use as high performance micro-supercapacitor electrodes. A superior volumetric capacitance as high as 146.4 F cm-3, with an outstanding cycling stability over 20,000 cycles, was measured in mild neutral electrolyte of potassium sulfate. The specific capacitance of the films as well as their capacitance retentions were found to depend on thickness, porosity and surface chemistry of electrodes. The one step process used to fabricate these TiN electrodes and the wide use of this material in the field of semiconductor technology make it promising for miniaturized energy storage systems.
Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang
2017-10-18
We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.
Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Lv, Xvdan; Li, Guohui; Pang, Zengyuan; Li, Dawei; Lei, Luo; Lv, Pengfei; Mushtaq, Muhammad; Wei, Qufu
2018-05-01
For flexible film supercapacitor, high areal capacitance is a main evaluating indicator. In this paper, bacterial cellulose (BC) with special three-dimensional structure was used as the natural flexible base material. Fe3O4 nanoparticles with average diameter of 20 nm were synthesized on the surface of BC fibers. The conductive path polypyrrole (PPy) was introduced as shell of BC/Fe3O4 fibers to further improve the pseudo capacitance in 1 mol/L H2SO4 solution. Besides, the BC/Fe3O4@PPy was used for supercapacitor application in acid electrolyte, and delivered higher areal capacitance compared to other Fe3O4 composites in previous reports. The obtained BC/Fe3O4@PPy film showed excellent mechanical strength (tensile strength reached 11 MPa), high areal specific capacitance (5.4 F cm-2 at active mass of 8.4 mg cm-2), and long cycle life (1.95 F cm-2 over 3500 cycles).
Ning, Xuewen; Wang, Xixin; Yu, Xiaofei; Zhao, Jianling; Wang, Mingli; Li, Haoran; Yang, Yang
2016-01-01
Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm2 at a current density of 3 mA/cm2 when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm2, and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work. PMID:26940546
Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization
NASA Astrophysics Data System (ADS)
Chang, Liang; Hu, Yun Hang
2018-05-01
Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.
NASA Astrophysics Data System (ADS)
Kim, Myeongjin; Yoo, Youngjae; Kim, Jooheon
2014-11-01
Synthesis of microsphere silicon carbide/nanoneedle MnO2 (SiC/N-MnO2) composites for use as high-performance materials in supercapacitors is reported herein. The synthesis procedure involves the initial treatment of silicon carbide (SiC) with hydrogen peroxide to obtain oxygen-containing functional groups to provide anchoring sites for connection of SiC and the MnO2 nanoneedles (N-MnO2). MnO2 nanoneedles are subsequently formed on the SiC surface. The morphology and microstructure of the as-prepared composites are characterized via X-ray diffractometry, field-emission scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 nanoneedles are homogeneously formed on the SiC surface in the composite. The capacitive properties of the as-prepared SiC/N-MnO2 electrodes are evaluated using cyclic voltammetry, galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1-M Na2SO4 aqueous solution as the electrolyte. The SiC/N-MnO2(5) electrode, for which the MnO2/SiC feed ratio is 5:1, displays a specific capacitance as high as 273.2 F g-1 at 10 mV s-1.
NASA Astrophysics Data System (ADS)
Xiong, Pan; Huang, Huajie; Wang, Xin
2014-01-01
A ternary cobalt ferrite/graphene/polyaniline nanocomposite (CGP) is designed and fabricated via a facile two-step approach: cobalt ferrite nanoparticles dispersed on graphene sheets are achieved by a hydrothermal method, followed by coating with polyaniline (PANI) through in situ polymerization process. Electrochemical measurements demonstrate that the specific capacitance of the resulting ternary hybrid (CGP) is up to 1133.3 F g-1 at a scan rate of 1 mV s-1 and 767.7 F g-1 at a current density of 0.1 A g-1 using a three-electrode system, while 716.4 F g-1 at a scan rate of 1 mV s-1 and 392.3 F g-1 at a current density of 0.1 A g-1 using a two-electrode system, which are significantly higher than those of pure CoFe2O4, graphene and PANI, or binary CoFe2O4/graphene, CoFe2O4/PANI and graphene/PANI hybrids. In addition, over 96% of the initial capacitance can be retained after repeating test for 5000 cycles, demonstrating a high cycling stability. The extraordinary electrochemical performance of the ternary CGP nanocomposite can be attributed to its well-designed nanostructure and the synergistic effects of the individual components.
Wang, Feifei; Wang, Ting; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan
2018-06-11
A novel NiFe-LDH/RGO/CNFs composite was produced by using a facile one-step hydrothermal method as electrode for supercapacitor. Compared with NiFe-LDH/CNFs, NiFe-LDH/CNTs and NiFe-LDH/RGO, NiFe-LDH/RGO/CNFs demonstrated a high specific capacitance of 1330.2 F g -1 at 1 A g -1 and a super rate capability of 64.2% from 1 to 20 A g -1 , indicating great potential for supercapacitor application. Additionally, an asymmetric supercapacitor using NiFe-LDH/RGO/CNFs composite as positive electrode material and activated carbon as negative electrode material was assembled. The asymmetric supercapacitor can work in the voltage range of 0-1.57 V. It displayed high energy density of 33.7 W h kg -1 at power density of 785.8 W kg -1 and excellent cycling stability with 97.1% of the initial capacitance after 2500 cycles at 8 A g -1 . Two flexible AC//LDH-RGO-CNFs ASC devices connected in series were able to light up a red LED indicator after being fully charged. The results demonstrate that the AC//LDH-RGO-CNFs ASC has a promising potential in commercial application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009
Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs electrode shows an excellent cycling stability of 91.8% after 2000 cycles.« less
Design and Application of a Collocated Capacitance Sensor for Magnetic Bearing Spindle
NASA Technical Reports Server (NTRS)
Shin, Dongwon; Liu, Seon-Jung; Kim, Jongwon
1996-01-01
This paper presents a collocated capacitance sensor for magnetic bearings. The main feature of the sensor is that it is made of a specific compact printed circuit board (PCB). The signal processing unit has been also developed. The results of the experimental performance evaluation on the sensitivity, resolution and frequency response of the sensor are presented. Finally, an application example of the sensor to the active control of a magnetic bearing is described.
Changes in membrane conductances and areas associated with bicarbonate secretion in turtle bladder.
Rich, A; Dixon, T E; Clausen, C
1990-02-01
Transepithelial impedance-analysis studies were performed in turtle bladder epithelium in order to measure changes in the different epithelial membranes resulting from stimulation of electrogenic bicarbonate secretion. Changes in membrane conductance relate to changes in ionic permeability, whereas changes in membrane capacitance relate to changes in membrane area, since most biological membranes exhibit a specific capacitance of approximately 1 muF/cm2. The results of this investigation are summarized as follows: (i) cAMP and carbachol, agents which have been shown previously to stimulate electrogenic bicarbonate secretion, result in increases in apical-membrane conductance and capacitance; (ii) these changes occur concomitantly with the observed change in transport (measured using the short-circuit-current technique), thereby suggesting that bicarbonate secretion may be regulated in part by changes in the chloride conductance of the apical membrane; (iii) the increase in conductance does not reflect an increase in the membrane's specific conductance, thereby indicating that it results from the addition of membrane possessing similar ionic permeability as the existing apical membrane; (iv) the magnitude of the changes in capacitance indicate that a minor cell population (beta-type carbonic-anhydrase-rich cells) increase their apical-membrane area by several-fold; (v) a lack of transport-associated changes in the basolateral-membrane parameters suggest that transport is not regulated by alterations in basolateral-membrane ionic conductance or area; (vi) a lack of colchicine sensitivity, coupled with the magnitude of the changes in apical-membrane capacitance, indicate that the membrane remodeling processes are different from those involved in the regulation of proton secretion in a different cell population (alpha-type carbonic-anhydrase-rich cells).
NASA Astrophysics Data System (ADS)
Choudhury, Arup; Dey, Baban; Sinha Mahapatra, Susanta; Kim, Doo-Won; Yang, Kap-Seung; Yang, Duck-Joo
2018-04-01
Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.
Porous ZnO-Coated Co3O4 Nanorod as a High-Energy-Density Supercapacitor Material.
Gao, Miao; Wang, Wei-Kang; Rong, Qing; Jiang, Jun; Zhang, Ying-Jie; Yu, Han-Qing
2018-06-27
Co 3 O 4 with a high theoretical capacitance has been widely recognized as a promising electrode material for supercapacitor, but its poor electrical conductivity and stability limit its practical applications. Here, we developed an effective synthetic route to synthesize one-dimensional (1D) porous ZnO/Co 3 O 4 heterojunction composites. Benefiting from the heterostructure to promote the charge transfer and protect Co 3 O 4 from corrosion and the 1D porous structure to improve ion diffusion and prevent structural collapse in charge and discharge process, the as-prepared ZnO/Co 3 O 4 composites exhibited an excellent capacitive performance and good cycling stability. The specific capacitance of the ZnO/Co 3 O 4 -450 (1135 F g -1 at 1 A g -1 ) was 1.4 times higher than that of Co 3 O 4 (814 F g -1 ), and the high-rate performance for ZnO/Co 3 O 4 -450 was 4.9 times better than that of Co 3 O 4 . Also, approximately 83% of its specific capacitance was retained after 5000 cycles at 10 A g -1 . Most importantly, the as-fabricated asymmetric supercapacitor, with a ZnO/Co 3 O 4 -450 positive electrode and an activated carbon negative electrode, delivered a prominent energy density of 47.7 W h kg -1 and a high power density of 7500 W kg -1 . Thus, the ZnO/Co 3 O 4 composites could serve as a high-activity material for supercapacitor and the preparation method also offers an attractive strategy to enhance the capacitive performance of Co 3 O 4 .
Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei
2017-10-19
An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.
Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2015-10-01
Successful application of inexpensive energy storage devices lies in the exploitation of fabrication approaches that are based on cost-efficient materials and that can be easily scaled up. Here, inexpensive textile weaved by natural flax fiber is selected as raw material in preparing flexible and binder-free electrode material for supercapacitors. Although carbon fiber cloth obtained from the direct carbonization of flax textile exhibits a low specific capacitance of 0.78 F g-1, carbon fiber cloth electrode shows a very short relaxation time of 39.1 m s and good stability with almost 100% capacitance retaining after 104 cycles at 5 A g-1. To extend the application of the resulting carbon cloth in supercapacitor field, a layer of MnO2 nanosheets is deposited on the surface of carbon fiber via in situ redox reaction between carbon and KMnO4. The specific capacitance of MnO2 reaches 683.73 F g-1 at 2 A g-1 and still retains 269.04 F g-1 at 300 A g-1, indicating the excellent rate capacitance performance of the carbon cloth/MnO2 hybrids. The present study shows that carbon cloth derived from flax textile can provide a low-cost material platform for the facile, cost-efficient and large scale fabrication of binder-free electrode materials for energy storage devices.
NASA Astrophysics Data System (ADS)
Ryu, Ilhwan; Kim, Green; Park, Dasom; Yim, Sanggyu
2015-11-01
Metal oxide nanoparticles (NPs) provide a large surface area and short diffusion pathways for ions in supercapacitor electrode materials. However, binders and conductive additives used for tight connections with current collectors and improved conductivity hamper these benefits. In this work, we successfully fix manganese oxide (Mn3O4) NPs onto ITO current collectors by a simple 1,2-ethanedithiol (EDT) treatment without using any binders or conductive additives. As compared to the electrode fabricated using binder-mixed Mn3O4 NPs, the EDT-treated electrode shows significantly improved specific capacitance of 403 F g-1 at a scan rate of 10 mV s-1. The EDT-treatment is more effective at higher scan rates. The specific capacitances, 278 F g-1 at 100 mV s-1 and 202 F g-1 at 200 mV s-1, are larger than those reported so far at scan rates ≥100 mV s-1. The deconvolution of capacitive elements indicates that these improved capacitive properties are attributed to large insertion elements of the binder-free NP electrodes. Furthermore, this additive-free electrode is highly transparent and can be easily fabricated by simple spray-coating on various substrates including polymer films, implying that this new method is promising for the fabrication of large-area, transparent and flexible electrodes for next-generation supercapacitors.
Lin, Jinghuang; Wang, Yiheng; Zheng, Xiaohang; Liang, Haoyan; Jia, Henan; Qi, Junlei; Cao, Jian; Tu, Jinchun; Fei, Weidong; Feng, Jicai
2018-06-19
NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Cai, Weihua; Lai, Ting; Dai, Wanlin; Ye, Jianshan
2014-06-01
A critical challenge for the construction of flexible electrochemical capacitors is the preparation of flexible electrodes with large specific capacitance and robust mechanical strength. Here, we demonstrate a facile approach to make high performance and flexible electrodes by dropping MnFe2O4/graphene hybrid inks onto flexible graphite sheets (as current collectors and substrates) and drying under an infrared lamp. MnFe2O4/graphene hybrid inks are synthesized by immobilizing the MnFe2O4 microspheres on the graphene nanosheets via a simple solvothermal route. Electrochemical studies show that MnFe2O4/graphene exhibits a high capacitance of 300 F g-1 at a current density of 0.3 A g-1. In addition, the excellent electrochemical performance of a supercapacitor consisting of a sandwich structure of two pieces of MnFe2O4/graphene hybrids modified electrodes separated by polyvinyl alcohol (PVA)-H2SO4 gel electrolyte is further explored. Our studies reveal that the flexible supercapacitor device with 227 μm thickness can achieve a maximum specific capacitance of 120 F g-1 at a current density of 0.1 A g-1 and excellent cycle performance retaining 105% capacitance after 5000 cycles. This research may offer a method for the fabrication of lightweight, stable, flexible and high performance energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...
2015-03-11
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun
2016-10-01
The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeong, Kwang Ho; Lee, Hyeon Jeong; Simpson, Michael F; Jeong, Mun
2016-05-01
Graphene/MnO2 nano-composite was electrochemically synthesized for application to an electrode material for electrochemical supercapacitors. The nanosized needle-like MnO2 was obtained by use of a graphene substrate. The prepared composite exhibited an ideal supercapacitive behavior. A capacitance retention of 94% was achieved with a 4 h deposition time (an initial capacitance of 574 mF/cm2 at a scan rate of 20 mV/s) and the retention declined with further deposition time. The results demonstrate enhanced contact between the electrode and electrolyte and improved power density as an electrochemical capacitor.
NASA Astrophysics Data System (ADS)
Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan
2016-10-01
The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g-1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g-1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g-1 at ~1 A g-1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials.
NASA Astrophysics Data System (ADS)
Abudu, Patiman; Wang, Luxiang; Xu, Mengjiao; Jia, Dianzeng; Wang, Xingchao; Jia, Lixia
2018-06-01
In this work, a honeycomb-like carbon material derived from petroleum pitch was synthesized by a simple one-step carbonization/activation method using silica nanospheres as the hard templates. The obtained hierarchical porous carbon materials (HPCs) with a large specific surface area and uniform macropore distribution provide abundant active sites and sufficient ion migration channels. When used as an electrode material for supercapacitors, the HPCs exhibit a high specific capacitance of 341.0 F g-1 at 1 A g-1, excellent rate capability with a capacitance retention of 55.6% at 50 A g-1 (189.5 F g-1), and outstanding cycling performance in the three-electrode system.
NASA Astrophysics Data System (ADS)
Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang
2014-11-01
We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.
NASA Astrophysics Data System (ADS)
Han, Yang; Hu, Nantao; Liu, Shuai; Hou, Zhongyu; Liu, Jiaqiang; Hua, Xiaolin; Yang, Zhi; Wei, Liangming; Wang, Lin; Wei, Hao
2017-08-01
Nanocoatings of covalent organic frameworks (COFs) on nickel nanowires (NiNWs) have been designed and successfully fabricated for the first time, which showed greatly enhanced electrochemical performances for supercapacitors. The specific capacitance of electrodes based on as-fabricated COFs nanocoatings reached up to 314 F g-1 at 50 A g-1, which retained 74% of the specific capacitance under the current density of 2 A g-1. The ultrahigh current density makes the charge-discharge process extremely rapid. The outstanding electrochemical performances of COFs nanocoating on NiNWs make it an ideal candidate for supercapacitors. And the nanocoating-design can also give a guidance for application of COFs in high-performance energy storages.
NASA Astrophysics Data System (ADS)
Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F.; Lei, Xiaomin; Han, Heyou
2014-12-01
In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors.In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05473c
Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong
2016-01-01
Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g−1 at 1 A g−1, and still keep a high value of 704 F g−1 even at 20 A g−1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg−1 at a power density of 800 W kg−1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min−1 g−1Ni for catalytic hydrolysis of NH3BH3 (AB). PMID:27616420
NASA Astrophysics Data System (ADS)
Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh
2016-01-01
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.
Huang, Wenxin; Xu, Yunhe
2017-01-01
The nucleation and growth mechanisms of porous MnO2 coating deposited on graphite in MnSO4 solution were investigated in detail by cyclic voltammetry, chronoamperometry and scanning electron microscopy. The electrochemical properties of honeycomb-like MnO2 were evaluated by cycle voltammetry and galvanostatic charge-discharge. Results indicated that MnO2 was synthesized by the following steps: Mn2+→Mn3++e−, Mn3++2H2O→MnOOH+3H+, and MnOOH→MnO2+H++e−. The deposition of MnO2 was divided into four stages. A short incubation period (approximately 1.5 s) was observed, prior to nucleation. The decreasing trend of the current slowed as time increased due to nucleation and MnO2 growth in the second stage. A huge number of nuclei were formed by instantaneous nucleation, and these nuclei grew and connected with one another at an exceedingly short time (0.5 s). In the third stage, the gaps in-between initial graphite flakes were filled with MnO2 until the morphology of the flakes gradually became similar to that of the MnO2-deposited layer. In the fourth stage, the graphite electrode was covered completely with a thick and dense layer of MnO2 deposits. All MnO2 electrodes at different deposition times obtained nearly the same specific capacitance of approximately 186 F/g, thus indicating that the specific capacitance of the electrodes is not related with deposition time. PMID:29048377
Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh
2016-01-01
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724
NASA Astrophysics Data System (ADS)
Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.
2015-06-01
Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.
Supercapacitors based on modified graphene electrodes with poly(ionic liquid)
NASA Astrophysics Data System (ADS)
Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.
2014-06-01
The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.
Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin
2015-10-01
In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. Copyright © 2015 Elsevier Inc. All rights reserved.
Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors.
Balasingam, Suresh Kannan; Lee, Jae Sung; Jun, Yongseok
2015-09-21
We report the synthesis of few-layered MoSe2 nanosheets using a facile hydrothermal method and their electrochemical charge storage behavior. A systematic study of the structure and morphology of the as-synthesized MoSe2 nanosheets was performed. The downward peak shift in the Raman spectrum and the high-resolution transmission electron microscopy images confirmed the formation of few-layered nanosheets. The electrochemical energy-storage behavior of MoSe2 nanosheets was also investigated for supercapacitor applications in a symmetric cell configuration. The MoSe2 nanosheet electrode exhibited a maximum specific capacitance of 198.9 F g(-1) and the symmetric device showed 49.7 F g(-1) at a scan rate of 2 mV s(-1). A capacitance retention of approximately 75% was observed even after 10 000 cycles at a high charge-discharge current density of 5 A g(-1). The two-dimensional MoSe2 nanosheets exhibited a high specific capacitance and good cyclic stability, which makes it a promising electrode material for supercapacitor applications.
Yao, Yuechao; Liu, Peng; Li, Xiaoyan; Zeng, Shaozhong; Lan, Tongbin; Huang, Haitao; Zeng, Xierong; Zou, Jizhao
2018-05-17
Herein, N-doped graphitic hierarchically porous carbon nanofibers (NGHPCF) were prepared by electrospinning the composite of bimetallic-coordination metal-organic frameworks and polyacrylonitrile, followed by a pyrolysis and acid wash process. Control over the N content, specific surface area, and degree of graphitization of NGHPCF materials has been realized by adjusting the Co/Zn metal coordination content as well as the pyrolysis temperature. The obtained NGHPCF with a high specific surface area (623 m2 g-1) and nitrogen content (13.83 wt%) exhibit a high capacitance of 326 F g-1 at 0.5 A g-1. In addition, the capacitance of 170 F g-1 is still maintained at a high current density (40 A g-1); this indicates a high capacitance retention capability. Furthermore, a superb energy density (9.61 W h kg-1) is obtained with a high power density (62.4 W kg-1) using an organic electrolyte. These results fully illustrate that the prepared NGHPCF binder-free electrodes are promising candidates for high-performance supercapacitors.
Liu, Shude; Hui, K S; Hui, K N
2016-02-10
Flower-like copper cobaltite (CuCo2O4) nanosheets anchored on graphite paper have been synthesized using a facile hydrothermal method followed by a postannealing treatment. Supercapacitor electrodes employing CuCo2O4 nanosheets exhibit an enhanced capacitance of 1131 F g(-1) at a current density of 1 A g(-1) compared with previously reported supercapacitor electrodes. The CuCo2O4 electrode delivers a specific capacitance of up to 409 F g(-1) at a current density of as high as 50 A g(-1), and a good long-term cycling stability, with 79.7% of its specific capacitance retained after 5000 cycles at 10 A g(-1). Furthermore, the as-prepared CuCo2O4 nanosheets on graphite paper can be fabricated as electrodes and used as enzymeless glucose sensors, which exhibit good sensitivity (3.625 μA μM(-1) cm(-2)) and an extraordinary linear response ranging up to 320 μM with a low detection limit (5 μM).
Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li
2017-01-01
As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246
Masikhwa, Tshifhiwa M; Madito, Moshawe J; Bello, Abdulhakeem; Dangbegnon, Julien K; Manyala, Ncholu
2017-02-15
Molybdenum disulphide which has a graphene-like single layer structure has excellent mechanical and electrical properties and unique morphology, which might be used with graphene foam as composite in supercapacitor applications. In this work, Molybdenum disulphide (MoS 2 )/graphene foam (GF) composites with different graphene foam loading were synthesized by the hydrothermal process to improve on specific capacitance of the composites. Asymmetric supercapacitor device was fabricated using the best performing MoS 2 /GF composite and activated carbon derived from expanded graphite (AEG) as positive and negative electrodes, respectively, in 6M KOH electrolyte. The asymmetric MoS 2 /GF//AEG device exhibited a maximum specific capacitance of 59Fg -1 at a current density of 1Ag -1 with maximum energy and power densities of 16Whkg -1 and 758Wkg -1 , respectively. The supercapacitor also exhibited a good cyclic stability with 95% capacitance retention over 2000 constant charge-discharge cycles. The results obtained demonstrate the potential of MoS 2 /GF//AEG as a promising material for electrochemical energy storage application. Copyright © 2016 Elsevier Inc. All rights reserved.
Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance
NASA Astrophysics Data System (ADS)
Qiu, Yongfu; Fan, Hongbo; Chang, Xueyi; Dang, Haifeng; Luo, Qun; Cheng, Zhiyu
2018-03-01
In this paper, the ultrathin Bi2O3 nanowires are synthesized by an oxidative metal vapor transport deposition technique. Their diameters and length are about 10 nm and several tens of micrometers, the growth direction is along [101] and the specific surface area is about 7.34 m2 g-1. The galvanostatic charge-discharge measurement results show that the specific capacitances of the Bi2O3 nanowires-based electrodes increase with the decrease of the current densities. The maximum capacitance is 691.3 F g-1 at the current density of 2.0 A g-1. The Ragone plot shows that the Bi2O3 nanowires has excellent supercapacitive performance. Moreover, the cyclic stability is measured by the galvanostatic charge/discharge technique at a constant current density of 10.0 A g-1 in 6.0 M KOH electrolyte. The results show the excellent capacitance retention of 75.5% over 3000 cycles. In a word, the Bi2O3 nanowires should be the ideal potential electrode materials for low-costing and effective electrochemical supercapacitors.
Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin
2017-11-09
Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.
Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong
2017-02-09
Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.
Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin
2018-03-27
One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.
Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.
2013-07-01
The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.
Kato, Hirokazu; Kondo, Motoharu; Imada, Hajime; Kuroda, Masahiro; Kamimura, Yoshitsugu; Saito, Kazuyuki; Kuroda, Kagayaki; Ito, Koichi; Takahashi, Hideaki; Matsuki, Hidetoshi
2013-05-01
This article is a redissemination of the previous Japanese Quality Assurance Guide guidelines. Specific absorption rate and temperature distribution were investigated with respect to various aspects including metallic implant size and shape, insertion site, insertion direction, blood flow and heating power, and simulated results were compared with adverse reactions of patients treated by radio frequency capacitive-type heating. Recommended guidelines for safe heating methods for patients with metallic implants are presented based on our findings.
Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors.
Yu, Dingshan; Zhai, Shengli; Jiang, Wenchao; Goh, Kunli; Wei, Li; Chen, Xudong; Jiang, Rongrong; Chen, Yuan
2015-09-02
A facile activation strategy can transform pristine carbon fiber tows into high-performance fiber electrodes with a specific capacitance of 14.2 F cm(-3) . The knottable fiber supercapacitor shows an energy density of 0.35 mW h cm(-3) , an ultrahigh power density of 3000 mW cm(-3) , and a remarkable capacitance retention of 68%, when the scan rate increases from 10 to 1000 mV s(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Iro, Zaharaddeen S.; Subramani, C.; Kesavan, T.; Dash, S. S.; Sasidharan, M.; Sundramoorthy, Ashok K.
2017-12-01
A composite of MnO2/SiO2 sphere was coated on single-wall carbon nanotubes (MnO2/SiO2/SWCNT) using one-pot hydrothermal synthesis method. KMnO4 was used as an oxidizing agent for mild functionalization of single-wall carbon nanotubes (SWCNT), and also as a precursor of MnO2. A comparative study in the presence of SiO2 and SWCNT was carried out using bare MnO2 as a reference. After addition of SiO2, the composite obtained showed an increase in both the specific capacitance and cycle life which can be associated with spherical shape of SiO2 which offered reduction sites for MnO2. With the addition of SWCNT less than 5%, the composite further showed an increase in capacitance and cycle life, this is because of the good conductive nature, excellent mechanical property and chemical stability of SWCNT. The electrochemical behaviour was studied using cyclic voltammetry and galvanostatic charge/discharge method in 1 M Na2SO4 electrolyte. The specific capacitance of MnO2, MnO2/SiO2 and MnO2/SiO2/SWCNT composite is 73.6 F g-1, 108.7 F g-1 and 136 F g-1 at a current density of 1 A g-1, respectively. The MnO2/SiO2/SWCNT energy density was 68 Wh kg-1 with power density of 444.4 W kg-1. The MnO2/SiO2/SWCNT composite retained 88% of its specific capacitance after 500 cycles. We envisage that this hybrid material could be applied for preparation of supercapacitor electrode.
Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.
Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S
2012-09-14
Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.
Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong
2013-08-28
This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.
Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors.
Shi, Yanhong; Zhang, Linlin; Schon, Tyler B; Li, Huanhuan; Fan, Chaoying; Li, Xiaoying; Wang, Haifeng; Wu, Xinglong; Xie, Haiming; Sun, Haizhu; Seferos, Dwight S; Zhang, Jingping
2017-12-13
A novel kind of biomass-derived, high-oxygen-containing carbon material doped with nitrogen that has willow-leaf-shaped pores was synthesized. The obtained carbon material has an exotic hierarchical pore structure composed of bowl-shaped macropores, willow-leaf-shaped pores, and an abundance of micropores. This unique hierarchical porous structure provides an effective combination of high current densities and high capacitance because of a pseudocapacitive component that is afforded by the introduction of nitrogen and oxygen dopants. Our synthetic optimization allows further improvements in the performance of this hierarchical porous carbon (HPC) material by providing a high degree of control over the graphitization degree, specific surface area, and pore volume. As a result, a large specific surface area (1093 m 2 g -1 ) and pore volume (0.8379 cm 3 g -1 ) are obtained for HPC-650, which affords fast ion transport because of its short ion-diffusion pathways. HPC-650 exhibits a high specific capacitance of 312 F g -1 at 1 A g -1 , retaining 76.5% of its capacitance at 20 A g -1 . Moreover, it delivers an energy density of 50.2 W h kg -1 at a power density of 1.19 kW kg -1 , which is sufficient to power a yellow-light-emitting diode and operate a commercial scientific calculator.
Chen, Chao; Yan, Dan; Luo, Xin; Gao, Wenjia; Huang, Guanjie; Han, Ziwu; Zeng, Yan; Zhu, Zhihong
2018-02-07
In this work, hierarchical core-shell NiMoO 4 @Ni-Co-S nanorods were first successfully grown on nickel foam by a facile two-step method to fabricate a bind-free electrode. The well-aligned electrode wrapped by Ni-Co-S nanosheets displays excellent nanostructural properties and outstanding electrochemical performance, owing to the synergistic effects of both nickel molybdenum oxides and nickel cobalt sulfides. The prepared core-shell nanorods in a three-electrode cell yielded a high specific capacitance of 2.27 F cm -2 (1892 F g -1 ) at a current density of 5 mA cm -2 and retained 91.7% of the specific capacitance even after 6000 cycles. Their electrochemical performance was further investigated for their use as positive electrode for asymmetric supercapacitors. Notably, the energy density of the asymmetric supercapacitor device reached 2.45 mWh cm -3 at a power density of 0.131 W cm -3 , and still retained a remarkable 80.3% of the specific capacitance after 3500 cycles. There is great potential for the electrode composed of the core-shell NiMoO 4 @Ni-Co-S nanorods for use in an all-solid-state asymmetric supercapacitor device.
NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Zhao, Huilin; Zhou, JingKuo; Xue, Ruinan; Gao, Jianping
2016-10-01
Many NiCoO2 flowers with an average diameter of about 4 μm were grown on the NiCoO2 flakes coated Ni foam (denoted as NiCoO2/Ni foam) through a simple hydrothermal method and confirmed by scanning and transmission electron microscopies, X-ray diffraction and X-ray photoelectron spectrum measurements. The NiCoO2/Ni foam with high specific area and porosity was directly used as the working electrode without any binders. The measured specific capacitance of NiCoO2 grown on Ni foam is 756 F/g at 0.75 A/g using a three-electrode setup in 1 M KOH. Considering the high capacity of NiCoO2 and the good stability of rGO, the NiCoO2/Ni foam//rGO hybrid supercapacitor combining NiCoO2/Ni foam and rGO shows very good properties, such as high specific capacitance (82 F/g at 2 A/g based on the total mass of active materials), high energy density (25.7 Wh/kg at 1500 W/kg based on the total mass of active materials), good stability (about 90% capacitance retention after 2000-cycle at 100 mV/s), and low charge ion transfer resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...
2017-08-15
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance
NASA Astrophysics Data System (ADS)
Mashayekhi, Alireza; Hosseini, Seyed Mahmoud; Hassanpour Amiri, Morteza; Namdar, Naser; Sanaee, Zeinab
2016-06-01
Nitrogen doping of vertically aligned carbon nanotubes (VACNTs) using plasma-enhanced chemical vapour deposition has been investigated to improve the supercapacitance performance of CNTs. Incorporating electrochemical measurements on the open-ended nitrogen-doped CNTs, showed the achievement of 6 times improvement in the capacitance value. For nitrogen-doped CNTs on silicon substrate, specific capacitance of 60 F g-1 was obtained in 0.5 M KCl solution, with capacity retention ratio above 90 % after cycled at 0.1 A g-1 for 5000 cycles. Using this sample, a symmetric supercapacitance was fabricated which showed the power density of 37.5 kW kg-1. The facile fabrication approach and its excellent capacitance improvement, propose it as an efficient technique for enhancing the supercapacitance performance of the carbon-based electrodes.
Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor
NASA Astrophysics Data System (ADS)
Shu, Yu; Maruyama, Jun; Iwasaki, Satoshi; Maruyama, Shohei; Shen, Yehua; Uyama, Hiroshi
2017-10-01
Nitrogen-doped porous monolithic carbon (NDPMC) is obtained from biomass-derived activated carbon/polyacrylonitrile composite for the first time via a template-free thermally induced phase separation (TIPS) approach followed by KOH activation. The electrochemical results indicate that NDPMC possesses ultrahigh specific capacitance of 442 F g-1 at 1 A g-1, excellent rate capability with 81% retention rate from 1 to 100 A g-1 and outstanding cycling stability with 98% capacitance retention at 20 A g-1 after 5000 cycles. Furthermore, the evaluation of NDPMC on the practical symmetrical system also exhibits desired electrochemical performances. The novel composite carbon displays remarkable capacitance properties and the feasible, low-cost synthetic route demonstrates great potential for large-scale production of high-performance electrode materials for supercapacitors.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors
NASA Astrophysics Data System (ADS)
Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun
2016-08-01
d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.
Rasappa, Sozaraj; Borah, Dipu; Senthamaraikannan, Ramsankar; Faulkner, Colm C; Holmes, Justin D; Morris, Michael A
2014-07-01
The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
NASA Astrophysics Data System (ADS)
Hayati, Mohsen; Roshani, Sobhan; Zirak, Ali Reza
2017-05-01
In this paper, a class E power amplifier (PA) with operating frequency of 1 MHz is presented. MOSFET non-linear drain-to-source parasitic capacitance, linear external capacitance at drain-to-source port and linear shunt capacitance in the output structure are considered in design theory. One degree of freedom is added to the design of class E PA, by assuming the shunt capacitance in the output structure in the analysis. With this added design degree of freedom it is possible to achieve desired values for several parameters, such as output voltage, load resistance and operating frequency, while both zero voltage and zero derivative switching (ZVS and ZDS) conditions are satisfied. In the conventional class E PA, high value of peak switch voltage results in limitations for the design of amplifier, while in the presented structure desired specifications could be achieved with the safe margin of peak switch voltage. The results show that higher operating frequency and output voltage can also be achieved, compared to the conventional structure. PSpice software is used in order to simulate the designed circuit. The presented class E PA is designed, fabricated and measured. The measured results are in good agreement with simulation and theory results.
Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Chen, S.; Zhitomirsky, I.
2013-12-01
In this work we demonstrate the feasibility of deposition of polypyrrole (PPy) films by electropolymerization on stainless steel substrates and fabrication of PPy powders by chemical polymerization using sulfanilic acid azochromotrop (SPADNS) as a new anionic dopant. The problem of low adhesion of PPy films to stainless steel substrates is addressed by the use of SPADNS, which exhibits chelating properties, promoting film formation. The use of fine particles, prepared by the chemical polymerization method, allows impregnation of Ni foams and fabrication of porous electrodes with high materials loading for electrochemical supercapacitors (ES). PPy films and Ni foam based PPy electrodes show capacitive behaviour in Na2SO4 electrolyte. The electron microscopy studies, impedance spectroscopy data and analysis of the SPADNS structure provide an insight into the factors, controlling capacitive behaviour. The Ni foam based electrodes offer advantages of improved capacitive behaviour at high materials loadings and good cycling stability. The area normalized and volume normalized specific capacitances are as high as 5.43 F cm-2 and 93.6 F cm-3, respectively, for materials loading of 35.4 mg cm-2. The capacitance retention of Ni foam based electrodes is 91.5% after 1000 cycles. The Ni foam based PPy electrodes are promising for application in ES.
Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors
NASA Astrophysics Data System (ADS)
Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.
2014-12-01
The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.
C-IOP/NiO/Ni7S6 composite with the inverse opal lattice as an electrode for supercapacitors
NASA Astrophysics Data System (ADS)
Sukhinina, Nadezhda S.; Masalov, Vladimir M.; Zhokhov, Andrey A.; Zverkova, Irina I.; Emelchenko, Gennadi A.
2015-06-01
In this work, we demonstrate the results of studies on the synthesis, the structure and properties of carbon inverted opal (C-IOP) nanostructures, the surface of which is modified by oxide and sulfide of nickel. It is shown that the modification of the matrix C-IOP by nickel compounds led to a decreasing the specific surface area more than three times and was 250 m2/g. The specific capacitance of the capacitor with the C-IOP/NiO/Ni7S6 composite as electrode has increased more than 4 times, from 130 F/g to 600 F/g, as compared with the sample C-IOP without the modification by nickel compounds. The significant contribution of the faradaic reactions in specific capacitance of the capacitor electrodes of the composites is marked.
Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode
NASA Astrophysics Data System (ADS)
Sirisomboonchai, Suchada; Kongparakul, Suwadee; Nueangnoraj, Khanin; Zhang, Haibo; Wei, Lu; Reubroycharoen, Prasert; Guan, Guoqing; Samart, Chanatip
2018-04-01
Copper/carbon (Cu/C) composites were prepared through the simple and environmentally benign hydrothermal carbonization of xylose in the presence of Cu2+ ions. The morphology, specific surface area, phase structure and chemical composition were investigated. Using a three-electrode system in 0.1 M H2SO4 aqueous electrolyte, the Cu/C composite (10 wt% Cu) heat-treated at 600 °C gave the highest specific capacitance (316.2 and 350.1 F g-1 at 0.5 A g-1 and 20 mV s-1, respectively). The addition of Cu was the major factor in improving the electrochemical performance, enhancing the specific capacitance more than 30 times that of the C without Cu. Therefore, the Cu/C composite presented promising results in improving biomass-based C electrodes for supercapacitors.
High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth
NASA Astrophysics Data System (ADS)
Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Long, Hu; Xi, Shuang; Hu, Hao; Tang, Zirong
2014-12-01
A simple and effective strategy is proposed to activate carbon cloth for the fabrication of flexible and high-performance supercapacitors. Firstly, the carbon cloth surface is exfoliated as nanotextures through wet chemical treatment, then an annealing process is applied at H2/N2 atmosphere to reduce the surface oxygen functional groups which are mainly introduced from the first step. The activated carbon cloth electrode shows excellent wettablity, large surface area and delivers remarkable electrochemical performance. A maximum areal capacitance of 485.64 mF cm-2 at the current density of 2 mA cm-2 is achieved for the activated carbon cloth electrode, which is considerably larger than the resported results for carbon cloth. Furthermore, the flexible all-solid-state supercapacitor, which is fabricated based on the activated carbon cloth electrodes, shows high areal capacitance, superior cycling stability as well as stable electrochemical performance even under constant bending or twisting conditions. An areal capacitance of 161.28 mF cm-2 is achieved at the current density of 12.5 mA cm-2, and 104% of its initial capacitance is retained after 30,000 charging/discharging cycles. This study would also provide an effective way to boost devices' electrochemical performance by accommodating other active materials on the activated carbon cloth.
A quantitative description of flagellar movement in golden hamster spermatozoa.
Ishijima, S; Mohri, H
1985-01-01
Flagellar movement of golden hamster spermatozoa obtained from the testis and the caput and cauda epididymides was observed by a light microscope while holding them at their heads with a micropipette. Flagellar movement of capacitated spermatozoa and of reactivated spermatozoa demembranated with Triton X-100 was also observed. Testicular and caput epididymal spermatozoa showed weak movement in Tyrode's solution, whereas cauda epididymal spermatozoa showed vigorous movement. The flagellar bends of the cauda epididymal spermatozoa were almost planar. Capacitated spermatozoa moved with waves of a large amplitude. Demembranated spermatozoa reactivated with ATP only had a latent period before the initiation of flagellar movement, and beat at low frequency, whereas demembranated spermatozoa reactivated with both ATP and cAMP began to move immediately at high frequency. Thrust and hydrodynamic power output were calculated using the parameters for the typical waveforms of cauda epididymal spermatozoa before and after capacitation. The possible role of the large amplitude beat in capacitated spermatozoa is discussed. A comparison of the 'principal' and 'reverse' bends in golden hamster sperm flagella as defined by Woolley (1977) with those in sea urchin sperm flagella suggests that the so-called 'principal' bend in golden hamster sperm flagella corresponds to the reverse bend in sea urchin sperm flagella and vice versa.
NASA Astrophysics Data System (ADS)
Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying
2016-05-01
Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02600a
Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition
NASA Astrophysics Data System (ADS)
Kim, Sun-I.; Thiyagarajan, Pradheep; Jang, Ji-Hyun
2014-09-01
In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g-1 at 1 A g-1, which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g-1 and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g-1 and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data.In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g-1 at 1 A g-1, which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g-1 and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g-1 and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02204a
Eickenscheidt, Max; Zeck, Günther
2014-06-01
The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2014-09-01
The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.
NASA Astrophysics Data System (ADS)
Gobal, Fereydoon; Faraji, Masoud
2014-12-01
Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.
Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability
NASA Astrophysics Data System (ADS)
Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin
2015-12-01
Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j
Xu, Zhenye; Liu, Yu; Zhou, Wei; Tade, Moses O; Shao, Zongping
2018-03-21
Perovskite oxides are highly promising electrodes for oxygen-ion-intercalation-type supercapacitors owing to their high oxygen vacancy concentration, oxygen diffusion rate, and tap density. Based on the anion intercalation mechanism, the capacitance is contributed by surface redox reactions and oxygen ion intercalation in the bulk materials. A high concentration of oxygen vacancies is needed because it is the main charge carrier. In this study, we propose a B-site cation-ordered Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ as an electrode material with an extremely high oxygen vacancy concentration and oxygen diffusion rate. A maximum capacitance of 1050 F g -1 was achieved, and a high capacitance of 780 F g -1 was maintained even after 3000 charge-discharge cycles at a current density of 1 A g -1 with an aqueous alkaline solution (6 M KOH) electrolyte, indicating an excellent cycling stability. In addition, the specific volumetric capacitance of Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ reaches up to 2549.4 F cm -3 based on the dense construction and high tap density (3.2 g cm -3 ). In addition, an asymmetric supercapacitor was constructed using activated carbon as a negative electrode, and it displayed the highest specific energy density of 70 Wh kg -1 at the power density of 787 W kg -1 in this study.
NASA Astrophysics Data System (ADS)
Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua
2016-02-01
A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.
Cheng, Tao; Yu, Baozhi; Cao, Linli; Tan, Huiyun; Li, Xinghua; Zheng, Xinliang; Li, Weilong; Ren, Zhaoyu; Bai, Jinbo
2017-09-01
The ternary composite electrodes, nitrogen-doped graphene foam/carbon nanotube/manganese dioxide (NGF/CNT/MnO 2 ), have been successfully fabricated via chemical vapor deposition (CVD) and facile hydrothermal method. The morphologies of the MnO 2 nanoflakes presented the loading-dependent characteristics and the nanoflake thickness could also be tuned by MnO 2 mass loading in the fabrication process. The correlation between their morphology and electrochemical performance was systematically investigated by controlling MnO 2 mass loading in the ternary composite electrodes. The electrochemical properties of the flexible ternary electrode (MnO 2 mass loading of 70%) exhibited a high areal capacitance of 3.03F/cm 2 and a high specific capacitance of 284F/g at the scan rate of 2mV/s. Moreover, it was interesting to find that the capacitance of the NGF/CNT/MnO 2 composite electrodes showed a 51.6% increase after 15,000 cycles. The gradual increase in specific capacitance was due to the formation of defective regions in the MnO 2 nanostructures during the electrochemical cycles of the electrodes, which further resulted in increased porosity, surface area, and consequently increased electrochemical capacity. This work demonstrates a rarely reported conclusion about loading-dependent characteristics for the NGF/CNT/MnO 2 ternary composite electrodes. It will bring new perspectives on designing novel ternary or multi-structure for various energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dehghanian, Changiz; Sabet Bokati, Kazem
2018-04-01
This study presents composite electrode materials based on Electrochemically Reduced graphene oxide (ERGO) and Ni-Cu Foam for supercapacitor applications. Constant potential (CP) method was used to form reduced graphene oxide on Ni-Cu foam and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-Ray Photoelectron Spectra (XPS), Raman Spectroscopy and electrochemical measurements. ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure. The ERGO served as a conductive network to facilitate the collection and transportation of electrons during the cycling, improved the conductivity of Ni-Cu foam, and allowed for a larger specific surface area. The irregular porous structure allowed for the easy diffusion of the electrolyte into the inner region of the electrode. Moreover, the nanocomposite directly fabricated on Ni-Cu foam with a better adhesion and avoided the use of polymer binder. This method efficiently reduced ohmic polarization and enhanced the rate capability. As a result, the Ni-Cu foam/ERGO nanocomposite exhibited a specific capacitance of 1259.3 F g-1 at 2 A g-1and about 99.3% of the capacitance retained after 5000 cycles. The capacitance retention was about 3% when the current density increased from 2 A g-1 to 15 A g-1. This two-step process drop cast and GO reduction by potentiostatic method is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.
Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes
NASA Astrophysics Data System (ADS)
Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir
Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.
NASA Astrophysics Data System (ADS)
Li, Zijiong; Zhang, Weiyang; Liu, Yanyue; Guo, Jinjin; Yang, Baocheng
2018-01-01
Developing advanced electrochemical electrode materials with excellent performance is critical to their future energy storage devices. Herein, we design and synthesize two-dimensional (2D) porous structure nickel oxide (NiO) nanosheets via a facile and scalable hydrothermal approach, and further heating. The effects of heating time on the electrochemical performances are investigated. The results indicate that the maximum specific capacitance is achieved for NiO nanosheets when heating temperature and time are 300 °C and 3 h, respectively (namely NiO-3). The as-prepared NiO-3 nanosheet are grown uniform on the skeleton of reduced graphene oxide (rGO). The optimum NiO/rGO displays a reversible discharge capacity of 781.7 F g-1 at 1 A g-1, and shows an ultra-long life-span with over 94% capacitance retention after 4000 cycles. The enhanced electrochemical properties for NiO/rGO can be ascribed to a collaborative effect between NiO and rGO, which possess high capacitance storage ability and excellent conductivity, respectively.
MnO2/carbon nanowalls composite electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Hassan, Sameh; Suzuki, Masaaki; Mori, Shinsuke; El-Moneim, Ahmed Abd
2014-03-01
Amorphous MnO2/carbon nanowalls composite films are developed for the supercapacitor applications. Synthesis of carbon nanowalls template is performed by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. A well dispersion of amorphous MnO2 domains throughout carbon nanowalls template is obtained by potentiostatic anodic deposition technique. Carbon nanowalls enable to improve the capacitive behavior and rate capability of MnO2, a specific capacitance of 851 F g-1 at a current density of 1 mA cm-2 and charge transfer resistance of 1.02 Ω are obtained. MnO2/carbon nanowalls composite film exhibits energy density of 118 wh kg-1, power density of 783 wh kg-1, and capacitance retention of 92% after long cycle life of 2000 cycles by charging and discharging at 3 mA cm-2. The high density of atomic scale graphitic edges and large surface area of carbon nanowalls in conjunction with the presence of amorphous MnO2 domains facilitate rapid electron and ion transport and hence offering the potential of the improved capacitive behavior.
Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di
2015-11-24
Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance.
Kazemi, Sayed Habib; Hosseinzadeh, Batoul; Kazemi, Hojjat; Kiani, Mohammad Ali; Hajati, Shaaker
2018-06-08
Electrode materials with high surface area, tailored pore size and efficient capability for ion insertion and enhanced transport of electrons and ions are needed for advanced supercapacitors. In the present study, a mixed metal organic framework (cobalt and manganese based MOF) was synthesized through a simple one pot solvothermal method and employed as the electrode material for supercapacitor. Notably, Co-Mn MOF electrode displayed a large surface area and excellent cycling stability (over 95% capacitance retention after 1500 cycles). Also, superior pseudocapacitive behavior was observed for Co-Mn MOF electrode in KOH electrolyte with an exceptional areal capacitance of 1.318 F cm-2. Moreover, an asymmetric supercapacitor was assembled using Co-Mn MOF and activated carbon electrode as positive and negative electrodes, respectively. The fabricated supercapacitor showed specific capacitances of 106.7 F g-1 at a scan rate of 10 mV s-1 and delivered maximum energy density of 30 Wh kg-1 at 2285.7 W kg-1. Our studies suggest the Co-Mn MOF as promising electrode materials for supercapacitor applications.
Hui, Xu; Qian, Luming; Harris, Gary; Wang, Tongxin; Che, Jianfei
2016-11-05
Graphene-based inorganic composites have been attracting more and more attention since the attachment of inorganic nanoparticles instead of conducting polymeric materials to graphene sheets turns out higher capacitances and good capacity retention. Here we report a fast fabrication method to prepare NiO@graphene composite modified electrodes for supercapacitors. By this method, preparation of electrochemical active materials of NiO/graphene and modification of the electrode can be simultaneously performed, which is achieved separately by traditional method. Moreover, the problem of poor adhesion of active materials on the surface of the electrode can be well solved. The NiO particles introduced to the films exhibit pseudocapacitive behavior arising from the reversible Faradaic transitions of Ni(II)/Ni(III) and greatly improve the capacitance of the electrodes. With the increase in NiO content, highly reduced graphene can be obtained during cyclic voltammetry sweeping, leading to the increase in the electrode capacitance. The highest specific capacitance of the constructed electrodes can reach 1258 F/g at a current density of 5 A/g.
Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping
2016-02-17
In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion.
NASA Astrophysics Data System (ADS)
Ma, Ruguang; Zhou, Yao; Yao, Lin; Liu, Guanghui; Zhou, Zhenzhen; Lee, Jong-Min; Wang, Jiacheng; Liu, Qian
2016-01-01
Submicro-/nano-sized MnF2 rods and hierarchical CoF2 cuboids are respectively synthesized via a facile precipitation method assisted by ionic liquid under a mild condition. The as-prepared MF2 (M = Mn, Co) submicro/nanoparticles exhibit impressive specific capacitance in 1.0 M KOH aqueous solution, especially at relatively high current densities, e.g. 91.2, 68.7 and 56.4 F g-1 for MnF2, and 81.7, 70.6 and 63.0 F g-1 for CoF2 at 5, 8 and 10 A g-1, respectively. The mechanism of striking capacitance of MF2 is clarified on the basis of analysing the cycled electrodes by different characterization techniques. Such remarkable capacitance is ascribed to the redox reactions between MF2 and MOOH in aqueous alkaline electrolytes, which can not be obtained in aqueous neutral electrolytes. This study for the first time provides direct evidences on the pseudocapacitance mechanism of MF2 in alkaline electrolytes and paves the way of application of transition metal fluorides as electrodes in supercapacitors.
Zeng, Dehong; Yang, Ying; Yang, Feng; Guo, Fangmin; Yang, Senjie; Liu, Baijun; Hao, Shijie; Ren, Yang
2017-08-24
Hexagonal NiO/mesoporous carbon nanodisks (NiO/MCN) are facilely and controllably synthesized via constructing nickel-zinc trimesic acid heterobimetallic metal-organic framework (HMOF) disks before pyrolysis at 910 °C. Tailoring the Ni/(Zn + Ni) feed ratio and the reaction time during the HMOF synthesis creates a well-defined hexagonal carbon nanodisk with properly populated NiO nanocrystals while maintaining high porosity and conductivity. Such an elaborately fabricated NiO/MCN is highly stable, and exhibits the largest specific capacitance of 261 F g -1 and the highest specific activity factor of 1.93 s -1 g -1 of any composite nanodisk during the capacitive test and 4-nitrophenol reduction, respectively.
Guo, Wang-Huan; Liu, Teng-Jiao; Jiang, Peng; Zhang, Zhan-Jun
2015-01-01
A simple hard template method and hydrothermal process have been employed to fabricate a self-standing hierarchical porous MnO2/graphene film. Thus-constructed electrode materials for binder-free supercapacitors exhibit a high specific capacitance of 266.3 F g(-1) at the density of 0.2 A g(-1). Moreover, the two-electrode device demonstrates an excellent rate capability and cycling stability with capacitance retention of 85.1% after 2000 charge-discharge cycles at a current density of 1 A g(-1). The porous nanostructured design can effectively improve the specific surface areas and account for the shorter relaxation time for the electrodes, resulting in a high electrochemical performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Facile synthesis of Mesoporouscobalt Hexacyanoferrate Nanocubes for High-Performance Supercapacitors
2017-01-01
Mesoporous cobalt hexacyanoferrate nanocubes (meso–CoHCF) were prepared for the first time through a facile sacrificial template method. The CoHCF mesostructures possess a high specific surface area of 548.5 m2·g−1 and a large amount of mesopores, which enable fast mass transport of electrolyte and abundant energy storage sites. When evaluated as supercapacitor materials, the meso–CoHCF materials exhibit a high specific capacitance of 285 F·g−1, good rate capability and long cycle life with capacitance retention of 92.9% after 3000 cycles in Na2SO4 aqueous electrolyte. The excellent electrochemical properties demonstrate the rational preparation of mesoporous prussian blue and its analogues for energy storage applications. PMID:28825671
Ag/MnO₂ Nanorod as Electrode Material for High-Performance Electrochemical Supercapacitors.
Guo, Zengcai; Guan, Yuming; Dai, Chengxiang; Mu, Jingbo; Che, Hongwei; Wang, Guangshuo; Zhang, Xiaoliang; Zhang, Zhixiao; Zhang, Xiliang
2018-07-01
A one-dimensional hierarchical Ag nanoparticle (AgNP)/MnO2 nanorod (MND) nanocomposite was synthesized by combining a simple solvothermal method and a facile reduction approach in situ. Owing to its high electrical conductivity, the resulting AgNP/MND nanocomposite displayed a high specific capacitance of 314 F g-1 at a current density of 2 A g-1, which was much higher than that of pure MNDs (178 F g-1). Resistances of the electrolyte (Rs) and charge transportation (Rct) of the nanocomposite were much lower than that of pure MNDs. Moreover, the nanocomposite exhibited outstanding long-term cycling ability (9% loss of initial capacity after 1000 cycles). These results indicated that the nanocomposite could serve as a promising and useful electrode material for future energy-storage applications.
High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets
NASA Astrophysics Data System (ADS)
Wei, Ji-Shi; Chen, Jie; Ding, Hui; Zhang, Peng; Wang, Yong-Gang; Xiong, Huan-Ming
2017-10-01
A series of polymer dots/graphene sheets composites with high densities are prepared and tested for supercapacitors. Polymer dots (PDs) are synthesized by one-step method at room temperature. They can effectively increase surface areas of the composites (almost 10 times), and the functional groups from PDs produce high pseudocapacitance, so that the samples exhibit high specific capacitances (e. g., 364.2 F cm-3 at 1 A g-1) and high cycling stability (e. g., more than 95% of the initial capacity retention over 10 000 cycles at different current densities). The optimal sample is employed to fabricate a symmetric supercapacitor, which exhibits an energy density up to 8 Wh L-1 and a power density up to 11 800 W L-1, respectively.
Porous carbon derived from Sunflower as a host matrix for ultra-stable lithium-selenium battery.
Jia, Min; Niu, Yubin; Mao, Cuiping; Liu, Sangui; Zhang, Yan; Bao, Shu-Juan; Xu, Maowen
2017-03-15
A novel porous carbon material using the spongy tissue of sunflower as raw material is reported for the first time. The obtained porous carbon has an extremely high surface area of 2493.0m 2 g -1 , which is beneficial to focus on encapsulating selenium in it and have an inhibiting effect about diffusion of polyselenides over the charge/discharge processes used as the host matrix for Li-Se battery. The porous carbon/Se composite electrode with 63wt% selenium delivers a high specific capacitance of 319mAhg -1 of the initial capacity, and maintains 290mAhg -1 , representing an extremely high capacity retention of 90.9% after 840 cycles with the rate of 1C. Copyright © 2016. Published by Elsevier Inc.
Chen, Xia; Zhao, Bote; Cai, Yong; Tadé, Moses O; Shao, Zongping
2013-12-21
Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m(2) g(-1) was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m(2) g(-1)). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g(-1) at 1 A g(-1). V10 was also able to retain a specific capacitance of 380 F g(-1), even at a current density of 10 A g(-1). Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g(-1) at 5 A g(-1) after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications.