Sample records for initial state interactions

  1. GENERAL: Entanglement sudden death induced by the Dzialoshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Zeng, Hong-Fang; Shao, Bin; Yang, Lin-Guang; Li, Jian; Zou, Jian

    2009-08-01

    In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii-Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the initial state and DM coupling parameter on the evolution of entanglement are investigated. The necessary and sufficient condition for the appearance of the entanglement sudden death (ESD) phenomenon has been deduced. The result shows that the ESD always occurs if the initial state is sufficiently impure for the given coupling parameter or the DM interaction is sufficiently strong for the given initial state. Moreover, the critical values of them are calculated.

  2. Quantification of the memory effect of steady-state currents from interaction-induced transport in quantum systems

    NASA Astrophysics Data System (ADS)

    Lai, Chen-Yen; Chien, Chih-Chun

    2017-09-01

    Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified. While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime governed by a generalized Fick's law and memory effects lead to initial-state-dependent diffusion coefficients. We also identify conditions for enhancing memory effects and discuss possible experimental implications.

  3. Initiation of Insensitive High Explosives Using Multiple Wave Interactions

    NASA Astrophysics Data System (ADS)

    Francois, Elizabeth

    Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will focus on recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Further testing will be performed using cutback experiments to isolate the overdriven state, and quantify the duration of the phenomenon.

  4. Robustness of Greenbergerendash Horneendash Zeilinger and W states against Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Kapil K.; Pandey, S. N.

    2016-12-01

    In this article, the robustness of tripartite Greenberger-Horne-Zeilinger (GHZ) and W states is investigated against Dzyaloshinskii-Moriya (i.e. DM) interaction. We consider a closed system of three qubits and an environmental qubit. The environmental qubit interacts with any one of the three qubits through DM interaction. The tripartite system is initially prepared in GHZ and W states, respectively. The composite four qubits system evolve with unitary dynamics. We detach the environmental qubit by tracing out from four qubits, and profound impact of DM interaction is studied on the initial entanglement of the system. As a result, we find that the bipartite partitions of W states suffer from entanglement sudden death (i.e. ESD), while tripartite entanglement does not. On the other hand, bipartite partitions and tripartite entanglement in GHZ states do not feel any influence of DM interaction. So, we find that GHZ states have robust character than W states. In this work, we consider generalised GHZ and W states, and three π is used as an entanglement measure. This study can be useful in quantum information processing where unwanted DM interaction takes place.

  5. Importance of initial and final state effects for azimuthal correlations in p + Pb collisions

    DOE PAGES

    Greif, Moritz; Greiner, Carsten; Schenke, Bjorn; ...

    2017-11-27

    In this work, we investigate the relative importance of initial and final state effects on azimuthal correlations of gluons in low and high multiplicity p+Pb collisions. To achieve this, we couple Yang-Mills dynamics of pre-equilibrium gluon fields (IP-GLASMA) to a perturbative QCD based parton cascade for the final state evolution (BAMPS) on an event-by-event basis. We find that signatures of both the initial state correlations and final state interactions are seen in azimuthal correlation observables, such as v 2 {2PC} (p T), their strength depending on the event multiplicity and transverse momentum. Initial state correlations dominate v 2 {2PC} (pmore » T) in low multiplicity events for transverse momenta p T > 2 GeV. Lastly, while final state interactions are dominant in high multiplicity events, initial state correlations affect v 2 {2PC} (p T) for p T > 2 GeV as well as the pT integrated v 2 {2PC}.« less

  6. Importance of initial and final state effects for azimuthal correlations in p + Pb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greif, Moritz; Greiner, Carsten; Schenke, Bjorn

    In this work, we investigate the relative importance of initial and final state effects on azimuthal correlations of gluons in low and high multiplicity p+Pb collisions. To achieve this, we couple Yang-Mills dynamics of pre-equilibrium gluon fields (IP-GLASMA) to a perturbative QCD based parton cascade for the final state evolution (BAMPS) on an event-by-event basis. We find that signatures of both the initial state correlations and final state interactions are seen in azimuthal correlation observables, such as v 2 {2PC} (p T), their strength depending on the event multiplicity and transverse momentum. Initial state correlations dominate v 2 {2PC} (pmore » T) in low multiplicity events for transverse momenta p T > 2 GeV. Lastly, while final state interactions are dominant in high multiplicity events, initial state correlations affect v 2 {2PC} (p T) for p T > 2 GeV as well as the pT integrated v 2 {2PC}.« less

  7. Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2016-12-01

    We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.

  8. Initiation of Insensitive High Explosives Using Multiple Wave Interactions

    NASA Astrophysics Data System (ADS)

    Francois, Elizabeth; Burritt, Rosmary; Biss, Matt; Bowden, Patrick

    2017-06-01

    Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will build from recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Based on these results, further tests were conducted to isolate and measure the longevity and pressure of this phenomenon using cut-back tests. All results will be presented and discussed.

  9. Protecting a quantum state from environmental noise by an incompatible finite-time measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasil, Carlos Alexandre; Castro, L. A. de; Napolitano, R. d. J.

    We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analyticalmore » predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.« less

  10. Steady-state measurement-induced nonlocality in thermal reservoir

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Xie, Yu-Xia

    2018-06-01

    We examined measurement-induced nonlocality (MIN) of a central system for which every of the constituent qubit is embedded in its respective independent thermal reservoir. By introducing anisotropy to the Heisenberg XY interaction of the qubits, we showed that the strength of the MIN can be enhanced apparently. The anisotropy of the spin interaction can also be employed to generate MIN from the initial zero-MIN states. In the infinite-time limit, the steady-state MIN is independent of the initial states and is determined solely by the anisotropic parameter of the system and the decoherence factor of the thermal reservoir.

  11. Numerical analysis of the chimera states in the multilayered network model

    NASA Astrophysics Data System (ADS)

    Goremyko, Mikhail V.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Ghosh, Dibakar; Bera, Bidesh K.; Dana, Syamal K.; Hramov, Alexander E.

    2017-03-01

    We numerically study the interaction between the ensembles of the Hindmarsh-Rose (HR) neuron systems, arranged in the multilayer network model. We have shown that the fully identical layers, demonstrated individually different chimera due to the initial mismatch, come to the identical chimera state with the increase of inter-layer coupling. Within the multilayer model we also consider the case, when the one layer demonstrates chimera state, while another layer exhibits coherent or incoherent dynamics. It has been shown that the interactions chimera-coherent state and chimera-incoherent state leads to the both excitation of chimera as from the ensemble of fully coherent or incoherent oscillators, and suppression of initially stable chimera state

  12. Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.

    2010-06-01

    Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical world from the quantum substrate. The key to this emergence is the proliferation of redundant information throughout the environment where observers can then intercept it. We study this process for a purely decohering interaction when the environment, E, is in a nonideal (e.g., mixed) initial state. In the case of good decoherence, that is, after the pointer states have been unambiguously selected, the mutual information between the system, S, and an environment fragment, F, is given solely by F’s entropy increase. This demonstrates that the environment’s capacity for recording the state of S is directly related to its ability to increase its entropy. Environments that remain nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we show that, when decoherence is not complete, the deviation of the mutual information from F’s entropy change is quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment almost always acquires redundant information about the system but its rate of acquisition can be reduced.

  13. Polarization observables in few nucleon systems with CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachariou, Nicholas

    The CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall-B at the Thomas Jefferson National Accelerator Facility provides us with the experimental tools to study strongly-interacting matter and its dynamics in the transition from hadronic to partonic degrees of freedom in nuclear interactions. In this paper we discuss the progress made in understanding the relevant degrees of freedom using polarisation observables of deuteron photodisintegration in the few-GeV photon-energy region. We also address progress made in studying the interaction between Hyperons and Nucleons via polarisation observables, utilising high-statistics experiments that provided us with the large data samples needed to study final-state interactions,more » as well as perform detailed studies on initial-state effects. The polarisation observables presented here provide us with unique experimental tools to study the underlying dynamics of both initial and final-state interactions, as well as the information needed to disentangle signal from background contributions.« less

  14. Polarization observables in few nucleon systems with CLAS

    DOE PAGES

    Zachariou, Nicholas

    2017-12-01

    The CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall-B at the Thomas Jefferson National Accelerator Facility provides us with the experimental tools to study strongly-interacting matter and its dynamics in the transition from hadronic to partonic degrees of freedom in nuclear interactions. In this paper we discuss the progress made in understanding the relevant degrees of freedom using polarisation observables of deuteron photodisintegration in the few-GeV photon-energy region. We also address progress made in studying the interaction between Hyperons and Nucleons via polarisation observables, utilising high-statistics experiments that provided us with the large data samples needed to study final-state interactions,more » as well as perform detailed studies on initial-state effects. The polarisation observables presented here provide us with unique experimental tools to study the underlying dynamics of both initial and final-state interactions, as well as the information needed to disentangle signal from background contributions.« less

  15. Generational status and social factors predicting initiation of partnered sexual activity among Latino/a youth.

    PubMed

    Cabral, Patricia; Wallander, Jan L; Song, Anna V; Elliott, Marc N; Tortolero, Susan R; Reisner, Sari L; Schuster, Mark A

    2017-02-01

    Examine the longitudinal association of generational status (first = child and parent born outside the United States; second = child born in the United States, parent born outside the United States; third = child and parent born in the United States) and parent and peer social factors considered in 5th grade with subsequent oral, vaginal, and anal intercourse initiation by 7th and 10th grade among Latino/a youth. Using data from Latino/a participants (N = 1,790) in the Healthy Passages™ study, the authors measured generational status (first = 18.4%, second = 57.3%, third-generation = 24.3%) and parental (i.e., monitoring, involvement, nurturance) and peer (i.e., friendship quality, social interaction, peer norms) influences in 5th grade and oral, vaginal, and anal intercourse initiation by 7th and 10th (retention = 89%) grade. Among girls, parental monitoring, social interaction, friendship quality, and peer norms predicted sexual initiation. Among boys, parental involvement, social interaction, and peer norms predicted sexual initiation (ps < .05). When ≥1 friend was perceived to have initiated sexual intercourse, third-generation Latinas were more than twice as likely as first- and second-generation Latinas (ps < .05) to initiate vaginal intercourse by 10th grade and almost 5 times as likely as first-generation Latinas to initiate oral intercourse by 7th grade. Among Latina youth, generational status plays a role in social influences on vaginal and oral intercourse initiation. Moreover, Latinas and Latinos differ in which social influences predict sexual intercourse initiation. Preventive efforts for Latino/a youth may need to differ by gender and generational status. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Structural Characteristic of the Initial Unfolded State on Refolding Determines Catalytic Efficiency of the Folded Protein in Presence of Osmolytes

    PubMed Central

    Warepam, Marina; Sharma, Gurumayum Suraj; Dar, Tanveer Ali; Khan, Md. Khurshid Alam; Singh, Laishram Rajendrakumar

    2014-01-01

    Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes. PMID:25313668

  17. Collisional quenching at ultralow energies: controlling efficiency with internal state selection.

    PubMed

    Bovino, S; Bodo, E; Gianturco, F A

    2007-12-14

    Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

  18. Initial-state-independent equilibration at the breakdown of the eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Khodja, Abdellah; Schmidtke, Daniel; Gemmer, Jochen

    2016-04-01

    This work aims at understanding the interplay between the eigenstate thermalization hypothesis (ETH), initial state independent equilibration, and quantum chaos in systems that do not have a direct classical counterpart. It is based on numerical investigations of asymmetric Heisenberg spin ladders with varied interaction strengths between the legs, i.e., along the rungs. The relaxation of the energy difference between the legs is investigated. Two different parameters, both intended to quantify the degree of accordance with the ETH, are computed. Both indicate violation of the ETH at large interaction strengths but at different thresholds. Indeed, the energy difference is found not to relax independently of its initial value above some critical interaction strength, which coincides with one of the thresholds. At the same point the level statistics shift from Poisson-type to Wigner-type. Hence, the system may be considered to become integrable again in the strong interaction limit.

  19. Optimally Squeezed Spin States

    NASA Astrophysics Data System (ADS)

    Rojo, Alberto

    2004-03-01

    We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).

  20. A State Cyber Hub Operations Framework

    DTIC Science & Technology

    2016-06-01

    to communicate and sense or interact with their internal states or the external environment. Machine Learning: A type of artificial intelligence that... artificial intelligence , and computational linguistics concerned with the interactions between computers and human (natural) languages. Patching: A piece...formalizing a proof of concept for cyber initiatives and developed frameworks for operationalizing the data and intelligence produced across state

  1. Polymer translocation in solid-state nanopores: Dependence on hydrodynamic interactions and polymer configuration

    NASA Astrophysics Data System (ADS)

    Edmonds, Christopher M.; Hesketh, Peter J.; Nair, Sankar

    2013-11-01

    We present a Brownian dynamics investigation of 3-D Rouse and Zimm polymer translocation through solid-state nanopores. We obtain different scaling exponents α for both polymers using two initial configurations: minimum energy, and 'steady-state'. For forced translocation, Rouse polymers (no hydrodynamic interactions), shows a large dependence of α on initial configuration and voltage. Higher voltages result in crowding at the nanopore exit and reduced α. When the radius of gyration is in equilibrium at the beginning and end of translocation, α = 1 + υ where υ is the Flory exponent. For Zimm polymers (including hydrodynamic interactions), crowding is reduced and α = 2υ. Increased pore diameter does not affect α at moderate voltages that reduce diffusion effects. For unforced translocation using narrow pores, both polymers give α = 1 + 2υ. Due to increased polymer-pore interactions in the narrow pore, hydrodynamic drag effects are reduced, resulting in identical scaling.

  2. Quantum walks of two interacting particles on percolation graphs

    NASA Astrophysics Data System (ADS)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  3. Role of initial coherence on entanglement dynamics of two qubit X states

    NASA Astrophysics Data System (ADS)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  4. Quench dynamics of the interacting Bose gas in one dimension.

    PubMed

    Iyer, Deepak; Andrei, Natan

    2012-09-14

    We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trubilko, A. I., E-mail: trubilko.andrey@gmail.com

    Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less

  6. Dynamics and protection of tripartite quantum correlations in a thermal bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long

    2015-03-15

    We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successfulmore » protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.« less

  7. Polarized 3He target and Final State Interactions in SiDIS

    DOE PAGES

    Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; ...

    2017-01-03

    Jefferson Lab is starting a wide experimental program aimed at studying the neutron’s structure, with a great emphasis on the extraction of the parton transverse-momentum distributions (TMDs). To this end, Semi-inclusive deep-inelastic scattering (SiDIS) experiments on polarized $^3$He will be carried out, providing, together with proton and deuteron data, a sound flavor decomposition of the TMDs. Here, given the expected high statistical accuracy, it is crucial to disentangle nuclear and partonic degrees of freedom to get an accurate theoretical description of both initial and final states. In this contribution, a preliminary study of the Final State Interaction (FSI) in themore » standard SiDIS, where a pion (or a Kaon) is detected in the final state is presented, in view of constructing a realistic description of the nuclear initial and final states.« less

  8. Progress towards measurement of entanglement entropy dynamics in one-dimensional interacting systems in the presence of disorder

    NASA Astrophysics Data System (ADS)

    Lukin, Alexander; Tai, M. Eric; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Kaufman, Adam; Greiner, Markus

    2017-04-01

    Many-body localized states appear at odds with thermalization as they preserve the memory of their initial state. This behavior has drawn significant theoretical and experimental attention in recent years. Real space localization has been observed on various platforms and under a number of experimental conditions, both with and without interactions. However, the characteristic logarithmic growth of entanglement entropy, which distinguishes the many-body localized state from the non-interacting Anderson localized state, has only been studied in numerics and has yet to be investigated experimentally. We are working towards the phenomenon of localization in one dimensional, interacting Bose-Hubbard system using a quantum gas microscope. With site-resolved addressing and readout, our microscope provides full control over the studied system, in particular it allows us to add disorder into our system using a Fourier plane hologram. This gives us access to both local observables, such as the occupation of individual lattice sites, as well as the entanglement entropy. I will present our progress towards measuring the dependence of the entanglement entropy grows on the disorder strength and interactions in our system. National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, Air Force Office of Scientific Research MURI program, NSF Graduate Research Fellowship Program (MNR).

  9. Optimal control of the population dynamics of the ground vibrational state of a polyatomic molecule

    NASA Astrophysics Data System (ADS)

    de Clercq, Ludwig E.; Botha, Lourens R.; Rohwer, Erich G.; Uys, Hermann; Du Plessis, Anton

    2011-03-01

    Simulating coherent control with femtosecond pulses on a polyatomic molecule with anharmonic splitting was demonstrated. The simulation mimicked pulse shaping of a Spatial Light Modulator (SLM) and the interaction was described with the Von Neumann equation. A transform limited pulse with a fluence of 600 J/m2 produced 18% of the population in an arbitrarily chosen upper vibrational state, n =2. Phase only and amplitude only shaped pulse produced optimum values of 60% and 40% respectively, of the population in the vibrational state, n=2, after interaction with the ultra short pulse. The combination of phase and amplitude shaping produced the best results, 80% of the population was in the targeted vibrational state, n=2, after interaction. These simulations were carried out with all the population initially in the ground vibrational level. It was found that even at room temperatures (300 Kelvin) that the population in the selected level is comparable with the case where all population is initially in the ground vibrational state. With a 10% noise added to the amplitude and phase masks, selective excitation of the targeted vibrational state is still possible.

  10. Special features of high-speed interaction of supercavitating solids in water

    NASA Astrophysics Data System (ADS)

    Ishchenko, Aleksandr; Akinshin, Ruslan; Afanas'eva, Svetlana; Borisenkov, Igor; Burkin, Viktor; Diachkovskii, Aleksei; Korolkov, Leonid; Moiseev, Dmitrii; Khabibullin, Marat

    2016-01-01

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.

  11. Dynamics of interacting Dicke model in a coupled-cavity array

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  12. Sudden birth versus sudden death of entanglement for the extended Werner-like state in a dissipative environment

    NASA Astrophysics Data System (ADS)

    Shan, Chuan-Jia; Chen, Tao; Liu, Ji-Bing; Cheng, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong

    2010-06-01

    In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.

  13. Universal entanglement timescale for Rényi entropies

    NASA Astrophysics Data System (ADS)

    Cresswell, Jesse C.

    2018-02-01

    Recently it was shown that the growth of entanglement in an initially separable state, as measured by the purity of subsystems, can be characterized by a timescale that takes a universal form for any Hamiltonian. We show that the same timescale governs the growth of entanglement for all Rényi entropies. Since the family of Rényi entropies completely characterizes the entanglement of a pure bipartite state, our timescale is a universal feature of bipartite entanglement. The timescale depends only on the interaction Hamiltonian and the initial state.

  14. Origins of collectivity in small systems

    NASA Astrophysics Data System (ADS)

    Schenke, Björn

    2017-11-01

    We review recent developments in the theoretical description and understanding of multi-particle correlation measurements in collisions of small projectiles (p/d/3He) with heavy nuclei (Au, Pb) as well as proton+proton collisions. We focus on whether the physical processes responsible for the observed long range rapidity correlations and their azimuthal structure are the same in small systems as in heavy ion collisions. In the latter they are interpreted as generated by the initial spatial geometry being transformed into momentum correlations by strong final state interactions. However, explicit calculations show that also initial state momentum correlations are present and could contribute to observables in small systems. If strong final state interactions are present in small systems, recent developments show that results are sensitive to the shape of the proton and its fluctuations.

  15. Ab initio metadynamics simulations of oxygen/ligand interactions in organoaluminum clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnemrat, Sufian; Hooper, Joseph P., E-mail: jphooper@nps.edu

    2014-10-14

    Car-Parrinello molecular dynamics combined with a metadynamics algorithm is used to study the initial interaction of O{sub 2} with the low-valence organoaluminum clusters Al{sub 4}Cp{sub 4} (Cp=C{sub 5}H{sub 5}) and Al{sub 4}Cp{sub 4}{sup *} (Cp{sup *}=C{sub 5}[CH{sub 3}]{sub 5}). Prior to reaction with the aluminum core, simulations suggest that the oxygen undergoes a hindered crossing of the steric barrier presented by the outer ligand monolayer. A combination of two collective variables based on aluminum/oxygen distance and lateral oxygen displacement was found to produce distinct reactant, product, and transition states for this process. In the methylated cluster with Cp{sup *} ligands,more » a broad transition state of 45 kJ/mol was observed due to direct steric interactions with the ligand groups and considerable oxygen reorientation. In the non-methylated cluster the ligands distort away from the oxidizer, resulting in a barrier of roughly 34 kJ/mol with minimal O{sub 2} reorientation. A study of the oxygen/cluster system fixed in a triplet multiplicity suggests that the spin state does not affect the initial steric interaction with the ligands. The metadynamics approach appears to be a promising means of analyzing the initial steps of such oxidation reactions for ligand-protected clusters.« less

  16. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  17. Dynamics of Fermionic Impurity in One Dimension

    NASA Astrophysics Data System (ADS)

    Guan, Huijie; Andrei, Natan

    2014-03-01

    We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.

  18. Relaxation and thermalization in the one-dimensional Bose-Hubbard model: A case study for the interaction quantum quench from the atomic limit

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Pollet, Lode; Sorg, Stefan; Vidmar, Lev

    2015-03-01

    We study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site and is the ground state of a system with infinitely strong repulsive interactions at unit filling. The same interaction quench was realized in a recent experiment. Using exact diagonalization and the density-matrix renormalization-group method, we compute the time dependence of such observables as the multiple occupancy and the momentum distribution function. We discuss our numerical results in the framework of the eigenstate thermalization hypothesis and we observe that the microcanonical ensemble describes the time averages of many observables reasonably well for small and intermediate interaction strength. Moreover, the diagonal and the canonical ensembles are practically identical for our initial conditions already on the level of their respective energy distributions for small interaction strengths. Supported by the DFG through FOR 801 and the Alexander von Humboldt foundation.

  19. Method for generating maximally entangled states of multiple three-level atoms in cavity QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Guangsheng; Li Shushen; Feng Songlin

    2004-03-01

    We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

  20. Evaluating the performance of vehicular platoon control under different network topologies of initial states

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Li, Kezhi; Zheng, Taixiong; Hu, Xiangdong; Feng, Huizong; Li, Yinguo

    2016-05-01

    This study proposes a feedback-based platoon control protocol for connected autonomous vehicles (CAVs) under different network topologies of initial states. In particularly, algebraic graph theory is used to describe the network topology. Then, the leader-follower approach is used to model the interactions between CAVs. In addition, feedback-based protocol is designed to control the platoon considering the longitudinal and lateral gaps simultaneously as well as different network topologies. The stability and consensus of the vehicular platoon is analyzed using the Lyapunov technique. Effects of different network topologies of initial states on convergence time and robustness of platoon control are investigated. Results from numerical experiments demonstrate the effectiveness of the proposed protocol with respect to the position and velocity consensus in terms of the convergence time and robustness. Also, the findings of this study illustrate the convergence time of the control protocol is associated with the initial states, while the robustness is not affected by the initial states significantly.

  1. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE PAGES

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  2. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less

  3. Relations between the single-pass and double-pass transition probabilities in quantum systems with two and three states

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay V.

    2018-05-01

    In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.

  4. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers

    PubMed Central

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  5. Linear entropy and collapse–revival phenomenon for a general formalism N-type four-level atom interacting with a single-mode field

    NASA Astrophysics Data System (ADS)

    Eied, A. A.

    2018-05-01

    In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.

  6. Cultural Nuances, Assumptions, and the Butterfly Effect: Addressing the Unpredictability Caused by Unconscious Values Structures in Cross-Cultural Interactions

    ERIC Educational Resources Information Center

    Remer, Rory

    2007-01-01

    Cultural values, cross-cultural interaction patterns that are produced by dynamical (chaotic) systems, have a significant impact on interaction, particularly among and between people from different cultures. The butterfly effect, which states that small differences in initial conditions may have severe consequences for patterns in the long run,…

  7. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  8. Nonequilibrium Tricritical Point in a System with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Antoniazzi, Andrea; Fanelli, Duccio; Ruffo, Stefano; Yamaguchi, Yoshiyuki Y.

    2007-07-01

    Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell’s pioneering idea of “violent relaxation,” predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homogeneous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When varying the initial condition within a family of “water bags” with different initial magnetization and energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium tricritical point. Metastability is theoretically predicted and numerically checked around the first-order phase transition line.

  9. The Dynamics of a Five-level (Double Λ)-type Atom Interacting with Two-mode Field in a Cross Kerr-like Medium

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.

    2018-04-01

    In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.

  10. Skills for Children Entering Kindergarten

    ERIC Educational Resources Information Center

    Tindal, Gerald; Irvin, P. Shawn; Nese, Joseph F. T.; Slater, Steve

    2015-01-01

    Assessing kindergarten entry skills is complex, requiring attention to skill proficiency and interactive behaviors deemed critical for learning to occur. In our analysis of a state initiative, pilot data were collected on early literacy and numeracy and 2 aspects of important student interactions in the classroom (social and task behaviors) within…

  11. Using Interactive Whiteboards to Enhance Mathematics Teaching

    ERIC Educational Resources Information Center

    Kent, Peter

    2006-01-01

    Over the past three years, Richardson Primary School has transformed its entire educational program based around the widespread introduction of interactive whiteboards (IWBs) into the school. A review of this initiative states that "Richardson is the first school in the ACT, and probably Australia, where the total school community, the…

  12. Initial state-specific photodissociation dynamics of pyrrole via 1 π σ ∗/ S 0 conical intersection initiated with optimally controlled UV-laser pulses

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Kanakati, Arun Kumar; Singh, H.; Lan, Z.; Mahapatra, S.

    2017-09-01

    Optimal initiation of quantum dynamics of N-H photodissociation of pyrrole on the S0-1πσ∗(1A2) coupled electronic states by UV-laser pulses in an effort to guide the subsequent dynamics to dissociation limits is studied theoretically. Specifically, the task of designing optimal laser pulses that act on initial vibrational states of the system for an effective UV-photodissociation is considered by employing optimal control theory. The associated control mechanism(s) for the initial state dependent photodissociation dynamics of pyrrole in the presence of control pulses is examined and discussed in detail. The initial conditions determine implicitly the variation in the dissociation probabilities for the two channels, upon interaction with the field. The optimal pulse corresponds to the objective fixed as maximization of overall reactive flux subject to constraints of reasonable fluence and quantum dynamics. The simple optimal pulses obtained by the use of genetic algorithm based optimization are worth an experimental implementation given the experimental relevance of πσ∗-photochemistry in recent times.

  13. Opinion formation models in static and dynamic social networks

    NASA Astrophysics Data System (ADS)

    Singh, Pramesh

    We study models of opinion formation on static as well as dynamic networks where interaction among individuals is governed by widely accepted social theories. In particular, three models of competing opinions based on distinct interaction mechanisms are studied. A common feature in all of these models is the existence of a tipping point in terms of a model parameter beyond which a rapid consensus is reached. In the first model that we study on a static network, a node adopts a particular state (opinion) if a threshold fraction of its neighbors are already in that state. We introduce a few initiator nodes which are in state '1' in a population where every node is in state '0'. Thus, opinion '1' spreads through the population until no further influence is possible. Size of the spread is greatly affected by how these initiator nodes are selected. We find that there exists a critical fraction of initiators pc that is needed to trigger global cascades for a given threshold phi. We also study heuristic strategies for selecting a set of initiator nodes in order to maximize the cascade size. The structural properties of networks also play an important role in the spreading process. We study how the dynamics is affected by changing the clustering in a network. It turns out that local clustering is helpful in spreading. Next, we studied a model where the network is dynamic and interactions are homophilic. We find that homophily-driven rewiring impedes the reaching of consensus and in the absence of committed nodes (nodes that are not influenceable on their opinion), consensus time Tc diverges exponentially with network size N . As we introduce a fraction of committed nodes, beyond a critical value, the scaling of Tc becomes logarithmic in N. We also find that slight change in the interaction rule can produce strikingly different scaling behaviors of T c . However, introducing committed agents in the system drastically improves the scaling of the consensus time regardless of the interaction rules considered. Finally, a three-state (leftist, rightist, centrist) model that couples the dynamics of social balance with an external deradicalizing field is studied. The mean-field analysis shows that for a weak external field, the system exhibits a metastable fixed point and a saddle point in addition to a stable fixed point. However, if the strength of the external field is sufficiently large (larger than a critical value), there is only one (stable) fixed point which corresponds to an all-centrist consensus state (absorbing state). In the weak-field regime, the convergence time to the absorbing state is evaluated using the quasi-stationary(QS) distribution and is found to be in good agreement with the results obtained by numerical simulations.

  14. Interaction rules for symbol-oriented graphical user interfaces

    NASA Astrophysics Data System (ADS)

    Brinkschulte, Uwe; Vogelsang, Holger; Wolf, Luc

    1999-03-01

    This work describes a way of interactive manipulation of structured objects by interaction rules. Symbols are used as graphical representation of object states. State changes lead to different visual symbol instances. The manipulation of symbols using interactive devices lead to an automatic state change of the corresponding structured object without any intervention of the application. Therefore, interaction rules are introduced. These rules describe the way a symbol may be manipulated and the effects this manipulation has on the corresponding structured object. The rules are interpreted by the visualization and interaction service. For each symbol used, a set of interaction rules can be defined. In order to be the more general as possible, all the interactions on a symbol are defined as a triple, which specifies the preconditions of all the manipulations of this symbol, the manipulations themselves, and the postconditions of all the manipulations of this symbol. A manipulation is a quintuplet, which describes the possible initial events of the manipulation, the possible places of these events, the preconditions of this manipulation, the results of this manipulation, and the postconditions of this manipulation. Finally, reflection functions map the results of a manipulation to the new state of a structured object.

  15. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    NASA Astrophysics Data System (ADS)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  16. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian

    We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less

  18. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    NASA Astrophysics Data System (ADS)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  19. The Feynman-Vernon Influence Functional Approach in QED

    NASA Astrophysics Data System (ADS)

    Biryukov, Alexander; Shleenkov, Mark

    2016-10-01

    In the path integral approach we describe evolution of interacting electromagnetic and fermionic fields by the use of density matrix formalism. The equation for density matrix and transitions probability for fermionic field is obtained as average of electromagnetic field influence functional. We obtain a formula for electromagnetic field influence functional calculating for its various initial and final state. We derive electromagnetic field influence functional when its initial and final states are vacuum. We present Lagrangian for relativistic fermionic field under influence of electromagnetic field vacuum.

  20. A Sociocultural Reflection on Formative Assessment and Collaborative Challenges in the States of Jersey

    ERIC Educational Resources Information Center

    Crossouard, Barbara

    2009-01-01

    Drawing upon data arising from an evaluation carried out for the Jersey educational authority, this article discusses the interaction of two professional development initiatives, formative assessment and critical skills thinking, bringing the two initiatives together from the perspective of Cultural Historical Activity Theory (CHAT). This allows…

  1. FAST TRACK COMMUNICATION: The nonlinear fragmentation equation

    NASA Astrophysics Data System (ADS)

    Ernst, Matthieu H.; Pagonabarraga, Ignacio

    2007-04-01

    We study the kinetics of nonlinear irreversible fragmentation. Here, fragmentation is induced by interactions/collisions between pairs of particles and modelled by general classes of interaction kernels, for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the 'non-vanishing mass flux' criterion for the occurrence of shattering transitions. These properties enable us to determine the phase diagram for the occurrence of shattering states and of scaling states in the phase space of model parameters.

  2. Thermodynamical Interactions: Subtleties of Heat and Work Concepts

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Anacleto, Joaquim Alberto C.

    2008-01-01

    This paper focuses on the determination of the final equilibrium state when two ideal gases, isolated from the exterior and starting from preset initial conditions, interact with each other through a piston. Depending on the piston properties, different processes take place and also different sets of equilibrium conditions must be satisfied. Three…

  3. Interactive initialization of heat flux parameters for numerical models using satellite temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, T. N. (Principal Investigator)

    1982-01-01

    Progress made in HCMM research, including testing the interactive minicomputer system and preparation of a paper on the analysis of regional scale soil moisture patterns, is summarized. An exhibit on remote sensing including a videotape display of HCMM images, most of them of the State College area, was prepared.

  4. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.

    PubMed

    Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit

    2017-09-12

    Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.

  5. Spinal cord, hypothalamic, and air temperature: interaction with arousal states in the marmot.

    PubMed

    Miller, V M; South, F E

    1979-01-01

    Yellow-bellied marmots, Marmota flaviventris, prepared with U-shaped thermodes in the epidural space of the thoracic vertebral canal, a thermode in the preoptic hypothalamus, and cortical surface and hippocampal electrodes, were used to investigate the interaction of arousal states with temperature regulation. It was found that arousal state of the animal influences the thermoregulatory responses initiated in either the spinal cord or hypothalamus. Further, changes in ambient temperature affected both the gain and the threshold of these responses. The interaction of the hypothalamus and spinal cord was not an additive function, however the threshold for shivering of each could be altered by temperature manipulation of the other. Future studies in modeling of temperature regulation should consider the contributions of temperature receptors of the spinal cord and the arousal state of the animal during the stimulation period.

  6. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  7. Informational correlation between two parties of a quantum system: spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Zenchuk, A. I.

    2014-12-01

    We introduce the informational correlation between two interacting quantum subsystems and of a quantum system as the number of arbitrary parameters of a unitary transformation (locally performed on the subsystem ) which may be detected in the subsystem by the local measurements. This quantity indicates whether the state of the subsystem may be effected by means of the unitary transformation applied to the subsystem . Emphasize that in general. The informational correlations in systems with tensor product initial states are studied in more details. In particular, it is shown that the informational correlation may be changed by the local unitary transformations of the subsystem . However, there is some non-reducible part of which may not be decreased by any unitary transformation of the subsystem at a fixed time instant . Two examples of the informational correlations between two parties of the four-node spin-1/2 chain with mixed initial states are studied. The long chains with a single initially excited spin (the pure initial state) are considered as well.

  8. Representing the thermal state in time-dependent density functional theory

    DOE PAGES

    Modine, N. A.; Hatcher, R. M.

    2015-05-28

    Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state bymore » a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic expectations can be evaluated by averaging over certain many-body pure states, which we will call thermal states, and then constructing TDDFT states that approximate these thermal states. In Section III, we will present some numerical tests of the resulting theory, and in Section IV, we will summarize our main results and discuss some possible future directions for this work.« less

  9. Multiple parton interaction studies at DØ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.

    Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events inmore » which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.« less

  10. Multiple parton interaction studies at DØ

    DOE PAGES

    Lincoln, D.

    2016-04-01

    Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events inmore » which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.« less

  11. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  12. Connecting Online: Can Social Networking and Other Technology Support Doctoral Connectedness?

    ERIC Educational Resources Information Center

    Rockinson-Szapkiw, Amanda J.; Heuvelman-Hutchinson, Lorene; Spaulding, Lucinda

    2014-01-01

    The purpose of this study was to examine the influence of online doctoral students' interactions via peer initiated and university initiated technology on their sense of connectedness. The participants of this study were 132 doctoral candidates enrolled in an online Doctor of Education program located in the United States. Findings from this study…

  13. Stress Wave Interaction Between Two Adjacent Blast Holes

    NASA Astrophysics Data System (ADS)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  14. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    NASA Astrophysics Data System (ADS)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  15. An Investigation of Bioecological Influences Associated with First Use of Methamphetamine in a Rural State

    ERIC Educational Resources Information Center

    Bowen, Anne; Moring, John; Williams, Mark; Hopper, Glenna; Daniel, Candice

    2012-01-01

    Purpose: Methamphetamine (MA) addiction is a significant problem in rural areas of the United States. Yet, little theoretically driven formative research has been conducted on the interactions of factors influencing initiation. The study was guided by Bronfenbrenner's bioecological model. Methods: Eighty-three MA users participated in an…

  16. Young Children's Misconceptions of Simple Turtle Graphics Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Four- and 5-year-olds' understanding of basic turtle graphics commands was examined before and after a hands-on, interactive problem-solving experience. Children (n=32) saw display screen events consisting of an initial turtle state, a command transformation, and the resulting turtle state. They were asked to give the command executed in each…

  17. Particle-hole symmetry, many-body localization, and topological edge modes

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.

    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders. Supported by the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF4307 (ACP), the Quantum Materials Program at LBNL (RV), NSF Grant DMR-1455366 and UCOP Research Catalyst Award No. CA-15-327861 (SAP).

  18. Synchronization of multi-agent systems with metric-topological interactions.

    PubMed

    Wang, Lin; Chen, Guanrong

    2016-09-01

    A hybrid multi-agent systems model integrating the advantages of both metric interaction and topological interaction rules, called the metric-topological model, is developed. This model describes planar motions of mobile agents, where each agent can interact with all the agents within a circle of a constant radius, and can furthermore interact with some distant agents to reach a pre-assigned number of neighbors, if needed. Some sufficient conditions imposed only on system parameters and agent initial states are presented, which ensure achieving synchronization of the whole group of agents. It reveals the intrinsic relationships among the interaction range, the speed, the initial heading, and the density of the group. Moreover, robustness against variations of interaction range, density, and speed are investigated by comparing the motion patterns and performances of the hybrid metric-topological interaction model with the conventional metric-only and topological-only interaction models. Practically in all cases, the hybrid metric-topological interaction model has the best performance in the sense of achieving highest frequency of synchronization, fastest convergent rate, and smallest heading difference.

  19. Emergence of Alpha and Gamma Like Rhythms in a Large Scale Simulation of Interacting Neurons

    NASA Astrophysics Data System (ADS)

    Gaebler, Philipp; Miller, Bruce

    2007-10-01

    In the normal brain, at first glance the electrical activity appears very random. However, certain frequencies emerge during specific stages of sleep or between quiet wake states. This raises the question of whether current mathematical and computational models of interacting neurons can display similar behavior. A recent model developed by Eugene Izhikevich appears to succeed. However, early dynamical simulations used to detect these patterns were possibly compromised by an over-simplified initial condition and evolution algorithm. Utilizing the same model, but a more robust algorithm, here we present our initial results, showing that these patterns persist under a wide range of initial conditions. We employ spectral analysis of the firing patterns of a system of interacting excitatory and inhibitory neurons to demonstrate a bimodal spectrum centered on two frequencies in the range characteristic of alpha and gamma rhythms in the human brain.

  20. Phonon Effects on Charge Transport Through a Two State Molecule

    NASA Astrophysics Data System (ADS)

    Ulloa, Sergio E.; Yudiarsah, Efta

    2008-03-01

    We study the effect of local and non-local phonon on the transport properties of a molecule model described by two- electronic states. The local phonon interaction is tackled by means of a Lang Firsov transformation [1,2]. The interaction with non-local phonons (phonon-assisted hopping) is considered perturbatively up to the first nonzero order in the self energy. The presence of different kinds of electron-phonon interaction open new transmission channels. In addition to the polaron shift and replicas due to local phonons, non-local phonons cause the appearance of new satellite states around the initial states. In the weak coupling regime of non-local phonon and electrons, states are shifted an amount proportional to square of the interaction. However, in the strong coupling regime, the non-linear effects emerge and display more interesting features on transport properties. Additional features on transport properties due to new transmission channel are shown to appear at finite temperatures. [1] G. D. Mahan, Many-particle physics, 3rd ed. (Plenum Publishers, New York, 2000). [2] R. Gutierrez et al., Phys. Rev. B. 74, 235105 (2006).

  1. Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction

    NASA Astrophysics Data System (ADS)

    Kuzmak, A. R.

    2018-04-01

    The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.

  2. Multipoint entanglement in disordered systems

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim

    2017-02-01

    We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.

  3. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    NASA Astrophysics Data System (ADS)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  4. Influence of load interactions on crack growth as related to state of stress and crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1985-01-01

    Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.

  5. State orientation and memory load impair prospective memory performance in older compared to younger persons.

    PubMed

    Kaschel, Reiner; Kazén, Miguel; Kuhl, Julius

    2017-07-01

    A modified event-based paradigm of prospective memory was applied to investigate intention initiation in older and younger participants under high versus low memory load (subsequent episodic word recall vs. recognition). State versus action orientation, a personality dimension related to intention enactment, was also measured. State-oriented persons show a superiority effect for the storage of intentions in an explicit format but have a paradoxical deficit in their actual enactment. We predicted an interaction between aging, personality, and memory load, with longer intention-initiation latencies and higher omission rates for older state-oriented participants under high memory load. Results were consistent with predictions and are interpreted according to current personality and prospective memory models of aging.

  6. Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System.

    PubMed

    Bernier, Jean-Sébastien; Tan, Ryan; Bonnes, Lars; Guo, Chu; Poletti, Dario; Kollath, Corinna

    2018-01-12

    We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.

  7. Nonequilibrium localization and the interplay between disorder and interactions.

    PubMed

    Mascarenhas, Eduardo; Bragança, Helena; Drumond, R; Aguiar, M C O; França Santos, M

    2016-05-18

    We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.

  8. FAST TRACK COMMUNICATION Solving the ultradiscrete KdV equation

    NASA Astrophysics Data System (ADS)

    Willox, Ralph; Nakata, Yoichi; Satsuma, Junkichi; Ramani, Alfred; Grammaticos, Basile

    2010-12-01

    We show that a generalized cellular automaton, exhibiting solitonic interactions, can be explicitly solved by means of techniques first introduced in the context of the scattering problem for the KdV equation. We apply this method to calculate the phase-shifts caused by interactions between the solitonic and non-solitonic parts into which arbitrary initial states separate in time.

  9. Internal States and Behavioral Decision-Making: Toward an Integration of Emotion and Cognition.

    PubMed

    Kennedy, Ann; Asahina, Kenta; Hoopfer, Eric; Inagaki, Hidehiko; Jung, Yonil; Lee, Hyosang; Remedios, Ryan; Anderson, David J

    2014-01-01

    Social interactions, such as an aggressive encounter between two conspecific males or a mating encounter between a male and a female, typically progress from an initial appetitive or motivational phase, to a final consummatory phase. This progression involves both changes in the intensity of the animals' internal state of arousal or motivation and sequential changes in their behavior. How are these internal states, and their escalating intensity, encoded in the brain? Does this escalation drive the progression from the appetitive/motivational to the consummatory phase of a social interaction and, if so, how are appropriate behaviors chosen during this progression? Recent work on social behaviors in flies and mice suggests possible ways in which changes in internal state intensity during a social encounter may be encoded and coupled to appropriate behavioral decisions at appropriate phases of the interaction. These studies may have relevance to understanding how emotion states influence cognitive behavioral decisions at higher levels of brain function. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Random matrix theory for transition strengths: Applications and open questions

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2017-12-01

    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.

  11. Health Experiences, Concerns, and Interactions with Effectiveness of Secondary Agriculture Teachers in the United States.

    ERIC Educational Resources Information Center

    Lee, Jasper S.; Westrom, Lyle E.

    This publication summarizes the findings of several initiatives in studying the health aspects of secondary agriculture teachers in the United States. The study was specifically conducted to determine the health experiences of secondary agriculture teachers, the health problems that cause them to miss work, their health care concerns, personal…

  12. Thoughts on History, Tuning and the Scholarship of Teaching and Learning in the United States

    ERIC Educational Resources Information Center

    Pace, David

    2017-01-01

    The Tuning Movement and the scholarship of teaching and learning have each had a significant impact on teaching history in higher education in the United States. But the isolation of these initiatives from each other has lessened their potential impact. Interactions between the two might bring together the intellectual exploration of scholarship…

  13. Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs

    PubMed Central

    Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu

    2017-01-01

    In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs. PMID:28145467

  14. Negative Mood States or Dysfunctional Cognitions: Their Independent and Interactional Effects in Influencing Severity of Gambling Among Chinese Problem Gamblers in Hong Kong.

    PubMed

    Wong, Daniel Fu Keung; Zhuang, Xiao Yu; Jackson, Alun; Dowling, Nicki; Lo, Herman Hay Ming

    2017-09-04

    Gambling-related cognitions and negative psychological states have been proposed as major factors in the initiation and maintenance of problem gambling (PG). While there are a substantial number of studies supporting the role of cognitive dysfunctions in the initiation and maintenance of PG, very few empirical studies have explored the specific role of negative psychological states in influencing PG behaviours. In addition, very few studies have examined the interaction effects of cognitive dysfunctions and negative psychological states in exerting influence on PG behaviours. Therefore, the present study aims to examine the main and interaction effects of gambling-related cognitions and psychological states on the gambling severity among a group of problem gamblers in Hong Kong. A cross-sectional research design was adopted. A purposive sample of 177 problem gamblers who sought treatment from a social service organization in Hong Kong completed a battery of standardised questionnaires. While gambling-related cognitions were found to exert significant effects on gambling severity, negative psychological states (i.e. stress) significantly moderated the relationship between gambling cognitions and gambling severity. In essence, those participants who reported a higher level of stress had more stable and serious gambling problems than those who reported a lower level of stress irrespective of the level of gambling-related cognitions. The findings of the moderating role of negative emotions in the relationship between cognitive distortions and severity of gambling provide insight towards developing an integrated intervention model which includes both cognitive-behavioural and emotion regulation strategies in helping people with PG.

  15. Filamentary structures that self-organize due to adhesion

    NASA Astrophysics Data System (ADS)

    Sengab, A.; Picu, R. C.

    2018-03-01

    We study the self-organization of random collections of elastic filaments that interact adhesively. The evolution from an initial fully random quasi-two-dimensional state is controlled by filament elasticity, adhesion and interfilament friction, and excluded volume. Three outcomes are possible: the system may remain locked in the initial state, may organize into isolated fiber bundles, or may form a stable, connected network of bundles. The range of system parameters leading to each of these states is identified. The network of bundles is subisostatic and is stabilized by prestressed triangular features forming at bundle-to-bundle nodes, similar to the situation in foams. Interfiber friction promotes locking and expands the parametric range of nonevolving systems.

  16. Theoretical study of the initial non-radiative 1 Bu → 2 Ag transition in the fluorescence quenching of s-trans-butadiene: Electronic structure methods and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Komainda, A.; Lefrancois, D.; Dreuw, A.; Köppel, H.

    2017-01-01

    The photodynamics of s-trans-butadiene in the 6 eV excitation energy range is investigated by ab initio quantum dynamical methods, paying particular attention to the nonadiabatic coupling between the 1Bu and 2Ag singlet excited states. The existence of a conical intersection between their potential energy surfaces is confirmed. Key parameters of the system, like the energy gap between the interacting states and their coupling strength, are critically assessed. Up to eight nuclear degrees of freedom are considered in the dynamical treatment and are shown to lead to a more realistic description of the interactions. The gas phase (jet) UV absorption spectrum is well reproduced. The related ultrafast nonradiative population transfer from 1Bu to 2Ag is the initial processes leading to fluorescence quenching of trans-butadiene.

  17. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L., E-mail: mosera@fusion.gat.com; Hsu, Scott C., E-mail: scotthsu@lanl.gov

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional andmore » the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  18. Electromagnetic radiation as a probe of the initial state and of viscous dynamics in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2016-07-01

    The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).

  19. Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig

    2016-05-01

    We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.

  20. Network Physiology: How Organ Systems Dynamically Interact

    PubMed Central

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  1. Dynamical recovery of SU(2) symmetry in the mass-quenched Hubbard model

    NASA Astrophysics Data System (ADS)

    Du, Liang; Fiete, Gregory A.

    2018-02-01

    We use nonequilibrium dynamical mean-field theory with iterative perturbation theory as an impurity solver to study the recovery of SU(2) symmetry in real time following a hopping integral parameter quench from a mass-imbalanced to a mass-balanced single-band Hubbard model at half filling. A dynamical order parameter γ (t ) is defined to characterize the evolution of the system towards SU(2) symmetry. By comparing the momentum-dependent occupation from an equilibrium calculation [with the SU(2) symmetric Hamiltonian after the quench at an effective temperature] with the data from our nonequilibrium calculation, we conclude that the SU(2) symmetry recovered state is a thermalized state. Further evidence from the evolution of the density of states supports this conclusion. We find the order parameter in the weak Coulomb interaction regime undergoes an approximate exponential decay. We numerically investigate the interplay of the relevant parameters (initial temperature, Coulomb interaction strength, initial mass-imbalance ratio) and their combined effect on the thermalization behavior. Finally, we study evolution of the order parameter as the hopping parameter is changed with either a linear ramp or a pulse. Our results can be useful in strategies to engineer the relaxation behavior of interacting quantum many-particle systems.

  2. Effect of two-qutrit entanglement on quantum speed limit time of a bipartite V-type open system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behzadi, N., E-mail: n.behzadi@tabrizu.ac.ir; Ahansaz, B.; Ektesabi, A.

    In the present paper, quantum speed limit (QSL) time of a bipartite V-type three-level atomic system under the effect of two-qutrit entanglement is investigated. Each party interacts with own independent reservoir. By considering two local unitarily equivalent Werner states and the Horodecki PPT state, as initial states, the QSL time is evaluated for each of them in the respective entangled regions. It is counterintuitively observed that the effect of entanglement on the QSL time driven from each of the initial Werner states are completely different when the degree of non-Markovianity is considerable. In addition, it is interesting that the effectmore » of entanglement of the non-equivalent Horodecki state on the calculated QSL time displays an intermediate behavior relative to the cases obtained for the Werner states.« less

  3. Dynamics of Entropy in Quantum-like Model of Decision Making

    NASA Astrophysics Data System (ADS)

    Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu

    2011-03-01

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)

  4. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.

    PubMed

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-18

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  5. Topology of Collisionless Relaxation

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2013-04-01

    Using extensive molecular dynamics simulations we explore the fine-grained phase space structure of systems with long-range interactions. We find that if the initial phase space particle distribution has no holes, the final stationary distribution will also contain a compact simply connected region. The microscopic holes created by the filamentation of the initial distribution function are always restricted to the outer regions of the phase space. In general, for complex multilevel distributions it is very difficult to a priori predict the final stationary state without solving the full dynamical evolution. However, we show that, for multilevel initial distributions satisfying a generalized virial condition, it is possible to predict the particle distribution in the final stationary state using Casimir invariants of the Vlasov dynamics.

  6. Wavepacket dynamics in a family of nonlinear Fibonacci lattices

    NASA Astrophysics Data System (ADS)

    Pandey, Mohit; Campbell, David

    We examine the dynamics of a quantum particle in a variety of one-dimensional Fibonacci lattices (which are shifted from each other) in the presence of interaction. To describe the nonlinear interactions we employ the discrete nonlinear Schrödinger (DNLS) equation. Using a single-site localized state in the lattice as our initial condition, we evolve the wavepacket numerically using DNLS equation. We compute the root-mean-square width of the wavepacket as it evolves in time and show how the ``global location'' of initial wavepacket affects the dynamics. We compare and contrast our results with earlier studies of related but distinct models.

  7. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, M.; Ghosh, A.; Walton, T.

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions,more » the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.« less

  8. Floquet Engineering in Quantum Chains

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; de la Torre, A.; Ron, A.; Hsieh, D.; Millis, A. J.

    2018-03-01

    We consider a one-dimensional interacting spinless fermion model, which displays the well-known Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between the strength of the interaction U and the hopping J . We subject this system to a spatially uniform drive which is ramped up over a finite time interval and becomes time periodic in the long-time limit. We show that by using a density matrix renormalization group approach formulated for infinite system sizes, we can access the large-time limit even when the drive induces finite heating. When both the initial and long-time states are in the gapless (LL) phase, the final state has power-law correlations for all ramp speeds. However, when the initial and final state are gapped (CDW phase), we find a pseudothermal state with an effective temperature that depends on the ramp rate, both for the Magnus regime in which the drive frequency is very large compared to other scales in the system and in the opposite limit where the drive frequency is less than the gap. Remarkably, quantum defects (instantons) appear when the drive tunes the system through the quantum critical point, in a realization of the Kibble-Zurek mechanism.

  9. Relaxation dynamics of ultracold bosons in a double-well potential: Thermalization and prethermalization in a nearly integrable model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2015-09-01

    We numerically investigate the relaxation dynamics in an isolated quantum system of interacting bosons trapped in a double-well potential after an integrability breaking quench. Using the statistics of the spectrum, we identify the postquench Hamiltonian as nonchaotic and close to integrability over a wide range of interaction parameters. We demonstrate that the system exhibits thermalization in the context of the eigenstate thermalization hypothesis (ETH). We also explore the possibility of an initial state to delocalize with respect to the eigenstates of the postquench Hamiltonian even for energies away from the middle of the spectrum. We observe distinct regimes of equilibration process depending on the initial energy. For low energies, the system rapidly relaxes in a single step to a thermal state. As the energy increases towards the middle of the spectrum, the relaxation dynamics exhibits prethermalization and the lifetime of the metastable states grows. Time evolution of the occupation numbers and the von Neumann entropy in the mode-partitioned system underpins the analyses of the relaxation dynamics.

  10. Heat flux and quantum correlations in dissipative cascaded systems

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio

    2015-02-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

  11. Cavity-QED interactions of two correlated atoms

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, Saeideh; Safari, Hassan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-05-01

    We consider the resonant van der Waals (vdW) interaction between two correlated identical two-level atoms (at least one of which being excited) within the framework of macroscopic cavity quantum electrodynamics in linear, dispersing and absorbing media. The interaction of both atoms with the body-assisted electromagnetic field of the cavity is assumed to be strong. Our time-independent evaluation is based on an extended Jaynes–Cummings model. For a system prepared in a superposition of its dressed states, we derive the general form of the vdW forces, using a Lorentzian single-mode approximation. We demonstrate the applicability of this approach by considering the case of a planar cavity and showing the position dependence of Rabi oscillations. We also show that in the limiting case of weak coupling, our results reproduce the perturbative ones for the case where the field is initially in vacuum state while the atomic state is in a superposition of two correlated states sharing one excitation.

  12. Dynamical Quantum Phase Transitions in Spin Chains with Long-Range Interactions: Merging Different Concepts of Nonequilibrium Criticality

    NASA Astrophysics Data System (ADS)

    Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro

    2018-03-01

    We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.

  13. New Perspectives for Hadron Phenomenology:The Effects of Final-State Interactions and Near-Conformal Effective QCD Couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2003-10-24

    The effective QCD charge extracted from {tau} decay is remarkably constant at small momenta, implying the near-conformal behavior of hadronic interactions at small momentum transfer. The correspondence of large-N{sub c} supergravity theory in higher-dimensional anti-de Sitter spaces with gauge theory in physical space-time also has interesting implications for hadron phenomenology in the conformal limit, such as constituent counting rules for hard exclusive processes. The utility of light-front quantization and lightfront Fock wavefunctions for analyzing such phenomena and representing the dynamics of QCD bound states is reviewed. I also discuss the novel effects of initial- and final-state interactions in hard QCDmore » inclusive processes, including Bjorken-scaling single-spin asymmetries and the leading-twist diffractive and shadowing contributions to deep inelastic lepton-proton scattering.« less

  14. Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium

    NASA Astrophysics Data System (ADS)

    Dasanayaka, Sahan; Atai, Javid

    2011-08-01

    Interactions between quiescent solitons in Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity are systematically investigated. In a previous work two disjoint families of solitons were identified in this model. One family can be viewed as the generalization of the Bragg grating solitons in Kerr nonlinearity with dispersive reflectivity (Type 1). On the other hand, the quintic nonlinearity is dominant in the other family (Type 2). For weak to moderate dispersive reflectivity, two in-phase solitons will attract and collide. Possible collision outcomes include merger to form a quiescent soliton, formation of three solitons including a quiescent one, separation after passing through each other once, asymmetric separation after several quasielastic collisions, and soliton destruction. Type 2 solitons are always destroyed by collisions. Solitons develop sidelobes when dispersive reflectivity is strong. In this case, it is found that the outcome of the interactions is strongly dependent on the initial separation of solitons. Solitons with sidelobes will collide only if they are in-phase and their initial separation is below a certain critical value. For larger separations, both in-phase and π-out-of-phase Type 1 and Type 2 solitons may either repel each other or form a temporary bound state that subsequently splits into two separating solitons. Additionally, in the case of Type 2 solitons, for certain initial separations, the bound state disintegrates into a single moving soliton.

  15. Quantum critical environment assisted quantum magnetometer

    NASA Astrophysics Data System (ADS)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  16. General properties of quantum optical systems in a strong field limit

    NASA Technical Reports Server (NTRS)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  17. Observation of prethermalization in long-range interacting spin chains

    PubMed Central

    Neyenhuis, Brian; Zhang, Jiehang; Hess, Paul W.; Smith, Jacob; Lee, Aaron C.; Richerme, Phil; Gong, Zhe-Xuan; Gorshkov, Alexey V.; Monroe, Christopher

    2017-01-01

    Although statistical mechanics describes thermal equilibrium states, these states may or may not emerge dynamically for a subsystem of an isolated quantum many-body system. For instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale, and instead relax to quasi-stationary prethermal states that can be described by statistical mechanics, when approximately conserved quantities are included in a generalized Gibbs ensemble (GGE). We experimentally study the relaxation dynamics of a chain of up to 22 spins evolving under a long-range transverse-field Ising Hamiltonian following a sudden quench. For sufficiently long-range interactions, the system relaxes to a new type of prethermal state that retains a strong memory of the initial conditions. However, the prethermal state in this case cannot be described by a standard GGE; it rather arises from an emergent double-well potential felt by the spin excitations. This result shows that prethermalization occurs in a broader context than previously thought, and reveals new challenges for a generic understanding of the thermalization of quantum systems, particularly in the presence of long-range interactions. PMID:28875166

  18. Spatial Imaging of Strongly Interacting Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Thaicharoen, Nithiwadee

    The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction coefficients. The final experiment demonstrates the ability to enhance or suppress the degree of spatial correlation in a system of Rydberg excitations, using a rotary-echo excitation process in concert with particular excitation laser detunings. The work in this thesis demonstrates an ability to control long-range interactions between Rydberg atoms, which paves the way towards preparing and studying increasingly complex many-body systems.

  19. Sequential Transition Patterns of Preschoolers' Social Interactions during Child-Initiated Play: Is Parallel-Aware Play a Bidirectional Bridge to Other Play States?

    ERIC Educational Resources Information Center

    Robinson, Clyde C.; Anderson, Genan T.; Porter, Christin L.; Hart, Craig, H.; Wouden-Miller, Melissa

    2003-01-01

    Explored the simultaneous sequential transition patterns of preschoolers' social play within classroom settings. Found that the proportion of social-play states did not vary during play episodes even when accounting for type of activity center, gender, and SES. Found a reciprocal relationship between parallel-aware and other social-play states…

  20. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  1. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic ICWs. Initial Results: Waves and Precipitation Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.

  2. Adiabatic two-qubit state preparation in a superconducting qubit system

    NASA Astrophysics Data System (ADS)

    Filipp, Stefan; Ganzhorn, Marc; Egger, Daniel; Fuhrer, Andreas; Moll, Nikolaj; Mueller, Peter; Roth, Marco; Schmidt, Sebastian

    The adiabatic transport of a quantum system from an initial eigenstate to its final state while remaining in the instantaneous eigenstate of the driving Hamiltonian can be used for robust state preparation. With control over both qubit frequencies and qubit-qubit couplings this method can be used to drive the system from initially trivial eigenstates of the uncoupled qubits to complex entangled multi-qubit states. In the context of quantum simulation, the final state may encode a non-trivial ground-state of a complex molecule or, in the context of adiabatic quantum computing, the solution to an optimization problem. Here, we present experimental results on a system comprising fixed-frequency superconducting transmon qubits and a tunable coupler to adjust the qubit-qubit coupling via parametric frequency modulation. We realize different types of interaction by adjusting the frequency of the modulation. A slow variation of drive amplitude and phase leads to an adiabatic steering of the system to its final state showing entanglement between the qubits.

  3. Evolution of the entanglement of the N00N-type of states in a coupled two cavity system via an adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Sreekumari, G.; Yogesh, V.

    2018-06-01

    We study a system of two cavities each encapsulating a qubit and an oscillator degrees of freedom. An ultrastrong interaction between the qubit and the oscillator is assumed, and the photons are allowed to hop between the cavities. A partition of the time scale between the fast-moving oscillator and the slow moving qubit allows us to set up an adiabatic approximation procedure where we employ the delocalized degrees of freedom to diagonalize the Hamiltonian. The time evolution of the N00N-type initial states now furnishes, for instance, the reduced density matrix of a bipartite system of two qubits. For a macroscopic size of the N00N component of the initial state the sudden death of the entanglement between the qubits and its continued null value are prominently manifest as the information percolates to the qubits after long intervals. For the low photon numbers of the initial states the dynamics produces almost maximally entangled two-qubit states, which by utilizing the Hilbert–Schmidt distance between the density matrices, are observed to be nearly pure generalized Bell states.

  4. Many-body self-localization in a translation-invariant Hamiltonian

    NASA Astrophysics Data System (ADS)

    Mondaini, Rubem; Cai, Zi

    2017-07-01

    We study the statistical and dynamical aspects of a translation-invariant Hamiltonian, without quench disorder, as an example of the manifestation of the phenomenon of many-body localization. This is characterized by the breakdown of thermalization and by information preservation of initial preparations at long times. To realize this, we use quasiperiodic long-range interactions, which are now achievable in high-finesse cavity experiments, to find evidence suggestive of a divergent time-scale in which charge inhomogeneities in the initial state survive asymptotically. This is reminiscent of a glassy behavior, which appears in the ground state of this system, being also present at infinite temperatures.

  5. Thermodynamic output of single-atom quantum optical amplifiers and their phase-space fingerprint

    NASA Astrophysics Data System (ADS)

    Perl, Y.; Band, Y. B.; Boukobza, E.

    2017-05-01

    We analyze a resonant single-atom two-photon quantum optical amplifier both dynamically and thermodynamically. A detailed thermodynamic analysis shows that the nonlinear amplifier is thermodynamically equivalent to the linear amplifier. However, by calculating the Wigner quasiprobability distribution for various initial field states, we show that unique quantum features in optical phase space, absent in the linear amplifier, are retained for extended times, despite the fact that dissipation tends to wash out dynamical features observed at early evolution times. These features are related to the discrete nature of the two-photon matter-field interaction and fingerprint the initial field state at thermodynamic times.

  6. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    NASA Astrophysics Data System (ADS)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  7. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  8. Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility

    NASA Astrophysics Data System (ADS)

    Los, Victor F.

    2017-08-01

    A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.

  9. The DnaA Tale

    PubMed Central

    Hansen, Flemming G.; Atlung, Tove

    2018-01-01

    More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model. PMID:29541066

  10. Effects of ΛΛ ‑ ΞN mixing in the decay of {}_{{\\rm{\\Lambda }}{\\rm{\\Lambda }}}{}^{6}{\\rm{H}}{\\rm{e}}

    NASA Astrophysics Data System (ADS)

    Maneu, J.; Parreño, A.; Ramos, A.

    2018-05-01

    A one-meson exchange model including the ground state of the pseudoscalar octet is used to describe the weak two-body interactions responsible for the decay of {}{{Λ }{{Λ }}}{}6{{H}}{{e}}. Strong interaction effects are taken into account by a microscopic study based on the solution of G-matrix and T-matrix equations for the initial and final interacting pairs respectively. Results for the decay induced by {{Λ }}{{Λ }}\\to {{Λ }}N({{Σ }}N) transitions are given.

  11. Special features of high-speed interaction of supercavitating solids in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, Aleksandr, E-mail: ichan@niipmm.tsu.ru; Afanas’eva, Svetlana, E-mail: s.a.afanasyeva@mail.ru; Burkin, Viktor, E-mail: v.v.burkin@mail.ru

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initialmore » flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.« less

  12. Equilibration in one-dimensional quantum hydrodynamic systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Spyros

    2017-10-01

    We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems. Dedicated to John Cardy on the occasion of his 70th birthday.

  13. DNA hybridization kinetics: zippering, internal displacement and sequence dependence.

    PubMed

    Ouldridge, Thomas E; Sulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2013-10-01

    Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.

  14. Real-time and post-plasma studies of influence of low levels of tungsten on carbon erosion and surface evolution behaviour in D2 plasma

    NASA Astrophysics Data System (ADS)

    Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.

    2010-02-01

    A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.

  15. Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    NASA Astrophysics Data System (ADS)

    Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.

    2018-02-01

    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.

  16. The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Benatov, Latchezar Latchezarov

    This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure initial states do not thermalize well in our system, indicating that mixed state thermalization stems from the thermal nature of the initial bath state. Under the influence of a thermal TLS bath, oscillator Fock states decay in an approximately exponential manner, but there is also a concave-down trend at very early times, possibly indicative of Gaussian decay. In the case of initial Fock state superpositions, the diagonal density matrix element behaves very similarly to single initial Fock states, while the off-diagonal matrix element decays sinusoidally with an exponentially decreasing amplitude. The off-diagonal decay time is much smaller then the diagonal one, indicating that superposition states decohere much faster than they decay. Both decay times decrease with increasing Fock state number, but more slowly than the 1/n dependence seen in the presence of an external ohmic bath.

  17. Universal, developmental, and variable aspects of young children's play: a cross-cultural comparison of pretending at home.

    PubMed

    Haight, W L; Wang, X L; Fung, H H; Williams, K; Mintz, J

    1999-01-01

    Using longitudinal data from five Irish American families in the United States and nine Chinese families in Taiwan, in conjunction with an emerging body of evidence in the cultural psychology literature, we propose universal, culturally variable, and developmental dimensions of young children's pretend play. Possible universal dimensions include the use of objects, and the predominantly social nature of pretend play. Developmental dimensions include increases in the proportion of social pretend play initiated by the child, the proportion of partner initiations elaborated upon by the child, and caregivers' use of pretend play initiations to serve other, nonplay social functions. Culturally variable dimensions include the centrality of objects, the participation of specific play partners, the extent of child initiations of social pretend play with caregivers, the various functions of social pretend play in interaction, and specific themes. These findings raise the theoretical issue of how universal and variable dimensions of pretend play interact in specific communities to create distinctive development pathways.

  18. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    NASA Astrophysics Data System (ADS)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  19. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE PAGES

    Moser, Auna L.; Hsu, Scott C.

    2015-05-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  20. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L.; Hsu, Scott C.

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  1. Capturing local structure modulations of photoexcited BiVO4 by ultrafast transient XAFS.

    PubMed

    Uemura, Yohei; Kido, Daiki; Koide, Akihiro; Wakisaka, Yuki; Niwa, Yasuhiro; Nozawa, Shunsuke; Ichiyanagi, Kohei; Fukaya, Ryo; Adachi, Shin-Ichi; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yabashi, Makina; Hatada, Keisuke; Iwase, Akihide; Kudo, Akihiko; Takakusagi, Satoru; Yokoyama, Toshihiko; Asakura, Kiyotaka

    2017-06-29

    Ultrafast excitation of photocatalytically active BiVO 4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.

  2. Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise

    NASA Astrophysics Data System (ADS)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius

    2017-02-01

    We address the dynamics of quantum correlations, including entanglement and quantum discord of a three-qubit system interacting with a classical pure dephasing random telegraph noise (RTN) in three different physical environmental situations (independent, mixed and common environments). Two initial entangled states of the system are examined, namely the Greenberger-Horne-Zeilinger (GHZ)- and Werner (W)-type states. The classical noise is introduced as a stochastic process affecting the energy splitting of the qubits. With the help of suitable measures of tripartite entanglement (entanglement witnesses and lower bound of concurrence) and quantum discord (global quantum discord and quantum dissension), we show that the evolution of quantum correlations is not only affected by the type of the system-environment interaction but also by the input configuration of the qubits and the memory properties of the environmental noise. Indeed, depending on the memory properties of the environmental noise and the initial state considered, we find that independent, common and mixed environments can play opposite roles in preserving quantum correlations, and that the sudden death and revival phenomena or the survival of quantum correlations may occur. On the other hand, we also show that the W-type state has strong dynamics under this noise than the GHZ-type ones.

  3. Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea; Collura, Mario; De Nardis, Jacopo

    2017-07-01

    We construct exact steady states of unitary nonequilibrium time evolution in the gapless XXZ spin-1/2 chain where integrability preserves ballistic spin transport at long times. We characterize the quasilocal conserved quantities responsible for this feature and introduce a computationally effective way to evaluate their expectation values on generic matrix product initial states. We employ this approach to reproduce the long-time limit of local observables in all quantum quenches which explicitly break particle-hole or time-reversal symmetry. We focus on a class of initial states supporting persistent spin currents and our predictions remarkably agree with numerical simulations at long times. Furthermore, we propose a protocol for this model where interactions, even when antiferromagnetic, are responsible for the unbounded growth of a macroscopic magnetic domain.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbrych, Jacek W.; Feiguin, Adrian E.; Dagotto, Elbio R.

    Here, we present a time-dependent density-matrix renormalization group investigation of the quantum distillation process within the Fermi-Hubbard model on a quasi-one-dimensional ladder geometry. The term distillation refers to the dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core region compared to the initial state. As a main result, we show that this phenomenon is not limitedmore » to chains that were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as density oscillations and self-trapping of defects that lead to a less efficient distillation process. An investigation of the time evolution starting from product states provides an explanation for this behavior. Initial product states are also considered since in optical lattice experiments, such states are often used as the initial setup. We propose configurations that lead to a fast and efficient quantum distillation.« less

  5. G-Consistent Subsets and Reduced Dynamical Quantum Maps

    NASA Astrophysics Data System (ADS)

    Ceballos, Russell R.

    A quantum system which evolves in time while interacting with an external environ- ment is said to be an open quantum system (OQS), and the influence of the environment on the unperturbed unitary evolution of the system generally leads to non-unitary dynamics. This kind of open system dynamical evolution has been typically modeled by a Standard Prescription (SP) which assumes that the state of the OQS is initially uncorrelated with the environment state. It is here shown that when a minimal set of physically motivated assumptions are adopted, not only does there exist constraints on the reduced dynamics of an OQS such that this SP does not always accurately describe the possible initial cor- relations existing between the OQS and environment, but such initial correlations, and even entanglement, can be witnessed when observing a particular class of reduced state transformations termed purity extractions are observed. Furthermore, as part of a more fundamental investigation to better understand the minimal set of assumptions required to formulate well defined reduced dynamical quantum maps, it is demonstrated that there exists a one-to-one correspondence between the set of initial reduced states and the set of admissible initial system-environment composite states when G-consistency is enforced. Given the discussions surrounding the requirement of complete positivity and the reliance on the SP, the results presented here may well be found valuable for determining the ba- sic properties of reduced dynamical maps, and when restrictions on the OQS dynamics naturally emerge.

  6. Symplectic evolution of Wigner functions in Markovian open systems.

    PubMed

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  7. Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization

    NASA Astrophysics Data System (ADS)

    Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.

    2016-10-01

    Despite being ubiquitous, out-of-equilibrium quantum systems are much less understood than systems at equilibrium. Progress in the field has benefited from a symbiotic relationship between theoretical studies and new experiments on coherent dynamics. The present work strengthens this connection by providing a general picture of the relaxation process of isolated lattice many-body quantum systems that are routinely studied in experiments with cold atoms, ions traps, and nuclear magnetic resonance. We show numerically and analytically that the long-time decay of the probability for finding the system in its initial state necessarily shows a power-law behavior ∝t-γ . This happens independently of the details of the system, such as integrability, level repulsion, and the presence or absence of disorder. Information about the spectrum, the structure of the initial state, and the number of particles that interact simultaneously is contained in the value of γ . From it, we can anticipate whether the initial state will or will not thermalize.

  8. From rotating atomic rings to quantum Hall states.

    PubMed

    Roncaglia, M; Rizzi, M; Dalibard, J

    2011-01-01

    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.

  9. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com; Faculty of Science, Assiut University, Assiut; Joshi, A., E-mail: mcbamji@gmail.com

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlationsmore » of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.« less

  10. Understanding the Interaction of Pluronics L61 and L64 with a DOPC Lipid Bilayer: An Atomistic Molecular Dynamics Study

    DOE PAGES

    Ileri Ercan, Nazar; Stroeve, Pieter; Tringe, Joseph W.; ...

    2016-09-13

    In this paper, we investigate the interactions of Pluronics L61 and L64 with a dioleylphosphatidylcholine (DOPC) lipid bilayer by atomistic molecular dynamics simulations using the all-atom OPLS force field. Our results show that the initial configuration of the polymer with respect to the bilayer determines its final conformation within the bilayer. When the polymer is initially placed at the lipid/water interface, we observe partial insertion of the polymer in a U-shaped conformation. On the other hand, when the polymer is centered at the bilayer, it stabilizes to a transmembrane state, which facilitates water transport across the bilayer. We show thatmore » membrane thickness decreases while its fluidity increases in the presence of Pluronics. When the polymer concentration inside the bilayer is high, pore formation is initiated with L64. Finally, our results show good agreement with existing experimental data and reveal that the hydrophilic/lipophilic balance of the polymer plays a critical role in the interaction mechanisms as well as in the dynamics of Pluronics with and within the bilayer.« less

  11. Path Dependency and the Politics of Socialized Health Care.

    PubMed

    Brady, David; Marquardt, Susanne; Gauchat, Gordon; Reynolds, Megan M

    2016-06-01

    Rich democracies exhibit vast cross-national and historical variation in the socialization of health care. Yet, cross-national analyses remain relatively rare in the health policy literature, and health care remains relatively neglected in the welfare state literature. We analyze pooled time series models of the public share of total health spending for eighteen rich democracies from 1960 to 2010. Building on path dependency theory, we present a strategy for modeling the relationship between the initial 1960 public share and the current public share. We also examine two contrasting accounts for how the 1960 public share interacts with conventional welfare state predictors: the self-reinforcing hypothesis expecting positive feedbacks and the counteracting hypothesis expecting negative feedbacks. We demonstrate that most of the variation from 1960 to 2010 in the public share can be explained by a country's initial value in 1960. This 1960 value has a large significant effect in models of 1961-2010, and including the 1960 value alters the coefficients of conventional welfare state predictors. To investigate the mechanism whereby prior social policy influences public opinion about current social policy, we use the 2006 International Social Survey Programme (ISSP). This analysis confirms that the 1960 values predict individual preferences for government spending on health. Returning to the pooled time series, we demonstrate that the 1960 values interact significantly with several conventional welfare state predictors. Some interactions support the self-reinforcing hypothesis, while others support the counteracting hypothesis. Ultimately, this study illustrates how historical legacies of social policy exert substantial influence on the subsequent politics of social policy. Copyright © 2016 by Duke University Press.

  12. What Happens When Parents and Children Go Grocery Shopping? An Observational Study of Latino Dyads in Southern California, USA.

    PubMed

    Calderon, Joanna; Ayala, Guadalupe X; Elder, John P; Belch, George E; Castro, Iana A; Weibel, Nadir; Pickrel, Julie

    2017-02-01

    The objective of this study was to observe parent-child interactions in tiendas, limited assortment food stores catering to Latinos in the United States, and to examine the extent to which child involvement influenced these interactions and their purchase outcomes. Two confederates, one posing as a tienda employee and one posing as a customer, observed the entire shopping trip of 100 Latino parent-child (mean age = 8 years) dyads and coded the following: number and type of parent- and child-initiated request interactions, types of purchase influence attempts used by children and how parents responded, and whether the product was purchased. Level of child involvement was examined as a potential influencing factor on purchasing. The observations were relatively short (mean duration of 10 minutes), reflecting the "quick trip" nature of the observed shopping trips. From the 100 parent-child dyads, 144 request interactions were observed, and among dyads with at least 1 request interaction during the shopping trip, the average number of request interactions per dyad was 2. Children initiated most of the request interactions by asking for a product or simply placing it in the basket; parents initiated 24% of the request interactions. Child involvement in shopping and checkout were associated with spending and purchase outcomes. These results indicate that children and parents influence each other during grocery shopping, and children who are more involved have greater influence over purchases. Furthermore, this study identified a number of targets for future family/parent and consumer food environment interventions.

  13. What Happens When Parents and Children Go Grocery Shopping? An Observational Study of Latino Dyads in Southern California, USA

    PubMed Central

    Calderon, Joanna; Ayala, Guadalupe X.; Elder, John P.; Belch, George E.; Castro, Iana A.; Weibel, Nadir; Pickrel, Julie

    2017-01-01

    The objective of this study was to observe parent–child interactions in tiendas, limited assortment food stores catering to Latinos in the United States, and to examine the extent to which child involvement influenced these interactions and their purchase outcomes. Two confederates, one posing as a tienda employee and one posing as a customer, observed the entire shopping trip of 100 Latino parent–child (mean age = 8 years) dyads and coded the following: number and type of parent- and child-initiated request interactions, types of purchase influence attempts used by children and how parents responded, and whether the product was purchased. Level of child involvement was examined as a potential influencing factor on purchasing. The observations were relatively short (mean duration of 10 minutes), reflecting the “quick trip” nature of the observed shopping trips. From the 100 parent–child dyads, 144 request interactions were observed, and among dyads with at least 1 request interaction during the shopping trip, the average number of request interactions per dyad was 2. Children initiated most of the request interactions by asking for a product or simply placing it in the basket; parents initiated 24% of the request interactions. Child involvement in shopping and checkout were associated with spending and purchase outcomes. These results indicate that children and parents influence each other during grocery shopping, and children who are more involved have greater influence over purchases. Furthermore, this study identified a number of targets for future family/parent and consumer food environment interventions. PMID:27162238

  14. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan W. C.; Wegsman, Shalma

    2018-05-01

    We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.

  15. Scattering of the double sine-Gordon kinks

    NASA Astrophysics Data System (ADS)

    Gani, Vakhid A.; Marjaneh, Aliakbar Moradi; Askari, Alidad; Belendryasova, Ekaterina; Saadatmand, Danial

    2018-04-01

    We study the scattering of kink and antikink of the double sine-Gordon model. There is a critical value of the initial velocity v_{{cr}} of the colliding kinks, which separates different regimes of the collision. At v_{in}>v_{cr} we observe kinks reflection, while at v_{in}

  16. Illinois Shifting Gears Policy Evaluation

    ERIC Educational Resources Information Center

    Weitzel, Peter C.

    2009-01-01

    Illinois Shifting Gears is a multilevel initiative that has simultaneously created bridge programs in the field and altered state policy to facilitate the creation of more programs in the future. These efforts have informed each other, giving policymakers the opportunity to interact with practitioners, troubleshoot bridge programs, and make…

  17. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    PubMed

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Folding and stability of helical bundle proteins from coarse-grained models.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.

  19. Dynamics of superconducting qubits in open transmission lines

    NASA Astrophysics Data System (ADS)

    Juan Jose, Garcia-Ripoll; Zueco, David; Porras, Diego; Peropadre, Borja

    2014-03-01

    The time and space resolved dynamics of a superconducting qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime (USC). A nonperturbative study based on Matrix Product States (MPS) shows the following results: (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions, is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalisation. These results set the foundations for future studies and engineering of the interactions between superconducting qubits and propagating photons, as well as the design of photon-photon interactions based on artificial materials built from these qubits.

  20. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study.

    PubMed

    ElSawy, Karim M; Verma, Chandra S; Joseph, Thomas L; Lane, David P; Twarock, Reidun; Caves, Leo S D

    2013-02-01

    The interaction of p53 with its regulators MDM2 and MDMX plays a major role in regulating the cell cycle. Inhibition of this interaction has become an important therapeutic strategy in oncology. Although MDM2 and MDMX share a very high degree of sequence/structural similarity, the small-molecule inhibitor nutlin appears to be an efficient inhibitor only of the p53-MDM2 interaction. Here, we investigate the mechanism of interaction of nutlin with these two proteins and contrast it with that of p53 using Brownian dynamics simulations. In contrast to earlier attempts to examine the bound states of the partners, here we locate initial reaction events in these interactions by identifying the regions of space around MDM2/MDMX, where p53/nutlin experience associative encounters with prolonged residence times relative to that in bulk solution. We find that the initial interaction of p53 with MDM2 is long-lived relative to nutlin, but, unlike nutlin, it takes place at the N- and C termini of the MDM2 protein, away from the binding site, suggestive of an allosteric mechanism of action. In contrast, nutlin initially interacts with MDM2 directly at the clefts of the binding site. The interaction of nutlin with MDMX, however, is very short-lived compared with MDM2 and does not show such direct initial interactions with the binding site. Comparison of the topology of the electrostatic potentials of MDM2 and MDMX and the locations of the initial encounters with p53/nutlin in tandem with structure-based sequence alignment revealed that the origin of the diminished activity of nutlin toward MDMX relative to MDM2 may stem partly from the differing topologies of the electrostatic potentials of the two proteins. Glu25 and Lys51 residues underpin these topological differences and appear to collectively play a key role in channelling nutlin directly toward the binding site on the MDM2 surface and are absent in MDMX. The results, therefore, provide new insight into the mechanism of p53/nutlin interactions with MDM2 and MDMX and could potentially have a broader impact on anticancer drug optimization strategies.

  1. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  2. Many-body Quantum Control of a Spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Anquez, Martin; Robbins, Bryce; Yang, Xiaoyun; Land, Benjamin; Hamley, Christopher; Chapman, Michael

    2014-05-01

    Spin-1 condensates provide a useful platform for investigations of atom squeezing, generation of non-Gaussian states, and dynamical control. We demonstrate dynamic control of a quantum many-body spin-1 system that is enabled by strong collisional interactions. In contrast to the usual single-particle quantum control techniques, the method demonstrated here is intrinsically many-body, exploiting the strong collisional interactions. The experiment uses a spin-1 87Rb condensate initialized in the | F = 1 , mF = 0 > polar state at a high magnetic field above the quantum phase transition, and then prepared in a coherent state using a rf rotation. The many-body control is implemented by time-varying the relative strength of the Zeeman and spin interaction energies of the condensate at multiples of the natural coherent oscillation frequency of the system. This is a parametric excitation method relying on time varying changes to the Hamiltonian. We will present our experimental results, which compare well to theory, and will discuss future directions and applications.

  3. Unified Description of Dynamics of a Repulsive Two-Component Fermi Gas

    NASA Astrophysics Data System (ADS)

    Grochowski, Piotr T.; Karpiuk, Tomasz; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2017-11-01

    We study a binary spin mixture of a zero-temperature repulsively interacting Li 6 atoms using both the atomic-orbital and density-functional approaches. The gas is initially prepared in a configuration of two magnetic domains and we determine the frequency of the spin-dipole oscillations which are emerging after the repulsive barrier, initially separating the domains, is removed. We find, in agreement with recent experiment [G. Valtolina et al., Nat. Phys. 13, 704 (2017), 10.1038/nphys4108], the occurrence of a ferromagnetic instability in an atomic gas while the interaction strength between different spin states is increased, after which the system becomes ferromagnetic. The ferromagnetic instability is preceded by the softening of the spin-dipole mode.

  4. Interaction of finger enslaving and error compensation in multiple finger force production.

    PubMed

    Martin, Joel R; Latash, Mark L; Zatsiorsky, Vladimir M

    2009-01-01

    Previous studies have documented two patterns of finger interaction during multi-finger pressing tasks, enslaving and error compensation, which do not agree with each other. Enslaving is characterized by positive correlation between instructed (master) and non-instructed (slave) finger(s) while error compensation can be described as a pattern of negative correlation between master and slave fingers. We hypothesize that pattern of finger interaction, enslaving or compensation depends on the initial force level and the magnitude of the targeted force change. Subjects were instructed to press with four fingers (I index, M middle, R ring, and L little) from a specified initial force to target forces following a ramp target line. Force-force relations between master and each of three slave fingers were analyzed during the ramp phase of trials by calculating correlation coefficients within each master-slave pair and then two-factor ANOVA was performed to determine effect of initial force and force increase on the correlation coefficients. It was found that, as initial force increased, the value of the correlation coefficient decreased and in some cases became negative, i.e. the enslaving transformed into error compensation. Force increase magnitude had a smaller effect on the correlation coefficients. The observations support the hypothesis that the pattern of inter-finger interaction--enslaving or compensation--depends on the initial force level and, to a smaller degree, on the targeted magnitude of the force increase. They suggest that the controller views tasks with higher steady-state forces and smaller force changes as implying a requirement to avoid large changes in the total force.

  5. Strongly correlated fermions after a quantum quench.

    PubMed

    Manmana, S R; Wessel, S; Noack, R M; Muramatsu, A

    2007-05-25

    Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.

  6. Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion

    PubMed Central

    Li, Han; Liu, Yashu; Gong, Pinghua; Zhang, Changshui; Ye, Jieping

    2014-01-01

    Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted increasing attention in Alzheimer's disease (AD) research. An accurate prediction of conversion from MCI to AD can aid clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based on the original biosignatures are not satisfactory. In this paper, we propose to fit the prediction models using pairwise biosignature interactions, thus capturing higher-order relationship among biosignatures. Specifically, we employ hierarchical constraints and sparsity regularization to prune the high-dimensional input features. Based on the significant biosignatures and underlying interactions identified, we build classifiers to predict the conversion probability based on the selected features. We further analyze the underlying interaction effects of different biosignatures based on the so-called stable expectation scores. We have used 293 MCI subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database that have MRI measurements at the baseline to evaluate the effectiveness of the proposed method. Our proposed method achieves better classification performance than state-of-the-art methods. Moreover, we discover several significant interactions predictive of MCI-to-AD conversion. These results shed light on improving the prediction performance using interaction features. PMID:24416143

  7. Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li2(a 3Sigma(u)+) at ultralow energies.

    PubMed

    Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A

    2008-06-14

    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

  8. Gluonic hot spots and spatial correlations inside the proton

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Petersen, Hannah; Soto-Ontoso, Alba

    2017-11-01

    In this work, largely based on [J. L. Albacete, A. Soto-Ontoso, Hot spots and the hollowness of proton-proton interactions at high energies, arXiv:1605.09176; J. L. Albacete, H. Petersen, A. Soto-Ontoso, Correlated wounded hot spots in proton-proton interactions, arXiv:1612.06274], we present a novel initial state geometry for proton-proton interactions. We rely on gluonic hot spots as effective degrees of freedom whose transverse positions inside the proton are correlated. We explore the impact of these non-trivial spatial correlations on the eccentricity and triangularity of the system following a Monte Carlo Glauber approach.

  9. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model.

    PubMed

    Kollath, Corinna; Läuchli, Andreas M; Altman, Ehud

    2007-05-04

    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.

  10. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D. D.; Geerts, B.

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE)more » that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and temporal evolutionof the LLJ, how it affects the SBL, and the interaction between the LLJ and atmospheric boundaries in the development of CI.« less

  11. Stochastic game theory: for playing games, not just for doing theory.

    PubMed

    Goeree, J K; Holt, C A

    1999-09-14

    Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions.

  12. Is Speech Learning "Gated" by the Social Brain?

    ERIC Educational Resources Information Center

    Kuhl, Patricia K.

    2007-01-01

    I advance the hypothesis that the earliest phases of language acquisition--the developmental transition from an initial universal state of language processing to one that is language-specific--requires social interaction. Relating human language learning to a broader set of neurobiological cases of communicative development, I argue that the…

  13. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    PubMed

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems); while drug released much slower than the polymer when molecular level mixing or drug-polymer interaction was absent (SDD-PB systems). For ASDs without drug-polymer interaction (i.e., KTZ/HPMC systems), the mixing homogeneity had little impact on the release rate of either the drug or the polymer thus SDD and SDD-PB demonstrated the same drug or polymer release rate, while the drug released slowly and independently of polymer release. The initial drug release from an ASD was controlled by 1) the polymer release rate; 2) the strength of drug-polymer interaction, including the intrinsic interaction caused by the chemistry of the drug and the polymer (measured by the χ value), as well as that the apparent interaction caused by the drug-polymer ratio (measure by the extent of peak shift on spectroscopic analysis); and 3) the level of mixing homogeneity between the drug and polymer. In summary, the selection of polymer, drug-polymer ratio, and ASD processing conditions have profound impacts on the dissolution behavior of ASDs. Graphical Abstract Relationship between initial drug and polymer dissolution rates from amorphous solid dispersions with different mixing uniformity and drug-polymer interactions.

  14. Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation

    NASA Astrophysics Data System (ADS)

    Agafontsev, Dmitry; Zakharov, Vladimir

    2013-04-01

    We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with time. In case of the cnoidal wave initial condition we observe severely non-Rayleigh PDFs for the classical NLS equation (1) with the regions corresponding to 2-, 3- and so on soliton collisions clearly seen of the PDFs. Addition of six-wave interactions in Eq. (2) for condensate initial condition results in appearance of non-Rayleigh addition to the PDFs that increase with six-wave interaction constant α and disappears with the absence of six-wave interactions α = 0. References: [1] D.S. Agafontsev, V.E. Zakharov, Rogue waves statistics in the framework of one-dimensional Generalized Nonlinear Schrodinger Equation, arXiv:1202.5763v3.

  15. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems

    PubMed Central

    Innes, Clinton; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359

  16. The "Social Gaze Space": A Taxonomy for Gaze-Based Communication in Triadic Interactions.

    PubMed

    Jording, Mathis; Hartz, Arne; Bente, Gary; Schulte-Rüther, Martin; Vogeley, Kai

    2018-01-01

    Humans substantially rely on non-verbal cues in their communication and interaction with others. The eyes represent a "simultaneous input-output device": While we observe others and obtain information about their mental states (including feelings, thoughts, and intentions-to-act), our gaze simultaneously provides information about our own attention and inner experiences. This substantiates its pivotal role for the coordination of communication. The communicative and coordinative capacities - and their phylogenetic and ontogenetic impacts - become fully apparent in triadic interactions constituted in its simplest form by two persons and an object. Technological advances have sparked renewed interest in social gaze and provide new methodological approaches. Here we introduce the 'Social Gaze Space' as a new conceptual framework for the systematic study of gaze behavior during social information processing. It covers all possible categorical states, namely 'partner-oriented,' 'object-oriented,' 'introspective,' 'initiating joint attention,' and 'responding joint attention.' Different combinations of these states explain several interpersonal phenomena. We argue that this taxonomy distinguishes the most relevant interactional states along their distinctive features, and will showcase the implications for prominent social gaze phenomena. The taxonomy allows to identify research desiderates that have been neglected so far. We argue for a systematic investigation of these phenomena and discuss some related methodological issues.

  17. Theoretical study on the photoabsorption in the Herzberg I band system of the O 2 molecule

    NASA Astrophysics Data System (ADS)

    Takegami, Ryuta; Yabushita, Satoshi

    2005-01-01

    The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its absorption strength has been explained by intensity borrowing models which include the spin-orbit (SO) and L-uncoupling (RO) interactions as perturbations. We employed three different levels of theoretical models to evaluate these two interactions, and obtained the rotational and vibronic absorption strengths using the ab initio method. The first model calculates the transition moments induced by the SO interaction variationally with the SO configuration interaction method (SOCI), and uses the first-order perturbation theory for the RO interaction, and is called SOCI. The second is based on the first-order perturbation theory for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of Pert(Full), in that the first-order perturbation wavefunction for the initial and final state is represented by only one dominant basis, namely the 1 3Π g and B3Σu- state, respectively, as originally used by England et al. [Can. J. Phys. 74 (1996) 185], and is called Pert(England). The vibronic oscillator strengths calculated by these three models were in good agreement with the experimental values. As for the integrated rotational linestrengths, the SOCI and Pert(Full) models reproduced the experimental results very well, however the Pert(England) model did not give satisfactory results. Since the Pert(England) model takes only the 1 3Π g and B3Σu- states into consideration, it cannot contain the complicated configuration interactions with highly excited states induced by the SO and RO interaction, which plays an important role for calculating the delicate integrated rotational linestrength. This result suggests that the configuration interaction with highly excited states due to some perturbations cannot be neglected in the case of very weak absorption band systems.

  18. Trends in Timing of Dialysis Initiation within Versus Outside the Department of Veterans Affairs.

    PubMed

    Yu, Margaret K; O'Hare, Ann M; Batten, Adam; Sulc, Christine A; Neely, Emily L; Liu, Chuan-Fen; Hebert, Paul L

    2015-08-07

    The secular trend toward dialysis initiation at progressively higher levels of eGFR is not well understood. This study compared temporal trends in eGFR at dialysis initiation within versus outside the Department of Veterans Affairs (VA)-the largest non-fee-for-service health system in the United States. The study used linked data from the US Renal Data System, VA, and Medicare to compare temporal trends in eGFR at dialysis initiation between 2000 and 2009 (n=971,543). Veterans who initiated dialysis within the VA were compared with three groups who initiated dialysis outside the VA: (1) veterans whose dialysis was paid for by the VA, (2) veterans whose dialysis was not paid for by the VA, and (3) nonveterans. Logistic regression was used to estimate average predicted probabilities of dialysis initiation at an eGFR≥10 ml/min per 1.73 m(2). The adjusted probability of starting dialysis at an eGFR≥10 ml/min per 1.73 m(2) increased over time for all groups but was lower for veterans who started dialysis within the VA (0.31; 95% confidence interval [95% CI], 0.30 to 0.32) than for those starting outside the VA, including veterans whose dialysis was (0.36; 95% CI, 0.35 to 0.38) and was not (0.40; 95% CI, 0.40 to 0.40) paid for by the VA and nonveterans (0.39; 95% CI, 0.39 to 0.39). Differences in eGFR at initiation within versus outside the VA were most pronounced among older patients (P for interaction <0.001) and those with a higher risk of 1-year mortality (P for interaction <0.001). Temporal trends in eGFR at dialysis initiation within the VA mirrored those in the wider United States dialysis population, but eGFR at initiation was consistently lowest among those who initiated within the VA. Differences in eGFR at initiation within versus outside the VA were especially pronounced in older patients and those with higher 1-year mortality risk. Copyright © 2015 by the American Society of Nephrology.

  19. Trends in Timing of Dialysis Initiation within Versus Outside the Department of Veterans Affairs

    PubMed Central

    O’Hare, Ann M.; Batten, Adam; Sulc, Christine A.; Neely, Emily L.; Liu, Chuan-Fen; Hebert, Paul L.

    2015-01-01

    Background and objectives The secular trend toward dialysis initiation at progressively higher levels of eGFR is not well understood. This study compared temporal trends in eGFR at dialysis initiation within versus outside the Department of Veterans Affairs (VA)—the largest non–fee-for-service health system in the United States. Design, setting, participants, & measurements The study used linked data from the US Renal Data System, VA, and Medicare to compare temporal trends in eGFR at dialysis initiation between 2000 and 2009 (n=971,543). Veterans who initiated dialysis within the VA were compared with three groups who initiated dialysis outside the VA: (1) veterans whose dialysis was paid for by the VA, (2) veterans whose dialysis was not paid for by the VA, and (3) nonveterans. Logistic regression was used to estimate average predicted probabilities of dialysis initiation at an eGFR≥10 ml/min per 1.73 m2. Results The adjusted probability of starting dialysis at an eGFR≥10 ml/min per 1.73 m2 increased over time for all groups but was lower for veterans who started dialysis within the VA (0.31; 95% confidence interval [95% CI], 0.30 to 0.32) than for those starting outside the VA, including veterans whose dialysis was (0.36; 95% CI, 0.35 to 0.38) and was not (0.40; 95% CI, 0.40 to 0.40) paid for by the VA and nonveterans (0.39; 95% CI, 0.39 to 0.39). Differences in eGFR at initiation within versus outside the VA were most pronounced among older patients (P for interaction <0.001) and those with a higher risk of 1-year mortality (P for interaction <0.001). Conclusions Temporal trends in eGFR at dialysis initiation within the VA mirrored those in the wider United States dialysis population, but eGFR at initiation was consistently lowest among those who initiated within the VA. Differences in eGFR at initiation within versus outside the VA were especially pronounced in older patients and those with higher 1-year mortality risk. PMID:26206891

  20. Tunneling of Two Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Ishmukhamedov, Ilyas; Ishmukhamedov, Altay

    2018-04-01

    We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.

  1. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  2. Neutrino Spectra from Nuclear Weak Interactions in sd-Shell Nuclei under Astrophysical Conditions

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Sun, Yang; Fuller, George M.

    2018-01-01

    We present shell model calculations of nuclear neutrino energy spectra for 70 sd-shell nuclei over the mass number range A = 21–35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays, and for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller–Fowler–Newman temperature–density grid for these interaction channels for each nucleus. We use the full sd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35–40 MeV, employing a modification of the Brink-Axel hypothesis to handle high-temperature population factors and the nuclear partition functions.

  3. Dynamical phases in a one-dimensional chain of heterospecies Rydberg atoms with next-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhang, Lu; Zhai, Jingjing; Zhang, Weiping

    2015-12-01

    We theoretically investigate the dynamical phase diagram of a one-dimensional chain of laser-excited two-species Rydberg atoms. The existence of a variety of unique dynamical phases in the experimentally achievable parameter region is predicted under the mean-field approximation, and the change in those phases when the effect of the next-nearest-neighbor interaction is included is further discussed. In particular, we find that the com-petition of the strong Rydberg-Rydberg interactions and the optical excitation imbalance can lead to the presence of complex multiple chaotic phases, which are highly sensitive to the initial Rydberg-state population and the strength of the next-nearest-neighbor interactions.

  4. Fidelity decay in interacting two-level boson systems: Freezing and revivals

    NASA Astrophysics Data System (ADS)

    Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.

    2011-05-01

    We study the fidelity decay in the k-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the k-body embedded ensemble of random matrices and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time tH. By selecting specific k-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of tH, thus relating the period of the revivals with the range of the interaction k of the perturbing terms. Numerical calculations confirm the analytical results.

  5. The Uttar Pradesh State Observatory --- some recollections and some history (1954-1982)

    NASA Astrophysics Data System (ADS)

    Sinvhal, S. D.

    2006-03-01

    An attempt is made to present a picture of pre-historic and initial formative years of the well known Uttar Pradesh State Observatory, Nainital. The development of academic activities along with infrastructure are described. The emphasis on the frontline research work, self-reliance and international interaction was given during the formative years of the observatory. The largest telescope 104-cm of the observatory was installed in 1972 and has produced good scientific results.

  6. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors

    PubMed Central

    Pflug, Alexander; Gaudon, Stephanie; Resa-Infante, Patricia; Lethier, Mathilde; Reich, Stefan; Schulze, Wiebke M

    2018-01-01

    Abstract Influenza polymerase uses short capped primers snatched from nascent Pol II transcripts to initiate transcription of viral mRNAs. Here we describe crystal structures of influenza A and B polymerase bound to a capped primer in a configuration consistent with transcription initiation (’priming state’) and show by functional assays that conserved residues from both the PB2 midlink and cap-binding domains are important for positioning the capped RNA. In particular, mutation of PB2 Arg264, which interacts with the triphosphate linkage in the cap, significantly and specifically decreases cap-dependent transcription. We also compare the configuration of the midlink and cap-binding domains in the priming state with their very different relative arrangement (called the ‘apo’ state) in structures where the potent cap-binding inhibitor VX-787, or a close analogue, is bound. In the ‘apo’ state the inhibitor makes additional interactions to the midlink domain that increases its affinity beyond that to the cap-binding domain alone. The comparison suggests that the mechanism of resistance of certain mutations that allow virus to escape from VX-787, notably PB2 N510T, can only be rationalized if VX-787 has a dual mode of action, direct inhibition of capped RNA binding as well as stabilization of the transcriptionally inactive ‘apo’ state. PMID:29202182

  7. New insights into apoptosome structure and function.

    PubMed

    Dorstyn, Loretta; Akey, Christopher W; Kumar, Sharad

    2018-05-15

    The apoptosome is a platform that activates apical procaspases in response to intrinsic cell death signals. Biochemical and structural studies in the past two decades have extended our understanding of apoptosome composition and structure, while illuminating the requirements for initiator procaspase activation. A number of studies have now provided high-resolution structures for apoptosomes from C. elegans (CED-4), D. melanogaster (Dark), and H. sapiens (Apaf-1), which define critical protein interfaces, including intra and interdomain interactions. This work also reveals interactions of apoptosomes with their respective initiator caspases, CED-3, Dronc and procaspase-9. Structures of the human apoptosome have defined the requirements for cytochrome c binding, which triggers the conversion of inactive Apaf-1 molecules to an extended, assembly competent state. While recent data have provided a detailed understanding of apoptosome formation and procaspase activation, they also highlight important evolutionary differences with functional implications for caspase activation. CARD/CARD interactions in the CED-4, Dark and Apaf-1 apoptosomes. Type I, II and III interfaces that stabilize CARD-CARD interactions are indicated (left column). Note that the Type I interface appears to be unique to Apaf-1/pc-9 CARD interactions. Middle column shows cartoons of the active states of the CARD-CARD disks, illustrating the two CED-4 tetrameric ring layers (top) and the recruitment of 8 Dronc CARDs and between 3-4 pc-9 CARDs, to the Dark and Apaf-1 apoptosomes respectively (middle and lower panels). Ribbon diagrams of the CED-4, Dark and Apaf-1 apoptosomes are shown (right column).

  8. Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Blasone, Massimo; Bernardini, Alex E.

    2018-03-01

    The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation—which includes pseudovectorlike and tensorlike field interactions—the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: A non-Markovian noise model with a well-defined Markovian limit. Considering that an initial amount of entanglement shall be dissipated by the noise, two profiles of dissipation are identified. On one hand, for eigenstates of the noiseless Hamiltonian, deaths and revivals of entanglement are identified along the oscillation pattern for long interaction periods. On the other hand, for departing LL Werner and Cat states, the entanglement is suppressed although, for both cases, some identified memory effects compete with the pure noise-induced decoherence in order to preserve the the overall profile of a given initial state.

  9. Steady state quantum discord for circularly accelerated atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less

  10. Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise

    NASA Astrophysics Data System (ADS)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fouokeng, Georges Collince; Fai, Lukong Cornelius

    2018-04-01

    The effects of 1/f^{α } (α =1,2) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger-Horne-Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit-environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the 1/f2 noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.

  11. Can media advocacy influence newspaper coverage of tobacco: measuring the effectiveness of the American stop smoking intervention study's (ASSIST) media advocacy strategies

    PubMed Central

    Stillman, F.; Cronin, K.; Evans, W; Ulasevich, A.

    2001-01-01

    OBJECTIVE—To compare the rate and slant of local tobacco control print media coverage in ASSIST (American stop smoking intervention study) states as compared with non-ASSIST states.
METHODS—Local tobacco control policy articles, editorials, and letters to the editors published from 1994 to 1998 clipped from all daily local newspapers in the USA were analysed (n = 95 911). The main hypothesis tested for the existence of an interaction between ASSIST intervention and time. This interaction would represent a change in the difference between ASSIST and non-ASSIST states over the course of the intervention.
RESULTS—No evidence of an ASSIST-year interaction was found. However, a main effect for ASSIST was significant for the percentage of articles with the model predicting higher rates of articles for ASSIST states. Similarly the rate of letters to the editor expressing protobacco control views was higher in ASSIST states than non-ASSIST states. No main effects or interactions were found for analyses of percentage of protobacco control editorials. Models controlled for a measure of preintervention tobacco control conditions at baseline.
CONCLUSIONS—The presence of an ASSIST main effect should be interpreted with caution because of the quasi-experimental design and the lack of information on article rates before the ASSIST intervention. Nonetheless, these preliminary findings suggest some possible effects of the media advocacy activities of ASSIST when controlling for differences in states' initial tobacco control conditions.


Keywords: ASSIST; intervention study; media advocacy strategy PMID:11387534

  12. The nuclear weapons inheritance project: student-to-student dialogues and interactive peer education in disarmament activism.

    PubMed

    Buhmann, Caecilie Böck

    2007-01-01

    The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.

  13. Learning about Ecological Systems by Constructing Qualitative Models with DynaLearn

    ERIC Educational Resources Information Center

    Leiba, Moshe; Zuzovsky, Ruth; Mioduser, David; Benayahu, Yehuda; Nachmias, Rafi

    2012-01-01

    A qualitative model of a system is an abstraction that captures ordinal knowledge and predicts the set of qualitatively possible behaviours of the system, given a qualitative description of its structure and initial state. This paper examines an innovative approach to science education using an interactive learning environment that supports…

  14. Looking for America: The Disassociation of Urban Youth

    ERIC Educational Resources Information Center

    Sanchez, Heliodoro T., Jr.

    2005-01-01

    Many educational initiatives have been and continue to be based on a macro-social system understanding of communal roles, values, norms, interactions, perceptions, and realities. This practice neglects the unique impediments and social norms that exist within the myriad of micro-social systems in the United States. This work draws attention to the…

  15. Bossier Parish Community College and Delgado Community College Collaborative Pharmacy Technician Program Distance Education Initiative.

    ERIC Educational Resources Information Center

    Bossier Parish Community Coll., Bossier City, LA.

    Two Louisiana community colleges--Bossier Parish Community College (BPCC) and Delgado Community College (DCC)--proposed, developed, and implemented a collaborative Pharmacy Technician program for delivery through the use of two-way interactive video. The new program was inspired by new certification requirements instituted by the state of…

  16. Multipartite quantum correlations among atoms in QED cavities

    NASA Astrophysics Data System (ADS)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  17. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin

    2015-04-01

    The India-Eurasia's collision produces N-S compression and results in large thrust fault in the southern edge of the Tibetan Plateau. Differential eastern flow of the lower crust of the plateau leads to large strike-slip faults and normal faults within the plateau. From 1904 to 2014, more than 30 earthquakes of Mw > 6.5 occurred sequentially in this distinctive tectonic environment. How did the stresses evolve during the last 110 years, how did the earthquakes interact with each other? Can this knowledge help us to forecast the future seismic hazards? In this essay, we tried to simulate the evolution of the stress field and the earthquake sequence in the Tibetan plateau within the last 110 years with a 2-D finite element model. Given an initial state of stress, the boundary condition was constrained by the present-day GPS observation, which was assumed as a constant rate during the 110 years. We calculated stress evolution year by year, and earthquake would occur if stress exceed the crustal strength. Stress changes due to each large earthquake in the sequence was calculated and contributed to the stress evolution. A key issue is the choice of initial stress state of the modeling, which is actually unknown. Usually, in the study of earthquake triggering, people assume the initial stress is zero, and only calculate the stress changes by large earthquakes - the Coulomb failure stress changes (Δ CFS). To some extent, this simplified method is a powerful tool because it can reveal which fault or which part of a fault becomes more risky or safer relatively. Nonetheless, it has not utilized all information available to us. The earthquake sequence reveals, though far from complete, some information about the stress state in the region. If the entire region is close to a self-organized critical or subcritical state, earthquake stress drop provides an estimate of lower limit of initial state. For locations no earthquakes occurred during the period, initial stress has to be lower than certain value. For locations where large earthquakes occurred during the 110 years, the initial stresses can be inverted if the strength is estimated and the tectonic loading is assumed constant. Therefore, although initial stress state is unknown, we can try to make estimate of a range of it. In this study, we estimated a reasonable range of initial stress, and then based on Coulomb-Mohr criterion to regenerate the earthquake sequence, starting from the Daofu earthquake of 1904. We calculated the stress field evolution of the sequence, considering both the tectonic loading and interaction between the earthquakes. Ultimately we got a sketch of the present stress. Of course, a single model with certain initial stress is just one possible model. Consequently the potential seismic hazards distribution based on a single model is not convincing. We made test on hundreds of possible initial stress state, all of them can produce the historical earthquake sequence occurred, and summarized all kinds of calculated probabilities of the future seismic activity. Although we cannot provide the exact state in the future, but we can narrow the estimate of regions where is in high probability of risk. Our primary results indicate that the Xianshuihe fault and adjacent area is one of such zones with higher risk than other regions in the future. During 2014, there were 6 earthquakes (M > 5.0) happened in this region, which correspond with our result in some degree. We emphasized the importance of the initial stress field for the earthquake sequence, and provided a probabilistic assessment for future seismic hazards. This study may bring some new insights to estimate the initial stress, earthquake triggering, and the stress field evolution .

  18. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  19. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  20. Suppression and enhancement of decoherence in an atomic Josephson junction

    NASA Astrophysics Data System (ADS)

    Japha, Yonathan; Zhou, Shuyu; Keil, Mark; Folman, Ron; Henkel, Carsten; Vardi, Amichay

    2016-05-01

    We investigate the role of interatomic interactions when a Bose gas, in a double-well potential with a finite tunneling probability (a ‘Bose-Josephson junction’), is exposed to external noise. We examine the rate of decoherence of a system initially in its ground state with equal probability amplitudes in both sites. The noise may induce two kinds of effects: firstly, random shifts in the relative phase or number difference between the two wells and secondly, loss of atoms from the trap. The effects of induced phase fluctuations are mitigated by atom-atom interactions and tunneling, such that the dephasing rate may be suppressed by half its single-atom value. Random fluctuations may also be induced in the population difference between the wells, in which case atom-atom interactions considerably enhance the decoherence rate. A similar scenario is predicted for the case of atom loss, even if the loss rates from the two sites are equal. We find that if the initial state is number-squeezed due to interactions, then the loss process induces population fluctuations that reduce the coherence across the junction. We examine the parameters relevant for these effects in a typical atom chip device, using a simple model of the trapping potential, experimental data, and the theory of magnetic field fluctuations near metallic conductors. These results provide a framework for mapping the dynamical range of barriers engineered for specific applications and set the stage for more complex atom circuits (‘atomtronics’).

  1. Correlated electron-nuclear dissociation dynamics: classical versus quantum motion

    NASA Astrophysics Data System (ADS)

    Schaupp, Thomas; Albert, Julian; Engel, Volker

    2017-01-01

    We investigate the coupled electron-nuclear dynamics in a model system which undergoes dissociation. In choosing different initial conditions, the cases of adiabatic and non-adiabatic dissociation are realized. We treat the coupled electronic and nuclear motion in the complete configuration space so that classically, no surface hopping procedures have to be incorporated in the case that more than a single adiabatic electronic state is populated during the fragmentation. Due to the anharmonic interaction potential, it is expected that classical mechanics substantially deviate from quantum mechanics. However, we provide examples where the densities and fragmentation yields obtained from the two treatments are in astonishingly strong agreement in the case that one starts in the electronic ground state initially. As expected, larger deviations are found if one starts in electronically excited states where trajectories are sampled from the more spatially extended electronic wave function. In that case, higher initial energies are accessed, and the motion proceeds in regions with increasing degree of anharmonicity. Contribution to the Topical Issue "Dynamics of Molecular Systems (MOLEC 2016)", edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

  2. Pumping approximately integrable systems

    PubMed Central

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2017-01-01

    Weak perturbations can drive an interacting many-particle system far from its initial equilibrium state if one is able to pump into degrees of freedom approximately protected by conservation laws. This concept has for example been used to realize Bose–Einstein condensates of photons, magnons and excitons. Integrable quantum systems, like the one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws. Here, we develop a theory of weakly driven integrable systems and show that pumping can induce large spin or heat currents even in the presence of integrability breaking perturbations, since it activates local and quasi-local approximate conserved quantities. The resulting steady state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange parameters that depend on the structure but not on the overall amplitude of perturbations nor the initial state. We suggest to use spin-chain materials driven by terahertz radiation to realize integrability-based spin and heat pumps. PMID:28598444

  3. Native State Mass Spectrometry, Surface Plasmon Resonance, and X-ray Crystallography Correlate Strongly as a Fragment Screening Combination.

    PubMed

    Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann

    2016-03-10

    Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.

  4. Nonadiabatic effect on the quantum heat flux control.

    PubMed

    Uchiyama, Chikako

    2014-05-01

    We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.

  5. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  6. Evaluation of atomic constants for optical radiation, volume 2

    NASA Technical Reports Server (NTRS)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.

  7. eIF1 Loop 2 interactions with Met-tRNAi control the accuracy of start codon selection by the scanning preinitiation complex.

    PubMed

    Thakur, Anil; Hinnebusch, Alan G

    2018-05-01

    The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNA i ) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "P OUT " state to a closed conformation with TC more tightly bound in a "P IN " state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the P IN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNA i D loop in the P IN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNA i We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNA i accommodation in the P IN state without influencing the P OUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNA i clash to an electrostatic attraction that stabilizes P IN and enhances selection of poor start codons in vivo.

  8. Quench field sensitivity of two-particle correlation in a Hubbard model

    PubMed Central

    Zhang, X. Z.; Lin, S.; Song, Z.

    2016-01-01

    Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080

  9. Concurrence of three Jaynes-Cummings systems

    NASA Astrophysics Data System (ADS)

    Qiang, Wen-Chao; Sun, Guo-Hua; Dong, Qian; Camacho-Nieto, Oscar; Dong, Shi-Hai

    2018-04-01

    We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes-Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter θ , the concurrence of the global system may maintain unchanged in some time intervals.

  10. RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes.

    PubMed

    NandyMazumdar, Monali; Nedialkov, Yuri; Svetlov, Dmitri; Sevostyanova, Anastasia; Belogurov, Georgiy A; Artsimovitch, Irina

    2016-12-27

    Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β' clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.

  11. Tunable ion-photon entanglement in an optical cavity.

    PubMed

    Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R

    2012-05-23

    Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.

  12. Apparent power-law distributions in animal movements can arise from intraspecific interactions

    PubMed Central

    Breed, Greg A.; Severns, Paul M.; Edwards, Andrew M.

    2015-01-01

    Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight. PMID:25519992

  13. Left-handers look before they leap: handedness influences reactivity to novel Tower of Hanoi tasks

    PubMed Central

    Wright, Lynn; Hardie, Scott M.

    2015-01-01

    A sample of 203 task naïve left- and right-handed participants were asked to complete a combination of the 3- and 4-disk Towers of Hanoi (ToH), manipulating novelty and complexity. Self-reported state anxiety and latency to respond (initiation time) were recorded before each ToH. Novelty had a major effect on initiation time, particularly for left-handers. Left-handers had a longer latency to start and this was significantly longer on the first trial. Irrespective of hand-preference, initiation time reduced on the second trial, however, this was greatest for left-handers. Condition of task did not systematically influence initiation time for right handers, but did for left-handers. State anxiety was influenced by task novelty and complexity in a more complicated way. During the first trial, there was a significant handedness × number of disks interaction with left-handers having significantly higher state anxiety levels before the 3-disk ToH. This suggests that the initial reaction to this task for left-handers was not simply due to perceived difficulty. On their second trial, participants completing a novel ToH had higher state anxiety scores than those completing a repeated version. Overall, left-handers had a larger reduction in their state anxiety across trials. Relating to this, the expected strong positive correlation between state and trait anxiety was absent for left-handed females in their first tower presentation, but appeared on their second. This was driven by low trait anxiety individuals showing a higher state anxiety response in the first (novel) trial, supporting the idea that left-handed females respond to novelty in a way that is not directly a consequence of their trait anxiety. A possible explanation may be stereotype threat influencing the behavior of left-handed females. PMID:25691878

  14. The General Revenue Effects of the California Property Tax Limitation Amendment

    ERIC Educational Resources Information Center

    Shapiro, Perry; Morgan W. Douglas

    1978-01-01

    Develops a general revenue model that incorporates the feedback and interaction between major federal, state, and local revenue sources. The model is applied to California for the 1965-75 period and the results are applied to an analysis of the property tax limitation initiative. Available from Stanley J. Bowers, Executive Director, NTA-TIA, 21…

  15. Bringing the Community Along: A Case Study of a School District's Information Technology Rural Development Initiative

    ERIC Educational Resources Information Center

    Schafft, Kai A.; Alter, Theodore R.; Bridger, Jeffrey C.

    2006-01-01

    We draw on interactional community theory to analyze the relationship between information technology and local development through a case study of a geographically isolated and economically disadvantaged rural school district. This district has used state-of-the-art information technology infrastructure in a broad-based community and economic…

  16. Transitioning from Software Requirements Models to Design Models

    NASA Technical Reports Server (NTRS)

    Lowry, Michael (Technical Monitor); Whittle, Jon

    2003-01-01

    Summary: 1. Proof-of-concept of state machine synthesis from scenarios - CTAS case study. 2. CTAS team wants to use the syntheses algorithm to validate trajectory generation. 3. Extending synthesis algorithm towards requirements validation: (a) scenario relationships' (b) methodology for generalizing/refining scenarios, and (c) interaction patterns to control synthesis. 4. Initial ideas tested on conflict detection scenarios.

  17. Computational prediction of virus-human protein-protein interactions using embedding kernelized heterogeneous data.

    PubMed

    Nourani, Esmaeil; Khunjush, Farshad; Durmuş, Saliha

    2016-05-24

    Pathogenic microorganisms exploit host cellular mechanisms and evade host defense mechanisms through molecular pathogen-host interactions (PHIs). Therefore, comprehensive analysis of these PHI networks should be an initial step for developing effective therapeutics against infectious diseases. Computational prediction of PHI data is gaining increasing demand because of scarcity of experimental data. Prediction of protein-protein interactions (PPIs) within PHI systems can be formulated as a classification problem, which requires the knowledge of non-interacting protein pairs. This is a restricting requirement since we lack datasets that report non-interacting protein pairs. In this study, we formulated the "computational prediction of PHI data" problem using kernel embedding of heterogeneous data. This eliminates the abovementioned requirement and enables us to predict new interactions without randomly labeling protein pairs as non-interacting. Domain-domain associations are used to filter the predicted results leading to 175 novel PHIs between 170 human proteins and 105 viral proteins. To compare our results with the state-of-the-art studies that use a binary classification formulation, we modified our settings to consider the same formulation. Detailed evaluations are conducted and our results provide more than 10 percent improvements for accuracy and AUC (area under the receiving operating curve) results in comparison with state-of-the-art methods.

  18. KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency.

    PubMed

    Dhaliwal, Navroop K; Miri, Kamelia; Davidson, Scott; Tamim El Jarkass, Hala; Mitchell, Jennifer A

    2018-04-10

    Cooperative action of a transcription factor complex containing OCT4, SOX2, NANOG, and KLF4 maintains the naive pluripotent state; however, less is known about the mechanisms that disrupt this complex, initiating exit from pluripotency. We show that, as embryonic stem cells (ESCs) exit pluripotency, KLF4 protein is exported from the nucleus causing rapid decline in Nanog and Klf4 transcription; as a result, KLF4 is the first pluripotency transcription factor removed from transcription-associated complexes during differentiation. KLF4 nuclear export requires ERK activation, and phosphorylation of KLF4 by ERK initiates interaction of KLF4 with nuclear export factor XPO1, leading to KLF4 export. Mutation of the ERK phosphorylation site in KLF4 (S132) blocks KLF4 nuclear export, the decline in Nanog, Klf4, and Sox2 mRNA, and differentiation. These findings demonstrate that relocalization of KLF4 to the cytoplasm is a critical first step in exit from the naive pluripotent state and initiation of ESC differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nonequilibrium electronic transport in a one-dimensional Mott insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich-Meisner, F.; Gonzalez, Ivan; Al-Hassanieh, K. A.

    2010-01-01

    We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state elec- tronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of themore » model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.« less

  20. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  1. Mother's Emotional and Posttraumatic Reactions after a Preterm Birth: The Mother-Infant Interaction Is at Stake 12 Months after Birth.

    PubMed

    Petit, Anne-Cécile; Eutrope, Julien; Thierry, Aurore; Bednarek, Nathalie; Aupetit, Laurence; Saad, Stéphanie; Vulliez, Lauriane; Sibertin-Blanc, Daniel; Nezelof, Sylvie; Rolland, Anne-Catherine

    2016-01-01

    Very preterm infants are known to be at risk of developmental disabilities and behavioural disorders. This condition is supposed to alter mother-infant interactions. Here we hypothesize that the parental coping with the very preterm birth may greatly influence mother-infant interactions. 100 dyads were included in 3 university hospitals in France. Preterm babies at higher risk of neurodevelopmental sequelae (PRI>10) were excluded to target the maternal determinants of mother-infant interaction. We report the follow-up of this cohort during 1 year after very preterm birth, with regular assessment of infant somatic state, mother psychological state and the assessment of mother-infant interaction at 12 months by validated scales (mPPQ, HADS, EPDS, PRI, DDST and PIPE). We show that the intensity of post-traumatic reaction of the mother 6 months after birth is negatively correlated with the quality of mother-infant interaction at 12 months. Moreover, the anxious and depressive symptoms of the mother 6 and 12 months after birth are also correlated with the quality of mother-infant interaction at 12 months. By contrast, this interaction is not influenced by the initial affective state of the mother in the 2 weeks following birth. In this particular population of infants at low risk of sequelae, we also show that the quality of mother-infant interaction is not correlated with the assessment of the infant in the neonatal period but is correlated with the fine motor skills of the baby 12 months after birth. This study suggests that mothers' psychological condition has to be monitored during the first year of very preterm infants' follow-up. It also suggests that parental interventions have to be proposed when a post-traumatic, anxious or depressive reaction is suspected.

  2. Geographic Factors and Human Papillomavirus (HPV) Vaccination Initiation Among Adolescent Girls in the United States

    PubMed Central

    Henry, Kevin A.; Stroup, Antoinette M.; Warner, Echo L; Kepka, Deanna

    2015-01-01

    Background This study is among the first to explore geographic factors that may be associated with HPV vaccine uptake in the United States. Methods Data from the 2011 and 2012 National Immunization Survey-Teen for 20,565 female adolescents aged 13-17 years were analyzed to examine associations of HPV vaccine initiation (receipt of at least one dose) with ZIP code-level geographic factors. Logistic regression including individual and geographic factors was used to estimate the odds of HPV vaccine initiation. Results Approximately 53% of girls initiated the HPV vaccine in both years. Girls in high poverty communities had higher HPV vaccine initiation compared to those in low poverty communities (61.1% vs .52.4%; Adjusted Odds Ratio [AOR] 1.18,95%CI 1.04-1.33). Initiation was higher among girls in communities where the majority of the population was Hispanic (69.0% vs. 49.9%;AOR 1.64, 95%CI 1.43-1.87) or non-Hispanic mixed race (60.4% vs. 49.9%; AOR 1.30, 95%CI 1.17-1.44) compared to majority non-Hispanic white communities. Interactions between individual-level race/ethnicity and community racial–ethnic composition indicated significantly higher odds of initiation among Hispanic girls living in Hispanic communities compared to Hispanic girls living in predominately NHW (AOR 2.23;95%CI 1.87-2.65) or NHB (AOR 1.90; 95%CI 1.20-3.04)communities, respectively Conclusion Initiation rates of HPV vaccination among teen girls were highest in the poorest communities and among Hispanics living in communities where the racial–ethnic composition was predominantly Hispanic or mixed race. Impact Given low HPV vaccination rates in the United States, these results provide important evidence to inform public health interventions to increase HPV vaccination. PMID:26768989

  3. Who Is Influencing Whom? Latino Parent–Child Request Interactions and Product Purchases in Food Retail Environments

    PubMed Central

    Castro, Iana A.; Calderon, Joanna; Ayala, Guadalupe X.

    2017-01-01

    This study examines Latino parent–child interactions about foods and beverages requested in food retail environments in San Diego, CA. It seeks to extend our understanding of parent–child request interactions and purchases by studying how the number of product request interactions and purchases differ based on four factors that have been understudied in previous parent–child interaction research: parent gender, child gender, product healthfulness, and who initiated the request interaction (parent or child). By unobtrusively observing Latino parent–child dyads for the duration of a brief shopping trip, we found that parent and child gender are related to the number of request interactions initiated by parents and children. For gender-specific child-initiated request interactions, sons initiated more request interactions with fathers while daughters initiated more request interactions with mothers. Most request interactions were for products that were categorized as calorie dense, and a higher percentage of these products were purchased as a result of parent-initiated (vs. child-initiated) request interactions. The results provide important considerations for practitioners and researchers working on improving nutrition and reducing obesity. Assumptions about who is influencing whom in food store request interactions are challenged, requiring more research. PMID:29081718

  4. Role of the σ 54 Activator Interacting Domain in Bacterial Transcription Initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, Alexander R.; Wemmer, David E.

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ 54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ 54 are primarily made through anmore » N-terminal σ 54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ 54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ 54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ 54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ 54 AID complex using NMR spectroscopy. We show that the σ 54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ 54 bacterial transcription initiation.« less

  5. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    PubMed

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  6. Qubit-qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes

    NASA Astrophysics Data System (ADS)

    Ateto, M. S.

    2017-11-01

    The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.

  7. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene–polypropylene block copolymer for maximized disintegration and dissolution

    PubMed Central

    Balata, Gehan F; Zidan, Ahmad S; Abourehab, Mohamad AS; Essa, Ebtessam A

    2016-01-01

    The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene–polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 32 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT’s porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin. PMID:27757012

  8. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    NASA Astrophysics Data System (ADS)

    Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin

    2014-11-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.

  9. Modulation of Soil Initial State on WRF Model Performance Over China

    NASA Astrophysics Data System (ADS)

    Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun

    2017-11-01

    The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.

  10. Shaping the Future of a Globalized World: A Qualitative Study of How Undergraduate International Students' Everyday Cross-Cultural Experiences Were Impacted by University Diversity Initiatives

    ERIC Educational Resources Information Center

    Burkhardt, Joan; Bennett, Elisabeth E.

    2015-01-01

    Purpose: The purpose of this paper is to understand how everyday cross-cultural interactions affected the adjustment of undergraduate international students attending a private university in the northeastern United States of America. Design/methodology/approach: Data were collected primarily through interviews with nine international students and…

  11. Learning Processes and Learning Outcomes

    DTIC Science & Technology

    1992-06-01

    establish and maintain activation levels) may process information faster because the relevant traces in long - term memory are already activated...drill and practice, and discovery. Finally, implications for the design of computerized instructional environments are indicated. 14. SUBJECT TERMS lI...outcome. This impact may be direct, or may interact with characteristics of the learner to effect learning outcome. INITIAL STATES Conative and cognitive

  12. Emergent universe with wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Paul, B. C.; Majumdar, A. S.

    2018-03-01

    An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.

  13. Hydrodynamics of a freely movable flexible fin near the ground

    NASA Astrophysics Data System (ADS)

    Jeong, Young Dal; Lee, Jae Hwa

    2017-11-01

    In the present study, a freely movable flexible fin is numerically modelled to investigate the flapping dynamics of the fin near the ground in a Poiseuille flow. A leading edge of the fin is fixed in the streamwise direction, whereas the lateral motion is spontaneously determined by hydrodynamic interaction between the fin and surrounding fluid. When the fin is initially positioned at yo, the fin passively migrates toward another wall-normal position for an equilibrium state by the interaction between passively flapping flexible body and ground. At the equilibrium position, the drag coefficient of the fin (CD) significantly decreases due to decaying of the flapping and low flow velocity and the fin can swim consistently without the time-averaged lateral force. Two distinctive behavior at the transient state (flapping and non-flapping migration modes) and three distinctive behaviors at the equilibrium state (deflected-straight, large- and small-amplitude flapping modes) are observed depending on the bending rigidity (γ) and mass ratio (μ) of the fin. The equilibrium position of the fin is investigated as a function of initial position (yo) , bending rigidity (γ) , mass ratio (μ) and the Reynolds number (Re). This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  14. Finding the probability of infection in an SIR network is NP-Hard

    PubMed Central

    Shapiro, Michael; Delgado-Eckert, Edgar

    2012-01-01

    It is the purpose of this article to review results that have long been known to communications network engineers and have direct application to epidemiology on networks. A common approach in epidemiology is to study the transmission of a disease in a population where each individual is initially susceptible (S), may become infective (I) and then removed or recovered (R) and plays no further epidemiological role. Much of the recent work gives explicit consideration to the network of social interactions or disease-transmitting contacts and attendant probability of transmission for each interacting pair. The state of such a network is an assignment of the values {S, I, R} to its members. Given such a network, an initial state and a particular susceptible individual, we would like to compute their probability of becoming infected in the course of an epidemic. It turns out that this and related problems are NP-hard. In particular, it belongs in a class of problems for which no efficient algorithms for their solution are known. Moreover, finding an efficient algorithm for the solution of any problem in this class would entail a major breakthrough in theoretical computer science. PMID:22824138

  15. Emulating Many-Body Localization with a Superconducting Quantum Processor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Chen, Jin-Jun; Zeng, Yu; Zhang, Yu-Ran; Song, Chao; Liu, Wuxin; Guo, Qiujiang; Zhang, Pengfei; Xu, Da; Deng, Hui; Huang, Keqiang; Wang, H.; Zhu, Xiaobo; Zheng, Dongning; Fan, Heng

    2018-02-01

    The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1 /2 X Y model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of large-scale multiqubit superconducting quantum processors.

  16. Many-body localization of bosons in optical lattices

    NASA Astrophysics Data System (ADS)

    Sierant, Piotr; Zakrzewski, Jakub

    2018-04-01

    Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.

  17. Exact wave packet dynamics of singlet fission in unsubstituted and substituted polyene chains within long-range interacting models

    NASA Astrophysics Data System (ADS)

    Prodhan, Suryoday; Ramasesha, S.

    2017-08-01

    Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.

  18. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less

  19. Microscopy of the interacting Harper-Hofstadter model in the few-body limit

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus

    2017-04-01

    The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).

  20. Axelrod Model with Extended Conservativeness

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej

    2012-11-01

    Similarity of opinions and memory about recent interactions are two main factors determining likelihood of social contacts. Here, we explore the Axelrod model with an extended conservativeness which incorporates not only similarity between individuals but also a preference to the last source of accepted information. The additional preference given to the last source of information increases the initial decay of the number of ideas in the system, changes the character of the phase transition between homogeneous and heterogeneous final states and could increase the number of stable regions (clusters) in the final state.

  1. Solution of nonlinear multivariable constrained systems using a gradient projection digital algorithm that is insensitive to the initial state

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1982-01-01

    Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.

  2. Ionization of deep quantum wells: Optical trampoline effect

    NASA Astrophysics Data System (ADS)

    Perlin, E. Yu.; Levitskiĭ, R. S.

    2007-02-01

    A new mechanism of transitions of an electronic system from the ground state to states with excitation energies exceeding many times the energy of a light photon initiating the transitions has been considered. This mechanism is based on the so-called optical “trampoline” effect: one of the interacting electrons receives energy from another electron and, simultaneously absorbing a photon ħω, overcomes the energy gap significantly exceeding ħω. Ionization of deep quantum wells by low-frequency light of moderate intensity due to the optical trampoline effect was calculated.

  3. Structural and rheological relaxation upon flow cessation in colloidal dispersions: Transient, nonlinear microrheology

    NASA Astrophysics Data System (ADS)

    Mohanty, Ritesh P.; Zia, Roseanna N.

    2017-11-01

    We theoretically study the impact of particle roughness, Brownian motion, and hydrodynamic interactions on the relaxation of colloidal dispersions by examining the structural and rheological relaxation after microrheological flow cessation. In particular, we focus on the disparity in timescales over which hydrodynamic and entropic forces act and influence colloidal relaxation. To do this, we employ the active microrheology framework, in which a colloidal probe, driven by an arbitrarily strong external force, interacts with many surrounding particle configurations before reaching steady-state motion. We utilize the steady-state structure around the probe as the initial condition in a Smoluchowski equation that we solve to obtain the structural evolution upon flow cessation. We systematically tune the strength of hydrodynamic and entropic forces, and study their influence on structural and rheological relaxation. Upon cessation, the non-Newtonian behavior arising directly from hydrodynamic forces dissipates instantaneously, while the entropic contributions decay over longer times. We find that increasing pre-cessation external flow strength enhances the relaxation rate, while hydrodynamic interactions slow down the relaxation.

  4. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer.

    PubMed

    Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic

    2014-03-14

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.

  5. Chemical interaction matrix between reagents in a Purex based process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.

    2008-07-01

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less

  6. Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions and the resulting consequences

    NASA Astrophysics Data System (ADS)

    Roszak, Katarzyna; Cywiński, Łukasz

    2018-01-01

    We find that when a qubit initialized in a pure state experiences pure dephasing due to interaction with an environment, separable qubit-environment states generated during the evolution also have zero quantum discord with respect to the environment. What follows is that the set of separable states which can be reached during the evolution has zero volume, and hence, such effects as sudden death of qubit-environment entanglement are very unlikely. In the case of the discord with respect to the qubit, a vast majority of qubit-environment separable states is discordant, but in specific situations zero-discord states are possible. This is conceptually important since there is a connection between the discordance with respect to a given subsystem and the possibility of describing the evolution of this subsystem using completely positive maps. Finally, we use the formalism to find an exemplary evolution of an entangled state of two qubits that is completely positive, and occurs solely due to interaction of only one of the qubits with its environment (so one could guess that it corresponds to a local operation, since it is local in a physical sense), but which nevertheless causes the enhancement of entanglement between the qubits. While this simply means that the considered evolution is completely positive, but does not belong to local operations and classical communication, it shows how much caution has to be exercised when identifying evolution channels that belong to that class.

  7. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  8. A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..

  9. A Risk and Maintenance Model for Bulimia Nervosa: From Impulsive Action to Compulsive Behavior

    PubMed Central

    Pearson, Carolyn M.; Wonderlich, Stephen A.; Smith, Gregory T.

    2015-01-01

    This paper offers a new model for bulimia nervosa (BN) that explains both the initial impulsive nature of binge eating and purging as well as the compulsive quality of the fully developed disorder. The model is based on a review of advances in research on BN and advances in relevant basic psychological science. It integrates transdiagnostic personality risk, eating disorder specific risk, reinforcement theory, cognitive neuroscience, and theory drawn from the drug addiction literature. We identify both a state-based and a trait-based risk pathway, and we then propose possible state-by-trait interaction risk processes. The state-based pathway emphasizes depletion of self-control. The trait-based pathway emphasizes transactions between the trait of negative urgency (the tendency to act rashly when distressed) and high-risk psychosocial learning. We then describe a process by which initially impulsive BN behaviors become compulsive over time, and we consider the clinical implications of our model. PMID:25961467

  10. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    NASA Astrophysics Data System (ADS)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  11. Human visual response to nuclear particle exposures

    NASA Technical Reports Server (NTRS)

    Tobias, C. A.; Budinger, T. F.; Lyman, J. T.

    1972-01-01

    Experiments with accelerated helium ions were performed in an effort to localize the site of initial radiation interactions in the eye that lead to light flash observations by astronauts during spaceflight. The character and efficiency of helium ion induction of visual sensations depended on the state of dark adaptation of the retina; also, the same events were seen with different efficiencies and details when particle flux density changed. It was concluded that fast particles cause interactions in the retina, particularly in the receptor layer, and thus give rise to the sensations of light flashes, streaks, and supernovae.

  12. Infrared weak corrections to strongly interacting gauge boson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-04-15

    We evaluate the impact of electroweak corrections of infrared origin on strongly interacting longitudinal gauge boson scattering, calculating all-order resummed expressions at the double log level. As a working example, we consider the standard model with a heavy Higgs. At energies typical of forthcoming experiments (LHC, International Linear Collider, Compact Linear Collider), the corrections are in the 10%-40% range, with the relative sign depending on the initial state considered and on whether or not additional gauge boson emission is included. We conclude that the effect of radiative electroweak corrections should be included in the analysis of longitudinal gauge boson scattering.

  13. The Interaction Between Chronic Stress and Pregnancy: Preterm Birth from A Biobehavioral Perspective

    PubMed Central

    Latendresse, Gwen

    2009-01-01

    Women's health care providers are increasingly aware that chronic stressors—such as poverty, ongoing perceived stress and anxiety, intimate partner violence, and experiences of racism—are associated with an increased incidence of preterm birth in the United States. It is important to increase our understanding of the explanatory pathways involved in these associations. This article discusses the concepts of stress, chronic stress response, allostatic load, the physiology of labor initiation, and the pathophysiologic interactions that may contribute to the occurrence of chronic stress-related preterm birth. Implications for future research and interventions are explored. PMID:19114234

  14. A Quantum-Like View to a Generalized Two Players Game

    NASA Astrophysics Data System (ADS)

    Bagarello, F.

    2015-10-01

    This paper consider the possibility of using some quantum tools in decision making strategies. In particular, we consider here a dynamical open quantum system helping two players, and , to take their decisions in a specific context. We see that, within our approach, the final choices of the players do not depend in general on their initial mental states, but they are driven essentially by the environment which interacts with them. The model proposed here also considers interactions of different nature between the two players, and it is simple enough to allow for an analytical solution of the equations of motion.

  15. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  16. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory.

    PubMed

    Gupta, Ravi; Lee, So Eui; Agrawal, Ganesh K; Rakwal, Randeep; Park, Sangryeol; Wang, Yiming; Kim, Sun T

    2015-01-01

    The extracellular space between cell wall and plasma membrane acts as the first battle field between plants and pathogens. Bacteria, fungi, and oomycetes that colonize the living plant tissues are encased in this narrow region in the initial step of infection. Therefore, the apoplastic region is believed to be an interface which mediates the first crosstalk between host and pathogen. The secreted proteins and other metabolites, derived from both host and pathogen, interact in this apoplastic region and govern the final relationship between them. Hence, investigation of protein secretion and apoplastic interaction could provide a better understanding of plant-microbe interaction. Here, we are briefly discussing the methods available for the isolation and normalization of the apoplastic proteins, as well as the current state of secretome studies focused on the in-planta interaction between the host and the pathogen.

  17. Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.

    2012-02-01

    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.

  18. Evaluation of the observation operator Jacobian for leaf area index data assimilation with an extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Rüdiger, Christoph; Albergel, CléMent; Mahfouf, Jean-FrançOis; Calvet, Jean-Christophe; Walker, Jeffrey P.

    2010-05-01

    To quantify carbon and water fluxes between the vegetation and the atmosphere in a consistent manner, land surface models now include interactive vegetation components. These models treat the vegetation biomass as a prognostic model state, allowing the model to dynamically adapt the vegetation states to environmental conditions. However, it is expected that the prediction skill of such models can be greatly increased by assimilating biophysical observations such as leaf area index (LAI). The Jacobian of the observation operator, a central aspect of data assimilation methods such as the extended Kalman filter (EKF) and the variational assimilation methods, provides the required linear relationship between the observation and the model states. In this paper, the Jacobian required for assimilating LAI into the Interaction between the Soil, Biosphere and Atmosphere-A-gs land surface model using the EKF is studied. In particular, sensitivity experiments were undertaken on the size of the initial perturbation for estimating the Jacobian and on the length of the time window between initial state and available observation. It was found that small perturbations (0.1% of the state) typically lead to accurate estimates of the Jacobian. While other studies have shown that the assimilation of LAI with 10 day assimilation windows is possible, 1 day assimilation intervals can be chosen to comply with numerical weather prediction requirements. Moreover, the seasonal dependence of the Jacobian revealed contrasted groups of Jacobian values due to environmental factors. Further analyses showed the Jacobian values to vary as a function of the LAI itself, which has important implications for its assimilation in different seasons, as the size of the LAI increments will subsequently vary due to the variability of the Jacobian.

  19. Structural characterization of ribosome recruitment and translocation by type IV IRES.

    PubMed

    Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S

    2016-05-09

    Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.

  20. Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Wu, Shao-xiong; Zhang, Yang; Yu, Chang-shui

    2018-03-01

    Quantum Fisher information (QFI) is an important feature for the precision of quantum parameter estimation based on the quantum Cramér-Rao inequality. When the quantum state satisfies the von Neumann-Landau equation, the local quantum uncertainty (LQU), as a kind of quantum correlation, present in a bipartite mixed state guarantees a lower bound on QFI in the optimal phase estimation protocol (Girolami et al., 2013). However, in the open quantum systems, there is not an explicit relation between LQU and QFI generally. In this paper, we study the relation between LQU and QFI in open systems which is composed of two interacting two-level systems coupled to independent non-Markovian environments with the entangled initial state embedded by a phase parameter θ. The analytical calculations show that the QFI does not depend on the phase parameter θ, and its decay can be restrained through enhancing the coupling strength or non-Markovianity. Meanwhile, the LQU is related to the phase parameter θ and shows plentiful phenomena. In particular, we find that the LQU can well bound the QFI when the coupling between the two systems is switched off or the initial state is Bell state.

  1. Quantum-like model of brain's functioning: decision making from decoherence.

    PubMed

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments.

    PubMed

    Farman, Gerrie P; Rynkiewicz, Michael J; Orzechowski, Marek; Lehman, William; Moore, Jeffrey R

    2018-06-01

    Calcium regulation of cardiac muscle contraction is controlled by the thin-filament proteins troponin and tropomyosin bound to actin. In the absence of calcium, troponin-tropomyosin inhibits myosin-interactions on actin and induces muscle relaxation, whereas the addition of calcium relieves the inhibitory constraint to initiate contraction. Many mutations in thin filament proteins linked to cardiomyopathy appear to disrupt this regulatory switching. Here, we tested perturbations caused by mutant tropomyosins (E40K, DCM; and E62Q, HCM) on intra-filament interactions affecting acto-myosin interactions including those induced further by myosin association. Comparison of wild-type and mutant human α-tropomyosin (Tpm1.1) behavior was carried out using in vitro motility assays and molecular dynamics simulations. Our results show that E62Q tropomyosin destabilizes thin filament off-state function by increasing calcium-sensitivity, but without apparent affect on global tropomyosin structure by modifying coiled-coil rigidity. In contrast, the E40K mutant tropomyosin appears to stabilize the off-state, demonstrates increased tropomyosin flexibility, while also decreasing calcium-sensitivity. In addition, the E40K mutation reduces thin filament velocity at low myosin concentration while the E62Q mutant tropomyosin increases velocity. Corresponding molecular dynamics simulations indicate specific residue interactions that are likely to redefine underlying molecular regulatory mechanisms, which we propose explain the altered contractility evoked by the disease-causing mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.

    2017-09-01

    Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (GloSea5), an initialized coupled model. We analyze a series of nine-member hindcasts from GloSea5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and air-sea interaction processes pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated air-sea interactions in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in GloSea5.

  4. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    NASA Astrophysics Data System (ADS)

    Burlakov, V. M.; Emptage, N.; Goriely, A.; Bressloff, P. C.

    2012-01-01

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters.

  5. An approximate Riemann solver for hypervelocity flows

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter A.

    1991-01-01

    We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.

  6. Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Canuto, V.

    1975-01-01

    The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.

  7. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin.

    PubMed

    Rynkiewicz, Michael J; Schott, Veronika; Orzechowski, Marek; Lehman, William; Fischer, Stefan

    2015-12-01

    Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima-one corresponding to the "blocked-state" as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosin-actin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin.

  8. Identifying different mechanisms in the control of a nitrogen-vacancy center system

    NASA Astrophysics Data System (ADS)

    Li, Shouzhi; Yang, Ling; Cao, Dewen; Wang, Yaoxiong; Shuang, Feng; Gao, Fang

    2017-10-01

    The nitrogen-vacancy (NV) center system has shown great potential in quantum computing due to its long decoherence time at room temperature by encoding the qubit in dressed states [28]. The corresponding control mechanisms, which is expressed by the pathways linking the initial and target states, can be naturally investigated with the Hamiltonian-encoding and observable-decoding (HE-OD) method in the interaction adiabatic representation. This is proved by the fact that the mechanisms change slightly with different detunings, magnetic and driving field intensities, and the dominant pathway is always | g 〉 → | d 〉 → | g 〉 , with | g 〉 and | d 〉 as the first two lowest dressed states. Cases are different in the diabatic representation. The orders of dominant pathways increase the driving field intensities. Tendencies of quantum pathway amplitudes with driving fields, magnetic fields and detunings change at different conditions, which can be analyzed from the Dyson series. HE-OD analysis show that the two states | g 〉 and | d 〉 in the interaction adiabatic representation are preferable to be employed as a qubit than the state pair |0〉 and | - 1 〉 in the diabatic representation under the current Hamiltonian and parameters.

  9. Convergence Time and Phase Transition in a Non-monotonic Family of Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ramos, A. D.; Leite, A.

    2017-08-01

    In dynamical systems, some of the most important questions are related to phase transitions and convergence time. We consider a one-dimensional probabilistic cellular automaton where their components assume two possible states, zero and one, and interact with their two nearest neighbors at each time step. Under the local interaction, if the component is in the same state as its two neighbors, it does not change its state. In the other cases, a component in state zero turns into a one with probability α , and a component in state one turns into a zero with probability 1-β . For certain values of α and β , we show that the process will always converge weakly to δ 0, the measure concentrated on the configuration where all the components are zeros. Moreover, the mean time of this convergence is finite, and we describe an upper bound in this case, which is a linear function of the initial distribution. We also demonstrate an application of our results to the percolation PCA. Finally, we use mean-field approximation and Monte Carlo simulations to show coexistence of three distinct behaviours for some values of parameters α and β.

  10. Real-time dynamics of typical and untypical states in nonintegrable systems

    NASA Astrophysics Data System (ADS)

    Richter, Jonas; Jin, Fengping; De Raedt, Hans; Michielsen, Kristel; Gemmer, Jochen; Steinigeweg, Robin

    2018-05-01

    Understanding (i) the emergence of diffusion from truly microscopic principles continues to be a major challenge in experimental and theoretical physics. At the same time, isolated quantum many-body systems have experienced an upsurge of interest in recent years. Since in such systems the realization of a proper initial state is the only possibility to induce a nonequilibrium process, understanding (ii) the largely unexplored role of the specific realization is vitally important. Our work reports a substantial step forward and tackles the two issues (i) and (ii) in the context of typicality, entanglement as well as integrability and nonintegrability. Specifically, we consider the spin-1/2 XXZ chain, where integrability can be broken due to an additional next-nearest neighbor interaction, and study the real-time and real-space dynamics of nonequilibrium magnetization profiles for a class of pure states. Summarizing our main results, we show that signatures of diffusion for strong interactions are equally pronounced for the integrable and nonintegrable case. In both cases, we further find a clear difference between the dynamics of states with and without internal randomness. We provide an explanation of this difference by a detailed analysis of the local density of states.

  11. Emergence of entanglement with temperature and time in factorization-surface states

    NASA Astrophysics Data System (ADS)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-01-01

    There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.

  12. Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change

    PubMed Central

    Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi

    2016-01-01

    Background A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. Principal Findings Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change. Conclusion and Significance ‘Whole-genome’ regulation of gene expression through self-regulatory SOC control complements gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium statistical mechanism that is responsible for the massive reprogramming of genome expression. PMID:27997556

  13. How to examine soil sorption of ionizable organic compounds and avoid varying pH?

    NASA Astrophysics Data System (ADS)

    Borisover, Mikhail

    2017-04-01

    Multiple natural and anthropogenic organic compounds including new and emerging pollutants undergo ionization in aqueous solutions, and their sorption by soils and sediments is contributed by presence of both molecular and ionized species. Better understanding of environmental fate of organic chemicals requires taking into account interactions of molecular and ionized species with environmental sorbents. A "standard" (and undoubtedly important) procedure for differentiating contributions of molecular and ionized species into the overall soil sorption of an organic compound involves varying pH of solution in batch sorption experiments. However, varying pH is (1) often not possible, without destroying a sorbent, e.g., due to the buffer capacity of soils containing carbonates, (2) difficult for further interpretation, since it changes not only the ionization status of a solute in a solution but also the sorbent structure, e.g., a conformation of organic matter, and/or ionization of surface functional groups, (3) making difficult (or even impossible) to explicitly evaluate the role of dissolved species-bulk water interactions, directly affecting the affinity of a sorbate to distribute between water and a sorbent. Indeed, both molecular and ionized species undergo interactions with the solvent bulk and, at least in the case of the ionized ones, there was no a simple way to quantify organic ion-water interactions and their role in organic ion distribution between soil and water phases. This paper presents a "counter-intuitive" approach to examine sorption interactions of an ionizable compound, without experimenting with varied pH. The approach is based on an idea of replacing an initial state in sorption transfer of an ionizable compound from the solvent bulk to a solvated (hydrated) sorbed state: a traditional coefficient describing distribution of a partially ionized compound between a hydrated sorbent and a co-equilibrated aqueous phase is converted to the coefficient describing the transfer of the sorbing compound from its initial molecular (non-ionized) state (in a solution or in the gas phase) to the final hydrated sorbed state equilibrated with the actual aqueous solution of this ionizable compound. In this way, any contributions from the bulk solvent-organic ion interactions into the sorption transfer may be excluded; in addition, further any solute-solvent interactions may be taken out of the consideration. Therefore, compound's sorption characteristics "cleared" of solute-solvent interactions may be obtained, and a better understanding of relations between interactions in a sorbed phase and a molecular structure of organic sorbates can be reached. The approach is illustrated by examining sorption of variously ionized organic compounds, i.e., those belonging to the pharmaceuticals and personal care products (triclosan, gemfibrozil, galaxolide), and aliphatic organic acids on natural and organic amendment-enriched soils. Specifically, it is demonstrated how the greater H-donating ability of trifluoroacetic acid, as compared with acetic acid, strengthens the acid interactions in the soil phase. In another series of examples, it is shown how hydrophobic and non-ionizing galaxolide interacts weakly with soils, as compared with partially ionized triclosan and almost fully ionized gemfibrozil, i.e., leading to the conclusions not reachable based only on the direct comparison of experimentally measured distribution coefficients.

  14. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  15. Ultimate fate of constrained voters

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Redner, S.

    2004-09-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  16. Magnetic field effect corroborated with docking study to explore photoinduced electron transfer in drug-protein interaction.

    PubMed

    Chakraborty, Brotati; Roy, Atanu Singha; Dasgupta, Swagata; Basu, Samita

    2010-12-30

    Conventional spectroscopic tools such as absorption, fluorescence, and circular dichroism spectroscopy used in the study of photoinduced drug-protein interactions can yield useful information about ground-state and excited-state phenomena. However, photoinduced electron transfer (PET) may be a possible phenomenon in the drug-protein interaction, which may go unnoticed if only conventional spectroscopic observations are taken into account. Laser flash photolysis coupled with an external magnetic field can be utilized to confirm the occurrence of PET and authenticate the spin states of the radicals/radical ions formed. In the study of interaction of the model protein human serum albumin (HSA) with acridine derivatives, acridine yellow (AY) and proflavin (PF(+)), conventional spectroscopic tools along with docking study have been used to decipher the binding mechanism, and laser flash photolysis technique with an associated magnetic field (MF) has been used to explore PET. The results of fluorescence study indicate that fluorescence resonance energy transfer takes place from the protein to the acridine-based drugs. Docking study unveils the crucial role of Ser 232 residue of HSA in explaining the differential behavior of the two drugs towards the model protein. Laser flash photolysis experiments help to identify the radicals/radical ions formed in the due course of PET (PF(•), AY(•-), TrpH(•+), Trp(•)), and the application of an external MF has been used to characterize their initial spin-state. Owing to its distance dependence, MF effect gives an idea about the proximity of the radicals/radical ions during interaction in the system and also helps to elucidate the reaction mechanisms. A prominent MF effect is observed in homogeneous buffer medium owing to the pseudoconfinement of the radicals/radical ions provided by the complex structure of the protein.

  17. Photochemical modification of polymeric materials and the polarization of light in ionomeric guest/host systems

    NASA Astrophysics Data System (ADS)

    Pan, Bo

    Photochemical methods were introduced to develop important extrusion processes, through which polymers can either be functionalized or modified by altering molecular weight characteristics. Therefore, poly(methyl methacrylate) (PMMA) incorporated with a small amount of light-reactive functional groups was synthesized. These functional groups can be activated by UV irradiation in a post extrusion process to produce high molecular weight polymer and/or crosslinked polymer. Environmental stress cracking resistance of these polymers was examined and correlated to damping using dynamic mechanic analysis. To improve industrial reactive extrusion process of preparing maleic anhydride grafted polypropylene (MAR-g-PP), photografting was proposed and studied. Using benzophenone (BP) as the initiator, grafting efficiency was significantly improved compared to peroxide initiated grafting. Moreover, nearly constant conversion of maleic anhydride was observed in photografting. The high efficiency of benzophenone initiated photografting was attributed to the formation of the excited triplet state maleic anhydride. A rate constant of 6.0*109 M-1*sec-1 for the quenching of triplet state BP with MAH was obtained using laser photolysis spectroscopy. In a comparison, the hydrogen abstraction process from polypropylene by the triplet state BP molecules has a rate constant of 4.1*105 M-1*sec-1. In solution grafting with the use of benzene as the solvent, a facile triplet state energy transfer process may also occur leading to the formation of the excited triplet state MAH. Spectroscopic methods involving light were also used for the study of the guest-host interactions in polymer systems. The use of ionomers as the matrix for the oriented guest/host systems, cationic dye systems in particular, was shown to enhance polarization efficiency as well as dye uptake as comparing to conventional polymers, such as poly(vinyl alcohol). It was found that the dye molecules in carboxylated EVOH (EVOH-COONa) have higher degree of orientation than in EVOH, while polymer chain orientation is quite similar in these two polymers. The difference in the dye orientation was attributed to the ion-ion interactions between dye molecules and carboxylate groups of the modified polymer.

  18. Quantum Games under Decoherence

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-02-01

    Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.

  19. The Dynamics of Initiative in Communication Networks.

    PubMed

    Mollgaard, Anders; Mathiesen, Joachim

    2016-01-01

    Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take initiative in the future. In general, people with many initiatives receive attention from a broader spectrum of friends than people with few initiatives. Lastly, we compare the likelihood of taking initiative with the basic personality traits of the five factor model.

  20. GENERAL: Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    NASA Astrophysics Data System (ADS)

    Huang, Li-Yuan; Fang, Mao-Fa

    2008-07-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  1. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization.

    PubMed

    Ellis, J Michael; Altman, Michael D; Cash, Brandon; Haidle, Andrew M; Kubiak, Rachel L; Maddess, Matthew L; Yan, Youwei; Northrup, Alan B

    2016-12-08

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.

  2. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization

    PubMed Central

    2016-01-01

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain. PMID:27994755

  3. Automatic Conversational Scene Analysis in Children with Asperger Syndrome/High-Functioning Autism and Typically Developing Peers

    PubMed Central

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior. PMID:24489674

  4. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps.

    PubMed

    Rea, Anita M; Simpson, Emma R; Meldrum, Jill K; Williams, Huw E L; Searle, Mark S

    2008-12-02

    The fast folding of small proteins is likely to be the product of evolutionary pressures that balance the search for native-like contacts in the transition state with the minimum number of stable non-native interactions that could lead to partially folded states prone to aggregation and amyloid formation. We have investigated the effects of non-native interactions on the folding landscape of yeast ubiquitin by introducing aromatic substitutions into the beta-turn region of the N-terminal beta-hairpin, using both the native G-bulged type I turn sequence (TXTGK) as well as an engineered 2:2 XNGK type I' turn sequence. The N-terminal beta-hairpin is a recognized folding nucleation site in ubiquitin. The folding kinetics for wt-Ub (TLTGK) and the type I' turn mutant (TNGK) reveal only a weakly populated intermediate, however, substitution with X = Phe or Trp in either context results in a high propensity to form a stable compact intermediate where the initial U-->I collapse is visible as a distinct kinetic phase. The introduction of Trp into either of the two host turn sequences results in either complex multiphase kinetics with the possibility of parallel folding pathways, or formation of a highly compact I-state stabilized by non-native interactions that must unfold before refolding. Sequence substitutions with aromatic residues within a localized beta-turn capable of forming non-native hydrophobic contacts in both the native state and partially folded states has the undesirable consequence that folding is frustrated by the formation of stable compact intermediates that evolutionary pressures at the sequence level may have largely eliminated.

  5. Effects of eddy initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic eddies

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    1986-01-01

    The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.

  6. Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O.

    PubMed

    Roth, Robert; Langhammer, Joachim; Calci, Angelo; Binder, Sven; Navrátil, Petr

    2011-08-12

    We present first ab initio no-core shell model (NCSM) calculations using similarity renormalization group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei throughout the p-shell, particularly (12)C and (16)O. By introducing an adaptive importance truncation for the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to surpass previous NCSM studies including 3N interactions. We present ground and excited states in (12)C and (16)O for model spaces up to N(max) = 12 including full 3N interactions. We analyze the contributions of induced and initial 3N interactions and probe induced 4N terms through the sensitivity of the energies on the SRG flow parameter. Unlike for light p-shell nuclei, SRG-induced 4N contributions originating from the long-range two-pion terms of the chiral 3N interaction are sizable in (12)C and (16)O.

  7. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  8. Application of digital computer APU modeling techniques to control system design.

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.; Burriss, W. L.

    1973-01-01

    Study of the required controls for a H2-O2 auxiliary power unit (APU) technology program for the Space Shuttle. A steady-state system digital computer program was prepared and used to optimize initial system design. Analytical models of each system component were included. The program was used to solve a nineteen-dimensional problem, and then time-dependent differential equations were added to the computer program to simulate transient APU system and control. Some system parameters were considered quasi-steady-state, and others were treated as differential variables. The dynamic control analysis proceeded from initial ideal control modeling (which considered one control function and assumed the others to be ideal), stepwise through the system (adding control functions), until all of the control functions and their interactions were considered. In this way, the adequacy of the final control design over the required wide range of APU operating conditions was established.

  9. Effect of particle size of drug on conversion of crystals to an amorphous state in a solid dispersion with crospovidone.

    PubMed

    Sugamura, Yuka; Fujii, Makiko; Nakanishi, Sayaka; Suzuki, Ayako; Shibata, Yusuke; Koizumi, Naoya; Watanabe, Yoshiteru

    2011-01-01

    The effect of particle size on amorphization of drugs in a solid dispersion (SD) was investigated for two drugs, indomethacin (IM) and nifedipine (NP). The SD of drugs were prepared in a mixture with crospovidone by a variety of mechanical methods, and their properties investigated by particle sizing, thermal analysis, and powder X-ray diffraction. IM, which had an initial particle size of 1 µm and tends to aggregate, was forced through a sieve to break up the particles. NP, which had a large initial particle size, was jet-milled. In both cases, reduction of the particle size of the drugs enabled transition to an amorphous state below the melting point of the drug. The reduction in particle size is considered to enable increased contact between the crospovidone and drug particles, increasing interactions between the two compounds. © 2011 Pharmaceutical Society of Japan

  10. Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.

    2002-03-01

    We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.

  11. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  12. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  13. Emotion Chat: A Web Chatroom with Emotion Regulation for E-Learners

    NASA Astrophysics Data System (ADS)

    Zheng, Deli; Tian, Feng; Liu, Jun; Zheng, Qinghua; Qin, Jiwei

    In order to compensate for lack of emotion communication between teachers and students in e-learning systems, we have designed and implemented the EmotionChat -- a web chatroom with emotion regulation. EmotionChat perceives e-learners' emotional states based on interactive text. And it recommends resources such as music, cartoons, and mottos to an e-learner when it detects negative emotional states. Meanwhile, it recommends emotion regulation cases to the e-learner's listeners and teachers. The result of our initial experiment shows that EmotionChat can recommend valuable emotion regulation policies for e-learners.

  14. Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Noel, Michael W.; Griffith, W. M.; Gallagher, T. F.

    2000-12-01

    We have studied the ionization of lithium Rydberg atoms by pulsed microwave fields in the regime in which the microwave frequency is equal to or a subharmonic of the classical Kepler frequency of the two-body Coulomb problem. We have observed a series of resonances where the atom is relatively stable against ionization. The resonances are similar to those seen previously in hydrogen, but with significant quantitative differences. We also present measurements of the distribution of states that remain bound after the microwave interaction for initial states near one of the classical subharmonic resonances.

  15. End-State Relative Equilibria in the Sphere-Restricted Full Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Gabriel, Travis; Scheeres, Daniel J.

    2015-05-01

    The Sphere-Restricted Full Three-Body Problem studies the motion of three finite density spheres as they interact under surface and gravitational forces. When accounting for the dissipation of energy, full-body systems may achieve minimum energy states that are unatainable in the classic treatment of the N-Body Problem. This serves as a simple model for the mechanics of rubble pile asteroids, interacting grains in a protoplanetary disk, and potentially the interactions of planetary ring particles. Previous studies of this problem have been performed in the case where the three spheres are of equal size and mass, with all possible relative equilibria and their stability having been identified as a function of the total angular momentum of the system. These studies uncovered that at certain levels of angular momentum there exists more than one stable relative equilibrium state. Thus a question of interest is which of these states a dissipative system would preferentially settle in provided some domain of initial conditions, and whether this would be a function of the dissipation parameters. Using perfectly-rigid dynamics, three-equal-sphere systems are simulated in a purpose-written C-based code to uncover these details. Results from this study are relevant to the mechanics and dynamics in small solar system bodies where relative forces are not great enough to compromise the rigidity of the constituents.

  16. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    PubMed

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  17. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.

    2017-12-01

    In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

  18. Effect of Initial Stress on the Dynamic Response of a Multi-Layered Plate-Strip Subjected to an Arbitrary Inclined Time-Harmonic Force

    NASA Astrophysics Data System (ADS)

    Daşdemir, A.

    2017-08-01

    The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.

  19. Dynamics of isolated quantum systems: many-body localization and thermalization

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.

    2016-05-01

    We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.

  20. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    NASA Astrophysics Data System (ADS)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  1. Geographic Factors and Human Papillomavirus (HPV) Vaccination Initiation among Adolescent Girls in the United States.

    PubMed

    Henry, Kevin A; Stroup, Antoinette M; Warner, Echo L; Kepka, Deanna

    2016-02-01

    This study is among the first to explore geographic factors that may be associated with human papillomavirus (HPV) vaccine uptake in the United States. Data from the 2011 and 2012 National Immunization Survey-Teen for 20,565 female adolescents aged 13 to 17 years were analyzed to examine associations of HPV vaccine initiation (receipt of at least one dose) with ZIP code-level geographic factors. Logistic regression including individual and geographic factors was used to estimate the odds of HPV vaccine initiation. Approximately 53% of girls initiated the HPV vaccine in both years. Girls in high poverty communities had higher HPV vaccine initiation compared with those in low poverty communities [61.1% vs. 52.4%; adjusted OR (AOR), 1.18; 95% confidence intervals (CI), 1.04-1.33]. Initiation was higher among girls in communities where the majority of the population was Hispanic (69.0% vs. 49.9%; AOR, 1.64; 95% CI, 1.43-1.87) or non-Hispanic mixed race (60.4% vs. 49.9%; AOR, 1.30; 95% CI, 1.17-1.44) compared with majority non-Hispanic white communities. Interactions between individual-level race/ethnicity and community racial-ethnic composition indicated significantly higher odds of initiation among Hispanic girls living in Hispanic communities compared with Hispanic girls living in predominantly non-Hispanic White (NHW) (AOR, 2.23; 95% CI, 1.87-2.65) or non-Hispanic Black (NHB) (AOR, 1.90; 95% CI, 1.20-3.04) communities, respectively. Initiation rates of HPV vaccination among teen girls were highest in the poorest communities and among Hispanics living in communities where the racial-ethnic composition was predominantly Hispanic or mixed race. Given low HPV vaccination rates in the United States, these results provide important evidence to inform public health interventions to increase HPV vaccination. ©2016 American Association for Cancer Research.

  2. Simulation of Top Quark Pair Production as a Background for Higgs Events at the Compact Muon Solenoid

    NASA Astrophysics Data System (ADS)

    Justus, Christopher

    2005-04-01

    In this study, we simulated top-antitop (tt-bar) quark events at the Compact Muon Solenoid (CMS), an experiment presently being constructed at the Large Hadron Collider in Geneva, Switzerland. The tt-bar process is an important background for Higgs events. We used a chain of software to simulate and reconstruct processes that will occur inside the detector. CMKIN was used to generate and store Monte Carlo Events. OSCAR, a GEANT4 based CMS detector simulator, was used to simulate the CMS detector and how particles would interact with the detector. Next, we used ORCA to simulate the response of the readout electronics at CMS. Last, we used the Jet/MET Root maker to create root files of jets and missing energy. We are now using this software analysis chain to complete a systematic study of initial state radiation at hadron colliders. This study is essential because tt-bar is the main background for the Higgs boson and these processes are extremely sensitive to initial state radiation. Results of our initial state radiation study will be presented. We started this study at the new LHC Physics Center (LPC) located at Fermi National Accelerator Laboratory, and we are now completing the study at the University of Rochester.

  3. Anisotropic invasion and its consequences in two-strategy evolutionary games on a square lattice

    NASA Astrophysics Data System (ADS)

    Szabó, György; Varga, Levente; Szabó, Mátyás

    2016-11-01

    We have studied invasion processes in two-strategy evolutionary games on a square lattice for imitation rule when the players interact with their nearest neighbors. Monte Carlo simulations are performed for systems where the pair interactions are composed of a unit strength coordination game when varying the strengths of the self-dependent and cross-dependent components at a fixed noise level. The visualization of strategy distributions has clearly indicated that circular homogeneous domains evolve into squares with an orientation dependent on the composition. This phenomenon is related to the anisotropy of invasion velocities along the interfaces separating the two homogeneous regions. The quantified invasion velocities indicate the existence of a parameter region in which the invasions are opposite for the horizontal (or vertical) and the tilted interfaces. In this parameter region faceted islands of both strategies shrink and the system evolves from a random initial state into the homogeneous state that first percolated.

  4. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  5. Numerical Simulation of A Right-moving Storm Over France

    NASA Astrophysics Data System (ADS)

    Chancibault, K.; Ducrocq, V.; Lafore, J.-Ph.

    A three-dimensional non-hydrostatic mesoscale model is used to simulate the right- moving storm produced through storm splitting, on 30 may 1999, over northern France. The initial state is provided by the French 3D-var ARPEGE analysis and the simuation is performed with two interactive nested domains. The aim of this study is to improve our understanding of such storm dynamics. A vor- ticity analysis has been carried out, with emphasis on stretching and tilting terms of the vertical vorticity equation, thanks to the backward trajectories. The baroclinic produc- tion and stretching terms of the horizontal vorticity equation have also been studied to understand the interaction between the horizontal vorticity and a mesoscale thermal line. Finally, the spatial and temporal variation of the Storm Relative Environmental Helicity has been examined. Most of the results compare well with previous results on right-moving storms ob- tained from theoritical or numerical studies from idealized homogeneous base state.

  6. Potential Effects of the Overburden Argument on the Funding of Rural Schools. Final Report to the New York State Special Task Force on Equity and Excellence in Education.

    ERIC Educational Resources Information Center

    Monk, David H.; And Others

    This report presents attempts to understand more about how six background characteristics (small scale, population sparsity, district isolation within a BOCES (Boards of Cooperative Educational Service), interaction between a change in enrollment and initial scale of the district, rapid changes in full value property wealth over time, and large…

  7. An upper limit on the neutrino rest mass.

    NASA Technical Reports Server (NTRS)

    Cowsik, R.; Mcclelland, J.

    1972-01-01

    It is pointed out that the measurement of the deceleration parameter by Sandage (1972) implies an upper limit of a few tens of electron volts on the sum of the masses of all the possible light, stable particles that interact only weakly. In the discussion of the problem, it is assumed that the universe is expanding from an initially hot and condensed state as envisaged in the 'big-bang' theories.

  8. Radiative capture of proton by ^{12}C at low energy

    NASA Astrophysics Data System (ADS)

    Irgaziev, Bakhadir Fayzullaevich; Nabi, Jameel-Un; Kabir, Abdul

    2018-07-01

    Within the framework of potential cluster model, astrophysical S-factor of radiative capture reaction ^{12}C (p,γ)^{13}N has been calculated in the two body cluster model for the energy range 0-1 MeV. The nuclear interaction in the initial and final states is described by the Woods-Saxon potential. The calculated astrophysical S-factor and rates are compared with known experimental results.

  9. Mathematical Models of Cardiac Pacemaking Function

    NASA Astrophysics Data System (ADS)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  10. On previous and present investigations of resonance gamma-ray interaction with nuclei at the Institute of Theoretical and Experimental Physics (ITEP, Moscow)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, A. V.

    A brief survey of theoretical and experimental work that is devoted to studying the resonance absorption and scattering of gamma rays by nuclei and which was initiated at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the 1950s and has been continued to date is given. Investigations of various versions of interaction in beta decay, magnetic-field-perturbed angular distributions of resonantly scattered gamma rays, the problem of the Moessbauer gamma resonance of long-lived isomeric states of nuclei, and the resonance scattering of annihilation photons by nuclei are described.

  11. Spontaneous and superfluid chiral edge states in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Li, G.; Liew, T. C. H.

    2017-09-01

    We present a scheme of interaction-induced topological band structures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under nonresonant pumping we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under either nonresonant or resonant coherent pumping we find that it is also possible to engineer a topological dispersion that is linear in wave vector—a property associated with polariton superfluidity.

  12. Engineering bacterial translation initiation - Do we have all the tools we need?

    PubMed

    Vigar, Justin R J; Wieden, Hans-Joachim

    2017-11-01

    Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Coupled-oscillator theory of dispersion and Casimir-Polder interactions.

    PubMed

    Berman, P R; Ford, G W; Milonni, P W

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r(-4), a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called "remarkable formula" for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.

  14. Crossing Boundaries

    PubMed Central

    Steinmetz, Erika; Bysshe, Tyler; Bruen, Brian K.

    2017-01-01

    Objectives: Previous state interagency collaborations have led to successful tobacco cessation initiatives. The objective of this study was to assess the roles and interaction of state Medicaid and public health agency efforts to support tobacco cessation for low-income Medicaid beneficiaries. Methods: We interviewed Medicaid and state public health agency officials in 8 states in September and October 2015 about collaborations in policy development and implementation for Medicaid tobacco cessation, including Medicaid coverage policies, quitlines, and monitoring. Results: Collaboration between Medicaid and public health agencies was limited. Smoking cessation quitlines were the most common area of collaboration cited. Public health officials were typically not involved in developing Medicaid coverage policies. States covered a range of US Food and Drug Administration–approved tobacco cessation medications, but 7 of the 8 states imposed limitations, such as charging copayments or requiring previous authorization. States generally lacked data to monitor implementation of tobacco cessation efforts and had little ability to determine the effectiveness of their policies. Conclusions: To strengthen efforts to reduce smoking and tobacco-related health burdens and to monitor the effectiveness of policies and programs, Medicaid and public health agencies should prioritize tobacco cessation and develop and analyze data about smoking and cessation efforts among Medicaid beneficiaries. Recent multistate initiatives from the Centers for Disease Control and Prevention and the Centers for Medicare & Medicaid Services seek to promote stronger collaborations in clinical prevention activities, including tobacco cessation. PMID:28192676

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less

  17. Two-channel spin-chain communication line and simple quantum gates

    NASA Astrophysics Data System (ADS)

    Stolze, J.; Zenchuk, A. I.

    2017-08-01

    We consider the remote creation of a mixed state in a one-qubit receiver connected to two two-qubit senders via different channels. Channels are assumed to be chains of spins (qubits) with nearest-neighbor interactions, no external fields are being applied. The problem of sharing the creatable region of the receiver's state-space between two senders is considered for a communication line with the receiver located asymmetrically with respect to these senders (asymmetric communication line). An example of a quantum register realizing simple functions is constructed on the basis of a symmetric communication line. In that setup, the initial states of the two senders serve as input and control signals, respectively, while the state of the receiver at a proper time instant is considered as the output signal.

  18. Vector dark matter annihilation with internal bremsstrahlung

    DOE PAGES

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; ...

    2017-01-10

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less

  19. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment.

    PubMed

    Blair, Enrique P; Tóth, Géza; Lent, Craig S

    2018-05-16

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunković-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  20. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

    NASA Astrophysics Data System (ADS)

    Blair, Enrique P.; Tóth, Géza; Lent, Craig S.

    2018-05-01

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser–Horne–Shimony–Holt (CHSH) and Brukner–Paunković–Rudolph–Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  1. Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.

    PubMed

    Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick

    2018-01-01

    Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gadd34 Requirement for Normal Hemoglobin Synthesis

    PubMed Central

    Patterson, Andrew D.; Hollander, M. Christine; Miller, Georgina F.; Fornace, Albert J.

    2006-01-01

    The protein encoded by growth arrest and DNA damage-inducible transcript 34 (Gadd34) is associated with translation initiation regulation following certain stress responses. Through interaction with the protein phosphatase 1 catalytic subunit (PP1c), Gadd34 recruits PP1c for the removal of an inhibitory phosphate group on the α subunit of elongation initiation factor 2, thereby reversing the shutoff of protein synthesis initiated by stress-inducible kinases. In the absence of stress, the physiologic consequences of Gadd34 function are not known. Initial analysis of Gadd34-null mice revealed several significant findings, including hypersplenism, decreased erythrocyte volume, increased numbers of circulating erythrocytes, and decreased hemoglobin content, resembling some thalassemia syndromes. Biochemical analysis of the hemoglobin-producing reticulocyte (an erythrocyte precursor) revealed that the decreased hemoglobin content in the Gadd34-null erythrocyte is due to the reduced initiation of the globin translation machinery. We propose that an equilibrium state exists between Gadd34/PP1c and the opposing heme-regulated inhibitor kinase during hemoglobin synthesis in the reticulocyte. PMID:16478986

  3. The association between parental interaction style and children’s joint engagement in families with toddlers with autism

    PubMed Central

    Patterson, Stephanie Y; Elder, Lauren; Gulsrud, Amanda; Kasari, Connie

    2014-01-01

    Purpose This study examines the relationship between parental interaction style (responsive vs directive) and child-initiated joint engagement within caregiver–child interactions with toddlers diagnosed with autism spectrum disorders. Method Videotaped interactions of 85 toddler–caregiver dyads were coded for child engagement and both parental responsiveness and directiveness. Results Altogether, children spent less than one-third of the interaction jointly engaged. After controlling for child characteristics, parental style was associated with the initiator (child or parent) of joint engagement. Specifically, responsiveness predicted total time in child-initiated joint engagement, while directiveness predicted total time in parent-initiated joint engagement. Children’s social behaviours were associated with child-initiated joint engagement. Discussion Social initiations are a key target for children with autism spectrum disorders. Results demonstrate that child initiations and global social behaviour ratings are associated with parental responsivity. Responsivity may be a critical factor to facilitate children’s initiations. PMID:24104518

  4. The Effects of Interaction Management and Background Similarity on Perceived Communication Competence and Attraction during Initial Interaction.

    ERIC Educational Resources Information Center

    Harris, Linda

    Although most information exchanged in an initial interaction is superficial, relationships often develop or terminate depending on the evaluations made during the first three to four minutes of a conversation. In order to investigate the content and process levels of the information exchanged during the initial interactions, 90 subjects watched…

  5. The formation of new quasi-stationary vortex patterns from the interaction of two identical vortices in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Mikhail A.; Verron, Jacques; Carton, Xavier J.

    2018-06-01

    Within the framework of the quasi-geostrophic approximation, the interactions of two identical initially circular vortex patches are studied using the contour dynamics/surgery method. The cases of barotropic vortices and of vortices in the upper layer of a two-layer fluid are considered. Diagrams showing the end states of vortex interactions and, in particular, the new regime of vortex triplet formation are constructed for a wide range of external parameters. This paper shows that, in the nonlinear evolution of two such (like-signed) vortices, the filaments and vorticity fragments surrounding the merged vortex often collapse into satellite vortices. Therefore, the conditions for the formation and the quasi-steady motions of a new type of triplet-shaped vortex structure are obtained.

  6. Fluoropolymer Dynamics: Effects of Perfluoromethyl Branches

    NASA Astrophysics Data System (ADS)

    Eby, R. K.; Holt, D. B.; Farmer, B. L.; Adams, D. D.

    1997-03-01

    Previous simulations of polytetrafluoroethylene (PTFE) in the solid state showed that the interaction and movement of helix reversals plays an important role in the dynamic behavior of this important polymer. Copolymers of TFE and hexafluoropropylene (HFP), which can be viewed as PTFE with perfluoromethyl (PFM) group branch defects, is also widely used. Molecular mechanics and dynamics calculations have been performed with PTFE chain clusters containing PFM branches to investigate the effect of these defects on the local crystalline environment (and vice versa) and on the motions and interactions of helix reversals. Initial results indicate that helix reversals are attracted to sites of PFM branches in a chain. Such an interaction will impede the motions of helix reversals and have an impact on macroscopic mechanical properties such as resistance to plastic deformation under shear.

  7. Structural characterization of ribosome recruitment and translocation by type IV IRES

    PubMed Central

    Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S

    2016-01-01

    Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451

  8. Structure of the two-neutrino double-β decay matrix elements within perturbation theory

    NASA Astrophysics Data System (ADS)

    Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand

    2015-06-01

    The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.

  9. Interaction-Free Effects Between Distant Atoms

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Elitzur, Avshalom C.; Smolin, Lee

    2018-01-01

    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.

  10. Interaction-Free Effects Between Distant Atoms

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Elitzur, Avshalom C.; Smolin, Lee

    2017-12-01

    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.

  11. Big Five predictors of behavior and perceptions in initial dyadic interactions: personality similarity helps extraverts and introverts, but hurts "disagreeables".

    PubMed

    Cuperman, Ronen; Ickes, William

    2009-10-01

    The authors used the unstructured dyadic interaction paradigm to examine the effects of gender and the Big Five personality traits on dyad members' behaviors and perceptions in 87 initial, unstructured interactions. Most of the significant Big Five effects (84%) were associated with the traits of Extraversion and Agreeableness. There were several significant actor and partner effects for both of these traits. However, the most interesting and novel effects took the form of significant Actor x Partner interactions. Personality similarity resulted in relatively good initial interactions for dyads composed of 2 extraverts or 2 introverts, when compared with dissimilar (extravert-introvert) pairs. However, personality similarity resulted in uniquely poor initial interactions for dyads composed of 2 "disagreeables." In summary, the Big Five traits predict behavior and perceptions in initial dyadic interactions, not just in the form of actor and partner "main effects" but also in the form of Actor x Partner interactions. 2009 APA, all rights reserved.

  12. Dual Role for Hsc70 in the Biogenesis and Regulation of the Heme-Regulated Kinase of the α Subunit of Eukaryotic Translation Initiation Factor 2

    PubMed Central

    Uma, Sheri; Thulasiraman, Vanitha; Matts, Robert L.

    1999-01-01

    The heme-regulated kinase of the α subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI. PMID:10454533

  13. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    NASA Astrophysics Data System (ADS)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in terms of the raw overlap between many-body wave functions. Our results show that as the complexity of the prepared state increases, it becomes more fragile towards small perturbations.

  14. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.

    PubMed

    Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T

    2016-08-03

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.

  15. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  16. Soil erosion and effluent particle size distribution under different initial conditions and rock fragment coverage

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. C. P.; Sander, G. C.; Parlange, J.-Y.

    2012-04-01

    It is well known that the presence of rock fragments on the soil surface and the soil's initial characteristics (moisture content, surface roughness, bulk density, etc.) are key factors influencing soil erosion dynamics and sediment delivery. In addition, the interaction of these factors increases the complexity of soil erosion patterns and makes predictions more difficult. The aim of this study was (i) to investigate the effect of soil initial conditions and rock fragment coverage on soil erosion yields and effluent particle size distribution and (ii) to evaluate to what extent the rock fragment coverage controls this relationship. Three laboratory flume experiments with constant precipitation rate of 74 mm/h on a loamy soil parcel with a 2% slope were performed. Experiments with duration of 2 h were conducted using the 6-m × 2-m EPFL erosion flume. During each experiment two conditions were considered, a bare soil and a rock fragment-protected (with 40% coverage) soil. The initial soil surface state was varied between the three experiments, from a freshly re-ploughed and almost dry condition to a compacted soil with a well-developed shield layer and high moisture content. Experiments were designed so that rain splash was the primary driver of soil erosion. Results showed that the amount of eroded mass was highly controlled by the initial soil conditions and whether the steady-state equilibrium was un-, partially- or fully- developed during the previous event. Additionally, results revealed that sediment yields and particle size composition in the initial part of an erosion event are more sensitive to the erosion history than the long-time behaviour. This latter appears to be mainly controlled by rainfall intensity. If steady-state was achieved for a previous event, then the next event consistently produced concentrations for each size class that peaked rapidly, and then declined gradually to steady-state equilibrium. If steady state was not obtained, then different and more complex behaviour was observed in the next event, with large differences found between fine, medium and coarse size classes. The presence of rock fragments on the topsoil reduced the time needed to reach steady state compared with the bare soil. This was attributed to the reduction of rain splash erosion caused by the rapid development of the overland flow, as a result of rock fragments reducing the flow cross-sectional area.

  17. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.

    PubMed

    Gelbwaser-Klimovsky, D; Kurizki, G

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  18. Heat-machine control by quantum-state preparation: From quantum engines to refrigerators

    NASA Astrophysics Data System (ADS)

    Gelbwaser-Klimovsky, D.; Kurizki, G.

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  19. Emergent properties of magnetic materials

    NASA Astrophysics Data System (ADS)

    Ratcliff, William Davis, II

    In Tolstoy's War and Peace, history is presented as a tapestry spun from the daily interactions of large numbers of individuals. Even if one understands individuals, it is very difficult to predict history. Similarly, the interactions of large numbers of electrons give rise to properties that one would not initially guess from their microscopic interactions. During the course of my dissertation, I have explored emergent phenomena in a number of contexts. In ZnCr2O4, geometric frustration gives rise to a plethora of equivalent ground states. From these, a lower dimensional set of collinear spins on hexagons are selected to form the building blocks of the lattice. In MgTi2O4, quantum spins dimerize and form a unique chiral ordering pattern on the spinel lattice. Descending into two dimensions, differences in size and charge give rise to an ordering between triangular layers of magnetic and nonmagnetic ions. This triangular lattice allows for the possibility of observing the RVB spin liquid state, or perhaps a valence bond crystal and initial measurements are promising. Also, on the spinel lattice, ionic ordering gives rise to one dimensional chains with their own interesting physics. Finally, in the SrCoxTi1-x O3, system we find that upon reduction, tiny clusters of Co metal precipitate out and chemical inhomogeneity on the microscale may determine much of the physics. This has relevance to a number of recent claims of room temperature ferromagnism in dilute magnetic systems. In all of these systems, complex behavior emerges from well understood microscopic behavior. For me, this is the fascination of strongly correlated electronic systems.

  20. Physical resilience of buildings to torrential hazards-relationship and interaction with physical vulnerability

    NASA Astrophysics Data System (ADS)

    Papathoma-Koehle, Maria; Thaler, Thomas; Fuchs, Sven

    2016-04-01

    Although a significant amount of studies focusing on social resilience may be found in the literature, research on physical resilience of elements is still limited. Physical vulnerability and physical resilience are two concepts that complement each other: Vulnerability is considered to be an ex-ante condition of the element at risk reducing its performance when threatened by a natural hazard whereas resilience is associated with the ex-post adaptation necessary to return to the initial condition. Physical vulnerability may be influenced by a number of indicators (e.g. construction material, number of floors etc.) whereas physical resilience is directly related to the time period between the occurrence of the event and the return to the initial state. Vulnerability indicators, therefore, may influence the level of physical resilience of a building significantly. In the present study the relationships and interactions between physical vulnerability and resilience are investigated and highlighted through a case study for debris flows in the European Alps.

  1. Thermodynamics of the interaction of sweeteners and lactisole with fullerenols as an artificial sweet taste receptor model.

    PubMed

    Chen, Zhong-Xiu; Wu, Wen; Zhang, Wei-Bin; Deng, Shao-Ping

    2011-09-01

    The thermodynamics of the mimetic interaction of lactisole and sweeteners with fullerenols as a synthetic sweet receptor model was elucidated by Isothermal Titration Calorimetry (ITC) technique. The presence of lactisole resulted in great differences in thermodynamics of the sweeteners binding with fullerenols in which lactisole led to much more entropy contribution to the free energy compared with the interaction of sweeteners with fullerenols. Two interaction equilibrium states were found in ITC titration profiles and competitive binding of lactisole and sweeteners with fullerenols was disclosed. Our results indicated that the larger value of the ratio of two equilibrium constant K1/K2, the more effectively lactisole inhibited the sweetness of the sweetener. The combined results of sensory evaluation and ITC thermodynamics revealed that introducing a synthetic receptor model to interact with the sweeteners and inhibitors helps to understand the inhibition mechanism and the thermodynamic basis for the initiation of sweetness inhibition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.

  3. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  4. Gaussian geometric discord in terms of Hellinger distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suciu, Serban, E-mail: serban.suciu@theory.nipne.ro; Isar, Aurelian

    2015-12-07

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we address the quantification of general non-classical correlations in Gaussian states of continuous variable systems from a geometric perspective. We give a description of the Gaussian geometric discord by using the Hellinger distance as a measure for quantum correlations between two non-interacting non-resonant bosonic modes embedded in a thermal environment. We evaluate the Gaussian geometric discord by taking two-mode squeezed thermal states as initial states of the system and show that it has finite values between 0 and 1 and that it decays asymptoticallymore » to zero in time under the effect of the thermal bath.« less

  5. The Undecided Have the Key: Interaction-Driven Opinion Dynamics in a Three State Model

    PubMed Central

    2015-01-01

    The effects of interpersonal interactions on individual’s agreements result in a social aggregation process which is reflected in the formation of collective states, as for instance, groups of individuals with a similar opinion about a given issue. This field, which has been a longstanding concern of sociologists and psychologists, has been extended into an area of experimental social psychology, and even has attracted the attention of physicists and mathematicians. In this article, we present a novel model of opinion formation in which agents may either have a strict preference for a choice, or be undecided. The opinion shift emerges, in a threshold process, as a consequence of a cumulative persuasion for either one of the two opinions in repeated interactions. There are two main ingredients which play key roles in determining the steady states: the initial fraction of undecided agents and the change in agents’ persuasion after each interaction. As a function of these two parameters, the model presents a wide range of solutions, among which there are consensus of each opinion and bi-polarization. We found that a minimum fraction of undecided agents is not crucial for reaching consensus only, but also to determine a dominant opinion in a polarized situation. In order to gain a deeper comprehension of the dynamics, we also present the theoretical framework of the model. The master equations are of special interest for their nontrivial properties and difficulties in being solved analytically. PMID:26436421

  6. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    PubMed

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  7. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin S.

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cellmore » extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.« less

  8. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-04-01

    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  9. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma

    PubMed Central

    2017-01-01

    The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell–ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand–receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention. PMID:28573199

  10. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    NASA Astrophysics Data System (ADS)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  11. Dalitz plot analysis of three-body charmonium decays at BABAR

    NASA Astrophysics Data System (ADS)

    Palano, Antimo

    2016-05-01

    We present preliminary results on the measurement of the I=1/2 Kπ S-wave through a model independent partial wave analysis of ηc decays to KS0 K+π- and K+ K-π0 produced in two-photon interactions. We also perform a Dalitz plot analysis of the J/ψ decays to π+π-π0 and K+ K-π0 produced in the initial state radiation process.

  12. Quench dynamics of a disordered array of dissipative coupled cavities.

    PubMed

    Creatore, C; Fazio, R; Keeling, J; Türeci, H E

    2014-09-08

    We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array.

  13. "FORCE" learning in recurrent neural networks as data assimilation

    NASA Astrophysics Data System (ADS)

    Duane, Gregory S.

    2017-12-01

    It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.

  14. Interactive Spacecraft Trajectory Design Strategies Featuring Poincare Map Topology

    NASA Astrophysics Data System (ADS)

    Schlei, Wayne R.

    Space exploration efforts are shifting towards inexpensive and more agile vehicles. Versatility regarding spacecraft trajectories refers to the agility to correct deviations from an intended path or even the ability to adapt the future path to a new destination--all with limited spaceflight resources (i.e., small DeltaV budgets). Trajectory design methods for such nimble vehicles incorporate equally versatile procedures that allow for rapid and interactive decision making while attempting to reduce Delta V budgets, leading to a versatile trajectory design platform. A versatile design paradigm requires the exploitation of Poincare map topology , or the interconnected web of dynamical structures, existing within the chaotic dynamics of multi-body gravitational models to outline low-Delta V transfer options residing nearby to a current path. This investigation details an autonomous procedure to extract the periodic orbits (topology nodes) and correlated asymptotic flow structures (or the invariant manifolds representing topology links). The autonomous process summarized in this investigation (termed PMATE) overcomes discontinuities on the Poincare section that arise in the applied multi-body model (the planar circular restricted three-body problem) and detects a wide variety of novel periodic orbits. New interactive capabilities deliver a visual analytics foundation for versatile spaceflight design, especially for initial guess generation and manipulation. Such interactive strategies include the selection of states and arcs from Poincare section visualizations and the capabilities to draw and drag trajectories to remove dependency on initial state input. Furthermore, immersive selection is expanded to cull invariant manifold structures, yielding low-DeltaV or even DeltaV-free transfers between periodic orbits. The application of interactive design strategies featuring a dense extraction of Poincare map topology is demonstrated for agile spaceflight with a simple spacecraft rerouting scenario incorporating a very limited Delta V budget. In the Earth-Moon system, a low-DeltaV transfer from low Earth orbit (LEO) to the distant retrograde orbit (DRO) vicinity is derived with interactive topology-based design tactics. Finally, Poincare map topology is exploited in the Saturn-Enceladus system to explore a possible ballistic capture scenario around Enceladus.

  15. Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less

  16. Video interaction guidance inviting transcendence of postpartum depressed mothers' self-centered state and holding behavior.

    PubMed

    Vik, Kari; Braten, Stein

    2009-05-01

    By sometimes evoking self-absorbed and avoidance behaviors in new mothers, postnatal depression affects the quality of mother-infant interaction, which in turn may invoke distress and avoidance in the infant and cause even more lasting impairment in the child's development. Three depressed mothers, A, B, and C, are reported upon after having been offered counseling in accordance with the Marte Meo approach through jointly watching with the therapist video replays of themselves interacting with their newborns. Clinical vignettes are offered which indicate how empathic and positive support of a sensitive therapist can be helpful in inviting the mother's recognition of her importance to her infant and facilitating mutually gratifying interaction between mother and child. Protocol analyses of select sessions of video-related therapy reveal that two of the mothers sometimes complete the therapist's unfinished statements in an other-centered manner, thereby transcending their initial self-centered state. This is most dramatic in the case of Mother A, who starts out in the first session almost incapable of speech, merely nodding or shaking her head. In addition to other indications of improved mother-infant interaction, comparison of pre- and postguidance windows regarding the three mothers' holding behaviors reveals a shift from an avoidance or anxious stance to closer and more secure holding. Copyright © 2009 Michigan Association for Infant Mental Health.

  17. Coherent and incoherent contributions to the carrier-envelope phase control of wave packet localization in quantum double wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hader, K.; Engel, V., E-mail: voen@phys-chemie.uni-wuerzburg.de

    2014-05-14

    We study laser excitation processes in a double well potential. The possibility to influence localization via the carrier-envelope phase (CEP) of a laser pulse is investigated for various situations which differ in the nature of the initial state prior to the laser interactions. In more detail, the CEP-dependence of asymmetries in the case where initially the system is described by localized wave packets, eigenstates, or incoherent mixtures are calculated and interpreted within time-dependent perturbation theory. It is investigated which contributions to the asymmetry exist and how they can be modified to reveal a more or less pronounced CEP-effect.

  18. Coherent and incoherent contributions to the carrier-envelope phase control of wave packet localization in quantum double wells.

    PubMed

    Hader, K; Engel, V

    2014-05-14

    We study laser excitation processes in a double well potential. The possibility to influence localization via the carrier-envelope phase (CEP) of a laser pulse is investigated for various situations which differ in the nature of the initial state prior to the laser interactions. In more detail, the CEP-dependence of asymmetries in the case where initially the system is described by localized wave packets, eigenstates, or incoherent mixtures are calculated and interpreted within time-dependent perturbation theory. It is investigated which contributions to the asymmetry exist and how they can be modified to reveal a more or less pronounced CEP-effect.

  19. Experimental Demonstration of Coherent Control in Quantum Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2017-01-01

    We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.

  20. Mixing properties of the one-atom maser

    NASA Astrophysics Data System (ADS)

    Bruneau, Laurent

    2014-06-01

    We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5-6):1071-1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature , all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.

  1. Decoherence and thermalization of a pure quantum state in quantum field theory.

    PubMed

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  2. Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench.

    PubMed

    Khatami, Ehsan; Pupillo, Guido; Srednicki, Mark; Rigol, Marcos

    2013-08-02

    We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find indications that they fail if the system is integrable both before and after quenching.

  3. Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.

    1985-01-01

    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.

  4. Modeling the Structural Dynamic of Industrial Networks

    NASA Astrophysics Data System (ADS)

    Wilkinson, Ian F.; Wiley, James B.; Lin, Aizhong

    Market systems consist of locally interacting agents who continuously pursue advantageous opportunities. Since the time of Adam Smith, a fundamental task of economics has been to understand how market systems develop and to explain their operation. During the intervening years, theory largely has stressed comparative statics analysis. Based on the assumptions of rational, utility or profit-maximizing agents, and negative, diminishing returns) feedback process, traditional economic analysis seeks to describe the, generally) unique state of an economy corresponding to an initial set of assumptions. The analysis is tatic in the sense that it does not describe the process by which an economy might get from one state to another.

  5. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less

  6. Preparatory Body State before Reacting to an Opponent: Short-Term Joint Torque Fluctuation in Real-Time Competitive Sports.

    PubMed

    Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki

    2015-01-01

    In a competitive sport, the outcome of a game is determined by an athlete's relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender's initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state, irrespective of the outcome. These results indicate that the preparatory body state as explained by short-term joint torque fluctuations before the defensive step would help explain the performance in competitive sports, and will give insights into understanding human adaptive behavior in unpredicted and uncontrolled environments.

  7. Mind the First Step: The Intrapersonal Effects of Affect on the Decision to Initiate Negotiations under Bargaining Power Asymmetry

    PubMed Central

    Kapoutsis, Ilias; Volkema, Roger; Lampaki, Antonia

    2017-01-01

    We undertook two vignette studies to examine the role of affect (trait and state) and bargaining power on initiating negotiations, an often overlooked stage of the negotiation process. Using a job negotiation opportunity, we examine three distinct phases of the initiation process—engaging a counterpart, making a request, and optimizing a request. Study 1 examines the effects of two affect dispositions (happiness and sadness), under power asymmetry (low vs. high bargaining power), on the three initiation behaviors. We found that power is pivotal to the decision to engage, request, and optimize. Also, sadness reduces the likelihood of initiation when power is high but is immaterial when power is low. In contrast, individuals who tend to be happy can reverse the adverse effect of powerlessness on requesting, but not on engaging and optimizing. However, happiness does not carry over a positive effect on negotiation initiation, over and above that of power. Study 2 investigated the role of trait affect when individuals are in power asymmetry and when they are induced with sadness or happiness. We found that those with a happy disposition initiate more (engage, request, and optimize) when power is high and experience incidental sadness. Overall, these findings qualify previous research on negotiation initiation and highlight the importance of trait affect and its interaction with state affect as additional driving forces and of power as a boundary condition. “for the error occurs at the beginning, and the beginning as the proverb says is half of the whole, so that even a small mistake at the beginning stands in the same ratio to mistakes at the other stages.” (trans. Aristotle, 1944, 1303b) PMID:28824496

  8. Mind the First Step: The Intrapersonal Effects of Affect on the Decision to Initiate Negotiations under Bargaining Power Asymmetry.

    PubMed

    Kapoutsis, Ilias; Volkema, Roger; Lampaki, Antonia

    2017-01-01

    We undertook two vignette studies to examine the role of affect (trait and state) and bargaining power on initiating negotiations, an often overlooked stage of the negotiation process. Using a job negotiation opportunity, we examine three distinct phases of the initiation process-engaging a counterpart, making a request, and optimizing a request. Study 1 examines the effects of two affect dispositions (happiness and sadness), under power asymmetry (low vs. high bargaining power), on the three initiation behaviors. We found that power is pivotal to the decision to engage, request, and optimize. Also, sadness reduces the likelihood of initiation when power is high but is immaterial when power is low. In contrast, individuals who tend to be happy can reverse the adverse effect of powerlessness on requesting, but not on engaging and optimizing. However, happiness does not carry over a positive effect on negotiation initiation, over and above that of power. Study 2 investigated the role of trait affect when individuals are in power asymmetry and when they are induced with sadness or happiness. We found that those with a happy disposition initiate more (engage, request, and optimize) when power is high and experience incidental sadness. Overall, these findings qualify previous research on negotiation initiation and highlight the importance of trait affect and its interaction with state affect as additional driving forces and of power as a boundary condition. " for the error occurs at the beginning, and the beginning as the proverb says is half of the whole, so that even a small mistake at the beginning stands in the same ratio to mistakes at the other stages. " (trans. Aristotle, 1944 , 1303b) .

  9. Do law enforcement interactions reduce the initiation of injection drug use? An investigation in three North American settings.

    PubMed

    Melo, J S; Garfein, R S; Hayashi, K; Milloy, M J; DeBeck, K; Sun, S; Jain, S; Strathdee, S A; Werb, D

    2018-01-01

    The prevention of drug injecting is often cited as a justification for the deployment of law enforcement and for the continuation of drug criminalization policies. We sought to characterize the impact of law enforcement interactions on the risk that people who inject drugs (PWID) report assisting others with injection initiation in three North American countries. Cross-sectional data from PWID participating in cohort studies in three cities (San Diego, USA; Tijuana, Mexico; Vancouver, Canada) were pooled (August 2014-December 2016). The dependent variable was defined as recently (i.e., past six months) providing injection initiation assistance; the primary independent variable was the frequency of recent law enforcement interactions, defined categorically (0 vs. 1 vs. 2-5 vs. ≥6). We employed multivariable logistic regression analyses to assess this relationship while controlling for potential confounders. Among 2122 participants, 87 (4.1%) reported recently providing injection initiation assistance, and 802 (37.8%) reported recent law enforcement interactions. Reporting either one or more than five recent interactions with law enforcement was not significantly associated with injection initiation assistance. Reporting 2-5 law enforcement interactions was associated with initiation assistance (Adjusted Odds Ratio=1.74, 95% Confidence Interval: 1.01-3.02). Reporting interactions with law enforcement was not associated with a reduced likelihood that PWID reported initiating others into injection drug use. Instead, we identified a positive association between reporting law enforcement interactions and injection initiation assistance among PWID in multiple settings. These findings raise concerns regarding the effectiveness of drug law enforcement to deter injection drug use initiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modelling machine ensembles with discrete event dynamical system theory

    NASA Technical Reports Server (NTRS)

    Hunter, Dan

    1990-01-01

    Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).

  11. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  12. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  13. Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots

    NASA Astrophysics Data System (ADS)

    Hinz, C.; Gumbsheimer, P.; Traum, C.; Holtkemper, M.; Bauer, B.; Haase, J.; Mahapatra, S.; Frey, A.; Brunner, K.; Reiter, D. E.; Kuhn, T.; Seletskiy, D. V.; Leitenstorfer, A.

    2018-01-01

    We study the dynamics of photoexcited electrons and holes in single negatively charged CdSe/ZnSe quantum dots with two-color femtosecond pump-probe spectroscopy. An initial characterization of the energy level structure is performed at low temperatures and magnetic fields of up to 5 T. Emission and absorption resonances are assigned to specific transitions between few-fermion states by a theoretical model based on a configuration interaction approach. To analyze the dynamics of individual charge carriers, we initialize the quantum system into excited trion states with defined energy and spin. Subsequently, the time-dependent occupation of the trion ground state is monitored by spectrally resolved differential transmission measurements. We observe subpicosecond dynamics for a hole excited to the D shell. The energy dependence of this D -to-S shell intraband transition is investigated in quantum dots of varying size. Excitation of an electron-hole pair in the respective p shells leads to the formation of singlet and triplet spin configurations. Relaxation of the p -shell singlet is observed to occur on a time scale of a few picoseconds. Pumping of p -shell triplet transitions opens up two pathways with distinctly different scattering times. These processes are shown to be governed by the mixing of singlet and triplet states due to exchange interactions enabling simultaneous electron and hole spin flips. To isolate the relaxation channels, we align the spin of the residual electron by a magnetic field and employ laser pulses of defined helicity. This step provides ultrafast preparation of a fully inverted trion ground state of the quantum dot with near unity probability, enabling deterministic addition of a single photon to the probe pulse. Therefore our experiments represent a significant step towards using single quantum emitters with well-controled inversion to manipulate the photon statistics of ultrafast light pulses.

  14. Reactive Resonances in N+N2 Exchange Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Stallcop, James R.

    2003-01-01

    Rich reactive resonances are found in a 3D quantum dynamics study of the N + N2 exchange reaction using a recently developed ab initio potential energy surface. This surface is characterized by a feature in the interaction region called Lake Eyring , that is, two symmetric transition states with a shallow minimum between them. An L2 analysis of the quasibound states associated with the shallow minimum confirms that the quasibound states associated with oscillations in all three degrees of freedom in Lake Eyring are responsible for the reactive resonances in the state-to-state reaction probabilities. The quasibound states, mostly the bending motions, give rise to strong reasonance peaks, whereas other motions contribute to the bumps and shoulders in the resonance structure. The initial state reaction probability further proves that the bending motions are the dominating factors of the reaction probability and have longer life times than the stretching motions. This is the first observation of reactive resonances from a "Lake Eyring" feature in a potential energy surface.

  15. An overview of alcohol and tobacco/nicotine interactions in the human laboratory.

    PubMed

    Verplaetse, Terril L; McKee, Sherry A

    2017-03-01

    Alcohol use disorders and tobacco use contribute significant risk to the global burden of disease, and each are major public health concerns. Together, alcohol and tobacco use are highly comorbid and have multiplicative health risks when used concurrently, underscoring the importance of examining alcohol-tobacco interactions in the human laboratory. The aims of this review were to summarize the state of research examining alcohol-tobacco interactions in the human laboratory. We reviewed human laboratory evidence for alcohol and tobacco/nicotine interactions, including 1) craving in drinkers and smokers exposed to smoking or drinking cues, 2) fixed-dosing of alcohol or nicotine in smokers and drinkers, and 3) smoking and alcohol influences on self-administration behaviors. The interactive effects of tobacco/nicotine with other drugs of abuse are also briefly discussed. Overall, results identified that alcohol and tobacco have reciprocal influences on potentiating craving, subjective responses to fixed-dose alcohol or nicotine administration, and self-administration. The literature identified that alcohol increases craving to smoke, decreases time to initiate smoking, and increases smoking self-administration. Similarly, tobacco and nicotine increase alcohol craving, decrease subjective effects of alcohol, and increase alcohol consumption. Future studies should continue to focus on alcohol and tobacco/nicotine interactions in individuals with a wide scope of drinking and smoking histories, different states of alcohol and nicotine deprivation, and influences of either drug on craving, subjective responses, and consumption over the course of the blood alcohol curve. This work could have important implications for the impact of alcohol-tobacco interactions on guiding clinical practice, as well as in the changing landscape of addiction.

  16. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, P. R.; Ford, G. W.; Milonni, P. W.

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength.more » However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.« less

  17. Physician Preparedness for Big Genomic Data: A Review of Genomic Medicine Education Initiatives in the United States.

    PubMed

    Rubanovich, Caryn Kseniya; Cheung, Cynthia; Mandel, Jess; Bloss, Cinnamon S

    2018-05-10

    In the last decade, genomic medicine education initiatives have surfaced across the spectrum of physician training in order to help address a gap in genomic medicine preparedness among physicians. The approaches are diverse and stem from the belief that 21st century physicians must be proficient in genomic medicine applications as they will be leaders in the precision medicine movement. We conducted a review of literature in genomic medicine education and training for medical students, graduate medical education, and practicing physicians with articles published between June 2015 and January 2018 to gain a picture of the current state of genomic medicine education with a focus on the United States. We found evidence of progress in the development of new and innovative educational programs and other resources aimed at increasing physician knowledge and readiness. Three overarching educational approach themes emerged, including immersive and experiential learning; interdisciplinary and interprofessional education; and electronic- and web-based approaches. This review is not exhaustive, nevertheless, it may inform future directions and improvements for genomic medicine education. Important next-steps include: 1) identifying and studying ways to best implement low-cost dissemination of genomic information; 2) emphasizing genomic medicine education program evaluation; and 3) incorporating interprofessional and interdisciplinary initiatives. Genomic medicine education and training will become more and more relevant in the years to come as physicians increasingly interact with genomic and other precision medicine technologies.

  18. Long-term Spectroscopic and Photometric Monitoring of Bright Interacting Algol-type Binary Stars

    NASA Astrophysics Data System (ADS)

    Reed, Phillip A.

    2018-01-01

    Binary stars have long been used as natural laboratories for studying such fundamental stellar properties as mass. Interacting binaries allow us to examine more complicated aspects such as mass flow between stars, accretion processes, magnetic fields, and stellar mergers. Algol-type interacting binary stars -- consisting of a cool giant or sub-giant donating mass to a much hotter, less evolved, and more massive main-sequence companion -- undergo steady mass transfer and have been used to measure mass transfer rates and to test stellar evolution theories. The method of back-projection Doppler tomography has also been applied to interacting Algols and has produced indirect velocity-space images of the accretion structures (gas streams, accretion disks, etc.) derived from spectroscopic observations of hydrogen and helium emission lines. The accretion structures in several Algol systems have actually been observed to change between disk-like states and stream-like states on timescales as short as several orbital cycles (Richards et al., 2014). Presented here are the first results from a project aimed at studying bright interacting Algol systems with simultaneous mid-resolution (11,000

  19. [Resiliency : evaluation of a teaching initiative with second year nursing students

    PubMed

    Harrison, Suzanne; Landry, Lucie-Anne; McGraw, Monica; Schlosser, Danika

    2016-09-01

    Introduction : resilience is the ability that helps an individual adapt and grow during difficult moments. It is an essential aspect of ensuring the quality of care. Context : nursing schools need to cultivate resilience among their students. Despite the growing popularity of the benefits of being resilient, few studies or teaching strategies exist in the literature in the nursing area. Objective : this article describes the implementation of a new learning initiative with a group of Canadian nursing students enrolled in a care and chronicity course. Method : the four part project sought to increase students’ knowledge about resilience and apply this knowledge during an interview with a person living or having lived a difficult experience. An electronic survey answered by 42 students helps evaluate the project’s objectives. Results : three quarter of the students stated having increased their knowledge about resilience and applied this information during their interview and two thirds stated that the project would influence future interactions with the care receivers. Discussion : several recommendations were brought forth to help enhance the learning initiative and expand it throughout the program and even beyond, by introducing it in other health related programs offered by the Faculty.

  20. Developing advanced X-ray scattering methods combined with crystallography and computation.

    PubMed

    Perry, J Jefferson P; Tainer, John A

    2013-03-01

    The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered as being part of one's repertoire of biophysical analyses, when conducting characterizations of protein and other macromolecular interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Time-dependent current into and through multilevel parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-05-01

    We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.

  2. Problems of interaction longitudinal shear waves with V-shape tunnels defect

    NASA Astrophysics Data System (ADS)

    Popov, V. G.

    2018-04-01

    The problem of determining the two-dimensional dynamic stress state near a tunnel defect of V-shaped cross-section is solved. The defect is located in an infinite elastic medium, where harmonic longitudinal shear waves are propagating. The initial problem is reduced to a system of two singular integral or integro-differential equations with fixed singularities. A numerical method for solving these systems with regard to the true asymptotics of the unknown functions is developed.

  3. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  4. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of thismore » series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.« less

  5. Specular reflectivity and hot-electron generation in high-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, Gregory Elijah

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions. Spatial, temporal and spectral properties of the incident and specular pulses, both near and far away from the interaction region where experimental measurements are obtained, are used to benchmark simulations designed to infer dominant hot-electron acceleration mechanisms and their corresponding energy/angular distributions. To handle this highly coupled interaction, I employed particle-in-cell modeling using a wide variety of algorithms (verified to be numerically stable and consistent with analytic expressions) and physical models (validated by experimental results) to reasonably model the interaction's sweeping range of plasma densities, temporal and spatial scales, electromagnetic wave propagation and its interaction with solid density matter. Due to the fluctuations in the experimental conditions and limited computational resources, only a limited number of full-scale simulations were performed under typical experimental conditions to infer the relevant physical phenomena in the interactions. I show the usefulness of the often overlooked specular reflectivity measurements in constraining both high and low-contrast simulations, as well as limitations of their experimental interpretations. Using these experimental measurements to reasonably constrain the simulation results, I discuss the sensitivity of relativistic electron generation in ultra-intense laser plasma interactions to initial target conditions and the dynamic evolution of the interaction region.

  6. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  7. Deformation dependence of proton decay rates and angular distributions in a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Talou, P.; Strottman, D.

    1998-12-01

    A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.

  8. Generation and stability of dynamical skyrmions and droplet solitons.

    PubMed

    Statuto, Nahuel; Hernàndez, Joan Manel; Kent, Andrew D; Macià, Ferran

    2018-08-10

    A spin-polarized current in a nanocontact to a magnetic film can create collective magnetic oscillations by compensating the magnetic damping. In particular, in materials with uniaxial magnetic anisotropy, droplet solitons have been observed-a self-localized excitation consisting of partially reversed magnetization that precesses coherently in the nanocontact region. It is also possible to generate topological droplet solitons, known as dynamical skyrmions (DSs). Here, we show that spin-polarized current thresholds for DS creation depend not only on the material's parameters but also on the initial magnetization state and the rise time of the spin-polarized current. We study the conditions that promote either droplet or DS formation and describe their stability in magnetic films without Dzyaloshinskii-Moriya interactions. The Oersted fields from the applied current, the initial magnetization state, and the rise time of the injected current can determine whether a droplet or a DS forms. DSs are found to be more stable than droplets. We also discuss electrical characteristics that can be used to distinguish these magnetic objects.

  9. Dynamics at the Many-Body Localization Transition

    NASA Astrophysics Data System (ADS)

    Santos, Lea; Torres-Herrera, Jonathan

    2015-05-01

    Studies about localization in interacting systems have recently boomed. The interest in the subject is motivated by indications of the existence of a many-body localization (MBL) phase and by advances in experiments with optical lattices, which may serve as testbeds for corroborating theoretical predictions. A paradigmatic system for these analysis is the one-dimensional isolated Heisenberg model with random magnetic fields. We study the dynamics of this system for initial states prepared with high energies. Our focus is on the probability for finding the initial state later in time, the so-called survival probability. Two distinct behaviors are identified before the saturation of the relaxation process. At short times, the decay is very fast, as typical of clean systems. It subsequently slows down and develops a powerlaw behavior with an exponent related with the multifractal structure of the eigenstates. The curve of the powerlaw exponent versus the disorder strength exhibits an inflection point that is associated with the metal-insulator transition point. This work was supported by the NSF grant No. DMR-1147430.

  10. Software-defined Quantum Networking Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.; Sadlier, Ronald

    The software enables a user to perform modeling and simulation of software-defined quantum networks. The software addresses the problem of how to synchronize transmission of quantum and classical signals through multi-node networks and to demonstrate quantum information protocols such as quantum teleportation. The software approaches this problem by generating a graphical model of the underlying network and attributing properties to each node and link in the graph. The graphical model is then simulated using a combination of discrete-event simulators to calculate the expected state of each node and link in the graph at a future time. A user interacts withmore » the software by providing an initial network model and instantiating methods for the nodes to transmit information with each other. This includes writing application scripts in python that make use of the software library interfaces. A user then initiates the application scripts, which invokes the software simulation. The user then uses the built-in diagnostic tools to query the state of the simulation and to collect statistics on synchronization.« less

  11. Playing quantum games by a scheme with pre- and post-selection

    NASA Astrophysics Data System (ADS)

    Weng, Guo-Fu; Yu, Yang

    2016-01-01

    We propose a scheme to play quantum games by assuming that the two players interact with each other. Thus, by pre-selection, two players can choose their initial states, and some dilemma in classical game may be removed by post-selection, which is particularly useful for the cooperative games. We apply the proposal to both of BoS and Prisoners' dilemma games in cooperative situations. The examples show that the proposal would guarantee a remarkably binding agreement between two parties. Any deviation during the game will be detected, and the game may be abnegated. By illuminating the examples, we find that the initial state in the cooperative game does not destroy process to get preferable payoffs by pre- and post-selections, which is not true in other schemes for implementing the quantum game. We point out that one player can use the scheme to detect his opponent's choices if he is advantageous in information theory and technology.

  12. Modeling target normal sheath acceleration using handoffs between multiple simulations

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard

    2013-10-01

    We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.

  13. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    NASA Astrophysics Data System (ADS)

    Lukić, S.; Božović-Jelisavčić, I.; Pandurović, M.; Smiljanić, I.

    2013-05-01

    Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.

  14. Dynamic correlation effects in fully differential cross sections for 75-keV proton-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu

    2017-08-01

    The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.

  15. An investigation of bioecological influences associated with first use of methamphetamine in a rural state.

    PubMed

    Bowen, Anne; Moring, John; Williams, Mark; Hopper, Glenna; Daniel, Candice

    2012-01-01

    Methamphetamine (MA) addiction is a significant problem in rural areas of the United States. Yet, little theoretically driven formative research has been conducted on the interactions of factors influencing initiation. The study was guided by Bronfenbrenner's bioecological model. Eighty-three MA users participated in an interview. Quantitative data included sociodemographic characteristics, drug use history, and psychosocial functioning. Semistructured interviews examined MA use histories with a focus on initiation. Transcripts of the interviews were coded for 5 themes related to Bronfenbrenner's influences including individual motivation, family, peers, work or school, or community as factors influencing initiation of MA use. Five dummy variables representing the presence or absence of a mention of Bronfenbrenner's 5 influences were created from the qualitative codes and entered into a hierarchical cluster analysis. The analyses revealed 4 distinct clusters: (1) predominantly female, influenced by peers and individual curiosity, (2) predominantly female, youngest age of first use, influenced by a family culture of drug use, (3) predominantly male, older age at first use, influenced by work settings and family co-workers, and (4) predominantly male, older age at first use, in the school context with a desire to increase intimacy. Bronfenbrenner's bioecological model was useful for classifying initiating influences and grouping individuals based on different combinations of influences. Identifying combinations of initiating factors such as work and community may facilitate tailoring of prevention programs, which may maximize efficacy and cost-effectiveness. © 2011 National Rural Health Association.

  16. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin.

    PubMed

    Xiang, Ning; Lyu, Yuan; Zhu, Xiao; Bhunia, Arun K; Narsimhan, Ganesan

    2016-11-01

    Antimicrobial peptides (AMPs) inactivate microbial cells through pore formation in cell membrane. Because of their different mode of action compared to antibiotics, AMPs can be effectively used to combat drug resistant bacteria in human health. AMPs can also be used to replace antibiotics in animal feed and immobilized on food packaging films. In this research, we developed a methodology based on mechanistic evaluation of peptide-lipid bilayer interaction to identify AMPs from soy protein. Production of AMPs from soy protein is an attractive, cost-saving alternative for commercial consideration, because soy protein is an abundant and common protein resource. This methodology is also applicable for identification of AMPs from any protein. Initial screening of peptide segments from soy glycinin (11S) and soy β-conglycinin (7S) subunits was based on their hydrophobicity, hydrophobic moment and net charge. Delicate balance between hydrophilic and hydrophobic interactions is necessary for pore formation. High hydrophobicity decreases the peptide solubility in aqueous phase whereas high hydrophilicity limits binding of the peptide to the bilayer. Out of several candidates chosen from the initial screening, two peptides satisfied the criteria for antimicrobial activity, viz. (i) lipid-peptide binding in surface state and (ii) pore formation in transmembrane state of the aggregate. This method of identification of antimicrobial activity via molecular dynamics simulation was shown to be robust in that it is insensitive to the number of peptides employed in the simulation, initial peptide structure and force field. Their antimicrobial activity against Listeria monocytogenes and Escherichia coli was further confirmed by spot-on-lawn test. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hidden Charge States in Soft-X-Ray Laser-Produced Nanoplasmas Revealed by Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schroedter, L.; Müller, M.; Kickermann, A.; Przystawik, A.; Toleikis, S.; Adolph, M.; Flückiger, L.; Gorkhover, T.; Nösel, L.; Krikunova, M.; Oelze, T.; Ovcharenko, Y.; Rupp, D.; Sauppe, M.; Wolter, D.; Schorb, S.; Bostedt, C.; Möller, T.; Laarmann, T.

    2014-05-01

    Highly charged ions are formed in the center of composite clusters by strong free-electron laser pulses and they emit fluorescence on a femtosecond time scale before competing recombination leads to neutralization of the nanoplasma core. In contrast to mass spectrometry that detects remnants of the interaction, fluorescence in the extreme ultraviolet spectral range provides fingerprints of transient states of high energy density matter. Spectra from clusters consisting of a xenon core and a surrounding argon shell show that a small fraction of the fluorescence signal comes from multiply charged xenon ions in the cluster core. Initially, these ions are as highly charged as the ions in the outer shells of pure xenon clusters with charge states up to at least 11+.

  18. Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, D. D.

    1994-01-01

    Advanced computational techniques were used to study solar coronal heating and coronal mass ejections. A three dimensional, time dependent resistive magnetohydrodynamic code was used to study the dynamic response of a model corona to continuous, slow, random magnetic footpoint displacements in the photosphere. Three dimensional numerical simulations of the response of the corona to simple smooth braiding flows in the photosphere were calculated to illustrate and understand the spontaneous formation of current filaments. Two dimensional steady state helmet streamer configurations were obtained by determining the time asymptotic state of the interaction of an initially one dimensinal transponic solar wind with a spherical potential dipole field. The disruption of the steady state helmet streamer configuration was studied as a response to shearing of the magnetic footpoints of the closed field lines under the helmet.

  19. Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule

    NASA Astrophysics Data System (ADS)

    Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel

    2015-03-01

    The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.

  20. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.

    PubMed

    Bahrami, Amir Houshang; Weikl, Thomas R

    2018-02-14

    Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

  1. Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering

    NASA Astrophysics Data System (ADS)

    Atalay, Bora; Berker, A. Nihat

    2018-05-01

    Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .

  2. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  3. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet.

    PubMed

    Jurėnas, Dukas; Chatterjee, Sneha; Konijnenberg, Albert; Sobott, Frank; Droogmans, Louis; Garcia-Pino, Abel; Van Melderen, Laurence

    2017-06-01

    Toxin-antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR-ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNA fMet , but no other aminoacyl-tRNAs, including the elongator Met-tRNA Met . We demonstrate that once acetylated, AcMet-tRNA fMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNA fMet as a prime target to efficiently block cell growth.

  4. Time evolution of the condensed state of interacting bosons with reduced number fluctuation in a leaky box

    NASA Astrophysics Data System (ADS)

    Shimizu, Akira; Inoue, Jun-Ichi

    1999-10-01

    We study the nonequilibrium time evolution of the Bose-Einstein condensate of interacting bosons confined in a leaky box, when its number fluctuation is initially (t=0) suppressed. We take account of quantum fluctuations of all modes, including k=0, of the bosons. As the wave function of the ground state that has a definite number N of interacting bosons, we use a variational form \\|N,y>, which is obtained by operating a unitary operator eiG(y) on the number state of free bosons. Using eiG(y), we identify a ``natural coordinate'' b𔊊 of the interacting bosons, by which many physical properties can be simply described. The \\|N,y> can be represented simply as a number state of b𔊊 we thus call it the ``number state of interacting bosons'' (NSIB). To simulate real systems, for which if one fixes N at t=0 N will fluctuate at later times because of a finite probability of exchanging bosons between the box and the environment, we evaluate the time evolution of the reduced density operator ρ⁁(t) of the bosons in the box as a function of the leakage flux J. We concentrate on the most interesting and nontrivial time stage, i.e., the early time stage for which Jt<0. Using b𔊊, we successfully define the cosine and sine operators for interacting many bosons, by which we can analyze the phase fluctuation in a fully quantum-mechanical manner. We define a new state \\|ξ,N,y> called the ``number-phase-squeezed state of interacting bosons'' (NPIB), which is characterized by a complex parameter ξ. It is shown that ρ⁁(t) for t>0 can be rewritten as the phase-randomized mixture (PRM) of NPIBs. Among many possible representations of ρ⁁(t), this representation is particularly convenient for analyzing the phase fluctuations and the order parameter. We study the order parameter according to a few typical definitions, as well as their time evolution. It is shown that the off-diagonal long-range order (ODLRO) does not distinguish the NSIB and NPIB. Hence, the order parameter Ξ defined from ODLRO does not distinguish them, either. On the other hand, the other order parameter Ψ, defined as the expectation value of the boson operator ψ⁁, has different values among these states. In particular, for each element of the PRM of NPIBs, we show that Ψ evolves from zero to a finite value very quickly. Namely, after the leakage of only two or three bosons, each element acquires a full, stable, and definite (nonfluctuating) value of Ψ.

  5. Improving student-perceived benefit of academic advising within education of occupational and physical therapy in the United States: a quality improvement initiative.

    PubMed

    Barnes, Lisa J; Parish, Robin

    2017-01-01

    Academic advising is a key role for faculty in the educational process of health professionals; however, the best practice of effective academic advising for occupational and physical therapy students has not been identified in the current literature. The purpose of this quality improvement initiative was to assess and improve the faculty/student advisor/advisee process within occupational and physical therapy programs within a school of allied health professions in the United States in 2015. A quality improvement initiative utilizing quantitative and qualitative information was gathered via survey focused on the assessment and improvement of an advisor/advisee process. The overall initiative utilized an adaptive iterative design incorporating the plan-do-study-act model which included a three-step process over a one year time frame utilizing 2 cohorts, the first with 80 students and the second with 88 students. Baseline data were gathered prior to initiating the new process. A pilot was conducted and assessed during the first semester of the occupational and physical therapy programs. Final information was gathered after one full academic year with final comparisons made to baseline. Defining an effective advisory program with an established framework led to improved awareness and participation by students and faculty. Early initiation of the process combined with increased frequency of interaction led to improved student satisfaction. Based on student perceptions, programmatic policies were initiated to promote advisory meetings early and often to establish a positive relationship. The policies focus on academic advising as one of proactivity in which the advisor serves as a portal which the student may access leading to a more successful academic experience.

  6. Metastable states and energy flow pathway in square graphene resonators

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; Zhu, Zhigang; Zhang, Yong; Huang, Liang

    2018-01-01

    Nonlinear interaction between flexural modes is critical to heat conductivity and mechanical vibration of two-dimensional materials such as graphene. Much effort has been devoted to understand the underlying mechanism. In this paper, we examine solely the out-of-plane flexural modes and identify their energy flow pathway during thermalization process. The key is the development of a universal scheme that numerically characterizes the strength of nonlinear interactions between normal modes. In particular, for our square graphene system, the modes are grouped into four classes by their distinct symmetries. The couplings are significantly larger within a class than between classes. As a result, the equations for the normal modes in the same class as the initially excited one can be approximated by driven harmonic oscillators, therefore, they get energy almost instantaneously. Because of the hierarchical organization of the mode coupling, the energy distribution among the modes will arrive at a stable profile, where most of the energy is localized on a few modes, leading to the formation of "natural package" and metastable states. The dynamics for modes in other symmetry classes follows a Mathieu type of equation, thus, interclass energy flow, when the initial excitation energy is small, starts typically when there is a mode that lies in the unstable region in the parameter space of Mathieu equation. Due to strong coupling of the modes inside the class, the whole class will get energy and be lifted up by the unstable mode. This characterizes the energy flow pathway of the system. These results bring fundamental understandings to the Fermi-Pasta-Ulam problem in two-dimensional systems with complex potentials, and reveal clearly the physical picture of dynamical interactions between the flexural modes, which will be crucial to the understanding of their abnormal contribution to heat conduction and nonlinear mechanical vibrations.

  7. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    PubMed

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  8. Lessons from Philippines MPA Management: Social Ecological Interactions, Participation, and MPA Performance

    NASA Astrophysics Data System (ADS)

    Twichell, Julia; Pollnac, Richard; Christie, Patrick

    2018-06-01

    International interest in increasing marine protected area (MPA) coverage reflects broad recognition of the MPA as a key tool for marine ecosystems and fisheries management. Nevertheless, effective management remains a significant challenge. The present study contributes to enriching an understanding of best practices for MPA management through analysis of archived community survey data collected in the Philippines by the Learning Project (LP), a collaboration with United States Coral Triangle Initiative (USCTI), United States Agency for International Development (USAID), and partners. We evaluate stakeholder participation and social ecological interactions among resource users in MPA programs in the Palawan, Occidental Mindoro, and Batangas provinces in the Philippines. Analysis indicates that a complex suite of social ecological factors, including demographics, conservation beliefs, and scientifically correct knowledge influence participation, which in turn is related to perceived MPA performance. Findings indicate positive feedbacks within the system that have potential to strengthen perceptions of MPA success. The results of this evaluation provide empirical reinforcement to current inquiries concerning the role of participation in influencing MPA performance.

  9. Initiation of Phage Infection by Partial Unfolding and Prolyl Isomerization*♦

    PubMed Central

    Hoffmann-Thoms, Stephanie; Weininger, Ulrich; Eckert, Barbara; Jakob, Roman P.; Koch, Johanna R.; Balbach, Jochen; Schmid, Franz X.

    2013-01-01

    Infection of Escherichia coli by the filamentous phage fd starts with the binding of the N2 domain of the phage gene-3-protein to an F pilus. This interaction triggers partial unfolding of the gene-3-protein, cis → trans isomerization at Pro-213, and domain disassembly, thereby exposing its binding site for the ultimate receptor TolA. The trans-proline sets a molecular timer to maintain the binding-active state long enough for the phage to interact with TolA. We elucidated the changes in structure and local stability that lead to partial unfolding and thus to the activation of the gene-3-protein for phage infection. Protein folding and TolA binding experiments were combined with real-time NMR spectroscopy, amide hydrogen exchange measurements, and phage infectivity assays. In combination, the results provide a molecular picture of how a local unfolding reaction couples with prolyl isomerization not only to generate the activated state of a protein but also to maintain it for an extended time. PMID:23486474

  10. Contact enhancement of locomotion in spreading cell colonies

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Joseph; Solon, Alexandre P.; Hayakawa, Yoshinori; Anjard, Christophe; Detcheverry, François; Rieu, Jean-Paul; Rivière, Charlotte

    2017-10-01

    The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell-cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.

  11. Exact mapping between different dynamics of isotropically trapped quantum gases

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Pelster, Axel; Anglin, James R.

    2016-05-01

    Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.

  12. Creation of quantum steering by interaction with a common bath

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Xu, Xiao-Qiang; Liu, Bo

    2018-05-01

    By applying the hierarchy equation method, we computationally study the creation of quantum steering in a two-qubit system interacting with a common bosonic bath. The calculation does not adopt conventional approximate approaches, such as the Born, Markov, rotating-wave, and other perturbative approximations. Three kinds of quantum steering, i.e., Einstein-Podolsky-Rosen steering (EPRS), temporal steering (TS), and spatiotemporal steering (STS), are considered. Since the initial state of the two qubits is chosen as a product state, there does not exist EPRS at the beginning. During the evolution, we find that STS as well as EPRS are generated at the same time. An inversion relationship between STS and TS is revealed. By varying the system-bath coupling strength from weak to ultrastrong regimes, we find the nonmonotonic dependence of STS, TS, and EPRS on the coupling strength. It is interesting to study the dynamics of the three kinds of quantum steering by using an exactly numerical method, which is not considered in previous researches.

  13. Study of decoherence in a system of superconducting flux-qubits interacting with an ensemble of electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar; Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar; Ramírez, R.

    2017-03-15

    The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconductingmore » flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.« less

  14. PYTHIA 6.4 Physics and Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrand, Torbjorn; /Lund U., Dept. Theor. Phys.; Mrenna, Stephen

    2006-03-01

    The Pythia program can be used to generate high-energy-physics ''events'', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. Thismore » physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.« less

  15. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  16. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  17. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Lamberth, Erika Guillory

    2011-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  18. Growth-dependent regulation of rRNA synthesis is mediated by a transcription initiation factor (TIF-IA).

    PubMed

    Buttgereit, D; Pflugfelder, G; Grummt, I

    1985-11-25

    Mouse RNA polymerase I requires at least two chromatographically distinct transcription factors (designated TIF-IA and TIF-IB) to initiate transcription accurately and efficiently in vitro. In this paper we describe the partial purification of TIF-IA by a four-step fractionation procedure. The amount or activity of TIF-IA fluctuates in response to the physiological state of the cells. Extracts from quiescent cells are incapable of specific transcription and do not contain detectable levels of TIF-IA. Transcriptionally inactive extracts can be restored by the addition of TIF-IA preparations that have been highly purified from exponentially growing cells. During the fractionating procedure TIF-IA co-purifies with RNA polymerase I, suggesting that it is functionally associated with the transcribing enzyme. We suggest that only those enzyme molecules that are associated with TIF-IA are capable to interact with TIF-IB and to initiate transcription.

  19. Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:

    NASA Astrophysics Data System (ADS)

    Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.

    In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.

  20. Photodissociation of CS from Excited Rovibrational Levels

    NASA Astrophysics Data System (ADS)

    Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.

    2018-05-01

    Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.

  1. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.

    PubMed

    De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2013-01-01

    Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

  2. Quantum simulation of interacting spin models with trapped ions

    NASA Astrophysics Data System (ADS)

    Islam, Kazi Rajibul

    The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.

  3. Trait- and density-mediated indirect interactions initiated by an exotic invasive plant autogenic ecosystem engineer

    Treesearch

    Dean E. Pearson

    2010-01-01

    Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...

  4. Talking to Strangers--A Sociolinguistic Experiment: Variation in Initial Dyadic Interactions between Spanish-Speakers in Early 21st Century Buenos Aires, Argentina

    ERIC Educational Resources Information Center

    Dziugis, Mary Ann

    2010-01-01

    What are the chances of a dyad of Spanish-speaking strangers using informal address in casual, initial interactions in Buenos Aires, Argentina, today? To discover the pattern(s) of contemporary address, the Principal Investigator (PI) conducted a sociolinguistic experiment focusing on strangers' initial interactions to minimize the influence of…

  5. Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions

    NASA Astrophysics Data System (ADS)

    Shen, Chao-Wei; Rönchen, Deborah; Meißner, Ulf-G.; Zou, Bing-Song

    2018-01-01

    We use a unitary coupled-channel model to study the \\bar{{{D}}}{{{Λ }}}{{c}}-\\bar{{{D}}}{{{Σ }}}{{c}} interactions. In our calculation, SU(3) flavor symmetry is applied to determine the coupling constants. Several resonant and bound states with different spin and parity are dynamically generated in the mass range of the recently observed pentaquarks. The approach is also extended to the hidden beauty sector to study the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions. As the b-quark mass is heavier than the c-quark mass, there are more resonances observed for the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions and they are more tightly bound. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetry and the Emergence of Structure in QCD” (NSFC 11621131001, DFG TR110), as well as an NSFC fund (11647601). The work of UGM was also supported by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025)

  6. Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE).

    PubMed

    Paull, Evan O; Carlin, Daniel E; Niepel, Mario; Sorger, Peter K; Haussler, David; Stuart, Joshua M

    2013-11-01

    Identifying the cellular wiring that connects genomic perturbations to transcriptional changes in cancer is essential to gain a mechanistic understanding of disease initiation, progression and ultimately to predict drug response. We have developed a method called Tied Diffusion Through Interacting Events (TieDIE) that uses a network diffusion approach to connect genomic perturbations to gene expression changes characteristic of cancer subtypes. The method computes a subnetwork of protein-protein interactions, predicted transcription factor-to-target connections and curated interactions from literature that connects genomic and transcriptomic perturbations. Application of TieDIE to The Cancer Genome Atlas and a breast cancer cell line dataset identified key signaling pathways, with examples impinging on MYC activity. Interlinking genes are predicted to correspond to essential components of cancer signaling and may provide a mechanistic explanation of tumor character and suggest subtype-specific drug targets. Software is available from the Stuart lab's wiki: https://sysbiowiki.soe.ucsc.edu/tiedie. jstuart@ucsc.edu. Supplementary data are available at Bioinformatics online.

  7. Collision-induced absorption with exchange effects and anisotropic interactions: theory and application to H2 - H2.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  8. The interaction of high voltage systems with the environments of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Kolecki, Joseph C.

    1993-01-01

    High voltage systems designed for use on the lunar and Martian surfaces or in orbit will interact with environmental components such as electrically charged dust, low pressure atmospheres, ionospheric plasmas and neutrals, and chemically reactive species. As the Space Exploration Initiative (SEI) advances from the realm of feasibility study to that of conceptual design, guidelines will be required to ensure that these effects are properly accounted for. A first step in providing such guidelines is the prioritization of interactions for each of the space or surface environments that will be encountered. For those issues that are identified as high priority, the state of environmental knowledge, emphasizing essential data, must be determined. This report describes possible means of obtaining such information, including ground tests, modeling and analysis, and flight experiments. The development of computational tools which will enable engineers to simulate and thereby quantify the interactions will be especially considered. Our analysis is drawn from various study and workshop activities undertaken within the last two years.

  9. The President's Day cyclone 17-19 February 1979: An analysis of jet streak interactions prior to cyclogenesis

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.; Walsh, C. H.

    1981-01-01

    The President's Day cyclone, produced record breaking snowfall along the East Coast of the United States in February 1979. Conventional radiosonde data, SMS GOES infrared imagery and LFM 2 model diagnostics were used to analyze the interaction of upper and lower tropospheric jet streaks prior to cyclogenesis. The analysis reveals that a series of complex scale interactive processes is responsible for the development of the intense cyclone. The evolution of the subsynoptic scale mass and momentum fields prior to and during the period of rapid development of the President's Day cyclone utilizing conventional data and SMS GOES imagery is documented. The interaction between upper and lower tropospheric jet streaks which occurred prior to the onset of cyclogenesis is discussed as well as the possible effects of terrain modified airflow within the precyclogenesis environment. Possible deficiencies in the LFM-2 initial wind fields that could have been responsible, in part, for the poor numerical forecast are examined.

  10. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design.

    PubMed

    Berry, David J; Steed, Jonathan W

    2017-08-01

    As small molecule drugs become harder to develop and less cost effective for patient use, efficient strategies for their property improvement become increasingly important to global health initiatives. Improvements in the physical properties of Active Pharmaceutical Ingredients (APIs), without changes in the covalent chemistry, have long been possible through the application of binary component solids. This was first achieved through the use of pharmaceutical salts, within the last 10-15years with cocrystals and more recently coamorphous systems have also been consciously applied to this problem. In order to rationally discover the best multicomponent phase for drug development, intermolecular interactions need to be considered at all stages of the process. This review highlights the current thinking in this area and the state of the art in: pharmaceutical multicomponent phase design, the intermolecular interactions in these phases, the implications of these interactions on the material properties and the pharmacokinetics in a patient. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Meteoroid-bumper interactions program

    NASA Technical Reports Server (NTRS)

    Gough, P. S.

    1970-01-01

    An investigation has been made of the interaction of meteoroids with shielded structures. The interaction has been simulated by the impact of Lexan cylinders onto lead shields in order to provide the vaporous debris believed to be created by meteoroid impact on a space vehicle. Shock compression data for Lexan was determined. This, in combination with the known shock compression data for the lead shield, has permitted the definition of the initial high pressure states in the impacted projectile and shield. The debris from such impact events has been permitted to interact with aluminum main walls. The walls were chosen to be sufficiently large to be effectively infinite in diameter compared to the loaded area. The thickness of the wall and the spacing from the shield were varied to determine the effect of these parameters. In addition, the effect of having a body of water behind the wall has been assessed. Measurements of the stagnation pressure in the debris cloud have been made and correlated with the response of the main wall.

  12. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  13. Spread of entanglement and causality

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Liu, Hong; Mezei, Márk

    2016-07-01

    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.

  14. Dynamic response of an artificial square spin ice

    DOE PAGES

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; ...

    2016-03-02

    Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less

  15. Dynamic response of an artificial square spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.

    Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less

  16. Stability and self-organization of planetary systems.

    PubMed

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  17. Stability and self-organization of planetary systems

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system—in which planets have masses comparable to those of planets in the solar system—the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  18. Can observations look back to the beginning of inflation?

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2016-03-01

    The cosmic microwave background can measure the inflaton potential only if inflation lasts sufficiently long before the time of horizon crossing of observable fluctuations, such that non-linear effects in the time evolution of Green's functions lead to a loss of memory of initial conditions for the ultraviolet tail of the spectrum. Within a derivative expansion of the quantum effective action for an interacting scalar field we discuss the most general solution for the correlation function, including arbitrary pure and mixed quantum states. In this approximation no loss of memory occurs - cosmic microwave observations see the initial spectrum at the beginning of inflation, processed only mildly by the scale-violating effects at horizon crossing induced by the inflaton potential.

  19. State-to-state collisional interelectronic and intraelectronic energy transfer involving CN A 2Π v=3 and X 2Σ+ v=7 rotational levels

    NASA Astrophysics Data System (ADS)

    Jihua, Guo; Ali, Ashraf; Dagdigian, Paul J.

    1986-12-01

    Collisional transfer within the CN A 2Π v=3 vibrational manifold and to the X 2Σ+ v=7 manifold has been studied with initial and final rotational state resolution by an optical-optical double resonance technique. Despite the large energy gap between these two manifolds, the interelectronic cross sections are significant for only a relatively small range of ΔJ, and there is no observable propensity for energy resonant, large ΔJ transitions. The even-odd alternation vs N, observed previously in vA=7 collisions [N. Furio, A. Ali, and P. J. Dagdigian, J. Chem. Phys. 85, 3860 (1986)] and indicative of the near homonuclear form of the CN-Ar interaction potentials, is even more pronounced here for vA=3. The relative rate of intraelectronic and interelectronic energy transfer for the vA=3 N=6 F1f initial level was found to be comparable to that for the corresponding vA=7 level, despite the smaller Franck-Condon factor and larger energy gap to the neighboring vX=vA-4 manifold for the former.

  20. Magnon-phonon interconversion in a dynamically reconfigurable magnetic material

    NASA Astrophysics Data System (ADS)

    Guerreiro, Sergio C.; Rezende, Sergio M.

    2015-12-01

    The ferrimagnetic insulator yttrium iron garnet (YIG) is an important material in the field of magnon spintronics, mainly because of its low magnetic losses. YIG also has very low acoustic losses, and for this reason the conversion of a state of magnetic excitation (magnons) into a state of lattice vibration (phonons), or vice versa, broadens its possible applications in spintronics. Since the magnetic parameters can be varied by some external action, the magnon-phonon interconversion can be tuned to perform a desired function. We present a quantum theory of the interaction between magnons and phonons in a ferromagnetic material subject to a dynamic variation of the applied magnetic field. It is shown that when the field gradient at the magnetoelastic crossover region is much smaller than a critical value, an initial elastic excitation can be completely converted into a magnetic excitation, or vice versa. This occurs with conservation of linear momentum and spin angular momentum, implying that phonons created by the conversion of magnons have spin angular momentum and carry spin current. It is shown further that if the system is initially in a quantum coherent state, its coherence properties are maintained regardless of the time dependence of the field.

  1. A nationwide pharmacy chain responds to the opioid epidemic.

    PubMed

    Shafer, Emily; Bergeron, Nyahne; Smith-Ray, Renae; Robson, Chester; O'Koren, Rachel

    To describe the 3-pronged approach taken by a large national retail pharmacy chain to address the opioid epidemic and associated overdoses. Large national retail pharmacy chain with more than 8200 stores in 50 states. Eight million customer interactions daily through in-store and digital settings. This is a company with a long history of responding to public health crises. Initiated 3 programs to respond to the opioid crisis: 1) provide safe medication disposal kiosks; 2) expand national access to naloxone; and 3) provide education on the risk and avoidance of opioid overdose. Used the RE-AIM framework to evaluate and enhance the quality, speed, and public health impact of the interventions. Not applicable. Early results are safe medication disposal kiosks in more than 43 states, naloxone-dispensing program in 33 states, and patient and support system education using the Opioid Overdose Toolkit from the Substance Abuse and Mental Health Services Administration. The availability of safe drug-disposal kiosks, naloxone dispensing at pharmacies, and patient education are key prevention initiatives to address the opioid epidemic and reduce the increasing national burden of opioid overdose. Early results are quantitatively and qualitatively promising. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs).

    PubMed

    Han, Han; Monroe, Nicole; Votteler, Jörg; Shakya, Binita; Sundquist, Wesley I; Hill, Christopher P

    2015-05-22

    The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs)*

    PubMed Central

    Han, Han; Monroe, Nicole; Votteler, Jörg; Shakya, Binita; Sundquist, Wesley I.; Hill, Christopher P.

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly. PMID:25833946

  4. Quantum quenches in the Luttinger model and its close relatives

    NASA Astrophysics Data System (ADS)

    Cazalilla, M. A.; Chung, Ming-Chiang

    2016-06-01

    A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.

  5. Generation of squeezing in a driven many-body system

    NASA Astrophysics Data System (ADS)

    Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    In a spin-1 Bose-Einstein condensate, the non-linear spin-dependent collisional interactions can create entanglement and squeezing. Typically, the condensate is initialized at an unstable fixed point of the phase space, and subsequent free evolution under a time-independent Hamiltonian creates the squeezed state. Alternatively, it is possible to generate squeezing by driving the system localized at a stable fixed point. Here, we demonstrate that periodic modulation of the Hamiltonian can generate highly squeezed states. Our measurements show -5 dB of squeezing, limited by the detection, but calculations indicate that a theoretical potential of -20 dB of squeezing. We discuss the advantages of this method compared with the typical techniques.

  6. Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Wang, Yang-Yang; Qiu, Jing; Chu, Ying-Qi; Zhang, Mei; Cai, Jianming; Ai, Qing; Deng, Fu-Guo

    2018-04-01

    The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent quantum information storage and processing after appropriate initialization. However, current experimental schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize various nuclear spins with different hyperfine couplings and noise strengths.

  7. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    PubMed

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  8. The development of an Alzheimer's disease channel for the Michigan Interactive Health Kiosk Project.

    PubMed

    Connell, Cathleen M; Shaw, Benjamin A; Holmes, Sara B; Hudson, Margaret L; Derry, Holly A; Strecher, Victor J

    2003-01-01

    The overall objective of this article is to describe the development and implementation of an Alzheimer's disease (AD) module for the Michigan Interactive Health Kiosk Project. This project provides access to health information via 100 kiosks located in public places throughout the state (e.g., churches, senior centers, schools, shopping malls, grocery stores, hospitals) using interactive multimedia software. Because the kiosk screen was designed to resemble a television set, program modules are referred to as "channels." The AD channel is designed to increase knowledge and awareness of the disease among the general public. After an overview of the overall project, the steps involved in developing the AD channel and strategies designed to monitor its use are described, including touch-screen usage data and an on-line user survey. Finally, marketing and promotion of the channel and the implications of this initiative for disseminating information about AD are discussed.

  9. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.

    2017-06-01

    The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.

  10. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions

    DOE PAGES

    Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji; ...

    2015-05-25

    The rapid development of self-assembly approaches has enabled the creation of materials with desired organization of nanoscale components. However, achieving dynamic control, wherein the system can be transformed on demand into multiple entirely different states, is typically absent in atomic and molecular systems and has remained elusive in designed nanoparticle systems. Here, we demonstrate with in situ small-angle x-ray scattering that, by using DNA strands as inputs, the structure of a three-dimensional lattice of DNA-coated nanoparticles can be switched from an initial 'mother' phase into one of multiple 'daughter' phases. The introduction of different types of re-programming DNA strands modifiesmore » the DNA shells of the nanoparticles within the superlattice, thereby shifting interparticle interactions to drive the transformation into a particular daughter phase. We mapped quantitatively with free-energy calculations the selective re-programming of interactions onto the observed daughter phases.« less

  11. An overview of alcohol and tobacco/nicotine interactions in the human laboratory

    PubMed Central

    Verplaetse, Terril L.; McKee, Sherry A.

    2017-01-01

    Alcohol use disorders and tobacco use contribute significant risk to the global burden of disease, and each are major public health concerns. Together, alcohol and tobacco use are highly comorbid and have multiplicative health risks when used concurrently, underscoring the importance of examining alcohol-tobacco interactions in the human laboratory. The aims of this review were to summarize the state of research examining alcohol-tobacco interactions in the human laboratory, including 1) craving in drinkers and smokers exposed to smoking or drinking cues, 2) fixed-dosing of alcohol or nicotine in smokers and drinkers, and 3) smoking and alcohol influences on self-administration behaviors. The interactive effects of tobacco/nicotine with other drugs of abuse are also briefly discussed. Overall, results identified that alcohol and tobacco have reciprocal influences on potentiating craving, subjective responses to fixed-dose alcohol or nicotine administration, and self-administration. The literature identified that alcohol increases craving to smoke, decreases time to initiate smoking, and increases smoking self-administration. Similarly, tobacco and nicotine increase alcohol craving, decrease subjective effects of alcohol, and increase alcohol consumption. Future studies should continue to focus on alcohol and tobacco/nicotine interactions in individuals with a wide scope of drinking and smoking histories, different states of alcohol and nicotine deprivation, and influences of either drug on craving, subjective responses, and consumption over the course of the blood alcohol curve. This work could have important implications for the impact of alcohol-tobacco interactions on guiding clinical practice, as well as in the changing landscape of addiction. PMID:27439453

  12. Entanglement dynamics of coupled qubits and a semi-decoherence free subspace

    NASA Astrophysics Data System (ADS)

    Campagnano, Gabriele; Hamma, Alioscia; Weiss, Ulrich

    2010-01-01

    We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the cases of (I) two independent bosonic baths and (II) one common bath. We find that in the case (II) the existence of a decoherence-free subspace (DFS) makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces.

  13. Excitonic quantum interference in a quantum dot chain with rings.

    PubMed

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  14. Generation of large-scale density fluctuations by buoyancy

    NASA Technical Reports Server (NTRS)

    Chasnov, J. R.; Rogallo, R. S.

    1990-01-01

    The generation of fluid motion from a state of rest by buoyancy forces acting on a homogeneous isotropic small-scale density field is considered. Nonlinear interactions between the generated fluid motion and the initial isotropic small-scale density field are found to create an anisotropic large-scale density field with spectrum proportional to kappa(exp 4). This large-scale density field is observed to result in an increasing Reynolds number of the fluid turbulence in its final period of decay.

  15. United States Air Force Summer Faculty Research Program. Management Report. Volume 3

    DTIC Science & Technology

    1988-12-01

    xyz values are basically correct, we plotted the perspective view of a target using the xyz values with MATLAB (a matrix-based mathematics softwaie...initially included all the pixels of the image in calculating votes for each accumulator. Two target types, the M-60 tank and the fuel truck, were used...J.F., Gouin, H. and Gaviglio, J., "Evolution of the Reynolds Stress Tensor in a Shock Wave-Turbulence Interaction," Indian Journal of Technology, Vol

  16. [Structural analysis of the functional status of the brain as affected by bemethyl using pattern recognition theory].

    PubMed

    Bobkov, Iu G; Machula, A I; Morozov, Iu I; Dvalishvili, E G

    1987-11-01

    Evoked visual potentials in associated, parietal and second somatosensory zones of the neocortex were analysed in trained cats using implanted electrodes. The influence of bemethyl on the structure of behavioral reactions was analysed using theoretical methods of perceptual images, particularly the method of cluster analysis. Bemethyl was shown to increase the level of interaction between the functional elements of the system, leading to a more stable resolution of problems facing the system, as compared to the initial state.

  17. Electrical and chemical interactions at Mars Workshop, part 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Electrical and Chemical Interactions at Mars Workshop, hosted by NASA Lewis Research Center on November 19 and 20, 1991, was held with the following objectives in mind: (1) to identify issues related to electrical and chemical interactions between systems and their local environments on Mars, and (2) to recommend means of addressing those issues, including the dispatch of robotic spacecraft to Mars to acquire necessary information. The workshop began with presentations about Mars' surface and orbital environments, Space Exploration Initiative (SEI) systems, environmental interactions, modeling and analysis, and plans for exploration. Participants were then divided into two working groups: one to examine the surface of Mars; and the other, the orbit of Mars. The working groups were to identify issues relating to environmental interactions; to state for each issue what is known and what new knowledge is needed; and to recommend ways to fulfill the need. Issues were prioritized within each working group using the relative severity of effects as a criterion. Described here are the two working groups' contributions. A bibliography of materials used during the workshop and suggested reference materials is included.

  18. High-resolution infrared studies of the v 10, v 11, v 14, and v 18 levels of [1.1.1]propellane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Robynne W.; Masiello, Tony; Martin, Matthew A.

    2012-11-15

    This paper is a continuation of earlier work for which the high resolution infrared spectrum of [1.1.1]propellane was measured and its k and l structure resolved for the first time. Here we present results from an analysis of more than 16,000 transitions involving three fundamental bands v 10 (E'-A1'), v 11 (E'-A1'), v 14 (A2''-A1') and two difference bands (v 10- v 18) (E'-E'') and (v 11-v 18) (E'-E"). Additional information about v18 was also obtained from the difference band (v 15+v 18)-v 18 (E'-E") and the binary combination band (v 15+v 18) (E'-A1'). Through the use of the groundmore » state constants reported in an earlier paper [1], rovibrational constants have been determined for all the vibrational states involved in these bands. The rovibrational parameters for the v 18(E'') state were obtained from combination-differences and showed no need to include interactions with other states. The v 10(E') state analysis was also straight-forward, with only a weak Coriolis interaction with the levels of the v 14(A2'') state. The latter levels are much more affected by a strong Coriolis interaction with the levels of the nearby v 11(E') state and also by a small but significant interaction with another state, presumably the v16(E'') state, that is not directly observed. Gaussian calculations (B3LYP/cc-pVTZ) computed at the anharmonic level aided the analyses by providing initial values for many of the parameters. These theoretical results generally compare favorably with the final parameter values deduced from the spectral analyses. Finally, evidence was obtained for several level crossings between the rotational levels of the v 11 and v 14 states and, using a weak coupling term corresponding to a Δk = ±5, Δl = ∓1 matrix element, it was possible to find transitions from the ground state that, combined with transitions to the same upper state, give a value of C 0 = 0.1936519(4) cm -1. This result, combined with the value of B 0 = 0.28755833(14) cm-1 reported earlier [1], yields a value of 1.586282(3) Å for the length of the novel axial CC bond in propellane.« less

  19. Therapeutic Alliance: A Concept for the Childbearing Season

    PubMed Central

    Doherty, Mary Ellen

    2009-01-01

    This analysis was conducted to describe the concept of therapeutic alliance and its appropriateness for health-care provider-client interactions during the childbearing season. The concept has been defined in other disciplines. A universal definition suggested a merging of efforts directed toward health. A simple and concise definition evolved, which is applicable to the childbearing season as well as to health-care encounters across the life span. This definition states: Therapeutic alliance is a process within a health-care provider-client interaction that is initiated by an identified need for positive client health-care behaviors, whereby both parties work together toward this goal with consideration of the client's current health status and developmental stage within the life span. PMID:20514120

  20. Modelling audiovisual integration of affect from videos and music.

    PubMed

    Gao, Chuanji; Wedell, Douglas H; Kim, Jongwan; Weber, Christine E; Shinkareva, Svetlana V

    2018-05-01

    Two experiments examined how affective values from visual and auditory modalities are integrated. Experiment 1 paired music and videos drawn from three levels of valence while holding arousal constant. Experiment 2 included a parallel combination of three levels of arousal while holding valence constant. In each experiment, participants rated their affective states after unimodal and multimodal presentations. Experiment 1 revealed a congruency effect in which stimulus combinations of the same extreme valence resulted in more extreme state ratings than component stimuli presented in isolation. An interaction between music and video valence reflected the greater influence of negative affect. Video valence was found to have a significantly greater effect on combined ratings than music valence. The pattern of data was explained by a five parameter differential weight averaging model that attributed greater weight to the visual modality and increased weight with decreasing values of valence. Experiment 2 revealed a congruency effect only for high arousal combinations and no interaction effects. This pattern was explained by a three parameter constant weight averaging model with greater weight for the auditory modality and a very low arousal value for the initial state. These results demonstrate key differences in audiovisual integration between valence and arousal.

  1. A theoretical approach to the photochemical activation of matrix isolated aluminum atoms and their reaction with methane

    NASA Astrophysics Data System (ADS)

    Pacheco-Blas, M. A.; Novaro, O. A.; Pacheco-Sánchez, J. H.

    2010-11-01

    The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground (P2:3s23p1) and the lowest excited states (S2:3s24s1 and D2:3s23d1) of an aluminum atom interacting with a methane molecule (CH4) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The D2 state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH4) lower lying states P2 and S2. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH3 intermediate that eventually leads to the final pair of products H+AlCH3 and HAl+CH3.

  2. Induction of amyloidogenicity in wild type HEWL by a dialdehyde: analysis involving multi dimensional approach.

    PubMed

    Fazili, Naveed Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena

    2014-03-01

    Physiological conditions corresponding to oxidative stress deplete the level of enzyme glyoxalase, facilitating a hike in the serum concentration of glyoxal. Simulating an elevated in vivo level of glyoxal, we tested (50%, v/v) concentration of glyoxal to interact with HEWL. Initially, docking study revealed that glyoxal binds in the hydrophobic core of the enzyme. The interaction between the dialdehyde (glyoxal) and the enzyme (HEWL) followed a three step transition involving pre-molten and molten globule states formed on days 7 and 15 of incubation respectively, which were characterised by an increase in the ANS fluorescence intensity compared to the native state. These molten globule states upon further incubation on day 20 resulted in the formation of aggregates which were characterised by an increase in ThT fluorescence intensity, red shift in Congo red absorbance, negative ellipticity peak at 217 nm in the far-UV CD and the loss of signals at 284, 290 and 294 nm in the near-UV CD spectra. Finally, TEM confirmed the authenticity of lysozyme fibril formation by displaying rod like fibrillar structure. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Coherent strong field interactions between a nanomagnet and a photonic cavity

    NASA Astrophysics Data System (ADS)

    Soykal, Oney Orhunc

    Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.

  4. Decadal climate predictions improved by ocean ensemble dispersion filtering

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-06-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.Plain Language SummaryDecadal predictions aim to predict the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. The ocean memory due to its heat capacity holds big potential skill. In recent years, more precise initialization techniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions. Ensembles are another important aspect. Applying slightly perturbed predictions to trigger the famous butterfly effect results in an ensemble. Instead of evaluating one prediction, but the whole ensemble with its ensemble average, improves a prediction system. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Our study shows that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure applying the average during the model run, called ensemble dispersion filter, results in more accurate results than the standard prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2731916','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2731916"><span>Comparative analysis of activator-Eσ54 complexes formed with nucleotide-metal fluoride analogues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Burrows, Patricia C.; Joly, Nicolas; Nixon, B. Tracy; Buck, Martin</p> <p>2009-01-01</p> <p>Bacterial RNA polymerase (RNAP) containing the major variant σ54 factor forms open promoter complexes in a reaction in which specialized activator proteins hydrolyse ATP. Here we probe binding interactions between σ54-RNAP (Eσ54) and the ATPases associated with various cellular activities (AAA+) domain of the Escherichia coli activator protein, PspF, using nucleotide-metal fluoride (BeF and AlF) analogues representing ground and transition states of ATP, which allow complexes (that are otherwise too transient with ATP) to be captured. We show that the organization and functionality of the ADP–BeF- and ADP–AlF-dependent complexes greatly overlap. Our data support an activation pathway in which the initial ATP-dependent binding of the activator to the Eσ54 closed complex results in the re-organization of Eσ54 with respect to the transcription start-site. However, the nucleotide-dependent binding interactions between the activator and the Eσ54 closed complex are in themselves insufficient for forming open promoter complexes when linear double-stranded DNA is present in the initial closed complex. PMID:19553192</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890010771','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890010771"><span>Fatigue life prediction modeling for turbine hot section materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.</p> <p>1989-01-01</p> <p>A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJC....91.1431A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJC....91.1431A"><span>Reach a nonlinear consensus for MAS via doubly stochastic quadratic operators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdulghafor, Rawad; Turaev, Sherzod; Zeki, Akram; Al-Shaikhli, Imad</p> <p>2018-06-01</p> <p>This technical note addresses the new nonlinear protocol class of doubly stochastic quadratic operators (DSQOs) for coordination of consensus problem in multi-agent systems (MAS). We derive the conditions for ensuring that every agent reaches consensus on a desired rate of the group's decision where the group decision value in its agent's initial statuses varies. Besides that, we investigate a nonlinear protocol sub-class of extreme DSQO (EDSQO) to reach a consensus for MAS to a common value with nonlinear low-complexity rules and fast time convergence if the interactions for each agent are not selfish. In addition, to extend the results to reach a consensus and to avoid the selfish case we specify a general class of DSQO for reaching a consensus under any given case of initial states. The case that MAS reach a consensus by DSQO is if each member of the agent group has positive interactions of DSQO (PDSQO) with the others. The convergence of both EDSQO and PDSQO classes is found to be directed towards the centre point. Finally, experimental simulations are given to support the analysis from theoretical aspect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880005071','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880005071"><span>Fatigue life prediction modeling for turbine hot section materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.</p> <p>1988-01-01</p> <p>A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvA..81d3819W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvA..81d3819W"><span>Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Da-Wei; Li, Zheng-Hong; Zheng, Hang; Zhu, Shi-Yao</p> <p>2010-04-01</p> <p>A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DMP.Q1104M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DMP.Q1104M"><span>Regions of tunneling dynamics for few bosons in an optical lattice subjected to a quench of the imposed harmonic trap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mistakidis, Simeon; Koutentakis, Georgios; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team</p> <p>2016-05-01</p> <p>Recent experimental advances have introduced an interplay in the trapping length scales of the lattice and the harmonic confinement. This fact motivates the investigation to prepare atomic gases at certain quantum states by utilizing a composite atomic trap consisting of a lattice potential that is embedded inside an overlying harmonic trap. In the present work, we examine how frequency modulations of the overlying harmonic trap stimulate the dynamics of an 1D few-boson gas. The gas is initially prepared at a highly confined state, and the subsequent dynamics induced by a quench of the harmonic trap frequency to a lower value is examined. It is shown that a non-interacting gas always diffuses to the outer sites. In contrast the response of the interacting system is more involved and is dominated by a resonance, which is induced by the bifurcation of the low-lying eigenstates. Our study reveals that the position of the resonance depends both on the atom number and the interaction coupling, manifesting its many body nature. The corresponding mean field treatment as well as the single-band approximation have been found to be inadequate for the description of the tunneling dynamics in the interacting case. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........19D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........19D"><span>Cooling and heating of the quantum motion of trapped cadmium(+) ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deslauriers, Louis</p> <p></p> <p>The quest for a quantum system best satisfying the stringent requirements of a quantum information processor has made tremendous progress in many fields of physics. In the last decade, trapped ions have been established as one of the most promising architectures to accomplish the task. Internal states of an ion which can have extremely long coherence time can be used to store a quantum bit, and therefore allow many gate operations before the coherence is lost. Entanglement between multiple ions can be established via Coulomb interactions mediated by appropriate laser fields. Entangling schemes usually require the ions to be initialized to near their motional ground state. The interaction of fluctuating electric fields with the motional state of the ion leads to heating and thus to decoherence for entanglement generation limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped ion motion and suppression of motional heating are thus crucial to many applications of trapped ions in quantum information science. In this thesis, I describe the implementation and study of several components of a Cadmium-ion-based quantum information processor, with special emphasis on the control and decoherence of trapped ion motion. I first discuss the building and design of various ion traps that were used in this work. I also report on the use of ultrafast laser pulses to photoionize and load cadmium ions in a variety of rf Paul trap geometries. A detailed analysis of the photoionization scheme is presented, along with its dependence on controlled experimental parameters. I then describe the implementation of Raman sideband cooling on a single trapped 111Cd+ ion to the ground state of motion, where a ground state population of 97% was achieved. The efficacy of this cooling technique is discussed with respect to different initial motional state distributions and its sensitivity to the presence of motional heating. I also present an experiment where the motion of a single trapped 112Cd+ ion is sympathetically cooled by directly Doppler cooling a 114Cd+ ion in the same trap. The implications of this result are relevant to the scaling of a trapped ion quantum computer, where the unwanted motion of an ion crystal can be quenched while not affecting the internal states of the qubit ions. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24652763','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24652763"><span>Structures and properties of molecular torsion balances to decipher the nature of substituent effects on the aromatic edge-to-face interaction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gardarsson, Haraldur; Schweizer, W Bernd; Trapp, Nils; Diederich, François</p> <p>2014-04-14</p> <p>Various recent computational studies initiated this systematic re-investigation of substituent effects on aromatic edge-to-face interactions. Five series of Tröger base derived molecular torsion balances (MTBs), initially introduced by Wilcox and co-workers, showing an aromatic edge-to-face interaction in the folded, but not in the unfolded form, were synthesized. A fluorine atom or a trifluoromethyl group was introduced onto the edge ring in ortho-, meta-, and para-positions to the C-H group interacting with the face component. The substituents on the face component were varied from electron-donating to electron-withdrawing. Extensive X-ray crystallographic data allowed for a discussion on the conformational behavior of the torsional balances in the solid state. While most systems adopt the folded conformation, some were found to form supramolecular intercalative dimers, lacking the intramolecular edge-to-face interaction, which is compensated by the gain of aromatic π-stacking interactions between four aryl rings of the two molecular components. This dimerization does not take place in solution. The folding free enthalpy ΔG(fold) of all torsion balances was determined by (1)H NMR measurements by using 10 mM solutions of samples in CDCl3 and C6D6. Only the ΔG(fold) values of balances bearing an edge-ring substituent in ortho-position to the interacting C-H show a steep linear correlation with the Hammett parameter (σ(meta)) of the face-component substituent. Thermodynamic analysis using van't Hoff plots revealed that the interaction is enthalpy-driven. The ΔG(fold) values of the balances, in addition to partial charge calculations, suggest that increasing the polarization of the interacting C-H group makes a favorable contribution to the edge-to-face interaction. The largest contribution, however, seems to originate from local direct interactions between the substituent in ortho-position to the edge-ring C-H and the substituted face ring. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29921715','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29921715"><span>The State of the NIH BRAIN Initiative.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koroshetz, Walter; Gordon, Joshua; Adams, Amy; Beckel-Mitchener, Andrea; Churchill, James; Farber, Gregory; Freund, Michelle; Gnadt, Jim; Hsu, Nina; Langhals, Nicholas; Lisanby, Sarah; Liu, Guoying; Peng, Grace; Ramos, Khara; Steinmetz, Michael; Talley, Edmund; White, Samantha</p> <p>2018-06-19</p> <p>The BRAIN Initiative® arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system. As the Initiative enters its fifth year, NIH has supported over 500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual labs, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and NIH continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative. Copyright © 2018 the authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28664966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28664966"><span>Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szabla, Rafał; Kruse, Holger; Šponer, Jiří; Góra, Robert W</p> <p>2017-07-21</p> <p>Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantum-chemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet nπ* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4449124','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4449124"><span>Preparatory Body State before Reacting to an Opponent: Short-Term Joint Torque Fluctuation in Real-Time Competitive Sports</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki</p> <p>2015-01-01</p> <p>In a competitive sport, the outcome of a game is determined by an athlete’s relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender’s initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state, irrespective of the outcome. These results indicate that the preparatory body state as explained by short-term joint torque fluctuations before the defensive step would help explain the performance in competitive sports, and will give insights into understanding human adaptive behavior in unpredicted and uncontrolled environments. PMID:26024485</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......152A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......152A"><span>Idealized Cloud-System Resolving Modeling for Tropical Convection Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anber, Usama M.</p> <p></p> <p>A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1334149','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1334149"><span>Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher</p> <p></p> <p>Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1334149-robust-vortex-lines-vortex-rings-hopfions-three-dimensional-bose-einstein-condensates','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1334149-robust-vortex-lines-vortex-rings-hopfions-three-dimensional-bose-einstein-condensates"><span>Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...</p> <p>2015-12-07</p> <p>Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EL.....9948007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EL.....9948007S"><span>An equation-free approach to agent-based computation: Bifurcation analysis and control of stationary states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.</p> <p>2012-08-01</p> <p>We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020053651','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020053651"><span>Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Camanho, Pedro P.; Davila, Carlos G.</p> <p>2002-01-01</p> <p>A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPB..3250093P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPB..3250093P"><span>Considerable improvement of entanglement swapping by considering multiphoton transitions via cavity quantum electrodynamics method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pakniat, R.; Soltani, M.; Tavassoly, M. K.</p> <p>2018-03-01</p> <p>Recently we studied the effect of photon addition in the initial coherent field on the entanglement swapping which causes some improvements in the process [Soltani et al., Int. J. Mod. Phys. B 31, 1750198 (2017)]. In this paper, we investigate the influence of multiphoton transitions in the atom-field interaction based on the cavity quantum electrodynamics on the entanglement swapping and show its considerable constructive effect on this process. The presented model consists of two two-level atoms namely A1 and A2 and two distinct cavity fields F1 and F2. Initially, the atoms are prepared in a maximally entangled state and the fields in the cavities are prepared in hybrid entangled state of number and coherent states, separately. Making the atom A2 to interact with the field F1 (via the generalized Jaynes-Cummings model which allows m-photon transitions between atomic levels in the emission and absorption processes) followed by their detection allows us to arrive at the entanglement swapping from the two atoms A1, A2 and the two fields F1, F2 to the atom-field A1-F2 system. Then, we pay our attention to the time evolution of success probability of detecting processes and fidelity. Also, to determine the amount of entanglement of the generated entangled state in the swapping process, the linear entropy is evaluated and the effect of parameter m concerning the multiphoton transitions on these quantities is investigated, numerically. It is observed that, by increasing the number of photons in the transition process, one may obtain considerable improvement in the relevant quantities of the entanglement swapping. In detail, the satisfactorily acceptable values 1 and 0.5 corresponding to success probability and fidelity are obtained for most of the times during observing of the above-mentioned procedure. We concluded that the presented formalism in this paper is much more advantageous than our presentation model in our earlier work mentioned above.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......231K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......231K"><span>Engineering students' and faculty perceptions of teaching methods and the level of faculty involvement that promotes academic success</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karpilo, Lacy N.</p> <p></p> <p>Student academic success is a top priority of higher education institutions in the United States and the trend of students leaving school prior to finishing their degree is a serious concern. Accountability has become a large part of university and college ratings and perceived success. Retention is one component of the accountability metrics used by accreditation agencies. In addition, there are an increasing number of states allocating funds based in part on retention (Seidman, 2005). Institutions have created initiatives, programs, and even entire departments to address issues related to student academic success to promote retention. Universities and colleges have responded by focusing on methods to retain and better serve students. Retention and student academic success is a primary concern for high education institutions; however, engineering education has unique retention issues. The National Science Board (2004) reports a significant decline in the number of individuals in the United States who are training to become engineers, despite the fact that the number of jobs that utilize an engineering background continues to increase. Engineering education has responded to academic success issues by changing curriculum and pedagogical methods (Sheppard, 2001). This descriptive study investigates the perception of engineering students and faculty regarding teaching methods and faculty involvement to create a picture of what is occurring in engineering education. The population was the engineering students and faculty of Colorado State University's College of Engineering. Data from this research suggests that engaging teaching methods are not being used as often as research indicates they should and that there is a lack of student-faculty interaction outside of the classroom. This research adds to the breadth of knowledge and understanding of the current environment of engineering education. Furthermore, the data allows engineering educators and other higher education professionals to gain insight into the teaching methods currently being utilized in engineering and reinforces the importance of student-faculty interaction and thus facilitating the creation of programs or initiatives to improve student academic success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS33A1802K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS33A1802K"><span>Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiladis, G. N.; Biello, J. A.; Straub, K. H.</p> <p>2012-12-01</p> <p>It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG waves will be presented, and the seasonality of these statistical associations will be discussed. Extratropical forcing of equatorial waves appears to be most efficient during the solstice seasons by waves originating within the winter hemisphere and interacting with convection in the summer hemisphere. A companion presentation by J. Biello will examine the theoretical basis for these interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Natur.502..211M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Natur.502..211M"><span>Observing single quantum trajectories of a superconducting quantum bit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murch, K. W.; Weber, S. J.; Macklin, C.; Siddiqi, I.</p> <p>2013-10-01</p> <p>The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a `quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing `quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24108052','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24108052"><span>Observing single quantum trajectories of a superconducting quantum bit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murch, K W; Weber, S J; Macklin, C; Siddiqi, I</p> <p>2013-10-10</p> <p>The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a 'quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing 'quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28161327','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28161327"><span>Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas</p> <p>2017-04-01</p> <p>Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120u0604A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120u0604A"><span>Fast Preparation of Critical Ground States Using Superluminal Fronts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.</p> <p>2018-05-01</p> <p>We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM..ED41A10M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM..ED41A10M"><span>The Experiential Learning Initiative: A Student-Scientist Partnership for Urban Youth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, B. J.; Birdin, V. E.; Butler, J.</p> <p>2001-05-01</p> <p>The Experiential Learning Initiative is a student-scientist partnership initiated during the doctoral program of the author. Essential to the partnership were the cooperative relationships between the teaching and administrative staffs of Bellwood, IL School District 88 and the Michigan State University Department of Entomology. The use of insects, geophysical visualization activities, and extensive fieldwork by the students served as the foundation for non-traditional learning experiences. The university science partner worked with students in an after-school program several days each month. During these sessions, students were given opportunities to experience science as an on-going process based on personal curiosity and creativity. Through their personal investigations in laboratory, field, and field station situations, the students constructed knowledge of Earth processes and ecological interactions. Each academic year of the partnership was brought to closure with a capstone event that included travel to a major university or working field station for a week of on-site investigation, expanded exposure to practicing scientists, and residential living in a scientific community. All students presented posters about a topic of their own areas of interest at the end of the week and again upon return to their schools. The results of this partnership have included strong gains in both personal confidence among the students and in test scores from standardized state tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3182994','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3182994"><span>Dynamical Consequences of Bandpass Feedback Loops in a Bacterial Phosphorelay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sen, Shaunak; Garcia-Ojalvo, Jordi; Elowitz, Michael B.</p> <p>2011-01-01</p> <p>Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit consisting of a phosphorelay embedded in multiple transcriptional feedback loops, which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are “bandpass”-like, in the sense that activation occurs within a limited band of Spo0A∼P concentrations. Additionally, recent results show that the phosphorelay activation occurs in pulses, in a cell-cycle dependent fashion. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation remains unclear. In order to address this question, we measured key features of the bandpass interactions at the single-cell level and analyzed them in the context of a simple mathematical model. The model predicted the emergence of a delayed phase shift between the pulsing activity of the different sporulation genes, as well as the existence of a stable state, with elevated Spo0A activity but no sporulation, embedded within the dynamical structure of the system. To test the model, we used time-lapse fluorescence microscopy to measure dynamics of single cells initiating sporulation. We observed the delayed phase shift emerging during the progression to sporulation, while a re-engineering of the sporulation circuit revealed behavior resembling the predicted additional state. These results show that periodically-driven bandpass feedback loops can give rise to complex dynamics in the progression towards sporulation. PMID:21980382</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24596554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24596554"><span>Robot initiative in a team learning task increases the rhythm of interaction but not the perceived engagement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ivaldi, Serena; Anzalone, Salvatore M; Rousseau, Woody; Sigaud, Olivier; Chetouani, Mohamed</p> <p>2014-01-01</p> <p>We hypothesize that the initiative of a robot during a collaborative task with a human can influence the pace of interaction, the human response to attention cues, and the perceived engagement. We propose an object learning experiment where the human interacts in a natural way with the humanoid iCub. Through a two-phases scenario, the human teaches the robot about the properties of some objects. We compare the effect of the initiator of the task in the teaching phase (human or robot) on the rhythm of the interaction in the verification phase. We measure the reaction time of the human gaze when responding to attention utterances of the robot. Our experiments show that when the robot is the initiator of the learning task, the pace of interaction is higher and the reaction to attention cues faster. Subjective evaluations suggest that the initiating role of the robot, however, does not affect the perceived engagement. Moreover, subjective and third-person evaluations of the interaction task suggest that the attentive mechanism we implemented in the humanoid robot iCub is able to arouse engagement and make the robot's behavior readable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3925832','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3925832"><span>Robot initiative in a team learning task increases the rhythm of interaction but not the perceived engagement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ivaldi, Serena; Anzalone, Salvatore M.; Rousseau, Woody; Sigaud, Olivier; Chetouani, Mohamed</p> <p>2014-01-01</p> <p>We hypothesize that the initiative of a robot during a collaborative task with a human can influence the pace of interaction, the human response to attention cues, and the perceived engagement. We propose an object learning experiment where the human interacts in a natural way with the humanoid iCub. Through a two-phases scenario, the human teaches the robot about the properties of some objects. We compare the effect of the initiator of the task in the teaching phase (human or robot) on the rhythm of the interaction in the verification phase. We measure the reaction time of the human gaze when responding to attention utterances of the robot. Our experiments show that when the robot is the initiator of the learning task, the pace of interaction is higher and the reaction to attention cues faster. Subjective evaluations suggest that the initiating role of the robot, however, does not affect the perceived engagement. Moreover, subjective and third-person evaluations of the interaction task suggest that the attentive mechanism we implemented in the humanoid robot iCub is able to arouse engagement and make the robot's behavior readable. PMID:24596554</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23813002','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23813002"><span>A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf</p> <p>2013-07-01</p> <p>State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Supplementary data are available at Bioinformatics online.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3694653','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3694653"><span>A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf</p> <p>2013-01-01</p> <p>Motivation: State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Results: Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). Availability: The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMPB..3150088Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMPB..3150088Y"><span>Entropy, energy, and entanglement of localized states in bent triatomic molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Qiang; Hou, Xi-Wen</p> <p>2017-05-01</p> <p>The dynamics of quantum entropy, energy, and entanglement is studied for various initial states in an important spectroscopic Hamiltonian of bent triatomic molecules H2O, D2O, and H2S. The total quantum correlation is quantified in terms of the mutual information and the entanglement by the concurrence borrowed from the theory of quantum information. The Pauli entropy and the intramolecular energy usually used in the theory of molecules are calculated to establish a possible relationship between both theories. Sections of two quantities among these four quantities are introduced to visualize such relationship. Analytic and numerical simulations demonstrate that if an initial state is taken to be the stretch- or the bend-vibrationally localized state, the mutual information, the Pauli entropy, and the concurrence are dominant-positively correlated while they are dominantly anti-correlated with the interacting energy among three anharmonic vibrational modes. In particular, such correlation is more distinct for the localized state with high excitations in the bending mode. The nice quasi-periodicity of those quantities in D2O molecule reveals that this molecule prepared in the localized state in the stretching or the bending mode can be more appreciated for molecular quantum computation. However, the dynamical correlations of those quantities behave irregularly for the dislocalized states. Moreover, the hierarchy of the mutual information and the Pauli entropy is explicitly proved. Quantum entropy and energy in every vibrational mode are investigated. Thereby, the relation between bipartite and tripartite entanglements is discussed as well. Those are useful for the understanding of quantum correlations in high-dimensional states in polyatomic molecules from quantum information and intramolecular dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29791236','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29791236"><span>The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, A; Carroll-Nellenback, Jonathan; Alberti, M; Kleidon, A</p> <p>2018-05-01</p> <p>We present a framework for studying generic behaviors possible in the interaction between a resource-harvesting technological civilization (an exo-civilization) and the planetary environment in which it evolves. Using methods from dynamical systems theory, we introduce and analyze a suite of simple equations modeling a population which consumes resources for the purpose of running a technological civilization and the feedback those resources drive on the state of the host planet. The feedbacks can drive the planet away from the initial state the civilization originated in and into domains that are detrimental to its sustainability. Our models conceptualize the problem primarily in terms of feedbacks from the resource use onto the coupled planetary systems. In addition, we also model the population growth advantages gained via the harvesting of these resources. We present three models of increasing complexity: (1) Civilization-planetary interaction with a single resource; (2) Civilization-planetary interaction with two resources each of which has a different level of planetary system feedback; (3) Civilization-planetary interaction with two resources and nonlinear planetary feedback (i.e., runaways). All three models show distinct classes of exo-civilization trajectories. We find smooth entries into long-term, "sustainable" steady states. We also find population booms followed by various levels of "die-off." Finally, we also observe rapid "collapse" trajectories for which the population approaches n = 0. Our results are part of a program for developing an "Astrobiology of the Anthropocene" in which questions of sustainability, centered on the coupled Earth-system, can be seen in their proper astronomical/planetary context. We conclude by discussing the implications of our results for both the coupled Earth system and for the consideration of exo-civilizations across cosmic history. Key Words: Anthropocene-Astrobiology-Civilization-Dynamical system theory-Exoplanets-Population dynamics. Astrobiology 18, 503-518.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820005839','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820005839"><span>Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nam, M. H.; Winters, J. M.; Stark, L.</p> <p>1981-01-01</p> <p>Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120n4301L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120n4301L"><span>Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lvov, Yuri V.; Onorato, Miguel</p> <p>2018-04-01</p> <p>We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.426a2009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.426a2009S"><span>Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.</p> <p>2013-03-01</p> <p>We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT........16V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT........16V"><span>The role of the baryon junction in relativistic heavy-ion collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vance, Stephen Earl</p> <p></p> <p>The non-perturbative nature of the conserved baryon number of nuclei is investigated by studying the role of the baryon junction in relativistic heavy-ion collisions. The junction, J, of a baryon originates in the Standard Model of Strong Interactions (QCD) and is the vertex which connects the color flux (Wilson) lines flowing from the three valence quarks. In high energy interactions, the baryon junction can play a dynamical role through the Regge exchange of junction states. We show that the junction exchange provides a natural mechanism for the transport of baryon number into the central rapidity region and has the remarkable ability to produce valence hyperons, including W- baryons. This mechanism is used to describe the observed baryon stopping and associated hyperon production in nucleus-nucleus collisions at the CERN SPS. We also show that junction - antijunction excitations or JJ loops provide a new mechanism for baryon pair production and lead to enhanced hyperon and antihyperon production. The combination of these two mechanisms is able to explain part of the anomalous hyperon production observed in Pb + Pb collisions at the SPS. Using the junction initial state dynamics, final state strangeness exchange interactions are shown to further enhance hyperon production and are proposed as an explanation of the remaining anomalous hyperon production. With larger phase space (higher energy) accessible at the newly constructed BNL RHIC facility, we propose that the observation of valence W- baryons in pp collisions will be a decisive observable to confirm the junction exchange picture of baryon number transport. In addition, we note that novel rapidity correlations between baryons and antibaryons of completely different quark flavors, like D++(uuu) and W+( ss s) , are predicted by the JJ loop mechanism. For numerical calculations of multiparticle observables associated with these junction mechanisms, we developed the HIJING/BB¯ nuclear event generator. HIJING/BB¯ was then coupled to the General Cascade Program (GCP) to study the role of the final state flavor changing interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5400261','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5400261"><span>Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chu, Wen-Ting; Clarke, Jane; Shammas, Sarah L.; Wang, Jin</p> <p>2017-01-01</p> <p>PUMA, which belongs to the BH3-only protein family, is an intrinsically disordered protein (IDP). It binds to its cellular partner Mcl-1 through its BH3 motif, which folds upon binding into an α helix. We have applied a structure-based coarse-grained model, with an explicit Debye—Hückel charge model, to probe the importance of electrostatic interactions both in the early and the later stages of this model coupled folding and binding process. This model was carefully calibrated with the experimental data on helical content and affinity, and shown to be consistent with previously published experimental data on binding rate changes with respect to ionic strength. We find that intramolecular electrostatic interactions influence the unbound states of PUMA only marginally. Our results further suggest that intermolecular electrostatic interactions, and in particular non-native electrostatic interactions, are involved in formation of the initial encounter complex. We are able to reveal the binding mechanism in more detail than is possible using experimental data alone however, and in particular we uncover the role of non-native electrostatic interactions. We highlight the potential importance of such electrostatic interactions for describing the binding reactions of IDPs. Such approaches could be used to provide predictions for the results of mutational studies. PMID:28369057</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>