Sample records for initial substrate moisture

  1. Initial substrate moisture content and storage temperature affects chemical properties of bagged substrates containing controlled release fertilizer at two different temperatures

    USDA-ARS?s Scientific Manuscript database

    Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with controlled release fertilizers (CRF). The objective of this research was to observe how initial substrate moisture content and storage temperature affect the chemical p...

  2. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    PubMed Central

    Lukovic, Mladena; Ye, Guang

    2015-01-01

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801

  3. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate.

    PubMed

    Aydinoğlu, Tuğba; Sargin, Sayit

    2013-02-01

    The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4-1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.

  4. Improved cellulase production by Botryosphaeria rhodina from OPEFB at low level moisture condition through statistical optimization.

    PubMed

    Bahrin, E K; Ibrahim, M F; Abd Razak, M N; Abd-Aziz, S; Shah, U K Md; Alitheen, N; Salleh, M Md

    2012-01-01

    The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.

  5. Citric acid production by Koji fermentation using banana peel as a novel substrate.

    PubMed

    Karthikeyan, Alagarsamy; Sivakumar, Nallusamy

    2010-07-01

    The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics.

    PubMed

    Cullis, Ian F; Saddler, John N; Mansfield, Shawn D

    2004-02-20

    Previous optimization strategies for the bioconversion of lignocellulosics by steam explosion technologies have focused on the effects of temperature, pH, and treatment time, but have not accounted for changes in severity brought about by properties inherent in the starting feedstock. Consequently, this study evaluated the effects of chip properties, feedstock size (40-mesh, 1.5 x 1.5 cm, 5 x 5 cm), and moisture content (12% and 30%) on the overall bioconversion process, and more specifically on the efficacy of removal of recalcitrant lignin from the lignocellulosic substrates following steam explosion. Increasing chip size resulted in an improvement in the solids recovery, with concurrent increases in the water soluble, hemicellulose-derived sugar recovery (7.5%). This increased recovery is a result of a decrease in the "relative severity" of the pretreatment as chip size increases. Additionally, the decreased relative severity minimized the condensation of the recalcitrant residual lignin and therefore increased the efficacy of peroxide fractionation, where a 60% improvement in lignin removal was possible with chips of larger initial size. Similarly, increased initial moisture content reduced the relative severity of the pretreatment, generating improved solids and hemicellulose-derived carbohydrate recovery. Both increased chip size and higher initial moisture content results in a substrate that performs better during peroxide delignification, and consequently enzymatic hydrolysis. Furthermore, a post steam-explosion refining step increased hemicellulose-derived sugar recovery and was most effectively delignified (to as low as 6.5%). The refined substrate could be enzymatically hydrolyzed to very high levels (98%) and relatively fast rates (1.23 g/L/h). Copyright 2004 Wiley Periodicals, Inc.

  7. A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation.

    PubMed

    Survase, Shrikant A; Shaligram, Nikhil S; Pansuriya, Ruchir C; Annapure, Uday S; Singhal, Rekha S

    2009-05-01

    Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at 25+/-2 degrees for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of 3,872+/-156 mg CyA/kg substrate as compared with 792+/-33 mg/kg substrate before optimization. Furthermore, supplementation of salts, glycerol (1%w/w), and ammonium sulfate (1%w/w) increased the production of CyA to 5,454+75 mg/kg substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of 6,480+95 mg CyA/kg substrate.

  8. An algorithm for temperature correcting substrate moisture measurements: aligning substrate moisture responses with environmental drivers in polytunnel-grown strawberry plants

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl

    2015-04-01

    The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of

  9. Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.

    PubMed

    Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand

    2017-05-01

    Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.

  10. Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania

    2008-06-01

    Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.

  11. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments

    PubMed Central

    Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying. PMID:28977023

  12. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments.

    PubMed

    de Farias-Martins, Fernando; Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying.

  13. [The evaluation of the error of the thermal pulse technique used to measure moisture content of root substrates in space greenhouse

    NASA Technical Reports Server (NTRS)

    Podol'skii, I. G.; Norokh, A. A.; Bingham, G. E.; Brigham, G. E. (Principal Investigator); Campbell, W. F. (Principal Investigator)

    2002-01-01

    Point thermopulse probes were used to monitor moisture level in the root substrates during cultivation of higher plants in a space greenhouse. Investigated were performance data of the thermopulse moisture probe in integration with the space greenhouse. It was shown that within the substrate moisture range from 20 up to 100% of the full saturation the technique error does not exceed 1.5%. The thermopulse technique bears much promise for metrologic monitoring of the root substrate moisture content in space greenhouses no matter water and air supply technology.

  14. Enzymatic Hydrolysis of Cellulosic Materials to Fermentable Sugars for the Production of Ethanol

    DTIC Science & Technology

    1980-10-12

    Pretreatment . • . . • . . . . . • . . . 19 5. Enzyme Production (Prepilot Scale) • . • ·. • • . . . . . • • • • 29 6. Saccharification (Prepilot...hour hydrolysis of 15% substrate. TASK II 1. Poplar shavings were compression mill pretreated most effectively at an initial moisture content of 12...concentration, pretreatment of.cellulose substrates, glucose syrup concentration, temperature, acidity, residence time, recovery of enzymes, fungi, glucose

  15. Interactive initialization of heat flux parameters for numerical models using satellite temperature measurements. [Kansas and Indiana

    NASA Technical Reports Server (NTRS)

    Carlson, T. N. (Principal Investigator)

    1982-01-01

    A method for obtaining patterns of moisture availability (and net evaporation) from satellite infrared measurements employs Carlson's boundary layer model and a variety of image processing routines executed by a minicomputer. To test the method with regard to regional scale moisture analyses, two case studies were chosen because of the availability of HCMM data and because of the presence of a large horizontal gradient in antecedent precipitation and crp moisture index. Results show some correlation in both cases between antecedent precipitation and derived moisture availability. Apparently, regional-scale moisture availability patterns can be determined with some degree of fidelity but the values themselves may be useful only in the relative sense and significant to within plus or minus one category of dryness over a range of 4 or 5 categories between absolutely dry and field saturation. Preliminary results suggest that the derived moisture values correlate best with longer-term precipitation totals, suggesting that the infrared temperatures respond more sensitively to a relatively deep substrate layer.

  16. Ovipositional site selection by Anopheles gambiae: influences of substrate moisture and texture.

    PubMed

    Huang, J; Walker, E D; Giroux, P Y; Vulule, J; Miller, J R

    2005-12-01

    The influence of substrate moisture (hydration) and grain size (texture) on oviposition was quantified in choice tests using Anopheles gambiae sensu stricto Giles (Diptera: Culicidae) laboratory strains and gravid An. gambiae sensu lato from a natural population in Western Kenya. A strong, positive correlation was found between moisture content and the degree of egg-laying, which peaked at saturation with standing water. Soil moisture quantified as surface conductivity, was measured with an electronic leaf-wetness sensor slightly modified from a unit available commercially. Although An. gambiae females were sensitive to measurable differences in substrate moisture, they distributed eggs on both fully hydrated and less hydrated substrates. In contrast, An. gambiae females showed little response to substrate texture: they oviposited with equal frequency on all silica substrates of eight particle size classes, ranging from small pebbles (850 microm diameter) to very fine grains (< 38 microm diameter), when all were moist. Female An. gambiae laid more eggs on dark than white substrates against a light background, but did not discriminate between moist, pulverized black soapstone and moist black Kenyan soil taken from typical An. gambiae larval habitats. We conclude that hydration and visual contrast are critical ovipositional site qualities for An. gambiae, but substrate texture is not.

  17. Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production

    NASA Astrophysics Data System (ADS)

    Jiang, Jinxue

    Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.

  18. Pupation Behaviors and Emergence Successes of Ectropis grisescens (Lepidoptera: Geometridae) in Response to Different Substrate Types and Moisture Contents.

    PubMed

    Wang, Huifang; Ma, Tao; Xiao, Qiang; Cao, Panrong; Chen, Xuan; Wen, Yuzhen; Xiong, Hongpeng; Qin, Wenquan; Liang, Shiping; Jian, Shengzhe; Li, Yanjun; Sun, Zhaohui; Wen, Xiujun; Wang, Cai

    2017-12-08

    Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Varying hydric conditions during incubation influence egg water exchange and hatchling phenotype in the red-eared slider turtle.

    PubMed

    Delmas, Virginie; Bonnet, Xavier; Girondot, Marc; Prévot-Julliard, Anne-Caroline

    2008-01-01

    Environmental conditions within the nest, notably temperature and moisture of substrate, exert a powerful influence during embryogenesis in oviparous reptiles. The influence of fluctuating nest temperatures has been experimentally examined in different reptile species; however, similar experiments using moisture as the key variable are lacking. In this article, we examine the effect of various substrate moisture regimes during incubation on different traits (egg mass, incubation length, and hatchling mass) in a chelonian species with flexible-shelled eggs, the red-eared slider turtle (Trachemys scripta elegans). Our results show that the rate of water uptake by the eggs was higher in wet than in dry substrate and varied across development. More important, during the first third of development, the egg mass changes were relatively independent of the soil moisture level; they became very sensitive to moisture levels during the other two-thirds. Moreover, hydric conditions exerted a strong influence on the eggs' long-term sensitivity to the moisture of the substrate. Even short-term episodes of high or low levels of moisture modified permanently their water sensitivity, notably through modification of eggshell shape and volume, and in turn entailed significant effects on hatchling mass (and hence offspring quality). Such complex influences of fluctuating moisture levels at various incubation stages on hatchling phenotype better reflect the natural situation, compared to experiments based on stable, albeit different, moisture levels.

  20. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  1. Parameters influencing the regeneration of a green roof's retention capacity via evapotranspiration

    NASA Astrophysics Data System (ADS)

    Poë, Simon; Stovin, Virginia; Berretta, Christian

    2015-04-01

    The extent to which the finite hydrological capacity of a green roof is available for retention of a storm event largely determines the scale of its contribution as a Sustainable Drainage System (SuDS). Evapotranspiration (ET) regenerates the retention capacity at a rate that is variably influenced by climate, vegetation treatment, soil and residual moisture content. Experimental studies have been undertaken to monitor the drying cycle behaviour of 9 different extensive green roof configurations with 80 mm substrate depth. A climate-controlled chamber at the University of Sheffield replicated typical UK spring and summer diurnal cycles. The mass of each microcosm, initially at field capacity, was continuously recorded, with changes inferred to be moisture loss/gain (or ET/dew). The ranges of cumulative ET following a 28 day dry weather period (ADWP) were 0.6-1.0 mm/day in spring and 0.7-1.25 mm/day in summer. These ranges reflect the influence of configuration on ET. Cumulative ET was highest from substrates with the greatest storage capacity. Significant differences in ET existed between vegetated and non-vegetated configurations. Initially, seasonal mean ET was affected by climate. Losses were 2.0 mm/day in spring and 3.4 mm/day in summer. However, moisture availability constrained ET, which fell to 1.4 mm/day then 1.0 mm/day (with an ADWP of 7 and 14 days) in spring; compared to 1.0 mm/day and 0.5 mm/day in summer. A modelling approach, which factors Potential Evapotranspiration (PET) according to stored moisture content, predicts daily ET with very good accuracy (PBIAS = 2.0% [spring]; -0.8% [summer]).

  2. Monascus pigment production by solid-state fermentation with corn cob substrate.

    PubMed

    Velmurugan, Palanivel; Hur, Hyun; Balachandar, Vellingiri; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Lee, Sang-Myung; Chae, Jong-Chan; Shea, Patrick J; Oh, Byung-Taek

    2011-12-01

    Natural pigments are an important alternative to potentially harmful synthetic dyes. We investigated the feasibility of corn cob powder as a substrate for production of pigments by Monascus purpureus KACC 42430 in solid-state fermentation. A pigment yield of 25.42 OD Units/gram of dry fermented substrate was achieved with corn cob powder and optimized process parameters, including 60% (w/w) initial moisture content, incubation at 30°C, inoculation with 4mL of spores/gram of dry substrate, and an incubation period of 7 days. Pigment yield using corn cobs greatly exceeded those of most other agricultural waste substrates. The pigments were stable at acidic pH, high temperatures, and in salt solutions; all important considerations for industrial applications. Our results indicate the viability of corn cob substrate in combination with M. purpureus for industrial applications. Copyright © 2011 The Society for Biotechnology, Japan. All rights reserved.

  3. Lovastatin Production by Aspergillus terreus Using Agro-Biomass as Substrate in Solid State Fermentation

    PubMed Central

    Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa

    2012-01-01

    Ability of two strains of Aspergillus terreus (ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained using A. terreus ATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM for A. terreus ATCC 20542 and A. terreus ATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P < 0.01) and inoculums size and pH had no significant effect on lovastatin production (P > 0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM for A. terreus ATCC 20542 and ATCC 74135, respectively, using RS as substrate. PMID:23118499

  4. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  5. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content.

    PubMed

    Tom, Asha P; Pawels, Renu; Haridas, Ajit

    2016-03-01

    Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Production of ε-poly-lysine by Streptomyces albulus PD-1 via solid-state fermentation.

    PubMed

    Xu, Delei; Yao, Haiqing; Xu, Zhaoxian; Wang, Rui; Xu, Zheng; Li, Sha; Feng, Xiaohai; Liu, Youhua; Xu, Hong

    2017-01-01

    The aim of this study was to produce ε-poly-lysine (ε-PL) by Streptomyces albulus PD-1 through solid-state fermentation (SSF) using agro-industrial residues. Maximum ε-PL production (86.62mg/g substrate) was obtained a mixed substrate of rapeseed cake and wheat bran (2:1, w/w) supplemented with glucose (4%, w/w), (NH 4 ) 2 SO 4 (3%, w/w), with an initial moisture content of 65%, initial pH of 7.0 and inoculum size of 13% v/w, incubated at 30°C for 8days. The results of scanning electron microscopy indicated that the filamentous thallus could penetrate the substrate surface. Moreover, repeated-batch SSF was successfully conducted 8 times using 10% substrate as seeds for the next fermentation cycle, and the results suggest that repeated-batch SSF is more efficient because of the shortened lag phase. To the best of our knowledge, this is the first report on ε-PL production using the SSF process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation.

    PubMed

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  8. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  9. Substrate composition and moisture in composting source-separated human faeces and food waste.

    PubMed

    Niwagaba, C; Nalubega, M; Vinnerås, B; Sundberg, C; Jönsson, H

    2009-04-14

    The composting of a faeces/ash mixture and food waste in relative proportions of 1:0, 1:1 and 1:3 was studied in three successive experiments conducted in Kampala, Uganda in 216 L reactors insulated with 75 mm styrofoam or not insulated. The faeces/ash mixture alone exceeded 50 degrees C for < or = 12 days in insulated reactors, but did not reach or maintain 50 degrees C in non-insulated reactors. Inclusion of food waste kept temperatures above 50 degrees C for over two weeks in insulated reactors except when the substrate was too wet. Escherichia coli and total coliform concentrations decreased below detection in material that exceeded 50 degrees C for at least six days. Enterococcus spp. decreased below detection in material that exceeded 50 degrees C for at least two weeks, but remained detectable after 1.5 months in material that exceeded 50 degrees C for less than two weeks, suggesting that a period of at least two weeks above 50 degrees C, combined with mixing, is needed to achieve sanitation. Initially substrates that were too wet proved a challenge to composting and ways of decreasing substrate moisture should be investigated. The results obtained are applicable to the management of small- to medium-scale composting of faeces/ash and food waste at household and institution levels, e.g. schools and restaurants.

  10. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato.

    PubMed

    Bitterlich, Michael; Sandmann, Martin; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential.

  11. Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Steel S.; Zarin, Daniel J.; Capanu, Marinela; Littell, Ramon; Davidson, Eric A.; Ishida, Francoise Y.; Santos, Elisana B.; Araújo, Maristela M.; AragãO, DéBora V.; Rangel-Vasconcelos, LíVia G. T.; de Assis Oliveira, Francisco; McDowell, William H.; de Carvalho, Claudio José R.

    2004-06-01

    Changes in land-use and climate are likely to alter moisture and substrate availability in tropical forest soils, but quantitative assessment of the role of resource constraints as regulators of soil trace gas fluxes is rather limited. The primary objective of this study was to quantify the effects of moisture and substrate availability on soil trace gas fluxes in an Amazonian regrowth forest. We measured the efflux of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O), and methane (CH4) from soil in response to two experimental manipulations. In the first, we increased soil moisture availability during the dry season by irrigation; in the second, we decreased substrate availability by continuous removal of aboveground litter. In the absence of irrigation, soil CO2 efflux decreased during the dry season while irrigation maintained soil CO2 efflux levels similar to the wet season. Large variations in soil CO2 efflux consistent with a significant moisture constraint on respiration were observed in response to soil wet-up and dry-down events. Annual soil C efflux for irrigated plots was 27 and 13% higher than for control plots in 2001 and 2002, respectively. Litter removal significantly reduced soil CO2 efflux; annual soil C efflux in 2002 was 28% lower for litter removal plots compared to control plots. The annual soil C efflux:litterfall C ratio for the control treatment (4.0-5.2) was consistent with previously reported values for regrowth forests that indicate a relatively large belowground C allocation. In general, fluxes of N2O and CH4 were higher during the wet season and both fluxes increased during dry-season irrigation. There was no seasonal effect on NO fluxes. Litter removal had no significant impact on N oxide or CH4 emissions. Net soil nitrification did not respond to dry-season irrigation, but was somewhat reduced by litter removal. Overall, these results demonstrate significant soil moisture and substrate constraints on soil trace gas emissions, particularly for CO2, and suggest that climate and land-use changes that alter moisture and substrate availability are therefore likely to have an impact on atmosphere chemistry.

  12. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    PubMed Central

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth. PMID:22536017

  13. Production of Biomass-Degrading Multienzyme Complexes under Solid-State Fermentation of Soybean Meal Using a Bioreactor

    PubMed Central

    Vitcosque, Gabriela L.; Fonseca, Rafael F.; Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Farinas, Cristiane S.

    2012-01-01

    Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This work evaluates the effects of operational conditions on biomass-degrading multienzyme production by a selected strain of Aspergillus niger. The fungus was cultivated under solid-state fermentation (SSF) of soybean meal, using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The effects of air flow rate, inlet air relative humidity, and initial substrate moisture content on multienzyme (FPase, endoglucanase, and xylanase) production were evaluated using a statistical design methodology. Highest production of FPase (0.55 IU/g), endoglucanase (35.1 IU/g), and xylanase (47.7 IU/g) was achieved using an initial substrate moisture content of 84%, an inlet air humidity of 70%, and a flow rate of 24 mL/min. The enzymatic complex was then used to hydrolyze a lignocellulosic biomass, releasing 4.4 g/L of glucose after 36 hours of saccharification of 50 g/L pretreated sugar cane bagasse. These results demonstrate the potential application of enzymes produced under SSF, thus contributing to generate the necessary technological advances to increase the efficiency of the use of biomass as a renewable energy source. PMID:23365723

  14. Soil Pore Characteristics, an Underappreciated Regulatory Factor in GHGs Emission and C Stabilization

    NASA Astrophysics Data System (ADS)

    Toosi, E. R.; Yu, J.; Doane, T. A.; Guber, A.; Rivers, M. L.; Marsh, T. L.; Ali, K.; Kravchenko, A. N.

    2015-12-01

    Enduring challenges in understanding soil organic matter (SOM) stability and emission of greenhouse gases (GHGs) from soil stem from complexities of soil processes, many of which occur at micro-scales. The goal of this study is to evaluate the interactive effects soil pore characteristics, soil moisture levels, inherent SOM levels and properties, and substrate quality, on GHGs emission, and accelerated decomposition of native SOM following addition of fresh substrate i.e. priming. Our core hypothesis is that soil pore characteristics play a major role as a mediator in (i) the decomposition of organic matter regardless of its source (i.e. litter vs. native SOM) or substrate quality, as well as in (ii) GHGs emissions. Samples with prevalence of small (<10 μm) vs. large (>30 μm) pores were prepared from soils with similar properties but under long-term contrasting management. The samples were incubated (110 d) at low and optimum soil moisture conditions after addition of high quality (13C-soybean) and low quality (13C-corn) substrate. Headspace gas was analyzed for 13C-CO2 and GHGs on a regularly basis (day 1, 3, 7, 14, 24, 36, 48, 60, 72, 90, and 110). Selected samples were scanned at the early stage of decomposition (7, 14, 24 d) at 2-6 μm resolutions using X-ray computed μ tomography in order to: (1) quantify soil pore characteristics; (2) visualize and quantify distribution of soil moisture within samples of different pore characteristics; and (3) to visualize and measure losses of decomposing plant residue. Initial findings indicate that, consistent with our hypotheses, pore characteristics influenced GHGs emission, and intensity and pattern of plant residue decomposition. The importance of pores was highly pronounced in presence of added plant residue where greater N2O emission occurred in samples with dominant large pores, in contrast to CO2. Further findings will be discussed upon completion of the study and analysis of the results.

  15. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    PubMed

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of airflow on biodrying of gardening wastes in reactors.

    PubMed

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  18. Production, Survival, and Evaluation of Solid-Substrate Inocula of Penicillium oxalicum, a Biocontrol Agent Against Fusarium Wilt of Tomato.

    PubMed

    Larena, I; Melgarejo, P; De Cal, A

    2002-08-01

    ABSTRACT Production of conidia of Penicillium oxalicum (ATCC number pending), a biocontrol agent of Fusarium oxysporum f. sp. lycopersici, was tested in liquid and solid fermentation. P. oxalicum produced 250-fold more conidia in solid than in liquid fermentation at 30 days after inoculation of substrate. Solid fermentation was carried out in plastic bags (600 cm(3)) especially designed for solid fermentation (VALMIC) containing 50 g of peat/vermiculite (PV) (1:1, wt/wt) with 40% moisture, sealed, sterilized, and then inoculated with 1 ml of a conidial suspension of P. oxalicum (10(5) conidia g(-1) dry substrate), sealed again, and incubated in darkness at 20 to 25 degrees C for 30 days. Addition of amendments to PV in a proportion of 0.5 (wt/wt) significantly increased conidial production of P. oxalicum. The best production was obtained on PV plus meal of cereal grains (barley) or leguminous seeds (lentil) (100-fold higher). Conidial production obtained after 5 days of inoculation was similar to that obtained at 30 days. However, viability of conidia produced in PV plus lentil meal was 35% higher than that of conidia produced in PV plus barley meal. Changes in proportions (1:1:0.5, wt/wt/wt; 1:1:1, wt/wt/wt; 1:0.5:0.5, wt/wt/wt; 1:1:0.5, vol/vol/vol) of components of the substrate (peat/vermiculite/lentil meal) did not enhance production or viability of conidia. Optimal initial moisture in the substrate was 30 to 40%. At lower moistures, significant reductions of production of conidia were observed, particularly at 10%. There was a general decline in the number of conidia in bags with time of storage at -80, -20, 4, and 25 degrees C, or at room temperature (range from 30 to 15 degrees C), with the highest decline occurring from 60 to 180 days. Conidial viability also was reduced with time, except for conidia stored at -20 degrees C. Fresh conidia produced in solid fermentation system or those conidia stored at -20 degrees C for 180 days reduced Fusarium wilt of tomato by 49 and 61%, respectively.

  19. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato

    PubMed Central

    Bitterlich, Michael; Sandmann, Martin; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae, and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8–4.2) and dry (pF 2.5–4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential. PMID:29503655

  20. Removal of clay by stingless bees: load size and moisture selection.

    PubMed

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  1. Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau

    PubMed Central

    Chang, Xiaofeng; Wang, Shiping; Xu, Burenbayin; Luo, Caiyun; Zhang, Zhenhua; Wang, Qi; Rui, Yichao; Cui, Xiaoying

    2016-01-01

    Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow. PMID:27798671

  2. Effect of storage conditions on the weight and appearance of dried blood spot samples on various cellulose-based substrates.

    PubMed

    Denniff, Philip; Spooner, Neil

    2010-11-01

    Before shipping and storage, dried blood spot (DBS) samples must be dried in order to protect the integrity of the spots. In this article, we examine the time required to dry blood spot samples and the effects of different environmental conditions on their integrity. Under ambient laboratory conditions, DBS samples on Whatman 903(®), FTA(®) and FTA(®) Elute substrates are dry within 90 min of spotting. An additional 5% of moisture is lost during subsequent storage with desiccant. When exposed to elevated conditions of temperature and relative humidity, the DBS samples absorb moisture. DBS samples on FTA lose this moisture on being returned to ambient conditions. DBS samples on 903 show no visible signs of deterioration when stored at elevated conditions. However, these conditions cause the DBS to diffuse through the FTA Elute substrate. Blood spots are dry within 90 min of spotting. However, the substrates examined behave differently when exposed to conditions of high relative humidity and temperature, in some cases resulting in the integrity of the substrate and DBS sample being compromised. It is recommended that these factors be investigated as part of method development and validation.

  3. Low-cost passive UHF RFID tags on paper substrates

    NASA Astrophysics Data System (ADS)

    Sajal, Sayeed Zebaul Haque

    To reduce the significant cost in the widespread deployment of UHF radio frequency identification (RFID) systems, an UHF RFID tag design is presented on paper substrates. The design is based on meander-line miniaturization techniques and open complementary split ring resonator (OCSRR) elements that reduce required conducting materials by 30%. Another passive UHF RFID tag is designed to sense the moisture based on the antenna's polarization. An inexpensive paper substrate and copper layer are used for flexibility and low-cost. The key characteristic of this design is the sensitivity of the antenna's polarization on the passive RFID tag to the moisture content in the paper substrate. In simulations, the antenna is circularly-polarized when the substrate is dry and is linearly-polarized when the substrate is wet. It was shown that the expected read-ranges and desired performance could be achieved reducing the over-all cost of the both designs.

  4. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    NASA Astrophysics Data System (ADS)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  5. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  6. Comparing hydraulic properties of soil-less substrates with natural soils: a more detailed look at hydraulic properties and their impact on plant water availability

    NASA Astrophysics Data System (ADS)

    Crawford, L.; Rivera, L. D.; van Iersel, M.

    2013-12-01

    Moisture release curves are often used when assessing plant-water relationships in soil-less substrates. However, differences between natural soils and soilless substrates make traditional assumptions about plant available water potentially invalid. If soil-less substrates are supposed to be treated like natural soils; why do plants begin wilting at very low water potentials (-10 to -30 kPa) and there is anywhere between 20 to 40 % water left (on a volumetric basis) in the soil (Abad et al., 2005; Arguedas et al., 2006; Ristvey et al, 2008) . We hypothesize that the fault lies in the methods used and the assumption that water potential is the only limiting factor in water availability to plants. Hydraulic properties, including the relationships that exist between plant available water, water content, and hydraulic conductivity of soil-less substrates have traditionally been characterized using instrumentation such as pressure plates, hanging water columns, and tempe cells. These approaches typically take a months and only provide data on select segments of the soil moisture release curve, and in the case of pressure plates and hanging water columns hydraulic conductivity is ignored and not very well understood. Using the Wind/Schindler Evaporation method more detailed measurements of these hydraulic properties can be measured in a less than a week. A more detailed look at the hydraulic properties of soil-less substrates and how they compare with natural soils may give us more insight into soil-plant-water-relations and what limits availability of water to plants. Soil moisture release curves and hydraulic conductivity curves of different soil-less substrates were compared with curves from typical agriculture soils to give insight into how these properties compare. Results of the soil moisture release curves showed that some soil-less substrates had comparable moisture release curves to agricultural soils while others had bi-modal curves indicating gap-gradation in the pore size distribution. These soils that showed this non-typical curve had hydraulic conductivities that dropped very low (500 times lower than agricultural soils) at low water potentials (around 10 kPa). This dramatically lower hydraulic conductivity could lead to zones of depletion around the roots hindering plant water uptake.

  7. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus).

    PubMed

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation.

  8. Co-composting of green waste and food waste at low C/N ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mathava; Ou, Y.-L.; Lin, J.-G., E-mail: jglin@mail.nctu.edu.t

    2010-04-15

    In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVSmore » reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.« less

  9. Effect of moisture on dental enamel in the interaction of two orthodontic bonding systems.

    PubMed

    Bertoz, André Pinheiro de Magalhães; de Oliveira, Derly Tescaro Narcizo; Gimenez, Carla Maria Melleiro; Briso, André Luiz Fraga; Bertoz, Francisco Antonio; Santos, Eduardo César Almada

    2013-01-01

    The purpose of this study was to assess by means of scanning electron microscopy (SEM) the remaining adhesive interface after debonding orthodontic attachments bonded to bovine teeth with the use of hydrophilic and hydrophobic primers under different dental substrate moisture conditions. Twenty mandibular incisors were divided into four groups (n = 5). In Group I, bracket bonding was performed with Transbond MIP hydrophilic primer and Transbond XT adhesive paste applied to moist substrate, and in Group II a bonding system comprising Transbond XT hydrophobic primer and adhesive paste was applied to moist substrate. Brackets were bonded to the specimens in Groups III and IV using the same adhesive systems, but on dry dental enamel. The images were qualitatively assessed by SEM. The absence of moisture in etched enamel enabled better interaction between bonding materials and the adamantine structure. The hydrophobic primer achieved the worst micromechanical interlocking results when applied to a moist dental structure, whereas the hydrophilic system proved versatile, yielding acceptable results in moist conditions and excellent interaction in the absence of contamination. The authors assert that the best condition for the application of primers to dental enamel occurs in the absence of moisture.

  10. Fuzzy logic control of rotating drum bioreactor for improved production of amylase and protease enzymes by Aspergillus oryzae in solid-state fermentation.

    PubMed

    Sukumprasertsri, Monton; Unrean, Pornkamol; Pimsamarn, Jindarat; Kitsubun, Panit; Tongta, Anan

    2013-03-01

    In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

  11. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate.

    PubMed

    Zhu, Zhen; Zhang, Guoyi; Luo, Yi; Ran, Wei; Shen, Qirong

    2012-05-01

    This work was aimed to produce lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using agro-industrial byproducts. A central composite design was used to get the highest lipopeptides production. Results revealed that the optimal conditions for maximum lipopeptides production were 1.79% starch and 1.91% yeast extract by employing 5.58 g soybean flour and 3.67 g rice straw as the solid substrate with initial pH 7.5, moisture content 55% and a 10% inoculum level at 30°C for 2 days. Under these conditions, the experimental yield of lipopeptides reached 50.01 mg/gds, which was very close to the predicted value (49.91 mg/gds). At high concentration, the lipopeptides extracted from fermented substrates showed strong antibiotic activity against Rhizoctonia solani and Ralstonia solanacearum and certain emulsification but good emulsion stability. This is the first report on lipopeptides production that uses rice straw as a major substrate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The Contribution of Soil Moisture Information to Forecast Skill: Two Studies

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these studies.

  13. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  14. Abiotic and biotic dynamics during the initial stages of high solids switchgrass degradation.

    PubMed

    Fontenelle, L T; Corgie, S C; Walker, L P

    2011-07-01

    An understanding of the underlying dynamics of how biotic variables drive changes in abiotic parameters in the early stages of biomass biodegradation is essential for better control of the process. Probe hybridization was used to quantitatively study the growth of bacteria, yeast and fungi for three levels of initial moisture content (60, 65 and 75% MC) over a period of 64 h. Changes in abiotic parameters were also documented. By 64 h, samples were significantly differentiated both in temporal and spatial dimension, proving that considerable changes had occurred in these initial stages. Maximum carbon (C) conversion occurred in the 75% MC reactor at a peak value of 49%, with 40% and 37% in the 65 and 60% MC reactors, respectively. Higher temperature, higher pH, higher rates of O2 consumption and CO2 evolution were also observed in the highest moisture reactor; suggesting that of the three MCs studied, 75% MC was the optimal one for the process. MC during the process also proved to be important because it greatly influenced variation in the spatial dimension, further underscoring the importance of characterizing changes with bed height. Most importantly, we were able to positively correlate the rate of substrate degradation with bacterial biomass levels and highlight the critical role of bacteria in biological decomposition.

  15. The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze Initiated Precipitation

    NASA Technical Reports Server (NTRS)

    Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne

    2000-01-01

    Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.

  16. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber.

    PubMed

    Zhang, Bo-Bo; Xing, Hong-Bo; Jiang, Bing-Jie; Chen, Lei; Xu, Gan-Rong; Jiang, Yun; Zhang, Da-Yong

    2018-03-01

    In this study, various grains such as rice, millet, corn, barley and wheat were used as raw materials for monacolin K production by solid-state fermentation of Monascus ruber. Among these substrates, millet was found to be the best one for monacolin K production, by which the yield reached 7.12 mg/g. For enhanced monacolin K production, the effects of fermentation time, charge amount, initial moisture content and inoculum volume were systematically investigated in the solid-state fermentation of M. ruber. Moreover, complementary carbon source and nitrogen source were added for further improving the production of monacolin K. Results showed that the maximum production of monacolin K (19.81 mg/g) could be obtained at the optimal conditions. Compared with the traditional red mold rice, using millet as substrate is promising for high production of monacolin K in the solid-state fermentation of M. ruber. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation.

    PubMed

    Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali

    2016-01-01

    Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.

  18. Seedling regeneration in the alpine treeline ecotone: Comparison of wood microsites and adjacent soil substrates

    Treesearch

    Adelaide Chapman Johnson; J. Alan Yeakley

    2016-01-01

    Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates...

  19. Analysis of heat and mass transfer during condensation over a porous substrate.

    PubMed

    Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L

    2006-09-01

    Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.

  20. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    PubMed

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  1. Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran.

    PubMed

    Liu, Yun-Tao; Luo, Ze-Yu; Long, Chuan-Nan; Wang, Hai-Dong; Long, Min-Nan; Hu, Zhong

    2011-10-01

    To produce cellulolytic enzyme efficiently, Penicillium decumbens strain L-06 was used to prepare mutants with ethyl methane sulfonate (EMS) and UV-irradiation. A mutant strain ML-017 is shown to have a higher cellulase activity than others. Box-Behnken's design (BBD) and response surface methodology (RSM) were adopted to optimize the conditions of cellulase (filter paper activity, FPA) production in strain ML-017 by solid-state fermentation (SSF) with rice bran as the substrate. And the result shows that the initial pH, moisture content and culture temperature all have significant effect on the production of cellulase. The optimized condition shall be initial pH 5.7, moisture content 72% and culture temperature 30°C. The maximum cellulase (FPA) production was obtained under the optimized condition, which is 5.76 IU g(-1), increased by 44.12% to its original strain. It corresponded well with the calculated results (5.15 IU g(-1)) by model prediction. The result shows that both BBD and RSM are the cellulase optimization methods with good prospects. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation.

    PubMed

    Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2014-02-01

    The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.

  3. Soil Moisture and the Persistence of North American Drought.

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-11-01

    We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.

  4. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  5. Terrestrial Ecosystems - Topographic Moisture Potential of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated topographic moisture potential classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe. A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Substrate moisture regimes strongly influence the differentiation and distribution of terrestrial ecosystems, and therefore topographic moisture potential is one of the key input layers in this biophysical stratification. The method used to produce these topographic moisture potential classes was based on the derivation of ground moisture potential using a combination of computed topographic characteristics (CTI, slope, and aspect) and mapped National Wetland Inventory (NWI) boundaries. This method does not use climate or soil attributes to calculate relative topographic moisture potential since these characteristics are incorporated into the ecosystem model though other input layers. All of the topographic data used for this assessment were derived from the USGS 30-meter National Elevation Dataset (NED ) including the National Compound Topographic Index (CTI). The CTI index is a topographically derived measure of slope for a raster cell and the contributing area from upstream raster cells, and thus expresses potential for water flow to a point. In other words CTI data are 'a quantification of the position of a site in the local landscape', where the lowest values indicate ridges and the highest values indicate stream channels, lakes and ponds. These CTI values were compared to independent estimates of water accumulation by obtaining geospatial data from a number of sample locations representing two types of NWI boundaries: freshwater emergent wetlands and freshwater forested/shrub wetlands. Where these shorelines (the interface between the NWI wetlands and adjacent land) occurred, the CTI values were extracted and a histogram of their statistical distributions was calculated. Based on an evaluation of these histograms, CTI thresholds were developed to separate periodically saturated or flooded land, mesic uplands (moderately moist), and uplands. After the range of CTI values for these three different substrate moisture regimes was determined, the CTI values were grouped into three initial topographic moisture potential classes. As a final step in the generation of this national data layer, the uplands classification was subdivided into either very dry uplands or dry uplands. Very dry uplands were defined as uplands with relatively steep, south-facing slopes, and identification of this class was based on the slope and aspect datasets derived from the NED. The remaining uplands that did not meet these additional criteria were simply re-classified as dry uplands. The final National Topographic Moisture Potential dataset for the conterminous United States contains four classes: periodically saturated or flooded land (CTI = 18.5), mesic uplands (12 = 24 degrees and 91 degrees =< Aspect =< 314 degrees). This map shows a smoothed and generalized image of the four topographic moisture potential classes. Additional information about this map and any of the data developed for the ecosystems modeling of the conterminous United States is available online at http://rmgsc.cr.usgs.gov/ecosystems/.

  6. The Impact of Soil Moisture Initialization On Seasonal Precipitation Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Suarez, M. J.; Tyahla, L.; Houser, Paul (Technical Monitor)

    2002-01-01

    Some studies suggest that the proper initialization of soil moisture in a forecasting model may contribute significantly to the accurate prediction of seasonal precipitation, especially over mid-latitude continents. In order for the initialization to have any impact at all, however, two conditions must be satisfied: (1) the initial soil moisture anomaly must be "remembered" into the forecasted season, and (2) the atmosphere must respond in a predictable way to the soil moisture anomaly. In our previous studies, we identified the key land surface and atmospheric properties needed to satisfy each condition. Here, we tie these studies together with an analysis of an ensemble of seasonal forecasts. Initial soil moisture conditions for the forecasts are established by forcing the land surface model with realistic precipitation prior to the start of the forecast period. As expected, the impacts on forecasted precipitation (relative to an ensemble of runs that do not utilize soil moisture information) tend to be localized over the small fraction of the earth with all of the required land and atmosphere properties.

  7. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  8. Optimization of CMCase production from sorghum straw by Aspergillus terreus SUK-1 under solid substrate fermentation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tibin, El Mubarak Musa; Al-Shorgani, Najeeb Kaid Naseer; Abuelhassan, Nawal Noureldaim; Hamid, Aidil Abdul; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan

    2013-11-01

    The cellulase production using sorghum straw as substrate by fungal culture of Aspergillus terreus SUK-1 was investigated in solid substrate fermentation (SSF). The optimum CMCase was achieved by testing most effective fermentation parameters which were: incubation temperature, pH and moisture content using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The carboxymethyl cellulase activity (CMCase) was measured as the defining factor. The results were analysed by analysis of variance (ANOVA) and the regression quadratic model was obtained. The model was found to be significant (p<0.05) and the effect of temperature (25-40°C) and pH (4-7) was found to be not significant on CMCase activity whereas the moisture content was significant in the SSF conditions employed. The high yield of predicted CMCase activity (0.2 U/ml) was obtained under the optimized conditions (temperature 40 □C, pH 5.4 and moisture content of 80%). The model was validated by applying the optimized conditions and it was found that the model was valid.

  9. Development of water movement model as a module of moisture content simulation in static pile composting.

    PubMed

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2012-01-01

    This paper presents a mathematical model of vertical water movement and a performance evaluation of the model in static pile composting operated with neither air supply nor turning. The vertical moisture content (MC) model was developed with consideration of evaporation (internal and external evaporation), diffusion (liquid and vapour diffusion) and percolation, whereas additional water from substrate decomposition and irrigation was not taken into account. The evaporation term in the model was established on the basis of reference evaporation of the materials at known temperature, MC and relative humidity of the air. Diffusion of water vapour was estimated as functions of relative humidity and temperature, whereas diffusion of liquid water was empirically obtained from experiment by adopting Fick's law. Percolation was estimated by following Darcy's law. The model was applied to a column of composting wood chips with an initial MC of 60%. The simulation program was run for four weeks with calculation span of 1 s. The simulated results were in reasonably good agreement with the experimental results. Only a top layer (less than 20 cm) had a considerable MC reduction; the deeper layers were comparable to the initial MC, and the bottom layer was higher than the initial MC. This model is a useful tool to estimate the MC profile throughout the composting period, and could be incorporated into biodegradation kinetic simulation of composting.

  10. GROUT-CONCRETE INTERFACE BOND PERFORMANCE: EFFECT OF INTERFACE MOISTURE ON THE TENSILE BOND STRENGTH AND GROUT MICROSTRUCTURE.

    PubMed

    De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A

    2018-05-01

    Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond strength.

  11. Potential application of waste from castor bean (Ricinus communis L.) for production for xylanase of interest in the industry.

    PubMed

    Herculano, Polyanna Nunes; Moreira, Keila Aparecida; Bezerra, Raquel Pedrosa; Porto, Tatiana Souza; de Souza-Motta, Cristina Maria; Porto, Ana Lúcia Figueiredo

    2016-12-01

    Xylanases activity (XY) from Aspergillus japonicus URM5620 produced by Solid-State Fermentation (SSF) of castor press cake (Ricinus communis) on different conditions of production and extraction by PEG/citrate aqueous two-phase system (ATPS) were investigated. XY production was influenced by substrate amount (5-10 g), initial moisture (15-35 %), pH (4.0-6.0) and temperature (25-35 °C), obtaining the maximum activity of 29,085 ± 1808 U g ds -1 using 5.0 g of substrate with initial moisture of 15 % at 25 °C and pH 6.0, after 120 h of fermentation. The influence of PEG molar mass (1000-8000 g mol -1 ), phase concentrations (PEG 20.0-24.0 % w/w and sodium citrate 15-20 % w/w) and pH (6.0-8.0) on partition coefficient, purification factor, yield and selectivity of XY were determinate. Enzyme partitioning into the PEG rich phase was favored by M PEG 8000 (g mol -1 ), C PEG 24 % (w/w), C C 20 % (w/w) and pH 8.0, resulting in partition coefficient of 50.78, activity yield of 268 %, 7.20-fold purification factor and selectivity of 293. A. japonicus URM5620 has a potential role in the development of a bioprocess for the XY production using low-cost media. In addition, the present study proved it is feasible to extract xylanase from SSF by adopting the one step ATPS consisting of PEG/citrate.

  12. Evaluation of the effect of process variables on the fatty acid profile of single cell oil produced by Mortierella using solid-state fermentation.

    PubMed

    Asadi, Seyedeh Zeinab; Khosravi-Darani, Kianoush; Nikoopour, Houshang; Bakhoda, Hossein

    2015-03-01

    This article reviews some of the aspects of single cell oil (SCO) production using solid-state fermentation (SSF) by fungi of the genus Mortierella. This article provides an overview of the advantages of SSF for SCO formation by the aforementioned fungus and demonstrates that the content of the polyunsaturated fatty acids (PUFA) depend on the type of fermentation media and culture conditions. Process variables that influence lipid accumulation by Mortierella spp. and the profile of the fatty acids are discussed, including incubation temperature, time, aeration, growth phase of the mycelium, particle size of the substrate, carbon to nitrogen ratio, initial moisture content and pH as well as supplementation of the substrate with nitrogen and oil. Finally, the article highlights future research trends for the scaled-up production of PUFAs in SSF.

  13. Tannase production by Penicillium purpurogenum PAF6 in solid state fermentation of tannin-rich plant residues following OVAT and RSM.

    PubMed

    Jana, Arijit; Maity, Chiranjit; Halder, Suman Kumar; Mondal, Keshab Chandra; Pati, Bikash Ranjan; Mohapatra, Pradeep Kumar Das

    2012-07-01

    Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by 'one variable at a time' (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box-Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.

  14. Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate.

    PubMed

    Nidheesh, T; Pal, Gaurav Kumar; Suresh, P V

    2015-05-05

    Solid state fermentation (SSF) conditions were statistically optimized for the production of chitosanase by Purpureocillium lilacinum CFRNT12 using shrimp by-products as substrate. Central composite design and response surface methodology were applied to evaluate the effect of variables and their optimization. Incubation temperature, incubation time, concentration of inoculum and yeast extract were found to influence the chitosanase production significantly. The R(2) value of 0.94 indicates the aptness of the model. The level of variables for optimal production of chitosanase was 32 ± 1°C temperature, 96 h incubation, 10.5% (w/v) inoculum, 1.05% (w/w) yeast extract and 65% (w/w) moisture content. The chitosanase production was found to increase from 2.34 ± 0.07 to 41.78 ± 0.73 units/g initial dry substrate after optimization. The crude chitosanase produced 4.43 mM of chitooligomers as exclusive end product from colloidal chitosan hydrolysis. These results indicate the potential of P. lilacinum CFRNT12 for the chitosanase production employing cost effective SSF using shrimp by-products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation.

    PubMed

    Xia, Jun; Li, Rongqing; He, Aiyong; Xu, Jiaxing; Liu, Xiaoyan; Li, Xiangqian; Xu, Jiming

    2017-11-01

    Poly(β-l-malic acid) (PMA) production by Aureobasidium pullulans HA-4D was carried out through solid-state fermentation (SSF) using agro-industrial residues. Maximum PMA production (75.4mg/g substrate) was obtained from a mixed substrate of sweet potato residue and wheat bran (1:1, w/w) supplemented with NaNO 3 (0.8%, w/w) and CaCO 3 (2%, w/w), with an initial moisture content of 70% and inoculum size of 13% (v/w) for 8days. Repeated-batch SSF was successfully conducted for 5 cycles with a high productivity. The scanning electron microscopy showed that the yeast-like cells of A. pullulans HA-4D could grow well on the solid substrate surface. Moreover, the cost analysis showed that the unit price of PMA in SSF was much lower than that of SmF. This is the first report on PMA production via SSF, and this study provided a new method to produce PMA from inexpensive agro-industrial residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Canola Cake as a Potential Substrate for Proteolytic Enzymes Production by a Selected Strain of Aspergillus oryzae: Selection of Process Conditions and Product Characterization

    PubMed Central

    Freitas, Adriana C.; Castro, Ruann J. S.; Fontenele, Maria A.; Egito, Antonio S.; Farinas, Cristiane S.; Pinto, Gustavo A. S.

    2013-01-01

    Oil cakes have excellent nutritional value and offer considerable potential for use in biotechnological processes that employ solid-state fermentation (SSF) for the production of high value products. This work evaluates the feasibility of using canola cake as a substrate for protease production by a selected strain of Aspergillus oryzae cultivated under SSF. The influences of the following process parameters were considered: initial substrate moisture content, incubation temperature, inoculum size, and pH of the buffer used for protease extraction and activity analysis. Maximum protease activity was obtained after cultivating Aspergillus oryzae CCBP 001 at 20°C, using an inoculum size of 107 spores/g in canola cake medium moistened with 40 mL of water to 100 g of cake. Cultivation and extraction under selected conditions increased protease activity 5.8-fold, compared to the initial conditions. Zymogram analysis of the enzymatic extract showed that the protease molecular weights varied between 31 and 200 kDa. The concentrated protease extract induced clotting of casein in 5 min. The results demonstrate the potential application of canola cake for protease production under SSF and contribute to the technological advances needed to increase the efficiency of processes designed to add value to agroindustrial wastes. PMID:24455400

  17. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  18. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.

  19. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  20. Steaming of Red Oak Prior to Kiln-Drying: Effects on Moisture Movement

    Treesearch

    Robert A. Harris; James G. Schroeder; Stan C. Addis

    1989-01-01

    Red oak boards were steamed prior to kiln-drying to determine the effect of steaming on initial moisture content (MC), moisture distribution, and drying rate. Four hours of steaming in a saturated steam atmosphere caused a drop of approximately 10 percent in initial MC, a reduced moisture gradient through the thickness of the boards, and an increase in drying rate...

  1. The influence of external factors on the corrosion resistance of high temperature superconductor thin films against moisture

    NASA Astrophysics Data System (ADS)

    Murugesan, M.; Obara, H.; Yamasaki, H.; Kosaka, S.

    2006-12-01

    High temperature superconductor (HTS) thin films have been systematically investigated for their corrosion resistance against moisture by studying the role of external factors such as temperature (T), relative humidity (RH), and the type of substrates in the corrosion. In general, (i) the corrosion is progressed monotonously with increasing T as well as RH, (ii) a threshold level of water vapor is needed to cause degradation, and (iii) between T and RH, the influence of T is more dominant. HTS films on SrTiO3 and CeO2 buffered sapphire (cbs) substrates showed better corrosion stability and a low rate of degradation in the critical current density as compared to that of the film grown on MgO substrate. Between DyBa2Cu3Oz (DBCO) and YBa2Cu3Oz, the former is reproducibly found to have many fold higher corrosion resistance against moisture. This observed enhancement in the corrosion resistance in DBCO could be explained by the improved microstructure in the films and the better lattice matching with the substrate. Thus, the dual advantage of DBCO/cbs films, i.e., the enhanced corrosion stability of DBCO and the appropriate dielectric properties of sapphire, can be readily exploited for the use of DBCO/cbs films in the microwave and power devices.

  2. Biofriendly bonding processes for nanoporous implantable SU-8 microcapsules for encapsulated cell therapy.

    PubMed

    Nemani, Krishnamurthy; Kwon, Joonbum; Trivedi, Krutarth; Hu, Walter; Lee, Jeong-Bong; Gimi, Barjor

    2011-01-01

    Mechanically robust, cell encapsulating microdevices fabricated using photolithographic methods can lead to more efficient immunoisolation in comparison to cell encapsulating hydrogels. There is a need to develop adhesive bonding methods which can seal such microdevices under physiologically friendly conditions. We report the bonding of SU-8 based substrates through (i) magnetic self assembly, (ii) using medical grade photocured adhesive and (iii) moisture and photochemical cured polymerization. Magnetic self-assembly, carried out in biofriendly aqueous buffers, provides weak bonding not suitable for long term applications. Moisture cured bonding of covalently modified SU-8 substrates, based on silanol condensation, resulted in weak and inconsistent bonding. Photocured bonding using a medical grade adhesive and of acrylate modified substrates provided stable bonding. Of the methods evaluated, photocured adhesion provided the strongest and most stable adhesion.

  3. Influence of Initial Moisture Content on Heat and Moisture Transfer in Firefighters' Protective Clothing

    PubMed Central

    He, Song

    2017-01-01

    This paper presents a model for heat and moisture transfer through firefighters' protective clothing (FPC) during radiation exposure. The model, which accounts for air gaps in the FPC as well as heat transfer through human skin, investigates the effect of different initial moisture contents on the thermal insulation performance of FPC. Temperature, water vapor density, and the volume fraction of liquid water profiles were monitored during the simulation, and the heat quantity absorbed by water evaporation was calculated. Then the maximum durations of heat before the wearer acquires first- and second-degree burns were calculated based on the bioheat transfer equation and the Henriques equation. The results show that both the moisture weight in each layer and the total moisture weight increase linearly within a given environmental humidity level. The initial moisture content in FPC samples significantly influenced the maximum water vapor density. The first- and second-degree burn injury time increase 16 sec and 18 sec when the RH increases from 0% to 90%. The total quantity of heat accounted for by water evaporation was about 10% when the relative humidity (RH) is 80%. Finally, a linear relationship was identified between initial moisture content and the human skin burn injury time before suffering first- and second-degree burn injuries. PMID:28466066

  4. Influence of Initial Moisture Content on Heat and Moisture Transfer in Firefighters' Protective Clothing.

    PubMed

    Huang, Dongmei; He, Song

    2017-01-01

    This paper presents a model for heat and moisture transfer through firefighters' protective clothing (FPC) during radiation exposure. The model, which accounts for air gaps in the FPC as well as heat transfer through human skin, investigates the effect of different initial moisture contents on the thermal insulation performance of FPC. Temperature, water vapor density, and the volume fraction of liquid water profiles were monitored during the simulation, and the heat quantity absorbed by water evaporation was calculated. Then the maximum durations of heat before the wearer acquires first- and second-degree burns were calculated based on the bioheat transfer equation and the Henriques equation. The results show that both the moisture weight in each layer and the total moisture weight increase linearly within a given environmental humidity level. The initial moisture content in FPC samples significantly influenced the maximum water vapor density. The first- and second-degree burn injury time increase 16 sec and 18 sec when the RH increases from 0% to 90%. The total quantity of heat accounted for by water evaporation was about 10% when the relative humidity (RH) is 80%. Finally, a linear relationship was identified between initial moisture content and the human skin burn injury time before suffering first- and second-degree burn injuries.

  5. Soil Nitrification and N2O Production: the connection with N concentration and Soil Water Content

    NASA Astrophysics Data System (ADS)

    Zhu-Barker, X.; Horwath, W. R.

    2016-12-01

    The development of mitigation strategies to reduce nitrous oxide (N2O) emission from soils is dependent on explicating the biophysical factors affecting different N2O production pathways. Ammonia oxidation and heterotrophic denitrification are the main pathways of N2O production, depending on soil conditions such as soil moisture content, oxygen (O2) content and N substrate. Many researchers have reported that N2O production increased as substrate concentration and soil moisture content increased. However, less understood is how N fertilizer concentration and moisture content interact to affect N2O production pathways. To investigate interaction and its effect on O2 consumption, we incubated three agricultural soils (clay, sandy loam, and peat) with different concentrations of (NH4)2SO4 (0-1000 µg N g-1) under 50 %, 75%, and 100% of water holding capacity. All treatments received 15N -KNO3 to bring the concentrations of NO3-_N in soils to 50 mg kg-1 soil and the NO3- pool to an enrichment of 10 atom% 15N. In all soils, the total amount of O2 consumption and N2O production increased as soil ammonical N concentration increased. The increased soil moisture significantly promoted N2O production in sandy loam and clay loam soils, compared to the peat soil. These results indicate that N2O production increased as substrate concentration increased likely due to the onset of O2 limitation caused by ammonia oxidation.

  6. Impact of the initial specification of moisture and vertical motion on precipitation forecasts with a mesoscale model Implications for a satellite mesoscale data base

    NASA Technical Reports Server (NTRS)

    Mlynczak, Pamela E.; Houghton, David D.; Diak, George R.

    1986-01-01

    Using a numerical mesoscale model, four simulations were performed to determine the effects of suppressing the initial mesoscale information in the moisture and wind fields on the precipitation forecasts. The simulations included a control forecast 12-h simulation that began at 1200 GMT March 1982 and three experiment simulations with modifications to the moisture and vertical motion fields incorporated at 1800 GMT. The forecasts from 1800 GMT were compared to the second half of the control forecast. It was found that, compared to the control forecast, suppression of the moisture and/or wind initial field(s) produces a drier forecast. However, the characteristics of the precipitation forecasts of the experiments were not different enough to conclude that either mesoscale moisture or mesoscale vertical velocity at the initial time are more important for producing a forecast closer to that of the control.

  7. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    NASA Astrophysics Data System (ADS)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  8. The influence of moisture content variation on fungal pigment formation in spalted wood

    PubMed Central

    2012-01-01

    Eight fungal species known to produce wood pigmentation were tested for reaction to various moisture contents in two hardwood species. Fungal pigmentation by Trametes versicolor and Xylaria polymorpha was stimulated at low water concentrations in both Acer saccharum (sugar maple) and Fagus grandifolia (American beech), while Inonotus hispidus and Polyporus squamosus were stimulated above 22-28% and 34-38% moisture content in beech and in sugar maple respectively. Fomes fomentarius and Polyporus brumalis produced maximum pigmentation in beech at 26 - 41% and in sugar maple at 59 - 96% moisture content. The pink staining Scytalidium cuboideum pigmented both wood species at above 35% moisture content. This research indicates that controlling the moisture content values of wood substrates can stimulate the intensity of pigmentation of specific fungi when spalting wood for decorative and commercial purpose. PMID:23245292

  9. Analysis and optimal design of moisture sensor for rice grain moisture measurement

    NASA Astrophysics Data System (ADS)

    Jain, Sweety; Mishra, Pankaj Kumar; Thakare, Vandana Vikas

    2018-04-01

    The analysis and design of a microstrip sensor for accurate determination of moisture content (MC) in rice grains based on oven drying technique, this technique is easy, fast and less time-consuming to other techniques. The sensor is designed with low insertion loss, reflection coefficient and maximum gain is -35dB and 5.88dB at 2.68GHz as well as discussed all the parameters such as axial ratio, maximum gain, smith chart etc, which is helpful for analysis the moisture measurement. The variation in percentage of moisture measurement with magnitude and phase of transmission coefficient is investigated at selected frequencies. The microstrip moisture sensor consists of one layer: substrate FR4, thickness 1.638 is simulated by computer simulated technology microwave studio (CST MWS). It is concluded that the proposed sensor is suitable for development as a complete sensor and to estimate the optimum moisture content of rice grains with accurately, sensitivity, compact, versatile and suitable for determining the moisture content of other crops and agriculture products.

  10. Paddy straw as a substrate for the cultivation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. in India.

    PubMed

    Veena, S S; Pandey, Meera

    2011-01-01

    Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, is generally cultivated on hardwood logs or sawdust/woodchips based formulations. More than 100 million tonnes of paddy straw is being produced in India per year, and almost 50% of the straw is potentially available for growing mushrooms. In the present study an attempt was made to use paddy straw as a substrate to cultivate G. lucidim. Different proportions of paddy straw were mixed with 0, 22.5%, 45%, and 67.5% sawdust and 10% rice bran. Spawn run period, fruiting initiation period, yield, moisture content, dry recovery, and fruiting body characteristics were recorded and compared. Fructification was observed with all the substrate formulations and they did not show any significant difference in yield. The highest biological efficiency (BE) (29.9%) was observed with the combination sawdust:paddy straw:rice bran 22.5:67.5:10, followed by saw dust:paddy straw:rice bran 45:45:10 with BE 27.3%. The current study demonstrated for the first time that the cultivation of G. lucidum is possible with paddy straw as the base substrate and indicated the enormous potential of paddy straw for the cultivation of G. lucidum.

  11. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    NASA Astrophysics Data System (ADS)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  12. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  13. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  14. Influence of cultivating conditions on the alpha-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation.

    PubMed

    Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H

    2004-01-01

    The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.

  15. Analysis of the effect of waste's particle size variations on biodrying method

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Zikrina, Masayu Nadiya

    2017-11-01

    The use of municipal solid waste as energy source can be a solution for Indonesia's increasing energy demand. However, its high moisture content limits the use of solid waste as energy. Biodrying is a method of lowering wastes' moisture content using biological process. This study investigated the effect of wastes' particle size variations on biodrying method. The experiment was performed on 3 lab-scale reactors with the same specifications. Organic wastes with the composition of 50% vegetable wastes and 50% garden wastes were used as substrates. The feedstock was manually shredded into 3 size variations, which were 10 - 40 mm, 50 - 80 mm, and 100 - 300 mm. The experiment lasted for 21 days. After 21 days, it was shown that the waste with the size of 100 - 300 mm has the lowest moisture content, which is 50.99%, and the volatile solids content is still 74.3% TS. This may be caused by the higher free air space of the reactor with the bigger sized substrate.

  16. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.

    PubMed

    Essers, A J; Jurgens, C M; Nout, M J

    1995-07-01

    The effect of six individual strains of the dominant microflora in solid substrate fermenting cassava on cyanogen levels was examined. Six out of eight batches of disinfected cassava root pieces were incubated for 72 h after inoculation with either of the fungi Geotrichum candidum, Mucor racemosus, Neurospora sitophila, Rhizopus oryzae and Rhizopus stolonifer, or a Bacillus sp., isolated from on-farm fermented cassava flours from Uganda. One non-inoculated batch was incubated as a reference. Levels of initial and final moisture and cyanogens were assayed. The experiment was done in quadruplicate. Incubation of disinfected root pieces reduced cyanogenic glucoside levels significantly to 62.7% (SD 2.8) of the initial value. Microbial growth resulted in significant additional reduction of the cyanogenic glucoside levels to 29.8% (SD 18.9) of the levels which were obtained after non-inoculated incubation. Among the tested strains, N. sitophila reduced cyanogenic glucoside levels most effectively, followed by R. stolonifer and R. oryzae. Of all fermented samples, both Rhizopus spp. showed highest proportion of residual cyanogens in the cyanohydrin form. Flours showed similar patterns of cyanogens as the batches they were prepared from. Cyanogenic glucoside level reduction was significantly correlated (r = 0.86) with the extent of root softening. It is concluded that both incubation and microbial activity are instrumental in reducing the potential toxicity of cassava during the solid substrate fermentation and that effectiveness varies considerably between the species of microorganisms applied.

  17. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  18. Extensive green roof CO2 exchange and its seasonal variation quantified by eddy covariance measurements.

    PubMed

    Heusinger, Jannik; Weber, Stephan

    2017-12-31

    The CO 2 surface-atmosphere exchange of an unirrigated, extensive green roof in Berlin, Germany was measured by means of the eddy covariance method over a full annual cycle. The present analysis focusses on the cumulative green roof net ecosystem exchange of CO 2 (NEE), on its seasonal variation and on green roof physiological characteristics by applying a canopy (A-g s ) model. The green roof was a carbon sink with an annual cumulative NEE of -313gCO 2 m -2 year - 1 , equivalent to -85gCm -2 year - 1 . Three established CO 2 flux gap-filling methods were applied to estimate NEE and to study the performance during different meteorological situations. A best estimate NEE time series was established, which chooses the gap filling method with the highest performance. During dry periods daytime carbon uptake was shown to decline linearly with substrate moisture below a threshold of 0.05m 3 m -3 , whereas night-time respiration was unaffected by substrate moisture variation. The roof turned into a temporary C source during dry conditions in summer 2015. We conclude that the carbon uptake of the present green roof can be optimized when substrate moisture is kept above 0.05m 3 m -3 . Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Environmental Barrier Coating (EBC) Durability Modeling; An Overview and Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; Bhatt, R. T.; Grady, J. E.; Zhu, D.

    2012-01-01

    A study outlining a fracture mechanics based model that is being developed to investigate crack growth and spallation of environmental barrier coating (EBC) under thermal cycling conditions is presented. A description of the current plan and a model to estimate thermal residual stresses in the coating and preliminary fracture mechanics concepts for studying crack growth in the coating are also discussed. A road map for modeling life and durability of the EBC and the results of FEA model(s) developed for predicting thermal residual stresses and the cracking behavior of the coating are generated and described. Further initial assessment and preliminary results showed that developing a comprehensive EBC life prediction model incorporating EBC cracking, degradation and spalling mechanism under stress and temperature gradients typically seen in turbine components is difficult. This is basically due to mismatch in thermal expansion difference between sub-layers of EBC as well as between EBC and substrate, diffusion of moisture and oxygen though the coating, and densification of the coating during operating conditions as well as due to foreign object damage, the EBC can also crack and spall from the substrate causing oxidation and recession and reducing the design life of the EBC coated substrate.

  20. Respiration , nitrogen fixation, and mineralizable nitrogen spatial and temporal patterns within two Oregon Douglas-fir stands.

    Treesearch

    Sharon M. Hope; Ching-Yan. Li

    1997-01-01

    Substrate respiration, mineralizable nitrogen, and nitrogen fixation rates, substrate moisture,content, and temperature were measured in trenched and undisturbed plots within two western Oregon Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands. The stands represent two different environments and ages. Woods Creek, the site of the lower...

  1. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    Treesearch

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  2. Prediction of Hydrological Drought: What Can We Learn From Continental-Scale Offline Simulations?

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Mahanama, Sarith; Livneh, Ben; Lettenmaier, Dennis; Reichle, Rolf

    2011-01-01

    Land surface model experiments are used to quantify, across the coterminous United States, the contributions (isolated and combined) of soil moisture and snowpack initialization to the skill of seasonal streamflow forecasts at multiple leads and for different start dates. Forecasted streamflows are compared to naturalized streamflow observations where available and to synthetic (model-generated) streamflow data elsewhere. We find that snow initialization has a major impact on skill in the mountainous western U.S. and in a portion of the northern Great Plains; a mid-winter (January 1) initialization of snow in these areas leads to significant skill in the spring melting season. Soil moisture initialization also contributes to skill, and although the maximum contributions are not as large as those seen for snow initialization, the soil moisture contributions extend across a much broader geographical area. Soil moisture initialization can contribute to skill at long leads (up to 5 or 6 months), particularly for forecasts issued during winter.

  3. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    PubMed

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  4. Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.

    2013-12-01

    We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known, especially at high temperatures. It is important to have this property well constrained as substrate thermal conductivity is the greatest influence on the rate of lava-substrate heat transfer. At Kilauea and Mauna Loa Volcanoes, Hawaii, and other volcanoes that threaten communities, lava may erupt over a variety of substrate materials including cool lava flows, volcanic tephra, soils, sand, and concrete. The composition, moisture, organic content, porosity, and grain size of the substrate dictate the thermophysical properties, thus affecting the transfer of heat from the lava flow into the substrate and flow mobility. Particulate substrate materials act as insulators, subduing the rate of heat transfer from the flow core. Therefore, lava that flows over a particulate substrate will maintain higher core temperatures over a longer period, enhancing flow mobility and increasing the duration and aerial coverage of the resulting flow. Lava flow prediction models should include substrate specification with temperature dependent material property definitions for an accurate understanding of flow hazards.

  5. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion.

    PubMed

    Bitterlich, Michael; Franken, Philipp; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  6. Flip Chip on Organic Substrates: A Feasibility Study for Space Applications

    DTIC Science & Technology

    2017-03-01

    scheme, a 1752 I/O land grid array (LGA) package with decoupling capacitors, heat sink and optional column attach [1] as shown in Figure 1...investigated the effect of moisture and current loading on the Class Y flip chip on ceramic reliability [ 2 ]. The UT1752FC Class Y technology has...chip assembly to ceramic test substrates, the FA10 die are assembled to build-up organic test substrates as shown in Figure 2 . These assemblies

  7. Is soil moisture initialization important for seasonal to decadal predictions?

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    The state of soil moisture can can have a significant impact on regional climate conditions for short time scales up to several months. However, focusing on seasonal to decadal time scales, it is not clear whether the predictive skill of global a Earth System Model might be enhanced by assimilating soil moisture data or improving the initial soil moisture conditions with respect to observations. As a first attempt to provide answers to this question, we set up an experiment to investigate the life time (memory) of extreme soil moisture states in the coupled land-atmosphere model ECHAM6-JSBACH, which is part of the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). This experiment consists of an ensemble of 3 years simulations which are initialized with extreme wet and dry soil moisture states for different seasons and years. Instead of using common thresholds like wilting point or critical soil moisture, the extreme states were extracted from a reference simulation to ensure that they are within the range of simulated climate variability. As a prerequisite for this experiment, the soil hydrology in JSBACH was improved by replacing the bucket-type soil hydrology scheme with a multi-layer scheme. This new scheme is a more realistic representation of the soil, including percolation and diffusion fluxes between up to five separate layers, the limitation of bare soil evaporation to the uppermost soil layer and the addition of a long term water storage below the root zone in regions with deep soil. While the hydrological cycle is not strongly affected by this new scheme, it has some impact on the simulated soil moisture memory which is mostly strengthened due to the additional deep layer water storage. Ensemble statistics of the initialization experiment indicate perturbation lengths between just a few days up to several seasons for some regions. In general, the strongest effects are seen for wet initialization during northern winter over cold and humid regions, while the shortest memory is found during northern spring. For most regions, the soil moisture memory is either sensitive to wet or to dry perturbations, indicating that soil moisture anomalies interact with the respective weather pattern for a given year and might be able to enhance or dampen extreme conditions. To further investigate this effect, the simulations will be repeated using JSBACH with prescribed meteorological forcing to better disentangle the direct effects of soil moisture initialization and the atmospheric response.

  8. The calculating study of the moisture transfer influence at the temperature field in a porous wet medium with internal heat sources

    NASA Astrophysics Data System (ADS)

    Kuzevanov, V. S.; Garyaev, A. B.; Zakozhurnikova, G. S.; Zakozhurnikov, S. S.

    2017-11-01

    A porous wet medium with solid and gaseous components, with distributed or localized heat sources was considered. The regimes of temperature changes at the heating at various initial material moisture were studied. Mathematical model was developed applied to the investigated wet porous multicomponent medium with internal heat sources, taking into account the transfer of the heat by heat conductivity with variable thermal parameters and porosity, heat transfer by radiation, chemical reactions, drying and moistening of solids, heat and mass transfer of volatile products of chemical reactions by flows filtration, transfer of moisture. The algorithm of numerical calculation and the computer program that implements the proposed mathematical model, allowing to study the dynamics of warming up at a local or distributed heat release, in particular the impact of the transfer of moisture in the medium on the temperature field were created. Graphs of temperature change were obtained at different points of the graphics with different initial moisture. Conclusions about the possible control of the regimes of heating a solid porous body by the initial moisture distribution were made.

  9. The Use of Indirect Estimates of Soil Moisture to Initialize Coupled Models and its Impact on Short-Term and Seasonal Simulations

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Crosson, William; Dembek, Scott; Lakhtakia, Mercedes

    1998-01-01

    It is well known that soil moisture is a characteristic of the land surface that strongly affects the partitioning of outgoing radiation into sensible and latent heat which significantly impacts both weather and climate. Detailed land surface schemes are now being coupled to mesoscale atmospheric models in order to represent the effect of soil moisture upon atmospheric simulations. However, there is little direct soil moisture data available to initialize these models on regional to continental scales. As a result, a Soil Hydrology Model (SHM) is currently being used to generate an indirect estimate of the soil moisture conditions over the continental United States at a grid resolution of 36 Km on a daily basis since 8 May 1995. The SHM is forced by analyses of atmospheric observations including precipitation and contains detailed information on slope soil and landcover characteristics.The purpose of this paper is to evaluate the utility of initializing a detailed coupled model with the soil moisture data produced by SHM.

  10. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  11. The properties and performance of moisture/oxygen barrier layers deposited by remote plasma sputtering

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Louise

    The development of flexible lightweight OLED devices requires oxygen/moisture barrier layer thin films with water vapour transmission rates (WVTR) of < 10-6 g/m2/day. This thesis reports on single and multilayer architecture barrier layers (mostly based on SiO2, Al2O3 and TiO2) deposited onto glass, Si and polymeric substrates using remote plasma sputtering. The reactive sputtering depositions were performed on Plasma Quest S500 based sputter systems and the morphology, nanostructure and composition of the coatings have been examined using SEM, EDX, STEM, XPS, XRD and AFM. The WVTR has been determined using industry standard techniques (e.g. MOCON) but, for rapid screening of the deposited layers, an in-house permeation test was also developed. SEM, XRD and STEM results showed that the coatings exhibited a dense, amorphous structure with no evidence of columnar growth. However, all of the single and multilayer coatings exhibited relatively poor WVTRs of > 1 x 10-1 g/m2/day at 38 °C and 85 % RH. Further characterisation indicated that the barrier films were failing due to the presence of substrate asperities and airborne particulates. Different mechanisms were investigated in an attempt to reduce the density of film defects including incorporation of a getter layer, modification of growth kinetics, plasma treatment and polymer planarising, but none were successful in lowering the WVTR. Review of this issue indicated that the achievement of good barrier layers was likely to be problematic in commercial practice due to the cost implications of adequately reducing particulate density and the need to cover deliberately non-planar surfaces and fabricated 3D structures. Conformal coverage would therefore be required to bury surface structures and to mitigate particulate issues. Studies of the remote plasma system showed that it both inherently delivered an ionised physical vapour deposition (IPVD) process and was compatible with bias re-sputtering of substrates. Accordingly, a process using RF substrate bias to conformally coat surfaces was developed to encapsulate surface particulates and seal associated permeation paths. An order of magnitude improvement in WVTR (6.7 x 10-2 g/m2/day) was measured for initial Al2O3 coatings deposited with substrate bias. The development of substrate bias to enhance conformal coverage provides significant new commercial benefit. Furthermore, conformal coverage of 5:1 aspect ratio structures have been demonstrated by alternating the substrate bias between -222 V and -267 V, with a 50 % dwell time at each voltage. Further development and optimisation of the substrate bias technique is required to fully explore the potential for further improving barrier properties and conformal coverage of high aspect ratio and other 3D structures.

  12. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The effect of several environmental parameters on previously developed life detection systems is explored. Initial attempts were made to conduct all the experiments in a moist mode (high soil volume to water volume ratio). However, only labeled release and measurement of ATP were found to be feasible under conditions of low moisture. Therefore, these two life detection experiments were used for most of the environmental effects studies. Three soils, Mojave (California desert), Wyaconda (Maryland, sandy loam) and Victoria Valley (Antarctic desert) were generally used throughout. The environmental conditions studied included: incubation temperature 3 C to 80 C, ultraviolet irradiation of soils, variations in soil/liquid ratio, specific atmospheric gases, various antimetabolites, specific substrates, and variation in pH. An experiment designed to monitor nitrogen metabolism was also investigated.

  13. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    PubMed

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  14. Chitinolytic and chitosanolytic activities from crude cellulase extract produced by A. niger grown on apple pomace through Koji fermentation.

    PubMed

    Dhillon, Gurpreet Singh; Brar, Satinder Kaur; Kaur, Surinder; Valero, Jose R; Verma, Mausam

    2011-12-01

    Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase 79.24+/- 4.22 IU/gram fermented substrate (gfs) and CMCase 124.04+/-7.78 IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase 96.67+/-4.18 IU/gfs and CMCase 146.50+/-11.92 IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of 70.28+/-3.34 IU/gfs and 60.18+/-3.82 to 64.20+/-4.12 IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.

  15. Relationships between Hg Air-surface exchange, Soil Moisture and Precipitation at a Background Vegetated Site in South-Eastern Australia.

    NASA Astrophysics Data System (ADS)

    Macsween, K.; Edwards, G. C.

    2017-12-01

    Despite many decades of research, the controlling mechanisms of mercury (Hg) air-surface exhange are still poorly understood. Particularly in Australian ecosystems where there are few anthropogenic inputs. A clear understanding of these mechanisms is vital for accurate representation in the global Hg models, particularly regarding re-emission. Water is known to have a considerable influence on Hg exchange within a terrestrial ecosystem. Precipitation has been found to cause spikes is Hg emissions during the initial stages of rain event. While, Soil moisture content is known to enhance fluxes between 15 and 30% Volumetric soil water (VSW), above which fluxes become suppressed. Few field experiments exist to verify these dominantly laboratory or controlled experiments. Here we present work looking at Hg fluxes over an 8-month period at a vegetated background site. The aim of this study is to identify how changes to precipitation intensity and duration, coupled with variable soil moisture content may influence Hg flux across seasons. As well as the influence of other meteorological variables. Experimentation was undertaken using aerodynamic gradient micrometeorological flux method, avoiding disruption to the surface, soil moisture probes and rain gauge measurements to monitor alterations to substrate conditions. Meteorological and air chemistry variables were also measured concurrently throughout the duration of the study. During the study period, South-Eastern Australia experienced several intense east coast low storm systems during the Autumn and Spring months and an unusually dry winter. VSW rarely reached above 30% even following the intense rainfall experienced during the east coast lows. The generally dry conditions throughout winter resulted in an initial spike in Hg emissions when rainfall occurred. Fluxes decreased shortly after the rain began but remained slightly elevated. Given the reduced net radiation and cooler temperatures experienced during the winter months soils took several days to dry out, resulting in slightly enhanced fluxes for the days preceding rainfall. It is thought that seasonality of rainfall has a significant impact of Hg air-surface exchange trends, both through increased recovery times once rain has past and through the increased occurrence of major storm events.

  16. Improvement of home composting process of food waste using different minerals.

    PubMed

    Margaritis, M; Psarras, K; Panaretou, V; Thanos, A G; Malamis, D; Sotiropoulos, A

    2018-03-01

    This article presents the experimental study of the process of composting in a prototype home-scale system with a special focus on process improvement by using different additives (i.e. woodchips, perlite, vermiculite and zeolite). The interventions with different bulking agents were realized through composting cycles using substrates with 10% additives in specific mixtures of kitchen waste materials. The pre-selected proportion of the mixtures examined was 3:1:1 in cellulosic:proteins:carbohydrates, in order to achieve an initial C/N ratio equal to 30. The control of the initial properties of the examined substrates aimed at the consequent improvement of the properties of the final product (compost). The results indicated that composting process was enhanced with the use of additives and especially the case of zeolite and perlite provided the best results, in terms of efficient temperature evolution (>55 °C for 4 consecutive days). Carbon to nitrogen ratios decreased by 40% from the initial values for the reactors were minerals were added, while for the bioreactor tested with woodchips the reduction was slight, showing slowest degradation rate. Moisture content of produced compost varied within the range of 55-64% d.m., while nutrient content (K, Na, Ca, Mg) was in accordance with the limit values reported in literature. Finally, the composts obtained, exhibited a satisfactory degree of maturity, fulfilling the criterion related to the absence of phytotoxic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mesoscale research activities with the LAMPS model

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Researchers achieved full implementation of the LAMPS mesoscale model on the Atmospheric Sciences Division computer and derived balanced and real wind initial states for three case studies: March 6, April 24, April 26, 1982. Numerical simulations were performed for three separate studies: (1) a satellite moisture data impact study using Vertical Atmospheric Sounder (VAS) precipitable water as a constraint on model initial state moisture analyses; (2) an evaluation of mesoscale model precipitation simulation accuracy with and without convective parameterization; and (3) the sensitivity of model precipitation to mesoscale detail of moisture and vertical motion in an initial state.

  18. Initial review of rapid moisture measurement for roadway base and subgrade.

    DOT National Transportation Integrated Search

    2013-05-01

    This project searched available moisture-measurement technologies using gravimetric, dielectric, electrical conductivity, and suction-based methods, as potential replacements for the nuclear gauge to provide rapid moisture measurement on field constr...

  19. In vitro and in vivo assessment of the effect of initial moisture content and drying temperature on the feeding value of maize grain.

    PubMed

    Huart, F; Malumba, P; Odjo, S; Al-Izzi, W; Béra, F; Beckers, Y

    2018-06-11

    1. This study assessed the impact of drying temperature (54, 90, and 130°C) and maize grain moisture content at harvest (36% and 29%) on in vitro digestibility, the growth performance and ileal digestibility of broiler chickens. 2. In contrast to the results from the in vitro digestibility, apparent ileal digestibility of starch and energy decreased when the drying temperature was raised from 54 to 130°C, and this effect was more pronounced in maize grain harvested at high initial moisture content (36%). Ileal protein digestibility of maize grain decreased significantly when dried at the intermediate temperature (90°C) and with a high harvest moisture content (36%). Drying temperature and initial moisture content did not significantly affect AMEn. 3. When maize was dried at 130°C, the particle sizes of flour recovered after standard milling procedures decreased significantly, which would influence animal growth performance and in vivo digestibility through animal feed selection.

  20. Effect of some variable in cellulase production by Aspergillus niger ITBCC L74 using solid state fermentation

    NASA Astrophysics Data System (ADS)

    Abdullah, B.; Maftukhah, S.; Listyaningrum, E.; Faradhiba, F.

    2018-03-01

    Cellulase is a very important enzyme for ethanol production, food, papper, etc, from lignocellulose and others. Rice straw and corn cob are the largest agricultural waste in Indonesia, while the water hyacinth weed is a plant that has not been used optimally. The content of cellulose is high enough on rice straw, water hyacinth and corn corb so it can be used as a substrate in the production of cellulase to increase the economic value of the rice straw, hyacinth, and corncob. As for the purpose of this study is to use the rice straw, water hyacinth, and corn cob as substrates of cellulase enzyme, determine the effect type of substrates, moisture content and fermentation time in production of cellulase enzyme and also determining the optimum conditions for production of cellulase enzymes. The method is solid fermentation system and using fungi Aspergillus niger ITBCC L74 as inoculum. The variable used were fermentation time is 2, 4, 6, 8 and 10 days, moisture content is 50, 60, 70, and 80%, as well as the type of substrate is rice straw, water hyacinth, and corn cob. The results showed that the highest protein content in the crude enzyme of the rice straw, water hyacinth and corncobs @ is 0.0153 mg/ml, 0.0194 mg/ml and 0. 0146 mg/ml, respectively. The optimum enzyme activity were for the rice straw, water hyacinth and corn cobs @ 2.569 U/ml, 1.606 U/ml and 1.302 U/ml, respectively. The optimum moisture content were obtain for rice straw, water hyacinth and corn cob respectively 80%, 70% and 60%. And the optimum fermentation time for rice straw, corn cob, and water hyacinth is on the sixth day. In this study showed the highest enzyme activity on the type of rice straw substrate with a water content of 80% and fermentation time 6 day.

  1. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica.

    PubMed

    do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães

    2018-03-01

    The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9  conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.

  2. Effect of relative humidity on onset of capillary forces for rough surfaces.

    PubMed

    Zarate, Nyah V; Harrison, Aaron J; Litster, James D; Beaudoin, Stephen P

    2013-12-01

    Atomic force microscopy (AFM) was used to investigate the effect of relative humidity (RH) on the adhesion forces between silicon nitride AFM probes, hydrophilic stainless steel, and hydrophobic Perspex® (polymethylmethacrylate, PMMA). In addition, AFM-based phase contrast imaging was used to quantify the amount and location of adsorbed water present on these substrates at RH levels ranging from 15% to 65% at 22°C. Both the adhesion forces and the quantities of adsorbed moisture were seen to vary with RH, and the nature of this variation depended on the hydrophobicity of the substrate. For the Perspex®, both the adhesion force and the amount of adsorbed moisture were essentially independent of RH. For the stainless steel substrate, adsorbed moisture increased continuously with increasing RH, while the adhesion force rose from a minimum at 15% RH to a broad maximum between 25% and 35% RH. From 35% to 55% RH, the adhesion force dropped continuously to an intermediate level before rising again as 65% RH was approached. The changes in adhesion force with increasing relative humidity in the case of the stainless steel substrate were attributed to a balance of effects associated with adsorbed, sub-continuum water on the cantilever and steel. Hydrogen bonding interactions between these adsorbed water molecules were thought to increase the adhesion force. However, when significant quantities of molecular water adsorbed, these molecules were expect to decrease adhesion by screening the van der Waals interactions between the steel and the cantilever tip, and by increasing the separation distance between these solid surfaces when they were 'in contact'. Finally, the slight increase in adhesion between 55% and 65% RH was attributed to true capillary forces exerted by continuum water on the two solid surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  4. Trace moisture detection in oil filled transformer by ceramic sensor

    NASA Astrophysics Data System (ADS)

    Saha, Debdulal; Sengupta, K.

    2015-02-01

    This paper reports on the suitability of thin film nano porous γ-alumina sensor for sensing parts per million (ppm) moisture present in transformer oil. Transformer oil degrades slowly by weathering, causing dielectric break down voltage of the oil to fall down. For improving this break down voltage, water must be removed from the transformer oil. Flash point of the transformer oil ranges from 150°C to 200°C.When the oil is slowly heated up to 75°C water vapour comes out from oil which is detected by ceramic sensor. The sensor is prepared from organo-metallic precursor by sol-gel process. Gold coated α-alumina substrate was dipped within the alumina hydra-sol and a thin film of γ-alumina formed on the substrate. The sensor capacitance was measured as a function of ppm moisture level. The circuit produces an output voltage which is precisely related to the absolute value of the capacitance of the dielectric material. In order to improve the sensitivity, parallel electrode structure was patterned on the nano porous dielectric. The response is sufficiently linear in extremely low ppm level moisture. A prototype hygrometer was built for detection of trace moisture in transformer oil. Porous alumina can be produced at a relatively low cost and in a variety of structural configurations. Sol- gel processing of alumina allows superior control on pore morphology, phase formation, purity and product microstructure compared to the more traditional techniques like Anodic oxidation of alumina sheets, tape cast by different sizes of alumina powder etc.

  5. Dynamic succession of substrate-associated bacterial composition and function during Ganoderma lucidum growth

    PubMed Central

    Li, Qiang; Zou, Jie; Tan, Hao; Tan, Wei; Peng, Weihong

    2018-01-01

    Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum. PMID:29915697

  6. Initiation devices, initiation systems including initiation devices and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materialsmore » include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.« less

  7. Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model

    NASA Technical Reports Server (NTRS)

    Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.

    1997-01-01

    A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.

  8. Use of Coatings on Hydraulic Steel Structures: Part 2-Supplemental Information

    DTIC Science & Technology

    2016-09-01

    the “salt fog” chamber contains a 5% sodium chloride (NaCl) atmosphere, which is not a real environment anywhere on the earth ; in fact, that...moisture levels. The premise for this test is that if moisture goes through the coating, then the coating has failed. However, from a corrosion...perspec- tive, the substrate will only rust if gaseous oxygen also passes through the coating. EIS monitoring was tried in Okinawa, Japan, but was not

  9. Moisture-triggered physically transient electronics

    PubMed Central

    Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang

    2017-01-01

    Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237

  10. Moisture determination in composite materials using positron lifetime techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. R.; Mock, W., Jr.

    1980-01-01

    A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.

  11. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    USGS Publications Warehouse

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and several unidentifiable compounds) could account for approximately 44% of the variation in mineralization across all sites under ideal temperature and moisture conditions. Based on our results, changes in temperature and moisture likely have similar, additive effects on in situ soil organic matter (SOM) decomposition across a wide range of black spruce forest systems, while variations in SOM chemistry can lead to significant differences in decomposition rates within and among forest sites. ?? 2007 Springer Science+Business Media B.V.

  12. Production of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (higher Basidiomycetes), biomass and polysaccharides by solid state cultivation.

    PubMed

    Berovic, Marin; Habijanic, Jozica; Boh, Bojana; Wraber, Branka; Petravic-Tominac, Vlatka

    2012-01-01

    Solid state cultivation of Ganoderma lucidum biomass, strain BFWS Gal 4, originally isolated from the Slovenian forest, was studied in a horizontal stirred tank reactor. Periodic mixing of N = 80 rpm, 2 min/day was used. Production of fungal polysaccharides and fungal biomass on solid substrate based on beech sawdust, olive oil, and mineral salts was studied. Optimal moisture of the solid matrix was in the range of 80% to 74%. When the moisture content dropped below 57%, the growth of the mycelium and polysaccharide production stopped, but it revived when wet air was applied in further processing. Final concentration of biomass was 0.68 mg/g of solid substrate, while proportions of extracellular and intracellular polysaccharides were 4.5 mg/g and 1.05 mg/g, respectively.

  13. Soil Moisture Initialization Error and Subgrid Variability of Precipitation in Seasonal Streamflow Forecasting

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.

    2013-01-01

    Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.

  14. A comparison of soil moisture sensors for space flight applications

    NASA Technical Reports Server (NTRS)

    Norikane, J. H.; Prenger, J. J.; Rouzan-Wheeldon, D. T.; Levine, H. G.

    2005-01-01

    Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.

  15. Critical moisture content for microbial growth in dried food-processing residues.

    PubMed

    Rezaei, Farzaneh; Vandergheynst, Jean S

    2010-09-01

    Food-processing residues are good feedstocks for biofuel and biochemical production because they have high energy content and are abundant. Year-round biofuel and biochemical production requires proper storage to prevent microbial decomposition and thermal runaway. In this study, microbial activity of tomato pomace (TP), grape pomace (GP), fermented grape pomace (FGP) and sugar beet pulp (SBP) was monitored at nine different moisture contents. Maximum and cumulative respirations for each feedstock with respect to moisture content followed a sigmoidal relationship. The critical moisture content below which no microbial activity was detected for SBP, TP, FGP and GP was 24-31, 16-21, 23-33 and 43-46% (dry basis) respectively. A logarithmic relationship was observed (R(2) = 0.94) between critical moisture content and initial water-soluble carbohydrate (WSC) content of the processing residues. The critical moisture content below which no microbial activity was detected and the relationship between critical moisture content and initial WSC content were determined in this study for four food-processing residues. Both parameters permit evaluation of the potential for deterioration of food-processing residues during storage based on moisture content and WSC content. Copyright 2010 Society of Chemical Industry.

  16. Generation of an empirical soil moisture initialization and its potential impact on subseasonal forecasting skill of continental precipitation and air temperature

    NASA Astrophysics Data System (ADS)

    Boisserie, Marie

    The goal of this dissertation research is to produce empirical soil moisture initial conditions (soil moisture analysis) and investigate its impact on the short-term (2 weeks) to subseasonal (2 months) forecasting skill of 2-m air temperature and precipitation. Because of soil moisture has a long memory and plays a role in controlling the surface water and energy budget, an accurate soil moisture analysis is today widely recognized as having the potential to increase summertime climate forecasting skill. However, because of a lack of global observations of soil moisture, there has been no scientific consensus on the importance of the contribution of a soil moisture initialization as close to the truth as possible to climate forecasting skill. In this study, the initial conditions are generated using a Precipitation Assimilation Reanalysis (PAR) technique to produce a soil moisture analysis. This technique consists mainly of nudging precipitation in the atmosphere component of a land-atmosphere model by adjusting the vertical air humidity profile based on the difference between the rate of the model-derived precipitation rate and the observed rate. The unique aspects of the PAR technique are the following: (1) based on the PAR technique, the soil moisture analysis is generated using a coupled land-atmosphere forecast model; therefore, no bias between the initial conditions and the forecast model (spinup problem) is encountered; and (2) the PAR technique is physically consistent; the surface and radiative fluxes remains in conjunction with the soil moisture analysis. To our knowledge, there has been no attempt to use a physically consistent soil moisture land assimilation system into a land-atmosphere model in a coupled mode. The effect of the PAR technique on the model soil moisture estimates is evaluated using the Global Soil Wetness Project Phase 2 (GSWP-2) multimodel analysis product (used as a proxy for global soil moisture observations) and actual in-situ observations from the state of Illinois. The results show that overall the PAR technique is effective; across most of the globe, the seasonal and anomaly variability of the model soil moisture estimates well reproduce the values of GSWP-2 in the top 1.5 m soil layer; by comparing to in-situ observations in Illinois, we find that the seasonal and anomaly soil moisture variability is also well represented deep into the soil. Therefore, in this study, we produce a new global soil moisture analysis dataset that can be used for many land surface studies (crop modeling, water resource management, soil erosion, etc.). Then, the contribution of the resulting soil moisture analysis (used as initial conditions) on air temperature and precipitation forecasts are investigated. For this, we follow the experimental set up of a model intercomparison study over the time period 1986-1995, the Global Land-Atmosphere Coupling Experiment second phase (GLACE-2), in which the FSU/COAPS climate model has participated. The results of the summertime air temperature forecasts show a significant increase in skill across most of the U.S. at short-term to subseasonal time scales. No increase in summertime precipitation forecasting skill is found at short-term to subseasonal time scales between 1986 and 1995, except for the anomalous drought year of 1988. We also analyze the forecasts of two extreme hydrological events, the 1988 U.S. drought and the 1993 U.S. flood. In general, the comparison of these two extreme hydrological event forecasts shows greater improvement for the summertime of 1988 than that of 1993, suggesting that soil moisture contributes more to the development of a drought than a flood. This result is consistent with Dirmeyer and Brubaker [1999] and Weaver et al. [2009]. By analyzing the evaporative sources of these two extreme events using the back-trajectory methodology of Dirmeyer and Brubaker [1999], we find similar results as this latter paper; the soil moisture-precipitation feedback mechanism seems to play a greater role during the drought year of 1988 than the flood year of 1993. Finally, the accuracy of this soil moisture initialization depends upon the quality of the precipitation dataset that is assimilated. Because of the lack of observed precipitation at a high temporal resolution (3-hourly) for the study period (1986-1995), a reanalysis product is used for precipitation assimilation in this study. It is important to keep in mind that precipitation data in reanalysis sometimes differ significantly from observations since precipitation is often not assimilated into the reanalysis model. In order to investigate that aspect, a similar analysis to that we performed in this study could be done using the 3-hourly Tropical Rainfall Measuring Mission (TRMM) dataset available for a the time period 1998-present. Then, since the TRMM dataset is a fully observational dataset, we expect the soil moisture initialization to be improved over that obtained in this study, which, in turn, may further increase the forecast skill.

  17. Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe

    NASA Astrophysics Data System (ADS)

    Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.

    2015-12-01

    The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.

  18. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Bouvier, Christophe; Martin, Claude; Didon-Lescot, Jean-François; Todorovik, Dragana; Domergue, Jean-Marc

    2010-06-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture, modelled soil moisture through the Interaction-Sol-Biosphère-Atmosphère (ISBA) component of the SIM model (Météo-France), antecedent precipitation and base flow. A modelling approach based on the Soil Conservation Service-Curve Number method (SCS-CN) is used to simulate the flood events in a small headwater catchment in the Cevennes region (France). The model involves two parameters: one for the runoff production, S, and one for the routing component, K. The S parameter can be interpreted as the maximal water retention capacity, and acts as the initial condition of the model, depending on the antecedent moisture conditions. The model was calibrated from a 20-flood sample, and led to a median Nash value of 0.9. The local TDR measurements in the deepest layers of soil (80-140 cm) were found to be the best predictors for the S parameter. TDR measurements averaged over the whole soil profile, outputs of the SIM model, and the logarithm of base flow also proved to be good predictors, whereas antecedent precipitations were found to be less efficient. The good correlations observed between the TDR predictors and the S calibrated values indicate that monitoring soil moisture could help setting the initial conditions for simplified event-based models in small basins.

  19. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  20. Refinement of moisture calibration curves for nuclear gage : interim report no. 1.

    DOT National Transportation Integrated Search

    1972-01-01

    This study was initiated to determine the correct moisture calibration curves for different nuclear gages. It was found that the Troxler Model 227 had a linear response between count ratio and moisture content. Also, the two calibration curves for th...

  1. Impact of realistic soil moisture initialization on the representation of extreme events in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Helgert, Sebastian; Khodayar, Samiro

    2017-04-01

    In a warmer Mediterranean climate an increase in the intensity and frequency of extreme events like floods, droughts and extreme heat is expected. The ability to predict such events is still a great challenge and exhibits many uncertainties in the weather forecast and climate predictions. Thereby the missing knowledge about soil moisture-atmosphere interactions and their representation in models is identified as one of the main sources of uncertainty. In this context the soil moisture(SM) plays an important role in the partitioning of sensible and latent heat fluxes on the surface and consequently influences the boundary-layer stability and the precipitation formation. The aim of this research work is to assess the influence of soil moisture-atmosphere interactions on the initiation and development of extreme events in the western Mediterranean (WMED). In this respect the impact of realistic SM initialization on the model representation of extreme events is investigated. High-resolution simulations of different regions in the WMED, including various climate zones from moderate to arid climate, are conducted with the atmospheric COSMO (Consortium for Small-scale Modeling) model in the numerical weather prediction and climate mode. A multiscale temporal and spatial approach is used (days to years, 7km to 2.8km grid spacing). Observational data provided by the framework of the HYdrological cycle in the Mediterranean EXperiment (HyMeX) as well as satellite data such as precipitation from CMORPH (CPC MORPHing technique), evapotranspiration from Land Surface Analysis Satellite Applications Facility (LSA-SAF) and atmospheric moisture from MODIS (Moderate Resolution Imaging Spectroradiometer) are used for process understanding and model validation. To select extreme dry and wet periods the Effective Drought Index (EDI) is calculated. In these periods sensitivity studies of extreme SM initialization scenarios are performed to prove a possible impact of soil moisture on precipitation in the WMED. For the realistic SM initialization different state-of-art high-resolution SM products (25km up to 1km grid spacing) of the Soil Moisture Ocean Salinity mission (SMOS) are examined. A CDF-matching method is applied to reduce the bias between model and SMOS-satellite observation. Moreover, techniques to estimate the initial soil moisture profile from satellite data are tested.

  2. The need for enhanced initial moisture information in simulations of a complex summertime precipitation event

    NASA Technical Reports Server (NTRS)

    Waight, Kenneth T., III; Zack, John W.; Karyampudi, V. Mohan

    1989-01-01

    Initial simulations of the June 28, 1986 Cooperative Huntsville Meteorological Experiment case illustrate the need for mesoscale moisture information in a summertime situation in which deep convection is organized by weak large scale forcing. A methodology is presented for enhancing the initial moisture field from a combination of IR satellite imagery, surface-based cloud observations, and manually digitized radar data. The Mesoscale Atmospheric Simulation Model is utilized to simulate the events of June 28-29. This procedure insures that areas known to have precipitation at the time of initialization will be nearly saturated on the grid scale, which should decrease the time needed by the model to produce the observed Bonnie (a relatively weak hurricane that moved on shore two days before) convection. This method will also result in an initial distribution of model cloudiness (transmissivity) that is very similar to that of the IR satellite image.

  3. Organic soil production from urban soil, spent mushroom substrate, and other additives

    NASA Astrophysics Data System (ADS)

    Pham, Nhung Thi Ha

    2017-09-01

    In recent years, spent mushroom substrate (SMS) is becoming the huge problem in environmental pollution issues from mushroom production. However, SMS is also a nutrient-rich ogranic material with available nutrients and high porosity. Therefore, the value of products made from SMS should be exploited to take full advantage of agricultural by-product, support organic agriculture development without environmental pollution. The research has built 5 experimental formulas (4 mixed formulas and 1 control formulas with only urban soil). The analysis results of soil samples from mixed formulas and the control formula witness a significant increase in moisture and OM of mixed formulas (moisture from 36-42%, OM from 5.5-6.9%) after 20 treatment days, and N-P-K contents are also improved remarkably. 60 days later, soil nutrients in mixed formulas continue to rise, with highest OM (8.679%) at CT1; N (0.154%) at CT4; K2O (0,698%) and P2O5 (0,172%) at CT3, in addition, heavy metal contents in all formulas are under standard limit. Synthetic assessment of all norms indicates that the best organic soil product comes from CT3. The pak choi planting experiments are performed show that the growth of plants cultivated on organic soil products made from mixed formulas are much better than plants are grown on initially soil, and they also have no pestilent insect. Specially, pak choi planted on organic soil from CT3 have sharp developing with excellent tolerance ability, quantity and area of leaves are high. Thus, CT3 is the most suitable formula to increase soil nutrients, to solve spent mushroom subtrate streament problems after harvest, and for sustainable agricultural development.

  4. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  5. ACCELERATED SOLVENT EXTRACTION COMBINED WITH AUTOMATED SOLID PHASE EXTRACTION-GC/MS FOR ANALYSIS OF SEMIVOLATILE COMPOUNDS IN HIGH MOISTURE CONTENT SOLID SAMPLES

    EPA Science Inventory

    A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...

  6. Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher

    2014-01-01

    SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes

  7. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    PubMed

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protein enrichment, cellulase production and in vitro digestion improvement of pangolagrass with solid state fermentation.

    PubMed

    Hu, Chan-Chin; Liu, Li-Yun; Yang, Shang-Shyng

    2012-02-01

    Pangolagrass, Digitaria decumbens Stent, is a major grass for cow feeding, and may be a good substrate for protein enrichment. To improve the quality of pangolagrass for animal feeding, cellulolytic microbes were isolated from various sources and cultivated with solid state fermentation to enhance the protein content, cellulase production and in vitro digestion. The microbes, culture conditions and culture media were studied. Cellulolytic microbes were isolated from pangolagrass and its extracts, and composts. Pangolagrass supplemented with nitrogen and minerals was used to cultivate the cellulolytic microbes with solid state fermentation. The optimal conditions for protein enrichment and cellulase activity were pangolagrass substrate at initial moisture 65-70%, initial pH 6.0-8.0, supplementation with 2.5% (NH(4))(2)SO(4), 2.5% KH(2)PO(4) and K(2)HPO(4) mixture (2:1, w/w) and 0.3% MgSO(4).7H(2)O and cultivated at 30(o)C for 6 days. The protein content of fermented pangolagrass increased from 5.97-6.28% to 7.09-16.96% and the in vitro digestion improved from 4.11-4.38% to 6.08-19.89% with the inoculation of cellulolytic microbes by solid state fermentation. Each 1 g of dried substrate yielded Avicelase 0.93-3.76 U, carboxymethylcellulase 1.39-4.98 U and β-glucosidase 1.20-6.01 U. The isolate Myceliophthora lutea CL3 was the strain found to be the best at improving the quality of pangolagrass for animal feeding with solid state fermentation. Solid state fermentation of pangolagrass inoculated with appropriate microbes is a feasible process to enrich protein content, increase in vitro digestibility and improve the quality for animal feeding. Copyright © 2011. Published by Elsevier B.V.

  9. Case studies using GOES infrared data and a planetary boundary layer model to infer regional scale variations in soil moisture. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rose, F. G.

    1983-01-01

    Modeled temperature data from a one-dimensional, time-dependent, initial value, planetary boundary layer model for 16 separate model runs with varying initial values of moisture availability are applied, by the use of a regression equation, to longwave infrared GOES satellite data to infer moisture availability over a regional area in the central U.S. This was done for several days during the summers of 1978 and 1980 where a large gradient in the antecedent precipitation index (API) represented the boundary between a drought area and a region of near normal precipitation. Correlations between satellite derived moisture availability and API were found to exist. Errors from the presence of clouds, water vapor and other spatial inhomogeneities made the use of the measurement for anything except the relative degree of moisture availability dubious.

  10. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  11. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kalman filter (EnKF)

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin

    2005-11-01

    The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.

  12. Predicting the response of soil organic matter microbial decomposition to moisture

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Garnier, Patricia; Monga, Olivier; Moyano, Fernando; Pot, Valérie; Nunan, Naoise; Coucheney, Elsa; Otten, Wilfred

    2014-05-01

    Next to temperature, soil moisture is a main driver of soil C and N transformations in soils, because it affects microbial activity and survival. The moisture sensitivity of soil organic matter decay may be a source of uncertainty of similar magnitude to that of the temperature sensitivity and receives much less attention. The basic concepts and mechanisms relating soil water to microorganisms were identified early (i.e. in steady state conditions : direct effects on microbial physiology, diffusion substrates, nutrients, extracellular enzymes, diffusion of oxygen, movement of microorganisms). However, accounting for how moisture controls soil microbial activity remains essentially empirical and poorly accounts for soil characteristics. Soil microorganisms live in a complex 3-D framework of mineral and organic particles defining pores of various sizes, connections with adjacent pores, and with pore walls of contrasted nature, which result in a variety of microhabitats. The water regime to which microorganisms are exposed can be predicted to depend the size and connectivity of pores in which they are located. Furthermore, the spatial distribution of microorganisms as well as that of organic matter is very heterogeneous, determining the diffusion distances between substrates and decomposers. A new generation of pore scale models of C dynamics in soil may challenge the difficulty of modelling such a complex system. These models are based on an explicit representation of soil structure (i.e. soil particles and voids), microorganisms and organic matter localisation. We tested here the ability of such a model to account for changes in microbial respiration with soil moisture. In the model MOSAIC II, soil pore space is described using a sphere network coming from a geometrical modelling algorithm. MicroCT tomography images were used to implement this representation of soil structure. A biological sub-model describes the hydrolysis of insoluble SOM into dissolved organic matter, its assimilation, respiration and microbial mortality. A recent improvement of the model was the description of the diffusion of soluble organic matter. We tested the model using the results from an experiment where a simple substrate (fructose) was decomposed by bacteria within a simple media (sand). Separate incubations in microcosms were carried out using five different bacterial communities at two different moisture conditions corresponding to water potentials of -0.01 and -0.1 bars. We calibrated the biological parameters using the experimental data obtained at high water content and we tested the model without any parameters change at low water content. Both the experiments and simulations showed a decrease in mineralisation with a decrease of water content, of which pattern depended on the bacterial species and its physiological characteristics. The model was able to correctly simulate the decrease of connectivity between substrate and microorganism due the decrease of water content. The potential and required developments of such models in describing how heterotrophic respiration is affected by micro-scale distribution and processes in soils and in testing scenarios regarding water regimes in a changing climate is discussed.

  13. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  14. Effect of moisture on disintegration kinetics during anaerobic digestion of complex organic substrates.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2014-01-01

    The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.

  15. Engineering Design Handbook: Environmental Series. Part Two. Natural Environmental Factors

    DTIC Science & Technology

    1975-04-01

    pockets of air trapped between the substrate and the film produces blisters. These eventually break and peel off. Resins containing active...paint films and the surface. The most undesirable failure of paint is peeling , which occurs upon the loss of ad- hesion between the paint ftlm and...the sub- strate to which it has been applied. Peeling is related to several factors, including the nature of the substrate, the amount of moisture

  16. Surface modification of wood by alkoxysilane sol-gel deposition to create anti-mold and anti-fungal characteristics

    Treesearch

    Mandla A. Tshabalala; Vina Yang; Ryan Libert

    2009-01-01

    Hybrid inorganic/organic thin films deposited on wood substrates have been shown to lower the rate of moisture sorption of the wood. Deposition of such thin films can be accomplished by sol–gel deposition or by plasma-enhanced chemical vapor deposition. This paper describes in situ sol–gel deposition of hybrid inorganic/organic thin films on wood substrates using...

  17. Effects of initial moisture content of Korean traditional wheat-based fermentation starter nuruk on microbial abundance and diversity.

    PubMed

    Bal, Jyotiranjan; Yun, Suk-Hyun; Yeo, Soo-Hwan; Kim, Jung-Mi; Kim, Beom-Tae; Kim, Dae-Hyuk

    2017-03-01

    The brewing of makgeolli, one of Korea's most popular alcoholic beverages that is gaining popularity globally, is facilitated by nuruk, a traditional Korean cereal starter. The nuruk microbiome greatly influences the fermentation process as well as the nutritional, hygienic, and aromatic qualities of the product. This study is a continuation of our efforts to examine nuruk biodiversity at a depth previously unattainable. In this study, microfloral dynamics in wheat-based nuruk C, composed of traditional ingredients such as barley, green gram, and wheat and fermented under various internal moisture contents of 20% (C20), 26% (C26), and 30% (C30), was evaluated using 454 pyrosequencing during the 30-day fermentation process. Rarefaction analysis and alpha diversity parameters indicated adequate sampling. C20 showed the greatest fungal richness and diversity, C20 and C26 exhibited similar bacterial richness and diversity, while C30 had low fungal and bacterial richness. Fungal taxonomic assignments revealed that the initial moisture content caused selective enrichment of Aspergillus candidus with a decreasing trend during fermentation, whereas Saccharomycetales sp. exhibited increasing relative abundance with increasing moisture content from day 6 of the fermentation process. Depending on initial moisture level, changes in bacterial communities were also observed in the genera Streptomyces, Bacillus, and Staphylococcus, with decreasing trends whereas Saccharopolyspora exhibited a sigmoidal trend with the highest abundance in C26. These findings demonstrate the possible impact of initial moisture content of nuruk on microfloral richness, diversity, and dynamics; this study is thus a step toward our ultimate goal of enhancing the quality of nuruk.

  18. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  19. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.

    PubMed

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-08-15

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation.

  20. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor

    PubMed Central

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-01-01

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10–14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m3·m−3 in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m3·m−3, as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881

  1. Evaluating industrial drying of cellulosic feedstock for bioenergy: A systems approach

    DOE PAGES

    Sokhansanj, Shahab; Webb, Erin

    2016-01-21

    Here, a large portion of herbaceous and woody biomass must be dried following harvest. Natural field drying is possible if the weather cooperates. Mechanical drying is a certain way of reducing the moisture content of biomass. This paper presents an engineering analysis applied to drying of 10 Mg h –1 (exit mass flow) of biomass with an initial moisture content ranging from 25% to 70% (wet mass basis) down to 10% exit moisture content. The requirement for hog fuel to supply heat to the dryer increases from 0.5 dry Mg to 3.8 dry Mg h –1 with the increased initialmore » moisture of biomass. The capital cost for the entire drying system including equipment for biomass size reduction, pollution control, dryer, and biomass combustor sums up to more than 4.7 million dollars. The operating cost (electricity, labor, repair, and maintenance) minus fuel cost for the dryer alone amount to 4.05 Mg –1 of dried biomass. For 50% moisture content biomass, the cost of fuel to heat the drying air is 7.41 dollars/ dry ton of biomass for a total 11.46 dollars per dry ton at 10% moisture content. The fuel cost ranges from a low of 2.21 dollars to a high of 18.54 dollars for a biomass at an initial moisture content of 25% to 75%, respectively. This wide range in fuel cost indicates the extreme sensitivity of the drying cost to initial moisture content of biomass and to ambient air humidity and temperature and highlights the significance of field drying for a cost effective drying operation.« less

  2. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  3. Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Jog, Rahul; Divecha, Jyoti; Madamwar, Datta

    2010-10-01

    Pollution caused by distillery spent wash on one hand has stimulated the need to develop new technologies to treat the waste and on the other, forced us to reevaluate the efficient utilization of its nutritive potential for production of various high value compounds. In this study, anaerobically treated distillery spent wash was used for the production of cellulases by Aspergillus ellipticus under solid-state fermentation using wheat straw as a substrate. The interactions between distillery effluent concentration, initial pH, moisture content and inoculum size were investigated and modeled using response surface methodology (RSM) involving Box-Behnken design (BBD). Under optimized conditions, filter paper activity, beta-glucosidase and endo-beta-1,4-glucanase activities were found to be 13.38, 26.68 and 130.92 U/g of substrate respectively. Characterization of endo-beta-1,4-glucanase and beta-glucosidase was done after partial purification by ammonium sulfate fractionation followed by desalting. The partially purified endo-beta-1,4-glucanase and beta-glucosidase showed maximum activity at 60 degrees C. Saccharification studies performed with different lignocellulosic substrates showed that wheat bran was most susceptible to enzymatic hydrolysis. The study suggests that anaerobically treated distillery spent wash can be used as a viable nutrient source for cellulase production under solid-state fermentation by A. ellipticus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability

    NASA Astrophysics Data System (ADS)

    Neelin, J.; Su, H.

    2004-05-01

    Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.

  5. Data Assimilation using observed streamflow and remotely-sensed soil moisture for improving sub-seasonal-to-seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.

    2017-12-01

    Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.

  6. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    NASA Astrophysics Data System (ADS)

    Ardilouze, Constantin; Batté, L.; Bunzel, F.; Decremer, D.; Déqué, M.; Doblas-Reyes, F. J.; Douville, H.; Fereday, D.; Guemas, V.; MacLachlan, C.; Müller, W.; Prodhomme, C.

    2017-12-01

    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992-2010 period performed by five different global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land-atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

  7. WASTE STABILIZATION FUNDAMENTALS FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Waste stabilization is the process where putrescible waste is biodegraded by microorganisms resulting in an end-product being a relatively inert substrate (e.g., like compost). When exposed to moisture, biologically stabilized waste should not produce substantial quantitie...

  8. Seedling establishment and physiological responses to temporal and spatial soil moisture changes

    Treesearch

    Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos

    2016-01-01

    In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...

  9. The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and initial results

    USDA-ARS?s Scientific Manuscript database

    In situ soil moisture monitoring networks are critical to the development of soil moisture remote sensing missions as well as agricultural and environmental management, weather forecasting and many other endeavors. These in situ networks are composed of a variety of sensors and installation practic...

  10. 40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... If you operate a veneer redryer, you must record the inlet moisture content of the veneer processed... average inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...

  11. 40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operate a veneer redryer, you must record the inlet moisture content of the veneer processed in the... inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...

  12. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...

  13. 40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operate a veneer redryer, you must record the inlet moisture content of the veneer processed in the... inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...

  14. 40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... If you operate a veneer redryer, you must record the inlet moisture content of the veneer processed... average inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...

  15. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...

  16. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour average...

  17. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...

  18. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour average...

  19. 40 CFR 63.2266 - Initial compliance demonstration for a veneer redryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... If you operate a veneer redryer, you must record the inlet moisture content of the veneer processed... average inlet veneer moisture content with your Notification of Compliance Status to show that your veneer redryer processes veneer with an inlet moisture content of less than or equal to 25 percent (by weight...

  20. Generation of a Realistic Soil Moisture Initialization System and its Potential Impact on Short-to-Seasonal Forecasting of Near Surface Variables

    NASA Astrophysics Data System (ADS)

    Boisserie, M.; Cocke, S.; O'Brien, J. J.

    2009-12-01

    Although the amount of water contained in the soil seems insignificant when compared to the total amount of water on a global-scale, soil moisture is widely recognized as a crucial variable for climate studies. It plays a key role in regulating the interaction between the atmosphere and the land-surface by controlling the repartition between the surface latent and sensible heat fluxes. In addition, the persistence of soil moisture anomalies provides one of the most important components of memory for the climate system. Several studies have shown that, during the boreal summer in mid-latitudes, the soil moisture role in controlling the continental precipitation variability may be more important than that of the sea surface temperature (Koster et al. 2000, Hong and Kalnay 2000, Koster et al. 2000, Kumar and Hoerling 1995, Trenberth et al. 1998, Shukla 1998). Although all of the above studies have demonstrated the strong sensitivity of seasonal forecasts to the soil moisture initial conditions, they relied on extreme or idealized soil moisture levels. The question of whether realistic soil moisture initial conditions lead to improved seasonal predictions has not been adequately addressed. Progress in addressing this question has been hampered by the lack of long-term reliable observation-based global soil moisture data sets. Since precipitation strongly affects the soil moisture characteristics at the surface and in depth, an alternative to this issue is to assimilate precipitation. Because precipitation is a diagnostic variable, most of the current reanalyses do not directly assimilate it into their models (M. Bosilovitch, 2008). In this study, an effective technique that directly assimilates the precipitation is used. We examine two experiments. In the first experiment, the model is initialized by directly assimilating a global, 3-hourly, 1.0° precipitation dataset, provided by Sheffield et al. (2006), in a continuous assimilation period of a couple of months. For this, we use a technique named the Precipitation Assimilation Reanalysis (PAR) described in Nunes and Cocke (2004). This technique consists of modifying the vertical profile of humidity as a function of the observed and predicted model rain rates. In the second experiment, the model is initialized without precipitation assimilation. For each experiment, ten sets of seasonal forecasts of the coupled land-atmosphere Florida State University/Center for Ocean and Atmosphere Predictions Studies (FSU/COAPS) model were generated, starting from the boreal summer of each year between 1986 and 1995. For each forecast, ten ensembles are produced by starting the forecast from the 1st and the 15th of each month from April to August. The results of these experiments show, first, that the PAR technique greatly improves the temporal and spatial variability of out model soil moisture estimate. Second, using these realistic soil moisture initial conditions, we found a significant increase in the air temperature seasonal forecasting skills. However, not significant increase has been found in the precipitation seasonal forecasting skills. The results of this study are involved in the GLACE-2 international multi-model experiment.

  1. Data documentation for the bare soil experiment at the University of Arkansas

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Scott, H. D. (Principal Investigator); Hancock, G. D.

    1980-01-01

    The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.

  2. Representing soil moisture - precipitation feedbacks in the Sahel: spatial scale and parameterisation

    NASA Astrophysics Data System (ADS)

    Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.

    2013-12-01

    Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377

  3. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    PubMed

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  4. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture.

    PubMed

    Chen, Xiangbi; Wang, Aihua; Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang; Ge, Tida; Wu, Jinshui; Kuzyakov, Yakov; Su, Yirong

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). (14)C labeled DOM, extracted from the (14)C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to (14)CO2 and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial (14)C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial (14)C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of (14)C incorporated into the microbial biomass (2.4-11.0% of the initial DOM-(14)C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to (14)CO2 within 100 days was 1.2-2.1-fold higher in the paddy soils (41.9-60.0% of the initial DOM-(14)C activity) than in the upland soils (28.7-35.7%), 2) (14)C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) (14)C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm indicates less aromaticity of DOM from the paddy soils than from the upland soils. At any of the moisture levels, much more labile DOM was found in paddy soils (34.3-49.2% of the initial (14)C labeled DOM) compared with that in upland soils (19.4-23.9%). This demonstrates that the lower DOM content in the paddy soil compared with that in the upland soil is probably determined by the less complex components and structure of the DOM. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  7. Soil Moisture and Snow Cover: Active or Passive Elements of Climate?

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2002-01-01

    A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectively of snow is the most important process by which snow cover cart impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger.

  8. Depth and type of substrate influence the ability of Nasonia vitripennis to locate a host

    PubMed Central

    Frederickx, Christine; Dekeirsschieter, Jessica; Verheggen, François J.; Haubruge, Eric

    2014-01-01

    Abstract The foraging behaviour of a parasitoid insect species includes the host’s habitat and subsequent location of the host. Habitats substrate, substrate moisture, and light levels can affect the host searching of different species of parasitoids. However, the depth at which parasitoids concentrate their search effort is another important ecological characteristic and plays an important role in locating a host. Here, we investigated the ability of a pupal parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae), to penetrate and kill fly pupae located at different depths of the substrate. Three different types of substrate were tested: loam soil, compost, and vermiculite substrate. In both loam soil and compost, all of the parasitism activity was restricted to pupae placed directly on the surface. Parasitism activity in vermiculite showed that the average number of pupae parasitized decreased with depth of substrate. These results suggest that fly pupae situated deeper in the substrate are less subjected to parasitism by N. vitripennis . PMID:25373205

  9. Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.

    2011-01-01

    The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.

  10. An initial assessment of SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has a spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of...

  11. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    PubMed

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  12. Soil moisture - precipitation feedbacks in observations and models (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, C.

    2013-12-01

    There is considerable uncertainty about the strength, geographical extent, and even the sign of feedbacks between soil moisture and precipitation. Whilst precipitation trivially increases soil moisture, the impact of soil moisture, via surface fluxes, on convective rainfall is far from straight-forward, and likely depends on space and time scale, soil and synoptic conditions, and the nature of the convection itself. In considering how daytime convection responds to surface fluxes, large-scale models based on convective parameterisations may not necessarily provide reliable depictions, particularly given their long-standing inability to reproduce a realistic diurnal cycle of convection. On the other hand, long-term satellite data provide the potential to establish robust relationships between soil moisture and precipitation across the world, notwithstanding some fundamental weaknesses and uncertainties in the datasets. Here, results from regional and global satellite-based analyses are presented. Globally, using 3-hourly precipitation and daily soil moisture datasets, a methodology has been developed to compare the statistics of antecedent soil moisture in the region of localised afternoon rain events (Taylor et al 2012). Specifically the analysis tests whether there are any significant differences in pre-event soil moisture between rainfall maxima and nearby (50-100km) minima. The results reveal a clear signal across a number of semi-arid regions, most notably North Africa, indicating a preference for afternoon rain over drier soil. Analysis by continent and by climatic zone reveals that this signal (locally a negative feedback) is evident in other continents and climatic zones, but is somewhat weaker. This may be linked to the inherent geographical differences across the world, as detection of a feedback requires water-stressed surfaces coincident with frequent active convective initiations. The differences also reflect the quality and utility of the soil moisture datasets outside of sparsely-vegetated regions. No evidence is found for afternoon convection developing preferentially above locally moister soils. Higher resolution datasets are used to provide a clearer relationship between soil moisture patterns and convective initiation in both the Sahel (Taylor et al 2011) and Europe. The observations indicate a preference for convection to initiate on soil moisture gradients, consistent with many high resolution numerical studies. The ability of models to capture the observed relationships between soil moisture and rainfall in the Sahel has been evaluated. This focuses on models run at different resolutions, and with convective parameterisations switched on or off, and highlights issues associated with the parameterisation of convection. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377

  13. Effect of soil moisture on diurnal convection and precipitation in Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Cioni, Guido; Hohenegger, Cathy

    2017-04-01

    Soil moisture and convective precipitation are generally thought to be strongly coupled, although limitations in the modeling set-up of past studies due to coarse resolutions, and thus poorly resolved convective processes, have prevented a trustful determination of the strength and sign of this coupling. In this work the soil moisture-precipitation feedback is investigated by means of high-resolution simulations where convection is explicitly resolved. To that aim we use the LES (Large Eddy Simulation) version of the ICON model with a grid spacing of 250 m, coupled to the TERRA-ML soil model. We use homogeneous initial soil moisture conditions and focus on the precipitation response to increase/decrease of the initial soil moisture for various atmospheric profiles. The experimental framework proposed by Findell and Eltahir (2003) is revisited by using the same atmospheric soundings as initial condition but allowing a full interaction of the atmosphere with the land-surface over a complete diurnal cycle. In agreement with Findell and Eltahir (2003) the triggering of convection can be favoured over dry soils or over wet soils depending on the initial atmospheric sounding. However, total accumulated precipitation is found to always decrease over dry soils regardless of the employed sounding, thus highlighting a positive soil moisture-precipitation feedback (more rain over wetter soils) for the considered cases. To understand these differences and to infer under which conditions a negative feedback may occur, the total accumulated precipitation is split into its magnitude and duration component. While the latter can exhibit a dry soil advantage, the precipitation magnitude strongly correlates with the surface latent heat flux and thus always exhibits a wet soil advantage. The dependency is so strong that changes in duration cannot offset it. This simple argument shows that, in our idealised setup, a negative feedback is unlikely to be observed. The effects of other factors on the soil moisture-precipitation coupling, namely cloud radiative effects, large-scale forcing, winds, and plants are investigated by conducting further sensitivity experiments. All the experiments support a positive soil moisture-precipitation feedback. References: -Findell, K. L., and E. A. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. part I: Framework development. Journal of Hydrometeorology, 4 (3), 552-569.

  14. Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization

    NASA Astrophysics Data System (ADS)

    Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi

    2018-04-01

    The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.

  15. Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

    NASA Astrophysics Data System (ADS)

    Anson, Scott J.

    Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007. Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study. Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder. This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product distance from the triple line, substrate dissolution depth, triple line ridge (substrate protrusion into the molten solder) formation and reaction product thickness in the solder joint. The general results are (1) an improved understanding of 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu WT% solder wetting reactions, (2) reduced 63Sn/37Pb and SAC reflow peak temperatures, and thereby reduced risk of moisture sensitivity damage to components. The significance of these results are (1) enhanced applied understanding of the complexity of molten metal wetting a substrate and (2) enhanced assembly yield due to minimal aggravation of component moisture sensitivity. The uniqueness of this research is that it utilized a holistic Systems Science approach which provided a combined microscopic (substrate and molten metal reactions) and macroscopic (wetted area) analysis of metal wetting using materials and processes that were directly relevant to electronics manufacturing.

  16. Relative Influence of Initial Surface and Atmospheric Conditions on Seasonal Water and Energy Balances

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.

  17. Impact of soil moisture on regional spectral model simulations for South America

    Treesearch

    Shyh-Chin Chen; John Roads

    2005-01-01

    A regional simulation using the regional spectral model (RSM) with 50-km grid space increment over South America is described. NCEP/NCAR 28 vertical levels T62 spectral resolution reanalyses were used to initialize and force the regional model for a two-year period from March 1997 through March 1999. Initially, the RSM had a severe drying trend in the soil moisture...

  18. Evaluation of selected properties of gluten-free instant gruels processed under various extrusion-cook- ing conditions.

    PubMed

    Kręcisz, Magdalena; Wójtowicz, Agnieszka

    2017-01-01

    For consumers suffering with gluten intolerance, the only way to manage the condition is to avoid foods which are high in gluten. Instant gruels, processed from gluten-free corn and rice by extrusion cooking, could be used as a ready meal both for children and for adults on a gluten-free diet. The aim of the study was to evaluate the effects of various processing conditions on selected characteristics of corn-rice instant gruels. Corn-rice mixtures (75:25 and 50:50) were processed at 12, 14, 16 and 18% of initial moisture content, using an extruder with screw speeds of 80, 100 and 120 rpm. Bulk density, water absorption and solubility, gel formation, color and sensory characteristics were assessed, under various pro- cessing conditions and with various corn:rice ratios. The composition of the raw materials, initial moisture content and screw speed applied during processing affected the characteristics of the corn-rice extruded instant gruels. Increasing the amount of rice in the recipe from 25 to 50% resulted in decreased bulk density, water solubility, volumetric gel formation ability and b* value. Increasing the initial moisture content increased the bulk density, L*, a* and b* intensity, and gel formation index values of extrudates made with a 75:25 corn-rice recipe. Increased rpm increased extrudate solubility and water absorption, if the initial moisture content was higher than 14%. The highest scores for overall acceptability were found for milk suspensions of 75:25 and 50:50 corn-rice instant gruels processed at 12 and 14% of initial moisture content, at 120 rpm. Corn-rice instant gruels can be successfully produced by extrusion-cooking. Variable param- eters, like the initial moisture content of raw materials or screw speed during processing significantly affected the properties of the products. An understanding of the effects of processing conditions on some qualities of extruded instant gruels allows more desirable products to be created. Moreover, the various components can be used for extruded products for consumers on gluten-free diets. Functional additives incorporated in the recipe to improve the nutritional value of the extrudates, which will be investigated in our upcoming research.

  19. Mesoscale temperature and moisture fields from satellite infrared soundings

    NASA Technical Reports Server (NTRS)

    Hillger, D. W.; Vonderhaar, T. H.

    1976-01-01

    The combined use of radiosonde and satellite infrared soundings can provide mesoscale temperature and moisture fields at the time of satellite coverage. Radiance data from the vertical temperature profile radiometer on NOAA polar-orbiting satellites can be used along with a radiosonde sounding as an initial guess in an iterative retrieval algorithm. The mesoscale temperature and moisture fields at local 9 - 10 a.m., which are produced by retrieving temperature profiles at each scan spot for the BTPR (every 70 km), can be used for analysis or as a forecasting tool for subsequent weather events during the day. The advantage of better horizontal resolution of satellite soundings can be coupled with the radiosonde temperature and moisture profile both as a best initial guess profile and as a means of eliminating problems due to the limited vertical resolution of satellite soundings.

  20. The sensitivity of numerically simulated climates to land-surface boundary conditions

    NASA Technical Reports Server (NTRS)

    Mintz, Y.

    1982-01-01

    Eleven sensitivity experiments that were made with general circulation models to see how land-surface boundary conditions can influence the rainfall, temperature, and motion fields of the atmosphere are discussed. In one group of experiments, different soil moistures or albedos are prescribed as time-invariant boundary conditions. In a second group, different soil moistures or different albedos are initially prescribed, and the soil moisture (but not the albedo) is allowed to change with time according to the governing equations for soil moisture. In a third group, the results of constant versus time-dependent soil moistures are compared.

  1. Incorporating an enzymatic model of effects of temperature, moisture, and substrate supply on soil respiration into an ecosystem model for two forests of northeastern USA

    NASA Astrophysics Data System (ADS)

    Sihi, Debjani; Davidson, Eric; Chen, Min; Savage, Kathleen; Richardson, Andrew; Keenan, Trevor; Hollinger, David

    2017-04-01

    Soils represent the largest terrestrial carbon (C) pool, and microbial decomposition of soil organic matter (SOM) to carbon dioxide, also called heterotrophic respiration (Rh), is an important component of the global C cycle. Temperature sensitivity of Rh is often represented with a simple Q10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture, substrate supply, and their interactions with temperature has been proposed to disentangle the confounding factors of apparent temperature sensitivity of SOM decomposition and improve performance of ecosystem models and ESMs. The objective of this work was to incorporate into an ecosystem model a more mechanistic, but still parsimonious, model of environmental factors controlling Rh. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature sensitivity in DAMM by regulating the diffusion of oxygen and soluble carbon substrates to the enzymatic reaction site. However, in its current configuration, DAMM depends on assumptions or inputs from other models regarding soil C inputs. Here we merged the DAMM soil flux model with a parsimonious ecosystem flux model, FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration) by replacing FöBAAR's algorithms for Rh with those of DAMM. Classical root trenching experiments provided data to partition soil CO2 efflux into Rh (trenched plot) and root respiration (untrenched minus trenched plots). We used three years of high-frequency soil flux data from automated soil chambers (trenched and untrenched plots) and landscape-scale ecosystem fluxes from eddy covariance towers from two mid-latitude forests (Harvard Forest, MA and Howland Forest, ME) of northeastern USA to develop and validate the merged model and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-FöBAAR model better captured the seasonal dynamics of Rh compared to the FöBAAR-only model for the Harvard Forest, as indicated by lower cost functions (model-data mismatch). However, DAMM-FöBAAR showed less improvement over FöBAAR-only for the boreal transition forest at Howland. The frequency of droughts is lower at Howland, due to a shallow water table, resulting in only brief water limitation affecting Rh in some years. At both sites, the declining trend of soil respiration during drought episodes was captured by the DAMM-FöBAAR model, but not the FöBAAR-only model, which simulates Rh using only a Q10 type function. Greater confidence in model prediction resulting from the inclusion of mechanistic simulation of moisture limitation on substrate availability, an emergent property of DAMM, depends on site conditions, climate, and the temporal scale of interest. While the DAMM functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be included in an ecosystem model and reduce the cost function. Moreover, the mechanistic structure of the soil moisture effects using DAMM functions should be more generalizable than other commonly used empirical functions.

  2. Flexible fluoropolymer filled protective coatings

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Mirtich, Michael J.; Sovey, James S.; Nahra, Henry; Rutledge, Sharon K.

    1991-01-01

    Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications.

  3. Cattle feedlot soil moisture and manure content: I. Impacts on greenhouse gases, odor compounds, nitrogen losses, and dust.

    PubMed

    Miller, Daniel N; Berry, Elaine D

    2005-01-01

    Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.

  4. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  5. 40 CFR Table 6 to Subpart Dddd of... - Initial Compliance Demonstrations for Work Practice Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with an inlet dryer... dryer” AND you have a record of the inlet moisture content and inlet dryer temperature (as required in... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...

  6. 40 CFR Table 6 to Subpart Dddd of... - Initial Compliance Demonstrations for Work Practice Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... moisture content less than or equal to 30 percent (by weight, dry basis) AND operate with an inlet dryer... dryer” AND you have a record of the inlet moisture content and inlet dryer temperature (as required in... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...

  7. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  8. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chunmei; Leung, Lai R.; Gochis, David

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less

  9. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans.

    PubMed

    Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.

  10. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans

    PubMed Central

    Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257

  11. Graphene-based stretchable and transparent moisture barrier

    NASA Astrophysics Data System (ADS)

    Won, Sejeong; Van Lam, Do; Lee, Jin Young; Jung, Hyun-June; Hur, Min; Kim, Kwang-Seop; Lee, Hak-Joo; Kim, Jae-Hyun

    2018-03-01

    We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.

  12. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    DOT National Transportation Integrated Search

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  13. Monitoring moisture content, temperature, and humidity in whole-tree pine chip piles

    Treesearch

    John Klepac; Dana Mitchell; Jason Thompson

    2015-01-01

    Two whole-tree chip piles were monitored for moisture content, temperature, and relative humidity from October 8th, 2010 to March 16th, 2011 at a location in south Alabama. Initial moisture content samples were collected immediately after chips were delivered to the study location on October 8th for Pile 1 and October 22nd for Pile 2. During pile construction, Lascar...

  14. Digestibility by lambs offered alfalfa hay treated with a propionic acid hay preservative and baled at different concentrations of moisture

    USDA-ARS?s Scientific Manuscript database

    Eighteen crossbred wether lambs (76.1 ± 8.18 lb initial BW) were used for a 2 period digestion study to evaluate the effect of hay preservative concentration (0, 0.56, or 0.98% buffered propionic acid) and hay moisture concentration at baling (19.6, 23.8, or 27.4% moisture) on digestibility of alfal...

  15. 40 CFR Table 6 to Subpart Dddd of... - Initial Compliance Demonstrations for Work Practice Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...

  16. 40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...

  17. 40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...

  18. 40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...

  19. 40 CFR Table 6 to Subpart Dddd of... - Initial Compliance Demonstrations for Work Practice Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...

  20. 40 CFR Table 6 to Subpart Dddd of... - Initial Compliance Demonstrations for Work Practice Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...

  1. Impact of vegetation feedback at subseasonal & seasonal timescales on precipitation over North America

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Wang, G.

    2006-05-01

    Soil moisture-vegetation-precipitation feedbacks tend to enhance soil moisture memory in some areas of the globe, which contributes to the subseasonal and seasonal climate prediction skill. In this study, the impact of vegetation on precipitation over North America is investigated using a coupled land-atmosphere model CAM3- CLM3. The coupled model has been modified to include a predictive vegetation phenology scheme and validated against the MODIS data. Vegetation phenology is modeled by updating the leaf area index (LAI) daily in response to cumulative and concurrent hydrometeorological conditions. First, driven with the climatological SST, a large group of 5-member ensembles of simulations from the late spring and summer to the end of year are generated with the different initial conditions of soil moisture. The impact of initial soil moisture anomalies on subsequent precipitation is examined with the predictive vegetation phenology scheme disabled/enabled ("SM"/"SM_Veg" ensembles). The simulated climate differences between "SM" and "SM_Veg" ensembles represent the role of vegetation in soil moisture-vegetation- precipitation feedback. Experiments in this study focus on how the response of precipitation to initial soil moisture anomalies depends on their characteristics, including the timing, magnitude, spatial coverage and vertical depth, and further how it is modified by the interactive vegetation. Our results, for example, suggest that the impact of late spring soil moisture anomalies is not evident in subsequent precipitation until early summer when local convective precipitation dominates. With the summer wet soil moisture anomalies, vegetation tends to enhance the positive feedback between soil moisture and precipitation, while vegetation tends to suppress such positive feedback with the late spring anomalies. Second, the impact of vegetation feedback is investigated by driving the model with the inter-annually varying monthly SST (1983-1994). With the predictive vegetation phenology disabled/enabled ("SM"/"SM_Veg" ensembles), the simulated climates are compared with the observation. This will present the role of an interactive or predictive vegetation phenology scheme in subseasonal and seasonal climate prediction. Specifically, the extreme climate events such as drought in 1988 and flood in 1993 over the Midwestern United States will be the focus of results analyses.

  2. Influence of Soil Heterogeneity on Mesoscale Land Surface Fluxes During Washita '92

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Jin, Hao

    1998-01-01

    The influence of soil heterogeneity on the partitioning of mesoscale land surface energy fluxes at diurnal time scales is investigated over a 10(exp 6) sq km domain centered on the Little Washita Basin, Oklahoma, for the period June 10 - 18, 1992. The sensitivity study is carried out using MM5/PLACE, the Penn State/NCAR MM5 model enhanced with the Parameterization for Land-Atmosphere-Cloud Exchange or PLACE. PLACE is a one-dimensional land surface model possessing detailed plant and soil water physics algorithms, multiple soil layers, and the capacity to model subgrid heterogeneity. A series of 12-hour simulations were conducted with identical atmospheric initialization and land surface characterization but with different initial soil moisture and texture. A comparison then was made of the simulated land surface energy flux fields, the partitioning of net radiation into latent and sensible heat, and the soil moisture fields. Results indicate that heterogeneity in both soil moisture and texture affects the spatial distribution and partitioning of mesoscale energy balance. Spatial averaging results in an overprediction of latent heat flux, and an underestimation of sensible heat flux. In addition to the primary focus on the partitioning of the land surface energy, the modeling effort provided an opportunity to examine the issue of initializing the soil moisture fields for coupled three-dimensional models. For the present case, the initial soil moisture and temperature were determined from off-line modeling using PLACE at each grid box, driven with a combination of observed and assimilated data fields.

  3. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    PubMed

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    PubMed

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effects of selected process parameters in extrusion of yam flour (Dioscorea rotundata) on physicochemical properties of the extrudates.

    PubMed

    Sebio, L; Chang, Y K

    2000-04-01

    Raw yam (Dioscorea rotundata) flour was cooked and extruded in a Brabender single-screw laboratory scale extruder. Response surface methodology using an incomplete factorial design was applied with various combinations of barrel temperature [100, 125, 150 degrees C], feed moisture content [18, 22, 26%] and screw speed [100, 150, 200 rpm]. Initial viscosity at 30 degrees C, water solubility index, expansion and hardness were determined. The highest values of initial viscosity were at the highest barrel temperatures and the highest moisture contents. At high feed moisture content and high barrel temperatures the yam extrudate flour showed the greatest values of water solubility index. The physical properties of the extruded product showed that at high temperature the lower the moisture content the greater the expansion index. Hardness was influenced directly by moisture content and inversely by extrusion temperature. The extrusion of yam flour led to the production of snacks and pre-gelatinized flours of diverse properties. Also extruded yam flour can be successfully used in the preparation of 'futu' (pre-cooked compact dough), a yam-based food, popular in Western Africa.

  6. Soil Moisture, Coastline Curvature, and Sea Breeze Initiated Precipitation Over Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1999-01-01

    Land surface-atmosphere interaction plays a key role in the development of summertime convection and precipitation over the Florida peninsula. Land-ocean temperature contrasts induce sea-breeze circulations along both coasts. Clouds develop along sea-breeze fronts, and significant precipitation can occur during the summer months. However, other factors such as soil moisture distribution and coastline curvature may modulate the timing, location, and intensity of sea breeze initiated precipitation. Here, we investigate the role of soil moisture and coastline curvature on Florida precipitation using the 3-D Goddard Cumulus Ensemble (GCE) cloud model coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data from the Convection and Precipitation Electrification Experiment (CaPE) collected on 27 July 1991. Our numerical simulations suggest that a realistic distribution of soil moisture influences the location and intensity of precipitation but not the timing of precipitation. In contrast, coastline curvature affects the timing and location of precipitation but has little influence on peak rainfall rates. However, both factors (soil moisture and coastline curvature) are required to fully account for observed rainfall amounts.

  7. The South Fork Experimental Watershed: Soil moisture and precipitation network for satellite validation

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Prueger, J. H.; McKee, L.; Bindlish, R.

    2013-12-01

    A recently deployed long term network for the study of soil moisture and precipitation was deployed in north central iowa, in cooperation between USDA and NASA. This site will be a joint calibration/validation network for the Soil Moisture Active Passive (SMAP) and Global Precipitation Measurement (GPM) missions. At total of 20 dual gauge precipitation gages were established across a watershed landscape with an area of approximately 600 km2. In addition, four soil moisture probes were installed in profile at 5, 10, 20, and 50 cm. The network was installed in April of 2013, at the initiation of the Iowa Flood Study (IFloodS) which was a six week intensive ground based radar observation period, conducted in coordination with NASA and the University of Iowa. This site is a member watershed of the Group on Earth Observations Joint Experiments on Crop Assessment and Monitoring (GEO-JECAM) program. A variety of quality control procedures are examined and spatial and temporal stability aspects of the network are examined. Initial comparisons of the watershed to soil moisture estimates from satellites are also conducted.

  8. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae.

    PubMed

    Nagel, Frank-Jan; Van As, Henk; Tramper, Johannes; Rinzema, Arjen

    2002-09-20

    Gradients inside substrate particles cannot be prevented in solid-state fermentation. These gradients can have a strong effect on the physiology of the microorganisms but have hitherto received little attention in experimental studies. We report gradients in moisture and glucose content during cultivation of Aspergillus oryzae on membrane-covered wheat-dough slices that were calculated from (1)H-NMR images. We found that moisture gradients in the solid substrate remain small when evaporation is minimized. This is corroborated by predictions of a diffusion model. In contrast, strong glucose gradients developed. Glucose concentrations just below the fungal mat remained low due to high glucose uptake rates, but deeper in the matrix glucose accumulated to very high levels. Integration of the glucose profile gave an average concentration close to the measured average content. On the basis of published data, we expect that the glucose levels in the matrix cause a strong decrease in water activity. The results demonstrate that NMR can play an important role in quantitative analysis of water and glucose gradients at the particle level during solid-state fermentation, which is needed to improve our understanding of the response of fungi to this nonconventional fermentation environment. Copyright 2002 Wiley Periodicals, Inc.

  9. Low methane flux from a constructed boreal wetland

    NASA Astrophysics Data System (ADS)

    Clark, M. G.; Humphreys, E.; Carey, S. K.

    2016-12-01

    The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.

  10. Evidence for Tropopause Layer Moistening by Convection During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Fridlind, A.; Jensen, E.; Miloshevich, L.; Heymsfield, G.; McGill, M.

    2003-01-01

    Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.

  11. Developing a Media Moisture Threshold for Nurseries to Reduce Tree Stress and Ambrosia Beetle Attacks.

    PubMed

    Frank, Steven D; Ranger, Christopher M

    2016-08-01

    Exotic ambrosia beetles are among the most damaging pests of trees grown in nurseries. The primary pests Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford use ethanol to locate vulnerable trees. Research, primarily with X. germanus, has shown that flood-stressed trees emit ethanol and are preferentially attacked by ambrosia beetles. Our goal was to develop a media (also called potting soil) moisture threshold as an integrated pest management (IPM) tactic and assess grower practices that lead to ambrosia beetle attacks. Flooded Cornus florida L., Cornus kousa Burg., and Magnolia grandiflora L. trees incurred more attacks than unflooded trees that were not attacked. To determine optimal media moisture levels, we grew flood-tolerant Acer rubrum L. and flood-intolerant C. florida in containers with 10, 30, 50, 70, or 90% media moisture. No flooded or unflooded A. rubrum were attacked. However, C. florida grown in 70 or 90% moisture were attacked and died, whereas trees at 30 and 50% moisture were not attacked. Thus, we suggest an upper moisture threshold of 50% when growing C. florida and other flood-intolerant trees. However, during peak ambrosia beetle flight activity in spring 2013 and 2014, we found that media moisture levels in commercial nurseries were often between 50 and 90%. Implementing a media moisture threshold, as a new IPM tool, could reduce ambrosia beetle attacks and the need for insecticide applications, which is currently the only available management tactic. Future research should focus on how changes in substrates, irrigation, and other practices could help growers meet this threshold. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Biocrust re-establishment trials demonstrate beneficial prospects for mine site rehabilitation in semi-arid landscapes of Australia

    NASA Astrophysics Data System (ADS)

    Williams, Wendy; Williams, Stephen; Galea, Vic

    2015-04-01

    Biocrusts live at the interface between the atmosphere and the soil; powered by photosynthesis they strongly influence a range of soil micro-processes. At Jacinth-Ambrosia mine site, on the edge of the Nullarbor Plain (South Australia), biocrusts are a significant component of the semi-arid soil ecosystem and comprised mainly of cyanobacteria, lichens and mosses. Cyanobacteria directly contribute to soil surface stabilisation, regulation of soil moisture and, provide a biogeochemical pathway for carbon and nitrogen fertilisation. Following disturbance, rehabilitation processes are underpinned by early soil stabilisation that can be facilitated by physical crusts or bio-active crusts in which cyanobacteria are ideal soil surface colonisers. Biocrust growth trials were carried out in autumn and winter (2012) to test the re-establishment phases of highly disturbed topsoil associated with mine site operations. The substrate material originated from shallow calcareous sandy loam typically found in chenopod shrublands. The biocrust-rich substrates (1-5 cm) were crushed (biocrush) or fine sieved followed by an application of concentrated cyanobacterial inoculum. Each treatment comprised four replicated plots that were natural or moisture assisted (using subsurface mats). After initial saturation equal amounts of water were applied for 30 days at which time half of all of the plots were enclosed with plastic to increase humidity. From 30-60 days water was added as required and from 60-180 days all treatments were uncovered and subjected periodic wet-dry cycles. At 180 days diverse biocrusts had re-established across the majority of the treatments, incorporating a mix of cyanobacterial functional groups that were adapted to surface and subsurface habitats. There were no clear trends in diversity and abundance. Overall, the moisture assisted biocrush and sieved biocrush appeared to have 80% cyanobacterial diversity in common. Differences were found between the surface and subsurface cyanobacterial genera in the moisture assisted trials across both treatments. The biocrush and sieved biocrush treatments had all increased in cover between 14-30 days. During 30-60 days the enclosed inoculated biocrush doubled its cover and the sieved inoculated biocrush increased by ~110%. All of the open treatments decreased in cover between 30-60 days. Cyanobacteria biomass (chlorophyll a) trended similarly across all regrowth trial plots for the first 60 days, with a reduction in biomass after the first 30 days followed by increases at 60 days. There was a reduction in biomass (compared to 60 days) across most of the growth plots following the dry phase (120-180 days). Mean photosynthetic yield (YII) at the conclusion of trials were significantly different for the biocrush plots compared to the moisture assisted biocrush. This contrasted to the mean YII for the sieved biocrush that were generally lower. Across all treatments pH was within the normal site range while EC values were marginally lower. At the conclusion of the trials the majority of the treatments had increased in total C and N. The compressive strength of the regrown biocrusts differed significantly between all the open and sieved biocrush treatments compared to their enclosed counterparts. The open sieved biocrush had the lowest strength of all treatments. Biocrust re-establishment during mining rehabilitation relies on the role of cyanobacteria as a means of early soil stabilisation. Provided there is adequate cyanobacterial inoculum in the topsoil their growth and the subsequent crust formation should take place largely unassisted. Growth trials however, showed on a small scale, that accelerated biocrust recovery could be achieved with inoculation and additional moisture.

  13. Substrate quality and nutrient availability influence CO2 production from tropical peat decomposition

    NASA Astrophysics Data System (ADS)

    Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.

    2015-12-01

    In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.

  14. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation.

    PubMed

    Rodríguez de Olmos, A; Bru, E; Garro, M S

    2015-03-02

    The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. WRF Simulation over the Eastern Africa by use of Land Surface Initialization

    NASA Astrophysics Data System (ADS)

    Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.

    2014-12-01

    The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. These MET tools enable KMS to monitor model forecast accuracy in near real time. This study highlights verification results of WRF runs over East Africa using the LIS land surface initialization.

  16. Germination and Initial Growth of Eastern Cottonwood as Influenced by Moisture Stress, Temperature, and Storage

    Treesearch

    R. E. Farmer

    1967-01-01

    Germination energy of cottonwood seed decreased gradually as moisture stress increased from 0.0 to 10.0 atm; 15.0 atm inhibited germination except at 32 and 38 C. Temperature extremes of 15 and 38 C drastically reduced germination energy, and the reductive effect of 38 C was particularly marked after storage. Only 15-atm moisture stress or 15 C greatly reduced total...

  17. The Effect of Drycleaning Moisture on Fused Cloth Systems

    DTIC Science & Technology

    1989-03-01

    TECHNICAL REPORT NATICK/TR-89/024 et, THE EFFECT OF DRYCLEANING MOISTURE ON FUSED CLOTH SYSTEMS BY ELIZABETH J. MORELAND International...MOISTUP.E ON FUSED CLOTH SYSTEMS 12. PERSONAL AUTMOR(S) Elizabeth J. MorelanJ 13«. TYPE OF REPORT Final Technical Report 13b. TIME COVERED...This project was initiated to investigate the effect of moisture in drycleaning systems on preselected fused cloth structures. Adverse surface

  18. A Parameterized Inversion Model for Soil Moisture and Biomass from Polarimetric Backscattering Coefficients

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak

    2012-01-01

    A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha

  19. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    USDA-ARS?s Scientific Manuscript database

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  20. Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film

    NASA Astrophysics Data System (ADS)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika

    2016-02-01

    The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.

  1. Enhanced solid-state citric acid bio-production using apple pomace waste through surface response methodology.

    PubMed

    Dhillon, G S; Brar, S K; Verma, M; Tyagi, R D

    2011-04-01

      To evaluate the potential of apple pomace (AP) supplemented with rice husk for hyper citric acid production through solid-state fermentation by Aspergillus niger NRRL-567. Optimization of two key parameters, such as moisture content and inducer (ethanol and methanol) concentration was carried out by response surface methodology.   In this study, the effect of two crucial process parameters for solid-state citric acid fermentation by A. niger using AP waste supplemented with rice husk were thoroughly investigated in Erlenmeyer flasks through response surface methodology. Moisture and methanol had significant positive effect on citric acid production by A. niger grown on AP (P < 0·05). Higher values of citric acid on AP by A. niger (342·41gkg(-1) and 248·42gkg(-1) dry substrate) were obtained with 75% (v/w) moisture along with two inducers [3% (v/w) methanol and 3% (v/w) ethanol] with fermentation efficiency of 93·90% and 66·42%, respectively depending upon the total carbon utilized after 144h of incubation period. With the same optimized parameters, conventional tray fermentation was conducted. The citric acid concentration of 187·96gkg(-1) dry substrate with 3% (v/w) ethanol and 303·34gkg(-1) dry substrate with 3% (v/w) methanol were achieved representing fermentation efficiency of 50·80% and 82·89% in tray fermentation depending upon carbon utilization after 120h of incubation period.   Apple pomace proved to be the promising substrate for the hyper production of citric acid through solid-state tray fermentation, which is an economical technique and does not require any sophisticated instrumentation.   The study established that the utilization of agro-industrial wastes have positive repercussions on the economy and will help to meet the increasing demands of citric acid and moreover will help to alleviate the environmental problems resulting from the disposal of agro-industrial wastes. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  3. Silvering substrates after CO2 snow cleaning

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  4. Dynamic and static initialization of a mesoscale model using VAS satellite data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Beauchamp, James G.

    1985-01-01

    Various combinations of temperature and moisture data from the VISSR Atmospheric Sounder (VAS), conventional radiosonde data, and National Meteorological Center (NMC) global analysis, were used in a successive-correction type of objective-analysis procedure to produce analyses for 1200 GMT. The NMC global analyses served as the first-guess field for all of the objective analysis procedures. The first-guess field was enhanced by radiosonde data alone, VAS data alone, both radiosonde and VAS data, or by neither data source. In addition, two objective analyses were used in a dynamic initialization: one included only radiosonde data and the other used both radiosonde and VAS data. The dependence of 12 hour forecast skill on data type and the methods by which the data were used in the analysis/initialization were then investigated. This was done by comparison of forecast and observed fields, of sea-level pressure, temperature, wind, moisture, and accumulated precipitation. The use of VAS data in the initial conditions had a slight positive impact upon forecast temperature and moisture but a negative impact upon forecast wind. This was true for both the static and dynamic initialization experiments. Precipitation forecasts from all of the model simulations were nearly the same.

  5. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    PubMed

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  6. Radiation pasteurised oil palm empty fruit bunch fermented with Pleurotus sajor-caju as feed supplement to ruminants

    NASA Astrophysics Data System (ADS)

    Awang, Mat Rasol; Mutaat, Hassan Hamdani; Mahmud, Mohd. Shukri; Wan Husain, Wan Badrin; Osman, Tajuddin; Bakar, Khomsaton Abu; Kassim, Asmahwati; Wan Mahmud, Zal U'yun; Manaf, Ishak; Kume, Tamikazu; Hashimoto, Shoji

    1993-10-01

    In solid state fermentation, Pleurotus sajor-caju has been found to be able to degrade at least 30% oil palm empty Fruit Bunch (EFB) fibre leaving 70 % useful materials. Conditions under which fermentation carried out were investigated. It was found that, in the temperature range between 25- 28 °C, relative ph between 6-8, moisture between 60-70 % and medium composition of CaCO 3: rice bran 2 %: 5 % were the optimum conditions. The results showed in fermented products that, there were substantial reduction in cellulosic component such as Crude Fiber (CF, 18 %); Acid Detergent Fibre (ADF, 45 %), Neutral Detergent Fibre (NDF, 61 %) and Acid Detergent Lignin (ADL, 14 %). However, Crude Protein (CP, 10%) increased resulted from single cell protein enrichment of mycelial microbial mass. The mass reductions of substrate in fermentation process corresponds to the CO 2 released during fermentation. Hence, attributable to the decreased in content of CF, ADF, NDF, and ADL. The digestibility study has also been carried out to determine the useful level of this product to ruminant. Aflatoxin content was detected low in both the initial substrates and products. Based on nutritional value and low content of aflatoxin, the product is useful as a source of roughage to ruminant.

  7. Assessing impacts of PBL and surface layer schemes in simulating the surface–atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO

    DOE PAGES

    Qian, Yun; Yan, Huiping; Berg, Larry K.; ...

    2016-10-28

    Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments,more » and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow convection schemes in reproducing PBL processes, the initiation of convection and intra-seasonal variability of precipitation.« less

  8. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  9. Effect of stopper processing conditions on moisture content and ramifications for lyophilized products: comparison of "low" and "high" moisture uptake stoppers.

    PubMed

    Donovan, P D; Corvari, V; Burton, M D; Rajagopalan, N

    2007-01-01

    The purpose of this study was to evaluate the effect of processing and storage on the moisture content of two commercially available, 13-mm lyophilization stoppers designated as low moisture (LM) and high moisture (HM) uptake stoppers. The stopper moisture studies included the effect of steam sterilization time, drying time and temperature, equilibrium moisture content, lyophilization and moisture transfer from stopper to a model-lactose lyophilized cake. Results indicated that both stoppers absorbed significant amounts of moisture during sterilization and that the HM stopper absorbed significantly more water than the LM stopper. LM and HM stoppers required approximately 2 and 8 h drying at 105 degrees C, respectively, to achieve final moisture content of not more than 0.5 mg/stopper. Following drying, stopper moisture levels equilibrated rapidly to ambient storage conditions. The apparent equilibrium moisture level was approximately 7 times higher in the HM versus LM stopper. Freeze-drying had minimal effect on the moisture content of dried stoppers. Finally, moisture transfer from the stopper to the lyophilized product is dependent on the initial stopper water content and storage temperature. To better quantify the ramifications of stopper moisture, projections of moisture uptake over the shelf life of a drug product were calculated based on the product-contact surface area of stoppers. Attention to stopper storage conditions prior to use, in addition to processing steps, are necessary to minimize stability issues especially in low-fill, mass lyophilized products.

  10. Modulation of Soil Initial State on WRF Model Performance Over China

    NASA Astrophysics Data System (ADS)

    Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun

    2017-11-01

    The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.

  11. Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective

    NASA Astrophysics Data System (ADS)

    Cao, Zuohao; Zhang, Da-Lin

    2005-11-01

    In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

  12. Characterizing meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey

    USGS Publications Warehouse

    Ashland, Francis; Fiore, Alex R.; Reilly, Pamela A.; De Graff, Jerome V.; Shakoor, Abdul

    2017-01-01

    Meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey remain undocumented despite a history of damaging slope movement extending back to at least 1903. This study applies an empirical approach to quantify the rainfall conditions leading to shallow landsliding based on analysis of overlapping historical precipitation data and records of landslide occurrence, and uses continuous monitoring to quantify antecedent soil moisture and hydrologic response to rainfall events at two failure-prone hillslopes. Analysis of historical rainfall data reveals that both extended duration and cumulative rainfall amounts are critical characteristics of many landslide-inducing storms, and is consistent with current monitoring results that show notable increases in shallow soil moisture and pore-water pressure in continuous rainfall periods. Monitoring results show that shallow groundwater levels and soil moisture increase from annual lows in late summer-early fall to annual highs in late winter-early spring, and historical data indicate that shallow landslides occur most commonly from tropical cyclones in late summer through fall and nor’easters in spring. Based on this seasonality, we derived two provisional rainfall thresholds using a limited dataset of documented landslides and rainfall conditions for each season and storm type. A lower threshold for landslide initiation in spring corresponds with high antecedent moisture conditions, and higher rainfall amounts are required to induce shallow landslides during the drier soil moisture conditions in late summer-early fall.

  13. Microwave drying of wood strands

    Treesearch

    Guanben Du; Siqun Wang; Zhiyong Cai

    2005-01-01

    Characteristics of microwave drying of wood strands with different initial moisture contents and geometries were investigated using a commercial small microwave oven under different power inputs. Temperature and moisture changes along with the drying efficiency were examined at different drying scenarios. Extractives were analyzed using gas chromatography=mass...

  14. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  15. Two Topics in Seasonal Streamflow Forecasting: Soil Moisture Initialization Error and Precipitation Downscaling

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf

    2012-01-01

    Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.

  16. Moisture variation associated with water input and evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Gao, Ding; Chen, Tong-Bin; Liu, Hong-Tao; Zheng, Guo-Di; Yang, Qi-Wei

    2012-08-01

    The variation of moisture during sewage sludge bio-drying was investigated. In situ measurements were conducted to monitor the bulk moisture and water vapor, while the moisture content, water generation, water evaporation and aeration water input of the bio-drying bulk were calculated based on the water mass balance. The moisture in the sewage sludge bio-drying material decreased from 66% to 54% in response to control technology for bio-drying. During the temperature increasing and thermophilic phases of sewage sludge bio-drying, the moisture content, water generation and water evaporation of the bulk initially increased and then decreased. The peak water generation and evaporation occurred during the thermophilic phase. During the bio-drying, water evaporation was much greater than water generation, and aeration facilitated the water evaporation. Copyright © 2012. Published by Elsevier Ltd.

  17. A Moisture Function of Soil Heterotrophic Respiration Derived from Pore-scale Mechanisms

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Todd-Brown, K. E.; Bond-Lamberty, B. P.; Bailey, V.; Liu, C.

    2017-12-01

    Soil heterotrophic respiration (HR) is an important process controlling carbon (C) flux, but its response to changes in soil water content (θ) is poorly understood. Earth system models (ESMs) use empirical moisture functions developed from specific sites to describe the HR-θ relationship in soils, introducing significant uncertainty. Generalized models derived from mechanisms that control substrate availability and microbial respiration are thus urgently needed. Here we derive, present, and test a novel moisture function fp developed from pore-scale mechanisms. This fp encapsulates primary physicochemical and biological processes controlling HR response to moisture variation in soils. We tested fp against a wide range of published data for different soil types, and found that fp reliably predicted diverse HR- relationships. The mathematical relationship between the parameters in fp and macroscopic soil properties such as porosity and organic C content was also established, enabling to estimate fp using soil properties. Compared with empirical moisture functions used in ESMs, this derived fp could reduce uncertainty in predicting the response of soil organic C stock to climate changes. In addition, this work is one of the first studies to upscale a mechanistic soil HR model based on pore-scale processes, thus linking the pore-scale mechanisms with macroscale observations.

  18. Effects of Afforestation and Natural Revegetation on Soil Moisture Dynamics in Paired Watersheds in the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Guo, L.; Lin, H.; Wang, Y.; Chu, G.

    2017-12-01

    In this study, a paired of small watersheds, which are artificial forestland and natural grassland, respectively, were selected. The two watersheds have been set up since 1954 and the time of revegetation is more than 60 years. Their differences in event and seasonal dynamics of soil moisture were investigated and the effects of vegetation and landform were analyzed. Results showed that consecutive small events higher than 22 mm and single events higher than 16.6 mm could recharge the soil moisture of the two watersheds, but no rainfall event was observed to recharge the soil moisture of 100 cm within 2 weeks after rainfall initiation. Moreover, the two contrasting watersheds showed no difference in rainfall threshold for effective soil moisture replenishment and also had similar patterns of soil water increment with the increase of initial soil water content and rainfall intensity. The changing vegetation cover and coverage at different landforms (uphill slope land and downhill gully) showed the most significant impact on event and seasonal dynamics of soil moisture. The strong interception, evaporation and transpiration of tree canopy and understory vegetation in the gully of the forestland showed the most negative impacts on soil moisture replenishment. Moreover, dense surface grass biomass (living and dead) in the grassland also showed negative impacts on effective soil moisture recharge. Landform itself showed no significant impact on event soil moisture dynamics through changing the initial soil water content and soil texture, while site differences in slope gradient and soil temperature could affect the seasonal soil water content. During the growing season of May-October, the forestland showed 1.3% higher soil water content than that of the grassland in the landform of uphill slope land; while in the landform of downhill gully, the grassland showed 4.3% higher soil water content than that of the forestland. Many studies have predicted that there will be more extreme precipitation in the global and local dry regions in the 21st century, and thus the threshold and mechanisms of effective rainfall replenishment should be strengthened. Keywords: Soil water monitoring; paired watersheds; afforestation; natural recovery; landform Corresponding author: Prof. Dr. Zhao Jin, jinzhao@ieecas.cn

  19. Quantifying The Effects of Initial Soil Moisture On Seasonal Streamflow Forecasts In The Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Wood, A.; Lettenmaier, D. P.

    The role of soil moisture storage in the hydrologic cycle is well understood at a funda- mental level. Antecedent conditions are known to have potentially significant effects on streamflow forecasts, especially for short (e.g., flood) lead times. For this reason, the U.S. Geological Survey defines its "water year" as extending from October through September, a time period selected because over most of the U.S., soil moisture is at a seasonal low at summer's end. The effects of carryover soil moisture storage in the Columbia River basin have usually been considered to be minimal when forecasts are made on a water year or seasonal basis. Our study demonstrates that the role of carry- over soil moisture storage can be important. Absent direct observations of ET and soil moisture that would permit a closing of the water balance from observations, we use a physically based hydrologic model to estimate the soil moisture state at the begin- ning of the forecast period (Oct 1). We then evaluate, in a self-consistent manner, the subsequent effects of interannual variations in fall soil moisture on streamflow during the subsequent spring and summer snowmelt season (April-September). We analyze the period from 1950-1999, and the subsequent effects to the seasonal water balance at The Dalles, OR for representative high, medium, and low water years. The effects of initial soil state in fall are remarkably persistent, with significant effects occurring in the summer of the following water year. For a representative low flow year (1992), the simulated variability of the soil moisture state in September produces a range of summer streamflows (April-September mean) equivalent to about 16 percent of the mean summer flows for all initial soil conditions, with analogous, but smaller, relative changes for medium and high flow years. Winter flows are also affected, and the rel- ative intensity of effects in winter and summer is variable, an effect that is probably attributable to the amount of soil recharge that occurs (or does not occur) in early fall in a particular water year. Issues relating to hydrologic model calibration and some applications to experimental long-lead forecasts in the Columbia basin are also dis- cussed.

  20. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying cause is related to a hydrogen embrittlement reaction: Al alloy + 3 H2O = Al(OH)3 + 3H(+) + 3e(-). This mechanism is derived from an analogous moisture-induced hydrogen embrittlement mechanism originally shown for Ni3Al and FeAl intermetallics. Consequently, a cathodic hydrogen charging technique was used to demonstrate that electrolytic de-scaling occurs for these otherwise adherent alumina scales formed on Y-doped Rene'N5, in support of hydrogen effects. Finally, some TBC observations are discussed in light of all of the above. Plasma sprayed 8YSZ coatings, produced on PWA1484 without a bond coat, were found to survive more than 1000 1-hr cycles at 1100 C when desulfurized to below 0.1 ppmw. At higher sulfur (1.2 ppmw) levels, moisture sensitivity and delayed TBC failure, referred to as Desk Top Spallation, occurred at just 200 hr. Despite a large degree of scatter, a factor of 5 in life improvement is indicated for desulfurized samples in cyclic furnace tests, confirming the beneficial effect of low sulfur alloys on model TBC systems. (DTS and moisture effects are also observed on commercially applied PVD 7YSZ coatings on Rene'N5+Y with Pt-aluminide bond coats). These types of catastrophic failure were subverted on the model system by segmenting the substrate into a network of 0.010 high ribs, spaced in. apart, prior to plasma spraying. No failures occurred after 1000 cycles at 1150 C or after 2000 cycles at 1100 C, even after water immersion. The benefit is described in terms of elasticity models and a critical buckling stress.

  1. Assimilation of the ESA CCI Soil Moisture ACTIVE and PASSIVE Product into the SURFEX Land Surface Model using the Ensemble Transform Kalman Filter

    NASA Astrophysics Data System (ADS)

    Blyverket, J.; Hamer, P.; Bertino, L.; Lahoz, W. A.

    2017-12-01

    The European Space Agency Climate Change Initiative for soil moisture (ESA CCI SM) was initiated in 2012 for a period of six years, the objective for this period was to produce the most complete and consistent global soil moisture data record based on both active and passive sensors. The ESA CCI SM products consist of three surface soil moisture datasets: The ACTIVE product and the PASSIVE product were created by fusing scatterometer and radiometer soil moisture data, respectively. The COMBINED product is a blended product based on the former two datasets. In this study we assimilate globally both the ACTIVE and PASSIVE product at a 25 km spatial resolution. The different satellite platforms have different overpass times, an observation is mapped to the hours 00.00, 06.00, 12.00 or 18.00 if it falls within a 3 hour window centred at these times. We use the SURFEX land surface model with the ISBA diffusion scheme for the soil hydrology. For the assimilation routine we apply the Ensemble Transform Kalman Filter (ETKF). The land surface model is driven by perturbed MERRA-2 atmospheric forcing data, which has a temporal resolution of one hour and is mapped to the SURFEX model grid. Bias between the land surface model and the ESA CCI product is removed by cumulative distribution function (CDF) matching. This work is a step towards creating a global root zone soil moisture product from the most comprehensive satellite surface soil moisture product available. As a first step we consider the period from 2010 - 2016. This allows for comparison against other global root zone soil moisture products (SMAP Level 4, which is independent of the ESA CCI SM product).

  2. Effects of size and moisture of rhizome on initial invasiveness ability of giant reed.

    PubMed

    Santín-Montanyá, M I; Jimenéz, J; Vilán, X M; Ocaña, L

    2014-01-01

    Studies were conducted under controlled conditions to determine growth and reproductive capabilities of Arundo donax L. (giant reed), a riparian invasive perennial plant that has spread widely. Greenhouse experiments were conducted to determine the influence of rhizome size and moisture content in the early invasiveness ability of giant reed. We tested different sizes of rhizomes: rhizome size of 1 cm, 3 cm, 5 cm and shredded rhizome. (fragments < 1 cm). These rhizomes were observed at 7, 14, 21, 28 and 35 days after planting (DAP). To test the effect of moisture content we used fresh rhizome fragments; rhizomes with moderate dehydration (50%); rhizomes with high dehydration (over 70%) with 48 hours of rehydration and rhizomes with high dehydration (70-90%). The rhizomes monitored for moisture content and biomass increase were between 3 and 5 cm, and were observed 60 DAP. The initial size of rhizomes affected the level of sprouting. Rhizomes with low moisture content (due to dehydration) showed high increase in biomass compared with the rhizomes that had not been treated or had been dehydrated and then rehydrated. Our results indicated that size of rhizomes is related to regrowth and low moisture (dehydration) content can be overcome by this species. This could be linked to high rates of colonization and early establishment ability of this species even after mechanical treatment of rhizomes, in riparian environments.

  3. Moisture controls decomposition rate in thawing tundra

    Treesearch

    C.E. Hicks-Pries; E.A.G. Schuur; S.M. Natali; J.G. Vogel

    2013-01-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a...

  4. Soil Moisture and Snow Cover: Active or Passive Elements of Climate?

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2001-01-01

    A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. GAPP region in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo, effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change.

  5. Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products

    NASA Astrophysics Data System (ADS)

    Jou, R.-Y.; Lo, C.-T.

    2011-01-01

    In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.

  6. Organic field-effect transistors: a combined study on short-channel effects and the influence of substrate pre-treatment on ambient stability

    NASA Astrophysics Data System (ADS)

    Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.

    2011-10-01

    For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.

  7. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    PubMed Central

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined. PMID:28773696

  8. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems.

    PubMed

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-07-14

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

  9. Evaluation of the cosmic-ray neutron method for measuring integral soil moisture dynamics of a forested head water catchment

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Metzen, D.; Baatz, R.; Hendricks Franssen, H.; Huisman, J. A.; Montzka, C.; Vereecken, H.

    2011-12-01

    Measurements of low-energy secondary neutron intensity above the soil surface by cosmic-ray soil moisture probes (CRP) can be used to estimate soil moisture content. CRPs utilise the fact that high-energy neutrons initiated by cosmic rays are moderated (slowed to lower energies) most effectively by collisions with hydrogen atoms contained in water molecules in the soil. The conversion of neutron intensity to soil moisture content can potentially be complicated because neutrons are also moderated by aboveground water storage (e.g. vegetation water content, canopy storage of interception). Recently, it was demonstrated experimentally that soil moisture content derived from CRP measurements agrees well with average moisture content from gravimetric soil samples taken within the footprint of the cosmic ray probe, which is proposed to be up to several hundred meters in size [1]. However, the exact extension and shape of the CRP integration footprint is still an open question and it is also unclear how CRP measurements are affected by the soil moisture distribution within the footprint both in horizontal and vertical directions. In this paper, we will take advantage of an extensive wireless soil moisture sensor network covering most of the estimated footprint of the CRP. The network consists of 150 nodes and 900 soil moisture sensors which were installed in the small forested Wüstebach catchment (~27 ha) in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [2]. This unique soil moisture data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution and thus the opportunity to evaluate the CRP measurements in a rigorous way. We will present first results of the comparison with a specific focus on the sensitivity of the CRP measurements to soil moisture variation in both the horizontal and vertical direction. Furthermore, the influence of forest biomass and shallow groundwater table fluctuations on the attenuation of cosmic-ray neutrons will be considered.

  10. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  11. Global soil moisture from the aquarius satellite: Description and initial assessment

    USDA-ARS?s Scientific Manuscript database

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scop...

  12. Land surface-precipitation feedback and ramifications on storm dynamics.

    NASA Astrophysics Data System (ADS)

    Baisya, H.; PV, R.; Pattnaik, S.

    2017-12-01

    A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.

  13. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion.

    PubMed

    Xu, Rong; Zhang, Kai; Liu, Pu; Khan, Aman; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2018-01-01

    Anaerobic co-digestion generally results in a higher yield of biogas than mono-digestion, hence co-digestion has become a topic of general interest in recent studies of anaerobic digestion. Compared with mono-digestion, co-digestion utilizes multiple substrates. The balance of substrate nutrient in co-digestion comprises better adjustments of C/N ratio, pH, moisture, trace elements, and dilution of toxic substances. All of these changes could result in positive shifts in microbial community structure and function in the digestion processes and consequent augmentation of biogas production. Nevertheless, there have been few reviews on the interaction of nutrient and microbial community in co-digestions. The objective of this review is to investigate recent achievements and perspectives on the interaction of substrate nutrient balance and microbial community structure and function. This may provide valuable information on the optimization of combinations of substrates and prediction of bioreactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

  15. Identification of locally available structural material as co-substrate for organic waste composting in Tamil Nadu, India.

    PubMed

    Springer, C; Heldt, N

    2016-06-01

    Owing to the lack in structural strength while composting certain kinds of organic wastes, 11 co-substrates were tested that are generally locally available in rural areas of northern Tamil Nadu, India. In addition to the classical composting parameters such as carbon/nitrogen ratio, moisture content, dry matter and organic dry matter, a compression test was conducted to evaluate the structural strength and the suitability as bulking agent for composting processes. Additionally, with respect to the climatic conditions in India, the water holding capacity was also evaluated. © The Author(s) 2016.

  16. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

    NASA Technical Reports Server (NTRS)

    Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.

    2013-01-01

    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

  17. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    PubMed

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  18. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  19. The seen and unseen world of the fallen tree.

    Treesearch

    Chris Maser; James M. Trappe

    1984-01-01

    Large, fallen trees in various stages of decay contribute much-needed diversity to terrestrial and aquatic habitats in western forests. When most biological activity in soil is limited by low moisture availability in summer, the fallen tree-soil interface offers a relatively cool, moist habitat for animals and a substrate for microbial and root activity. Intensified...

  20. FIELD STUDIES ON USBM AND TOSCO II RETORTED OIL SHALES: VEGETATION, MOISTURE, SALINITY, AND RUNOFF, 1977-1980

    EPA Science Inventory

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...

  1. Application of laboratory fungal resistance tests to solid wood and wood-plastic composite

    Treesearch

    Craig Merrill Clemons; Rebecca E. Ibach

    2003-01-01

    The fungal resistance of high density polyethylene filled with 50% wood flour was investigated using laboratory soil block tests. Modifications to standard test methods were made to increase initial moisture content, increase exposure surface area, and track moisture content, mechanical properties, and weight loss over the exposure period. Mechanical properties...

  2. Microstructures of oil roasted peanuts as affected by initial moisture content

    USDA-ARS?s Scientific Manuscript database

    Oil roasting of peanuts is a unit operation equal to that of deep frying of higher moisture foods. Retention of the oil taken up by the peanuts from oil roasting during the shelf life of the packaged product is necessary to prevent an unappealing greasy appearance. Properties of the end product we...

  3. Deriving mesoscale temperature and moisture fields from satellite radiance measurements over the United States

    NASA Technical Reports Server (NTRS)

    Hillger, D. W.; Vonder Haar, T. H.

    1977-01-01

    The ability to provide mesoscale temperature and moisture fields from operational satellite infrared sounding radiances over the United States is explored. High-resolution sounding information for mesoscale analysis and forecasting is shown to be obtainable in mostly clear areas. An iterative retrieval algorithm applied to NOAA-VTPR radiances uses a mean radiosonde sounding as a best initial-guess profile. Temperature soundings are then retrieved at a horizontal resolution of about 70 km, as is an indication of the precipitable water content of the vertical sounding columns. Derived temperature values may be biased in general by the initial-guess sounding or in certain areas by the cloud correction technique, but the resulting relative temperature changes across the field when not contaminated by clouds will be useful for mesoscale forecasting and models. The derived moisture, affected only by high clouds, proves to be reliable to within 0.5 cm of precipitable water and contains valuable horizontal information. Present-day applications from polar-orbiting satellites as well as possibilities from upcoming temperature and moisture sounders on geostationary satellites are noted.

  4. Land surface-precipitation feedback analysis for a landfalling monsoon depression in the Indian region

    NASA Astrophysics Data System (ADS)

    Baisya, Himadri; Pattnaik, Sandeep; Rajesh, P. V.

    2017-03-01

    A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.

  5. The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

    USGS Publications Warehouse

    He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.

    2014-01-01

    The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.

  6. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Wang, Chunxia; Qiu, Yiping

    2007-09-01

    One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%.

  7. Thermophysical properties of hydrophobised lime plaster - Experimental analysis of moisture effect

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Pernicová, Radka; Pavlík, Zbyšek

    2016-07-01

    Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.

  8. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages atmore » it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial dimensions and the final dimensions after 2 weeks of storage in controlled environment of all the samples were measured. Durability, dimensional stability, and moisture content tests were conducted after two weeks of storage of the briquettes produced. Initial results indicated that moisture content played a significant role on briquettes durability, stability, and density. Low moisture content of the straws (7-12%) gave more durable briquettes. Briquette density increased with increasing pressure depending on the moisture content value. The axial expansion was more significant than the lateral expansion, which in some cases tended to be nil depending on the material and operating variables. Further data analysis is in progress in order to understand the significance of the process variables based on ANOVA. Regression models were developed to predict the changes in quality of briquettes with respect of the process variables under study. Keywords: Herbaceous biomass, densification, briquettes, density, durability, dimensional stability, ANOVA and regression equations« less

  9. Soil Moisture and Snow Cover: Active or Passive Elements of Climate

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2002-01-01

    A key question is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change. An intriguing new statistical technique involving 'clustering' is developed to assist in this analysis.

  10. Ensemble Analysis of Variational Assimilation of Hydrologic and Hydrometeorological Data into Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Seo, D.; Koren, V.

    2008-12-01

    A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.

  11. Effect of rice straw application on microbial community and activity in paddy soil under different water status.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying

    2016-03-01

    Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity.

  12. Identification of newly isolated Talaromyces pinophilus and statistical optimization of β-glucosidase production under solid-state fermentation.

    PubMed

    El-Naggar, Noura El-Ahmady; Haroun, S A; Oweis, Eman A; Sherief, A A

    2015-01-01

    Fungi able to degrade agriculture wastes were isolated from different soil samples, rice straw, and compost; these isolates were screened for their ability to produce β-glucosidase. The most active fungal isolate was identified as Talaromyces pinophilus strain EMOO 13-3. The Plackett-Burman design is used for identifying the significant variables that influence β-glucosidase production under solid-state fermentation. Fifteen variables were examined for their significances on the production of β-glucosidase in 20 experimental runs. Among the variables screened, moisture content, Tween 80, and (NH4)2SO4 had significant effects on β-glucosidase production with confidence levels above 90% (p < 0.1). The optimal levels of these variables were further optimized using Box-Behnken statical design. As a result, the maximal β-glucosidase activity is 3648.519 U g(-1), which is achieved at the following fermentation conditions: substrate amount 0.5 (g/250 mL flask), NaNO3 0.5 (%), KH2PO4 0.3 (%), KCl 0.02 (%), MgSO4 · 7H2O 0.01 (%), CaCl2 0.01 (%), yeast extract 0.07 (%), FeSO4 · 7H2O 0.0002 (%), Tween 80 0.02 (%), (NH4)2SO4 0.3 (%), pH 6.5, temperature 25°C, moisture content 1 (mL/g dry substrate), inoculum size 0.5 (mL/g dry substrate), and incubation period 5 days.

  13. Moisture interaction and stability of ZOT (Zinc Orthotitanate) thermal control spacecraft coating

    NASA Technical Reports Server (NTRS)

    Mon, Gordon R.; Gonzalez, Charles C.; Ross, Ronald G., Jr.; Wen, Liang C.; Odonnell, Timothy

    1988-01-01

    Two of the many performance requirements of the zinc orthotitanate (ZOT) ceramic thermal control paint covering parts of the Jupiter-bound Galileo spacecraft are that it be sufficiently electrically conductive so as to prevent electrostatic discharge (ESD) damage to onboard electronics and that it adhere to and protect the substrate from corrosion in terrestrial environments. The bulk electrical resistivity of ZOT on an aluminum substrate was measured over the ranges 22 C to 90 C and 0 percent RH to 100 percent RH, and also in soft (10 (minus 2) Torr) and hard (10 (minus 7) Torr) vacuums. No significant temperature dependence was evident, but measured resistivity values ranged over 9 orders of magnitude: 10 to the 5th power ohm-cm at 100 percent RH greater than 10 to the 12th power ohm-cm in a hard vacuum. The latter value violates the ESD criterion for a typical 0.019 cm thick coating. The corrosion study involved exposing typical ZOT substrate combinations to two moisture environments - 30 C/85 percent RH and 85 C/85 percent RH - for 2000 hours, during which time the samples were periodically removed for front-to-back electrical resistance and scratch/peel test measurements. It was determined that the ZOT/Al and ZOT/Mg systems are stable (no ZOT delamination), although some corrosion (oxide formation) and resistivity increases observed among the ZOT/Mg samples warrant that exposure of some parts to humid environments be minimized.

  14. House log drying rates in southeast Alaska for covered and uncovered softwood logs

    Treesearch

    David Nicholls; Allen Brackley

    2009-01-01

    Log moisture content has an important impact on many aspects of log home construction, including log processing, transportation costs, and dimensional stability in use. Air-drying times for house logs from freshly harvested trees can depend on numerous factors including initial moisture content, log diameter, bark condition, and environmental conditions during drying....

  15. Investigation of a Wedge Adhesion Test for Edge Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael; Wohlgemuth, John; Miller, David

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adaptingmore » the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be due to inconsistencies in sample history, sample batch, or small changes in sample preparation/assembly from one month to the next. Because the fracture strength of typical edge seal materials is so low, they cannot be relied upon for mechanical strength. A small stress or strain on the edge seal is capable of promoting delamination or tearing causing the edge seal to fail. Because of this, edge seals are very dependent on the processing and construction parameters in the full size PV module such that any long term evaluation of their durability must be conducted on full size modules to be accurate.« less

  16. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    NASA Astrophysics Data System (ADS)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  17. SMERGE: A multi-decadal root-zone soil moisture product for CONUS

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.

    2017-12-01

    Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.

  18. Nonlinear response of hail precipitation rate to environmental moisture content: A real case modeling study of an episodic midlatitude severe convective event

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Zhang, Fuqing; Zhang, Qinghong; Harrington, Jerry Y.; Kumjian, Matthew R.

    2017-07-01

    The dependence of hail production on initial moisture content in a simulated midlatitude episodic convective event occurred in northeast China on 10-11 June 2005 was investigated using the Weather Research and Forecasting (WRF) model with a double-moment microphysics scheme where both graupel and hail are considered. Three sensitivity experiments were performed by modifying the initial water vapor mixing ratio profile to 90% ("Q-10%"), 105% ("Q+5%"), and 110% ("Q+10%") of the initial conditions used for the control simulation. It was found that increasing the initial water vapor content caused the hail and total precipitation rates to increase during the first 5 h. The precipitation response to increasing water vapor content was monotonic for this first episode; however, for the event's second episode, the hail precipitation rate responds to the initial water vapor profile nonlinearly, while the total precipitation rate responds mostly monotonically. In particular, simulation Q+5% achieves the largest hail production rate while simulation Q+10% has the largest total precipitation rate. In contrast, during the second episode simulation Q-10% has the strongest vertical motion, produces the most cloud ice and snow, but has the lowest hail production. Analysis shows that increasing the initial moisture content directly increases the precipitation during the first episode, which subsequently induces a stronger, longer-lasting cold pool that limits the development of deep convection during the second episode.

  19. Approximation of effective moisture-diffusion coefficient to characterize performance of a barrier coating

    NASA Astrophysics Data System (ADS)

    Nagai, Shingo

    2013-11-01

    We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.

  20. Diamondlike carbon as a moisture barrier and antireflecting coating on optical materials

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; De, Bhola N.; Chen, L. Y.; Pouch, John J.; Alterovitz, Samuel A.

    1990-01-01

    Diamondlike carbon (DLC) is amorphous, hard, semitransparent, and is under consideration for use as a coating material for infrared optics. DLC is also designated as a-C:H to indicate its amorphous nature as well as to indicate the presence of large (20 to 55 percent) amounts of hydrogen in the film. Two important questions arise with respect to use of DLC in infrared optics. Will the lack of grain boundaries help to keep moisture from penetrating the film. Secondly, application as an antireflection coating places restrictions on the allowed values of the index of refraction of the film relative to the particular substrate material being used. Will DLC have the correct index range. These two questions are addressed in this paper.

  1. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  2. Soil Conservation Service Curve Number method: How to mend a wrong soil moisture accounting procedure?

    NASA Astrophysics Data System (ADS)

    Michel, Claude; Andréassian, Vazken; Perrin, Charles

    2005-02-01

    This paper unveils major inconsistencies in the age-old and yet efficient Soil Conservation Service Curve Number (SCS-CN) procedure. Our findings are based on an analysis of the continuous soil moisture accounting procedure implied by the SCS-CN equation. It is shown that several flaws plague the original SCS-CN procedure, the most important one being a confusion between intrinsic parameter and initial condition. A change of parameterization and a more complete assessment of the initial condition lead to a renewed SCS-CN procedure, while keeping the acknowledged efficiency of the original method.

  3. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department

    NASA Technical Reports Server (NTRS)

    Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS) will be run at a comparable resolution to provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Additionally, real-time green vegetation fraction data from the Visible Infrared Imaging Radiometer Suite will be incorporated into the KMD-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service. Finally, model verification capabilities will be transitioned to KMD using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. The transition of these MET tools will enable KMD to monitor model forecast accuracy in near real time. This presentation will highlight preliminary verification results of WRF runs over east Africa using the LIS land surface initialization.

  4. High-Resolution Mesoscale Simulations of the 6-7 May 2000 Missouri Flash Flood: Impact of Model Initialization and Land Surface Treatment

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.

    2004-01-01

    High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.

  5. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    NASA Astrophysics Data System (ADS)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  6. Experimental study on the drying of natural latex medical gloves

    NASA Astrophysics Data System (ADS)

    Chankrachang, Mano; Yongyingsakthavorn, Pisit; Tohsan, Atitaya; Nontakaew, Udomkiat

    2018-01-01

    The purpose of this research was to study latex film drying at 70 °C using a laboratory drying oven. Two different total solid content (TSC) latex compounds, which 45% TSC and 35% TSC were used. The undried latex films were prepared according to the common procedures used in latex gloves manufacturers, that is, by dry coagulant dipping process. The experimental results such as initial moisture content, the amount of moisture and drying time of latex films in each latex compound formula were determined. After that, the results were projected to calculate on the production capacity expand by 1 million piece/day of natural latex medical gloves. Finally, the rate of moisture entering the latex drying oven and the energy consumption of the drying oven were estimated. The results indicated that when the 35% TSC of latex compound was used. The initial moisture content of latex film was higher than 45% TSC of latex compound about 7%. The drying time of 35% TSC was longer than 45% TSC for 2.5 min and consume more energy about 10%. As a result, the 45% TSC latex compound was the better way to saving energy and managing humidity in the production line. Therefore, it was found to very useful to an approximate design length and size of actual of latex drying oven and the rate of moisture entering the oven as well.

  7. Effects of temperature and moisture on Mormon cricket reproduction with implications for responses to climate change.

    PubMed

    Srygley, Robert B

    2014-06-01

    During the last decade, populations of flightless Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) increased suddenly over vast areas of the Western United States, suggesting that climate is an important factor driving outbreaks. Moreover summer temperatures are predicted to increase and precipitation is expected to decrease in most areas of the U.S. Great Basin, but little is known of the response of Mormon crickets to changes in temperature and soil moisture. In a laboratory study, we varied ambient temperature and lighting and measured the propensity of mating pairs to mate, and the proportion of eggs that developed into embryos. We found that reproduction was optimal when ambient temperature reached 30°C and the insects were beneath broad-spectrum lights such that maternal body and soil temperatures reached 35°C. Fewer eggs that developed fully were laid when maternal body and soil temperatures reached 30°C or 37-39°C. We also varied initial soil moisture from 0% to 100% saturated and found that more eggs reached embryonic diapause when initial soil moisture was 25% or 50% of saturated volume. However more of the developed eggs hatched when treated in summer soils with 0-25% of saturated moisture. We conclude that small changes in temperature had large effects on reproduction, whereas large changes in moisture had very small effects on reproduction. This is the first report of Mormon crickets mating in a laboratory setting and laying eggs that hatched, facilitating further research on the role of maternal and embryonic environments in changes in population size. Published by Elsevier Ltd.

  8. Drying of Pigment-Cellulose Nanofibril Substrates

    PubMed Central

    Timofeev, Oleg; Torvinen, Katariina; Sievänen, Jenni; Kaljunen, Timo; Kouko, Jarmo; Ketoja, Jukka A.

    2014-01-01

    A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature. PMID:28788220

  9. Design of a global soil moisture initialization procedure for the simple biosphere model

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Walker, G. K.

    1993-01-01

    Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.

  10. Carbon-carbon mirrors for exoatmospheric and space applications

    NASA Astrophysics Data System (ADS)

    Krumweide, Duane E.; Wonacott, Gary D.; Woida, Patrick M.; Woida, Rigel Q.; Shih, Wei

    2007-09-01

    The cost and leadtime associated with beryllium has forced the MDA and other defense agencies to look for alternative materials with similar structural and thermal properties. The use of carbon-carbon material, specifically in optical components has been demonstrated analytically in prior SBIR work at San Diego Composites. Carbon-carbon material was chosen for its low in-plane and through-thickness CTE (athermal design), high specific stiffness, near-zero coefficient of moisture expansion, availability of material (specifically c-c honeycomb for lightweight substrates), and compatibility with silicon monoxide (SiO) and silicon dioxide (SiO II) coatings. Subsequent development work has produced shaped carbon-carbon sandwich substrates which have been ground, polished, coated and figured using traditional optical processing. Further development has also been done on machined monolithic carbon-carbon mirror substrates which have also been processed using standard optical finishing techniques.

  11. A model for estimating time-variant rainfall infiltration as a function of antecedent surface moisture and hydrologic soil type

    NASA Technical Reports Server (NTRS)

    Wilkening, H. A.; Ragan, R. M.

    1982-01-01

    Recent research indicates that the use of remote sensing techniques for the measurement of near surface soil moisture could be practical in the not too distant future. Other research shows that infiltration rates, especially for average or frequent rainfall events, are extremely sensitive to the proper definition and consideration of the role of the soil moisture at the beginning of the rainfall. Thus, it is important that an easy to use, but theoretically sound, rainfall infiltration model be available if the anticipated remotely sensed soil moisture data is to be optimally utilized for hydrologic simulation. A series of numerical experiments with the Richards' equation for an array of conditions anticipated in watershed hydrology were used to develop functional relationships that describe temporal infiltration rates as a function of soil type and initial moisture conditions.

  12. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.

    PubMed

    Lai, K P K; Dolan, K D; Ng, P K W

    2009-06-01

    Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.

  13. Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate.

    PubMed

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-06-01

    Aspergillus terreus NCFT4269.10 was implemented in solid-state (SSF) and liquid static surface fermentation (LSSF) for biosynthesis of pectinase. Amongst various substrates, like, mustard oil cake, neem oil cake, groundnut oil cake, black gram peels, green gram peels, chickling vetch peels/grass pea peels wheat bran, pearl millet residues, finger millet waste, broken rice, banana peels (BP), apple pomace (AP) and orange peels, banana peel (Musa paradisiaca L.; Family: Musaceae) was most suitable for pectinase biosynthesis (LSSF: 400 ± 21.45 Uml -1 ; SSF: 6500 ± 1116.21 Ug -1 ). Optimization of process parameters using one-variable-at-a-time method revealed that an initial medium pH of 5.0 at 30 °C and 96 h of incubation along with mannitol, urea, ammonium persulfate and isoleucine have positive influence on pectinase production. Further, K + (1 mM), Riboflavin (10 mg 100 ml -1 ) and gibberellic acid (0.025 %, w/v) supported in enhanced pectinase production. Banana peels and AP at a ratio of 9:1, moisture content of 90 % with 2 % inoculum size were suitable combinations for production of pectinase. Similarly, 96 h of soaking time with 0.1 M phosphate buffer (pH 6.5) is essential for pectinase recovery. Purification to electrophoretic homogeneity revealed 1.42 fold purification with 8.08 % yield and a molecular weight of 24.6 kDa. Scaling up of various fermentation parameters and supplementing BP as the substrate for pectinase production with better recovery could make it promising for different industrial exploitation.

  14. Modeling the unmeasurable: scaling soil physiology from microns to meters and seconds to centuries (Invited)

    NASA Astrophysics Data System (ADS)

    Schimel, J.; Xu, X.; Lawrence, C. R.

    2013-12-01

    Models are essential tools for linking microbial dynamics to their manifestations at large scales. Yet, developing mechanistically accurate models requires data that we often don't have and may not be able to get, such as the functional life-span of an extracellular enzyme. Yet there are approaches to condense complex microbial dynamics into 'workable' models. One example is in describing soil responses to moisture pulses. We developed a family of five separate models to capture microbial dynamics through dry/wet cycles. The simplest was a straight multi-pool, 1st-order decomposition model, with versions adding levels of microbial mechanism, culminating in one that included exoenzyme-breakdown of detritus. However, this identified the critical mechanism, not as exoenzymes, but as the production of a bioavailable C pool that accumulates in dry soil and is rapidly metabolized on rewetting. A final version of the model therefore stripped out explicit enzymes but retained separate polymer breakdown and substrate use; this model was the most robust. A second pervasive question in soil biology has been what controls the size of the microbial biomass across biomes? We approached this through a physiological model that regulated microbial C assimilation into biomass by two processes: initial assimilation followed by ongoing maintenance. Assimilation is a function of substrate quality, while maintenance is regulated by climate--notably the period of the year during which microbes are active. This model was tested against a global dataset of microbial biomass. It explains why, for example, deserts and tundra have relatively high proportions of their organic matter in microbial biomass, while the low substrate quality and long active periods common in temperate conifer forests lead to low biomass levels.

  15. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate.

    PubMed

    Mahanta, Nilkamal; Gupta, Anshu; Khare, S K

    2008-04-01

    Deoiled Jatropha seed cake was assessed for its suitability as substrate for enzyme production by solid-state fermentation (SSF). Solvent tolerant Pseudomonas aeruginosa PseA strain previously reported by us was used for fermentation. The seed cake supported good bacterial growth and enzyme production (protease, 1818 U/g of substrate and lipase, 625 U/g of substrate) as evident by its chemical composition. Maximum protease and lipase production was observed at 50% substrate moisture, a growth period of 72 and 120 h, and a substrate pH of 6.0 and 7.0, respectively. Enrichment with maltose as carbon source increased protease and lipase production by 6.3- and 1.6-fold, respectively. Nitrogen supplementation with peptone for protease and NaNO(3) for lipase production also enhanced the enzyme yield reaching 11,376 U protease activity and 1084 U lipase activity per gram of Jatropha seed cake. These results demonstrated viable approach for utilization of this huge biomass by solid-state fermentation for the production of industrial enzymes. This offers significant benefit due to low cost and abundant availability of cake during biodiesel production.

  16. Soil moisture variations in remotely sensed and reanalysis datasets during weak monsoon conditions over central India and central Myanmar

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani

    2017-07-01

    Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002-2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region.

  17. Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture

    Treesearch

    S. Youssefian; J. E. Jakes; N. Rahbar

    2017-01-01

    A combination of experimental, theoretical and numerical studies is used to investigate the variation of elastic moduli of lignocellulosic (bamboo) fiber cell walls with moisture content (MC). Our Nanoindentation results show that the longitudinal elastic modulus initially increased to a maximum value at about 3% MC and then decreased linearly with increasing MC. In...

  18. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.

    PubMed

    Sinha, R N; Tuma, D; Abramson, D; Muir, W E

    1988-01-01

    The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.

  19. Smoke emissions due to burning of green waste in the Mediterranean area: Influence of fuel moisture content and fuel mass

    NASA Astrophysics Data System (ADS)

    Tihay-Felicelli, V.; Santoni, P. A.; Gerandi, G.; Barboni, T.

    2017-06-01

    The aim of this study was to investigate emission characteristics in relation to differences in fuel moisture content (FMC) and initial dry mass. For this purpose, branches and twigs with leaves of Cistus monspeliensis were burned in a Large Scale Heat Release apparatus coupled to a Fourier Transform Infrared Spectrometer. A smoke analysis was conducted and the results highlighted the presence of CO2, H2O, CO, CH4, NO, NO2, NH3, SO2, and non-methane organic compounds (NMOC). CO2, NO, and NO2 species are mainly released during flaming combustion, whereas CO, CH4, NH3, and NMOC are emitted during both flaming and smoldering combustion. The emission of these compounds during flaming combustion is due to a rich fuel to air mixture, leading to incomplete combustion. The fuel moisture content and initial dry mass influence the flame residence time, the duration of smoldering combustion, the combustion efficiency, and the emission factors. By increasing the initial dry mass, the emission factors of NO, NO2, and CO2 decrease, whereas those of CO and CH4 increase. The increase of FMC induces an increase of the emission factors of CO, CH4, NH3, NMOC, and aerosols, and a decrease of those of CO2, NO, and NO2. Increasing fuel moisture content reduces fuel consumption, duration of smoldering, and peak heat release rate, but simultaneously increases the duration of propagation within the packed bed, and the flame residence time. Increasing the initial dry mass, causes all the previous combustion parameters to increase. These findings have implications for modeling biomass burning emissions and impacts.

  20. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting.

    PubMed

    Jiang, Tao; Schuchardt, Frank; Li, Guoxue; Guo, Rui; Zhao, Yuanqiu

    2011-01-01

    Gaseous emission (N2O, CH4 and NH3) from composting can be an important source of anthropogenic greenhouse gas and air pollution. A laboratory scale orthogonal experiment was conducted to estimate the effects of C/N ratio, aeration rate and initial moisture content on gaseous emission during the composting of pig faeces from Chinese Ganqinfen system. The results showed that about 23.9% to 45.6% of total organic carbon (TOC) was lost in the form of CO2 and 0.8% to 7.5% of TOC emitted as CH4. Most of the nitrogen was lost in the form of NH3, which account for 9.6% to 32.4% of initial nitrogen. N2O was also an important way of nitrogen losses and 1.5% to 7.3% of initial total nitrogen was lost as it. Statistic analysis showed that the aeration rate is the most important factor which could affect the NH3 (p = 0.0189), CH4 (p = 0.0113) and N2O (p = 0.0493) emissions significantly. Higher aeration rates reduce the CH4 emission but increase the NH3 and N2O losses. C/N ratio could affect the NH3 (p = 0.0442) and CH4 (p = 0.0246) emissions significantly, but not the N2O. Lower C/N ratio caused higher NH3 and CH4 emissions. The initial moisture content can not influence the gaseous emission significantly. Most treatments were matured after 37 days, except a trial with high moisture content and a low C/N ratio.

  1. Drying kinetic of industrial cassava flour: Experimental data in view.

    PubMed

    Odetunmibi, Oluwole A; Adejumo, Oluyemisi A; Oguntunde, Pelumi E; Okagbue, Hilary I; Adejumo, Adebowale O; Suleiman, Esivue A

    2017-12-01

    In this data article, laboratory experimental investigation results on drying kinetic properties: the drying temperature ( T ), drying air velocity ( V ) and dewatering time (Te), each of the factors has five levels, and the experiment was replicated three times and the output: drying rate and drying time obtained, were observed. The experiment was conducted at National Centre for Agricultural Mechanization (NCAM) for a period of eight months, in 2014. Analysis of variance was carried out using randomized complete block design with factorial experiment on each of the outputs: drying rate and drying times of the industrial cassava flour. A clear picture on each of these outputs was provided separately using tables and figures. It was observed that all the main factors as well as two and three ways interactions are significant at 5% level for both drying time and rate. This also implies that the rate of drying grated unfermented cassava mash, to produce industrial cassava flour, depend on the dewatering time (the initial moisture content), temperature of drying, velocity of drying air as well as the combinations of these factors altogether. It was also discovered that all the levels of each of these factors are significantly difference from one another. In summary, the time of drying is a function of the dewatering time which was responsible for the initial moisture content. The higher the initial moisture content the longer the time of drying, and the lower the initial moisture content, the lower the time of drying. Also, the higher the temperature of drying the shorter the time of drying and vice versa. Also, the air velocity effect on the drying process was significant. As velocity increases, rate of drying also increases and vice versa. Finally, it can be deduced that the drying kinetics are influenced by these processing factors.

  2. Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.

    PubMed

    Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B

    2016-01-07

    Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwater, Harry A.; Leite, Marina S.; Warmann, Emily C.

    A virtual substrate includes a handle support and a strain-relieved single crystalline layer on the handle support. A method of making the virtual substrate includes growing a coherently-strained single crystalline layer on an initial growth substrate, removing the initial growth substrate to relieve the strain on the single crystalline layer, and applying the strain-relieved single crystalline layer on a handle support.

  4. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. 40 CFR 75.31 - Initial missing data procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Initial missing data procedures. 75.31... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.31 Initial missing data..., or O2 concentration data, and moisture data. For each hour of missing SO2 or CO2 emissions...

  6. 40 CFR 75.31 - Initial missing data procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Initial missing data procedures. 75.31... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.31 Initial missing data..., or O2 concentration data, and moisture data. For each hour of missing SO2 or CO2 emissions...

  7. 40 CFR 75.31 - Initial missing data procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Initial missing data procedures. 75.31... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.31 Initial missing data..., or O2 concentration data, and moisture data. For each hour of missing SO2 or CO2 emissions...

  8. 40 CFR 75.31 - Initial missing data procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Initial missing data procedures. 75.31... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.31 Initial missing data..., or O2 concentration data, and moisture data. For each hour of missing SO2 or CO2 emissions...

  9. Evaluating ESA CCI soil moisture in East Africa.

    PubMed

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P

    2016-06-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  10. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  11. Assessing the uncertainty of soil moisture impacts on convective precipitation using a new ensemble approach

    NASA Astrophysics Data System (ADS)

    Henneberg, Olga; Ament, Felix; Grützun, Verena

    2018-05-01

    Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.

  12. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge.

    PubMed

    Huiliñir, Cesar; Villegas, Manuel

    2015-10-01

    The simultaneous effect of initial moisture content (initial Mc) and air-flow rate (AFR) on biodrying performance was evaluated. For the study, a 3(2) factorial design, whose factors were AFR (1, 2 and 3 L/min kg(TS)) and initial Mc (59, 68 and 78% w.b.), was used. Using energy and water mass balance the main routes of water removal, energy use and efficiencies were determined. The results show that initial Mc has a stronger effect on the biodrying than the AFR, affecting the air outlet temperature and improving the water removal, with higher maximum temperatures obtained around 68% and the lowest maximum matrix temperature obtained at initial Mc = 78%.Through the water mass balance it was found that the main mechanism for water removal was the aeration, with higher water removal at intermediate initial Mc (68%) and high AFR (3 L/min kg(TS)). The energy balance indicated that bioreaction is the main energy source for water evaporation, with higher energy produced at intermediate initial Mc (68%). Finally, it was found that low values of initial Mc (59%) improve biodrying efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    PubMed

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  14. Moisture Forecast Bias Correction in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  15. Assimilating satellite soil moisture into rainfall-runoff modelling: towards a systematic study

    NASA Astrophysics Data System (ADS)

    Massari, Christian; Tarpanelli, Angelica; Brocca, Luca; Moramarco, Tommaso

    2015-04-01

    Soil moisture is the main factor for the repartition of the mass and energy fluxes between the land surface and the atmosphere thus playing a fundamental role in the hydrological cycle. Indeed, soil moisture represents the initial condition of rainfall-runoff modelling that determines the flood response of a catchment. Different initial soil moisture conditions can discriminate between catastrophic and minor effects of a given rainfall event. Therefore, improving the estimation of initial soil moisture conditions will reduce uncertainties in early warning flood forecasting models addressing the mitigation of flood hazard. In recent years, satellite soil moisture products have become available with fine spatial-temporal resolution and a good accuracy. Therefore, a number of studies have been published in which the impact of the assimilation of satellite soil moisture data into rainfall-runoff modelling is investigated. Unfortunately, data assimilation involves a series of assumptions and choices that significantly affect the final result. Given a satellite soil moisture observation, a rainfall-runoff model and a data assimilation technique, an improvement or a deterioration of discharge predictions can be obtained depending on the choices made in the data assimilation procedure. Consequently, large discrepancies have been obtained in the studies published so far likely due to the differences in the implementation of the data assimilation technique. On this basis, a comprehensive and robust procedure for the assimilation of satellite soil moisture data into rainfall-runoff modelling is developed here and applied to six subcatchment of the Upper Tiber River Basin for which high-quality hydrometeorological hourly observations are available in the period 1989-2013. The satellite soil moisture product used in this study is obtained from the Advanced SCATterometer (ASCAT) onboard Metop-A satellite and it is available since 2007. The MISDc ("Modello Idrologico SemiDistribuito in continuo") continuous hydrological model is used for flood simulation. The Ensemble Kalman Filter (EnKF) is employed as data assimilation technique for its flexibility and good performance in a number of previous applications. Different components are involved in the developed data assimilation procedure. For the correction of the bias between satellite and modelled soil moisture data three different techniques are considered: mean-variance matching, Cumulative Density Function (CDF) matching and least square linear regression. For properly generating the ensembles of model states, required in the application of EnKF technique, an exhaustive search of the model error parameterization and structure is carried out, differentiated for each study catchments. A number of scores and statistics are employed for the evaluation the reliability of the ensemble. Similarly, different configurations for the observation error are investigated. Results show that for four out six catchments the assimilation of the ASCAT soil moisture product improves discharge simulation in the validation period 2010-2013, mainly during flood events. The two catchments in which the assimilation does not improve the results are located in the mountainous part of the region where both MISDc and satellite data perform worse. The analysis on the data assimilation choices highlights that the selection of the observation error seems to have the largest influence on discharge simulation. Finally, the bias correction approaches have a lower effect and the selection of linear techniques is preferable. The assessment of all the components involved in the data assimilation procedure provides a clear understanding of results and it is advised to follow a similar procedure in this kind of studies.

  16. The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates

    USGS Publications Warehouse

    Engle, M.A.; Sexauer, Gustin M.; Lindberg, S.E.; Gertler, A.W.; Ariya, P.A.

    2005-01-01

    Experiments were performed to investigate the effect of ozone (O 3) on mercury (Hg) emission from a variety of Hg-bearing substrates. Substrates with Hg(II) as the dominant Hg phase exhibited a 1.7 to 51-fold increase in elemental Hg (Hgo) flux and a 1.3 to 8.6-fold increase in reactive gaseous mercury (RGM) flux in the presence of O3-enriched clean (50 ppb O3; 8 substrates) and ambient air (up to ???70 ppb O3; 6 substrates), relative to clean air (oxidant and Hg free air). In contrast, Hgo fluxes from two artificially Hgo-amended substrates decreased by more than 75% during exposure to O3-enriched clean air relative to clean air. Reactive gaseous mercury emissions from Hg o-amended substrates increased immediately after exposure to O 3 but then decreased rapidly. These experimental results demonstrate that O3 is very important in controlling Hg emissions from substrates. The chemical mechanisms that produced these trends are not known but potentially involve heterogenous reactions between O3, the substrate, and Hg. Our experiments suggest they are not homogenous gas-phase reactions. Comparison of the influence of O3 versus light on increasing Hgo emissions from dry Hg(II)-bearing substrates demonstrated that they have a similar amount of influence although O3 appeared to be slightly more dominant. Experiments using water-saturated substrates showed that the presence of high-substrate moisture content minimizes reactions between atmospheric O3 and substrate-bound Hg. Using conservative calculations developed in this paper, we conclude that because O3 concentrations have roughly doubled in the last 100 years, this could have increased Hgo emissions from terrestrial substrates by 65-72%. ?? 2005 Elsevier Ltd. All rights reserved.

  17. In Situ Validation of the Soil Moisture Active Passive (SMAP) Satellite Mission

    NASA Technical Reports Server (NTRS)

    Jackson, T.; Cosh, M.; Crow, W.; Colliander, A.; Walker, J.

    2011-01-01

    SMAP is a new NASA mission proposed for 2014 that would provide a number of soil moisture and freeze/thaw products. The soil moisture products span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data from the currently available set of soil moisture observing sites and networks need improvement if they are to be useful. Problems include a lack of standardization of instrumentation and installation and the disparity in spatial scale between the point-scale in situ data (a few centimeters) and the coarser satellite products. SMAP has initiated activities to resolve these issues for some of the existing resources. The other challenge to soil moisture validation is the need to expand the number of sites and their geographic distribution. SMAP is attempting to increase the number of sites and their value in validation through collaboration. The issues and solutions involving in situ validation being investigated will be described along with recent results from SMAP validation projects.

  18. Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors

    NASA Astrophysics Data System (ADS)

    Yazdan Mehr, M.; Volgbert, S.; van Driel, W. D.; Zhang, G. Q.

    2017-10-01

    A graphene monolayer has been successfully coated on one side of a bisphenol-A-polycarbonate (BPA-PC) plate, used as a substrate for remote phosphor applications in light-emitting diode (LED)-based products. Using a photoresist transferring method, graphene sheet has been coated on BPA-PC plates. The results show that this graphene monolayer significantly improves the lifetime and performance of LEDs mainly by protecting them against external degradation factors such as moisture and oxygen. Also, LED-based products composed of graphene-coated BPA-PC plates exhibit longer stability with comparatively less loss of luminous efficiency. This method has great potential to significantly improve the reliability of not only LED-based products but also many other microelectronics packaging and components, in which moisture and oxygen are the key causes of failures.

  19. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace.

    PubMed

    Madeira, Jose Valdo; Macedo, Juliana Alves; Macedo, Gabriela Alves

    2012-03-01

    The production of enzymes such as tannases and phytases by solid-state fermentation and their use in animal feed have become a subject of great interest. In the present work, Paecilomyces variotii was used to produce tannase and phytase simultaneously. Solid-state fermentation, a process initially designed for tannase production, was implemented here using orange pomace as substrate. Orange pomace is the waste product of the large orange juice industry in Brazil, and it has also been used as an ingredient in animal feed. In addition to enzymatic production, biotransformation of the phenolic content and antioxidant capacity of the orange pomace were analyzed after fermentation. Fermentation conditions, namely moisture level and tannic acid concentration rate, were studied using CCD methodology. The response surface obtained indicated that the highest tannase activity was 5,000 U/gds after 96 h at 59% (v/w) and 3% (w/w) and that of phytase was 350 U/gds after 72 h at 66% (v/w) and 5.8% (w/w) of moisture level and tannic acid concentration, respectively. The amount of tannase production was similar to the levels achieved in previous studies, but this was accomplished with a 7% (w/w) reduction in the amount of supplemental tannic acid required. These results are the first to show that P. variotii is capable of producing phytase at significant levels. Moreover, the antioxidant capacity of orange pomace when tested against the free radical ABTS was increased by approximately tenfold as a result of the fermentation process.

  20. Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro

    PubMed Central

    Prakash Vincent, Samuel Gnana

    2014-01-01

    A potent fibrinolytic enzyme-producing Bacillus cereus IND1 was isolated from the Indian food, rice. Solid-state fermentation was carried out using agroresidues for the production of fibrinolytic enzyme. Among the substrates, wheat bran supported more enzyme production and has been used for the optimized enzyme production by statistical approach. Two-level full-factorial design demonstrated that moisture, supplementation of beef extract, and sodium dihydrogen phosphate have significantly influenced enzyme production (P < 0.05). A central composite design resulted in the production of 3699 U/mL of enzyme in the presence of 0.3% (w/w) beef extract and 0.05% (w/w) sodium dihydrogen phosphate, at 100% (v/w) moisture after 72 h of fermentation. The enzyme production increased fourfold compared to the original medium. This enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl-cellulose ion-exchange chromatography, Sephadex G-75 gel filtration chromatography, and casein-agarose affinity chromatography and had an apparent molecular mass of 29.5 kDa. The optimum pH and temperature for the activity of fibrinolytic enzyme were found to be 8.0 and 60°C, respectively. This enzyme was highly stable at wide pH range (7.0–9.0) and showed 27% ± 6% enzyme activity after initial denaturation at 60°C for 1 h. In vitro assays revealed that the enzyme could activate plasminogen and significantly degraded the fibrin net of blood clot, which suggests its potential as an effective thrombolytic agent. PMID:25003130

  1. Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties.

    PubMed

    Hashemi, Maryam; Razavi, Seyed Hadi; Shojaosadati, Seyed Abbas; Mousavi, Seyyed Mohammad; Khajeh, Khosro; Safari, Mohammad

    2010-09-01

    Ca-independency with potential activity and stability at low pH are among the most interesting characteristics of alpha-amylase in starch industry. In this attempt the synergetic effect of low pH on activity of crude Ca-independent alpha-amylase isolated from a native Bacillus sp. KR-8104 in solid-state fermentation (SSF) was studied using wheat bran (WB) as a substrate. The effects of different parameters including moisturizing agents, solid substrate to moisture ratio, particle size, incubation temperature and period, inoculum (v/w) and supplementation with 1% (w/w) different carbon and nitrogen sources on enzyme production were investigated. Maximum enzyme production of 140U/g dry fermented substrate was obtained from wheat bran moistened with tap water at a ratio of 1:1.5 and supplemented with 1% (w/w) NH(4)NO(3) and 1% (w/w) lactose after 48h incubation at 37 degrees C. Even though the production of alpha-amylase was lower at 40 and 45 degrees C, the viable cell count was higher. In addition response surface methodology (RSM) was applied to find optimum conditions of temperature and pH on crude amylase activity. Using central composite design (CCD) a quadratic mathematical model equation was derived for the prediction of enzyme activity. The results showed that the model was in good agreement with experimental results, with R(2)=0.90 (p<0.0001) and the low pH has a synergetic effect on enzyme activity at higher temperature. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    Delayed interfacial scale failure takes place after cooling for samples of a Ni(Pt)Al-coated CMSX4 single crystal superalloy, cycled at 1150 C for up to 2000 hr. One sample exhibited premature coating grain boundary wrinkling, alumina scale spallation to bare metal, and a final weight loss of 3.3 mg/cm2 . Spallation under ambient conditions was monitored with time after cooldown and was found to continue for 24 hr. This produced up to 0.05 mg/cm2 additional loss for each hold, accumulating 0.7 mg/cm 2 (20 percent of the total) over the course of the test. After test termination, water immersion produced an additional 0.15 mg/cm2 loss. (A duplicate sample produced much less wrinkling and time dependent spalling, maintaining a net weight gain.) The results are consistent with the general phenomena of moisture-induced delayed spallation (MIDS) of mature, distressed alumina scales formed on oxidation resistant M-Al alloys. Relative ambient humidity is discussed as the factor controlling adsorbed moisture, reaction with the substrate, and hydrogen effects on interface strength.

  3. Dewatering and granulation of sewage sludge by biophysical drying and thermo-degradation performance of prepared sludge particles during succedent fast pyrolysis.

    PubMed

    Han, Rong; Liu, Jinwen; Zhang, Yuancheng; Fan, Xiaoqian; Lu, Wenjing; Wang, Hongtao

    2012-03-01

    A novel two-step technology, fast biophysical drying (BPD) coupling with fast pyrolysis (FP), was investigated for moisture removal and energy recovery from sewage sludge. For BPD, combined operations of extreme thermophilic amendment (with accelerated increasing and controllable maintenance of substrate temperature) and enhanced convective evaporation were conducted, both beneficial for moisture removal (moisture content reaching 23.1% for 7d) and organic preservation. Biophysical-dried sludge (BPDS) was characterized by homogeneous fine-particle morphology and well-developed porous microstructure. The synthesized BPDS particle preserved most organic components (92% volatile matters and 79% HHV of traditional thermal-dried sludge [TTDS]) attributable to the inhibitory effect of BPD adjustment, presenting considerable capacity for subsequent residue-derived energy. For FP, the distribution of products from BPDS pyrolysis indicated that syngas and char yields were higher than those of TTDS. The syngas from BPDS is a type of hydrogen-rich gas composed of 42.6 vol.% H(2) at 900°C. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating.

    PubMed

    Wei, Xueqin; Pang, Jie; Zhang, Changfeng; Yu, Chengcheng; Chen, Han; Xie, Bingqing

    2015-03-15

    A series of moisture-resistant konjac glucomannan films were prepared by coating shellac/stearic acid emulsion on deacetylated konjac glucomannan films (dKGM). The effect of stearic acid content on structure and properties of the coated films were investigated by field emission scanning electron microscopy (FE SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV), water vapor permeability (WVP), water uptake, water contact angle, and tensile testing. The results revealed that shellac in the coating adhered intimately to the surface of dKGM film, and provided a substrate for the dispersion of stearic acid which played an important role in enhancement of the moisture barrier properties and mechanical properties of the coated films. The WVP of the coated films decreased from 2.63×10(-11) to 0.37×10(-11)g/(msPa) and the water contact angle increased from 68° to 101.2° when stearic acid content increased from 0wt% to 40wt%, showing the potential applications in food preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Energy-environmental benefits and economic feasibility of anaerobic codigestion of Iberian pig slaughterhouse and tomato industry wastes in Extremadura (Spain).

    PubMed

    González-González, A; Cuadros, F; Ruiz-Celma, A; López-Rodríguez, F

    2013-05-01

    Anaerobic digestion of Iberian pig slaughterhouse and tomato industry wastes, as well as codigestion operations from such residues, are reported to achieve 54-80% reduction in Chemical Oxygen Demand and 6-19 N m(3)/m(3) substrate methane production. Furthermore, 0.79-0.88 m(3)water/m(3) substrate is seen to be recovered after the above mentioned operations, which might be used as irrigation water, and 0.12-0.21 m(3)agricultural amendment/m(3) substrate with 91-98% moisture content. The present paper also reports on the economic feasibility of both an anaerobic codigestion plant operating with 60% slaughterhouse wastes/40% tomato industry wastes (optimal ratio obtained in previous laboratory-scaled experiments), and an anaerobic digestion plant for Iberian pig slaughterhouse waste. Payback times are reported as 14.86 and 3.73 years, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Aspergillus 6V4, a Strain Isolated from Manipueira, Produces High Amylases Levels by Using Wheat Bran as a Substrate

    PubMed Central

    Celestino, Jessyca dos Reis; Duarte, Ana Caroline; Silva, Cláudia Maria de Melo; Sena, Hellen Holanda; Ferreira, Maria do Perpétuo Socorro Borges Carriço; Mallmann, Neila Hiraishi; Lima, Natacha Pinheiro Costa; Tavares, Chanderlei de Castro; de Souza, Rodrigo Otávio Silva; Souza, Érica Simplício; Souza, João Vicente Braga

    2014-01-01

    The aim of this study was screening fungi strains, isolated from manipueira (a liquid subproduct obtained from the flour production of Manihot esculenta), for amylases production and investigating production of these enzymes by the strain Aspergillus 6V4. The fungi isolated from manipueira belonged to Ascomycota phylum. The strain Aspergillus 6V4 was the best amylase producer in the screening assay of starch hydrolysis in petri dishes (ASHPD) and in the assay in submerged fermentation (ASbF). The strain Aspergillus 6V4 produced high amylase levels (335 UI/L) using wheat bran infusion as the exclusive substrate and the supplementation of this substrate with peptone decreased the production of this enzyme. The moisture content of 70% was the best condition for the production of Aspergillus 6V4 amylases (385 IU/g) in solid state fermentation (SSF). PMID:24724017

  7. Water-Based Peeling of Thin Hydrophobic Films

    NASA Astrophysics Data System (ADS)

    Khodaparast, Sepideh; Boulogne, François; Poulard, Christophe; Stone, Howard A.

    2017-10-01

    Inks of permanent markers and waterproof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows for complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface.

  8. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS) versus C-/X-band (AMSR2) observations. The soil moisture products analyzed here were derived using the Land Parameter Retrieval Model.

  9. Enhanced Soil Moisture Initialization Using Blended Soil Moisture Product and Regional Optimization of LSM-RTM Coupled Land Data Assimilation System.

    NASA Astrophysics Data System (ADS)

    Nair, A. S.; Indu, J.

    2017-12-01

    Prediction of soil moisture dynamics is high priority research challenge because of the complex land-atmosphere interaction processes. Soil moisture (SM) plays a decisive role in governing water and energy balance of the terrestrial system. An accurate SM estimate is imperative for hydrological and weather prediction models. Though SM estimates are available from microwave remote sensing and land surface model (LSM) simulations, it is affected by uncertainties from several sources during estimation. Past studies have generally focused on land data assimilation (DA) for improving LSM predictions by assimilating soil moisture from single satellite sensor. This approach is limited by the large time gap between two consequent soil moisture observations due to satellite repeat cycle of more than three days at the equator. To overcome this, in the present study, we have performed DA using ensemble products from the soil moisture operational product system (SMOPS) blended soil moisture retrievals from different satellite sensors into Noah LSM. Before the assimilation period, the Noah LSM is initialized by cycling through seven multiple loops from 2008 to 2010 forcing with Global data assimilation system (GDAS) data over the Indian subcontinent. We assimilated SMOPS into Noah LSM for a period of two years from 2010 to 2011 using Ensemble Kalman Filter within NASA's land information system (LIS) framework. Results show that DA has improved Noah LSM prediction with a high correlation of 0.96 and low root mean square difference of 0.0303 m3/m3 (figure 1a). Further, this study has also investigated the notion of assimilating microwave brightness temperature (Tb) as a proxy for SM estimates owing to the close proximity of Tb and SM. Preliminary sensitivity analysis show a strong need for regional parameterization of radiative transfer models (RTMs) to improve Tb simulation. Towards this goal, we have optimized the forward RTM using swarm optimization technique for direct Tb assimilation. The results indicate an improvement in Tb simulations based on the multi polarization difference index approach with a correlation of 0.81 (figure 1b (e)) and bias of < 5 K with respect to the SMOS Tb.

  10. Effects of added polyacrylamide on changes in water states during the composting of kitchen waste.

    PubMed

    Yang, Yu-Qiang; Chen, Zhuo-Xian; Zhang, Xue-Qing; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-02-01

    The effects of adding polyacrylamide (PAM), to attempt to delay the loss of capillary water and achieve a better level of organic matter humification, in the composting of kitchen waste were evaluated. Four treatments, with initial moisture content of 60 % were used: 0.1 % PAM added before the start of composting (R1), 0.1 % PAM added when the thermophilic phase of composting became stable (at >50 °C) (R2), 0.1 % PAM added when the moisture content significantly decreased (R3), and no PAM added (R4). The introduction of PAM in R1 and R2 significantly increased the capillary force and delayed the loss of moisture content and capillary water. The introduction of PAM in R2 and R3 improved the composting process, in terms of the degradation of biochemical fractions and the humification degree. These results show that the optimal time for adding PAM was the initial stage of the thermophilic phase.

  11. The effect of mixing ratio variation of sludge and organic solid waste on biodrying process

    NASA Astrophysics Data System (ADS)

    Nasution, A. C.; Kristanto, G. A.

    2018-01-01

    In this study, organic waste was co-biodried with sludge cake to determine which mixing ratio gave the best result. The organic waste was consisted of dried leaves and green leaves, while the sludge cake was obtained from a waste water treatment plant in Bekasi. The experiment was performed on 3 lab-scale reactors with same specifications. After 21 days of experiment, it was found that the reactor with the lowest mixing fraction of sludge (5:1) has the best temperature profile and highest moisture content depletion compared with others. Initial moisture content and initial volatile solid content of this reactor’s feedstock was 52.25% and 82.4% respectively. The airflow rate was 10 lpm. After biodrying was done, the final moisture content of the feedstock from Reactor C was 22.0% and the final volatile solid content was 75.9%.The final calorific value after biodrying process was 3179,28kcal/kg.

  12. Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-01

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  13. Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-18

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  14. On the dominant impact of vertical moisture gradient on mesoscale cloud cellular organization of stratocumulus

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.

    2016-12-01

    Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.

  15. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less

  16. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less

  17. Evaluating ESA CCI Soil Moisture in East Africa

    NASA Technical Reports Server (NTRS)

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.

    2016-01-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  18. Vegetation function and non-uniqueness of the hydrological response

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.

    2012-04-01

    Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.

  19. Direct observations of rock moisture, a hidden component of the hydrologic cycle.

    PubMed

    Rempe, Daniella M; Dietrich, William E

    2018-03-13

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term "rock moisture" to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  20. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  1. High-Resolution Soil Moisture Retrieval using SMAP-L Band Radiometer and RISAT-C band Radar Data for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.

    2016-12-01

    Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.

  2. Container volume and subirrigation schedule influence Quercus variabilis seedling growth and nutrient status in the nursery and field

    Treesearch

    Qiaoyu Sun; R. Kasten Dumroese; Yong Liu

    2018-01-01

    Container volume and irrigation management affect seedling growth in the nursery and field. We evaluated the effects of container volumes (D40, 656 ml; D60, 983 ml) and subirrigation schedules (85%, 75%, 65%, and 55% of 100% total substrate moisture content, TSMC) on seedling growth in a greenhouse and outplanting performance of Chinese cork oak (Quercus variabilis...

  3. A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model

    NASA Astrophysics Data System (ADS)

    Abramoff, Rose Z.; Davidson, Eric A.; Finzi, Adrien C.

    2017-09-01

    Soil decomposition models range from simple empirical functions to those that represent physical, chemical, and biological processes. Here we develop a parsimonious, modular C and N cycle model, the Dual Arrhenius Michaelis-Menten-Microbial Carbon and Nitrogen Phyisology (DAMM-MCNiP), that generates testable hypotheses regarding the effect of temperature, moisture, and substrate supply on C and N cycling. We compared this model to DAMM alone and an empirical model of heterotrophic respiration based on Harvard Forest data. We show that while different model structures explain similar amounts of variation in respiration, they differ in their ability to infer processes that affect C flux. We applied DAMM-MCNiP to explain an observed seasonal hysteresis in the relationship between respiration and temperature and show using an exudation simulation that the strength of the priming effect depended on the stoichiometry of the inputs. Low C:N inputs stimulated priming of soil organic matter decomposition, but high C:N inputs were preferentially utilized by microbes as a C source with limited priming. The simplicity of DAMM-MCNiP's simultaneous representations of temperature, moisture, substrate supply, enzyme activity, and microbial growth processes is unique among microbial physiology models and is sufficiently parsimonious that it could be incorporated into larger-scale models of C and N cycling.

  4. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  5. North Atlantic salinity as a predictor of Sahel rainfall.

    PubMed

    Li, Laifang; Schmitt, Raymond W; Ummenhofer, Caroline C; Karnauskas, Kristopher B

    2016-05-01

    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel.

  6. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation.

    PubMed Central

    Ward, R L; Yeager, J G; Ashley, C S

    1981-01-01

    Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765

  7. North Atlantic salinity as a predictor of Sahel rainfall

    PubMed Central

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.; Karnauskas, Kristopher B.

    2016-01-01

    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel. PMID:27386525

  8. Mass flow of a volatile organic liquid mixture in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstl, Z.; Galin, Ts.; Yaron, B.

    1994-05-01

    The flow of kerosene, a volatile organic liquid mixture (VOLM), was studied in loam and clay soils and in a medium sand. The kerosene residual capacity and conductivity were determined for all three media at different initial moisture contents and with kerosene of different compositions. The kerosene conductivity of the soil was found to be strongly influenced by the soil texture and initial moisture content as well as by the kerosene composition. The kerosene conductivity of the sand was two orders of magnitude greater than that of the soils and was unaffected by initial moisture contents as high as fieldmore » capacity. The kerosene conductivity of the loam soil was similar in oven dry and air dry soils, but increased significantly in soils at 70% and fun field capacity due to the Yuster effect. In the clay soil the kerosene conductivity of the air dry sod was four times that of the oven dry sod and increased somewhat in the soil at 70% field capacity. No kerosene flow was observed in the oven dry soil at full field capacity. The differences in kerosene conductivity in these soils and the effect of moisture content were attributed to the different pore-sin distributions of the soil& Changes in the composition of the kerosene due to volatilization of the light fractions resulted in increased viscosity of the residual kerosene. This increased viscosity affected the fluid properties of kerosene, which resulted in decreased kerosene conductivity in the sand and the soils. 29 refs., 4 figs., 4 tabs.« less

  9. AGCM Biases in Evaporation Regime: Impacts on Soil Moisture Memory and Land-Atmosphere Feedback

    NASA Technical Reports Server (NTRS)

    Mahanama, Sarith P. P.; Koster, Randal D.

    2005-01-01

    Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typically biased relative to observations, the simulated evaporative regime of a region may be biased, with consequent negative effects on the AGCM s ability to translate an initialized soil moisture anomaly into an improved seasonal prediction. These potential problems are investigated through extensive offline analyses with the Mosaic land surface model (LSM). We first forced the LSM globally with a 15-year observations-based dataset. We then repeated the simulation after imposing a representative set of GCM climate biases onto the forcings - the observational forcings were scaled so that their mean seasonal cycles matched those simulated by the NSIPP-1 (NASA Global Modeling and Assimilation Office) AGCM over the same period-The AGCM s climate biases do indeed lead to significant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory timescales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should contribute to overestimated feedback in certain parts of North America - parts already identified in previous studies as having excessive feedback. The present study thus supports the notion that the reduction of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into seasonal prediction skill.

  10. Sequential Optimization Methods for Augmentation of Marine Enzymes Production in Solid-State Fermentation: l-Glutaminase Production a Case Study.

    PubMed

    Sathish, T; Uppuluri, K B; Veera Bramha Chari, P; Kezia, D

    There is an increased l-glutaminase market worldwide due to its relevant industrial applications. Salt tolerance l-glutaminases play a vital role in the increase of flavor of different types of foods like soya sauce and tofu. This chapter is presenting the economically viable l-glutaminases production in solid-state fermentation (SSF) by Aspergillus flavus MTCC 9972 as a case study. The enzyme production was improved following a three step optimization process. Initially mixture design (MD) (augmented simplex lattice design) was employed to optimize the solid substrate mixture. Such solid substrate mixture consisted of 59:41 of wheat bran and Bengal gram husk has given higher amounts of l-glutaminase. Glucose and l-glutamine were screened as a finest additional carbon and nitrogen sources for l-glutaminase production with help of Plackett-Burman Design (PBD). l-Glutamine also acting as a nitrogen source as well as inducer for secretion of l-glutaminase from A. flavus MTCC 9972. In the final step of optimization various environmental and nutritive parameters such as pH, temperature, moisture content, inoculum concentration, glucose, and l-glutamine levels were optimized through the use of hybrid feed forward neural networks (FFNNs) and genetic algorithm (GA). Through sequential optimization methods MD-PBD-FFNN-GA, the l-glutaminase production in SSF could be improved by 2.7-fold (453-1690U/g). © 2016 Elsevier Inc. All rights reserved.

  11. Solid-State Fermentation of Carrot Pomace for the Production of Inulinase by Penicillium oxalicum BGPUP-4.

    PubMed

    Singh, Ram Sarup; Chauhan, Kanika; Singh, Jagroop; Pandey, Ashok; Larroche, Christian

    2018-03-01

    Inulinases are an important class of industrial enzymes which are used for the production of high-fructose syrup and fructooligosaccharides. Inulin, a polyfructan, is generally employed for the production of inulinase, which is a very expensive substrate. A number of agroindustrial residues have been used for cost-effective production of inulinases. In the present study, carrot pomace was selected as a substrate for the production of inulinase by Penicillium oxalicum BGPUP-4 in solid-state fermentation. Carrot pomace is one of the good substrates for bioprocesses, because it is rich in soluble and insoluble carbohydrates. A central composite rotatable design (CCRD) used in response surface methodology was employed for the optimal production of inulinase from carrot pomace. Using CCRD, 15 runs were practiced to optimize the range of three independent variables: moisture content (70-90%), incubation time (4-6 days) and pH (5.0-7.0) for inulinase production. Carrot pomace supplemented with 0.5% inulin as an inducer, 0.2% NH 4 H 2 PO 4 , 0.2% NaNO 3 , 0.2% KH 2 PO 4 , 0.05% MgSO 4 ·7H 2 O and 0.001% FeSO 4 ·7H 2 O was used for the production of inulinase in solid-state fermentation at 30 °C. Inulinase production (322.10 IU per g of dry substrate) was obtained under the optimized conditions, i.e . moisture content of 90%, incubation time 4 days and pH=7.0. The corresponding inulinase/invertase (I/S) ratio (3.38) was also high, which indicates the inulolytic nature of the enzyme. Multiple correlation coefficients R for inulinase production and I/S ratio were 0.9995 and 0.9947, respectively. The R value very close to one indicates an excellent correlation between experimental and predicted results.

  12. Solid-State Fermentation of Carrot Pomace for the Production of Inulinase by Penicillium oxalicum BGPUP-4

    PubMed Central

    2018-01-01

    Summary Inulinases are an important class of industrial enzymes which are used for the production of high-fructose syrup and fructooligosaccharides. Inulin, a polyfructan, is generally employed for the production of inulinase, which is a very expensive substrate. A number of agroindustrial residues have been used for cost-effective production of inulinases. In the present study, carrot pomace was selected as a substrate for the production of inulinase by Penicillium oxalicum BGPUP-4 in solid-state fermentation. Carrot pomace is one of the good substrates for bioprocesses, because it is rich in soluble and insoluble carbohydrates. A central composite rotatable design (CCRD) used in response surface methodology was employed for the optimal production of inulinase from carrot pomace. Using CCRD, 15 runs were practiced to optimize the range of three independent variables: moisture content (70-90%), incubation time (4-6 days) and pH (5.0-7.0) for inulinase production. Carrot pomace supplemented with 0.5% inulin as an inducer, 0.2% NH4H2PO4, 0.2% NaNO3, 0.2% KH2PO4, 0.05% MgSO4·7H2O and 0.001% FeSO4·7H2O was used for the production of inulinase in solid-state fermentation at 30 °C. Inulinase production (322.10 IU per g of dry substrate) was obtained under the optimized conditions, i.e. moisture content of 90%, incubation time 4 days and pH=7.0. The corresponding inulinase/invertase (I/S) ratio (3.38) was also high, which indicates the inulolytic nature of the enzyme. Multiple correlation coefficients R for inulinase production and I/S ratio were 0.9995 and 0.9947, respectively. The R value very close to one indicates an excellent correlation between experimental and predicted results. PMID:29795994

  13. The synthesis and characterization of xerogel silica films for interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Chow, Loren Anton

    1999-11-01

    Lowering the dielectric constant, k, of the interlayer dielectric in microprocessors leads to a decrease in power consumption, crosstalk between interconnects and RC time delay. Because of its low density, porous silica, as derived from the sol-gel process, has been widely praised as having the lowest dielectric constant of all viable "low-k" materials. Presented in this work are the results of an investigation featuring the synthesis and characterization of xerogel silica films. Synthesized were xerogel films derived from a tetrafanctional precursor. Such a material was found to be brittle and given to cracking and delamination during curing. it was found, however, that organic modification of the xerogel film led to a compliant material that remained crack-free throughout the curing process. This "hybrid" material filled 0.35 mum trenches without voids, cracks or delamination. The dielectric constant was found to be extremely sensitive to moisture. Although the moisture content was lower than that detectable by Fourier-transform infrared spectroscopy, the dielectric constant in ambient conditions was 80% higher than a dry film. The voltage breakdown was 3.4 MV/cm and the leakage current during bias temperature stressing (at 200 V and 200°C) was negligibly low. There was a critical film thickness at which the film cracked. This critical film thickness was dependent on the elastic constants of the substrate and the film. Because the strain energy released by the cracking film is commensurate with the compliance of the substrate, cracks formed preferentially in the <100> directions; that is, the directions of lowest substrate modulus. The critical thickness for the <100> direction for the hybrid film cured at 500°C was found to be 1.10 mum. Furthermore, it was found that cracks from the xerogel penetrated into the Si substrate to a depth of 0.8 mum. Using substrates of different elastic constants, the biaxial modulus and the coefficient of thermal expansion were found to be respectively 56 GPa and 2.11 x 10-6/°C. With knowledge of the biaxial modulus, the depth of cracking into the Si substrate and an assumption on Poisson's ratio, the critical crack energy release rate of the film was found to be 1.8 J/m2.

  14. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.

    PubMed

    Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M

    2016-12-01

    The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants, as these can maintain transpiration for a longer time even through the top soil layer dries out.

  16. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach

    NASA Astrophysics Data System (ADS)

    Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid

    2018-01-01

    The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.

  17. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash.

    PubMed

    Mohana, Sarayu; Shah, Amita; Divecha, Jyoti; Madamwar, Datta

    2008-11-01

    Xylanase production by a newly isolated strain of Burkholderia sp. was studied under solid state fermentation using anaerobically treated distillery spent wash. Response surface methodology (RSM) involving Box-Behnken design was employed for optimizing xylanase production. The interactions between distillery effluent concentration, initial pH, moisture ratio and inoculum size were investigated and modeled. Under optimized conditions, xylanase production was found to be in the range of 5200-5600 U/g. The partially purified enzyme recovered after ammonium sulphate fractionation showed maximum activity at 50 degrees C and pH 8.6. Kinetic parameters like Km and Vmax for xylan were found to be 12.75 mg/ml and 165 micromol/mg/min. In the presence of metal ions such as Ca2+, Co2+, Mn2+, Ba2+, Mg2+ and protein disulphide reducing agents such as beta-mercaptoethanol and dithiotheritol (DTT) the activity of enzyme increased, where as strong inhibition of enzyme activity was observed in the presence of Cu2+, Ag+, Fe2+ and SDS. The crude enzyme hydrolysed lignocellulosic substrate, wheat bran as well as industrial pulp.

  18. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  19. Monitoring the subsurface hydrologic response to shallow landsliding in the San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Stock, J. D.; Foster, K. A.; Knepprath, N.; Reid, M. E.; Schmidt, K. M.; Whitman, M. W.

    2011-12-01

    Intense or prolonged rainfall triggers shallow landslides in steeplands of the San Francisco Bay Area each year. These landslides cause damage to built infrastructure and housing, and in some cases, lead to fatalities. Although our ability to forecast and map the distribution of rainfall has improved (e.g., NEXRAD, SMART-R), our ability to estimate landslide susceptibility is limited by a lack of information about the subsurface response to rainfall. In particular, the role of antecedent soil moisture content in setting the timing of shallow landslide failures remains unconstrained. Advances in instrumentation and telemetry have substantially reduced the cost of such monitoring, making it feasible to set up and maintain networks of such instruments in areas with a documented history of shallow landslides. In 2008, the U.S. Geological Survey initiated a pilot project to establish a series of shallow landslide monitoring stations in the San Francisco Bay area. The goal of this project is to obtain a long-term (multi-year) record of subsurface hydrologic conditions that occur from winter storms. Three monitoring sites are now installed in key landslide prone regions of the Bay Area (East Bay Hills, Marin County, and San Francisco Peninsula Hills) each consisting of a rain gage and multiple nests of soil-moisture sensors, matric-potential sensors, and piezometers. The sites were selected with similar characteristics in mind consisting of: (1) convergent bedrock hollow topographic settings located near ridge tops, (2) underlying sandstone bedrock substrates, (3) similar topographic gradients (~30°), (4) vegetative assemblages of grasses with minor chaparral, and (5) a documented history of landsliding in the vicinity of each site. These characteristics are representative of shallow-landslide-prone regions of the San Francisco Bay Area and also provide some constraint on the ability to compare and contrast subsurface response across different regions. Data streams from two of the sites, one operational in 2009 and one in 2010 have been analyzed and showcase both the seasonal patterns of moisture increase and decrease between summer-winter-summer conditions, as well as patterns of cyclical short-term wetting and drying as storms pass through the region. Further, the data show that at one location (East Bay Hills), storm-generated antecedent soil moisture conditions led to positive pore water pressures that correlate directly to shallow landsliding observed in the immediate vicinity of the monitoring site. This information, along with more extensive and continued monitoring and analysis should provide a basis and methodology for performing future shallow landslide assessments which depend not only on forecast rainfall, but also on pre-storm antecedent, subsurface soil moisture conditions.

  20. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments.

    PubMed

    Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki

    2017-09-01

    Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Soil Moisture Data Assimilation in the NASA Land Information System for Local Modeling Applications and Improved Situational Awareness

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.

    2014-01-01

    As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model (LSM) simulations and includes an Ensemble Kalman Filter for conducting land surface DA. SPoRT has added a module to read, quality-control and bias-correct swaths of Level II SMOS soil moisture retrievals prior to assimilation within LIS. The impact of SMOS DA is being tested using the Noah LSM. Experiments are being conducted to examine the impacts of SMOS soil moisture DA on the resulting LISNoah fields and subsequent NWP simulations using the Weather Research and Forecasting (WRF) model initialized with LIS-Noah output. LIS-Noah soil moisture will be validated against in situ observations from Texas A&M's North American Soil Moisture Database to reveal the impact and possible improvement in soil moisture trends through DA. WRF model NWP case studies will test the impacts of DA on the simulated near-surface and boundary-layer environments, and precipitation during both quiescent and disturbed weather scenarios. Emphasis will be placed on cases with large analysis increments, especially due to contributions from regional irrigation patterns that are not represented by precipitation input in the baseline LIS-Noah run. This poster presentation will describe the soil moisture DA methodology and highlight LIS-Noah and WRF simulation results with and without assimilation.

  2. Towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.

    2017-04-01

    From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only evaluated using the default dielectric model for mineral soils is ongoing for the "organic" L-MEB version. Additionally, in order to decide where a soil moisture retrieval using the "organic" dielectric model should be triggered, information on soil organic matter content in the soil surface layer has to be considered in the retrieval algorithm. For this purpose, SoilGrids (www.soilgrids.org) providing soil organic carbon content (SOCC) in g/kg is under study. A SOCC threshold based on the relation between the SoilGrids' SOCC and the presence of organic soil surface layers (relevant to alter the microwave L-band emissions from the land surface) in the SoilGrids' source soil profile information has to be established. In this communication, we present the current status of the above outlined studies with the objective to advance towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations.

  3. Mathematical model of organic substrate degradation in solid waste windrow composting.

    PubMed

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  4. Studying the effect of material initial conditions on drying induced stresses

    NASA Astrophysics Data System (ADS)

    Heydari, M.; Khalili, K.; Ahmadi-Brooghani, S. Y.

    2018-02-01

    Cracking as a result of non-uniform deformation during drying is one of defects that may occur during drying and has to be dealt with by proper drying treatment. In the current study the effect of initial condition has been investigated on stress-strain induced by drying. The convective drying of a porous clay-like material has been simulated by using a mathematical model. Mass and heat transfer along with the mechanical behavior of the object being dried make the phenomenon a highly coupled problem. The coupling variables are the solid displacement, moisture content and temperature of the porous medium. A numerical solution is sought and employed to predict the influence of initial conditions of material on the drying induced stresses, the moisture content, and the temperature variations. Simulation results showed that increasing the initial temperature is an effective way to reduce the stresses induced by drying and to obtain products with good quality without significant change in drying curve and in comparison this is more effective than intermittent drying.

  5. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  6. Water content and the conversion of phytochrome regulation of lettuce dormancy

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.

    1987-01-01

    In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.

  7. Compressive strength and hydration processes of concrete with recycled aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenders, Eduardus A.B., E-mail: e.a.b.koenders@coc.ufrj.br; Microlab, Delft University of Technology; Pepe, Marco, E-mail: mapepe@unisa.it

    2014-02-15

    This paper deals with the correlation between the time evolution of the degree of hydration and the compressive strength of Recycled Aggregate Concrete (RAC) for different water to cement ratios and initial moisture conditions of the Recycled Concrete Aggregates (RCAs). Particularly, the influence of such moisture conditions is investigated by monitoring the hydration process and determining the compressive strength development of fully dry or fully saturated recycled aggregates in four RAC mixtures. Hydration processes are monitored via temperature measurements in hardening concrete samples and the time evolution of the degree of hydration is determined through a 1D hydration and heatmore » flow model. The effect of the initial moisture condition of RCAs employed in the considered concrete mixtures clearly emerges from this study. In fact, a novel conceptual method is proposed to predict the compressive strength of RAC-systems, from the initial mixture parameters and the hardening conditions. -- Highlights: •The concrete industry is more and more concerned with sustainability issues. •The use of recycled aggregates is a promising solution to enhance sustainability. •Recycled aggregates affect both hydration processes and compressive strength. •A fundamental approach is proposed to unveil the influence of recycled aggregates. •Some experimental comparisons are presented to validate the proposed approach.« less

  8. Integrated measurements and modeling of CO2, CH4, and N2O fluxes using soil microsite frequency distributions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Sihi, Debjani; Savage, Kathleen

    2017-04-01

    Soil fluxes of greenhouse gases (GHGs) play a significant role as biotic feedbacks to climate change. Production and consumption of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. Models of belowground processes of these GHGs should be internally consistent with respect to the biophysical processes of gaseous production, consumption, and transport within the soil, including the contrasting effects of oxygen (O2) as either substrate or inhibitor. We installed automated chambers to simultaneously measure soil fluxes of CO2 (using LiCor-IRGA), CH4, and N2O (using Aerodyne quantum cascade laser) along soil moisture gradients at the Howland Forest in Maine, USA. Measured fluxes of these GHGs were used to develop and validate a merged model. While originally intended for aerobic respiration, the core structure of the Dual Arrhenius and Michaelis-Menten (DAMM) model was modified by adding M-M and Arrhenius functions for each GHG production and consumption process, and then using the same diffusion functions for each GHG and for O2. The area under a soil chamber was partitioned according to a log-normal probability distribution function, where only a small fraction of microsites had high available-C. The probability distribution of soil C leads to a simulated distribution of heterotrophic respiration, which translates to a distribution of O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates microsite concentrations of O2, which then determine the distribution of microsite production and consumption of CH4 and N2O, and subsequently their microsite concentrations using the same diffusion function. At many moisture values, there are some microsites of production and some of consumption for each gas, and the resulting simulated microsite concentrations of CH4 and N2O range from below ambient to above ambient atmospheric values. As soil moisture or temperature increase, the skewness of the microsite distributions of heterotrophic respiration and CH4 concentrations shifts toward a larger fraction of high values, while the skewness of microsite distributions of O2 and N2O concentrations shifts toward a larger fraction of low values. This approach of probability distribution functions for each gas simulates the importance of microsite hotspots of methanogenesis and N2O reduction at high moisture (and temperature). In addition, the model demonstrates that net consumption of atmospheric CH4 and N2O can occur simultaneously within a chamber due to the distribution of soil microsite conditions, which is consistent with some episodes of measured fluxes. Because soil CO2, N2O and CH4 fluxes are linked through substrate supply and O2 effects, the multiple constraints of simultaneous measurements of all three GHGs proved to be effective when applied to our combined model. Simulating all three GHGs simultaneously in a parsimonious modeling framework provides confidence that the most important mechanisms are skillfully simulated using appropriate parameterization and good process representation.

  9. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOEpatents

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  10. Green technologies in natural and synthetic surfaces use for dumps reclamation

    NASA Astrophysics Data System (ADS)

    Klimkina, Iryna; Fedotov, Viacheslav; Heilmeier, Hermann

    2016-04-01

    Last 50 years coal dumps reclamation in Ukraine was based on two- or three-layer models. These models use a fertile substratum underneath a black soil (chernozem) layer 0.5 m thick (Model 1) or 0.70-1 m thick (Model 2). Model 3 has 3 layers. The deepest layer is a substrate which is phytotoxic or unfavourable for crop growth (coal-bearing substrates with a high content of pyrite, saline substrates). The second layers acts as a protective shield and consist of loess (0.5 m). The third is the layer of fertile chernozem (0.3-0.8 m). However, due to the situation of a shortage of fertile soils, a lack of nutrient elements in the waste rock, and a moisture deficit with strong rock acidification, it is considered important to develop new non-traditional reclamation methods based on the geo-synthetic materials used in conjunction with sowing lawn grasses or grass seeds inside. The geogrids and biogeotextiles made from natural materials such as hemp, flax, jute, coconut and other plant biopolymer fibers are recommended for bioremediation. The biodegradable carcass of reclamation covering materials stabilises the slopes, effectively restraints the soil particles from leaching and blowing, and prevents wash-out of the plant seeds, as well as protecting them from being eaten by animals. The research object of the presented work was the coal dumps of sulfide rocks in Western Donbass (Ukraine). These rocks are characterized by low level of the maximum hygroscopic moisture (4.3%) and moisture content not available for plant growth (5-6%). Also the rock has an average level of salinity, mainly of the sulphate type. The main goal of the study was to justify the use of some non-traditional materials such as burlap (jute cloth), agricultural fibers (light non-woven material from polypropylene fiber of spun-bond type) and a padding of polyester in the capacity of a geosynthetic substrate as a basis for the mixed grass crop that enable a reduction in the bioremediation costs (in comparison with traditional methods of covering by fertile soil layer) and the arrangement of lawn roll. A mixture of grass crops was used that included three types of grass seeds which were sown in the condition of hydroponics with settled tap water in a floating poly-foam frame on the one- and two-layer (with grass seeds inside) substrates of the above-mentioned materials. The best results, in terms of seed germination, root and above-ground parts of the plants length, were obtained with a single layer of jute burlap on which practically all germinated seeds reached a high degree of seedlings mass and root productivity similar to indices of growth mixtures in greenhouses. As a mulch of organic ingredients a wide range of crop residues, namely wheat straw, corn stalks, sunflower stalks and husks, and others, can be used.

  11. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    NASA Astrophysics Data System (ADS)

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable fields, pasture and forest) sampled from two geologies (silicate versus limestone) in the same region in Austria were incubated at three temperatures (5, 15 and 25 ˚ C) for 1 day and at three moisture levels (30, 60, 90% water-holding capacity) for 7 days in the laboratory, respectively. We will present the results and discuss major effects of environmental factors as well as of land management and geology on microbial growth, respiration, microbial CUE and microbial biomass turnover, and set those in relation to microbial community composition.

  12. Relative survival of four serotypes of Salmonella enterica in low-water activity whey protein powder held at 36 and 70°C at various water activity levels

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is the leading cause of health burdens in the United States. Although the pathogen is not able to grow at aw levels below 0.94, it can survive in low-moisture foods for long periods of time. Temperature, aw, substrate and serotype affect its persistence. The aim of this study was...

  13. Influence of Offshore Initial Moisture Field and Convection on the Development of Coastal Convection in a Heavy Rainfall Event over South China during the Pre-summer Rainy Season

    NASA Astrophysics Data System (ADS)

    Lu, Rong; Sun, Jianhua; Fu, Shenming

    2017-04-01

    This paper utilizes the observation data from the Southern China Monsoon Rainfall Experiment (SCMREX) and the numerical experiments to investigate the influence of moisture amount and convection development over the northern South China Sea on a heavy rainfall event in coastal South China on May 8, 2014. Intensive sounding and wind profiles data reveal that there existed a convergence region formed by the southwesterly and easterly jet in the Pearl River delta, which provided favorable conditions for the development of convection. Whether the initial relative humidity field was increased or decreased in the offshore area, or turning off sensible and latent heat release from the cumulus and microphysical processes, had significant effects on the intensity and movement of convection in the coastal areas of Guangdong owing to the adjustment of temperature and wind fields. Especially, when increasing offshore initial humidity, prosperous sea convection modified the circulation in the entire simulation area, and suppressed the development of convection over land. Moreover, if sensible and latent heat from cumulus and microphysical processes was turned off, the low-level jets could reach further north, and the convective system moved to the northeast in the later stage. These experiments indicate that offshore initial moisture filed and convection activity are indeed important for precipitation forecast in the coastal areas, therefore it's necessary to enhance offshore observation and data assimilation methods in the future.

  14. The Effects of Soil Type, Particle Size, Temperature, and Moisture on Reproduction of Belonolaimus longicaudatus.

    PubMed

    Robbins, R T; Barker, K R

    1974-01-01

    Effects of soil type, particle size, temperature, and moisture on the reproduction of Belonolaimus longicaudatus were investigated under greenhouse conditions. Nematode increases occurred only in soils with a minimum of 80% sand and a maximum of 10% clay. Optimum soil particle size for reproduction of the Tarboro, N.C. and Tifton, Ga. populations of the nematode was near that of 120-370 mum (65-mesh) silica sand. Reproduction was greatest at 25-30 C. Some reproduction by the Tifton, Ga. population occurred at 35 C, whereas the Tarboro, N.C. population declined, as compared to the initial inoculum. Both populations reproduced slightly at 20 C. Nematode reproduction was greater at a moisture level of 7% than at a high of 30% or a low of 2%. Reproduction occurred at the high moisture level only when the nutrient solution was aerated.

  15. Compressive behavior of fine sand.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less

  16. Effect of cultivating conditions on alpha-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation.

    PubMed

    Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing

    2007-05-01

    The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.

  17. Effect of cultivating conditions on α-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation

    PubMed Central

    Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing

    2007-01-01

    The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067

  18. Plant Growth During the Greenhouse II Experiment on the MIR Orbital Station

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bingham, G. E.; Bubenheim, D. L.; Yendler, B.; Sytchev, V.; Levinskikh, M. A.; Ivanova, I.; Chernova, L.; hide

    2002-01-01

    We carried out three experiments with Super Dwarf wheat in the Bulgarian/Russian growth chamber Svet (0.1 sq m growing area) on the Space Station Mir. This paper mostly describes the first of these NASA-supported trials, began on Aug. 13, 1995. Plants were sampled five times and harvested on Nov. 9 after 90 days. Equipment failures led to low irradiance (three, then four of six lamp sets failed), instances of high temperatures (ca. 37 C), and sometimes excessive-substrate moisture. Although plants grew for the 90 days, no wheat heads were produced. Considering the low light levels, plants were surprisingly green, but of course biomass production was low. Plants were highly disoriented (low light, mirror walls?). Fixed and dried samples and the root module were returned on the US Shuttle Atlantis on Nov. 20, 1995. Samples of the substrate, a nutrient-charged zeolite called Balkanine, were taken from the root module, carefully examined for roots, weighed, dried, and reweighed. The Svet control unit and the light bank were shipped to Moscow. An experiment validation test (EVT) of plant growth and experiment procedures, carried out in Moscow, was highly successful. Equipment built in Utah to measure CO2, H2O vapor, irradiance, air and leaf (IR) temperature, O2, pressure, and substrate moisture worked well in the EVT and in space. After this manuscript was first prepared, plants were grown in Mir with a new light bank and controller for 123 days in late 1996 and 39 days in 1996/1997. Plants grew exceptionally well with higher biomass production than in any previous space experiment, but the ca. 280 wheat heads that were produced in 1996 contained no seeds. Ethylene in the cabin atmosphere was responsible.

  19. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    PubMed

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  20. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable resolution to provide real-time, daily soil initialization data in place of data interpolated from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model soil moisture and temperature fields. Additionally, realtime green vegetation fraction (GVF) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite will be incorporated into the KMS-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service (NESDIS). Finally, model verification capabilities will be transitioned to KMS using the Model Evaluation Tools (MET; Brown et al. 2009) package in conjunction with a dynamic scripting package developed by SPoRT (Zavodsky et al. 2014), to help quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. Furthermore, the transition of these MET tools will enable KMS to monitor model forecast accuracy in near real time. This paper presents preliminary efforts to improve land surface model initialization over eastern Africa in support of operations at KMS. The remainder of this extended abstract is organized as follows: The collaborating organizations involved in the project are described in Section 2; background information on LIS and the configuration for eastern Africa is presented in Section 3; the WRF configuration used in this modeling experiment is described in Section 4; sample experimental WRF output with and without LIS initialization data are given in Section 5; a summary is given in Section 6 followed by acknowledgements and references.

  1. Time constants for the evolution of sea spray droplets

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    1990-11-01

    Sea spray droplets start with the same temperature as the ocean surface from which they form. In high-latitude, polar-low conditions, they therefore cool and evaporate in a relatively cold wind and may alter the air sea exchange of heat and moisture. This paper presents equations that model the thermal and size (moisture) evolution of a spray droplet from the time it forms until it reaches equilibrium with its environment. The model does well when tested against some of the scanty data available on the evolution of saline droplets. We parameterize the thermal and size evolution of spray droplets with the time constants τT and τr, which are, respectively, the times required for a droplet to come to within e-1 of its equilibrium temperature and within e-1 of its equilibrium radius. τr is always about three orders of magnitude larger than τT; the thermal exchange is thus complete before the moisture exchange even starts. Consequently, the ambient humidity has little effect on the thermal exchange rate, and the initial droplet temperature has negligible effect on the moisture exchange rate. We also parameterize the gravitational settling of droplets and their potential for turbulent suspension with the time scales τf and τw, respectively. Comparing the four time scales, we see that spray droplets with initial radii less than 10μm reach both thermal and size equilibrium with the ambient air. Droplets with initial radii greater than 300μm, on the other hand, fall back into the sea before exchanging appreciable heat or moisture; they thus have little impact on air sea exchange. In the mid-range, droplets with initial radii between 10 and 300μm, the physics is more complex. Even after comparing τT and τr with τf and τw, we still cannot say unequivocally which process is fastest because of the rudimentary nature of the τw estimates. Future work must thus focus on the generation and turbulent transport of droplets of this size if we are to understand how sea spray affects air sea exchange.

  2. Investigation of Convective Initiation Along a Dryline Using Observations and Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Weldegaber, M. H.; Demoz, B. B.; Sparling, L.; Hoff, R. M.; Chiao, S.

    2007-12-01

    A narrow zone of strong horizontal moisture gradient, known as a dryline, is frequently observed over portions of the Southern Great Plains of the United States. The dryline is a boundary separating warm, moist maritime air from the Gulf of Mexico and hot, dry continental air from southwest U.S. and northern Mexico. The dryline acts as a focus for severe convective storms, and often leads to flooding and tornadoes. Although most storms initiate at or near the dryline, the exact processes by which convection is triggered and the preferred location for convection along the dryline are not well understood. Because the underlying processes are highly nonlinear, current numerical weather prediction (NWP) models show poor skill in their ability to accurately forecast these events. In this research a non-convective dryline case over Oklahoma and Texas panhandle on 22 May 2002 was considered. Using extensive high spatial and temporal resolution observational data from the International H2O Project, a field campaign in 2002 (IHOP_2002), and the National Center for Atmospheric Research (NCAR) Weather Forecasting and Research (WRF) model moisture evolution and variability in the boundary layer is thoroughly analyzed and investigated. Performance of the model and the possible reason why the anticipated dryline on 22 May 2002 did not trigger convective storm over Homestead - OK area are discussed. Results of the observational analysis indicate that abundant moisture did not sustain over Homestead - OK area during 22 May 2002. Moreover, vertical structure of water vapor mixing ratio indicate that moisture was not deep enough for vertically moving air parcels due to the dryline convergence provide the necessary destabilization effect to support deep convection initiation during this period.

  3. The effect of soil type on the bioremediation of petroleum contaminated soils.

    PubMed

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Modeling Study of the Spring 2011 Extreme US Weather Activity

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Suarez, M.; Chang, Y.

    2012-01-01

    The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding.

  5. Development of a Solid-State Fermentation System for Producing Bioethanol from Food Waste

    NASA Astrophysics Data System (ADS)

    Honda, Hiroaki; Ohnishi, Akihiro; Fujimoto, Naoshi; Suzuki, Masaharu

    Liquid fermentation is the a conventional method of producing bioethanol. However, this method results in the formation of high concentrations waste after distillation and futher treatment requires more energy and is costly(large amounts of costly energy).Saccharification of dried raw garbage was tested for 12 types of Koji starters under the following optimum culture conditions: temperature of 30°C and initial moisture content of 50%.Among all the types, Aspergillus oryzae KBN650 had the highest saccharifying power. The ethanol-producing ability of the raw garbage was investigated for 72 strains of yeast, of which Saccharomyces cerevisiae A30 had the highest ethanol production(yield)under the following optimum conditions: 1 :1 ratio of dried garbage and saccharified garbage by weight, and initial moisture content of 60%. Thus, the solid-state fermentation system consisted of the following 4 processes: moisture control, saccharification, ethanol production and distillation. This system produced 0.6kg of ethanol from 9.6kg of garbage. Moreover the ethanol yield from all sugars was calculated to be 0.37.

  6. Ecohydrological drought monitoring and prediction using a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2017-12-01

    Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.

  7. Indoor Air Problems and Hoarseness in Children.

    PubMed

    Kallvik, Emma; Putus, Tuula; Simberg, Susanna

    2016-01-01

    A well-functioning voice is becoming increasingly important because voice-demanding professions are increasing. The largest proportion of voice disorders is caused by factors in the environment. Moisture damage is common and can initiate microbial growth and/or diffusion of chemicals from building materials. Indoor air problems due to moisture damage are associated with a number of health symptoms, for example, rhinitis, cough, and asthma symptoms. The purpose of this study was to investigate if children attending a day care center, preschool, or school with indoor air problems due to moisture damage were hoarse more often than the children in a control group. Information was collected through electronic and paper questionnaires from the parents of 6- to 9-year-old children (n = 1857) attending 57 different day care centers, preschools, or schools with or without indoor air problems due to moisture damage. The results showed a significant correlation between the degree of indoor air problem due to moisture damage and the frequency of hoarseness. Significant predictors for the child being hoarse every week or more often were dry cough, phlegm cough, and nasal congestion. The results indicate that these symptoms and exposure to indoor air problems due to moisture damage should be included in voice anamnesis. Furthermore, efforts should be made to remediate indoor air problems due to moisture damage and to treat health symptoms. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States

    NASA Astrophysics Data System (ADS)

    Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.

    2008-12-01

    Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.

  9. Detection of moisture and moisture related phenomena from Skylab. [Texas

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.

    1973-01-01

    The author has identified the following significant results. This is a preliminary report on the ability to detect soil moisture variation from the two different sensors on board Skylab. Initial investigations of S190A and Sl94 Skylab data and ground truth has indicated the following significant results. (1) There was a decrease in Sl94 antenna temperature from NW to SE across the Texas test site. (2) Soil moisture increases were measured from NW to SE across the test site. (3) There was a general increase in precipitation distribution and radar echoes from NW to SE across the site for the few days prior to measurements. This was consistent with the soil moisture measurements and gives more complete coverage of the site. (4) There are distinct variations in soil textures over the test site. This affects the moisture holding capacity of soils and must be considered. (5) Strong correlation coefficients were obtained between S194 antenna temperature and soil moisutre content. As the antenna temperature decreases soil moisture increases. (6) The Sl94 antenna temperature correlated best with soil mositure content in the upper two inches of the soil. A correlation coefficient of .988 was obtained. (7) Sl90A photographs in the red-infrared region were shown to be useful for identification of Abilene clay loam and for determining the distribution of this soil type.

  10. The effect of moisture on the dynamic thermomechanical properties of a graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Sykes, G. F.; Burks, H. D.; Nelson, J. B.

    1977-01-01

    A study has been made of the effect of moisture absorption on the dynamic thermomechanical properties of a graphite/epoxy composite recently considered for building primary aircraft structures. Torsional braid analysis (TBA) and thermomechanical analysis (TMA) techniques were used to measure changes in the glass transition temperature (Tg) and the initial softening temperature (heat distortion temperature, HDT) of T-300/5209 graphite/epoxy composites exposed to room temperature water soak.

  11. Long term consequences of a controlled slash burn and slash mastication to soil moisture and CO2 at a southern Colorado site

    Treesearch

    W. J. Massman; J. M. Frank; A. E. Jimenez Esquilin; M. E. Stromberger; W. D. Shepperd

    2006-01-01

    Thinning of forest stands is frequently used to reduce the risk of catastrophic fire. But thinning requires that the refuse (or slash) be removed from the site, which can be done either by burning it or by mastication and dispersal. Either method has long term consequences to the soil and to soil moisture and soil CO2 levels. For example, after the initial drying of...

  12. Prevention of thermal- and moisture-induced degradation of the photoluminescence properties of the Sr2Si5N8:Eu(2+) red phosphor by thermal post-treatment in N2-H2.

    PubMed

    Zhang, Chenning; Uchikoshi, Tetsuo; Xie, Rong-Jun; Liu, Lihong; Cho, Yujin; Sakka, Yoshio; Hirosaki, Naoto; Sekiguchi, Takashi

    2016-05-14

    A red phosphor of Sr2Si5N8:Eu(2+) powder was synthesized by a solid state reaction. The synthesized phosphor was thermally post-treated in an inert and reductive N2-H2 mixed-gas atmosphere at 300-1200 °C. The main phase of the resultant phosphor was identified as Sr2Si5N8. A passivation layer of ∼0.2 μm thickness was formed around the phosphor surface via thermal treatment. Moreover, two different luminescence centers of Eu(SrI) and Eu(SrII) in the synthesized Sr2Si5N8:Eu(2+) phosphor were proposed to be responsible for 620 nm and 670 nm emissions, respectively. More interestingly, thermal- and moisture-induced degradation of PL intensity was effectively reduced by the formation of a passivation layer around the phosphor surface, that is, the relative PL intensity recovered 99.8% of the initial intensity even after encountering thermal degradation; both moisture-induced degraded external and internal QEs were merely 1% of the initial QEs. The formed surface layer was concluded to primarily prevent the Eu(2+) activator from being oxidized, based on the systemic analysis of the mechanisms of thermal- and moisture-induced degradation.

  13. Relationship between peatland hydrology and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Roulet, N. T.

    2012-04-01

    The 'boreal forest' landscape is composed of upland forests, peatlands, some of which are treed, lakes, streams, and in North America, beaver ponds. Each of these landscapes present quite different biogeochemical environments due to differences in both abiotic and biotic processes and conditions. A significant amount of the carbon (C) in the boreal landscape is stored in peatlands, in part, due to the effect of the water storage on C cycling. The near saturated conditions affect the plants that can grow in peatlands and over the shorter term moisture variability controls the rate of C input to the peat. In the peat water limits the supply of electron donors and this has a profound effect on the C biogeochemistry. Near peat surface the moisture storage can be quite dynamic and mostly oxic conditions prevail, but redox conditions change significantly within a few tenth of a meter below the surface where water residence times increase orders of magnitude. This limits the supply of electron donors and other substrates that control the rate of C mineralization. Understanding the links among the moisture dynamics, the chemical thermodynamics of temporally variable saturated environments, and the quality of C is critical to determining the sensitivity of the C stored in peatlands to environmental change.

  14. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  15. Comparative estimation and assessment of initial soil moisture conditions for Flash Flood warning in Saxony

    NASA Astrophysics Data System (ADS)

    Luong, Thanh Thi; Kronenberg, Rico; Bernhofer, Christian; Janabi, Firas Al; Schütze, Niels

    2017-04-01

    Flash Floods are known as highly destructive natural hazards due to their sudden appearance and severe consequences. In Saxony/Germany flash floods occur in small and medium catchments of low mountain ranges which are typically ungauged. Besides rainfall and orography, pre-event moisture is decisive, as it determines the available natural retention in the catchment. The Flash Flood Guidance concept according to WMO and Prof. Marco Borga (University of Padua) will be adapted to incorporate pre-event moisture in real-time flood forecast within the ESF EXTRUSO project (SAB-Nr. 100270097). To arrive at pre-event moisture for the complete area of the low mountain range with flash flood potential, a widely applicable, accurate but yet simple approach is needed. Here, we use radar precipitation as input time series, detailed orographic, land-use and soil information and a lumped parameter model to estimate the overall catchment soil moisture and potential retention. When combined with rainfall forecast and its intrinsic uncertainty, the approach allows to find the point in time when precipitation exceeds the retention potential of the catchment. Then, spatially distributed and complex hydrological modeling and additional measurements can be initiated. Assuming reasonable rainfall forecasts of 24 to 48hrs, this part can start up to two days in advance of the actual event. The lumped-parameter model BROOK90 is used and tested for well observed catchments. First, physical meaningful parameters (like albedo or soil porosity) a set according to standards and second, "free" parameters (like percentage of lateral flow) were calibrated objectively by PEST (Model-Independent Parameter Estimation and Uncertainty Analysis) with the target on evapotranspiration and soil moisture which both have been measured at the study site Anchor Station Tharandt in Saxony/Germany. Finally, first results are presented for the Wernersbach catchment in Tharandt forest for main flood events in the 50-year gauging period since 1968.

  16. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  17. The Influence of Hydrophobicity, Inorganic Amendments and Surfactants on Turfgrass Establishment, Growth and Quality in Constructed Root Zone Mixes

    NASA Astrophysics Data System (ADS)

    McMillan, Mica Franklin

    Soil water repellency (SWR) negatively affects turfgrass growth and quality and impedes uniform distribution of water, particularly in sand-based rootzones. Surfactants and soil amendments such as calcined clay are two approaches to improving soil hydrological properties affected by SWR. However, studying SWR in the field is difficult due to the extreme spatial variability in the soil profile. An objective of this dissertation was to assess two methods to impart SWR on sand and examine SWR amelioration strategies using these procedures under a plant environment and deficit irrigation. To determine effectiveness of artificial hydrophobicity, two methods produced severely hydrophobic substrates: stearic acid sand (HSS) and sand:peat (90:10 sand:peat v/v)(HSP). Greenhouse studies compared the effects of substrates HSS, HSP, 100% sand (SAND), sand:peat (90:10 v/v) (SP), sand:calcined clay (90:10 v/v) (CC) and naturally water repellent sand (NWRS) on bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davy] establishment and growth. Results indicate that HSS and HSP were not toxic to turfgrass but initially, hindered bermudagrass growth. At trials end, SWR had declined in both soils. A second greenhouse study assessed surfactant chemistry on substrates. After three dry downs, surfactants generally improved turfgrass quality in SAND and CC but had no significant effect in HSP and SP. Water drop penetration tests deemed CC and SAND wettable and HSP and SP nonwettable. Contact angle analysis found CC and SAND to be subcritically water repellent while HSP and SP were water repellent. Both HSP and HSS could be used to evaluate the influence of SWR on plant growth. However, both methods have disadvantages. CC remained wettable after several dry downs. In another greenhouse study, perennial ryegrass (Lolium perenne) seeds coated with 10% w/w alkyl-terminated block copolymer surfactant seed coating (SC) were evaluated as an amelioration strategy. Seed treated with surfactant yielded similar or greater percent coverage, shoot growth, root weight and increased volumetric water in the majority of substrates when compared to substrates sown with untreated seed. Coating seeds with surfactant may be used as a method to improve seed germination, establishment and enhance soil moisture, particularly under deficit irrigation.

  18. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The impact of nitrification inhibitor DMPP on N2O, NO and N2 emissions at different soil moisture conditions in grassland soil

    NASA Astrophysics Data System (ADS)

    Wu, D.; Cardenas, L. M.; Sanz, S. C.; Brueggemann, N.; Loick, N.; Liu, S.; Bol, R.

    2016-12-01

    Emissions of gaseous forms of nitrogen from soil, such as nitrous oxide (N2O) and nitric oxide (NO), have shown great impact on global warming and atmospheric chemistry. Although in soil both nitrification and denitrification could cause N2O and NO emissions, most recent studies demonstrated that denitrification is the dominant process responsible for the increase of atmospheric N2O, while nitrification produces most of NO. The use of nitrification inhibitors (NI) has repeatedly been shown to lower both N2O and NO emissions from agricultural soils; nevertheless, the efficiency of the mitigation effect varies greatly. It is generally assumed that nitrification inhibitors have no direct effect on denitrification. However, the indirect impact, due to the reduced substrate delivery (NO3-) to microsites where denitrification occurs, may have significant effects on denitrification product stoichiometry that may significantly lower soil born N2O emissions. In the present study, soil incubation experiments were carried out in a fully automated continuous-flow incubation system under a He/O2 atmosphere. Ammonium sulfate was applied with and without NI (DMPP) to a UK grassland soil under three different soil moisture conditions (50% WFPS, 65% WFPS, 80% WFPS). With every treatment glucose was applied to supply enough carbon for denitrification. We examined the effect of DMPP on NO, N2O and N2 emissions at different soil moisture conditions which favor nitrification, a mixture of both nitrification and denitrification, or denitrification, respectively. Generally cumulative NO emissions were about 17% of cumulative N2O emissions, while N2 emissions were only detected at high soil moisture condition (80% WFPS). Higher soil moisture increased both N2O and NO emissions. DMPP application increased N2 emissions at soil moisture condition favoring denitrification. Although the application of DMPP significantly mitigated both N2O and NO emissions in all DMPP treatments, the efficiency of the mitigation effect varied with different soil moisture conditions. Overall, DMPP application mitigated about 40- 60% N2O emissions and 50-70% NO emissions during the 44-day incubation period.

  1. Coal thickness guage using RRAS techniques, parts 2 and 3

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1980-01-01

    Electron magnetic resonance was investigated as a sensing technique for use in measuring the thickness of the layer of coal overlying the rock substrate. The goal is development of a thickness gauge which will be usable for control of mining machinery to maintain the coal thickness within selected bounds. A sensor must be noncontracting, have a measurement range of 6 inches or more, and an accuracy of 1/2 inch or better. The sensor should be insensitive to variations in spacing between the sensor and the surface, the response speed should be adequate to permit use on continuous mining equipment, and the device should be rugged and otherwise suited for operation under conditions of high vibration, moisture, and dust. Finally, the sensor measurement must not be adversely affected by the natural effects occurring in coal such as impurities, voids, cracks, layering, high moisture level, and other conditions that are likely to be encountered.

  2. Regenerable device for scrubbing breathable air of CO2 and moisture without special heat exchanger equipment

    NASA Technical Reports Server (NTRS)

    Tepper, E. H. (Inventor)

    1977-01-01

    The device concerns the circulation of cabin air through canisters which absorb and adsorb carbon dioxide, together with excess moisture, and return the scrubbed air to the cabin for recirculation. A coating on an inert substrate in granular form absorbs and adsorbs the impurities at standard temperatures and pressures, but desorbs such impurities at low pressures (vacuum) and standard temperatures. This fact is exploited by making the device in a stack of cells consisting of layers or cells which are isolated from one another flow-wise and are connected to separate manifolds and valving systems into two separate subsets. A first subset may be connected for the flow breathable air therethrough until the polyethyleneimine of its cells is saturated with CO2 and H2O. During the same period the second subset of cells is manifolded to a vacuum source.

  3. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  4. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708.

    PubMed

    Mejia-Torres, M C; Sáenz, A

    2013-05-01

    The entomopathogenic nematode Heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae) isolated from soil in Alcalá, Valle del Cauca (Colombia) was characterised ecologically using Galleria mellonella larvae (L) (Pyralidae: Galleriinae) as hosts. The effect of temperature on the viability, infectivity and reproduction, and of moisture on infectivity and storage in liquid were evaluated in infective juveniles (IJs). Significant differences were found in the viability, infectivity and reproduction of the IJs at different temperatures. No nematodes were recovered at 5 °C and 10 °C, and at 35 °C no infectivity was observed. Average daily nematode recovery was best at 25 °C, and survival of the IJs was low in substrates presenting 13% moisture. The optimal storage temperature for Heterorhabditis sp. SL0708 was between 20 °C and 30 °C, keeping its infectivity for up to 8 weeks.

  5. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  6. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    DOE PAGES

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less

  7. User’s Guide for Biodegradation Reactions in TMVOCBio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin; Battistelli, Alfredo

    TMVOCBio is an extended version of the TMVOC numerical reservoir simulator, with the capability of simulating multiple biodegradation reactions mediated by different microbial populations or based on different redox reactions, thus involving different electron acceptors. This modeling feature is implemented within the existing TMVOC module in iTOUGH2. TMVOCBio, originally developed by Battistelli (2003; 2004), uses a general modified form of the Monod kinetic rate equation to simulate biodegradation reactions, which effectively simulates the uptake of a substrate while accounting for various limiting factors (i.e., the limitation by substrate, electron acceptor, or nutrients). Two approaches are included: 1) a multiple Monodmore » kinetic rate equation, which assumes all the limiting factors simultaneously affect the substrate uptake rate, and 2) a minimum Monod model, which assumes that the substrate uptake rate is controlled by the most limiting factor among those acting for the specific substrate. As the limiting factors, biomass growth inhibition, toxicity effects, as well as competitive and non-competitive inhibition effects are included. The temperature and moisture dependence of biodegradation reactions is also considered. This report provides mathematical formulations and assumptions used for modeling the biodegradation reactions, and describes additional modeling capabilities. Detailed description of input format for biodegradation reactions is presented along with sample problems.« less

  8. Transformation of corn plant residues in loamy and sandy substrates

    NASA Astrophysics Data System (ADS)

    Mal'tseva, A. N.; Zolotareva, B. N.; Pinskii, D. L.

    2014-05-01

    The mineralization and humification dynamics of corn plant residues in loamy and sandy substrates have been studied under laboratory conditions. It has been shown that the dynamics are determined by the undulating development laws of the microbial community under constant temperature and moisture conditions. At the same time, the intensity and final results of the processes significantly differ depending on the composition and properties of the mineral substrate. The loss of Corg during the mineralization and the content of newly formed humic substances reached the maximum values a month after the beginning of the experiment. The mineralization is more intensive in sand at the early stages, and the humification is more active in loam throughout the incubation period. The loamy substrate has better protective properties compared to the sand; therefore, it favors the accumulation of significant amounts of fulvic acids (FAs), along with humic acids (HAs), and causes the relative fulvatization of the humic substances. It has been found using densimetric fractionation and Fourier IR spectroscopy that the different mineralogy of the fractions results in differences in the chemical composition of the formed mineral-organic compounds of newly formed humic substances, mainly due to carboxyl and nitrogen-containing groups. The similarity of the humification products in the heavy fractions of the loamy and sandy substrates has been revealed.

  9. Electrostatic powder coatings of pristine graphene: A new approach for coating of granular and fibril substrates

    NASA Astrophysics Data System (ADS)

    Nine, Md J.; Kabiri, Shervin; Tung, Tran Thanh; Tran, Diana N. H.; Losic, Dusan

    2018-05-01

    The use of pristine graphene (pG) based on solution processed coating technologies is often limited by their poor dispersibility in water and organic solvents which prevents to achieve the best performing properties of pG in coating applications. To address these limitations, we developed a dispersant-free coating approach of pG based on their intrinsic solid-lubricity and interlayer electrostatic interactions. The "rotating drum" method was established to provide suitable conditions for electrostatic deposition of pG-powder which is demonstrated on two model substrates with granular and fibril morphologies (urea and acrylic fibers) to improve their physical and electrical properties. The results showed that the pG coating enables to minimize moisture induced caking tendency of commercial urea prills at a relative humidity (RH) of 85% (higher than critical humidity) exhibiting greater moisture rejection ability (∼2 times higher than uncoated urea) and to improve their anti-abrasive properties. The pG-powder coating applied on nonconductive acrylic fibers provides a stable conductive layer (∼0.8 ± 0.1 kΩ/sq) which made them suitable for using in wearable electronics, sensors and electromagnetic interference (EMI) shielding. The developed coating method for pG-powder based on "rotating drum" is generic, simple, eco-friendly, low-cost, and scalable for broad range of coating applications.

  10. Cost-effectiveness of a barrier-strengthening moisturizing cream as maintenance therapy vs. no treatment after an initial steroid course in patients with atopic dermatitis in Sweden--with model applications for Denmark, Norway and Finland.

    PubMed

    Hjalte, F; Asseburg, C; Tennvall, G R

    2010-04-01

    Atopic dermatitis (AD) affects health and quality of life and it has great impact on both health-care costs and costs to the society. The objective of this study was to develop a model to analyse the cost-effectiveness of a barrier-strengthening moisturizing cream as maintenance therapy compared with no treatment after initial treatment with betamethasone valerate in adult patients with AD in Sweden. A further aim was to apply a similar health-economic analysis for Denmark, Norway and Finland. A Markov simulation model was developed including data from three sources: (i) efficacy data from a randomized controlled trial including patients with moderate AD treated with either a moisturizing cream or no treatment, (ii) resource utilization and quality of life data, and (iii) unit prices from official price lists. A societal perspective was used and the analysis was performed according to treatment practice in Sweden. The model simulation was also applied for Denmark, Norway and Finland with inclusion of country-specific unit costs. Sensitivity analyses were performed to test the robustness of the results. The results from the present analyses of treatment for patients with moderate AD indicate that maintenance treatment with a moisturizing cream during eczema-free periods could be cost-effective in a societal perspective. Similar results were obtained for Sweden, Denmark, Norway and Finland. According to the analysis, treatment with a moisturizing cream was found to be a cost-effective option compared with no treatment in eczema-free periods in adult patients with AD in the four Nordic countries.

  11. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  12. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. "The weekend effect" or "DeskTop Spallation" (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that 'embrittle' the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  13. Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration

    NASA Astrophysics Data System (ADS)

    Yang, Wenchang; Magnusdottir, Gudrun

    2017-05-01

    Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.

  14. Chip packaging technique

    NASA Technical Reports Server (NTRS)

    Jayaraj, Kumaraswamy (Inventor); Noll, Thomas E. (Inventor); Lockwood, Harry F. (Inventor)

    2001-01-01

    A hermetically sealed package for at least one semiconductor chip is provided which is formed of a substrate having electrical interconnects thereon to which the semiconductor chips are selectively bonded, and a lid which preferably functions as a heat sink, with a hermetic seal being formed around the chips between the substrate and the heat sink. The substrate is either formed of or includes a layer of a thermoplastic material having low moisture permeability which material is preferably a liquid crystal polymer (LCP) and is a multiaxially oriented LCP material for preferred embodiments. Where the lid is a heat sink, the heat sink is formed of a material having high thermal conductivity and preferably a coefficient of thermal expansion which substantially matches that of the chip. A hermetic bond is formed between the side of each chip opposite that connected to the substrate and the heat sink. The thermal bond between the substrate and the lid/heat sink may be a pinched seal or may be provided, for example by an LCP frame which is hermetically bonded or sealed on one side to the substrate and on the other side to the lid/heat sink. The chips may operate in the RF or microwave bands with suitable interconnects on the substrate and the chips may also include optical components with optical fibers being sealed into the substrate and aligned with corresponding optical components to transmit light in at least one direction. A plurality of packages may be physically and electrically connected together in a stack to form a 3D array.

  15. Influence of residual moisture and sealing atmosphere on viability of two freeze-dried viral vaccines.

    PubMed

    Precausta, P M; Simatos, D; Le Pemp, M; Devaux, B; Kato, F

    1980-10-01

    This study demonstrated the complexity of the factors leading to changes in the infectivity titers of freeze-dried canine distemper and poultry infectious bronchitis viral vaccines. The change in moisture content during the storage period was an additional parameter which may influence the infectivity titer. The results emphasized the difficulty of predetermining variations in infectivity titers from the initial residual moisture. The analysis of the variations in infectivity titers during the storage of two vaccines led to the formulation of a hypothesis of the presence of two components of different thermostability. Moreover, the temporary increase in the infectivity titer of infectious bronchitis vaccine stored progressively dissociating during storage concurrent with a progressive inactivation of infectious particles.

  16. Odor volatiles associated with microflora in damp ventilated and non-ventilated bin-stored bulk wheat.

    PubMed

    Tuma, D; Sinha, R N; Muir, W E; Abramson, D

    1989-05-01

    Western hard red spring wheat, stored at 20 and 25% moisture contents for 10 months during 1985-86, was monitored for biotic and abiotic variables in 10 unheated bins in Winnipeg, Manitoba. The major odor volatiles identified were 3-methyl-1-butanol, 3-octanone and 1-octen-3-ol. The production of these volatiles was associated and correlated with microfloral infection. Ventilation, used for cooling and drying of grain, disrupted microfloral growth patterns and production of volatiles. The highest levels of 3-methyl-1-butanol occurred in 25% moisture content wheat infected with bacteria, Penicillium spp. and Fusarium spp. In non-ventilated (control) bins with 20% moisture content wheat, 3-methyl-1-butanol was correlated with infection by members of the Aspergillus glaucus group and bacteria. In control bins, 1-octen-3-ol production was correlated with infection of wheat of both moisture contents by Penicillium spp. The fungal species, isolated from damp bin-stored wheat and tested for production of odor volatiles on wheat substrate, included Alternaria alternata (Fr.) Keissler, Aspergillus repens (Corda) Saccardo, A. flavus Link ex Fries, A. versicolor (Vuill.) Tiraboschi, Penicillium chrysogenum Thom, P. cyclopium Westling, Fusarium moniliforme Sheldon, F. semitectum (Cooke) Sacc. In the laboratory, fungus-inoculated wheat produced 3-methyl-1-butanol; 3-octanone and 1-octen-3-ol were also produced, but less frequently. Two unidentified bacterial species isolated from damp wheat and inoculated on agar produced 3-methyl-1-butanol.

  17. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  18. Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use.

    PubMed

    Kurganova, Irina; Teepe, Robert; Loftfield, Norman

    2007-02-19

    The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO2 emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC). Due to the measurement of the CO2 flux in two hours intervals, the dynamics of CO2 emission during freezing-thawing events was described in a detailed way. At +10 degrees C (initial level) in soils investigated, carbon dioxide emission varied between 7.4 to 43.8 mg C m-2h-1 depending on land use and moisture. CO2 flux from the totally frozen soil never reached zero and amounted to 5 to 20% of the initial level, indicating that microbial community was still active at -5 degrees C. Significant burst of CO2 emission (1.2-1.7-fold increase depending on moisture and land use) was observed during thawing. There was close linear correlation between CO2 emission and soil temperature (R2 = 0.86-0.97, P < 0.001). Our investigations showed that soil moisture and land use governed the initial rate of soil respiration, duration of freezing and thawing of soil, pattern of CO2 dynamics and extra CO2 fluxes. As a rule, the emissions of CO2 induced by freezing-thawing were more significant in dry soils and during the first freezing-thawing cycle (FTC). The acceleration of CO2 emission was caused by different processes: the liberation of nutrients upon the soil freezing, biological activity occurring in unfrozen water films, and respiration of cold-adapted microflora.

  19. Moisture changes in oak and hickory fuel chips on roofed and unroofed Louisiana air-drying grounds as affected by pile depth and turning of chips

    Treesearch

    Peter Koch

    1983-01-01

    Freshly cut whole-tree hickory chips had lower moisture content (MC) initially and dried more rapidly than those of southern red oak. Such chips spread during April 1981 in roofed trays did not dry to 20 percent MC, ovendry-weight basis, faster than those spread in October 1980. In roofed trays, unturned chips spread 4 inches deep generally dried more rapidly than if...

  20. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    DTIC Science & Technology

    2014-02-01

    moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and

  1. Direct observations of rock moisture, a hidden component of the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Rempe, Daniella M.; Dietrich, William E.

    2018-03-01

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term “rock moisture” to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  2. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties

    NASA Astrophysics Data System (ADS)

    Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique

    2018-05-01

    Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.

  3. Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.

    2012-12-01

    We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples. Internal temperatures are monitored by the thermocouple array, while external temperatures are monitored by a Forward Looking Infrared Radiometer (FLIR) video camera. The experimental data thus describe the cooling rates of the system, and reveal the release of latent heat of crystallization within the cooling lava. These experiments have been conducted in conjunction with numerical simulations of the heat transfer from a lava flow into various substrates, to quantify the depth reached by the heat pulse as it penetrates the substrate. Models include material-specific, temperature-dependent thermophysical properties, including thermal conductivity, specific heat capacity, and latent heat of crystallization. We find that particulate materials, such as lunar regolith, sand, and soils will be heated to depths shallower than solid materials. In addition, the particulate materials will act as insulators, shielding the lava flow from basal cooling and maintaining high temperatures in the flow core. These results suggest that lava flows emplaced on a dry particulate terrain will remain above solidus for a longer duration, allowing the lava to flow further than when emplaced on a solid substrate.

  4. Integrated Impacts of environmental factors on the degradation of fumigants

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yates, S. R.

    2007-12-01

    Volatilization of fumigants has been concerned as one of air pollution sources. Fumigants are used to control nematodes and soil-born pathogens for a pre-plant treatment to increase the production of high-cash crops. One of technologies to reduce the volatilization of fumigants to atmosphere is to enhance the degradation of fumigants in soil. Fumigant degradation is affected by environmental factors such as moisture content, temperature, initial concentration of injected fumigants, and soil properties. However, effects of each factor on the degradation were limitedly characterized and integrated Impacts from environmental factors has not been described yet. Degradation of 1,3- dichloropropene (1,3-D) was investigated in various condition of temperatures (20-60 °C), moisture contents (0 ¡V 30 %) and initial concentrations (0.6 ¡V 60 mg/kg) with Arlington sandy loam soil. Abiotic and biotic degradation processes were distinguished using two sterilization methods with HgCl2 and autoclave and impacts of environmental factors were separately assessed for abiotic and biotic degradations. Initially, degradation rates (k) of cis and trans 1,3-D isomers were estimated by first-order kinetics and modified depending on impacts from environmental factors. Arrhenius equation and Walker¡¦s equation which were conventionally used to describe temperature and moisture effects on degradation were assessed for integrated impacts from environmental factors and logarithmical correlation was observed between initial concentrations of applied fumigants and degradation rates. Understanding integrated impacts of environmental factors on degradation will help to design more effective emission reduction schemes in various conditions and provide more practical parameters for modeling simulations.

  5. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates.

    PubMed

    Barvík, Ivan; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-03-01

    RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions

    PubMed Central

    Blankinship, Joseph C.; Marchus, Kenneth; Lucero, Delores M.; Sickman, James O.; Schimel, Joshua P.

    2016-01-01

    Nitric oxide (NO) is an important trace gas and regulator of atmospheric photochemistry. Theory suggests moist soils optimize NO emissions, whereas wet or dry soils constrain them. In drylands, however, NO emissions can be greatest in dry soils and when dry soils are rewet. To understand how aridity and vegetation interact to generate this pattern, we measured NO fluxes in a California grassland, where we manipulated vegetation cover and the length of the dry season and measured [δ15-N]NO and [δ18-O]NO following rewetting with 15N-labeled substrates. Plant N uptake reduced NO emissions by limiting N availability. In the absence of plants, soil N pools increased and NO emissions more than doubled. In dry soils, NO-producing substrates concentrated in hydrologically disconnected microsites. Upon rewetting, these concentrated N pools underwent rapid abiotic reaction, producing large NO pulses. Biological processes did not substantially contribute to the initial NO pulse but governed NO emissions within 24 h postwetting. Plants acted as an N sink, limiting NO emissions under optimal soil moisture. When soils were dry, however, the shutdown in plant N uptake, along with the activation of chemical mechanisms and the resuscitation of soil microbial processes upon rewetting, governed N loss. Aridity and vegetation interact to maintain a leaky N cycle during periods when plant N uptake is low, and hydrologically disconnected soils favor both microbial and abiotic NO-producing mechanisms. Under increasing rates of atmospheric N deposition and intensifying droughts, NO gas evasion may become an increasingly important pathway for ecosystem N loss in drylands. PMID:27114523

  7. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-02-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

  8. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-05-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

  9. A Round Robin evaluation of AMSR-E soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Mittelbach, Heidi; Hirschi, Martin; Nicolai-Shaw, Nadine; Gruber, Alexander; Dorigo, Wouter; de Jeu, Richard; Parinussa, Robert; Jones, Lucas A.; Wagner, Wolfgang; Seneviratne, Sonia I.

    2014-05-01

    Large-scale and long-term soil moisture observations based on remote sensing are promising data sets to investigate and understand various processes of the climate system including the water and biochemical cycles. Currently, the ESA Climate Change Initiative for soil moisture develops and evaluates a consistent global long-term soil moisture data set, which is based on merging passive and active remotely sensed soil moisture. Within this project an inter-comparison of algorithms for AMSR-E and ASCAT Level 2 products was conducted separately to assess the performance of different retrieval algorithms. Here we present the inter-comparison of AMSR-E Level 2 soil moisture products. These include the public data sets from University of Montana (UMT), Japan Aerospace and Space Exploration Agency (JAXA), VU University of Amsterdam (VUA; two algorithms) and National Aeronautics and Space Administration (NASA). All participating algorithms are applied to the same AMSR-E Level 1 data set. Ascending and descending paths of scaled surface soil moisture are considered and evaluated separately in daily and monthly resolution over the 2007-2011 time period. Absolute values of soil moisture as well as their long-term anomalies (i.e. removing the mean seasonal cycle) and short-term anomalies (i.e. removing a five weeks moving average) are evaluated. The evaluation is based on conventional measures like correlation and unbiased root-mean-square differences as well as on the application of the triple collocation method. As reference data set, surface soil moisture of 75 quality controlled soil moisture sites from the International Soil Moisture Network (ISMN) are used, which cover a wide range of vegetation density and climate conditions. For the application of the triple collocation method, surface soil moisture estimates from the Global Land Data Assimilation System are used as third independent data set. We find that the participating algorithms generally display a better performance for the descending compared to the ascending paths. A first classification of the sites defined by geographical locations show that the algorithms have a very similar average performance. Further classifications of the sites by land cover types and climate regions will be conducted which might result in a more diverse performance of the algorithms.

  10. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex interaction between temporal changes in soil environmental factors and biological changes in the plant and microbial community that affect soil respiratory metabolism.

  11. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska

    USGS Publications Warehouse

    O'Donnell, J. A.; Turetsky, M.R.; Harden, J.W.; Manies, K.L.; Pruett, L.E.; Shetler, G.; Neff, J.C.

    2009-01-01

    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ?? 0.1 and 1.4 ?? 0.1 g C m-2d-1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. ?? 2008 Springer Science+Business Media, LLC.

  12. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Turetsky, Merritt R.; Harden, Jennifer W.; Manies, Kristen L.; Pruett, L.E.; Shetler, Gordon; Neff, Jason C.

    2009-01-01

    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition.

  13. Getting beyond hand-waving about microsites with numerical representations of trace gas production and consumption

    NASA Astrophysics Data System (ADS)

    Sihi, D.; Davidson, E. A.; Savage, K. E.; Liang, D.

    2017-12-01

    Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, that is further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked conceptually to explain unusual observations like consumption of atmospheric N2O (reduction) in upland soils that co-occur with CH4 uptake (oxidation). To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three greenhouse gases (GHGs) with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. Chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model. The area under a soil chamber is partitioned according to a bivariate lognormal probability distribution function of soil carbon (C) and moisture across a range of microsites, that leads to a distribution of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 that determines the distribution of microsites that produce or consume CH4 and N2O, such that a range of microsite concentrations occur both above and below ambient values for both GHGs. At lower mean soil moisture, some microsites of methanogenesis still occur, but most become sites of methanotrophy. Likewise, concentrations of below ambient N2O (hotspots of N2O reduction) occur in microsites with high C and high moisture (further accentuated at high temperature). Net consumption and production of CH4 and N2O is simulated within a chamber based on the sum of the distribution of soil microsites. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co-occur under a single chamber. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging but affords confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.

  14. Fate of sessile droplet chemical agents in environmental substrates in the presence of physiochemical processes

    NASA Astrophysics Data System (ADS)

    Navaz, H. K.; Dang, A. L.; Atkinson, T.; Zand, A.; Nowakowski, A.; Kamensky, K.

    2014-05-01

    A general-purpose multi-phase and multi-component computer model capable of solving the complex problems encountered in the agent substrate interaction is developed. The model solves the transient and time-accurate mass and momentum governing equations in a three dimensional space. The provisions for considering all the inter-phase activities (solidification, evaporation, condensation, etc.) are included in the model. The chemical reactions among all phases are allowed and the products of the existing chemical reactions in all three phases are possible. The impact of chemical reaction products on the transport properties in porous media such as porosity, capillary pressure, and permeability is considered. Numerous validations for simulants, agents, and pesticides with laboratory and open air data are presented. Results for chemical reactions in the presence of pre-existing water in porous materials such as moisture, or separated agent and water droplets on porous substrates are presented. The model will greatly enhance the capabilities in predicting the level of threat after any chemical such as Toxic Industrial Chemicals (TICs) and Toxic Industrial Materials (TIMs) release on environmental substrates. The model's generality makes it suitable for both defense and pharmaceutical applications.

  15. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  16. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.

    2016-10-01

    Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.

  17. [Relationships between soil moisture and needle-fall in Masson pine forests in acid rain region of Chongqing, Southwest China].

    PubMed

    Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian

    2012-10-01

    From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest.

  18. Continuous ethanol production from cheese whey fermentation by Candida pseudotropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaly, A.E.; El-Taweel, A.A.

    1997-12-01

    Three pilot-scale continuous mix reactors of 5-L volume each were used to study the effects of retention time (18--42 hours) and initial substrate concentration (50--150 g/L) on the cell yield, lactose consumption, and maximum ethanol concentration during continuous fermentation of cheese whey using the yeast Candida pseudotropicalis. A microaeration rate of 480 mL/min and a nutrient supplement (yeast extract) concentration of 0.1% vol/vol were used. The results indicated that the dissolved oxygen concentration, temperature, cell concentration, lactose utilization rate, and ethanol concentration were affected by hydraulic retention time and initial substrate concentration. The highest cell concentration of 5.46 g/L andmore » the highest ethanol concentration of 57.96 g/L (with a maximum ethanol yield of 99.6% from the theoretical yield) were achieved at the 42-hour hydraulic retention time and the 150 g/L initial substrate concentration, whereas the highest cell yield was observed at the 50 g/L initial substrate concentration and the 36-hour hydraulic retention time. Lactose utilizations of 98, 91, and 83% were obtained with 50, 100, and 150 g/L initial substrate concentrations at the 42-hour hydraulic retention time. A pH control system was found unnecessary.« less

  19. Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system.

    PubMed

    Zhu, Nengwu

    2006-10-01

    Pilot composting experiments of swine manure with corncob were conducted to evaluate the performance of the aerated static bin composting system. Effects of temperature control (60 and 70 degrees C) and moisture content (70% and 80%) were monitored on the composting by measuring physical and chemical indexes. The results showed that (1) the composting system could destroy pathogens, converted nitrogen from unstable ammonia to stable organic forms, and reduced the volume of waste; (2) significant difference of NH(4)(+)-N (P(12) = 0.074), and (NO(3)(-) + NO(2)(-))-N (P(12) = 0.085) was found between the temperature control treatments; (3) anaerobic reaction in the treatment with 80% moisture content resulted in significant difference of pH (P(23) = 0.006), total organic matter (P(23) = 0.003), and germination index (P(23) = 0.040) between 70% and 80%. Therefore, the optimum initial moisture content was less than 80% with the composting of swine manure and corncob by using the composting system.

  20. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.

  1. The impact of the uncertainty in the initial soil moisture condition of irrigated areas on the spatiotemporal characteristics of convective activity in Central Greece

    NASA Astrophysics Data System (ADS)

    Kotsopoulos, Stylianos; Ioannis, Tegoulias; Ioannis, Pytharoulis; Stergios, Kartsios; Dimitrios, Bampzelis; Theodore, Karacostas

    2015-04-01

    The region of Thessaly is the second largest plain in Greece and has a vital role in the financial life of the country, because of its significant agricultural production. The intensive and extensive cultivation of irrigated crops, in combination with the population increase and the alteration of precipitation patterns due to climate change, often leading the region to experience severe drought conditions, especially during the warm period of the year. The aim of the DAPHNE project is to tackle the problem of drought in this area by means of Weather Modification.In the framework of the project DAPHNE, the numerical weather prediction model WRF-ARW 3.5.1 is used to provide operational forecasts and hindcasts for the region of Thessaly. The goal of this study is to investigate the impact of the uncertainty in the initial soil moisture condition of irrigated areas, on the spatiotemporal characteristics of convective activity in the region of interest. To this end, six cases under the six most frequent synoptic conditions, which are associated with convective activity in the region of interest, are utilized, considering six different soil moisture initialization scenarios. In the first scenario (Control Run), the model is initialized with the surface soil moisture of the ECMWF analysis data, that usually does not take into account the modification of soil moisture due to agricultural activity in the area of interest. In the other five scenarios (Experiment 1,2,3,4,5) the soil moisture in the upper soil layers of the study area are modified from -50% to 50% of field capacity (-50%FC, -25%FC, FC, 25%FC, 50%FC),for the irrigated cropland.Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. ECMWF operational analyses at 6-hourly intervals (0.25ox0.25o lat.-long.) are imported as initial and boundary conditions of the coarse domain, while in the vertical, all nests employ 39 sigma levels (up to 50 hPa) with increased resolution in the boundary layer. Microphysical processes are represented by WSM6 scheme, sub-grid scale convection by Kain-Fritsch scheme, longwave and shortwave radiation by RRTMG scheme, surface layer by Monin-Obukhov (MM5), boundary layer by Yonsei University and soil surface scheme by NOAH Unified model. The model numerical results are evaluated against surface precipitation data and data obtained using a C-band (5cm) weather radar located in the centre of the innermost domain. Acknowledgements: This research is co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).

  2. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.; Hua, M.; Ocampo-Friedmann, R.

    1988-01-01

    Cryptoendolithic microbial communities in the Ross Desert (McMurdo Dry Valleys) are characterized on the basis of photosynthetic microorganisms and fungi. Two eukaryotic communities (the lichen-dominated and Hemichloris communities) and three cyanobacterial communities (the red Gloeocapsa, Hormathonema-Gloeocapsa, and Chroococcidiopsis communities) are described. Eleven coccoid, one pleurocapsoid, and five filamentous cyanobacteria occurring in these communities are characterized and illustrated. The moisture grade of the rock substrate seems to affect pH, formation of primary iron stain, and the distribution of microbial communities.

  3. An Expert System for Design of Plastic Integrated Circuit Packages Against Latent Moisture Induced Defects. Phase II

    DTIC Science & Technology

    1998-02-01

    Attach, Die Attachment Pad, Wine Bond? Substrate, Molding Compound, Leadframe, FWB, Heat Snk& Solder Databases ■ Proprietary •ANSYSLink...34■■ irm -i te5ÄS3wl«(S*i«S «!*!• i"■’.vT-*?-" *’■’ EsMat xvM H6IT«sBltf. Lnjl \\ 4.2.7 PWB ^**S^J[£ **;:■:& / "" (1) Input Px, Py (widths of

  4. Fire Resistant, Moisture Barrier Membrane

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor)

    2000-01-01

    A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.

  5. Fire Resistant, Moisture Barrier Membrane

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor)

    1998-01-01

    A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.

  6. Physicochemical patterns of ozone absorption by wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  7. Moisture sorption characteristics of freeze-dried human platelets*

    PubMed Central

    Xu, Meng-jie; Chen, Guang-ming; Fan, Ju-li; Liu, Jin-hui; Xu, Xian-guo; Zhang, Shao-zhi

    2011-01-01

    Freeze-drying is a promising method for a long-term storage of human platelets. The moisture sorption characteristics of freeze-dried human platelets (FDHPs) were studied in this paper. The moisture sorption isotherms of FDHPs and freeze-dried lyophilization buffer (FDLB) were measured at 4, 25, and 37 °C. The experimental data were fitted to Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) equations. There were no significant statistical differences (P>0.05) between the sorption characteristics of FDHPs and FDLB at 4 and 25 °C, while FDHPs absorbed more water at 37 °C. The net isosteric heat of sorption was derived. The heat for FDHPs showed an abnormal negative value at low moisture contents when 25 and 37 °C data were used. Dynamic sorption experiments were carried out at 25 °C with environmental water activity controlled at 0.75, 0.85, and 0.90. The moisture diffusion coefficient was fitted to be 8.24×10−12 m2/s when experimental data at initial time were used. These results would be helpful in choosing prehydration and storage condition for FDHPs. PMID:21370506

  8. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sihi, Debjani; Davidson, Eric A.; Chen, Min

    Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO 2), is a major, yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is often represented with a simple Q 10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture, substrate supply, and their interactions with temperature has been proposed as a way to disentangle the confounding factors of apparent temperature sensitivity of Rh and improve the performance of ecosystem models and ESMs.more » The objective of this work was to insert into an ecosystem model a more mechanistic, but still parsimonious, model of environmental factors controlling Rh and evaluate the model performance in terms of soil and ecosystem respiration. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature sensitivity in DAMM by regulating the diffusion of oxygen, soluble C substrates, and extracellular enzymes to the enzymatic reaction site. Here, we merged the DAMM soil flux model with a parsimonious ecosystem flux model, FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration). We used high-frequency soil flux data from automated soil chambers and landscape-scale ecosystem fluxes from eddy covariance towers at two AmeriFlux sites (Harvard Forest, MA and Howland Forest, ME) in the northeastern USA to estimate parameters, validate the merged model, and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-FöBAAR model better captured the seasonal and inter-annual dynamics of soil respiration (Soil R) compared to the FöBAAR-only model for the Harvard Forest, where higher frequency and duration of drying events significantly regulate substrate supply to heterotrophs. However, DAMM-FöBAAR showed improvement over FöBAAR-only at the boreal transition Howland Forest only in unusually dry years. The frequency of synoptic-scale dry periods is lower at Howland, resulting in only brief water limitation of Rh in some years. At both sites, the declining trend of soil R during drying events was captured by the DAMM-FöBAAR model; however, model performance was also contingent on site conditions, climate, and the temporal scale of interest. While the DAMM functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be included in an ecosystem model and reduce the model-data mismatch. Moreover, the mechanistic structure of the soil moisture effects using DAMM functions should be more generalizable than the wide variety of empirical functions that are commonly used, and these DAMM functions could be readily incorporated into other ecosystem models and ESMs.« less

  9. Assessing predictability of a hydrological stochastic-dynamical system

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander

    2014-05-01

    The water cycle includes the processes with different memory that creates potential for predictability of hydrological system based on separating its long and short memory components and conditioning long-term prediction on slower evolving components (similar to approaches in climate prediction). In the face of the Panta Rhei IAHS Decade questions, it is important to find a conceptual approach to classify hydrological system components with respect to their predictability, define predictable/unpredictable patterns, extend lead-time and improve reliability of hydrological predictions based on the predictable patterns. Representation of hydrological systems as the dynamical systems subjected to the effect of noise (stochastic-dynamical systems) provides possible tool for such conceptualization. A method has been proposed for assessing predictability of hydrological system caused by its sensitivity to both initial and boundary conditions. The predictability is defined through a procedure of convergence of pre-assigned probabilistic measure (e.g. variance) of the system state to stable value. The time interval of the convergence, that is the time interval during which the system losses memory about its initial state, defines limit of the system predictability. The proposed method was applied to assess predictability of soil moisture dynamics in the Nizhnedevitskaya experimental station (51.516N; 38.383E) located in the agricultural zone of the central European Russia. A stochastic-dynamical model combining a deterministic one-dimensional model of hydrothermal regime of soil with a stochastic model of meteorological inputs was developed. The deterministic model describes processes of coupled heat and moisture transfer through unfrozen/frozen soil and accounts for the influence of phase changes on water flow. The stochastic model produces time series of daily meteorological variables (precipitation, air temperature and humidity), whose statistical properties are similar to those of the corresponding series of the actual data measured at the station. Beginning from the initial conditions and being forced by Monte-Carlo generated synthetic meteorological series, the model simulated diverging trajectories of soil moisture characteristics (water content of soil column, moisture of different soil layers, etc.). Limit of predictability of the specific characteristic was determined through time of stabilization of variance of the characteristic between the trajectories, as they move away from the initial state. Numerical experiments were carried out with the stochastic-dynamical model to analyze sensitivity of the soil moisture predictability assessments to uncertainty in the initial conditions, to determine effects of the soil hydraulic properties and processes of soil freezing on the predictability. It was found, particularly, that soil water content predictability is sensitive to errors in the initial conditions and strongly depends on the hydraulic properties of soil under both unfrozen and frozen conditions. Even if the initial conditions are "well-established", the assessed predictability of water content of unfrozen soil does not exceed 30-40 days, while for frozen conditions it may be as long as 3-4 months. The latter creates opportunity for utilizing the autumn water content of soil as the predictor for spring snowmelt runoff in the region under consideration.

  10. Initial Plasma Testing of the Ion Proportional Surface Emission Cathode

    DTIC Science & Technology

    2008-07-15

    REPRINT 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Plasma Testing of the Ion Proportional Surface Emission Cathode 5a. CONTRACT NUMBER...substrate and an adjacent metal cathode element. The substrate potential is held positive of the cathode with gate elements. In plasma , the gate is...eliminated due to ambient ion flux which maintains the substrate potential near plasma ground. Prototype devices have been tested using a laboratory plasma

  11. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C. Jeffrey; Reed, Scott T.

    1984-01-01

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  12. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C.J.; Reed, S.T.

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  13. Assessment of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; hide

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  14. The Integration of SMOS Soil Moisture in a Consistent Soil Moisture Climate Record

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard; Kerr, Yann; Wigneron, Jean Pierre; Rodriguez-Fernandez, Nemesio; Al-Yaari, Amen; van der Schalie, Robin; Dolman, Han; Drusch, Matthias; Mecklenburg, Susanne

    2015-04-01

    Recently, a study funded by the European Space Agency (ESA) was set up to provide guidelines for the development of a global soil moisture climate record with a special emphasis on the integration of SMOS. Three different data fusion approaches were designed and implemented on 10 year passive microwave data (2003-2013) from two different satellite sensors; the ESA Soil Moisture Ocean Salinity Mission (SMOS) and the NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E). The AMSR-E data covered the period from January 2003 until Oct 2011 and SMOS data covered the period from June 2010 until the end of 2013. The fusion approaches included a neural network approach (Rodriguez-Fernandez et al., this conference session HS6.4), a regression approach (Wigneron et al., 2004), and an approach based on the baseline algorithm of ESAs current Climate Change Initiative soil moisture program, the Land Parameter Retrieval Model (Van der Schalie et al., this conference session HS6.4). With this presentation we will show the first results from this study including a description of the different approaches and the validation activities using both globally covered modeled datasets and ground observations from the international soil moisture network. The statistical validation analyses will give us information on the temporal and spatial performance of the three different approaches. Based on these results we will then discuss the next steps towards a seamless integration of SMOS in a consistent soil moisture climate record. References Wigneron J.-P., J.-C. Calvet, P. de Rosnay, Y. Kerr, P. Waldteufel, K. Saleh, M. J. Escorihuela, A. Kruszewski, 'Soil Moisture Retrievals from Bi-Angular L-band Passive Microwave Observations', IEEE Trans. Geosc. Remote Sens. Let., vol 1, no. 4, 277-281, 2004.

  15. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process.

    PubMed

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W; Luo, Feng; Jiang, Xiuping

    2011-06-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 10(7) CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well.

  16. Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process ▿

    PubMed Central

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping

    2011-01-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well. PMID:21498743

  17. Should precipitation influence dust emission in global dust models?

    NASA Astrophysics Data System (ADS)

    Okin, Gregory

    2016-04-01

    Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.

  18. Moisture dynamics of the northward and eastward propagating boreal summer intraseasonal oscillations: possible role of tropical Indo-west Pacific SST and circulation

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Sahai, A. K.

    2016-08-01

    Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.

  19. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  20. 40 CFR 60.2922 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.2922 Section 60.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Qualification Performance Testing § 60.2922 How do I conduct the initial and annual performance test? (a) All...

  1. 40 CFR 60.2922 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of this part must be used. (ii) The post-test moisture removal procedure described in section 8.1.6... performance test? 60.2922 Section 60.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Testing § 60.2922 How do I conduct the initial and annual performance test? (a) All performance tests must...

  2. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  3. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  4. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  5. 40 CFR 60.2922 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of this part must be used. (ii) The post-test moisture removal procedure described in section 8.1.6... performance test? 60.2922 Section 60.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Testing § 60.2922 How do I conduct the initial and annual performance test? (a) All performance tests must...

  6. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  7. 40 CFR 60.2922 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.2922 Section 60.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Qualification Performance Testing § 60.2922 How do I conduct the initial and annual performance test? (a) All...

  8. 40 CFR 60.2922 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.2922 Section 60.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Qualification Performance Testing § 60.2922 How do I conduct the initial and annual performance test? (a) All...

  9. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Gleghorn; E Davydova; R Basu

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groupsmore » of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.« less

  10. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.

    PubMed

    Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf

    2016-06-01

    Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Corrosion of bare carbon steel as a passive sensor to assess moisture availability for biological activity in Atacama Desert soils.

    PubMed

    Cáceres, Luis; Davila, Alfonso F; Soliz, Alvaro; Saldivia, Jessica

    2018-02-28

    Here we consider that the corrosion of polished bared metal coupons can be used as a passive sensor to detect or identify the lower limit of water availability suitable for biological activity in Atacama Desert soils or solid substrates. For this purpose, carbon steel coupons were deposited at selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, long rectangular shaped ones that were half-buried in a vertical position, and square shaped ones that were deposited on the soil surface. The morphological attributes observed by SEM inspection were found to correlate to the so-called humectation time which is determined from local meteorological parameters. The main finding was that the decreasing trend of atmospheric moisture along the transect was closely related to corrosion behaviour and water soil penetration. For instance, at the coastal site oxide phases formed on the coupon surface rapidly evolve into well-crystallized species, while at the driest inland site Lomas Bayas only amorphous oxide was observed on the coupons.

  12. Corrosion of Bare Carbon Steel as a Passive Sensor to Assess Moisture Availability for Biological Activity in Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Caceres, Luis; Davila, Alfonso F.; Soliz, Alvaro; Saldivia, Jessica

    2018-01-01

    In this work we suggest the corrosion of polished bared metal coupons as a passive sensor to detect or identify the lower limit of water availability that could be suitable for biological activity in the Atacama Desert on soil or solid substrates. For this purpose, carbon steel coupons were deposited in selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, a long rectangular shape that are half-buried in a vertical position, and square shape that are deposited on the soil surface. The morphological attributes observed by SEM inspection is correlated to the so-called humectation time which is determined from local meteorological parameters. The main result is that the decreasing trend of atmospheric moisture along the transect is closely related to corrosion behavior and water soil penetration. For instance, while in the coastal site oxide phases formed on the coupon surface rapidly evolve to well- crystallized species, in the driest inland site Lomas Bayas only amorphous oxide is observed.

  13. Substrates coated with silver nanoparticles as a neuronal regenerative material

    PubMed Central

    Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit

    2014-01-01

    Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701

  14. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase.

    PubMed

    El-Ghonemy, Dina Helmy; Ali, Thanaa Hamed; El-Bondkly, Ahmed Mohamed; Moharam, Maysa El-Sayed; Talkhan, Fatma Nabeeh

    2014-11-01

    Spore suspensions of Aspergillus oryzae NRRL 3484 were subjected to mutagenesis using ultraviolet-irradiation followed by chemical treatments to improve the biosynthesis of cellulase. Ten mutant strains namely UEAC7, UEAR5, UNAC4, UNAC16, UNAR19, UNBC7, UNBR3, UNBR10, UNBR23 and UNBR25 were selected and their extracellular cellulase activities were assayed. Mutant UNAC4 gave the highest cellulase production [2,455 ± 28 U/g-dry substrate (ds) for filter paper-ase (FP-ase)] in a yield 4-fold exceeding that of the wild type strain (578 ± 5.0 U/g-ds for FP-ase). Rice straw (RS) was used as a sole carbon source for the enzyme production at a concentration of 10 % (w/v). Maximum cellulase production was achieved at initial medium pH 5.5, initial moisture content 77 % and an incubation temperature 28 °C on the fifth day of growth. NH4Cl proved to be the suitable added nitrogen source for maximum enzyme production followed by peptone. These results clearly indicate the cost-effectiveness of solid state fermentation technology in the economic production of extracellular cellulase. The hyper-production of cellulase by mutant strain UNAC4 has potential for industrial processes that convert lignocellulosic material (e.g. RS) into products of commercial value such as glucose and biofuels.

  15. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis.

    PubMed

    Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A

    2017-04-01

    This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.

  16. Quantitative analysis of SMEX'02 AIRSAR data for soil moisture inversion

    NASA Technical Reports Server (NTRS)

    Zyl, J. J. van; Njoku, E.; Jackson, T.

    2003-01-01

    This paper discusses in detail the characteristics of the AIRSAR data acquired, and provides an initial quantitative assessment of the accuracy of the radar inversion algorithms under these vegetated conditions.

  17. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  18. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Lowry, D. W.

    1983-01-01

    This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.

  19. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Lowry, D. W.

    1982-01-01

    This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.

  20. Evolution of Indian land surface biases in the seasonal hindcasts from the Met Office Global Seasonal Forecasting System GloSea5

    NASA Astrophysics Data System (ADS)

    Chevuturi, Amulya; Turner, Andrew G.; Woolnoug, Steve J.; Martin, Gill

    2017-04-01

    In this study we investigate the development of biases over the Indian region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. These mean state biases lead to strong precipitation errors during the monsoon over the subcontinent. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with variety of observations to assess the evolution of the mean state biases over the Indian land surface. All biases within the model develop rapidly, particularly surface heat and radiation flux biases. Strong biases are present within the model climatology from pre-monsoon (May) in the surface heat fluxes over India (higher sensible / lower latent heat fluxes) when compared to observed estimates. The early evolution of such biases prior to onset rains suggests possible problems with the land surface scheme or soil moisture errors. Further analysis of soil moisture over the Indian land surface shows a dry bias present from the beginning of the hindcasts during the pre-monsoon. This lasts until the after the monsoon develops (July) after which there is a wet bias over the region. Soil moisture used for initialization of the model also shows a dry bias when compared against the observed estimates, which may lead to the same in the model. The early dry bias in the model may reduce local moisture availability through surface evaporation and thus may possibly limit precipitation recycling. On this premise, we identify and test the sensitivity of the monsoon in the model against higher soil moisture forcing. We run sensitivity experiments initiated using gridpoint-wise annual soil moisture maxima over the Indian land surface as input for experiments in the atmosphere-only version of the model. We plan to analyse the response of the sensitivity experiments on seasonal forecasting of surface heat fluxes and subsequently monsoon precipitation.

Top