Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol
NASA Astrophysics Data System (ADS)
Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Evaluation of cashew apple juice for the production of fuel ethanol.
Pinheiro, Alvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R; Gonçalves, Luciana R B
2008-03-01
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L(-1) of initial sugar concentration was used. Cell yield (Y (X/S)) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L(-1) of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Perna, Michelle Dos Santos Cordeiro; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina
2018-02-01
The tolerance of the pentose-fermenting yeast Meyerozyma guilliermondii to the inhibitors released after the biomass hydrolysis, such as acetic acid and furfural, was surveyed. We first verified the effects of acetic acid and cell concentrations and initial pH on the growth of a M. guilliermondii strain in a semi-synthetic medium containing acetic acid as the sole carbon source. Second, the single and combined effects of furfural, acetic acid, and sugars (xylose, arabinose, and glucose) on the sugar uptake, cell growth, and ethanol production were also analysed. Growth inhibition occurred in concentrations higher than 10.5 g l -1 acetic acid and initial pH 3.5. The maximum specific growth rate (µ) was 0.023 h -1 and the saturation constant (ks) was 0.75 g l -1 acetic acid. Initial cell concentration also influenced µ. Acetic acid (initial concentration 5 g l -1 ) was co-consumed with sugars even in the presence of 20 mg l -1 furfural without inhibition to the yeast growth. The yeast grew and fermented sugars in a sugar-based medium with acetic acid and furfural in concentrations much higher than those usually found in hemicellulosic hydrolysates.
Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan
2011-01-01
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.
Arrizon, Javier; Gschaedler, Anne
2002-11-01
In the tequila industry, fermentation is traditionally achieved at sugar concentrations ranging from 50 to 100 g x L(-1). In this work, the behaviour of the Saccharomyces cerevisiae yeast (isolated from the juices of the Agave tequilana Weber blue variety) during the agave juice fermentation is compared at different sugar concentrations to determine if it is feasible for the industry to run fermentation at higher sugar concentrations. Fermentation efficiency is shown to be higher (above 90%) at a high concentration of initial sugar (170 g x L(-1)) when an additional source of nitrogen (a mixture of amino acids and ammonium sulphate, different than a grape must nitrogen composition) is added during the exponential growth phase.
Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A
2018-04-13
The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.
Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film
NASA Astrophysics Data System (ADS)
Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika
2016-02-01
The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.
Santarius, K A; Giersch, C
1984-01-01
During freezing of isolated spinach thylakoids in sugar/salt solutions, the two solutes affected membrane survival in opposite ways: membrane damage due to increased electrolyte concentration can be prevented by sugar. Calculation of the final concentrations of NaCl or glucose reached in the residual unfrozen portion of the system revealed that the effects of the solutes on membrane activity can be explained in part by colligative action. In addition, the fraction of the residual liquid in the frozen system contributes to membrane injury. During severe freezing in the presence of very low initial solute concentrations, membrane damage drastically increased with a decrease in the volume of the unfrozen solution. Freezing injury under these conditions is likely to be due to mechanical damage by the ice crystals that occupy a very high fraction of the frozen system. At higher starting concentrations of sugar plus salt, membrane damage increased with an increase in the amount of the residual unfrozen liquid. Thylakoid inactivation at these higher initial solute concentrations can be largely attributed to dilution of the membrane fraction, as freezing damage at a given sugar/salt ratio decreased with increasing the thylakoid concentration in the sample. Moreover, membrane survival in the absence of freezing decreased with lowering the temperature, indicating that the temperature affected membrane damage not only via alterations related to the ice formation. From the data it was evident that damage of thylakoid membranes was determined by various individual factors, such as the amount of ice formed, the final concentrations of solutes and membranes in the residual unfrozen solution, the final volume of this fraction, the temperature and the freezing time. The relative contribution of these factors depended on the experimental conditions, mainly the sugar/salt ratio, the initial solute concentrations, and the freezing temperature. PMID:6478028
USDA-ARS?s Scientific Manuscript database
A significant work on callus induction and somatic embryogenesis was realized for Hibiscus sabdariffa. Two genotypes (Hibiscus sabdariffa and Hibiscus sabdariffa var. altissima) two sugars (sucrose and glucose) and three concentrations (1 %, 2%, 3%) of each sugar, 3 explant types (root, hypocotyl, c...
Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin
2010-07-01
In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.
Pinheiro, Álvaro Daniel Teles; da Silva Pereira, Andréa; Barros, Emanuel Meneses; Antonini, Sandra Regina Ceccato; Cartaxo, Samuel Jorge Marques; Rocha, Maria Valderez Ponte; Gonçalves, Luciana Rocha B
2017-08-01
In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L -1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L -1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol /V solution ), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L -1 h -1 , respectively.
Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria
Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi
2010-01-01
Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325
NASA Astrophysics Data System (ADS)
Rosada, K. K.
2018-05-01
The production of acetic acid from Manalagi apple was studied using a mixed culture of S. cerevisiae and A. aceti by submerged fermentation technique. Determination of the best conditions for producing acetic acid was performed by stratified optimization with variations that were made on the concentration of the initial sugar addition to the medium (0%, 10%, 20% w/v), the ratio of the number of inocula S. cerevisiae and A. aceti (7:3, 1:1, 3:7), and agitation rate (80 and 160 rpm). All experiments were done by using the initial pH medium of 4.5 and incubated at room temperature (28±2oC) for 14 days. The concentration of reducing sugar, alcohol, acetic acid, and the pH were measured every 48 hours. The efficiency of sugar conversion to acetic acid with the addition of initial sugar 0%, 10%, and20%were 233%, 46.6%, and 6.4% respectively after ten days of incubation. Overall, the result showed that the highest acetic acid was produced from Manalagi apple juice when no sugar was added, using seven parts of S. cerevisiae to three parts of A. aceti and agitation rate of 160 rpm on the tenth day of fermentation. Under these conditions, glucose conversion efficiency to acetic acid increased to 362%.
Stohlgren, Thomas J.
1988-01-01
The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.
Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir
NASA Astrophysics Data System (ADS)
Fatmawati, Akbarningrum; Agustriyanto, Rudy
2015-12-01
Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.
Sugar Regulation of Plastid Interconversions in Epicarp of Citrus Fruit 1
Huff, Albert
1984-01-01
Seasonal transformations between chloroplasts and chromoplasts, as measured by changes in chlorophyll content, in the epicarp of degreening and regreening Citrus sinensis (L.) Osbeck cv Valencia fruit closely parallelled the accumulation and later loss of soluble sugars. At any stage of development, reversing the relative soluble sugar content in the epicarp by culturing pericarp segments on agar media with low (15 millimolar) or high (150 millimolar) sucrose concentrations reversed the direction of change in chlorophyll content. Fruit of C. madurensis Lour., which mature year around and do not regreen, also accumulated soluble sugars in the pericarp as degreening was initiated. The epicarp of C. sinensis fruit accumulated nitrogen, but total nitrogen concentrations and amino acid concentrations changed little, during degreening and regreening of C. sinensis fruit. Cessation of nitrogen fertilization reduced the tendency of pericarp segments to regreen in vitro during subsequent years, but regreening tendency was restored by inclusion of KNO3 in the media. It is concluded that chloroplasts become chromoplasts and citrus fruit degreen partially in response to the accumulation of sugars in the epicarp and that the reverse transformation accompanying regreening of certain citrus species occurs when accumulated sugars disappear. Change in nitrogen flux to the fruit is probably not a factor in regulating seasonal transformations, but an abundance of nitrogen in the epicarp diminishes the effects of high sugar concentrations in inducing transformation of chloroplasts to chromoplasts, thereby retarding degreening and promoting regreening. PMID:16663837
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.
2017-01-01
Purifying broccoli (Brassica oleracea L.) fermented by Lactic Acid Bacteria (LAB) using mixture of L. bulgaricus, S. thermopillus, L. acidophillusand Bifidobacteriumbifidum and fructooligosaccharides (FOS) as carbon source have been performed to recover biomass concentrate for probiotic and antioxidant. Purification of fermented broccoli was conducted through microfiltration (MF) membrane of 0.15 µm at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. Fermented broccoli produced via fermentation process with fermentation time 0 (initial) and 48 hours, and LAB concentration 10% and 20% (v/v) represented as biomass of A, B, C and D. The experimental result showed that based on selectivity of total organic acids, separating optimization was achieved at biomass D (fermentation time 48 hours and mixed LAB culture concentration 20%). Concentrate composition produced in this condition were total acids 6.04%, total solids 24.31%, total polyphenol 0.0252%, reducing sugar 68.25 mg/mL, total sugars 30.89 mg/mL, and dissolved protein 28.54 mg/mL with pH 3.94. In this condition, recovery of biomass concentrate of D for total acids 5.64 folds, total solids 1.82 folds, total polyphenol 3.03 folds, reducing sugar 1.16 folds, total sugars 1.19 folds, and dissolved protein 0.67 folds compared with feed (initial process). Identification of monomer of biomass concentrate D as polyphenol derivatives at T2,01 and T3.01 gave monomer with molecular weight (MW) 192.78 Dalton (Da.), and monomer with MW 191.08, 191.49 and 192.07 Da., while lactic acid derivatives showed MW 251.13, 251.6 and 252.14, and monomer with MW 250.63, 252.14 and 254.22 Da.
Ermis, Ertan; Hertel, Christian; Schneider, Christin; Carle, Reinhold; Stintzing, Florian; Schmidt, Herbert
2015-07-02
In this study, cranberry and lingonberry concentrates were added to commercial sugar-reduced fruit spreads (raspberry-Aloe vera, strawberry-guava, and strawberry-lime), and tested for their antifungal activities. Selected strains of the species Absidia glauca, Penicillium brevicompactum, Saccharomyces cerevisiae and Zygosaccharomyces bailii, as well as xerophilic environmental isolates of the genera Penicillium and Eurotium were used for challenge testing. Initially, varying concentrations of synthetic antifungal agents, such as sodium benzoate, potassium sorbate and butyl 4-hydroxybenzoate were tested against these fungi on wort agar containing 31% fructose at different pH values. Subsequently, the experiments were conducted in fruit spreads containing different concentrations of cranberry and lingonberry concentrates. The results of this study demonstrate that these concentrates were able to inhibit growth of visible colonies of xerophilic and non-xerophilic fungi. Cranberry and lingonberry concentrates are interesting candidates for natural preservation against fungal growth in sugar reduced fruit spreads. Copyright © 2015 Elsevier B.V. All rights reserved.
Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana
Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia
2015-01-01
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700
Gao, Yueshu; Xu, Jingliang; Yuan, Zhenhong; Zhang, Yu; Liu, Yunyun; Liang, Cuiyi
2014-09-01
Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process. Copyright © 2014. Published by Elsevier Ltd.
Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G
2012-05-01
Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.
Coelho, Raquel Macedo Dantas; Araújo, Antônia Daiana Andrade; Fontes, Cláudia Patrícia Mourão Lima; da Silva, Ana Raquel Araujo; da Costa, José Maria Correia; Rodrigues, Sueli
2015-09-01
Oligosaccharides can be synthesized using the sugars present in the fruit juices through the dextransucrase acceptor reaction. In the present work, the effect of reducing sugar and sucrose concentration on oligosaccharide formation in lemon juice was evaluated through response surface methodology. The oligosaccharide formation in lemon juice was favored at high concentrations of sucrose (75 g/L) and reducing sugar (75 g/L). At this synthesis conditions, an oligosaccharide concentration of 94.81 g/L was obtained with a conversion of 63.21% of the initial sugars into the target product. Oligosaccharides with degree of polymerization up to 11 were obtained. The lemon juice was dehydrated in spouted bed using maltodextrin as drying adjuvant. The powder obtained at 60°C with 20 % maltodextrin presented low moisture (2.24 %), low water activity (Aw = 0.18) and the lowest reconstitution time (~46 s). The results showed that lemon juice is suitable for oligosaccharides enzyme synthesis and can be dehydrated in spouted bed.
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
Cervantes-Rodríguez, M; Martínez-Gómez, M; Cuevas, E; Nicolás, L; Castelán, F; Nathanielsz, P W; Zambrano, E; Rodríguez-Antolín, J
2014-02-01
Poor maternal nutrition predisposes offspring to metabolic disease. This predisposition is modified by various postnatal factors. We hypothesised that coupled to the initial effects of developmental programming due to a maternal low-protein diet, a second hit resulting from increased offspring postnatal sugar consumption would lead to additional changes in metabolism and adipose tissue function. The objective of the present study was to determine the effects of sugared water consumption (5% sucrose in the drinking-water) on adult offspring adiposity as a 'second hit' following exposure to maternal protein restriction during pregnancy. We studied four offspring groups: (1) offspring of mothers fed the control diet (C); (2) offspring of mothers fed the restricted protein diet (R); (3) offspring of control mothers that drank sugared water (C-S); (4) offspring of restricted mothers that drank sugared water (R-S). Maternal diet in pregnancy was considered the first factor and sugared water consumption as the second factor - the second hit. Body weight and total energy consumption, before and after sugared water consumption, were similar in all the groups. Sugared water consumption increased TAG, insulin and cholesterol concentrations in both the sexes of the C-S and R-S offspring. Sugared water consumption increased leptin concentrations in the R-S females and males but not in the R offspring. There was also an interaction between sugared water and maternal diet in males. Sugared water consumption increased adipocyte size and adiposity index in both females and males, but the interaction with maternal diet was observed only in females. Adiposity index and plasma leptin concentrations were positively correlated in both the sexes. The present study shows that a second hit during adulthood can amplify the effects of higher adiposity arising due to poor maternal pregnancy diet in an offspring sex dependent fashion.
Berbert-Molina, M A; Sato, S; Silveira, M M
2001-01-01
The production of 2,3-butanediol by Klebsiella pneumoniae from sugar cane juice supplemented with different salts was studied. This microorganism is able to degrade sucrose present in sugar cane juice containing ammonium phosphate as the sole nutritional supplement. With a sugar cane juice-based medium containing approximately 180 g sucrose/l and 8.0 g (NH4)2HPO4/l, over 70 g 2,3-butanediol plus acetoin/l were formed. This result is comparable to that achieved with a sugar cane juice-based medium containing several nutrients, although the kinetic profiles of these runs presented significant differences. With the ammonium phosphate-enriched medium, cell growth was initially favoured by both the strong oxygen supply and the higher water activity due to the lower concentration of nutrients. After 14 h, the limitation in some nutrients led to the interruption of cell growth, and decreasing rates for product formation and substrate consumption were observed. During the stationary phase of this run, sucrose was preferentially converted to product, and the substrate was completely depleted after 35 h of the process. With the complete medium, the substrate was totally consumed after 36 h of run. In this case, the higher initial concentration of nutrients reduced the overall process rate but sustained the cell growth for 27 h. Conversion yields of 0.40 g product/g sucrose and productivities close to 2.0 g/l x h were obtained under both conditions.
Stable-Carbon Isotopic Composition of Maple Sap and Foliage 1
Leavitt, Steven W.; Long, Austin
1985-01-01
The 13C/12C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13C/12C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13C/12C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13C/12C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. PMID:16664259
Stable-carbon isotopic composition of maple sap and foliage.
Leavitt, S W; Long, A
1985-06-01
The (13)C/(12)C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and (13)C/(12)C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the (13)C/(12)C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose-->glucose-->cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The (13)C/(12)C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season.
Nectar regulation in Euphorbia tithymaloides L., a hummingbird-pollinated Euphorbiaceae.
Veiga Blanco, T; Galetto, L; Machado, I C
2013-09-01
Floral sexual phases can differ in nectar production and might be under selective pressure by pollinators. We studied Euphorbia tithymaloides, which has inflorescences that are initially female and then hermaphroditic. Volume and concentration of nectar were measured in both stages. Nectar production and the effect of extractions were determined using sets of bagged inflorescences; inflorescences in the hermaphroditic phase had higher values of nectar concentration, volume and sugar mass than inflorescences in the female phase. Nectar resorption was detected in senescent inflorescences. To test for homeostatic nectar regulation, artificial nectar was added and the response assessed after 24 h. The experiments showed that concentration and sugar mass are regulated within a narrow range, and the homeostatic points differ between the two sexual phases. These differences in nectar can be detected by hummingbirds, which prefer the female stage. Resorption and secretion seem to be part of a homeostatic mechanism by which nectar attributes are maintained to optimise sugar recovery. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Goncerzewicz, Anna; Kamińska-Wojteczek, Karolina; Młynarczyk, Izabella; Misiewicz, Anna
2017-01-01
In this study we determined the influence of different sugar concentration in media, time of rehydration and type of strain on relative expression level of GPD1 and SIP18 genes of active dry cider-making yeast strains, followed by the assessment of the impact of rehydration on the fermentation process. High expression of SIP18 at the beginning of rehydration was shown to be due to high transcription of the gene during the drying process. High sugar concentrations of media initiated transcription of the GPD1 gene and triggered the cellular glycerol biosynthesis pathway in examined strains. Rehydration time and type of strain showed to have no statistically significant impact on the course of the fermentation; RT qPCR results depended mainly on the time of rehydration and sugar concentration of the medium. This is the first attempt to confront rehydration time and molecular mechanisms acting upon rehydration with the course of the fermentation process.
Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei
2012-09-01
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.
Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿
Coleman, Matthew C.; Fish, Russell; Block, David E.
2007-01-01
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615
Dey, Pinaki; Rangarajan, Vivek
2017-10-01
Experimental investigations were carried out for Cupriavidus necator (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.12 g/l for fed-batch fermentation with varying dilution rates of 0.02 and 0.046 1/h. To get enriched production of PHB, concentration of the sugar was further increased to 150 and 200 g/l in feeding. Maximum concentrations of PHB achieved were 22.35 and 23.07 g/l at those dilution rates when sugar concentration maintains at 200 g/l in feeding. At maximum concentration of PHB (23.07 g/l), productivity of 0.58 g/l h was achieved with maximum PHB accumulation efficiency up to 64% of the dry weight of biomass. High purity of PHB, close to medical grade was achieved after surfactant hypochlorite extraction method, and it was further confirmed by SEM, EDX, and XRD studies.
Sidebottom, D L; Tran, Tri D
2010-11-01
Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt % sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, ϕ, consisting of noninteracting, monodisperse sugar clusters whose size increases ϕ(1/3) followed by an aggregation stage, active at concentrations above about ϕ=40%, where cluster-cluster contact first occurs.
Mohagheghi, Ali; Schell, Daniel J
2010-04-01
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.
Wiley, Erin; Hoch, Günter; Landhäusser, Simon M
2017-11-02
Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve. © Society for Experimental Biology 2017.
An integrated optical sensor for measuring glucose concentration
NASA Astrophysics Data System (ADS)
Liu, Y.; Hering, P.; Scully, M. O.
1992-01-01
We used an optical sensor combined with a Mach-Zehnder interferometric waveguide and optical fibers to measure slight changes of aqueous sugar concentrations. The merits of this sensor are simplicity, reliability, high sensitivity and continuous monitoring. The technique is based on the fact that the refractive index of sugar solution changes with the concentration of sugar. In the experiment, one arm of the interferometer is clad with glue and is thus isolated from the sugar solution. The other one is exposed to the sugar solution. A single mode fiber is directly glued onto the interferometric waveguide, to guide the light into the interferometer. If the concentration of sugar covering the waveguide changes, the phase of propagating light in the exposed arm will be changed, while the phase in the other arm is fixed. Hence the output intensity from the interferometer is directly related to the concentration of the sugar solution. The result of this experiment yields the relation between the sugar concentration and output signal. From 0% to 1% concentration of sugar solution, there is only a 1.4×10-3 refractive index difference. Two sets of experimental data have been obtained, showing a linear relation between the sugar concentration and the output signal from our sensor. This sensor could be used for continuous monitoring of blood sugar in the human body.
Ray tissues as an indirect measure of relative sap-sugar concentration in sugar maple
Peter W. Garrett; Kenneth R. Dudzik; Kenneth R. Dudzik
1989-01-01
Attempts to correlate ray tissue as a percentage of total wood volume with sap-sugar concentrations of sugar maple progenies were unsuccessful. These results raise doubts about our ability to use a relatively constant value such as ray-tissue volume in a selection program designed to increase the sap-sugar concentration of sugar maple seedlings.
Cernusak, Lucas A.; Arthur, David J.; Pate, John S.; Farquhar, Graham D.
2003-01-01
A strong correlation was previously observed between carbon isotope discrimination (Δ13C) of phloem sap sugars and phloem sap sugar concentration in the phloem-bleeding tree Eucalyptus globulus Labill. (J. Pate, E. Shedley, D. Arthur, M. Adams [1998] Oecologia 117: 312–322). We hypothesized that correspondence between these two parameters results from covarying responses to plant water potential. We expected Δ13C to decrease with decreasing plant water potential and phloem sap sugar concentration to increase, thereby maintaining turgor within sieve tubes. The hypothesis was tested with analyses of E. globulus trees growing on opposite ends of a rainfall gradient in southwestern Australia. The Δ13C of phloem sap sugars was closely related to phloem sap sugar concentration (r = −0.90, P < 0.0001, n = 40). As predicted, daytime shoot water potential was positively related to Δ13C (r = 0.70, P < 0.0001, n = 40) and negatively related to phloem sap sugar concentration (r = −0.86, P < 0.0001, n = 40). Additional measurements showed a strong correspondence between predawn shoot water potential and phloem sap sugar concentration measured at midday (r = −0.87, P < 0.0001, n = 30). The Δ13C of phloem sap sugars collected from the stem agreed well with that predicted from instantaneous measurements of the ratio of intercellular to ambient carbon dioxide concentrations on subtending donor leaves. In accordance, instantaneous ratio of intercellular to ambient carbon dioxide concentrations correlated negatively with phloem sap sugar concentration (r = −0.91, P < 0.0001, n = 27). Oxygen isotope enrichment (Δ18O) in phloem sap sugars also varied with phloem sap sugar concentration (r = 0.91, P < 0.0001, n = 39), consistent with predictions from a theoretical model of Δ18O. We conclude that drought induces correlated variation in the concentration of phloem sap sugars and their isotopic composition in E. globulus. PMID:12692314
Biorefinery of sweet sorghum stem.
Yu, Jianliang; Zhang, Tao; Zhong, Jing; Zhang, Xu; Tan, Tianwei
2012-01-01
Sweet sorghum has been considered as a viable energy crop for alcohol fuel production. This review discloses a novel approach for the biorefining of sweet sorghum stem to produce multiple valuable products, such as ethanol, butanol and wood plastic composites. Sweet sorghum stem has a high concentration of soluble sugars in its juice, which can be fermented to produce ethanol by Saccharomyces cerevisiae. In order to obtain high ethanol yield and fermentation rates, concentrated juice with an initial total sugar concentration of 300gL(-1) was fermented. The maximum ethanol concentration after 54h reached 140gL(-1) with a yield of 0.49g ethanol per g consumed sugar, which is 97% of the theoretical value. Sweet sorghum bagasse, obtained from juice squeezing, was pretreated by acetic acid to hydrolyze 80-90% of the contained hemicelluloses. Using this hydrolysate as raw material (total sugar 55gL(-1)), 19.21gL(-1) total solvent (butanol 9.34g, ethanol 2.5g, and acetone 7.36g) was produced by Clostridium acetobutylicum. The residual bagasse after pretreatment was extruded with PLA in a twin-screw extruder to produce a final product having a PLA: fiber ratio of 2:1, a tensile strength of 49.5M and a flexible strength of 65MPa. This product has potential use for applications where truly biodegradable materials are required. This strategy for sustainability is crucial for the industrialization of biofuels from sweet sorghum. Copyright © 2012. Published by Elsevier Inc.
Microwave processing of maple sap to maple syrup and maple syrup products.
Favreau, D; Sosle, V; Raghavan, G S
2001-01-01
A study of the physical process of concentration of maple sap to maple syrup and preparation of maple syrup products by microwave heating is described. Duty cycles of 60, 75 and 100% were used for the microwave application. During the process, some of the drying kinetics are discussed, including the reduction of moisture content with time, the progress of the process in terms of increasing sugar concentration and the power absorbed. Obviously, the rate of water removal was higher in case of the higher duty cycles. The total time required for finishing the syrup was also dependent on the initial mass of the load and the initial sugar content. The products obtained were compared with commercial graded products for the quality and met the highest standards prescribed by the industry. The absence of heat damage or browning of the product was identified as a distinct advantage that could be derived from microwave processing of maple syrup.
Ibrahim, M F; Razak, M N A; Phang, L Y; Hassan, M A; Abd-Aziz, S
2013-07-01
Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.
Gao, Johnway; Anderson, Dwight; Levie, Benjamin
2013-01-28
Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has been demonstrated to be effective on hardwood and herbaceous biomass, making it truly feedstock flexible. Different options exist for integrating lignocellulosic sugar into sugar-using operations. A sugar conversion plant may be adjacent to a CLE Sugar plant, and the CLE Sugar can be concentrated from the initial 10% sugar as needed. Concentrated sugars, however, can be shipped to remote sites such as ethanol plants or other sugar users. In such cases, options for shipping a dense form of sugars include (1) pretreated biomass with enzyme addition, (2) lignocellulosic sugar syrup, and (3) lignocellulosic sugar solid. These could provide the advantage of maximizing the use of existing assets.
Dietrich, Karolin; Dumont, Marie-Josée; Schwinghamer, Timothy; Orsat, Valérie; Del Rio, Luis F
2018-01-08
Softwood hemicellulose hydrolysates are a cheap source of sugars that can be used as a feedstock to produce polyhydroxybutyrates (PHB), which are biobased and compostable bacterial polyesters. To assess the potential of the hemicellulosic sugars as a carbon source for PHB production, synthetic media containing softwood hemicellulose sugars (glucose, mannose, galactose, xylose, arabinose) and the potentially inhibitory lignocellulose degradation products (acetic acid, 5-hydroxymethylfurfural (HMF), furfural, and vanillin) were fermented with the model strain Paraburkholderia sacchari IPT 101. Relative to pure glucose, individual fermentation for 24 h with 20 g/L mannose or galactose exhibited maximum specific growth rates of 97% and 60%, respectively. On the other hand, with sugar mixtures of glucose, mannose, galactose, xylose, and arabinose, the strain converted all sugars simultaneously to reach a maximum PHB concentration of 5.72 g/L and 80.5% PHB after 51 h. The addition of the inhibitor mixture at the following concentration, sodium acetate (2.11 g/L), HMF (0.67 g/L), furfural (0.66 g/L), and vanillin (0.93 g/L), to the sugar mixture stopped the growth entirely within 24 h. Individually, the inhibitors either had no effect or only reduced growth. Moreover, it was found that a bacterial inoculum with high initial cell density (optical density, OD ≥ 5.6) could overcome the growth inhibition to yield an OD of 13 within 24 h. Therefore, softwood hemicellulose sugars are viable carbon sources for PHB production. Nevertheless, real softwood hemicellulose hydrolysates need detoxification or a high inoculum to overcome inhibitory effects and allow bacterial growth.
Role of sugars under abiotic stress.
Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul
2016-12-01
Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Comparative behaviour of yeast strains for ethanolic fermentation of culled apple juice.
Modi, D R; Garg, S K; Johri, B N
1998-07-01
The culled apple juice contained (% w/v): nitrogen, 0.036; total sugars, 11.6 and was of pH 3.9. Saccharomyces cerevisiae NCIM 3284, Pichia kluyeri and Candida krusei produced more ethanol from culled apple juice at its optimum initial pH 4.5, whereas S. cerevisiae NCIM 3316 did so at pH 5.0. An increase in sugar concentration of apple juice from natural 11.6% to 20% exhibited enhanced ethanol production and improved fermentation efficiency of both the S. cerevisiae strains, whereas P. kluyveri and C. krusei produced high ethanol at 11.6% and 16.0% sugar levels, respectively. Urea was stimulatory for ethanol production as well as fermentation efficiency of the yeast strains under study.
Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O
2013-05-01
Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of chronic ammonium sulfate treatment on the forest at the Bear Brook Watershed in Maine.
Elvir, Jose Alexander; Wiersma, G Bruce; Bethers, Suzanne; Kenlan, Peter
2010-12-01
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH(4))(2)SO(4)) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha(-1) year(-1) and 30 kg S ha(-1) year(-1)applied bimonthly as (NH(4))(2)SO(4), while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.
Enzymatic Hydrolysis of Cellulosic Materials to Fermentable Sugars for the Production of Ethanol
1980-10-12
Pretreatment . • . . • . . . . . • . . . 19 5. Enzyme Production (Prepilot Scale) • . • ·. • • . . . . . • • • • 29 6. Saccharification (Prepilot...hour hydrolysis of 15% substrate. TASK II 1. Poplar shavings were compression mill pretreated most effectively at an initial moisture content of 12...concentration, pretreatment of.cellulose substrates, glucose syrup concentration, temperature, acidity, residence time, recovery of enzymes, fungi, glucose
Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.
Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens
2010-05-01
Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.
Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts
Varela, Cristian; Pizarro, Francisco; Agosin, Eduardo
2004-01-01
Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must. PMID:15184136
Fito, Jemal; Tefera, Nurelegne; Kloos, Helmut; Van Hulle, Stijn W H
2018-06-07
This study aimed to investigate the physicochemical properties of sugar industry and ethanol distillery wastewater and the treatment of the blended wastewater through a two-stage anaerobic reactor. For this treatment, different initial chemical oxygen demand (COD) concentrations (5-20 g/L) and hydraulic retention times (HRTs) (2-10 days) were applied. The sugar industry effluent characteristics obtained in terms of organic matter (mg/L) were as follows: 5 days biochemical oxygen demand (BOD 5 ): 654.5-1,968; COD: 1,100-2,148.9; total solids (TS): 2,467-4,012 mg/L; and pH: 6.93-8.43. The ethanol distillery spent wash strengths obtained were: BOD 5 : 27,600-42,921 mg/L; COD: 126,000-167,534 mg/L; TS: 140,160-170,000 mg/L; and pH: 3.9-4.2. Maximum COD removal of 65% was obtained at optimum condition (initial COD concentration of 10 g/L and HRT of 10 days), and maximum color removal of 79% was recorded under similar treatment conditions. Hence, the performance of the two-stage anaerobic reactor for simultaneous removal of COD and color from high-strength blended wastewater is promising for scaling up in order to mitigate environmental problems of untreated effluent discharge.
Carbohydrate levels in current-year shoots of sugar maple
John R. Donnelly
1976-01-01
Diurnal changes in carbohydrate concentrations in leaves and current-year stems of a mature sugar maple tree were studied in June and September. In leaves, alcohol-soluble sugar concentration was highest in the morning and lowest in late afternoon or early evening; diurnal changes in starch lagged about 5 hours behind changes in sugar. Carbohydrate concentrations in...
Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane
NASA Astrophysics Data System (ADS)
Redjeki, S.; Hapsari, N.; Iriani
2018-01-01
Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.
Araya, Takao; Noguchi, Ko; Terashima, Ichiro
2006-05-01
Accumulation of non-structural carbohydrate in leaves represses photosynthesis. However, the extent of repression should be different between sink leaves (sugar consumers) and source leaves (sugar exporters). We investigated the effects of carbohydrate accumulation on photosynthesis in the primary leaves of bean (Phaseolus vulgaris L.) during leaf expansion. To increase the carbohydrate content of the leaves, we supplied 20 mM sucrose solution to the roots for 5 d (sugar treatment). Plants supplied only with water and nutrients were used as controls. The carbohydrate contents, which are the sum of glucose, sucrose and starch, of the sugar-treated leaves were 1.5-3 times of those of the control leaves at all developmental stages. In the young sink leaves, the photosynthetic rate at saturating light and at an ambient CO2 concentration (A360) did not differ between the sugar-treated and control leaves. The A360 of sugar-treated source leaves gradually decreased relative to the control source leaves with leaf expansion. The initial slope of the A-Ci (CO2 concentration in the intercellular space) curve, and the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content per leaf area showed trends similar to that of A360. Differences in Amax between the treatments were slightly smaller than those in A360. These results indicate that the effect of carbohydrate accumulation on photosynthesis is significant in the source leaves, but not in the young sink leaves, and that the decrease in Rubisco content was the main cause of the carbohydrate repression of photosynthesis.
Hoyer, Kerstin; Galbe, Mats; Zacchi, Guido
2013-10-08
Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a higher temperature prior to the simultaneous saccharification and fermentation (SSF) of steam-pretreated lignocellulosic materials. In some cases, a significant increase in overall ethanol yield was reported, while in others, a slight decrease in ethanol yield was observed. In order to investigate the influence of prehydrolysis on high-solids SSF of steam-pretreated spruce slurry, in the present study, the presence of fibers and inhibitors, degree of fiber degradation and initial fermentable sugar concentration has been studied. SSF of whole steam-pretreated spruce slurry at a solids content of 13.7% water-insoluble solids (WIS) resulted in a very low overall ethanol yield, mostly due to poor fermentation. The yeast was, however, able to ferment the washed slurry and the liquid fraction of the pretreated slurry. Performing prehydrolysis at 48°C for 22 hours prior to SSF of the whole pretreated slurry increased the overall ethanol yield from 3.9 to 62.1%. The initial concentration of fermentable sugars in SSF could not explain the increase in ethanol yield in SSF with prehydrolysis. Although the viscosity of the material did not appear to decrease significantly during prehydrolysis, the degradation of the fibers prior to the addition of the yeast had a positive effect on ethanol yield when using whole steam-pretreated spruce slurry. The results of the present study suggest that the increase in ethanol yield from SSF when performing prehydrolysis is a result of fiber degradation rather than a decrease in viscosity. The increased concentration of fermentable sugars at the beginning of the fermentation phase in SSF following prehydrolysis did not affect the overall ethanol yield in the present study.
Lleixà, Jessica; Manzano, Maria; Mas, Albert; Portillo, María del C.
2016-01-01
The inoculation of wines with autochthonous yeast allows obtaining complex wines with a peculiar microbial footprint characteristic from a wine region. Mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae is of interest for the wine industry for technological and sensory reasons. However, the interactions between these yeasts are not well understood, especially those regarding the availability of nutrients. The aim of the present study was to analyze the effect of nitrogen and sugar concentration on the evolution of mixed yeast populations on controlled laboratory-scale fermentations monitored by density, plate culturing, PCR-DGGE and sugar and nitrogen consumption. Furthermore, the effect of the time of inoculation of Saccharomyces cerevisiae respect the initial co-inoculation of three non-Saccharomyces yeasts was evaluated over the evolution of fermentation. Our results have shown that S. cerevisiae inoculation during the first 48 h conferred a stabilizing effect over the fermentations with non-Saccharomyces strains tested and, generally, reduced yeast diversity at the end of the fermentation. On the other hand, nitrogen limitation increased the time of fermentation and also the proportion of non-Saccharomyces yeasts at mid and final fermentation. High sugar concentration resulted in different proportions of the inoculated yeast depending on the time of S. cerevisiae inoculation. This work emphasizes the importance of the concentration of nutrients on the evolution of mixed fermentations and points to the optimal conditions for a stable fermentation in which the inoculated yeasts survived until the end. PMID:27994585
Carbohydrate crops as a renewable resource for fuels production. Volume III. Juice preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, D.J.; Allen, B.R.; Litchfield, J.H.
1980-01-29
The objective of this study was to evaluate a process to preserve sugar crop juices. The process is energy conserving in that concentrated sugar solutions are produced with little evaporation of water. A preliminary investigation was conducted of polysaccharide hydrolysis as a means for preserving mixed sugar solutions obtained from crops such as sweet sorghum. Four subtasks have been addressed during this report period: I. Concentration of Pure Sugar Solutions by Hydrolysis of Purified Starch; II. Concentration of Genuine Sugar Crop Juice by Hydrolysis of Purified Starch; III. Concentration of Pure Sugar Solutions by Hydrolysis of Genuine Biomass Starch; andmore » IV. Concentration of Pure Sugar Solutions by Hydrolysis of Cellulosic Materials. The results obtained from the experiments conducted in Subtasks I and II included the following: (1) Concentrated sucrose-glucose-fructose solutions (greater than 50 percent) can be prepared from simulated or actual sweet sorghum juice using enzymatic thinning and saccharification of pure starch-sugar solution mixtures. (2) Enzymatic saccharification of corn meal and cracked wheat in simulated sorghum juice was also demonstrated. (3) Concentration of sugar solutions also can be accomplished by saccharification of cellulosic materials. In our experiments, inhibition of the cellobiase component of the cellulase preparation was observed. The hydrolysis studies were directed to the demonstration of the feasibility of one approach to the preparation of concentrated, microbiologically stable sugar syrups starting with sweet sorghum juice. Future work on Subtask V of this program will continue the investigations already underway and will consider other approaches to the stabilization of juices. Subtask VI of this program will consider the process economics of the Subtask I to IV approaches, or combinations of two or more methods, that are considered to be most feasible for juice preservation.« less
Arslan, Yeşim; Eken-Saraçoğlu, Nurdan
2010-11-01
In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study demonstrates that Pichia stipitis is able to grow and ferment sugars to ethanol in detoxified hazelnut hydrolysate derived from delignified biomass.
The sugar model: catalysis by amines and amino acid products
NASA Technical Reports Server (NTRS)
Weber, A. L.
2001-01-01
Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.
Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less
Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.; ...
2017-09-18
Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less
Koshimoto, Chihiro; Mazur, Peter
2002-08-01
Several factors have contributed to problems in mouse sperm cryopreservation, and we and others have found ways to ameliorate them. These include high sensitivity to several types of mechanical stresses and to oxygen-derived free radicals, low tolerance to osmotic cell volume changes, and rather rigorous requirements for cooling and warming rates. Another important factor is the cryoprotective agent. Mouse sperm are unusual in that our best results have been obtained in media containing the nonpermeating sugar raffinose (18% w/v) and lacking glycerol. This paper deals with questions about the basis of the protective action of sugars, and whether raffinose is unusual or unique in its ability to confer protection. More specifically, we investigated whether protection was more related to the total osmolality of the freezing solution, to the mass concentration of sugar, or to the molarity of the sugar, and we looked to see whether there are effects attributable to specific sugars. To investigate these questions, mouse sperm were frozen at the optimal rate of 25 degrees C/min in solutions prepared with different proportions of three sugars-raffinose, sucrose, and glucose-dissolved in 1/4x PBS. In the first experimental series, the total osmolality and the total sugar molarity were varied from 400 to 700 mOsm and from 300 to 530 mM, respectively, while holding the mass concentration of sugar constant at 18% (w/v). In the second experimental series, the mass concentration of sugars was varied from 10 to 18% while the sugar molarity and solution osmolality remained constant at 300 mM and 420 mOsm, respectively. The results suggest that protection against freezing and thawing depends more on the mass concentration of the sugar than on its molar concentration, a conclusion that has mechanistic implications.
Affinity chemiresistor sensor for sugars.
Tlili, Chaker; Badhulika, Sushmee; Tran, Thien-Toan; Lee, Ilkeun; Mulchandani, Ashok
2014-10-01
In this work, a non-enzymatic chemiresistive sugar sensor has been developed by combining a synthetic receptor with aligned single-walled carbon nanotubes (SWNTs) device. Briefly, boronic acid as a multivalent sugar receptor was immobilized on carbon nanotubes through amide bond formation. The interaction between three common sugars (d-glucose, d-fructose and sucrose) and boronic acid modified SWNTs device was studied. The effect of pH on the receptor-ligand binding was examined and highest response was observed at pH 9. The chemiresistive sensor exhibited specific and reproducible detection with sensitivity over the concentration range of 1-20mM, 1-25 mM, and 1-30 mM for fructose, glucose, and sucrose, respectively. The sensor showed no interference from common electroactive compounds such as citric acid, uric acid, and ascorbic acid. Furthermore, the sensor retained 97.4% of the initial value after five regeneration cycles with an acidic buffer at pH 5, thus ensuring good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.
Nguyen, Trung D; Walker, Michelle E; Gardner, Jennifer M; Jiranek, Vladimir
2018-04-01
Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L -1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L -1 or 200 g L -1 . These findings offer insight to the importance of VA to cell growth in high sugar media. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marler, Thomas E.; Lindström, Anders J.
2014-01-01
The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date. PMID:25339967
Involvement of L(-)-rhamnose in sea urchin gastrulation: a live embryo assay.
Smith, Tiffany N; Oppenheimer, Steven B
2015-04-01
The sea urchin embryo is a National Institutes of Health model system that has provided major developments, and is important in human health and disease. To obtain initial insights to identify glycans that mediate cellular interactions, Lytechinus pictus sea urchin embryos were incubated at 24 or 30 h post-fertilization with 0.0009-0.03 M alpha-cyclodextrin, melibiose, L(-)-rhamnose, trehalose, D(+)-xylose or L(-)-xylose in lower-calcium artificial sea water (pH 8.0, 15°C), which speeds the entry of molecules into the interior of the embryos. While α-cyclodextrin killed the embryos, and L(-)-xylose had small effects at one concentration tested, L(-)-rhamnose caused substantially increased numbers of unattached archenterons and exogastrulated embryos at low glycan concentrations after 18-24 h incubation with the sugar. The results were statistically significant compared with the control embryos in the absence of sugar (P < 0.05). The other sugars (melibiose, trehalose, D(+)-xylose) had no statistically significant effects whatsoever at any of the concentrations tested. In total, in the current study, 39,369 embryos were examined. This study is the first demonstration that uses a live embryo assay for a likely role for L(-)-rhamnose in sea urchin gastrula cellular interactions, which have interested investigators for over a century.
Sosnowska, Katarzyna; Winnicka, Katarzyna; Czajkowska-Kośnik, Anna
2009-01-01
In this paper, the stability of enalapril maleate in oral formulations prepared from commercially available tablets was investigated. Extemporaneously compounded, 0.1 mg/mL and 1.0 mg/mL, oral suspensions of enalapril maleate in sugar-containing and sugar-free vehicles were stored in the absence of light at 4 degrees and 25 degrees C for 30 days. Enalapril maleate stability was quantified after 7, 14, 21, and 30 days using HPLC method. Viscosities and pH of prepared suspensions were measured on each study day and no appreciable changes from the initial pH and initial viscosities occurred in any of the samples both at 25 degrees and 4 degrees C. It was shown that all the formulations retain minimum 98% of the initial enalapril maleate concentration after 30 days of storage at 25 degrees and 4 degrees C and they may provide an option in situations where the marketed suspension is unavailable.
NASA Astrophysics Data System (ADS)
Roth, Philipp; Lehndorff, E.; Cao, Z.; Amelung, W.
2010-05-01
Available nitrogen is a limiting factor in paddy rice systems due to ammonia volatilization, denitrification and stabilization in organic complexes. Soil organic nitrogen (SON) might therefore constitute a critical component of the nitrogen cycle in rice systems. The objective of this study was to elucidate the role of microorganisms for the sequestration of paddy N in organic forms. For this purpose we analyzed amino sugars as markers for the residues of bacteria and fungi in a chronosequence of soils that were used for paddy rice production for a period of 0 to 2000 years in the Hangzhou bay area in Southeast China. Within the soil profile, amino sugar concentrations were generally highest in the puddled Ap horizon and decreased with increasing depth along with organic carbon concentrations regardless of the time of rice cultivation. Nevertheless, a sharp increase of total amino sugar concentration from 0.1 g kg-1 to 0.3 g kg-1 was observed in the Ah horizon when comparing tidal wetland to salt marsh that had been impoldered 30 years ago, indicating an increasing importance of microbial residues in SON stabilization following the conversion of the semiaquatic marsh to a terrestrial system. With increased time of paddy rice cropping, amino sugar concentrations continued to increase up to a maximum of 2.1 g kg-1 after 300 years of paddy cultivation but declined again to 1 g kg-1 in soils with 700-2000 years history of cultivation despite increasing organic matter accumulation. Changes in the composition of the amino sugars were also most pronounced at initial stages of paddy rice management. The proportions of glucosamine (abundant in fungal chitin) decreased during the first 50 years of cultivation relative to mainly galactosamine (abundant in bacterial gums) and muramic acid (abundant in bacterial peptidoglycan), that remained at constantly low levels. At later stages of paddy rice cultivation, the ratios of glucosamine to galactosamine and to muramic acid re-increased. We conclude that microorganisms significantly contribute to the sequestration of paddy N in organic forms during the first 300 years of cropping, within an increasing contribution of bacteria as cropping time proceeds. At even longer periods of paddy rice cultivation, there appears to be a backshift to lower concentrations of microbial residues with higher proportions of fungal N remaining.
21 CFR 146.145 - Orange juice from concentrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... sweetening ingredients referred to in paragraph (a) of this section are sugar, sugar sirup, invert sugar... Juices and Beverages § 146.145 Orange juice from concentrate. (a) Orange juice from concentrate is the...), orange oil, orange pulp, and one or more of the sweetening ingredients listed in paragraph (b) of this...
21 CFR 146.145 - Orange juice from concentrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sweetening ingredients referred to in paragraph (a) of this section are sugar, sugar sirup, invert sugar... Juices and Beverages § 146.145 Orange juice from concentrate. (a) Orange juice from concentrate is the...), orange oil, orange pulp, and one or more of the sweetening ingredients listed in paragraph (b) of this...
21 CFR 146.145 - Orange juice from concentrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... sweetening ingredients referred to in paragraph (a) of this section are sugar, sugar sirup, invert sugar... Juices and Beverages § 146.145 Orange juice from concentrate. (a) Orange juice from concentrate is the...), orange oil, orange pulp, and one or more of the sweetening ingredients listed in paragraph (b) of this...
21 CFR 146.145 - Orange juice from concentrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... sweetening ingredients referred to in paragraph (a) of this section are sugar, sugar sirup, invert sugar... Juices and Beverages § 146.145 Orange juice from concentrate. (a) Orange juice from concentrate is the...), orange oil, orange pulp, and one or more of the sweetening ingredients listed in paragraph (b) of this...
21 CFR 146.145 - Orange juice from concentrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... sweetening ingredients referred to in paragraph (a) of this section are sugar, sugar sirup, invert sugar... Juices and Beverages § 146.145 Orange juice from concentrate. (a) Orange juice from concentrate is the...), orange oil, orange pulp, and one or more of the sweetening ingredients listed in paragraph (b) of this...
Lee, Sang Cheol
2017-12-01
A cost-effective five-step sugar purification process involving simultaneous removal and recovery of fermentation inhibitors from biomass hydrolysates was first proposed here. Only the three separation steps (PB, PC and PD) in the process were investigated here. Furfural was selectively removed up to 98.4% from a simulated five-component hydrolysate in a cross-current three-stage extraction system with n-hexane. Most of acetic acid in a simulated four-component hydrolysate was selectively removed by emulsion liquid membrane, and it could be concentrated in the stripping solution up to 4.5 times its initial concentration in the feed solution. 5-Hydroxymethylfurfural was selectively removed from a simulated three-component hydrolysate in batch and continuous fixed-bed column adsorption systems with L-493 adsorbent. Also, 5-hydroxymethylfurfural could be concentrated to about 9 times its feed concentration in the continuous adsorption system through a fixed-bed column desorption experiment with aqueous ethanol solution. These results have shown that the proposed purification process was valid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Willaume, Magali; Pagès, Loïc
2011-01-01
Background and Aims To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings. Methods Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts. Key Results Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed. Conclusions The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability. PMID:21239407
Martini, Cristina; Tauk-Tornisielo, Sâmia Maria; Codato, Carolina Brito; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina
2016-05-01
The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.
Downs, Colleen T; Mqokeli, Babalwa; Singh, Preshnee
2012-03-01
Fruit- and nectar-feeding bats have high energy demands because of the cost of flight, and sugar is a good fuel because it is easily digested and absorbed. This study investigated the digestive efficiency of different sugars at different concentrations in Wahlberg's epauletted fruit bat (Epomophorus wahlbergi). We predicted that the sugar type and concentration would affect the total amount of solution consumed, while the total energy gained and the apparent assimilation efficiency would be high, irrespective of sugar type or concentration. Equicaloric solutions of two sugar types, glucose and sucrose, at low (10%), medium (15%) and high (25%) concentrations were offered in separate trials to bats. Total amount of solution consumed, total energy gained from each solution, and apparent assimilation efficiency, were measured. Bats had higher total volumetric intake of glucose and sucrose at the low concentrations than at the higher concentrations. However, bats maintained similar total energy intake on the respective glucose and sucrose concentrations. Bats were found to have high assimilation efficiencies on both glucose and sucrose irrespective of concentration. As bats used both sugars efficiently to maximize and maintain energy gain, it is expected that they feed opportunistically on fruit in the wild depending on temporal and spatial availability to obtain their energy requirements. Furthermore, fruit with high sucrose or glucose content will be consumed. Copyright © 2011 Elsevier Inc. All rights reserved.
Oliveira, Denize; Reis, Felipe; Deliza, Rosires; Rosenthal, Amauri; Giménez, Ana; Ares, Gastón
2016-11-01
Reducing the concentration of added sugar in processed foods is one of the most realistic strategies to reduce the intake of this nutrient in the short-term. In order to be effective, gradual sugar reduction strategies need to determine the maximum sugar reduction that can be unnoticed by consumers. In this context, the present work aimed at providing recommendations for gradual sugar reduction in chocolate-flavoured milk by determining difference thresholds for added sugar and evaluating consumers' sensory and hedonic perception of reduced-sugar products. Five studies were conducted with 50 consumers to determine five sequential difference thresholds. In each study consumers completed six paired-comparison tests. Each pair was composed of a reference chocolate-flavoured milk and a sample that was reduced in added sugar from the reference. Difference thresholds, corresponding to the smallest reduction in sugar concentration that is noticed by consumers, were determined using survival analysis. Then, a study was carried to with 100 consumers to evaluate their sensory and hedonic perception of chocolate-flavoured milk samples with different added sugar concentrations. Results suggested that sequential sugar reductions can be set at 6.7% without affecting consumers' sensory and hedonic perception. Sugar reduction in chocolate-flavoured milk without affecting consumers' perception seems feasible and easy to implement. The approach of the present work could be extended to design recommendations for gradual reduction of the added sugar concentration of other industrialized products, contributing to the development of more healthful products that meet current nutritional recommendations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; ...
2015-10-29
A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas
A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less
Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling
2015-01-01
A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.
Ethanol production in fermentation of mixed sugars containing xylose
Viitanen, Paul V [West Chester, PA; Mc Cutchen, Carol M [Wilmington, DE; Li,; Xu, [Newark, DE; Emptage, Mark [Wilmington, DE; Caimi, Perry G [Kennett Square, PA; Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO
2009-12-08
Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.
U, Parvathy; George, Sajan
2014-05-01
A study was undertaken with the aim of reducing the concentration of cryoprotectants in surimi without adversely affecting frozen storage stability. Minced meat from a tropical fish, Nemipterus japonicus, was strained, water leached and mixed with different levels of sucrose-sorbitol (1:1) mixture (henceforth called sugar mixture), quick frozen at -35 °C and frozen stored at -20 °C. The surimi samples were subjected to storage stability studies for a period of 5 months. Water leaching resulted in slight absorption of water by meat and reduction in protein, fat and mineral contents. Surimi was found to have moderately white colour. Sensory evaluation studies were conducted on three products, viz., sausage, patty and cake, prepared using surimi containing different concentrations of sugar mixture. Sugar mixture content varying from 0% (control) to 4% in surimi resulted in products that were more acceptable to the taste panelists compared those with 6% and 8% sugar mixture. During frozen storage of surimi pH and total plate count remained nearly steady for all sugar mixture concentrations and throughout the storage period. Moisture content appeared to remain constant during storage, but decreased with increase in sugar concentration. The salt soluble nitrogen content of surimi and gel strength of sausage prepared from it decreased with storage period in all surimi samples, and increased with sugar mixture concentration. Expressible water content of surimi sausage showed an increasing trend with storage period of surimi and a decreasing trend with sugar mixture concentration. Sensory evaluation parameters-elasticity, sweetness and preference-remained more or less steady during storage. However elasticity and sweetness increased and preference decreased with sugar mixture concentration beyond 4%. Elasticity and gel strength of surimi sausage seemed to be much lower for control compared to even the lowest concentration of sugar (2%) used. A concentration of 2 to 4% sucrose-sorbitol mixture is well-accepted by the consumers in products-surimi sausage, patty and cake and at this range of concentration surimi could be well-preserved at -20 °C for at least 5 months.
Conversion of rice husk into fermentable sugar by two stage hydrolysis
NASA Astrophysics Data System (ADS)
Salimi, M. N.; Lim, S. E.; Yusoff, A. H. M.; Jamlos, M. F.
2017-10-01
Rice husks, a complex lignocellulosic biomass which comprised of high cellulose content (38-50%), hemicellulose (23-32%) and lignin (15-25%) possesses the potential to pursue as low cost feedstock for production of ethanol. Dilute sulfuric acid at concentration of 1, 2, 3 (%, v/v) were used for pretreatments at varied hydrolysis time (15-60 min) and enzymatic saccharification at range of 45-60˚C and pH 4.5-6.0 were evaluated for conversion of rice husk’s cellulose and hemicellulose to fermentable sugars. The maximum yield of fermentable sugars from rice husks by dilute sulfuric acid (2%, 60 minutes) was 0.0751 g/l. Total fermentable sugar was identified using dinitrosalicylic acid (DNS) method and expressed in g/l. Enzymatic hydrolysis for conversion of cellulose to fermentable sugar has been studied by applying response surface methodology (RSM) and Analysis of Variance (ANOVA). Two independent variables namely initial pH and incubation temperature were considered using Central Composite Design (CCD). The determination coefficient, R2 obtained was 0.9848. This indicates that 98.48% capriciousness in the respond could be clarified by the ANOVA. Based on the data shown by Design Expert software, the optimum condition for total sugar production was at pH 6.0 and temperature 45˚C as it produced 0.5086 g/l of total sugar.
Gama, Repson; Van Dyk, J Susan; Burton, Mike H; Pletschke, Brett I
2017-06-01
The enzymatic degradation of lignocellulosic biomass such as apple pomace is a complex process influenced by a number of hydrolysis conditions. Predicting optimal conditions, including enzyme and substrate concentration, temperature and pH can improve conversion efficiency. In this study, the production of sugar monomers from apple pomace using commercial enzyme preparations, Celluclast 1.5L, Viscozyme L and Novozyme 188 was investigated. A limited number of experiments were carried out and then analysed using an artificial neural network (ANN) to model the enzymatic hydrolysis process. The ANN was used to simulate the enzymatic hydrolysis process for a range of input variables and the optimal conditions were successfully selected as was indicated by the R 2 value of 0.99 and a small MSE value. The inputs for the ANN were substrate loading, enzyme loading, temperature, initial pH and a combination of these parameters, while release profiles of glucose and reducing sugars were the outputs. Enzyme loadings of 0.5 and 0.2 mg/g substrate and a substrate loading of 30% were optimal for glucose and reducing sugar release from apple pomace, respectively, resulting in concentrations of 6.5 g/L glucose and 28.9 g/L reducing sugars. Apple pomace hydrolysis can be successfully carried out based on the predicted optimal conditions from the ANN.
P.F. Murakami; P.G. Schaberg; J.B. Shane
2008-01-01
To better understand the effects of sugar accumulation on red color development of foliage during autumn, we compared carbohydrate concentration, anthocyanin expression and xylem pressure potential of foliage on girdled versus non-girdled (control) branches of 12 mature, open-grown sugar maple (Acer saccharum Marsh.) trees. Half of the study trees...
Measurement of concentration of sugar in solutions with laser speckle decorrelation
NASA Astrophysics Data System (ADS)
Mahajan, Swapnil; Trivedi, Vismay; Chhaniwal, Vani; Prajapati, Mahendra; Zalevsky, Zeev; Javidi, Bahram; Anand, Arun
2015-05-01
Measurement of rotation of plane of polarization of linearly polarized light can provide information about the concentration of the optically active system with which it interacts. For substances containing sugar, accurate measurement of rotation of linearly polarized light can provide quantitative information about concentration of sugar in the material. Measurement of sugar concentration is important in areas ranging from blood sugar level measurement in body fluids to measurement of sugar concentrations in juices and other beverages. But in many of these cases, the changes introduced to the state of polarization considering a sample of practical proportion is low and the measurement of low optical rotations becomes necessary. So methods with higher sensitivity, accuracy and resolution need to be developed for the measurement of low optical rotations. Here we describe the development of a compact, low cost, field portable, device for rotation sensing leading to sugar concentration measurements, using speckle de-correlation technique. The developed device measures rotations by determining the changes occurring to a speckle pattern generated by a laser beam passing through the medium under investigation. The device consists of a sample chamber, a diode laser module, a ground glass diffuser and a digital sensor for recording of laser speckle patterns. The device was found to have high resolution and sensitivity.
Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis.
Ferrari, M D; Neirotti, E; Albornoz, C; Saucedo, E
1992-10-05
Ethanol production was evaluated from eucalyptus wood hemicellulose acid hydrolysate using Pichia stipitis NRRL Y-7124. An initial lag phase characterized by flocculation and viability loss of the yeast inoculated was observed. Subsequently, cell regrowth occurred with sequential consumption of sugars and production of ethanol. Polyol formation was detected. Acetic acid present in the hydrolysate was an important inhibitor of the fermentation, reducing the rate and the yield. Its toxic effect was due essentially to its undissociated form. The fermentation was more effective at an oxygen transfer rate between 1.2 and 2.4 mmol/L h and an initial pH of 6.5. The hydrolysate used in the experiences had the following composition (expressed in grams per liter): xylose 30, arabinose 2.8, glucose 1.5, galactose 3.7, mannose 1.0, cellobiose 0.5, acetic acid 10, glucuronic acid 1.5, and galacturonic acid 1.0. The best values obtained were maximum ethanol concentration 12.6 g/L, fermentation time 75 h, fermentable sugar consumption 99% ethanol yield 0.35 g/g sugars consumed, and volumetric ethanol productivity 4 g/L day. ( (c) 1992 John Wiley & Sons, Inc.
Physiological Response of Lactobacillus plantarum to Salt and Nonelectrolyte Stress
Glaasker, Erwin; Tjan, Frans S. B.; Ter Steeg, Pieter F.; Konings, Wil N.; Poolman, Bert
1998-01-01
In this report, we compared the effects on the growth of Lactobacillus plantarum of raising the medium molarity by high concentrations of KCl or NaCl and iso-osmotic concentrations of nonionic compounds. Analysis of cellular extracts for organic constituents by nuclear magnetic resonance spectroscopy showed that salt-stressed cells do not contain detectable amounts of organic osmolytes, whereas sugar-stressed cells contain sugar (and some sugar-derived) compounds. The cytoplasmic concentrations of lactose and sucrose in growing cells are always similar to the concentrations in the medium. By using the activity of the glycine betaine transport system as a measure of hyperosmotic conditions, we show that, in contrast to KCl and NaCl, high concentrations of sugars (lactose or sucrose) impose only a transient osmotic stress because external and internal sugars equilibrate after some time. Analysis of lactose (and sucrose) uptake also indicates that the corresponding transport systems are neither significantly induced nor activated directly by hyperosmotic conditions. The systems operate by facilitated diffusion and have very high apparent affinity constants for transport (>50 mM for lactose), which explains why low sugar concentrations do not protect against hyperosmotic conditions. We conclude that the more severe growth inhibition by salt stress than by equiosmolal concentrations of sugars reflects the inability of the cells to accumulate K+ (or Na+) to levels high enough to restore turgor as well as deleterious effects of the electrolytes intracellularly. PMID:9721316
In-situ biodiesel and sugar production from rice bran under subcritical condition
NASA Astrophysics Data System (ADS)
Zullaikah, Siti; Rahkadima, Yulia Tri
2015-12-01
An integrated method of producing biodiesel and sugar using subcritical water and methanol has been employed as a potential way to reduce the high cost of single biofuel production from rice bran. The effects of temperature, methanol to water ratio and reaction time on the biodiesel yield and purity, and the concentration of sugar in hydrolysate were investigated systematically. Biodiesel with yield and purity of 65.21%and 73.53%, respectively, was obtained from rice bran with initial free fatty acid (FFA) content of 37.64% under the following conditions: T= 200 oC, P= 4.0 MPa (using CO2 as pressurizing gas), ratio of rice bran/water/methanol of 1/2/6 (g/mL/mL), and 3 h of reaction time. FFAs level was reduced to 10.00% with crude biodiesel recovery of 88.69%. However, the highest biodiesel yield (67.39%) and crude biodiesel recovery (100.00%) were obtained by decreasing the amount of methanol so that the ratio of rice bran/water/methanol became 1/4/4, g/mL/mL. In addition, the highest sugar concentration of 0.98 g/L was obtained at 180 oC and 4.0 MPa with ratio of rice bran/water/methanol of 1/4/4 (g/mL/mL) and reaction time of 3 h. Since no catalyst was employed and the biodiesel and reducing sugar were produced directly from rice bran with high water and FFA contents, the process was simple and environmentally friendly, which would make the production of biofuel more economical and sustainable.
Acceptance of sugar reduction in flavored yogurt.
Chollet, M; Gille, D; Schmid, A; Walther, B; Piccinali, P
2013-09-01
To investigate what level of sugar reduction is accepted in flavored yogurt, we conducted a hedonic test focusing on the degree of liking of the products and on optimal sweetness and aroma levels. For both flavorings (strawberry and coffee), consumers preferred yogurt containing 10% added sugar. However, yogurt containing 7% added sugar was also acceptable. On the just-about-right scale, yogurt containing 10% sugar was more often described as too sweet compared with yogurt containing 7% sugar. On the other hand, the sweetness and aroma intensity for yogurt containing 5% sugar was judged as too low. A second test was conducted to determine the effect of flavoring concentration on the acceptance of yogurt containing 7% sugar. Yogurts containing the highest concentrations of flavoring (11% strawberry, 0.75% coffee) were less appreciated. Additionally, the largest percentage of consumers perceived these yogurts as "not sweet enough." These results indicate that consumers would accept flavored yogurts with 7% added sugar instead of 10%, but 5% sugar would be too low. Additionally, an increase in flavor concentration is undesirable for yogurt containing 7% added sugar. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats
Schier, Lindsey A.
2016-01-01
By conventional behavioral measures, rodents respond to natural sugars, such as glucose and fructose, as though they elicit an identical perceptual taste quality. Beyond that, the metabolic and sensory effects of these two sugars are quite different. Considering the capacity to immediately respond to the more metabolically expedient sugar, glucose, would seem advantageous for energy intake, the present experiment assessed whether experience consuming these two sugars would modify taste-guided ingestive responses to their yet unknown distinguishing orosensory properties. One group (GvF) had randomized access to three concentrations of glucose and fructose (0.316, 0.56, 1.1 m) in separate 30-min single access training sessions, whereas control groups received equivalent exposure to the three glucose or fructose concentrations only, or remained sugar naive. Comparison of the microstructural licking patterns for the two sugars revealed that GvF responded more positively to glucose (increased total intake, increased burst size, decreased number of pauses), relative to fructose, across training. As training progressed, GvF rats began to respond more positively to glucose in the first minute of the session when intake is principally taste-driven. During post-training brief-access taste tests, GvF rats licked more for glucose than for fructose, whereas the other training groups did not respond differentially to the two sugars. Additional brief access testing showed that this did not generalize to Na-saccharin or galactose. Thus, in addition to eliciting a common taste signal, glucose and fructose produce distinct signals that are apparently rendered behaviorally relevant and hedonically distinct through experience. The taste pathway(s) underlying this remain to be identified. SIGNIFICANCE STATEMENT The T1R2+T1R3 heterodimer is thought by many to be the only taste receptor for sugars. Although most sugars have been conventionally shown to correspondingly produce a unitary taste percept (sweet), there is reason to question this model. Here, we demonstrate that rats that repeatedly consumed two metabolically distinct sugars (glucose and fructose), and thus have had the opportunity to associate the tastes of these sugars with their differential postoral consequences, initially respond identically to the orosensory properties of the two sugars but eventually respond more positively to glucose. Thus, in addition to the previously identified common taste pathway, glucose and fructose must engage distinct orosensory pathways, the underlying molecular and neural mechanisms of which now await discovery. PMID:26740654
Son, H S; Hong, Y S; Park, W M; Yu, M A; Lee, C H
2009-03-01
To estimate true Brix and alcoholic strength of must and wines without distillation, a novel approach using a refractometer and a hydrometer was developed. Initial Brix (I.B.), apparent refractometer Brix (A.R.), and apparent hydrometer Brix (A.H.) of must were measured by refractometer and hydrometer, respectively. Alcohol content (A) was determined with a hydrometer after distillation and true Brix (T.B.) was measured in distilled wines using a refractometer. Strong proportional correlations among A.R., A.H., T.B., and A in sugar solutions containing varying alcohol concentrations were observed in preliminary experiments. Similar proportional relationships among the parameters were also observed in must, which is a far more complex system than the sugar solution. To estimate T.B. and A of must during alcoholic fermentation, a total of 6 planar equations were empirically derived from the relationships among the experimental parameters. The empirical equations were then tested to estimate T.B. and A in 17 wine products, and resulted in good estimations of both quality factors. This novel approach was rapid, easy, and practical for use in routine analyses or for monitoring quality of must during fermentation and final wine products in a winery and/or laboratory.
Optimal concentrations in nectar feeding
Kim, Wonjung; Gilet, Tristan; Bush, John W. M.
2011-01-01
Nectar drinkers must feed quickly and efficiently due to the threat of predation. While the sweetest nectar offers the greatest energetic rewards, the sharp increase of viscosity with sugar concentration makes it the most difficult to transport. We here demonstrate that the sugar concentration that optimizes energy transport depends exclusively on the drinking technique employed. We identify three nectar drinking techniques: active suction, capillary suction, and viscous dipping. For each, we deduce the dependence of the volume intake rate on the nectar viscosity and thus infer an optimal sugar concentration consistent with laboratory measurements. Our results provide the first rationale for why suction feeders typically pollinate flowers with lower sugar concentration nectar than their counterparts that use viscous dipping. PMID:21949358
Hirayama, Chikara; Konno, Kotaro; Wasano, Naoya; Nakamura, Masatoshi
2007-12-01
Mulberry leaves (Morus spp.) exude latex rich in sugar-mimic alkaloids, 1,4-dideoxy-1,4-imino-d-arabinitol (d-AB1) and 1-deoxynojirimycin (DNJ), as a defense against herbivorous insects. Sugar-mimic alkaloids are inhibitors of sugar-metabolizing enzymes, and are toxic to the Eri silkworm, Samia ricini, a generalist herbivore, but not at all to the domesticated silkworm, Bombyx mori, a mulberry specialist. To address the phenomena, we fed both larvae diets containing different sugar sources (sucrose, glucose or none) with or without sugar-mimic alkaloids from mulberry latex. In S. ricini, addition of sugar-mimic alkaloids to the sucrose (the major sugar in mulberry leaves) diet reduced both growth and the absorption ratio of sugar, but it reduced neither in B. mori. The midgut soluble sucrase activity of S. ricini was low and inhibited by very low concentrations of sugar-mimic alkaloids (IC(50)=0.9-8.2microM), but that of B. mori was high and not inhibited even by very high concentrations (IC(50)>1000microM) of sugar-mimic alkaloids. In S. ricini, the addition of sugar-mimic alkaloids to the glucose diet still had considerable negative effects on growth, although it did not reduce the absorption ratio of glucose. The hemolymph of S. ricini fed sugar-mimic alkaloids contained sugar-mimic alkaloids. The trehalose concentration in the hemolymph increased significantly in S. ricini fed sugar-mimic alkaloids, but not in B. mori. The trehalase activities of S. ricini were lower and inhibited by lower concentrations of sugar-mimic alkaloids than those of B. mori. These results suggest that sugar-mimic alkaloids in mulberry latex exert toxicity to S. ricini larvae first by inhibiting midgut sucrase and digestion of sucrose, and secondly, after being absorbed into hemolymph, by inhibiting trehalase and utilization of trehalose, the major blood sugar. Further, our results reveal that B. mori larvae evolved enzymatic adaptation to mulberry defense by developing sucrase and trehalase that are insensitive to sugar-mimic alkaloids.
Phukoetphim, Niphaphat; Salakkam, Apilak; Laopaiboon, Pattana; Laopaiboon, Lakkana
2017-02-10
The aim of this study was to model batch ethanol production from sweet sorghum juice (SSJ), under normal gravity (NG, 160g/L of total sugar) and high gravity (HG, 240g/L of total sugar) conditions with and without nutrient supplementation (9g/L of yeast extract), by Saccharomyces cerevisiae NP 01. Growth and ethanol production increased with increasing initial sugar concentration, and the addition of yeast extract enhanced both cell growth and ethanol production. From the results, either logistic or a modified Gompertz equation could be used to describe yeast growth, depending on information required. Furthermore, the modified Gompertz model was suitable for modeling ethanol production. Both the models fitted the data very well with coefficients of determination exceeding 0.98. The results clearly showed that these models can be employed in the development of ethanol production processes using SSJ under both NG and HG conditions. The models were also shown to be applicable to other ethanol fermentation systems employing pure and mixed sugars as carbon sources. Copyright © 2016 Elsevier B.V. All rights reserved.
Afoakwa, Emmanuel Ohene; Quao, Jennifer; Budu, Agnes Simpson; Takrama, Jemmy; Saalia, Firibu Kwesi
2011-11-01
Changes in acidification, proteolysis, sugars and free fatty acids (FFAs) concentrations of Ghanaian cocoa beans as affected by pulp preconditioning (pod storage or PS) and fermentation were investigated. Non-volatile acidity, pH, proteolysis, sugars (total, reducing and non-reducing) and FFAs concentrations were analysed using standard methods. Increasing PS consistently decreased the non-volatile acidity with concomitant increase in pH during fermentation of the beans. Fermentation decreased the pH of the unstored beans from 6.7 to 4.9 within the first 4 days and then increased slightly again to 5.3 by the sixth day. Protein, total sugars and non-reducing sugars decreased significantly (p < 0.05) during fermentation, whereas reducing sugars and FFA increased. PS increased the FFA levels, reduced the protein content but did not have any effect on the sugars. The rate of total and non-reducing sugars degeneration with concomitant generation of reducing sugars in the cocoa beans was largely affected by fermentation than by PS.
Odendaal, T C; Brown, M; Downs, C T; Johnson, S D
2010-07-15
Recent research has shown that nectar properties of flowers pollinated by generalist avian nectarivores differ markedly from those of flowers pollinated by specialist avian nectarivores. In particular, flowers pollinated by generalist avian nectarivores tend to have very dilute nectar dominated by hexose sugars. To establish whether pollinator-mediated selection can explain these traits, we tested nectar sugar preferences and digestive capabilities of the village weaver (Ploceus cucullatus), a common generalist passerine nectarivore in South Africa. When offered pairwise choices of equicaloric hexose and sucrose solutions, village weavers preferred hexose solutions at 5% and 10% sucrose equivalents (SE) but did not show significant preference for either type of sugar when higher concentrations were offered (15%, 20% and 25% SE). Birds were less efficient at absorbing sucrose than hexose sugars, as revealed by high-performance liquid chromatography (HPLC) analysis of excreta sugar content. This was true at both concentrations tested (8.22% and 25%), although apparent sucrose assimilation rates were still relatively high (89.6+/-2.9% at low concentrations and 93.6+/-1.7% at high concentrations). Transit times indicated that sucrose also passes through the digestive tract faster than hexose sugars, particularly when consumed at high concentrations. This may limit the rate at which sucrose can be hydrolyzed before absorption. These results indicate that hexose preferences in generalist avian nectarivores may help explain the low sucrose content in flowers pollinated by these birds. Moreover, the preference for hexose sugars in weavers was most evident at the low concentrations (ca. 9% sugar by mass) that are typical of nectar in flowers pollinated by generalist avian nectarivores.
Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan
2012-02-01
Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.
Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui
2017-02-01
Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (Y PHA/S ) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed. Copyright © 2016. Published by Elsevier B.V.
Effect of irradiation on the patulin content and chemical composition of apple juice concentrate.
Zegota, H; Zegota, A; Bachman, S
1988-09-01
The influence of ionizing radiation on the patulin content of apple juice concentrate was investigated. The results indicated that patulin, at an initial concentration of about 2 mg/kg, disappeared after irradiation of the concentrate with doses as low as 2.5 kGy. For lower doses, the extent of patulin degradation was proportional to the absorbed dose. Irradiation of the concentrate with doses sufficient for patulin disappearance did not change the titratable acidity, the content of reducing sugars and carbonyl compounds or the amino acid composition. The content of ascorbic acid slightly decreased and the colour of the concentrate brightened. The intensity of the patulin absorption spectra after irradiation of mycotoxin in aqueous solutions decreased.
Desnoues, Elsa; Gibon, Yves; Baldazzi, Valentina; Signoret, Véronique; Génard, Michel; Quilot-Turion, Bénédicte
2014-11-25
Fruit taste is largely affected by the concentration of soluble sugars and organic acids and non-negligibly by fructose concentration, which is the sweetest-tasting sugar. To date, many studies investigating the sugars in fruit have focused on a specific sugar or enzyme and often on a single variety, but only a few detailed studies addressing sugar metabolism both as a whole and dynamic system are available. In commercial peach fruit, sucrose is the main sugar, followed by fructose and glucose, which have similar levels. Interestingly, low fructose-to-glucose ratios have been observed in wild peach accessions. A cross between wild peach and commercial varieties offers an outstanding possibility to study fruit sugar metabolism. This work provides a large dataset of sugar composition and the capacities of enzymes that are involved in sugar metabolism during peach fruit development and its genetic diversity. A large fraction of the metabolites and enzymes involved in peach sugar metabolism were assayed within a peach progeny of 106 genotypes, of which one quarter displayed a low fructose-to-glucose ratio. This profiling was performed at six stages of growth using high throughput methods. Our results permit drawing a quasi-exhaustive scheme of sugar metabolism in peach. The use of a large number of genotypes revealed a remarkable robustness of enzymatic capacities across genotypes and years, despite strong variations in sugar composition, in particular the fructose-to-glucose ratio, within the progeny. A poor correlation was also found between the enzymatic capacities and the accumulation rates of metabolites. These results invalidate the hypothesis of the straightforward enzymatic control of sugar concentration in peach fruit. Alternative hypotheses concerning the regulation of fructose concentration are discussed based on experimental data. This work lays the foundation for a comprehensive study of the mechanisms involved in sugar metabolism in developing fruit.
Bremer, Andrew A; Auinger, Peggy; Byrd, Robert S
2009-04-01
To evaluate the relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels. A cross-sectional analysis of the National Health and Nutrition Examination Survey data collected by the National Center for Health Statistics. Nationally representative samples of US adolescents participating in the National Health and Nutrition Examination Survey during the years 1999-2004. A total of 6967 adolescents aged 12 to 19 years. Sugar-sweetened beverage consumption and physical activity levels. Glucose and insulin concentrations, a homeostasis model assessment of insulin resistance (HOMA-IR), total, high-density lipoprotein, and low-density lipoprotein cholesterol concentrations, triglyceride concentrations, systolic and diastolic blood pressure, waist circumference, and body mass index (calculated as weight in kilograms divided by height in meters squared) percentile for age and sex. Multivariate linear regression analyses showed that increased sugar-sweetened beverage intake was independently associated with increased HOMA-IR, systolic blood pressure, waist circumference, and body mass index percentile for age and sex and decreased HDL cholesterol concentrations; alternatively, increased physical activity levels were independently associated with decreased HOMA-IR, low-density lipoprotein cholesterol concentrations, and triglyceride concentrations and increased high-density lipoprotein cholesterol concentrations. Furthermore, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects of decreasing HOMA-IR and triglyceride concentrations and increasing high-density lipoprotein cholesterol concentrations. Sugar-sweetened beverage intake and physical activity levels are each independently associated with insulin resistance-associated metabolic parameters and anthropometric measurements in adolescents. Moreover, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects on several health-related outcome variables.
NASA Astrophysics Data System (ADS)
Suhandy, Diding; Suzuki, Tetsuhito; Ogawa, Yuichi; Kondo, Naoshi; Ishihara, Takeshi; Takemoto, Yuichiro
2011-06-01
The objective of our research was to use ATR-THz spectroscopy together with chemometric for quantitative study in food analysis. Glucose, fructose and sucrose are main component of sugar both in fresh and processed fruits. The use of spectroscopic-based method for sugar determination is well reported especially using visible, near infrared (NIR) and middle infrared (MIR) spectroscopy. However, the use of terahertz spectroscopy for sugar determination in fruits has not yet been reported. In this work, a quantitative study for sugars determination using attenuated total reflectance terahertz (ATR-THz) spectroscopy was conducted. Each samples of glucose, fructose and sucrose solution with different concentrations were prepared respectively and their absorbance spectra between wavenumber 20 and 450 cm-1 (between 0.6 THz and 13.5 THz) were acquired using a terahertz-based Fourier Transform spectrometer (FARIS-1S, JASCO Co., Japan). This spectrometer was equipped with a high pressure of mercury lamp as light source and a pyroelectric sensor made from deuterated L-alanine triglycine sulfate (DLTGS) as detector. Each spectrum was acquired using 16 cm-1 of resolution and 200 scans for averaging. The spectra of water and sugar solutions were compared and discussed. The results showed that increasing sugar concentration caused decreasing absorbance. The correlation between sugar concentration and its spectra was investigated using multivariate analysis. Calibration models for glucose, fructose and sucrose determination were developed using partial least squares (PLS) regression. The calibration model was evaluated using some parameters such as coefficient of determination (R2), standard error of calibration (SEC), standard error of prediction (SEP), bias between actual and predicted sugar concentration value and ratio prediction to deviation (RPD) parameter. The cross validation method was used to validate each calibration model. It is showed that the use of ATR-THz spectroscopy combined with appropriate chemometric can be a potential for a rapid determination of sugar concentrations.
Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A
2012-12-01
The objective of this study was to obtain insight into the actual effectiveness of lowering reducing sugars concentration in par-fried potato strips on the concentration and variation of acrylamide in French fries prepared in real-life situations in food service establishments. Acrylamide, frying time, frying temperature, and reducing sugars were measured and characteristics of fryers were recorded. Data showed that the use of par-fried potato strips with lower concentrations of reducing sugars than the commonly used potato strips was an effective measure to reduce acrylamide concentrations in French fries prepared under standardised frying conditions. However, there was still large variation in the acrylamide concentrations in French fries, although the variation in reducing sugars concentrations in low and normal types of par-fried potato strips was very small and the frying conditions were similar. Factors that could affect the temperature-time profile of frying oil were discussed, such as setting a lower frying temperature at the end than at the start of frying, product/oil ratio and thawing practice. These need to be controlled in daily practice to reduce variation in acrylamide. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cao, Hailong; Yue, Min; Liu, Gang; Du, Yuguang; Yin, Heng
2018-05-01
In the present study, the conversion of the extract of Jerusalem artichoke tubers for mannitol production by Lactobacillus brevis 3-A5 was investigated. When the bacterium utilized enzymatic hydrolysates of Jerusalem artichoke extract as the main substrates in batch fermentation, the significant decrease in mannitol productivity was observed when the initial concentration of reducing sugar increased. Then, a strategy of continuous fed-batch fermentation was adopted for improving mannitol production with enzymatic hydrolysates of Jerusalem artichoke extract as main substrates. Although the concentration of mannitol could reach 199.86 g/L at the end of the fermentation, the productivity for the overall process of the fermentation was only 1.67 g/L/H. To improve the mannitol productivity with both higher yield and concentration, the simultaneous enzymatic saccharification and fermentation (SSF) was studied. In SSF, the mannitol production reached 176.50 g/L in 28 H with a productivity of 6.30 g/L/H and a yield of 0.68 g/g total sugar. Our study provides a cost-effective and eco-friendly method for mannitol production from a cheap biomass. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Hasnol, N D S; Jinap, S; Sanny, M
2014-02-15
The aim of the study was to determine the effect of different types of sugar on the formation of heterocyclic amines (HCA) in marinated grilled chicken. Chicken breast samples were marinated with table sugar, brown sugar, and honey for 24h at 4 °C. The internal temperature, weight loss, free amino acids, sugars, and HCA were determined. The concentrations of all types of HCA (except IQx) in samples that were marinated with table sugar were significantly higher (p<0.006) than brown sugar; whereas those were marinated with honey had the lowest HCA concentrations. A substantial reduction in the concentration of MeIQ, PhIP, DiMeIQx, IQ, IQx, and norharman was achieved in chicken marinated with honey. A correlation study indicated that adding honey into the recipe retarded the formation of most HCA (MeIQ, DiMeIQx, IQ, IQx, norharman, and harman), whereas table sugars enhanced the formation of all HCA except norharman, harman, and AαC. Copyright © 2013 Elsevier Ltd. All rights reserved.
Small angle scattering from protein/sugar conjugates
NASA Astrophysics Data System (ADS)
Jackson, Andrew; White, John
2006-11-01
The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.
Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas
2018-04-01
Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.
Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro
2014-06-01
Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Harano, Ken-Ichi; Nakamura, Jun
2016-06-01
When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (<1 s) begging trophallactic contacts before leaving the nest. They might be rejecting nectar with inappropriate concentrations during these contacts.
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
Zhang, Yaqin; Li, Ming; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Hou, Lian
2015-12-01
Low sugar concentration and the presence of various inhibitors are the major challenges associated with lignocellulosic hydrolyzates as a fermentation broth. Vacuum membrane distillation (VMD) process can be used to concentrate sugars and remove inhibitors (furans) efficiently, but it's not desirable for the removal of less volatile inhibitors such as acetic acid. In this study, a VMD-adsorption process was proposed to improve the removal of acetic acid, achieving simultaneous concentration and detoxification of lignocellulosic hydrolyzates by one step process. Results showed that sugars were concentrated with high rejections (>98%) and little sugar loss (<2%), with the significant reduction in nearly total furans (99.7%) and acetic acid (83.5%) under optimal operation conditions. Fermentation results showed the ethanol production of hydrolyzates concentrated and detoxified using the VMD-adsorption method were approximately 10-fold greater than from untreated hydrolyzates. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11... associated with or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
21 CFR 172.585 - Sugar beet extract flavor base.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sugar beet extract flavor base. 172.585 Section 172... CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet...) Sugar beet extract flavor base is the concentrated residue of soluble sugar beet extractives from which...
Tu, Xijuan; Sun, Fanyi; Wu, Siyuan; Liu, Weiyi; Gao, Zhaosheng; Huang, Shaokang; Chen, Wenbin
2018-01-15
Homogeneous liquid-liquid extraction (h-LLE) has been receiving considerable attention as a sample preparation method due to its simple and fast partition of compounds with a wide range of polarities. To better understand the differences between the two h-LLE extraction approaches, salting-out assisted liquid-liquid extraction (SALLE) and sugaring-out assisted liquid-liquid extraction (SULLE), have been compared for the partition of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly, and for the co-extraction of proteins. Effects of the amount of phase partition agents and the concentration of acetonitrile (ACN) on the h-LLE were discussed. Results showed that partition efficiency of 10-HDA depends on the phase ratio in both SALLE and SULLE. Though the partition triggered by NaCl and glucose is less efficient than MgSO 4 in the 50% (v/v) ACN-water mixture, their extraction yields can be improved to be similar with that in MgSO 4 SALLE by increasing the initial concentration of ACN in the ACN-water mixture. The content of co-extracted protein was correlated with water concentration in the obtained upper phase. MgSO 4 showed the largest protein co-extraction at the low concentration of salt. Glucose exhibited a large protein co-extraction in the high phase ratio condition. Furthermore, NaCl with high initial ACN concentration is recommended because it produced high extraction yield for 10-HDA and the lowest amount of co-extracted protein. These observations would be valuable for the sample preparation of royal jelly. Copyright © 2017 Elsevier B.V. All rights reserved.
Koh, Dong-Wan; Park, Jae-Woong; Lim, Jung-Hoon; Yea, Myeong-Jai; Bang, Dae-Young
2018-02-01
A novel, rapid, simultaneous analysis method for five sugars (fructose, glucose, sucrose, maltose, and lactose) and eight sugar alcohols (erythritol, xylitol, sorbitol, mannitol, inositol, maltitol, lactitol, and isomalt) was developed using UPLC-ELSD, without derivatization. The analysis conditions, including the gradient conditions, modifier concentration and column length, were optimized. Thirteen sugars and sugar alcohols were separated well and the resolution of their peaks was above 1.0. Their optimum analysis condition can be analyzed within 15min. Standard curves for sugars and sugar alcohols with concentrations of 5.0-0.1% and 2.0-0.05% are presented herein, and their correlation coefficients are found to be above 0.999 and the limit of detection (LOD) was around 0.006-0.018%. This novel analysis system can be used for foodstuffs such as candy, chewing gum, jelly, chocolate, processed chocolate products, and snacks containing 0.21-46.41% of sugars and sugar alcohols. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stability of extemporaneously prepared rufinamide oral suspensions.
Hutchinson, David J; Liou, Yayin; Best, Robert; Zhao, Fang
2010-03-01
Rufinamide is an oral antiepileptic drug indicated for adjunctive therapy in treating generalized seizures associated with Lennox-Gastaut syndrome. Currently, rufinamide is available as 200-mg and 400-mg tablets. A liquid dosage form does not exist at the present time. Lack of a suspension formulation may present an administration problem for many children and adults who are unable to swallow tablets. The availability of a liquid dosage form will provide an easy and accurate way to measure and administer the medication. To determine the stability of both sugar-containing and sugar-free rufinamide suspensions over a 90-day period. A suspension of rufinamide 40 mg/mL was prepared by grinding twelve 400-mg tablets of rufinamide tablets in a glass mortar. Sixty milliliters of Ora-Plus and 60 mL of either Ora-Sweet or Ora-Sweet SF (sugar free) were mixed and added to the powder to make a final volume of 120 mL. Three identical samples of each formulation were prepared and placed in 60-mL amber plastic bottles and were stored at room temperature. A 1-mL sample was withdrawn from each of the 6 bottles with a micropipette immediately after preparation and at 7, 14, 28, 56, and 90 days. After further dilution to an expected concentration of 0.4 mg/mL, the samples were assayed using high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 90% of the initial rufinamide concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth. Extemporaneously compounded suspensions of rufinamide 40 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 59-mL amber polypropylene plastic bottles at room temperature.
Rose, Devin J; Inglett, George E
2010-05-26
Two-stage hydrothermal processing was employed to obtain feruloylated arabinoxylooligosaccharides (AXOS) from wheat bran. First, wheat bran in water (10% w/w solids) was heated to 130 degrees C, releasing 36.3% of total solids, 70.3% of starch, and 6.06% of pentose sugars. Wheat bran was then heated to 170-220 degrees C. Heating to 200 and 210 degrees C released the most AXOS (70% of the insoluble arabinoxylan) and esterified ferulate (30% of the initial ferulic acid). Treatment of 200 degrees C retained a higher proportion of high molecular weight (>1,338) compounds than 210 degrees C and was the preferred treatment temperature because autohydrolysate liquors contained lower concentrations of many contaminants. Purification of this autohydrolysate liquor with ethyl acetate extraction, vacuum concentration, and ion exchange resulted in a product containing 32.0% AXOS and 4.77% esterified ferulate, accompanied by 36.0% other oligosaccharides and free sugars, with an antioxidant activity of 29.7 micromol Trolox equivalents/g dry matter.
Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.
Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika
2017-03-16
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.
Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.
Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek
2016-05-01
Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matsubara, Takeo; Hamada, Shohei; Wakabayashi, Ayaka; Kishida, Masao
2016-11-01
The GAR1 gene, encoding d-galacturonate reductase in Cryptococcus diffluens, was isolated, and the GAR1-expression plasmid was constructed by insertion of GAR1 downstream of the yeast constitutive promoter in the yeast-integrating vector. Recombinant Saccharomyces cerevisiae expressing C. diffluensd-galacturonate reductase from a genome integrated copy of the gene was cultured for use the conversion of d-galacturonic acid to l-galactonic acid. The optimum conditions for l-galactonic acid production were determined in terms of the initial concentration of d-galacturonic acid, fermentation pH, and mixed sugars. The following conditions yielded high efficiency in the conversion of d-galacturonic acid to l-galactonic acid in large-scale cultures: 0.1% initial d-galacturonic acid concentration, pH 3.5, and glucose as additional sugar. The aerobic condition was necessary for the conversion of d-galacturonic acid. Subculture of that recombinant was not showing to decrease of the d-galacturonic acid conversion rate even though it was repeated in ten generations. Culturing in scale-up, the conversion rate of d-galacturonic acid to l-galactonic acid was increased. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Synthesis of β-Nicotinamide Riboside Using an Efficient Two-Step Methodology.
Zhang, Ning; Sauve, Anthony A
2017-12-24
A two-step chemical method for the synthesis of β-nicotinamide riboside (NR) is described. NR has achieved wide use as an NAD + precursor (vitamin B3) and can significantly increase central metabolite NAD + concentrations in mammalian cells. β-NR can be prepared with an efficient two-step procedure. The synthesis is initiated via coupling of commercially available 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose with ethyl nicotinate in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf). 1 H NMR showed that the product was formed with complete stereoselectivity to produce only the β-isomer in high yield (>90% versus starting sugar). The clean stereochemical result suggests that the coupling proceeds via a cationic cis-1,2-acyloxonium-sugar intermediate, which controls addition by nucleophiles to generate predominantly β-stereochemistry. The subsequent deprotection of esters in methanolic ammonia generates the desired product in 85% overall yield versus sugar. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A
2014-06-01
The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated. Copyright © 2014. Published by Elsevier Ltd.
Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine1
Uggla, Claes; Magel, Elisabeth; Moritz, Thomas; Sundberg, Björn
2001-01-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development. PMID:11299382
Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.
Uggla, C; Magel, E; Moritz, T; Sundberg, B
2001-04-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.
Stability of an extemporaneously prepared alcohol-free phenobarbital suspension.
Cober, Mary Petrea; Johnson, Cary E
2007-03-15
The physical and chemical short-term stability of alcohol-free, oral suspensions of phenobarbital 10 mg/mL prepared from commercially available tablets in both a sugar and a sugar-free vehicle was assessed at room temperature. Phenobarbital oral suspension 10 mg/mL was prepared by crushing 10 60-mg tablets of phenobarbital with a mortar and pestle. A small amount of Ora-Plus was added to the phenobarbital powder to sufficiently wet the particles. A 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF was combined with the phenobarbital powder to produce a final volume of 60 mL. Three identical samples of each of the two different formulations were prepared and stored at room temperature in 2-oz amber plastic bottles. Immediately after preparation and at 15, 30, 60, and 115 days, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. The samples were tasted and inspected for color and odor changes. The percent of the initial concentration remaining at each study time for each phenobarbital suspension was determined. Stability was defined as the retention of at least 90% of the initial concentration. There were no detectable changes in color, odor, and taste and no visible microbial growth in any sample. At least 98% of the initial phenobarbital concentration remained throughout the 115-day study period in both preparations. An extemporaneously prepared alcohol-free suspension of phenobarbital 10 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF was stable for at least 115 days when stored in 2-oz amber plastic bottles at room temperature.
Some correlations between sugar maple tree characteristics and sap and sugar yields
Barton M. Blum
1971-01-01
Simple correlation coefficients between various characteristics of sugar maple trees and sap sugar concentration, sap volume yield, and total sugar production are given for the 1968 sap season. Correlation coefficients in general indicated that individual tree characteristics that express tree and crown size are significantly related to sap volume yield and total sugar...
NASA Astrophysics Data System (ADS)
Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal
2017-12-01
Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.
Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J
2015-03-11
Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.
NASA Technical Reports Server (NTRS)
Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)
2000-01-01
Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.
Savoring Sweet: Sugars in Infant and Toddler Feeding.
Murray, Robert D
2017-01-01
During the first years of life, the sweetness of sugars has a capacity to hinder or to help in laying a strong nutritional foundation for food preferences that often extend over a lifetime. Aside from supplying 4 g/kcal of energy, sugars are non-nutritive. However, sugars have a powerful attribute, sweetness, which strongly influences human food preference. A child's first relationship with sweet taste begins even before birth and continues to evolve throughout complementary feeding. The sweetness of breastmilk encourages consumption and soothes the neonate. Conversely, inappropriate introduction of non-milk solids and beverages that are sweet at 0-4 months of age raises the newborn's risk for later obesity and may discourage the acceptance of other bitter or sour foods. Although cereals, fruits, 100% fruit juices, and some grains have naturally occurring sugars that impart sweet flavor notes, there is no clear role for added sugars between 6 and 12 months of age. Yet, 60% of infants are introduced to foods and beverages containing added sugars, threatening diet quality. Pairing foods with naturally occurring sugars, such as fruits, with foods that tend to be resisted initially, such as vegetables, can mask bitterness and promote acceptance. Utilizing the infants' extraordinary capacity for sensory-motor exploration is another strategy to expose them repeatedly to challenging tastes and flavors. The transitional year, as breast milk and infant formula are withdrawn, is a time when nutritional needs are high and diet quality often precarious. Rapid growth, along with brain and cognitive development, demand high-quality nutrition. Snacks are necessary both for energy and valuable nutrients. However, the selection of snack foods often exposes toddlers to items that offer concentrated energy with low nutrient value. Recent trends suggest a rapid fall in added sugars among infants and toddlers. Parenting practices that use small amounts of sugars to promote nutrient-rich foods from all 5 food groups can enhance rather than hinder their child's emerging dietary pattern. © 2017 S. Karger AG, Basel.
Hayer, Kimran; Stratford, Malcolm
2013-01-01
The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938
Hayer, Kimran; Stratford, Malcolm; Archer, David B
2013-11-01
The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.
Sikora, Barbara; Kubik, Celina; Kalinowska, Halina; Gromek, Ewa; Białkowska, Aneta; Jędrzejczak-Krzepkowska, Marzena; Schüett, Fokko; Turkiewicz, Marianna
2016-08-17
A nonpathogenic bacterial strain Bacillus amyloliquefaciens TUL 308 synthesized minor 2,3-butanediol (2,3-BD) amounts from glucose, fructose, sucrose, and glycerol, and efficiently produced the diol from molasses and hydrolysates of food processing residues. Batch fermentations yielded 16.53, 10.72, and 5 g/L 2,3-BD from enzymatic hydrolysates of apple pomace, dried sugar beet pulp, and potato pulp (at initial concentrations equivalent to 45, 20, and 30 g/L glucose, respectively), and 25.3 g/L 2,3-BD from molasses (at its initial concentration equivalent to 60 g/L saccharose). Fed-batch fermentations in the molasses-based medium with four feedings with either glucose or sucrose (in doses increasing their concentration by 25 g/L) resulted in around twice higher maximum 2,3-BD concentration (of about 60 and 50 g/L, respectively). The GRAS Bacillus strain is an efficient 2,3-BD producer from food industry byproducts.
Muttucumaru, N; Powers, SJ; Elmore, JS; Briddon, A; Mottram, DS; Halford, NG
2014-01-01
Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential. PMID:25540460
Frequently Asked Questions about Sugar
... in “ose” (dextrose, fructose, glucose, lactose, maltose, sucrose), high-fructose corn syrup, fruit juice concentrate, honey, invert sugar, malt sugar, ... caloric sweeteners that are chemically manufactured (such as high fructose corn syrup). Some names for added sugars include agave syrup, ...
Producing high sugar concentrations from loblolly pine using wet explosion pretreatment.
Rana, Diwakar; Rana, Vandana; Ahring, Birgitte K
2012-10-01
We present quantitative analysis of pretreatment for obtaining high conversion and release of sugars from loblolly pine. We use wet explosion (WEx): wet oxidation followed by steam explosion and enzymatic hydrolysis (EH) at high dry matter to solubilize sugars. WEx was conducted at 25% (w/w) solids in presence of oxygen at pressures 6.5-7.2 bar, temperatures 170-175°C and residence time from 20 to 22.5 min. EH of pretreated samples was performed by Cellic® Ctec2 (60 mg protein/g cellulose) and Cellic® Htec2 enzymes (10% of Ctec2) at 50°C for 72 h. At the optimal WEx condition 96% cellulose and nearly 100% hemicellulose yield were obtained. The final concentrations of monomeric sugars were 152 g/L of glucose, 67 g/L of xylose, and 67 g/L of minor sugars (galactose, arabinose and mannose). Compared to previous work WEx seems to be superior for releasing high concentrations of monomeric sugars. Copyright © 2012. Published by Elsevier Ltd.
The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released
NASA Astrophysics Data System (ADS)
Sangian, H. F.; Widjaja, A.
2018-02-01
This work was to analyze the effect of alkaline concentration on coconut coir husk crystallinity and sugar liberated enzymatically. The data showed that the employing of alkaline on lignocellulose transformed the crystallinity. The XRD peaks increased highly which indicated that cellulose was more opened and exposed. After pretreatment, the chemical compositions (cellulose, hemicellulose, and lignin) were changed significantly. The employing 1% alkaline, the cellulosic content inclined if compared to that of non-pretreatment. When the alkaline concentration was added to 4%, the cellulose was decreased slightly which indicated that a part of cellulose and hemicellulose was dissolved into solution. It was found the alkaline pretreatment influenced by the biochemical reaction of treated substrates in producing the reducing sugars. The amounts of sugar liberated enzymatically of coconut husk treated by 1% and 4% alkaline increased to 0.26, and 0.24 g sugar/g (cellulose+hemicellulose), respectively, compared to that of native solid recorded at 0.18 g sugar/g (cellulose+hemicellulose).
NASA Astrophysics Data System (ADS)
Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri
2016-02-01
The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.
Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro
2015-10-01
The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aiman, Muhammad; Kassim, Nur Faeza A; Jong, Zheng-Wei; Webb, Cameron E
2016-11-01
This study was conducted to better understand the effect of different sucrose concentrations on Aedes albopictus fecundity, biting behavior and survival. Laboratory strain Ae. albopictus females were raised at four different sucrose concentrations (10%, 30%, 50%, and 70%) and their fecundity, host biting on and survival rates were determined. Mosquitoes fed on high (50% or 70%) showed higher mean fecundity rate compared to those on low (10% or 30%) sucrose concentration, and had higher daily biting rate. On the other hand, mosquitoes fed on the low (10% or 30%) sucrose concentrations recorded higher survival rate. These results suggest female mosquitoes deficient in nutrient intake during sugar feeding may regain nutrients needed during blood feeding, whereas those fed on high sucrose concentration have high fecundity due to high biting rate but have low survivability due to low sucrose intake during sugar feeding. Thus, Ae. albopictus females have a capability to regulate their metabolic needs based on sugar nutrient availability.
Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources.
Detrain, Claire; Prieur, Jacques
2014-05-01
Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e. fructose, glucose, sucrose, melezitose and trehalose). We found that sucrose concentrations - ranging from 0.1 to 2.5 M - triggered food acceptance by L.niger workers with their food intake efficiency being enhanced by sugar concentrations of 1M or higher at which points energy intake was maximised. The range of sucrose concentrations that elicit a feeding response by L. niger scouts thus overlaps with that of natural sugar resources. The response curves of feeding acceptance by scouts consistently increased with sugar concentration, except for trehalose which was disregarded by the ants. Ants are highly sensitive to sucrose and melezitose exhibiting low response thresholds. Sucrose, fructose and glucose share a same potential to act as phagostimulants as they had similar half feeding efficiency concentration values when expressed as the energetic content of sugar solution. Aphid-biosynthezised melezitose generated the highest sensitivity and phagostimulant potential. The feeding behavior of ants appears to be primarily regulated by the energy content of the food solution for the main sugars present in nectar and honeydew. However, feeding by scouts is also influenced by the informative value of individual sugars when it serves as a cue for the presence of aphid partners such as the aphid-biosynthesised melezitose. Copyright © 2014 Elsevier Ltd. All rights reserved.
Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline
2005-12-28
Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.
The effect of alpha amylase enzyme on quality of sweet sorghum juice for chrystal sugar
NASA Astrophysics Data System (ADS)
Marwati, T.; Cahyaningrum, N.; Widodo, S.; Astiati, U. T.; Budiyanto, A.; Wahyudiono; Arif, A. B.; Richana, N.
2018-01-01
Sweet sorghum juice (Sorghum bicolor L. Moench) has characteristics similar to sugar cane juice and potentially used for sugar substitutes that can support food security. Nevertheless the sweet sorghum juicecontain starch which impede sorghum sugar crystallization. Therefore, research on the enzymatic process is needed to convert starch into reducing sugar. The experimental design used was the Factorial Randomized Design with the first factor was alpha amylase enzyme concentration (0, 20, 40, 60, 80, 100, 120 μL/100 mL) and second factor was incubation time (0, 30, 60, 90 minute) at temperature 100°C. The experiment was conducted on fresh sweet sorghum. The results showed that the addition of the alpha amylase enzyme increased the content of reducing sugar and decreased levels of starch. Elevating concentration of alpha amylase enzyme will increase the reducing sugar content in sweet sorghum juice. The optimum alpha amylase enzyme concentration to produce the highest total sugar was 80 μL/100 mL of sweet sorghum juice with the optimum incubation time was 90 minutes. The results of this study are expected to create a new sweetener for sugar substitution. From the economic prospective aspect, sorghum is a potential crop and can be relied upon to support the success of the food diversification program which further leads to the world food security
Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.; ...
2016-04-01
Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L -1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L -1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.
Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L -1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L -1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less
2017-01-01
The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L) was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates) were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v). But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings. PMID:28728354
Transport of agrichemicals to ground and surface water in a small central Indiana watershed
Fenelon, J.M.; Moore, R.C.
1998-01-01
The occurrence, distribution, concentrations, and pathways of agrichemicals in water were investigated in the Sugar Creek watershed, a poorly drained agricultural watershed typical of many watersheds in the midwestern USA. Water samples from Sugar Creek, two tile drains, and 11 wells along a groundwater flowpath to Sugar Creek were collected between May 1992 and August 1996 and analyzed for N and pesticide compounds. Nitrate was the principal N species and pesticides were common in alluvial water-bearing units in the Sugar Creek floodplain. In the confined stratified drift aquifers, ammonia was the principal N species and pesticides were rare. Tile drains directly affected the water quality in Sugar Creek by transporting Soil pore water and shallow groundwater containing high concentrations of nitrate (NO3) and pesticides to the creek. When tile drains were flowing (typically December through July), elevated NO3 concentrations (2-10 mg/L NO3N) in the creek correlated with high NO3 concentrations (2-23 mg/L NO3N) in tile drains discharging to the creek. Likewise, with concentrations of atrazine and atrazine metabolites, seasonal trends in the tile-drain effluent were similar to seasonal trends in Sugar Creek. When tile drains went dry, NO3 concentrations in the creek were low, indicating most groundwater discharge to the creek consisted of old or denitrified water. Trace levels of pesticides in the creek at low flow probably were the result of seepage from alluvial water-bearing units.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Saurav; Dutta, Somenath; Datta, Sidhartha; Bhattacharjee, Chiranjib
2012-08-01
Rice straw is waste renewable agricultural biomass, which contains sufficient amount of fermentable sugars like glucose, galactose fructose, xylose etc. These sugars can be treated with fermentation pathway to produce ethanol. Hydrolysis of pretreated rice straw in dilute sulfuric acid was investigated at different acid concentrations (0.25-0.75 % w/v), and sonication was carried out to improve the extent of sugar extraction. The current work examines the effect of sonication on extraction of total reducing sugar (TRS) and an empirical mathematical model has been established to predict it. Effects of various operating variables of sonication, including amplitude (60-100 %), cycle (0.6-1.0), treatment time (0-15 min) have been analyzed for each acid concentration. Observation shows that on optimization of the sonication conditions (100 % amplitude, 0.8 cycle and 10 min) around 90 % improvement of TRS extraction occurs at 0.5 % (w/v) acid concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaowen; Jennings, Ed; Shekiro, Joe
Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymaticmore » hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.« less
Sugar regulation of plastid reversion in citrus epicarp is mediated through organic acid metabolism.
Ahmed, Omer Khidir
2009-02-01
The inhibition by sucrose of chromoplast reversion to chloroplast in citrus epicarp was studied by observing the effects of several sugars, sugar metabolites and 1-iodoacetate on chlorophyll reaccumulation in cultured Citrus paradisi Macf. pericarp segments. Pericarp segments of 1 cm in diameter were cut from yellow fruits and cultured on modified medium plus the indicated metabolites and kept under continuous fluorescent light. Accumulation of chlorophyll in the segments was measured with a spectrophotometer fitted with sphere reflectometer. Respiration was determined via., an infrared gas analyzer. Inhibition of regreening was not specific to a particular sugar. The organic acids malate, citrate, succinate, 2-oxoglutarate and especially malonate elicited effects similar to sucrose, but at much lower concentrations. However, malonate inhibition of chlorophyll accumulation was overcome by increased concentrations of glutamine. At concentrations that usually inhibited chlorophyll, malonate did not reduce CO2 production in the presence of glutamine or KNO3. Sucrose effects on regreening were reduced by 1-iodoacetate. These results indicate that sugar regulation of plastid reversion during regreening in citrus epicarp is not directly due to sugars, but is instead mediated through metabolism of sugars to organic acids, especially malonic acid.
Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.
Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji
2014-10-01
Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.
Modelling of moisture adsorption for sugar palm (Arenga pinnata) starch film
NASA Astrophysics Data System (ADS)
Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Hernawan
2017-03-01
Sorption characteristic of food products is important for design, optimization, storage and modelling. Sugar palm starch film with two different plasticizers (sorbitol and glycerol) with varied concentration studied for its adsorption isotherm characteristic. The data of adsorption isotherm fitted with GAB, Oswin, Smith and Peleg models. All models describe the experiment data well, but Peleg model is better than the other models on both sugar palm starch film plasticized with sorbitol and glycerol. Moisture sorption of sugar palm starch increased linearly with plasticizer concentration. A new model by taking account of plasticizer concentration describes the experiment data well with an average of coefficients of determination (R2) 0.9913 and 0.9939 for film plasticized with glycerol and sorbitol respectively.
Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao
2014-03-01
This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Kawa-Rygielska, Joanna; Pietrzak, Witold; Regiec, Piotr; Stencel, Piotr
2013-04-01
The subject of this study was to investigate the feasibility of the concentrate obtained after membrane ultrafiltration of sugar beet thin juice for ethanol production and selection of fermentation conditions (yeast strain and media supplementation). Resulting concentrate was subjected to batch ethanol fermentation using two strains of Saccharomyces cerevisiae (Ethanol Red and Safdistill C-70). The effect of different forms of media supplementation (mineral salts: (NH4)2SO4, K2HPO4, MgCl2; urea+Mg3(PO4)2 and yeast extract) on the fermentation course was also studied. It was stated that sugar beet juice concentrate is suitable for ethanol production yielding, depending on the yeast strain, ca. 85-87 g L(-1) ethanol with ca. 82% practical yield and more than 95% of sugars consumption after 72 h of fermentation. Nutrients enrichment further increased ethanol yield. The best results were obtained for media supplemented with urea+Mg3(PO4)2 yielding 91.16-92.06 g L(-1) ethanol with practical yield ranging 84.78-85.62% and full sugars consumption. Copyright © 2013. Published by Elsevier Ltd.
An 'end-game' for sugar sweetened beverages?
Sundborn, G; Merriman, T R; Thornley, S; Metcalf, P; Jackson, R
2014-03-01
The epidemic of unhealthy weight is now in its third decade. The multitude of initiatives designed to address this issue (globally) have predominantly been ineffective as the prevalence of unhealthy weight has continued to rise. Public health professionals have proposed an 'endgame' for tobacco smoking in New Zealand by 2025, which has received widespread support. Similarly, here, to control the prevalence of unhealthy weight, we consider whether a similar approach to tobacco is justified to restrict the intake of sweetened beverages. This paper reviews the evidence relating sugar sweetened beverages to unhealthy weight and adverse health effects. Current initiatives aimed at reducing sugar sweetened beverage consumption both internationally and in New Zealand are reviewed. Epidemiological evidence consistently links sugar-sweetened drink intake with unhealthy weight and other risk factors for cardiovascular disease, such as diabetes, gout, and raised blood pressure. Food disappearance data suggests that sugar intake continues to increase in New Zealand, and that a subtle addiction to sugar may underlie this trend. A number of successful initiatives to reduce sugary drink intake are described. IMPLICATION/CONCLUSION: We argue that an 'endgame' to the consumption of sugar-sweetened beverages be supported as a means to address the issue of unhealthy weight at a population level. Finally, a preliminary draft endgame plan is presented for consideration, dialogue and debate.
Khangholi, Mahdi; Jamalli, Ailar
2016-09-01
Bacteria utilize various methods in order to live in protection from adverse environmental conditions. One such method involves biofilm formation; however, this formation is dependent on many factors. The type and concentration of substances such as sugars that are present in an environment can be effective facilitators of biofilm formation. First, the physico-chemical properties of the bacteria and the target surface were studied via the MATS and contact angle measurement methods. Additionally, adhesion to different surfaces in the presence of various concentrations of sugars was compared in order to evaluate the effect of these factors on the biofilm formation of Escherichia coli , which represents a major food contaminant . Results showed that the presence of sugars has no effect on the bacterial growth rate; all three concentrations of sugars were hydrophilic and demonstrated a high affinity toward binding to the surfaces. The impact of sugars and other factors on biofilm formation can vary depending on the type of bacteria present.
5. RW Meyer Sugar Mill: 18761889. Two sugar coolers ca. ...
5. RW Meyer Sugar Mill: 1876-1889. Two sugar coolers ca. 1880. View: After the concentrated syrup flowed out of the sorghum pan, it cooled and crystallized in these iron sugar coolers. After the sugar syrup was granulated and cooled it was dug out of the coolers and fed into the centrifugals. The Meyer Mill purchased twelve coolers between 1878 and 1881 costing between $35 and $45 each. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Variation in the concentration and age of nonstructural carbon stored in different tree tissues
NASA Astrophysics Data System (ADS)
Richardson, Andrew; Carbone, Mariah; Huggett, Brett; Furze, Morgan; Czimczik, Claudia I.; Xu, Xiaomei
2014-05-01
Trees store nonstructural carbon (NSC), in the form of sugars and starch, in the ray parenchyma cells of woody tissues. These reserves provide a carbon buffer when demand (growth, protection, or metabolism) exceeds supply (photosynthesis). This is particularly important in the context of resilience to stress and disturbance, such as might be associated with various global change factors. However, storage allocation processes and the availability of stored reserves remain poorly understood in woody plants. To better understand how NSC reserves are distributed throughout the tree, and the degree to which NSC reserves mix across ring boundaries and tissue types, we destructively sampled two 30-year-old trees (one red oak, Quercus rubra L., and one white pine, Pinus strobus L.) growing at Harvard Forest, an oak-dominated temperate forest in the northeastern United States. We analyzed stemwood samples (divided into individual rings, bark, and phloem), coarse and fine branches, and coarse (separated into three depths) and fine roots for concentrations of total sugars and starch. For a subset of samples we used the radiocarbon (14C) "bomb spike" method to estimate the mean age of extracted sugars and starch. In oak, stemwood sugar and starch concentrations were highest (50 mg/g) in the youngest (most recently-formed) rings, and dropped off rapidly (to 10 mg/g or less) across the 10 most recent rings. In oak phloem tissue, sugar concentrations were high (90 mg/g) compared to starch (10 mg/g). In pine, sugar concentrations dropped off rapidly across the three most recent rings (from 30 mg/g to 10 mg/g) whereas starch concentrations were low even for the youngest rings (10 mg/g or less). In pine, phloem concentrations of both sugar (190 mg/g) and starch (20 mg/g) were both substantially higher than in oak. Such strong radial trends must be accounted for when scaling up to whole-tree budgets, as whole increment cores cannot properly integrate (on a ring-area basis) across the depth profile. In oak, fine root concentrations of sugar and starch were similar (40 mg/g), and coarse roots had very high concentrations of starch (140 mg/g) compared to sugar (50 mg/g). In pine, fine root concentrations of both sugar and starch (60 mg/g) were higher than in coarse roots (10 mg/g). Coarse root NSC concentrations did not vary substantially along a radial gradient into the root. Even assuming a 1:5 root:shoot ratio, these data indicate that a large portion of the whole-tree NSC budget is stored belowground. For both sugars and starch, the 14C data indicated substantial mixing of new and older carbon across the youngest stemwood rings (up to 5 y), beyond which NSC age increased linearly with ring age. Coarse root NSC age also increased with radial depth and wood tissue age, and root NSC was consistently younger in pine than oak. The fact that NSC age is not constant with radial depth in the aboveground samples demonstrates that NSC reserves cannot be treated as a single, well-mixed pool. Rather, these results are consistent with previous observation suggesting last-in/first-out dynamics. From a modeling standpoint, these results support a simple two-pool structure where new photosynthate not used for current growth or metabolism enters a well-mixed and young "fast" pool, but over time storage in older rings is transferred to a distinct and older "slow" pool with which mixing no longer occurs.
The taste of KCl - What a difference a sugar makes.
Ben Abu, Natalie; Harries, Daniel; Voet, Hillary; Niv, Masha Y
2018-07-30
Dramatic increase in NaCl consumption lead to sodium intake beyond health guidelines. KCl substitution helps reduce sodium intake but results in a bitter-metallic off-taste. Two disaccharides, trehalose and sucrose, were tested in order to untangle the chemical (increase in effective concentration of KCl due to sugar addition) from the sensory effects. The bitter-metallic taste of KCl was reduced by these sugars, while saltiness was enhanced or unaltered. The perceived sweetness of sugar, regardless of its type and concentration, was an important factor in KCl taste modulation. Though KCl was previously shown to increase the chemical activity of trehalose but not of sucrose, we found that it suppressed the perceived sweetness of both sugars. Therefore, sensory integration was the dominant factor in the tested KCl-sugar combinations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Process for concentrated biomass saccharification
Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.
2010-10-05
Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.
Baumann, Karen; Dignac, Marie-France; Bardoux, Gérard; Rumpel, Cornelia
2012-09-15
The objective of this investigation was to test gas-chromatographic compound-specific analysis for studies on the isotopic composition of (13)C-enriched sugar molecules. The effects of (13)C enrichment and type of sugar (C5, C6) will provide valuable information on isotopic correction for future studies employing (13)C-enriched sugars. Five sugar solutions of xylose, mannose and glucose with (13)C enrichments ranging between 1.1 and 1.5 atom-% were prepared. The (13)C enrichments of the initial sugars were measured by elemental analyser/isotope ratio mass spectrometry (EA/IRMS); (13)C enrichments for derivatised sugars were obtained by gas chromatography/combustion/IRMS (GC/C/IRMS). The linear relationships between the (13)C enrichments of the initial sugars and the values for the derivatised sugars were sugar-type dependent. Corrections for GC/C/IRMS values took into account the kinetic isotope effect (KIE) of the derivatising agent associated with the coefficient (K(d)) and a newly introduced second coefficient (K(c)) associated with the KIE of the sugar. While K(d) was constant, K(c) varied with sugar type. During derivatisation acetate groups with (12)C and sugars with more (13)C reacted faster. Coefficients for the specific ranges of (13)C enrichments under study have to be assessed and the reactions of different sugar types have to be taken into account to avoid underestimation of (13)C enrichment of up to 9% (C5) or overestimation of up to 4% (C6). Copyright © 2012 John Wiley & Sons, Ltd.
Bertin, F R; Taylor, S D; Bianco, A W; Sojka-Kritchevsky, J E
2016-09-01
Published descriptions of the oral sugar test (OST) and insulin response test (IRT) have been inconsistent when specifying the protocol for fasting horses before testing. The purpose of our study was to examine the effect of fasting duration on blood glucose concentration, blood insulin concentration, glucose/insulin ratio, OST, and IRT results in horses. Ten healthy adult horses. Both OST and IRT were performed on horses without fasting and after fasting for 3, 6, and 12 hours. Thus, 8 tests were performed per horse in a randomized order. Blood collected at the initial time point of the OST was analysed for both blood glucose and serum insulin concentrations so that baseline concentrations and the glucose/insulin ratio could be determined. Unless fasted, horses had free-choice access to grass hay. There was no effect of fasting and fasting duration on blood glucose concentration, serum insulin concentration, glucose/insulin ratio, or the OST. Response to insulin in the IRT was decreased in fasted horses. The effect increased with fasting duration, with the least response to insulin administration after a 12-hour fast. These data indicate that insulin sensitivity is not a fixed trait in horses. Fasting a horse is not recommended for a glucose/insulin ratio or IRT, and fasting a horse for 3 hours is recommended for the OST. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Treatment of biomass to obtain fermentable sugars
Dunson, Jr., James B.; Tucker, Melvin [Lakewood, CO; Elander, Richard [Evergreen, CO; Hennessey, Susan M [Avondale, PA
2011-04-26
Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.
Alcaire, Florencia; Antúnez, Lucía; Vidal, Leticia; Giménez, Ana; Ares, Gastón
2017-07-01
Reformulation of industrialized products has been regarded as one of the most cost-effective strategies to reduce sugar intake. Although non-nutritive sweeteners have been extensively used to reduce the added sugar content of these products, increasing evidence about the existence of compensatory energy intake mechanisms makes it necessary to develop alternative strategies to achieve rapid sugar reductions. In this context, the aim of the present work was to evaluate aroma-related cross modal interactions for sugar reduction in vanilla milk desserts. In particular, the influence of increasing vanilla concentration and the joint increase of vanilla and starch concentration on consumer sensory and hedonic perception was assessed. Two studies with 100 consumers each were conducted, in which a total of 15 samples were evaluated. For each sample, consumers rated their overall liking and answered a check-all-that-apply (CATA) question comprising 12 flavour and texture terms. Sugar reduction caused significant changes in the flavour and texture characteristics of the desserts. An increase in vanilla concentration had a minor effect on their sensory characteristics. However, increasing both vanilla and starch concentration led to an increase in vanilla flavour and sweetness perception and reduced changes in consumer hedonic perception. These results showed the potential of aroma-related cross modal interactions for minimizing the sensory changes caused by sugar reduction. These strategies could contribute to product reformulation without the need to use non-nutritive sweeteners. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fu, Hongxin; Yu, Le; Lin, Meng; Wang, Jufang; Xiu, Zhilong; Yang, Shang-Tian
2017-03-01
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8g/L vs. 19.4g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28g/L·h vs. 0.16g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53g/L·h vs. 0.26g/L·h) and yield (0.32g/g vs. 0.28g/g). When the initial total sugar concentration was ~120g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4g/L, yield of 0.43g/g sugar consumed, productivity of 0.87g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Ghazi, Iraj; Fernandez-Arrojo, Lucia; Gomez De Segura, Aranzazu; Alcalde, Miguel; Plou, Francisco J; Ballesteros, Antonio
2006-04-19
Sugar syrup and molasses from beet processing containing 620 and 570 mg/mL sucrose, respectively, were assayed as low-cost and available substrates for the enzymatic synthesis of fructo-oligosaccharides (FOSs). A commercial pectinase (Pectinex Ultra SP-L, from Aspergillus aculeatus) characterized by the presence of a transfructosylating activity was used as a biocatalyst. The FOS production increased when lowering the initial pH value of syrup (7.5) and molasses (8.9) to 5.5. Sugar syrup and molasses were diluted in order to reduce substrate viscosity; interestingly, the percentage of FOS with regards to total sugars remained almost constant, which indicated a high transferase-to-hydrolase ratio for this enzyme. Kinetics of FOS production was analyzed. Using approximately 10 U transfructosylating activity per g sucrose, the FOS concentration reached a maximum of 388 mg/mL after 30 h using syrup and 235 mg/mL in 65 h with molasses. These values corresponded to approximately 56 and 49% (w/w), respectively, of the total amount of carbohydrates in the mixture. The enzyme was also covalently immobilized on an epoxy-activated polymethacrylate-based polymer (Sepabeads EC-EP5). We found that immobilized Pectinex Ultra SP-L can be efficiently applied to the synthesis of FOS using syrup and molasses as substrates.
Aziz, M G; Michlmayr, H; Kulbe, K D; Del Hierro, A M
2011-01-05
An easy procedure for cell free biotransformation of pineapple juice sugars into dietetic derivatives was accomplished using a commercial invertase and an oxidoreductase from Zymomonas mobilis. First, pineapple juice sucrose was quantitatively converted into glucose and fructose by invertase, thus increasing the concentration of each monosaccharide in the original juice to almost twice. In a second step, glucose-fructose oxidoreductase (GFOR) transformed glucose into gluconolactone, and fructose into the low calorie sweetener sorbitol. The advantage of using GFOR is simultaneous reduction of fructose and oxidation of glucose, allowing the continuous regeneration of the essential coenzyme NADP(H), that is tightly bound to the enzyme. The yield of GFOR catalyzed sugar conversion depends on initial pH and control of pH during the reaction. At optimal conditions (pH control at 6.2) a maximum of 80% (w/v) sugar conversion was obtained. Without pH control, GFOR is inactivated rapidly due to gluconic acid formation. Therefore, conversion yields are relatively low at the natural pH of pineapple juice. The application of this process might be more advantageous on juices of other tropical fruits (papaya, jackfruit, mango) due to their naturally given higher pH. Copyright © 2010 Elsevier Inc. All rights reserved.
Zhang, Jie; Zhu, Wen; Xu, Haipeng; Li, Yan; Hua, Dongliang; Jin, Fuqiang; Gao, Mintian; Zhang, Xiaodong
2016-04-01
Most butanol-producing strains of Clostridium prefer glucose over xylose, leading to a slower butanol production from lignocellulose hydrolysates. It is therefore beneficial to find and use a strain that can simultaneously use both glucose and xylose. Clostridium beijerinckii SE-2 strain assimilated glucose and xylose simultaneously and produced ABE (acetone/butanol/ethanol). The classic diauxic growth behavior was not seen. Similar rates of sugar consumption (4.44 mM glucose h(-1) and 6.66 mM xylose h(-1)) were observed suggesting this strain could use either glucose or xylose as the substrate and it has a similar capability to degrade these two sugars. With different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. ABE production profiles were similar on different substrates. Transcriptional studies on the effect of glucose and xylose supplementation, however, suggests a clear glucose inhibition on xylose metabolism-related genes is still present.
Radiation treatment of molasses
NASA Astrophysics Data System (ADS)
Rodríguez, A. S.; Serrano G., J.; Lara R., O.; Reyes L., J.
Molasses are a by-product of the sugar industry. Their annual production in México in around 1 million tons and are mainly used as a complement for animal feeding and for the production of alcohols. Their value is relatively low compared with another chemicals. When molasses are irradiated with gamma radiation or accelerated electrons, in presence of nitric acid and oxygen, it is obtained oxalic acid and several polymeric compounds. In both cases, the same products are obtained, but the yield is greater with electrons. It has been studied the effect of dose and dose rate in the yields. As example, when mixtures of molasses-nitric acid, with an initial concentration of 26% of total sugar reductors, are irradiated with 1.0 MeV electrons, in a continuous flow reactor, at 0.11 {Gy}/{sec} to a total dose of 30 KGy, the oxalic acid yield is around 44% of the total chemical reductors used. The separations of the radiolytic products was made by successive decantations and concentrations, and purified by recristallizations. From the analytical information, the minimal formula were calculated for the acid product and the polymeric compounds.
Influence of artificial sweetener on human blood glucose concentration.
Skokan, Ilse; Endler, P Christian; Wulkersdorfer, Beatrix; Magometschnigg, Dieter; Spranger, Heinz
2007-10-05
Artificial sweeteners, such as saccharin or cyclamic acid are synthetically manufactured sweetenings. Known for their low energetic value they serve especially diabetic and adipose patients as sugar substitutes. It has been hypothesized that the substitution of sugar with artificial sweeteners may induce a decrease of the blood glucose. The aim of this study was to determine the reliability of this hypothesis by comparing the influence of regular table sugar and artificial sweeteners on the blood glucose concentration. In this pilot-study 16 patients were included suffering from adiposity, pre-diabetes and hypertension. In the sense of a cross-over design, three test trials were performed at intervals of several weeks. Each trial was followed by a test free interval. Within one test trial each patient consumed 150 ml test solution (water) that contained either 6 g of table sugar ("Kandisin") with sweetener free serving as control group. Tests were performed within 1 hr after lunch to ensure conditions comparable to patients having a desert. Every participant had to determine their blood glucose concentration immediately before and 5, 15, 30 and 60 minutes after the intake of the test solution. For statistics an analysis of variance was performed. The data showed no significant changes in the blood glucose concentration. Neither the application of sugar (F(4;60) = 1.645; p = .175) nor the consumption of an artificial sweetener (F(2.068;31.023) = 1.551; p > .05) caused significant fluctuations in the blood sugar levels. Over a time frame of 60 minutes in the control group a significant decrease of the blood sugar concentration was found (F(2.457;36.849) = 4.005; p = .020) as a physiological reaction during lunch digestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Rodda, E.D.; Steinberg, M.P.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbonmore » dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41 degrees C had no apparent detrimental effects on theoretical ethanol yield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Rodda, E.D.; Steinberg, M.P.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbonmore » dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield.« less
Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K
2014-10-01
High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.
Tiedge, Kira; Lohaus, Gertrud
2017-01-01
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.
Tiedge, Kira; Lohaus, Gertrud
2017-01-01
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions. PMID:28467507
Lau, Jenny Y. Y.; Pang, Chun‐Chiu; Ramsden, Lawrence
2017-01-01
Abstract Although “dry‐type” stigmas are widely regarded as ancestral in angiosperms, the early‐divergent family Annonaceae has copious stigmatic exudate. We evaluate three putative functions for this exudate: as a nutritive reward for pollinators; as a pollen germination medium; and as an extragynoecial compitum that enables pollen tube growth between carpels. Stigmatic exudate is fructose dominated (72.2%), but with high levels of glucose and sucrose; the dominance of hexose sugars and the diversity of amino acids observed, including many that are essential for insects, support a nutritive role for pollinators. Sugar concentration in pre‐receptive flowers is high (28.2%), falling during the peak period of stigmatic receptivity (17.4%), and then rising again toward the end of the pistillate phase (32.9%). Pollen germination was highest in sugar concentrations <20%. Sugar concentrations during the peak pistillate phase therefore provide optimal osmolarity for pollen hydration and germination; subsequent changes in sugar concentration during anthesis reinforce protogyny (in which carpels mature before stamens), enabling the retention of concentrated exudate into the staminate phase as a pollinator food reward without the possibility of pollen germination. Intercarpellary growth of pollen tubes was confirmed: the exudate therefore also functions as a suprastylar extragynoecial compitum, overcoming the limitations of apocarpy. PMID:28880427
Duchaine, Caroline S.; Diorio, Caroline
2014-01-01
Intake of sugar-sweetened beverages has increased in North America and seems to have several adverse health effects possibly through decreased circulating 25-hydroxyvitamin D (25(OH)D) concentrations. The aim of this cross-sectional study was to evaluate the association between sugar-sweetened beverages intake and 25(OH)D concentrations among premenopausal women. Intake of sugar-sweetened beverages including colas, other carbonated beverages and sweet fruit drinks was assessed using a validated food frequency questionnaire among 741 premenopausal women. Plasma concentrations of 25(OH)D were quantified by radioimmunoassay. The association between sugar-sweetened beverages intake and 25(OH)D concentrations was evaluated using multivariate generalized linear models and Spearman correlations. A higher intake of colas was associated with lower mean 25(OH)D levels (67.0, 63.7, 64.7 and 58.5 nmol/L for never, <1, 1–3 and >3 servings/week, respectively; r = −0.11 (p = 0.004)). A correlation was observed between intake of other carbonated beverages and 25(OH)D concentrations but was not statistically significant (r = −0.06 (p = 0.10)). No association was observed between intake of sweet fruit drinks and 25(OH)D concentrations. This study suggests that high intake of colas may decrease 25(OH)D levels in premenopausal women. Considering the high consumption of these drinks in the general population and the possible consequences of vitamin D deficiency on health, this finding needs further investigation. PMID:25072269
Duchaine, Caroline S; Diorio, Caroline
2014-07-28
Intake of sugar-sweetened beverages has increased in North America and seems to have several adverse health effects possibly through decreased circulating 25-hydroxyvitamin D (25(OH)D) concentrations. The aim of this cross-sectional study was to evaluate the association between sugar-sweetened beverages intake and 25(OH)D concentrations among premenopausal women. Intake of sugar-sweetened beverages including colas, other carbonated beverages and sweet fruit drinks was assessed using a validated food frequency questionnaire among 741 premenopausal women. Plasma concentrations of 25(OH)D were quantified by radioimmunoassay. The association between sugar-sweetened beverages intake and 25(OH)D concentrations was evaluated using multivariate generalized linear models and Spearman correlations. A higher intake of colas was associated with lower mean 25(OH)D levels (67.0, 63.7, 64.7 and 58.5 nmol/L for never, <1, 1-3 and >3 servings/week, respectively; r = -0.11 (p = 0.004)). A correlation was observed between intake of other carbonated beverages and 25(OH)D concentrations but was not statistically significant (r = -0.06 (p = 0.10)). No association was observed between intake of sweet fruit drinks and 25(OH)D concentrations. This study suggests that high intake of colas may decrease 25(OH)D levels in premenopausal women. Considering the high consumption of these drinks in the general population and the possible consequences of vitamin D deficiency on health, this finding needs further investigation.
Coleman, J C; Downs, C T
2012-08-01
Whether nectarivores or frugivores place selective pressure on the plants they feed on, in terms of nectar or fruit traits, is much debated. Globally sugar preferences, concentration preference and digestive ability of avian nectarivores have been extensively researched. In contrast, relatively little is known about mammalian nectarivores or frugivores in terms of these, particularly Old World species. Consequently effect of sugar type and concentration on food preference in Wahlberg's epauletted fruit bat Epomophorus wahlbergi was investigated. Pair-wise choice tests were conducted using equicaloric hexose and sucrose solutions at five different concentrations (5%-25%). It was expected that they would prefer hexose sugars as these are dominant in available indigenous fruits. However, bats preferred hexoses only when offered dilute (5%) concentrations. From 10% to 25% they showed a decrease in volume intake. Their body mass was generally higher and similar after feeding during the night with the exception of 5% concentration where the mean body mass decreased. When E. wahlbergi were offered a range of sucrose or hexose solutions (10%-25%) respectively, they showed no concentration preference in terms of total volume consumed, nor energy intake. These findings suggest that these fruit bats do not appear to act as a selective pressure on sugar composition in Old World fruit. In fruit bats with high energy requirements, dietary flexibility may be an advantage when faced with seasonal and unpredictable fruit availability. Copyright © 2012 Elsevier Inc. All rights reserved.
Lo, Yung-Chung; Bai, Ming-Der; Chen, Wen-Ming; Chang, Jo-Shu
2008-11-01
In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H2-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H2 energy. With an initial RS concentration of 0.8g/l, the H2 production and yield was approximately 23.8ml/l and 1.21mmol H2/g RS (0.097mmol H2/g cellulose), respectively.
Malferrari, Marco; Savitsky, Anton; Lubitz, Wolfgang; Möbius, Klaus; Venturoli, Giovanni
2016-12-01
Disaccharide glasses are increasingly used to immobilize proteins at room temperature for structural/functional studies and long-term preservation. To unravel the molecular basis of protein immobilization, we studied the effect of sugar/protein concentration ratios in trehalose or sucrose matrixes, in which the bacterial photosynthetic reaction center (RC) was embedded as a model protein. The structural, dynamical, and H-bonding characteristics of the sugar-protein systems were probed by high-field W-band EPR of a matrix-dissolved nitroxide radical. We discovered that RC immobilization and thermal stabilization, being independent of the protein concentration in trehalose, occur in sucrose only at sufficiently low sugar/protein ratios. EPR reveals that only under such conditions does sucrose form a microscopically homogeneous matrix that immobilizes, via H-bonds, the nitroxide probe. We conclude that the protein immobilization capability depends critically on the propensity of the glass-forming sugar to create intermolecular H-bond networks, thus establishing long-range, homogeneous connectivity within the matrix.
Monlau, F; Sambusiti, C; Antoniou, N; Zabaniotou, A; Solhy, A; Barakat, A
2015-01-01
The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.
3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol.
Yun, Eun Ju; Lee, Ah Reum; Kim, Jung Hyun; Cho, Kyung Mun; Kim, Kyoung Heon
2017-04-15
The significance for anticariogenic sugar substitutes is growing due to increasing demands for dietary sugars and rising concerns of dental caries. Xylitol is widely used as an anticariogenic sugar substitute, but the inhibitory effects of xylitol on Streptococcus mutans, the main cause of tooth decay, are exhibited only at high concentrations. Here, the inhibitory effects of 3,6-anhydro-l-galactose (AHG), a rare sugar from red macroalgae, were evaluated on S. mutans, in comparison with those of xylitol. In the presence of 5g/l of AHG, the growth of S. mutans was retarded. At 10g/l of AHG, the growth and acid production by S. mutans were completely inhibited. However, in the presence of xylitol, at a much higher concentration (i.e., 40g/l), the growth of S. mutans still occurred. These results suggest that AHG can be used as a new anticariogenic sugar substitute for preventing dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Verma, Santosh Kumar; Kawamura, Kimitaka; Chen, Jing; Fu, Pingqing
2018-01-01
In order to understand the atmospheric transport of bioaerosols, we conducted long-term observations of primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific from 2001 to 2013. Our results showed that concentrations of total sugar compounds for 13 years ranged from 1.2 to 310 ng m-3 (average of 46 ± 49 ng m-3). We found that atmospheric circulations significantly affect the seasonal variations of bioaerosol distributions over the western North Pacific. The primary sugars (glucose and fructose) maximized in summer, possibly due to an increased emission of the vegetation products from local vascular plants in Chichijima. We also found higher concentrations of sugar components (arabitol, mannitol, and trehalose) in more recent years during summer and autumn, suggesting an enhanced emission of fungal and microbial species over the island. Sucrose peaked in late winter to early spring, indicating a springtime pollen contribution by long-range atmospheric transport, while elevated concentrations of sucrose in early summer could be explained by long-range transport of soil dust from Southeast Asia to Chichijima. Sucrose and trehalose were found to present increasing trends from 2001 to 2013, while total sugar components did not show any clear trends during the 13-year period. Positive matrix factorization analyses suggested the locally emitted sugar compounds as well as long-range-transported airborne pollen grains, microbes, and fungal spores are the major contributors to total sugar compounds in the Chichijima aerosols. Backward air mass trajectories support the atmospheric transport of continental aerosols from the Asian continent during winter and spring over Chichijima.
Ferone, Mariateresa; Raganati, Francesca; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio
2017-12-01
Succinic acid (SA) is a well-established chemical building block. Actinobacillus succinogenes fermentation is by far the most investigated route due to very promising high SA yield and titer on several sugars. This study contributes to include the SA production within the concept of biorefinery of lignocellulose biomass. The study was focused on the SA production by A. succinogenes DSM 22257 using sugars representative from lignocellulose hydrolysis-glucose, mannose, arabinose, and xylose-as carbon source. Single sugar batch fermentation tests and mixture sugar fermentation tests were carried out. All the sugars investigated were converted in succinic acid by A. succinogenes. The best fermentation performances were measured in tests with glucose as carbon source. The bacterial growth kinetics was characterized by glucose inhibition. No inhibition phenomena were observed with the other sugar investigated. The sugar mixture fermentation tests highlighted the synergic effects of the co-presence of the four sugars. Under the operating conditions tested, the final concentration of succinic acid in the sugar mixture test was larger (27 g/L) than that expected (25.5 g/L) by combining the fermentation of the single sugar. Moreover, the concentration of acetic and formic acid was lower, consequently obtaining an increment in the succinic acid specificity.
Yoon, Ji Won; Lee, Da Gyeom; Lee, Hyun Jung; Choe, Juhui; Jung, Samooel; Jo, Cheorun
2017-01-01
This study investigated the effect of injecting pineapple concentrate and honey into low marbled beef in order to enhance its sensory qualities, particularly tenderness and flavor, without compromising its fresh appearance. Beef loin was injected with a solution of 6.0% pineapple concentrate, 2.5% honey, 0.5% monosodium L-glutamate, 0.5% phosphate, and 0.3% salt (w/w) to 120% (w/w) of initial meat weight and stored for 14 d. Non-injected beef loin served as a control. Total aerobic bacterial counts, surface meat color, shear force, reducing sugar content, and sensory evaluation of the beef were analyzed at 0.5, 7, and 14 d of storage. Injection did not affect the total aerobic bacterial counts or color of the beef. However, injection increased the stability of meat color, compared with that of the control, during storage. The shear force value was significantly lower in the injected beef than that in the control. The injected beef had a significantly higher reducing sugar content compared with that of the control. In sensory evaluation, tenderness, juiciness, flavor, and overall acceptance of the injected beef were significantly higher than those of the control at 0.5 d. In conclusion, injection of pineapple concentrate and honey can improve the sensory qualities of low marbled beef, during short storage periods, without changing the fresh appearance of the beef. PMID:28943761
Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
Choudhury, D; Saini, S
2018-02-01
Bacteria frequently encounter multiple sugars in their natural surroundings. While the dynamics of utilization of glucose-containing sugar mixtures have been well investigated, there are few reports addressing regulation of utilization of glucose-free mixtures particularly pentoses. These sugars comprise a considerable fraction in hemicellulose which can be converted by suitable biocatalysts to biofuels and other value-added products. Hence, understanding of transcriptional cross-regulation among different pentose sugar utilization systems is essential for successful development of industrial strains. In this work, we study mixed-sugar utilization with respect to three secondary carbon sources - arabinose, xylose and rhamnose at single-cell resolution in Escherichia coli. Our results reveal that hierarchical utilization among these systems is not strict but rather can be eliminated or reversed by altering the relative ratios of the preferred and nonpreferred sugars. Since transcriptional cross-regulation among pentose sugar systems operates through competitive binding of noncognate sugar-regulator complex, altering sugar concentrations is thought to eliminate nonspecific binding by affecting concentration of the regulator - sugar complexes. Plant biomass comprises of hexose and pentose sugar mixtures. These sugars are processed by micro-organisms to form products like biofuels, polymers etc. One of the major challenges with mixed-sugar processing by micro-organisms is hierarchical utilization of sugars due to cross-regulation among sugar systems. In this work, we discuss cross-regulation among three secondary carbon sources - arabinose, xylose and rhamnose. Our results show that cross-regulation between pentose sugars is complex with multiple layers of regulation. These aspects need to be addressed for effective design of processes to extract energy from biomass. © 2017 The Society for Applied Microbiology.
Phosphate Dependence of Monosaccharide Transport in Nocardia
Cerbón, Jorge; Ortigoza-Ferado, Jorge
1968-01-01
Uptake of the monosaccharides d-glucose and d-mannose by Nocardia asteroides and N. brasiliensis is dependent on the presence of an adequate phosphate concentration in the environment. When phosphate is replaced by solutions of sodium chloride or potassium chloride of identical ionic strength, there is no sugar uptake. In the presence of iso-osmolar concentrations of sodium arsenate, there is, however, sugar uptake activation. When nonmetabolizable 3-O-methyl d-glucose is used, most of the sugar taken up can be shown to be in the cell at a concentration never exceeding that of the external medium. Phosphate, or arsenate, seems to be essential for the actual migration of the sugar through the cell envelope. The transport of the nonmetabolizable 3-O-methyl glucose also requires phosphate, and the transport seems to be of a type that does not require energy. PMID:5640377
Mark L. Isselhardt; Timothy D. Perkins; Abby K. van den Berg; Paul G. Schaberg
2016-01-01
Recent technological advancements have increased the amount of sugar-enriched sap that can be extracted from sugar maple (Acer saccharum). This pilot study quantified overall sugar removal and the impacts of vacuum (60 cm Hg) and gravity sap extraction on residual nonstructural carbohydrate (NSC) concentrations and on stem and twig growth. Vacuum...
Paul G. Schaberg; Paula F. Murakami; John R. Butnor; Gary J. Hawley
2017-01-01
Autumnal leaf anthocyanin expression is enhanced following exposure to a variety of environmental stresses and may represent an adaptive benefit of protecting leaves from those stresses, thereby allowing for prolonged sugar and nutrient resorption. Past work has shown that experimentally induced sugar accumulations following branch girdling triggers anthocyanin...
Arrizon, J; Gschaedler, A
2007-04-01
To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.
Entropy and charge in molecular evolution--the case of phosphate
NASA Technical Reports Server (NTRS)
Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)
1997-01-01
Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.
Phloem Loading Strategies and Water Relations in Trees and Herbaceous Plants1[W][OA
Fu, Qiushi; Cheng, Lailiang; Guo, Yangdong; Turgeon, Robert
2011-01-01
Most herbaceous plants employ thermodynamically active mechanisms of phloem loading, whereas in many trees, the mechanism is passive, by diffusion. Considering the different water transport characteristics of herbs and trees, we hypothesized that water relations play a role in the adoption of phloem loading strategies. We measured whole-plant hydraulic conductance (Kp), osmolality, concentrations of polar metabolites, and key inorganic ions in recently mature leaves of 45 dicotyledonous species at midafternoon. Trees, and the few herbs that load passively, have low Kp, high osmolality, and high concentrations of transport sugars and total polar metabolites. In contrast, herbs that actively load sucrose alone have high Kp, low osmolality, and low concentrations of sugars and total polar metabolites. Solute levels are higher in sugar alcohol-transporting species, both herbs and trees, allowing them to operate at lower leaf water potentials. Polar metabolites are largely responsible for leaf osmolality above a baseline level (approximately 300 mm) contributed by ions. The results suggest that trees must offset low Kp with high concentrations of foliar transport sugars, providing the motivating force for sugar diffusion and rendering active phloem loading unnecessary. In contrast, the high Kp of most herbaceous plants allows them to lower sugar concentrations in leaves. This reduces inventory costs and significantly increases growth potential but necessitates active phloem loading. Viewed from this perspective, the elevation of hydraulic conductance marks a major milestone in the evolution of the herbaceous habit, not only by facilitating water transport but also by maximizing carbon use efficiency and growth. PMID:21873572
Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A
2016-02-01
Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Castellarin, Simone D.; Gambetta, Gregory A.; Wada, Hiroshi; Krasnow, Mark N.; Cramer, Grant R.; Peterlunger, Enrico; Shackel, Kenneth A.; Matthews, Mark A.
2016-01-01
Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311
Wise, Paul M; Nattress, Laura; Flammer, Linda J; Beauchamp, Gary K
2016-01-01
Individuals who adhere to reduced-sodium diets come to prefer less salt over time, but it is unclear whether sweet taste perception is modulated by reduced sugar intake. The objective was to determine how a substantial reduction in dietary intake of simple sugars affects sweetness intensity and pleasantness of sweet foods and beverages. Healthy men and women aged 21-54 y participated for 5 mo. After the baseline month, 2 subject groups were matched for demographic characteristics, body mass index, and intake of simple sugars. One group (n = 16; 13 of whom completed key experimental manipulations) was randomly assigned to receive a low-sugar diet during the subsequent 3 mo, with instructions to replace 40% of calories from simple sugars with fats, proteins, and complex carbohydrates. The other (control) group (n = 17; 16 of whom completed the study) did not change their sugar intake. During the final month, both groups chose any diet they wished. Each month subjects rated the sweetness intensity and pleasantness of vanilla puddings and raspberry beverages that varied in sucrose concentration. ANOVA showed no systematic differences between groups in rated sweetness during the baseline or first diet month. During the second diet month, the low-sugar group rated low-sucrose pudding samples as more intense than did the control group (significant group-by-concentration interaction, P = 0.002). During the third diet month, the low-sugar subjects rated both low and high concentrations in puddings as ∼40% sweeter than did the control group (significant effect of group, P = 0.01). A weaker effect on rated sweetness was obtained for the beverages. Rated pleasantness was not affected for either of the stimuli. This experiment provides empirical evidence that changes in consumption of simple sugars influence perceived sweet taste intensity. More work is needed to determine whether sugar intake ultimately shifts preferences for sweet foods and beverages. This trial was registered at clinicaltrials.gov as NCT02090478. © 2016 American Society for Nutrition.
Wojcicki, Janet M
2014-01-01
While childhood obesity is a global problem, the extent and severity of the problem in United States, has resulted in a number of new initiatives, including recent hospital initiatives to limit the sale of sweetened beverages and other high calorie drinks in hospital vending machines and cafeterias. These proposed policy changes are not unique to United States, but are more comprehensive in the number of proposed hospitals that they will impact. Meanwhile, however, it is advised, that these initiatives should focus on banning sugar sweetened beverages, including sodas, 100% fruit juice and sports drinks, from hospital cafeterias and vending machines instead of limiting their presence, so as to ensure the success of these programs in reducing the prevalence of childhood obesity. If US hospitals comprehensively remove sugar sweetened beverages from their cafeterias and vending machines, these programs could subsequently become a model for efforts to address childhood obesity in other areas of the world. Conclusion Hospitals should be a model for health care reform in their communities and removing sugar sweetened beverages is a necessary first step. PMID:23445326
19. RW Meyer Sugar: 18761889. Cooling Shed Interior, 1881. View: ...
19. RW Meyer Sugar: 1876-1889. Cooling Shed Interior, 1881. View: Looking toward west end of cooling shed. After the concentrated syrup flowed out of the sorghum pan it cooled and crystallized in large sugar coolers. The humidity and vapors caused by the sorghum pan would have retarded the crystallizing and cooling of the sugar in the boiling house. In 1881 this shed was constructed to house the coolers and the sugar before it was dried in the centrifugals. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Nguyen, Ha T; Van der Fels-Klerx, H J Ine; Peters, Ruud J B; Van Boekel, Martinus A J S
2016-02-01
This study aimed to investigate the effects of sugar type on the reaction mechanism for formation of acrylamide and 5-hydroxymethylfurfural (HMF) during the baking of biscuits at 200°C using multiresponse modelling. Four types of biscuits were prepared: (1) with sucrose, (2) with glucose and fructose, (3) with fructose only and (4) with glucose only. Experimental data showed that HMF concentration was highest in biscuits with glucose and fructose, whereas acrylamide concentration was highest in biscuits with glucose, also having the highest asparagine concentration. Proposed mechanistic models suggested that HMF is formed via caramelisation and that acrylamide formation follows the specific amino acid route, i.e., reducing sugars react with asparagine to form the Schiff base before decarboxylation, to generate acrylamide without the Amadori rearrangement product and sugar fragmentation. Study results contribute to understanding chemical reaction pathways in real food products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Canto, A; Herrera, C M
2012-11-01
Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a 'microbial imprint hypothesis' is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.
USDA-ARS?s Scientific Manuscript database
Sugarcane (Saccharum spp. hybrids) harvest season lasts about six months from late-October through mid-April in Florida. Cane juice sugar concentration and composition are important for sucrose yield and profits, however research is lacking on the influence of harvesting time and intermodal position...
Fuel ethanol from raw corn by Aspergilli hydrolysis with concurrent yeast fermentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Steinberg, M.P.; Rodda, E.D.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.9%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 g ofmore » carbon dioxide per gram of dry substrate starch within 72 h. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield. 41 references, 1 figure, 2 tables.« less
Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen
2010-04-01
This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.
Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.
Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier
2013-08-01
This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Susan I.
Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affectmore » sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation. Characterization of mutant and wild-type plants has revealed that sugars inhibit breakdown of seed storage lipids. In addition, high concentrations of exogenous sugars largely eliminate the development of mature chloroplasts by developing seedlings. Affymetrix GeneChip experiments have revealed that expression of many plant genes is partially regulated by sugar levels, with approximately two percent of genes exhibiting alterations in steady-state mRNA levels in response to changing sugar concentrations. Ultimately, a better understanding of plant sugar responses may allow improvements in rates of carbon fixation and manipulation of carbon partitioning. These improvements will be needed to help make production of energy from biomass more economically attractive.« less
Glycogen synthase activation by sugars in isolated hepatocytes.
Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J
1988-07-01
We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.
Stability of extemporaneously prepared sodium phenylbutyrate oral suspensions.
Caruthers, Regine L; Johnson, Cary E
2007-07-15
In an effort to minimize barriers to compliance and adherence and to improve the accuracy of dosage measurement, sugar-containing and sugar-free sodium phenylbutyrate suspensions were formulated, and the stability of these products over a 90-day period was determined. An oral suspension of sodium phenylbutyrate 200 mg/mL was prepared by thoroughly grinding 12 g of Sodium Phenylbutyrate Powder, USP, in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature. A 500-microL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 100 microg/mL with the mobile phase, the samples were assayed by high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 95% of the initial sodium phenylbutyrate concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of sodium phenylbutyrate, 200 mg/mL, in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.
Code of Federal Regulations, 2012 CFR
2012-04-01
... wine, sugar, juice or concentrated fruit juice of the same kind of fruit may be added after.... (b) Grape wine. Any natural grape wine of a winemaker's own production may have sugar added after... winemaker's own production may have sugar added after amelioration and fermentation provided the finished...
Code of Federal Regulations, 2013 CFR
2013-04-01
... wine, sugar, juice or concentrated fruit juice of the same kind of fruit may be added after.... (b) Grape wine. Any natural grape wine of a winemaker's own production may have sugar added after... winemaker's own production may have sugar added after amelioration and fermentation provided the finished...
Code of Federal Regulations, 2011 CFR
2011-04-01
... wine, sugar, juice or concentrated fruit juice of the same kind of fruit may be added after.... (b) Grape wine. Any natural grape wine of a winemaker's own production may have sugar added after... winemaker's own production may have sugar added after amelioration and fermentation provided the finished...
Code of Federal Regulations, 2014 CFR
2014-04-01
... wine, sugar, juice or concentrated fruit juice of the same kind of fruit may be added after.... (b) Grape wine. Any natural grape wine of a winemaker's own production may have sugar added after... winemaker's own production may have sugar added after amelioration and fermentation provided the finished...
Molecular composition of sugars in atmospheric particulate matter from interior Alaska
NASA Astrophysics Data System (ADS)
Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon
2015-04-01
Sugars can account for 0.5-8% of carbon in atmospheric particulate matter, affecting the earth climate, air quality and public health. Total of 33 total suspended particle (TSP) samples were collected from Fairbanks, Alaska in June 2008 to June 2009 using a low volume air sampler. Here, we report the molecular characteristics of anhydro-sugars (levoglucosan, galactosan and mannosan), primary saccharides (xylose, fructose, glucose, sucrose and trehalose) and sugar alcohols (erythritol, arabitol, mannitol and inositol). The average contribution of sugars to the organic carbon (OC) was also determined to be 0.92%. Sugar compounds were measured using solvent extraction/TMS-derivatization technique followed by gas chromatography-mass spectrometry (GC-MS) determination. The concentrations of total quantified sugar compounds ranged from 2.3 to 453 ng m-3 (average 145 ng m-3). The highest concentration was recorded for levoglucosan in summer, with a maximum concentration of 790 ng m-3 (average 108 ng m-3). Levoglucosan, which is specifically formed by a pyrolysis of cellulose, has been used as an excellent tracer of biomass burning. The highest level of levoglucosan indicates a significant contribution of biomass burning in ambient aerosols. Galactosan (average 20 ng m-3) and mannosan (average 27 ng m-3), which are also formed through the pyrolysis of cellulose/hemicelluloses, were identified in all samples. The average concentrations of arabitol, mannitol, glucose and sucrose were also found 14.7, 14.6, 14.1 and 16.8 ng m-3, respectively. They have been proposed as tracers for resuspension of surface soil and unpaved road dust, which contain biological materials including fungi and bacteria. These results suggest that there is some impact of bioaerosols on climate over Interior Alaska. We will also measure water-soluble organic carbon (WSOC) and inorganic ions for all samples.
Zavala, Lucía; Roberti, Paula; Piermaria, Judith A; Abraham, Analía G
2015-08-01
In this work, the influence of sucrose and fructose on the gel-forming capacity of kefiran was investigated as well as the physicochemical characteristics of the resulting gels. The addition of sugar to gel-forming solutions did not alter the pseudoplastic flow properties of kefiran solutions and after one freeze-thaw cycle translucent gels with high water-holding capability were obtained. A highly porous matrix was revealed by microscopy whose pore size varied with sugar concentration. Sucrose and fructose had different effects on the rheological characteristics of sugar-kefiran gels. An increment in the strength of the gels with progressive concentrations of sucrose was evidenced by an increase in the elastic modulus (G'), indicating that sucrose reinforces the binding interactions between the polymer molecules (p ≤ 0.05). A drastic reduction in elastic modulus occurred, however, when 50.0 % w/w sucrose was added to kefiran gels, resulting in less elasticity. In contrast, when fructose was added to kefiran gels, elastic modulus decreased slightly with progressive sugar concentrations up to 10 %, thereafter increasing up to 50 % (p ≤ 0.05). Supplementation with up to 30 % sugar contributed to water retention and increased the viscous modulus. The relative increment in the elastic and viscous moduli elevated the loss tangent (tanδ) depending on the type and concentration of sugar. Sugars (sucrose, fructose) present in the matrix of the polysaccharide networks modified water-polymer and polymer-polymer interactions and consequently changed the gels' physicochemical characteristics, thus allowing the possibility of selecting the appropriate formulation through tailor-made kefiran cryogels.
Lenné, Thomas; Garvey, Christopher J; Koster, Karen L; Bryant, Gary
2009-02-26
We present an X-ray scattering study of the effects of dehydration on the bilayer and chain-chain repeat spacings of dipalmitoylphosphatidylcholine bilayers in the presence of sugars. The presence of sugars has no effect on the average spacing between the phospholipid chains in either the fluid or gel phase. Using this finding, we establish that for low sugar concentrations only a small amount of sugar exclusion occurs. Under these conditions, the effects of sugars on the membrane transition temperatures can be explained quantitatively by the reduction in hydration repulsion between bilayers due to the presence of the sugars. Specific bonding of sugars to lipid headgroups is not required to explain this effect.
Sugar markers in aerosol particles from an agro-industrial region in Brazil
NASA Astrophysics Data System (ADS)
Urban, R. C.; Alves, C. A.; Allen, A. G.; Cardoso, A. A.; Queiroz, M. E. C.; Campos, M. L. A. M.
2014-06-01
This work aimed to better understand how aerosol particles from sugar cane burning contribute to the chemical composition of the lower troposphere in an agro-industrial region of São Paulo State (Brazil) affected by sugar and ethanol fuel production. During a period of 21 months, we collected 105 samples and quantified 20 saccharides by GC-MS. The average concentrations of levoglucosan (L), mannosan (M), and galactosan (G) for 24-h sampling were 116, 16, and 11 ng m-3 respectively. The three anhydrosugars had higher and more variable concentrations in the nighttime and during the sugar cane harvest period, due to more intense biomass burning practices. The calculated L/M ratio, which may serve as a signature for sugar cane smoke particles, was 9 ± 5. Although the total concentrations of the anhydrosugars varied greatly among samples, the relative mass size distributions of the saccharides were reasonably constant. Emissions due to biomass burning were estimated to correspond to 69% (mass) of the sugars quantified in the harvest samples, whereas biogenic emissions corresponded to 10%. In the non-harvest period, these values were 44 and 27%, respectively, indicating that biomass burning is an important source of aerosol to the regional atmosphere during the whole year.
Farhadi, Ashkan; Keshavarzian, Ali; Fields, Jeremy Z; Sheikh, Maliha; Banan, Ali
2006-05-19
The most widely accepted method for the evaluation of intestinal barrier integrity is the measurement of the permeation of sugar probes following an oral test dose of sugars. The most-widely used sugar probes are sucrose, lactulose, mannitol and sucralose. Measuring these sugars using a sensitive gas chromatographic (GC) method, we noticed interference on the area of the lactulose and mannitol peaks. We tested different sugars to detect the possible makeup of these interferences and finally detected that the lactose interferes with lactulose peak and fructose interferes with mannitol peak. On further developing of our method, we were able to reasonably separate these peaks using different columns and condition for our assay. Sample preparation was rapid and simple and included adding internal standard sugars, derivitization and silylation. We used two chromatographic methods. In the first method we used Megabore column and had a run time of 34 min. This resulted in partial separation of the peaks. In the second method we used thin capillary column and was able to reasonably separate the lactose and lactulose peaks and the mannitol and fructose peaks with run time of 22 min. The sugar probes including mannitol, sucrose, lactulose, sucralose, fructose and lactose were detected precisely, without interference. The assay was linear between lactulose concentrations of 0.5 and 40 g/L (r(2)=1.000, P<0.0001) and mannitol concentrations of 0.01 and 40 g/L (r(2)=1.000). The sensitivity of this method remained high using new column and assay condition. The minimum detectable concentration calculated for both methods was 0.5 mg/L for lactulose and 1 mg/L for mannitol. This is the first report of interference of commonly used sugars with test of intestinal permeability. These sugars are found in most of fruits and dairy products and could easily interfere with the result of permeability tests. Our new GC assay of urine sugar probes permits the simultaneous quantitation of sucralose, sucrose, mannitol and lactulose, without interference with lactose and fructose. This assay is a rapid, simple, sensitive and reproducible method to accurately measure intestinal permeability.
27 CFR 24.177 - Chaptalization (Brix adjustment).
Code of Federal Regulations, 2013 CFR
2013-04-01
... may be added before or during fermentation to develop alcohol. The quantity of sugar or concentrated... grape wine is ameliorated after chaptalization, the quantity of pure dry sugar added to juice for... chaptalization, pure dry sugar added under this section is not considered as ameliorating material. However, if...
27 CFR 24.177 - Chaptalization (Brix adjustment).
Code of Federal Regulations, 2014 CFR
2014-04-01
... may be added before or during fermentation to develop alcohol. The quantity of sugar or concentrated... grape wine is ameliorated after chaptalization, the quantity of pure dry sugar added to juice for... chaptalization, pure dry sugar added under this section is not considered as ameliorating material. However, if...
27 CFR 24.177 - Chaptalization (Brix adjustment).
Code of Federal Regulations, 2012 CFR
2012-04-01
... may be added before or during fermentation to develop alcohol. The quantity of sugar or concentrated... grape wine is ameliorated after chaptalization, the quantity of pure dry sugar added to juice for... chaptalization, pure dry sugar added under this section is not considered as ameliorating material. However, if...
27 CFR 24.177 - Chaptalization (Brix adjustment).
Code of Federal Regulations, 2011 CFR
2011-04-01
... may be added before or during fermentation to develop alcohol. The quantity of sugar or concentrated... grape wine is ameliorated after chaptalization, the quantity of pure dry sugar added to juice for... chaptalization, pure dry sugar added under this section is not considered as ameliorating material. However, if...
Culling, K S; Neil, H A W; Gilbert, M; Frayn, K N
2009-06-01
Low-fat high-carbohydrate diets raise plasma triacylglycerol (TG) concentrations. To test whether the nature of the carbohydrate affects metabolic responses, we conducted a randomized cross-over study using a short-term, intensive dietary modification. Eight non-diabetic subjects and four subjects with diet-controlled type 2 diabetes participated. They followed three isoenergetic diets, each for 3 days: high-fat (50% energy from fat), high-starch and high-sugar (each 70% energy from carbohydrate). Normal foods were provided. We measured plasma TG and glucose concentrations, fasting and after a standard test meal, on day 4 following each dietary period. Fasting TG concentrations were greatest following the high-sugar diet (mean+/-SEM for all subjects 1900+/-420micromol/l) and lowest following high-fat (1010+/-130micromol/l) (P=0.001); high-starch (mean 1500+/-310) and high-fat did not differ significantly (P=0.06). There was a greater effect in the diabetic subjects (diet x diabetes status interaction, P=0.008). Postprandial TG concentrations were similarly affected by prior diet (P<0.001) with each diet different from the others (P
Sugar reduction in probiotic chocolate-flavored milk: Impact on dynamic sensory profile and liking.
Oliveira, Denize; Antúnez, Lucía; Giménez, Ana; Castura, John C; Deliza, Rosires; Ares, Gastón
2015-09-01
Reducing the sugar content of processed products has been claimed to be one of the most efficient strategies for decreasing sugar intake. The present work aimed at studying the influence of sugar reduction on the dynamic sensory profile and consumers' liking of probiotic chocolate-flavored milks using a novel temporal methodology, and to evaluate two alternatives (vanilla flavor and thaumatin) to attenuate the sensory changes caused by sugar reduction. Probiotic chocolate-flavored milks were formulated with different reductions in added sugar (0, 20, 40 and 60%). Vanilla flavor and thaumatin were added to the sugar-reduced samples at two concentrations. Samples were evaluated by trained assessors using Temporal check-all-that-apply (TCATA). Additionally, consumers evaluated the dynamic sensory profile of a subset of the samples using TCATA and indicated their overall liking using a 9-point hedonic scale. Results from the present work showed that the main effect of sugar reduction on the dynamic sensory profile of the probiotic chocolate-flavored milks was related to changes in sweetness, bitterness and thickness. A reduction in added sugar of 20% led to changes in sweetness intensity, which were perceived by both trained assessors and consumers. However, consumers' liking was not significantly affected by sugar reduction up to 40%. The addition of vanilla flavor at suprathreshold concentrations was not efficient in increasing sweetness perception in chocolate-flavored milks with the lowest sugar reduction percentage, suggesting that it may not be a feasible alternative for reducing sugar in this product category. These results suggest that in many situations sugar content of food products could be decreased without a relevant impact on consumers' sensory and hedonic perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beiranvand, H; Ghorbani, G R; Khorvash, M; Kazemi-Bonchenari, M
2014-06-01
The effects of sugar and forage inclusion in calves' starter and their interaction on animal performance and rumen fermentation parameters were investigated. Twenty-eight neonatal Holstein male calves 3 days of age with average body weights of 42 ± 4 kg were allocated to four different treatments. All calves were fed a similar basal diet consisting of milk and concentrate. The experimental treatments were: (i) basal diet with no supplementation (Control, hereafter designated by C), (ii) basal diet plus 5% granular sugar cane (Sugar, designated by S), (iii) basal diet plus 5% forage (Forage, designated by F) and (iv) basal diet plus 5% forage with 5% granular sugar cane (F × S). Supplement ingredients were used on a dry matter (DM) basis. Rumen fluid parameters were measured twice on days 35 and 70 of the study period. The calves were weaned when they could consume 1 kg of starter for three consecutive days. The results show that starter intake was not affected by treatment; however, the lowest ADG was observed with calves in the sugar treatment. Weaning age was affected by treatments, and forage showed to reduce milk consumption period down to its shortest. Forage-sugar interaction was found to have no effects on animal performance. The structural body indices as well as the health status of the calves were similar in different treatments. Rumen pH did not differ among the treatment groups. Among the rumen parameters, total VFA concentration and molar proportions of butyrate and propionate did not exhibit any significant differences among the treatments. However, ruminal acetate concentration decreased in calves that fed sugar cane during the early weeks of the study period. Comparison of forage and sugar included in the starter diets revealed that forage reduced weaning age, while sugar cane had a negative effect on calves' performance. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Nectar, Floral Morphology and Pollination Syndrome in Loasaceae subfam. Loasoideae (Cornales)
ACKERMANN, MARKUS; WEIGEND, MAXIMILIAN
2006-01-01
• Background and Aims Loasaceae subfam. Loasoideae are mostly distributed in South America (sea level to over 4500 m) with a wide range of animals documented as pollinators. The aim was to investigate correlations between nectar parameters, flower morphology, pollination syndrome and phylogeny. • Methods Nectar was collected from 29 species from seven genera in the subfamily. Concentration and volumes were measured and the amount of sugar calculated. Correlations of nectar data were plotted on a ternary graph and nectar characteristics compared with flower visitors, floral morphology and phylogenetic data. • Key Results Sugar concentrations are generally higher than reported for most plant families in the literature. The species investigated can be roughly grouped as follows. Group I: plants with approx. 1·5(–3·5) µL nectar with (40–)60–80 % sugar and 0·19–2 mg sugar flower−1; with small, white, star-shaped corollas, pollinated by short-tongued bees. Groups II, III and IV: plants with mostly orange, balloon-, saucer-, bowl- or bell-shaped corollas. Group II: plants with approx. 9–14 µL nectar with 40–60 % sugar and 4–10 mg sugar flower−1; mostly visited by long-tongued bees and/or hummingbirds. Group III: plants with 40–100 µL nectar with 30–40 % sugar and 14–36 mg sugar flower–1, mostly visited by hummingbirds. Group IV: geoflorous plants with 80–90 µL with 10–15 % sugar and 8·5–12 mg sugar flower–1, presumably visited by small mammals. Groups II and III include species visited by bees and/or hummingbirds. • Conclusions Pollinator switches from short-tongued bees via long-tongued bees to hummingbirds appear to have taken place repeatedly in the genera Nasa, Loasa and Caiophora. Changes in nectar amount and concentration appear to evolve rapidly with little phylogenetic constraint. PMID:16820408
USDA-ARS?s Scientific Manuscript database
The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...
Rahimi, Jamshid; Singh, Ashutosh; Adewale, Peter Olusola; Adedeji, Akinbode A.; Ngadi, Michael O.; Raghavan, Vijaya
2013-01-01
The effect of different concentrations of sugar solution (hypertonic) (30%, 45% and 60% w/v) and carboxyl methyl cellulose (CMC) (0%, 1% and 2% w/v) coating on freeze drying of apple slices was studied. In total, nine treatments with respect to concentrations of hypertonic solution and coating layer were prepared to analyze their influence on the physical and chemical properties of freeze dried apple slices. It was observed that increase in the sugar solution concentration, decreased the moisture content of the apple slices significantly impacting its water activity, texture and sugar gain. Application of different concentrations of CMC coating had no significant effect on the properties of dried apple slices. A significant change was observed for color of CMC coated freeze dried apple slices pretreated with 60% sugar solution. Drying kinetics of pretreated apple slices were fitted by using two drying models, Newton’s and Page’s. Page’s model showed higher R-square and lower root mean square error (RSME) compared to Newton’s model. PMID:28239107
Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.
Jeya, Marimuthu; Nguyen, Ngoc-Phuong-Thao; Moon, Hee-Jung; Kim, Sang-Hwan; Lee, Jung-Kul
2010-11-01
Agaricus arvensis, a newly isolated basidiomycetous fungus, was found to secrete efficient cellulases. The strain produced the highest endoglucanase (EG), cellobiohydrolase (CBH) and beta-glucosidase (BGL) activities of 0.3, 3.2 and 8U/mg-protein, respectively, with rice straw as the carbon source. Saccharification of the woody biomass with A. arvensis cellulase as the enzyme source released a high level of fermentable sugars. Enzymatic hydrolysis of the poplar biomass was optimized using the response surface methodology in order to study the influence of the variables (pH, temperature, cellulases concentration and substrate concentration). The enzyme and substrate concentrations were identified as the limiting factors for the saccharification of poplar wood biomass. A total reducing sugar level of 29g/L (293mg/g-substrate) was obtained at an enzyme concentration of 65FPU/g-substrate after optimization of the hydrolysis parameters. The model validation showed a good agreement between the experimental results and the predicted responses. A. arvensis could be a good candidate for the production of reducing sugars from a cellulosic biomass.
PRESSMAN, ETAN; PEET, MARY M.; PHARR, D. MASON
2002-01-01
Continuous exposure of tomato ‘Trust’ to high temperatures (day/night temperatures of 32/26 °C) markedly reduced the number of pollen grains per flower and decreased viability. The effect of heat stress on pollen viability was associated with alterations in carbohydrate metabolism in various parts of the anther during its development. Under control, favourable temperature conditions (28/22 °C), starch accumulated in the pollen grains, where it reached a maximum value 3 d before anthesis; it then diminished towards anthesis. During anther development, the concentration of total soluble sugars gradually increased in the anther walls and in the pollen grains (but not in the locular fluid), reaching a maximum at anthesis. Continuous exposure of the plants to high temperatures (32/26 °C) prevented the transient increase in starch concentration and led to decreases in the concentrations of soluble sugars in the anther walls and the pollen grains. In the locular fluid, however, a higher soluble sugar concentration was detected under the high‐temperature regime throughout anther development. These results suggest that a major effect of heat stress on pollen development is a decrease in starch concentration 3 d before anthesis, which results in a decreased sugar concentration in the mature pollen grains. These events possibly contribute to the decreased pollen viability in tomato. PMID:12466104
21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... used as a decolorizing agent and/or flocculant in the clarification of refinery sugar liquors and juices. It is added only at the defecation/clarification stage of sugar liquor refining at a concentration not to exceed 150 parts per million of copolymer by weight of sugar solids. (d) To assure safe use...
21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... used as a decolorizing agent and/or flocculant in the clarification of refinery sugar liquors and juices. It is added only at the defecation/clarification stage of sugar liquor refining at a concentration not to exceed 150 parts per million of copolymer by weight of sugar solids. (d) To assure safe use...
21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... used as a decolorizing agent and/or flocculant in the clarification of refinery sugar liquors and juices. It is added only at the defecation/clarification stage of sugar liquor refining at a concentration not to exceed 150 parts per million of copolymer by weight of sugar solids. (d) To assure safe use...
21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... used as a decolorizing agent and/or flocculant in the clarification of refinery sugar liquors and juices. It is added only at the defecation/clarification stage of sugar liquor refining at a concentration not to exceed 150 parts per million of copolymer by weight of sugar solids. (d) To assure safe use...
27 CFR 24.10 - Meaning of terms.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Sweetening. The addition of juice, concentrated juice or sugar to wine after the completion of fermentation... juice or natural wine before, during, or after fermentation, of either water or pure dry sugar, or a combination of water and sugar to adjust the acid level. Appropriate TTB officer. An officer or employee of...
27 CFR 24.10 - Meaning of terms.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Sweetening. The addition of juice, concentrated juice or sugar to wine after the completion of fermentation... juice or natural wine before, during, or after fermentation, of either water or pure dry sugar, or a combination of water and sugar to adjust the acid level. Appropriate TTB officer. An officer or employee of...
27 CFR 24.10 - Meaning of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Sweetening. The addition of juice, concentrated juice or sugar to wine after the completion of fermentation... juice or natural wine before, during, or after fermentation, of either water or pure dry sugar, or a combination of water and sugar to adjust the acid level. Appropriate TTB officer. An officer or employee of...
27 CFR 24.10 - Meaning of terms.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Sweetening. The addition of juice, concentrated juice or sugar to wine after the completion of fermentation... juice or natural wine before, during, or after fermentation, of either water or pure dry sugar, or a combination of water and sugar to adjust the acid level. Appropriate TTB officer. An officer or employee of...
NASA Astrophysics Data System (ADS)
Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea
2015-10-01
The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the ;Mario Zucchelli; coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.
Wojcicki, Janet M
2013-06-01
While childhood obesity is a global problem, the extent and severity of the problem in United States, has resulted in a number of new initiatives, including recent hospital initiatives to limit the sale of sweetened beverages and other high calorie drinks in hospital vending machines and cafeterias. These proposed policy changes are not unique to United States, but are more comprehensive in the number of proposed hospitals that they will impact. Meanwhile, however, it is advised, that these initiatives should focus on banning sugar sweetened beverages, including sodas, 100% fruit juice and sports drinks, from hospital cafeterias and vending machines instead of limiting their presence, so as to ensure the success of these programs in reducing the prevalence of childhood obesity. If US hospitals comprehensively remove sugar sweetened beverages from their cafeterias and vending machines, these programs could subsequently become a model for efforts to address childhood obesity in other areas of the world. Hospitals should be a model for health care reform in their communities and removing sugar sweetened beverages is a necessary first step. ©2013 Foundation Acta Paediatrica. Published by Blackwell Publishing Ltd.
High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. Themore » NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.« less
Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M
2012-05-01
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggeman, Tim; O'Neill, Brian
2016-08-17
ZeaChem Inc. and US DOE successfully demonstrated the ZeaChem process for producing sugars and ethanol from high-impact biomass feedstocks. The project was executed over a 5-year period under a $31.25 million cooperative agreement (80:20 Federal:ZeaChem cost share). The project was managed by dividing it into three budget periods. Activities during Budget Period 1 were limited to planning, permitting, and other pre-construction planning. Budget Period 2 activities included engineering, procurement, construction, commissioning, start-up and initial operations through the Independent Engineer Test Runs. The scope of construction was limited to the Chem Frac and Hydrogenolysis units, as the Core Facility was alreadymore » in place. Construction was complete in December 2012, and the first cellulosic ethanol was produced in February 2013. Additional operational test runs were conducted during Budget Period 3 (completed June 2015) using hybrid poplar, corn stover, and wheat straw feedstocks, resulting in the production of cellulosic ethanol and various other biorefinery intermediates. The research adds to the understanding of the Chem Frac and Hydrogenolysis technologies in that the technical performance of each unit was measured, and the resulting data and operational experience can be used as the basis for engineering designs, thus mitigating risks for deployment in future commercial facilities. The Chem Frac unit was initially designed to be operated as two-stage dilute acid hydrolysis, with first stage conditions selected to remove the hemicellulose fraction of the feedstock, and the second stage conditions selected to remove the cellulose fraction. While the Chem Frac unit met or exceeded the design capacity of 10 ton(dry)/day, the technical effectiveness of the Chem Frac unit was below expectations in its initial two-stage dilute acid configuration. The sugars yields were low, the sugars were dilute, and the sugars had poor fermentability caused by excessive inhibitors from wood breakdown products, resulting in a non-viable process from an economic point of view. Later runs with the Chem Frac unit switched to a configuration that used dilute acid pretreatment followed by enzymatic hydrolysis. This change improved yield, increased sugar concentrations, and improved fermentability of sugars. The Hydrogenolysis unit met or exceeded all expectations with respect to unit capacity, technical performance, and economic performance. The US DOE funds for the project were provided through the American Recovery and Reinvestment Act of 2009. In addition to the scientific/technical merit of the project, this project benefited the public through the creation of approximately 75 onsite direct construction-related jobs, 25 direct on-going operations-related jobs, plus numerous indirect jobs, and thus was well aligned with the goals of the American Recovery and Reinvestment Act of 2009.« less
ERIC Educational Resources Information Center
de Berg, Kevin
2012-01-01
This paper reports on students' understanding of sugar concentration in aqueous solutions presented in two different modes: a visual submicroscopic mode for particles and a verbal mode referring to macroscopic amounts of sugar. One hundred and forty-five tertiary college students studying some form of first-year chemistry participated in the…
USDA-ARS?s Scientific Manuscript database
In these studies concentrated xylose solution was fermented to ethanol employing Escherichia coli FBR5 which can ferment both lignocellulosic sugars (hexoses and pentoses). E. coli FBR5 can produce 40-50 gL-1 ethanol from 100 gL-1 xylose in batch reactors. Increasing sugar concentration beyond this...
USDA-ARS?s Scientific Manuscript database
Introduction: Dyslipidemia, characterized by high triglyceride (TG) and low HDL concentrations, is a risk factor for cardiovascular disease (CVD). Decreasing dietary sugar consumption is one dietary modification that may influence dyslipidemia risk to reduce the risk for CVD. Two major sources of di...
Witteveen, Minke; Brown, Mark; Downs, Colleen T
2014-01-01
Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation. © 2013.
Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool
2015-12-01
An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp
Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun
2014-01-01
The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535
Adams, Henry D; Germino, Matthew J; Breshears, David D; Barron-Gafford, Greg A; Guardiola-Claramonte, Maite; Zou, Chris B; Huxman, Travis E
2013-03-01
Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... agent and/or flocculant in the clarification of refinery sugar liquors and juices. It is added only at the defecation/clarification stage of sugar liquor refining at a concentration not to exceed 150 parts per million of copolymer by weight of sugar solids. (d) To assure safe use of the additive, the label...
Canto, A.; Herrera, C. M.
2012-01-01
Background and Aims Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Methods Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Key Results Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. Conclusions The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities. PMID:22915578
Amylolysis of raw corn by Aspergillus niger for simultaneous ethanol fermentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, I.Y.; Steinberg, M.P.
The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a nonsterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventingmore » fermentation was estimated to be 8.3% by weight. (Refs. 96).« less
Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua
2014-01-01
Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L) was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines. PMID:24672788
Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohite, U.; SivaRaman, H.
1984-01-01
While extensive work has been reported on sugarcane and sugarcane molasses for ethanol production, relatively few reports are available on ethanol production from sweet sorghum juice. With the advent of immobilized cell technology, an attempt has been made to utilize this technology for the production of ethanol from sweet sorghum juice. The species was Sorghum bicolar (Moench). The maximum productivity obtained at 30/sup 0/C with Saccharomyces uvarum cells immobilized in gelatin was 168 g/L h at an ethanol concentration of 2.4 g (w/v) using sweet sorghum juice having 11.5% fermentable sugars. The calculated value for full conversion was 86 g/Lmore » at an ethanol concentration of 5.5 g (w/v). The low concentration of total sugars in the juice, however, would make ethanol recovery expensive unless a uniformly high concentration of 16% or more of total sugars can be obtained.« less
Liu, Dengfeng; Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua
2014-01-01
Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23 °C. The highest peak value of maltose (90 g/L) was obtained at 18 °C. Lactic acid and acetic acid both achieved maximum values at 33 °C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines.
Horňák, Karel; Pernthaler, Jakob
2014-10-24
The concentrations of free neutral carbohydrates and amino sugars were determined in freshwater samples of distinct matrix complexity, including meso-, eu- and dystrophic lakes and ponds, using high-performance ion-exclusion chromatography (HPIEC) coupled to mass spectrometry (MS). In contrast to other methods, our approach allowed the quantification of free neutral carbohydrates and amino sugars at low nM concentrations without derivatization, de-salting or pre-concentration. New sample preparation procedures were applied prior to injection employing syringe and hollow fiber filtration. Analytes were separated on a strong cation exchange resin under 100% aqueous conditions using 0.1% formic acid as a mobile phase. To minimize background noise in MS, analytes were detected in a multiple reaction monitoring scan mode with double ion filtering. Detection limits of carbohydrates and amino sugars ranged between 0.2 and 2nM at a signal-to-noise ratio >5. Error ranged between 1 and 12% at 0.5-500nM levels. Using a stable isotope dilution approach, both the utilization and recycling of glucose in Lake Zurich was observed. In contrast, N-acetyl-glucosamine was equally rapidly consumed but there was no visible de novo production. The simple and rapid sample preparation makes our protocol suitable for routine analyses of organic compounds in freshwater samples. Application of stable isotope tracers along with accurate measures of carbohydrate and amino sugar concentrations enables novel insights into the compound in situ dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randles, J.; Kimmich, G.A.
1978-03-01
Phloretin and theophylline each exert an immediate inhibitory effect on the Na/sup +/-independent, facilitated-diffusion transport system for sugar associated with intestinal epithelial cells. Phloretin inhibits approximately 50% more of the total Na/sup +/-independent sugar flux than theophylline. Neither agent has an immediate effect on the Na/sup +/-dependent, concentrative sugar transport system, although preincubation of the cells with phloretin causes a significant inhibition. The slowly developing effect is correlated with a decrease in cellular adenosine triphosphate (ATP) and an elevation of intracellular Na/sup +/. Other agents which elevate cell Na/sup +/ also inhibit Na/sup +/-dependent sugar influx, even if ATP levelsmore » are not depleted. On the other hand, if ATP is depleted by phloretin under conditions in which the cells do not gain Na/sup +/, the inhibitory effect on Na/sup +/-dependent sugar flux tends to disappear. The slow-onset phloretin effects are due to transinhibition of the Na/sup +/-dependent sugar carrier by cellular Na/sup +/. When the passive sugar carrier is inhibited by phloretin or theophylline, the concentrative system can establish an enhanced sugar gradient. Because of the secondary metabolic effects of phloretin, theophylline induces a greater gradient enhancement despite its more limited effect on the passive sugar-transport system. Sugar gradients as large as 20-fold are induced by theophylline, in contrast to 12-fold gradients observed in the presence of phloretin and approximately 7- to 8-fold for untreated cells. These results are discussed in terms of conceptual questions regarding the energetics of Na/sup +/-dependent transport systems.« less
Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randles, J.; Kimmich, G.A.
1978-01-01
Phloretin and theophylline each exert an immediate inhibitory effect on the Na/sup +/-independent, facilitated-diffusion transport system for sugar associated with intestinal epithelial cells. Phloretin inhibits approximately 50% more of the total Na/sup +/-independent sugar flux than theophylline. Neither agent has an immediate effect on the Na/sup +/-dependent, concentrative sugar transport system, although preincubation of the cells with phloretin causes a significant inhibition. The slowly developing effect is correlated with a decrease in cellular adenosine triphosphate (ATP) and an evaluation of intracellular Na/sup +/. Other agents which elevate cell Na/sup +/ also inhibit Na/sup +/-dependent sugar influx, even if ATP levelsmore » are not depleted. On the other hand, if ATP is depleted by phloretin under conditions in which the cells do not gain Na/sup +/, the inhibitory effect on Na/sup +/-dependent sugar flux tends to disappear. The slow-onset phloretin effects are due to transinhibition of the Na/sup +/-dependent sugar carrier by cellular Na/sup +/. When the passive sugar carrier is inhibited by phloretin or theophylline, the concentrative system can establish an enhanced sugar gradient. Because of the secondary metabolic effects of phloretin, theophylline induces a greater gradient enhancement despite its more limited effect on the passive sugar-transport system. Sugar gradients as large as 20-fold are induced by theophylline, in contrast to 12-fold gradients observed in the presence of phloretin and approximately 7- to 8-fold for untreated cells. These results are discussed in terms of conceptual questions regarding the energetics of Na/sup +/-dependent transport systems.« less
NASA Astrophysics Data System (ADS)
Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo
2011-11-01
Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.
Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo
2011-11-01
Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.
Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong
2015-05-01
In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.
Frondelius, Kasper; Borg, Madelene; Ericson, Ulrika; Borné, Yan; Melander, Olle; Sonestedt, Emily
2017-02-28
Low serum apolipoprotein (Apo) A1 concentrations and high serum ApoB concentrations may be better markers of the risk of cardiovascular disease than high-density lipoprotein (HDL) and low-density lipoprotein (LDL). However, the associations between modifiable lifestyle factors and Apo concentrations have not been investigated in detail. Therefore, this study investigated the associations between Apo concentrations and education, lifestyle factors and dietary intake (macronutrients and 34 food groups). These cross-sectional associations were examined among 24,984 individuals in a Swedish population-based cohort. Baseline examinations of the cohort were conducted between 1991 and 1996. Dietary intake was assessed using a modified diet history method. The main determinants of high ApoA1 concentrations ( r between 0.05 and 0.25) were high alcohol consumption, high physical activity, non-smoking, and a low body mass index (BMI), and the main determinants of high ApoB concentrations were smoking and a high BMI. The intake of sucrose and food products containing added sugar (such as pastries, sweets, chocolate, jam/sugar and sugar-sweetened beverages) was negatively correlated with ApoA1 concentrations and positively correlated with ApoB concentrations and the ApoB/ApoA1 ratio, whereas the intake of fermented dairy products, such as fermented milk and cheese, was positively correlated with ApoA1 concentrations and negatively correlated with the ApoB/ApoA1 ratio. These results indicate that smoking, obesity, low physical activity, low alcohol consumption and a diet high in sugar and low in fermented dairy products are correlated with an unfavorable Apo profile.
Consumption of Added Sugar among U.S. Children and Adolescents, 2005-2008. NCHS Data Brief. No. 87
ERIC Educational Resources Information Center
Ervin, R. Bethene; Kit, Brian K.; Carroll, Margaret D.; Ogden, Cynthia L.
2012-01-01
The consumption of added sugars, which are sweeteners added to processed and prepared foods, has been associated with measures of cardiovascular disease risk among adolescents, including adverse cholesterol concentrations. Although the percent of daily calories derived from added sugars declined between 1999-2000 and 2007-2008, consumption of…
USDA-ARS?s Scientific Manuscript database
Plant species differ in nutrient uptake efficiency. With a pot experiment, we evaluated potassium (K) uptake efficiency of maize (Zea mays L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) grown on a low-K soil. Sugar beet and wheat maintained higher shoot K concentrations, indica...
Jeong, Sang Hyeon; Jung, Ji Young; Lee, Se Hee; Jin, Hyun Mi; Jeon, Che Ok
2013-06-03
Dongchimi, one of the most common types of watery kimchi in Korea, was prepared using radish and its pH values, microbial cell numbers, bacterial communities, and metabolites were monitored periodically to investigate the fermentation process of watery kimchi. The bacterial abundance increased quickly during the early fermentation period and the pH values concurrently decreased rapidly without any initial pH increase. After 15 days of fermentation, the bacterial abundance decreased rapidly with the increase of Saccharomyces abundance and then increased again with a decrease of Saccharomyces abundance after 40 days of fermentation, suggesting that bacteria and Saccharomyces have a direct antagonistic relationship. Finally, after 60 days of fermentation, a decrease in bacterial abundance and the growth of Candida were concurrently observed. Community analysis using pyrosequencing revealed that diverse genera such as Leuconostoc, Lactobacillus, Pseudomonas, Pantoea, and Weissella were present at initial fermentation (day 0), but Leuconostoc became predominant within only three days of fermentation and remained predominant until the end of fermentation (day 100). Metabolite analysis using (1)H NMR showed that the concentrations of free sugars (fructose and glucose) were very low during the early fermentation period, but their concentrations increased rapidly although lactate, mannitol, and acetate were produced. After 30 days of fermentation, quick consumption of free sugars and production of glycerol and ethanol were observed concurrently with the growth of Saccharomyces, levels of which might be considered for use as a potential indicator of dongchimi quality and fermentation time. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jing; Kawamura, Kimitaka; Liu, Cong-Qiang; Fu, Pingqing
2013-03-01
Anhydrosugars (galactosan, mannosan and levoglucosan), sugars (xylose, fructose, glucose, sucrose and trehalose) and sugar alcohols (erythritol, arabitol, mannitol and inositol) were measured in the aerosol samples collected in a remote island (Chichi-Jima, Japan) in the western North Pacific from 1990 to 1993 and from 2006 to 2009. Total concentrations of anhydrosugars, the biomass burning tracers, were 0.01-5.57 ng m-3 (average 0.76 ng m-3) during 1990-1993 versus 0.01-7.19 ng m-3 (0.64 ng m-3) during 2006-2009. Their seasonal variations were characterized by winter/spring maxima and summer/fall minima. Such a seasonal pattern should be caused by the enhanced long-range atmospheric transport of biomass burning products and terrestrial organic matter (such as higher plant detritus and soil dust) from the Asian continent in winter/spring seasons, when the westerly or winter monsoon system prevails over the western North Pacific. Sugars and sugar alcohols showed different seasonal patterns. The monthly mean concentrations of erythritol, arabitol, mannitol, inositol, fructose, glucose and trehalose were found to be higher in spring/summer and lower in fall/winter during both 1990-1993 and 2006-2009 periods, indicating an enhanced biogenic emission of aerosols in warm seasons. Interestingly, saccharides showed a gradual decrease in their concentrations from 1991 to 1993 and an increase from 2006 to 2009. In addition, the monthly averaged concentrations of sugars and sugar alcohols showed maxima in early summer during 1990-1993, which occurred about 1-2 months earlier than those during 2006-2009. Such a clear seasonal shift may be attributable to the changes in the strength of westerly and trade wind systems during two periods.
He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai
2010-04-01
An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.
NASA Astrophysics Data System (ADS)
Tokumitsu, Seika; Hasegawa, Makoto
2017-08-01
Investigations were conducted for the purposes of understanding coloring phenomena to be caused by optical rotation of polarized light beams in sugared water and realizing their applications as educational tools. By allowing polarized laser beams in red, blue or green to travel in sugared water of certain concentrations, changes in their intensities were measured while changing a distance between a pair of polarizing plates in the sugared water. An equation was established for a theoretical value for the angle of rotation for light of any colors (wavelengths) travelling in sugared water of any concentrations. The predicted results exhibited satisfactory matching with the measured values. In addition, the intensities of transmitted laser beams, as well as colors to be observable when a white-color LED torch was employed as a light source, were also become predictable, and the predicted results were well-matched with the observation results.
[Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].
Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia
2014-01-01
Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.
Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia
2016-08-01
A L9(3)(4) orthogonal array (OA) experimental design was applied to study the four parameters considered most important in the ozonolysis pretreatment (moisture content, ozone concentration, ozone/oxygen flow and particle size) on ethanol production from sugarcane bagasse (SCB). Statistical analysis highlighted ozone concentration as the highest influence parameter on reaction time and sugars release after enzymatic hydrolysis. The increase on reaction time when decreasing the ozone/oxygen flow resulted in small differences of ozone consumptions. Design optimization for sugars release provided a parameters combination close to the best experimental run, where 77.55% and 56.95% of glucose and xylose yields were obtained, respectively. When optimizing the grams of sugar released by gram of ozone, the highest influence parameter was moisture content, with a maximum yield of 2.98gSUGARS/gO3. In experiments on hydrolysates fermentation, Saccharomyces cerevisiae provided ethanol yields around 80%, while Pichia stipitis was completely inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of factory effluents on physiological and biochemical contents of Gossypium hirsutum l.
Muthusamy, A; Jayabalan, N
2001-10-01
The effect of sago and sugar factory effluents was studied on Gossypium hirsutum L. var. MCU 5 and MCU 11. Plants were irrigated with 0, 25, 50, 75 and 100% of effluents of both factories. At lower concentration (25%) of sugar factory effluents had stimulatory effect on all biochemical contents observed. Moreover, all concentration of sago factory effluents were found to have inhibitory effect on all biochemical contents except proline content which increased with increasing concentration of both the effluents. Plants growing on adjacent to sago and sugar factories or they irrigated with such type of polluted water, may accumulate the heavy metals found in both the effluents, at higher levels in plant products and if consumed may have similar effect on living organisms.
Krumbein, Angelika; Kläring, Hans-Peter; Schonhof, Ilona; Schreiner, Monika
2010-03-24
Atmospheric carbon dioxide (CO(2)) concentration is an environmental factor currently undergoing dramatic changes. The objective of the present study was to determine the effect of doubling the ambient CO(2) concentration on plant photochemistry as measured by photochemical quenching coefficient (qP), soluble sugars and volatiles in broccoli. Elevated CO(2) concentration increased qP values in leaves by up to 100% and 89% in heads, while glucose and sucrose in leaves increased by about 60%. Furthermore, in broccoli heads elevated CO(2) concentration induced approximately a 2-fold increase in concentrations of three fatty acid-derived C(7) aldehydes ((E)-2-heptenal, (E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal), two fatty acid-derived C(5) alcohols (1-penten-3-ol, (Z)-2-pentenol), and two amino acid-derived nitriles (phenyl propanenitrile, 3-methyl butanenitrile). In contrast, concentrations of the sulfur-containing compound 2-ethylthiophene and C(6) alcohol (E)-2-hexenol decreased. Finally, elevated CO(2) concentration increased soluble sugar concentrations due to enhanced photochemical activity in leaves and heads, which may account for the increased synthesis of volatiles.
2013-01-01
Background A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total fermentable sugar yields including stalk biomass, soluble sugar concentrations, and cell wall saccharification efficiency. Results A mathematical method for assessing whole S. bicolor stalks using the fourth internode from the base of the plant proved to be an effective high-throughput strategy for assessing stalk biomass, soluble sugar concentrations, and cell wall composition and allowed calculation of total stalk fermentable sugars. A high-throughput method for measuring soluble sucrose, glucose, and fructose using partial least squares (PLS) modelling of juice Fourier transform infrared (FTIR) spectra was developed. The PLS prediction was shown to be highly accurate with each sugar attaining a coefficient of determination (R 2 ) of 0.99 with a root mean squared error of prediction (RMSEP) of 11.93, 5.52, and 3.23 mM for sucrose, glucose, and fructose, respectively, which constitutes an error of <4% in each case. The sugar PLS model correlated well with gas chromatography–mass spectrometry (GC-MS) and brix measures. Similarly, a high-throughput method for predicting enzymatic cell wall digestibility using PLS modelling of FTIR spectra obtained from S. bicolor bagasse was developed. The PLS prediction was shown to be accurate with an R 2 of 0.94 and RMSEP of 0.64 μg.mgDW-1.h-1. Conclusions This methodology has been demonstrated as an efficient and effective way to screen large biofuel feedstock populations for biomass, soluble sugar concentrations, and cell wall digestibility simultaneously allowing a total fermentable yield calculation. It unifies and simplifies previous screening methodologies to produce a holistic assessment of biofuel feedstock potential. PMID:24365407
Treatment of biomass to obtain ethanol
Dunson, Jr., James B.; Elander, Richard T [Evergreen, CO; Tucker, III, Melvin P.; Hennessey, Susan Marie [Avondale, PA
2011-08-16
Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.
Acclimation of two tomato species to high atmospheric CO sub 2 : I. Sugar and starch concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelle, S.; Beeson, R.C. Jr.; Trudel, M.J.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA1028, were exposed to two CO{sub 2} concentrations for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO{sub 2}. Carbon exchange rates were significantly higher in CO{sub 2}-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO{sub 2}. This indicates that the long-term decline of photosynthetic efficiency of leaf 5more » cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO{sub 2} when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO{sub 2} concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO{sub 2} cannot entirely explain the loss of photosynthetic efficiency of high CO{sub 2}-grown plants.« less
Carbohydrate Dehydration Demonstrations.
ERIC Educational Resources Information Center
Dolson, David A.; And Others
1995-01-01
Discusses the impact of various factors on the "charring reaction" of a carbohydrate with concentrated sulfuric acid including the type of sugar, the degree of fineness of the sugar crystals, and the amount of water added. (JRH)
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest.
Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Pardo, Linda H; Fahey, Timothy J
2013-11-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study. Root damage and foliar antioxidant activity were highest in Al-treated trees, while growth-associated C, foliar re-flush following a spring frost and reproductive ability were highest in Ca-treated trees. In general, we found that trees on Ca-treated plots preferentially used C resources for growth and reproductive processes, whereas Al-treated trees devoted C to defense-based processes. Similarities between Al-treated and control trees were observed for foliar cation concentrations, C partitioning and seed production, suggesting that sugar maples growing in native forests may be more stressed than previously perceived. Our experiment suggests that disruption of the balance of Ca and Al in sugar maples by acid deposition continues to be an important driver of tree health.
Bell, Luke; Methven, Lisa; Signore, Angelo; Oruna-Concha, Maria Jose; Wagstaff, Carol
2017-03-01
Sensory and chemical analyses were performed on accessions of rocket (Eruca sativa) to determine phytochemical influences on sensory attributes. A trained panel was used to evaluate leaves, and chemical data were obtained for polyatomic ions, amino acids, sugars and organic acids. These chemical data (and data of glucosinolates, flavonols and headspace volatiles previously reported) were used in Principal Component Analysis (PCA) to determine variables statistically important to sensory traits. Significant differences were observed between samples for polyatomic ion and amino acid concentrations. PCA revealed strong, positive correlations between glucosinolates, isothiocyanates and sulfur compounds with bitterness, mustard, peppery, warming and initial heat mouthfeel traits. The ratio between glucosinolates and sugars inferred reduced perception of bitter aftereffects. We highlight the diversity of E. sativa accessions from a sensory and phytochemical standpoint, and the potential for breeders to create varieties that are nutritionally and sensorially superior to existing ones. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Aims & Hypothesis: Sugar sweetened beverages are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive-element binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and thereby contrib...
USDA-ARS?s Scientific Manuscript database
Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fru...
Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid
2016-10-01
Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barbaro, Elena; Zangrando, Roberta; Padoan, Sara; Karroca, Ornela; Toscano, Giuseppa; Cairns, Warren R L; Barbante, Carlo; Gambaro, Andrea
2017-09-01
The concentrations of water-soluble compounds (ions, carboxylic acids, amino acids, sugars, phenolic compounds) in aerosol and snow have been determined at the coastal Italian base "Mario Zucchelli" (Antarctica) during the 2014-2015 austral summer. The main aim of this research was to investigate the air-snow transfer processes of a number of classes of chemical compounds and investigate their potential as tracers for specific sources. The composition and particle size distribution of Antarctic aerosol was measured, and water-soluble compounds accounted for 66% of the PM 10 total mass concentration. The major ions Na + , Mg 2+ , Cl - and SO 4 2- made up 99% of the total water soluble compound concentration indicating that sea spray input was the main source of aerosol. These ionic species were found mainly in the coarse fraction of the aerosol resulting in enhanced deposition, as reflected by the snow composition. Biogenic sources were identified using chemical markers such as carboxylic acids, amino acids, sugars and phenolic compounds. This study describes the first characterization of amino acids and sugar concentrations in surface snow. High concentrations of amino acids were found after a snowfall event, their presence is probably due to the degradation of biological material scavenged during the snow event. Alcohol sugars increased in concentration after the snow event, suggesting a deposition of primary biological particles, such as airborne fungal spores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dippold, Michaela A; Boesel, Stefanie; Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno
2014-03-30
Amino sugars build up microbial cell walls and are important components of soil organic matter. To evaluate their sources and turnover, δ(13)C analysis of soil-derived amino sugars by liquid chromatography was recently suggested. However, amino sugar δ(13)C determination remains challenging due to (1) a strong matrix effect, (2) CO2 -binding by alkaline eluents, and (3) strongly different chromatographic behavior and concentrations of basic and acidic amino sugars. To overcome these difficulties we established an ion chromatography-oxidation-isotope ratio mass spectrometry method to improve and facilitate soil amino sugar analysis. After acid hydrolysis of soil samples, the extract was purified from salts and other components impeding chromatographic resolution. The amino sugar concentrations and δ(13)C values were determined by coupling an ion chromatograph to an isotope ratio mass spectrometer. The accuracy and precision of quantification and δ(13)C determination were assessed. Internal standards enabled correction for losses during analysis, with a relative standard deviation <6%. The higher magnitude peaks of basic than of acidic amino sugars required an amount-dependent correction of δ(13)C values. This correction improved the accuracy of the determination of δ(13)C values to <1.5‰ and the precision to <0.5‰ for basic and acidic amino sugars in a single run. This method enables parallel quantification and δ(13)C determination of basic and acidic amino sugars in a single chromatogram due to the advantages of coupling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of sample amount and injection volume are necessary to optimize precision and accuracy for individual soils. Copyright © 2014 John Wiley & Sons, Ltd.
Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions
NASA Astrophysics Data System (ADS)
Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.
2016-10-01
The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (<0.1 cm-1) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.
Cashew juice containing prebiotic oligosaccharides.
da Silva, Isabel Moreira; Rabelo, Maria Cristiane; Rodrigues, Sueli
2014-09-01
The enzyme dextransucrase in a medium containing sucrose and an acceptor as substrate synthesizes prebiotics oligosaccharides. The cashew apple juice works as a source of acceptors because it is rich in glucose and fructose (enzyme acceptors). The use of cashew apple juice becomes interesting because it aims at harnessing the peduncle of the cashew that is wasted during the nut processing, which is the product of greater economic expression. The production of dextransucrase enzyme was done by fermentative process by inoculating the bacterium Leuconostoc mesenteroides NRRL B512F into a culture medium containing sucrose as the only carbon source. Thus, the aim of this work was the production of prebiotic oligosaccharides by enzymatic process with addition of the dextransucrase enzyme to the clarified cashew apple juice. Dextran yield was favored by the combination of low concentrations of sucrose and reducing sugars. The formation of oligosaccharides was favored by increasing the concentration of reducing sugars and by the combination of high concentrations of sucrose and reducing sugars, the highest concentration of oligosaccharides obtained was 104.73 g/L and the qualitative analysis showed that at concentrations of 25 g/L and 75 g/L of sucrose and reducing sugar, respectively, it is possible to obtain oligosaccharides of degree of polymerization up to 12. The juice containing prebiotic oligosaccharide is a potential new functional beverage.
Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A
2018-06-02
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.
Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian
2014-11-01
The properties of the screened mutants for hyper-production of citric acid induced by carbon ((12)C(6+)) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from (12)C(6+) ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7-196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0-235.7 g/L sugar) with the productivity of (2.96-3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry.
Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian
2014-01-01
The properties of the screened mutants for hyper-production of citric acid induced by carbon (12C6+) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from 12C6+ ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7–196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0–235.7 g/L sugar) with the productivity of (2.96–3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry. PMID:25367793
Narendranath, Neelakantam V.; Power, Ronan
2005-01-01
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306
Almarsdottir, Arnheidur Ran; Sigurbjornsdottir, Margret Audur; Orlygsson, Johann
2012-03-01
The ethanol production capacity from sugars and lignocellulosic biomass hydrolysates (HL) by Thermoanaerobacterium strain AK(17) was studied in batch cultures. The strain converts various carbohydrates to, acetate, ethanol, hydrogen, and carbon dioxide. Ethanol yields on glucose and xylose were 1.5 and 1.1 mol/mol sugars, respectively. Increased initial glucose concentration inhibited glucose degradation and end product formation leveled off at 30 mM concentrations. Ethanol production from 5 g L(-1) of complex biomass HL (grass, hemp, wheat straw, newspaper, and cellulose) (Whatman paper) pretreated with acid (0.50% H(2) SO(4)), base (0.50% NaOH), and without acid/base (control) and the enzymes Celluclast and Novozyme 188 (0.1 mL g(-1) dw; 70 and 25 U g(-1) of Celluclast and Novozyme 188, respectively) was investigated. Highest ethanol yields (43.0 mM) were obtained on cellulose but lowest on hemp leafs (3.6 mM). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The influence of various factors (HL, enzyme, and acid/alkaline concentrations) on end-product formation from 5 g L(-1) of grass and cellulose was further studied to optimize ethanol production. Highest ethanol yields (5.5 and 8.6 mM ethanol g(-1) grass and cellulose, respectively) were obtained at very low HL concentrations (2.5 g L(-1)); with 0.25% acid/alkali (v/v) and 0.1 mL g(-1) enzyme concentrations. Inhibitory effects of furfural and hydroxymethylfurfural during glucose fermentation, revealed a total inhibition in end product formation from glucose at 4 and 6 g L(-1), respectively. Copyright © 2011 Wiley Periodicals, Inc.
Treatment of biomass to obtain a target chemical
Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hennessey, Susan Marie
2010-08-24
Target chemicals were produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.
8. August, 1971. SECOND FLOOR LOOKING NW. EVAPORATOR UNITS USED ...
8. August, 1971. SECOND FLOOR LOOKING NW. EVAPORATOR UNITS USED IN SEQUENCE TO REDUCE OR CONCENTRATE BEET JUICE. - Utah Sugar Company, Garland Beet Sugar Refinery, Factory Street, Garland, Box Elder County, UT
Comparison of Spectrophotometric Methods for the Determination of Copper in Sugar Cane Spirit.
Soares, Sarah Adriana R; Costa, Silvânio Silvério L; Araujo, Rennan Geovanny O; Teixeira, Leonardo Sena Gomes; Dantas, Alailson Falcão
2018-05-01
Three spectrophotometric methods were developed for the determination of copper (Cu) in sugar cane spirit using the chromogenic reagents neocuproine, cuprizone, and bathocuproine. Experimental conditions, such as reagent concentration, reducer concentration, pH, buffer concentration, the order of addition of reagents, and the stability of the complexes, were optimized. The work range was established from 1.0 to 10.0 µg/mL, with correlation coefficients of >0.999 for all three optimized methods. The methods were evaluated regarding accuracy by addition and recovery tests at five concentration levels, and the obtained recoveries ranged from 91 to 105% (n = 3). Precision was expressed as RSD (relative standard deviation), with values ranging from 0.01 to 0.17% (n = 10). The method using the chromogenic reagent cuprizone presented the greatest molar absorptivity, followed by bathocuproine and neocuproine. The methods were applied for the determination of Cu in sugar cane spirit, and the results were compared with a reference method by flame atomic absorption spectrometry (FAAS). Calibration curve solutions for FAAS analysis were prepared in a 40% (v/v) alcohol medium in a range of concentrations from 0.5 up to 5 µg/mL. Measurements for Cu determination were carried out at a wavelength of 324.7 nm. The concentrations obtained for Cu in sugar cane spirit samples from Brazil were between 1.99 and 12.63 µg/mL, and about 75% of the samples presented Cu concentrations above the limit established by Brazilian legislation (5.0 µg/mL or 5.0 mg/L).
Succinic acid production from cellobiose by Actinobacillus succinogenes.
Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping
2013-05-01
In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chi, Zhe; Wang, Ji-Ming; Chi, Zhen-Ming; Ye, Fang
2010-01-01
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.
Fidler Mis, Nataša; Braegger, Christian; Bronsky, Jiri; Campoy, Cristina; Domellöf, Magnus; Embleton, Nicholas D; Hojsak, Iva; Hulst, Jessie; Indrio, Flavia; Lapillonne, Alexandre; Mihatsch, Walter; Molgaard, Christian; Vora, Rakesh; Fewtrell, Mary
2017-12-01
The consumption of sugars, particularly sugar-sweetened beverages (SSBs; beverages or drinks that contain added caloric sweeteners (ie, sucrose, high-fructose corn syrup, fruit juice concentrates), in European children and adolescents exceeds current recommendations. This is of concern because there is no nutritional requirement for free sugars, and infants have an innate preference for sweet taste, which may be modified and reinforced by pre- and postnatal exposures. Sugar-containing beverages/free sugars increase the risk for overweight/obesity and dental caries, can result in poor nutrient supply and reduced dietary diversity, and may be associated with increased risk of type 2 diabetes mellitus, cardiovascular risk, and other health effects. The term "free sugars," includes all monosaccharides/disaccharides added to foods/beverages by the manufacturer/cook/consumer, plus sugars naturally present in honey/syrups/unsweetened fruit juices and fruit juice concentrates. Sugar naturally present in intact fruits and lactose in amounts naturally present in human milk or infant formula, cow/goat milk, and unsweetened milk products is not free sugar. Intake of free sugars should be reduced and minimised with a desirable goal of <5% energy intake in children and adolescents aged ≥2 to 18 years. Intake should probably be even lower in infants and toddlers <2 years. Healthy approaches to beverage and dietary consumption should be established in infancy, with the aim of preventing negative health effects in later childhood and adulthood. Sugar should preferably be consumed as part of a main meal and in a natural form as human milk, milk, unsweetened dairy products, and fresh fruits, rather than as SSBs, fruit juices, smoothies, and/or sweetened milk products. Free sugars in liquid form should be replaced by water or unsweetened milk drinks. National Authorities should adopt policies aimed at reducing the intake of free sugars in infants, children and adolescents. This may include education, improved labelling, restriction of advertising, introducing standards for kindergarten and school meals, and fiscal measures, depending on local circumstances.
A novel strategy for isolation and determination of sugars and sugar alcohols from conifers.
Sarvin, B A; Seregin, A P; Shpigun, O A; Rodin, I A; Stavrianidi, A N
2018-06-02
The ultrasound-assisted extraction method for isolation of 17 sugars and sugar alcohols from conifers with a subsequent hydrophilic interaction liquid chromatography-tandem mass spectrometry method for their determination is proposed. The optimization of extraction parameters was carried out using Taguchi - L 9 (3 4 ) orthogonal array experimental design for the following parameters-a methanol concentration in the extraction solution, an extraction time, a type of plant sample and an extraction temperature. The optimal ultrasound-assisted extraction conditions were-MeOH concentration - 30% (water - 70%), extraction time - 30 min, type of plant sample - II (grinded leaves 2-4 mm long), extraction temperature - 60 °C. Pure water and acetonitrile were used as eluents in gradient elution mode to separate the analytes. Direct determination of multiple sugars and sugar alcohols was carried out using a mass spectrometric detector operated in a multiple reaction monitoring mode, providing detection limits in the range between 0.1 and 20 ng/mL and good analytical characteristics of the method without derivatization. The developed approach was validated by multiple successive extraction method applied to test its performance on a series of 10 samples, i.e. 2 samples per each of 5 genera: Abies, Larix, Picea, Pinus (Pinaceae) and Juniperus (Cupressaceae), widely distributed in the boreal conifer forests of Eurasia. The novel strategy can be used for profiling of sugars and sugar alcohols in a wide range of plant species. Copyright © 2018. Published by Elsevier B.V.
Testing biological liquid samples using modified m-line spectroscopy method
NASA Astrophysics Data System (ADS)
Augusciuk, Elzbieta; Rybiński, Grzegorz
2005-09-01
Non-chemical method of detection of sugar concentration in biological (animal and plant source) liquids has been investigated. Simplified set was build to show the easy way of carrying out the survey and to make easy to gather multiple measurements for error detecting and statistics. Method is suggested as easy and cheap alternative for chemical methods of measuring sugar concentration, but needing a lot effort to be made precise.
The Chemical Composition of Maple Syrup
ERIC Educational Resources Information Center
Ball, David W.
2007-01-01
Maple syrup is one of several high-sugar liquids that humans consume. However, maple syrup is more than just a concentrated sugar solution. Here, we review the chemical composition of maple syrup. (Contains 4 tables and 1 figure.)
Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.
Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook
2016-06-01
Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.
Sap sugar parameters of silver maple provenances and clones grown on upland and bottomland sites
J. J. Zaczek; A. D. Carver; K. W. J. Williard; J. K. Buchheit; J. E. Preece; J. C. Mangun
2003-01-01
Sap sugar concentration (SSC), sap volume, and stem diameter were measured for 49 different silver maple clones representing a range-wide collection of 13 provenances within replicated upland and bottomland plantations in southern Illinois during the winter of 2001. For comparison, 42 sugar maple trees were sampled in a local sugarbush. Silver maple SSC averaged 1.51...
NASA Astrophysics Data System (ADS)
Kumar, S.; Aggarwal, S. G.; Fu, P. Q.; Kang, M.; Sarangi, B.; Sinha, D.; Kotnala, R. K.
2017-06-01
During March 20-22, 2012 Delhi experienced a massive dust-storm which originated in Middle-East. Size segregated sampling of these dust aerosols was performed using a nine staged Andersen sampler (5 sets of samples were collected including before dust-storm (BDS)), dust-storm day 1 to 3 (DS1 to DS3) and after dust storm (ADS). Sugars (mono and disaccharides, sugar-alcohols and anhydro-sugars) were determined using GC-MS technique. It was observed that on the onset of dust-storm, total suspended particulate matter (TSPM, sum of all stages) concentration in DS1 sample increased by > 2.5 folds compared to that of BDS samples. Interestingly, fine particulate matter (sum of stages with cutoff size < 2.1 μm) loading in DS1 also increased by > 2.5 folds as compared to that of BDS samples. Sugars analyzed in DS1 coarse mode (sum of stages with cutoff size > 2.1 μm) samples showed a considerable increase ( 1.7-2.8 folds) compared to that of other samples. It was further observed that mono-saccharides, disaccharides and sugar-alcohols concentrations were enhanced in giant (> 9.0 μm) particles in DS1 samples as compared to other samples. On the other hand, anhydro-sugars comprised 13-27% of sugars in coarse mode particles and were mostly found in fine mode constituting 66-85% of sugars in all the sample types. Trehalose showed an enhanced ( 2-4 folds) concentration in DS1 aerosol samples in both coarse (62.80 ng/m3) and fine (8.57 ng/m3) mode. This increase in Trehalose content in both coarse and fine mode suggests their origin to the transported desert dust and supports their candidature as an organic tracer for desert dust entrainments. Further, levoglucosan to mannosan (L/M) ratios which have been used to predict the type of biomass burning influences on aerosols are found to be size dependent in these samples. These ratios are higher for fine mode particles, hence should be used with caution while interpreting the sources using this tool.
Sugar maple growth in relation to nutrition and stress in the northeastern United States.
Long, Robert P; Horsley, Stephen B; Hallett, Richard A; Bailey, Scott W
2009-09-01
Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P < or = 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period. Healthy sugar maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serotina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species specific responses to Ca and Mg that may reduce health and growth of sugar maple or change species composition, if not addressed.
Eastwood, Heather; Xia, Fang; Lo, Mei-Chu; Zhou, Jing; Jordan, John B; McCarter, John; Barnhart, Wesley W; Gahm, Kyung-Hyun
2015-11-10
Analysis of nucleotide sugars, nucleoside di- and triphosphates and sugar-phosphates is an essential step in the process of understanding enzymatic pathways. A facile and rapid separation method was developed to analyze these compounds present in an enzymatic reaction mixture utilized to produce nucleotide sugars. The Primesep SB column explored in this study utilizes hydrophobic interactions as well as electrostatic interactions with the phosphoric portion of the nucleotide sugars. Ammonium formate buffer was selected due to its compatibility with mass spectrometry. Negative ion mode mass spectrometry was adopted for detection of the sugar phosphate (fucose-1-phophate), as the compound is not amenable to UV detection. Various mobile phase conditions such as pH, buffer concentration and organic modifier were explored. The semi-preparative separation method was developed to prepare 30mg of the nucleotide sugar. (19)F NMR was utilized to determine purity of the purified fluorinated nucleotide sugar. The collected nucleotide sugar was found to be 99% pure. Published by Elsevier B.V.
Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto
2017-07-01
A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
NADP(+)-dependent D-xylose dehydrogenase from pig liver. Purification and properties.
Zepeda, S; Monasterio, O; Ureta, T
1990-03-15
An NADP(+)-dependent D-xylose dehydrogenase from pig liver cytosol was purified about 2000-fold to apparent homogeneity with a yield of 15% and specific activity of 6 units/mg of protein. An Mr value of 62,000 was obtained by gel filtration. PAGE in the presence of SDS gave an Mr value of 32,000, suggesting that the native enzyme is a dimer of similar or identical subunits. D-Xylose, D-ribose, L-arabinose, 2-deoxy-D-glucose, D-glucose and D-mannose were substrates in the presence of NADP+ but the specificity constant (ratio kcat./Km(app.)) is, by far, much higher for D-xylose than for the other sugars. The enzyme is specific for NADP+; NAD+ is not reduced in the presence of D-xylose or other sugars. Initial-velocity studies for the forward direction with xylose or NADP+ concentrations varied at fixed concentrations of the nucleotide or the sugar respectively revealed a pattern of parallel lines in double-reciprocal plots. Km values for D-xylose and NADP+ were 8.8 mM and 0.99 mM respectively. Dead-end inhibition studies to confirm a ping-pong mechanism showed that NAD+ acted as an uncompetitive inhibitor versus NADP+ (Ki 5.8 mM) and as a competitive inhibitor versus xylose. D-Lyxose was a competitive inhibitor versus xylose and uncompetitive versus NADP+. These results fit better to a sequential compulsory ordered mechanism with NADP+ as the first substrate, but a ping-pong mechanism with xylose as the first substrate has not been ruled out. The presence of D-xylose dehydrogenase suggests that in mammalian liver D-xylose is utilized by a pathway other than the pentose phosphate pathway.
Quantification of Soluble Sugars and Sugar Alcohols by LC-MS/MS.
Feil, Regina; Lunn, John Edward
2018-01-01
Sugars are simple carbohydrates composed primarily of carbon, hydrogen, and oxygen. They play a central role in metabolism as sources of energy and as building blocks for synthesis of structural and nonstructural polymers. Many different techniques have been used to measure sugars, including refractometry, colorimetric and enzymatic assays, gas chromatography, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy. In this chapter we describe a method that combines an initial separation of sugars by high-performance anion-exchange chromatography (HPAEC) with detection and quantification by tandem mass spectrometry (MS/MS). This combination of techniques provides exquisite specificity, allowing measurement of a diverse range of high- and low-abundance sugars in biological samples. This method can also be used for isotopomer analysis in stable-isotope labeling experiments to measure metabolic fluxes.
NASA Astrophysics Data System (ADS)
Vinodhini, K.; Divya Bharathi, R.; Srinivasan, K.
2018-02-01
Lactose is an optically active substance. As it is one of the reducing sugars, exhibits mutarotation in solution when it dissolves in any solvent. In solution, lactose exists in two isomeric forms, alpha-Lactose (α-L) and beta-lactose (β-L) through the mutarotation reaction. Mutarotation produces a dynamic equilibrium between two isomers in a solution and kinetics of this process determines the growth rate of alpha lactose monohydrate (α-LM) crystals. Since no data were available on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C, the initial experiments were carried out on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C. The specific rotations of the solutions were decreased with increasing time through the mutarotation reaction. The initial and final (equilibrium) specific rotations of the solutions were determined by using automatic digital polarimeter. The compositions of α and β-L in all prepared solutions were calculated from initial and final optical rotations by the method of Sharp and Doob. The composition of α-L decreased whereas, the composition of β-L increased in solutions with increasing concentration of α-LM at 33 °C. Experimental results revealed that this method could be easily and safely employed to study the dependence of specific rotation of solutions on their concentration. The effect of β-lactose on the morphology of nucleated α-LM single crystals has been studied at different experimental conditions.
Ruff, James S.; Suchy, Amanda K.; Hugentobler, Sara A.; Sosa, Mirtha M.; Schwartz, Bradley L.; Morrison, Linda C.; Gieng, Sin H.; Shigenaga, Mark K.; Potts, Wayne K.
2013-01-01
Consumption of added sugar has increased over recent decades and is correlated with numerous diseases. Rodent models have elucidated mechanisms of toxicity, but only at concentrations beyond typical human exposure. Here we show that comparatively low levels of added sugar consumption have substantial negative effects on mouse survival, competitive ability, and reproduction. Using Organismal Performance Assays (OPAs) – in which mice fed human-relevant concentrations of added sugar (25% Kcal from a mixture of fructose and glucose [F/G]) and control mice compete in seminatural enclosures for territories, resources and mates – we demonstrate that F/G-fed females experience a two-fold increase in mortality while F/G-fed males control 26% fewer territories and produce 25% less offspring. These findings represent the lowest level of sugar consumption shown to adversely affect mammalian health. Clinical defects of F/G-fed mice were decreased glucose clearance and increased fasting cholesterol. Our data highlight that physiological adversity can exist when clinical disruptions are minor, and suggest that OPAs represent a promising technique for unmasking negative effects of toxicants. PMID:23941916
Wang, Yujue; Cao, Weifeng; Luo, Jianquan; Wan, Yinhua
2018-08-01
The aim of this study was to investigate the feasibility of utilizing different lignocellulosic hydrolysates with various hexose versus pentose (H:P) ratios to produce lactic acid (LA) from Bacillus coagulans IPE22 by fermentations with single and mixed sugar. In single sugar utilization, glucose tended to promote LA production, and xylose preferred to enhance cell growth. In mixed sugar utilization, glucose and pentose were consumed simultaneously when glucose concentration was lower than 20 g/L, and almost the same concentration of LA (50 g/L) was obtained regardless of the differences of H:P values. Finally, LA production from corn cob hydrolysates (CCH) contained 60 g/L mixed sugar verified the mechanisms found in the fermentations with simulated sugar mixture. Comparing with single glucose utilization, CCH utilization was faster and the yield of LA was not significantly affected. Therefore, the great potential of producing LA with lignocellulosic materials by B. coagulans was proved. Copyright © 2018. Published by Elsevier Ltd.
El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M
2012-10-01
This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained.
Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.
Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan
2013-07-01
Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.
El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.
2012-01-01
This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984
Katan, Martijn B; de Ruyter, Janne C; Kuijper, Lothar D J; Chow, Carson C; Hall, Kevin D; Olthof, Margreet R
2016-01-01
Substituting sugar-free for sugar-sweetened beverages reduces weight gain. This effect may be more pronounced in children with a high body mass index (BMI) because their sensing of kilocalories might be compromised. We investigated the impact of sugar-free versus sugary drinks separately in children with a higher and a lower initial BMI z score, and predicted caloric intakes and degree of compensation in the two groups. This is a secondary, explorative analysis of our double-blind randomized controlled trial (RCT) which showed that replacement of one 250-mL sugary drink per day by a sugar-free drink for 18 months significantly reduced weight gain. In the 477 children who completed the trial, mean initial weights were close to the Dutch average. Only 16% were overweight and 3% obese. Weight changes were expressed as BMI z-score, i.e. as standard deviations of the BMI distribution per age and sex group. We designated the 239 children with an initial BMI z-score below the median as 'lower BMI' and the 238 children above the median as 'higher BMI'. The difference in caloric intake from experimental beverages between treatments was 86 kcal/day both in the lower and in the higher BMI group. We used a multiple linear regression and the coefficient of the interaction term (initial BMI group times treatment), indicated whether children with a lower BMI responded differently from children with a higher BMI. Statistical significance was defined as p ≤ 0.05. Relative to the sugar sweetened beverage, consumption of the sugar-free beverage for 18 months reduced the BMI z-score by 0.05 SD units within the lower BMI group and by 0.21 SD within the higher BMI group. Body weight gain was reduced by 0.62 kg in the lower BMI group and by 1.53 kg in the higher BMI group. Thus the treatment reduced the BMI z-score by 0.16 SD units more in the higher BMI group than in the lower BMI group (p = 0.04; 95% CI -0.31 to -0.01). The impact of the intervention on body weight gain differed by 0.90 kg between BMI groups (p = 0.09; 95% CI -1.95 to 0.14). In addition, we used a physiologically-based model of growth and energy balance to estimate the degree to which children had compensated for the covertly removed sugar kilocalories by increasing their intake of other foods. The model predicts that children with a lower BMI had compensated 65% (95% CI 28 to 102) of the covertly removed sugar kilocalories, whereas children with a higher BMI compensated only 13% (95% CI -37 to 63). The children with a BMI above the median might have a reduced tendency to compensate for changes in caloric intake. Differences in these subconscious compensatory mechanisms may be an important cause of differences in the tendency to gain weight. If further research bears this out, cutting down on the intake of sugar-sweetened drinks may benefit a large proportion of children, especially those who show a tendency to become overweight. ClinicalTrials.gov NCT00893529.
Radchuk, Volodymyr; Riewe, David; Peukert, Manuela; Matros, Andrea; Strickert, Marc; Radchuk, Ruslana; Weier, Diana; Steinbiß, Hans-Henning; Sreenivasulu, Nese; Weschke, Winfriede; Weber, Hans
2017-07-20
Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The interrelationship between diet and oral health.
Moynihan, Paula
2005-11-01
Diet and nutrition impact on many oral diseases, in particular dental caries. Consumption of fluoridated water coupled with a reduction in non-milk extrinsic sugar intake is an effective means of caries prevention. However, studies on the fluoride concentration of bottled waters suggest increased consumption of these waters, in preference to fluoridated tap water, would lead to a marked decrease in caries protection. Concerns have been raised about the bioavailability of fluoride from artificially-fluoridated water compared with naturally-fluoridated water. This issue has been addressed in a human experimental study that has indicated that any differences in fluoride bioavailability are small compared with the naturally-occurring variability in fluoride absorption. Research has unequivocally shown sugars to be the main aetiological factor for dental caries, and information on intakes guides health promotion. Repeat dietary surveys of English children over three decades indicate that levels of sugars intake have remained stable, while sources of sugars have changed considerably, with the contribution from soft drinks more than doubling since 1980. Dental caries eventually leads to tooth loss, which in turn impairs chewing ability causing avoidance of hard and fibrous foods including fruits, vegetables and whole grains. A very low intake (<12 g/d) of NSP and fruit and vegetables has been found in edentulous subjects. Provision of prostheses alone fails to improve diet. However, initial studies indicate that customised dietary advice at the time of denture provision results in increased consumption of fruits and vegetables, and positive movement through the stages of change. Feasible means of integrating dietary counselling into the dental setting warrants further investigation.
Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars.
Almqvist, Henrik; Pateraki, Chrysanthi; Alexandri, Maria; Koutinas, Apostolis; Lidén, Gunnar
2016-08-01
Succinic acid production from the monosaccharides xylose, arabinose, glucose, mannose and galactose was studied using the bacterium Actinobacillus succinogenes. In Duran bottle cultures, containing 10 g/L of each of sugar, succinic acid was produced from all sugars except for galactose. The highest succinate yield, 0.56 g/g, was obtained with glucose, whereas the succinate yield was 0.42, 0.38 and 0.44 g/g for xylose, mannose and arabinose, respectively. The specific succinate productivity was 0.7 g/g h for glucose, but below 0.2 g/g h for the other sugars. Batch bioreactor fermentations were carried out using a sugar mixture of the five sugars giving a total concentration of 50 g/L, mimicking the distribution of sugars in spent sulfite liquor (SSL) from Eucalyptus which is rich in xylose. In this mixture, an almost complete conversion of all sugars (except galactose) was achieved resulting in a final succinate concentration of 21.8-26.8 g/L and a total yield of 0.59-0.68 g/g. There was evidence of co-consumption of glucose and xylose, whereas mannose was consumed after glucose. The main by-products were acetate 0.14-0.20 g/g and formate 0.08-0.13 g/g. NADH balance calculations suggested that NADH required for succinate production was not met solely from formate and acetate production, but other means of NADH production was necessary. Results from mixed sugar fermentations were verified using SSL as substrate resulting in a succinate yield of 0.60 g/g. In addition, it was found that CO2 sparging could replace carbonate supply in the form of MgCO3 without affecting the succinate yield.
Total sugars in atmospheric aerosols: An alternative tracer for biomass burning
NASA Astrophysics Data System (ADS)
Scaramboni, C.; Urban, R. C.; Lima-Souza, M.; Nogueira, R. F. P.; Cardoso, A. A.; Allen, A. G.; Campos, M. L. A. M.
2015-01-01
Ambient aerosols were collected in an agro-industrial region of São Paulo State (Brazil) between May 2010 and February 2012 (n = 87). The atmosphere of the study region is highly affected by the emissions of gases and particles from sugar and fuel ethanol production, because part of the area planted with sugarcane is still burned before manual harvesting. This work proposes the quantification of total sugars as an alternative chemical tracer of biomass burning, instead of levoglucosan. The quantification of total sugars requires a small area of a filter sample and a simple spectrophotometer, in contrast to the determination of levoglucosan, which is much more complex and time-consuming. Total sugars concentrations in the aerosol ranged from 0.28 to 12.5 μg m-3, and (similarly to levoglucosan) the emissions were significantly higher at night and during the sugarcane harvest period, when most agricultural fires occur. The linear correlation between levoglucosan and total sugars (r = 0.612) was stronger than between levoglucosan and potassium (r = 0.379), which has previously been used as a biomass burning tracer. In the study region, potassium is used in fertilizers, and this, together with substantial soil dust resuspension, makes potassium unsuitable for use as a tracer. On average, ca. 40% of the total sugars was found in particles smaller than 0.49 μm. By including data from previous work, it was possible to identify from 35 to 42% of the total sugars, with biomass burning making the largest contribution. The high solubility in water of these sugars means that determination of their concentrations could also provide important information concerning the hydrophilic properties of atmospheric aerosols.
Frankincense tapping reduces the carbohydrate storage of Boswellia trees.
Mengistu, Tefera; Sterck, Frank J; Fetene, Masresha; Bongers, Frans
2013-06-01
Carbohydrates fixed by photosynthesis are stored in plant organs in the form of starch or sugars. Starch and sugars sum to the total non-structural carbohydrate pool (TNC) and may serve as intermediate pools between assimilation and utilization. We examined the impact of tapping on TNC concentrations in stem-wood, bark and root tissues of the frankincense tree (Boswellia papyrifera (Del.) Hochst) in two natural woodlands of Ethiopia. Two tapping treatments, one without tapping (control) and the other with tapping at 12 incisions, are applied on experimental trees. Trees are tapped in the leafless dry period, diminishing their carbon storage pools. If storage pools are not refilled by assimilation during the wet season, when crowns are in full leaf, tapping may deplete the carbon pool and weaken Boswellia trees. The highest soluble sugar concentrations were in the bark and the highest starch concentrations in the stem-wood. The stem-wood contains 12 times higher starch than soluble sugar concentrations. Hence, the highest TNC concentrations occurred in the stem-wood. Moreover, wood volume was larger than root or bark volumes and, as a result, more TNC was stored in the stem-wood. As predicted, tapping reduced the TNC concentrations and pool sizes in frankincense trees during the dry season. During the wet season, these carbon pools were gradually filled in tapped trees, but never to the size of non-tapped trees. We conclude that TNC is dynamic on a seasonal time scale and offers resilience against stress, highlighting its importance for tree carbon balance. But current resin tapping practices are intensive and may weaken Boswellia populations, jeopardizing future frankincense production.
la Fleur, S E; Luijendijk, M C M; van der Zwaal, E M; Brans, M A D; Adan, R A H
2014-05-01
Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.
A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.
Eyer, Michael; Neumann, Peter; Dietemann, Vincent
2016-01-01
Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.
Nicolson, Susan W
2007-09-01
Amino acids in nectar have received less attention than the more abundant sugars. The dilute nectars of 32 species of southern African plants that are pollinated by passerine birds were analyzed by HPLC, and the effect of pollen contamination and the variation among inflorescences and plants were also examined. Aloe marlothii and some Erythrina species were found to have high total amino acid concentrations, sometimes exceeding 100 mM. Other Aloe species, as well as Greyia, Strelitzia, Schotia, Cotyledon, and Melianthus, had low nectar amino acid concentrations. Total amino acid concentrations varied much more than the sugar concentrations of these nectars as measured with a refractometer. Pollen contamination, previously claimed to be a major source of error in the measurement of nectar amino acids, had no effect on amino acids in the nectar of A. marlothii. Variation among inflorescences of Erythrina lysistemon was greater than that among trees, and most of the variation was because of relatively abundant nonessential amino acids such as asparagine and glutamine. High amino acid concentrations, especially in 'dilute' nectars, represent a substantial contribution of nonsugar solutes to 'sugar' concentrations measured with a refractometer. Amino acids in nectar may contribute to the nitrogen requirements of bird pollinators.
NASA Astrophysics Data System (ADS)
Meinert, C.; Jones, N. C.; Hoffmann, S. V.; Nahon, L.; d'Hendecourt, L.; Meierhenrich, U. J.
2017-07-01
Simulated cometary ice experiments have indicated that circularly polarised light could be the initial source of life's handedness. We detected chiral sugars, amino acids and their molecular precursors within these interstellar achiral ice analogues.
Liu, Xingyan; Jia, Bo; Sun, Xiangyu; Ai, Jingya; Wang, Lihua; Wang, Cheng; Zhao, Fang; Zhan, Jicheng; Huang, Weidong
2015-04-01
As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future. © 2015 Institute of Food Technologists®
Higley, Jeremy; Kim, Jong-Yea; Huber, Kerry C; Smith, Gordon
2012-09-05
Added (glucose addition) versus accumulated (in situ sugar development via cold-temperature storage) sugar treatments were investigated in relation to acrylamide formation within fried potato strips at standardized levels of finish-fried color (Agtron color scores ranged from 36 to 84). The added sugar treatment exhibited a relatively reduced rate of acrylamide formation and generally possessed a lower and less variable acrylamide content (61-1290 ng/g) than the accumulated sugar scheme (61-2191 ng/g). In a subsequent experiment, added fructose applied to strip surfaces via dipping prior to frying favored acrylamide formation over color development relative to added glucose, for which the reverse trend was observed. Thus, where acrylamide differences were noted between added and accumulated sugar treatments (given equivalent Agtron color scores), this result was likely aided by the relative higher fructose content in strips of the accumulated sugar scheme rather than simply a greater relative concentration of total reducing sugars.
Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.
2013-01-01
Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119
Albayrak, Nedim; Yang, Shang-Tian
2002-01-05
The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported. Copyright 2002 John Wiley & Sons, Inc.
Determining sap sweetness in small sugar maple trees
Melvin R. Koelling
1967-01-01
Describes a technique based on the use of a hypodermic needle for determining sap-sugar concentrations in small trees. The technique is applicable to pot cultures in greenhouses and also, with the use of a movable shelter, to seedlings in nursery beds.
Predicting sugar consumption: Application of an integrated dual-process, dual-phase model.
Hagger, Martin S; Trost, Nadine; Keech, Jacob J; Chan, Derwin K C; Hamilton, Kyra
2017-09-01
Excess consumption of added dietary sugars is related to multiple metabolic problems and adverse health conditions. Identifying the modifiable social cognitive and motivational constructs that predict sugar consumption is important to inform behavioral interventions aimed at reducing sugar intake. We tested the efficacy of an integrated dual-process, dual-phase model derived from multiple theories to predict sugar consumption. Using a prospective design, university students (N = 90) completed initial measures of the reflective (autonomous and controlled motivation, intentions, attitudes, subjective norm, perceived behavioral control), impulsive (implicit attitudes), volitional (action and coping planning), and behavioral (past sugar consumption) components of the proposed model. Self-reported sugar consumption was measured two weeks later. A structural equation model revealed that intentions, implicit attitudes, and, indirectly, autonomous motivation to reduce sugar consumption had small, significant effects on sugar consumption. Attitudes, subjective norm, and, indirectly, autonomous motivation to reduce sugar consumption predicted intentions. There were no effects of the planning constructs. Model effects were independent of the effects of past sugar consumption. The model identified the relative contribution of reflective and impulsive components in predicting sugar consumption. Given the prominent role of the impulsive component, interventions that assist individuals in managing cues-to-action and behavioral monitoring are likely to be effective in regulating sugar consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
High sugar consumption and poor nutrient intake among drug addicts in Oslo, Norway.
Saeland, M; Haugen, M; Eriksen, F-L; Wandel, M; Smehaugen, A; Böhmer, T; Oshaug, A
2011-02-01
Poor dietary habits among drug addicts represent health hazards. However, very few studies have focused on dietary intake as an independent health risk factor in relation to this group. The objective of the present study was to examine the dietary habits of drug addicts living on the fringes of an affluent society. The study focused on food access, food preferences, intake of energy and nutrients, and related nutrient blood concentrations. The respondent group consisted of 123 male and seventy-two female drug addicts, who participated in a cross-sectional study that included a 24 h dietary recall, blood samples, anthropometrical measurements and a semi-structured interview concerning food access and preferences. Daily energy intake varied from 0 to 37 MJ. Food received from charitable sources and friends/family had a higher nutrient density than food bought by the respondents. Added sugar accounted for 30 % of the energy intake, which was mirrored in biomarkers. Sugar and sugar-sweetened food items were preferred by 61 % of the respondents. Of the respondents, 32 % had a TAG concentration above the reference values, while 35 % had a cholesterol concentration beneath the reference values. An elevated serum Cu concentration indicated inflammation among the respondents. Further research on problems related to the diets of drug addicts should focus on dietary habits and aim to uncover connections that may reinforce inebriation and addiction.
Sasaki, Kengo; Tsuge, Yota; Kawaguchi, Hideo; Yasukawa, Masahiro; Sasaki, Daisuke; Sazuka, Takashi; Kamio, Eiji; Ogino, Chiaki; Matsuyama, Hideto; Kondo, Akihiko
2017-08-01
The juice from sweet sorghum cultivar SIL-05 (harvested at physiological maturity) was extracted, and the component sucrose and reducing sugars (such as glucose and fructose) were subjected to a membrane separation process to purify the sucrose for subsequent sugar refining and to obtain a feedstock for repeated bioethanol production. Nanofiltration (NF) of an ultrafiltration (UF) permeate using an NTR-7450 membrane (Nitto Denko Corporation, Osaka, Japan) concentrated the juice and produced a sucrose-rich fraction (143.2 g L -1 sucrose, 8.5 g L -1 glucose, and 4.5 g L -1 fructose). In addition, the above NF permeate was concentrated using an ESNA3 NF membrane to provide concentrated permeated sugars (227.9 g L -1 ) and capture various amino acids in the juice, enabling subsequent ethanol fermentation without the addition of an exogenous nitrogen source. Sequential batch fermentation using the ESNA3 membrane concentrate provided an ethanol titer and theoretical ethanol yield of 102.5-109.5 g L -1 and 84.4-89.6%, respectively, throughout the five-cycle batch fermentation by Saccharomyces cerevisiae BY4741. Our results demonstrate that a membrane process using UF and two types of NF membranes has the potential to allow sucrose purification and repeated bioethanol production.
Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek
2013-01-01
A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved.
29. RW Meyer Sugar Mill: 18761889. Boilingrange furnace and clarifier ...
29. RW Meyer Sugar Mill: 1876-1889. Boiling-range furnace and clarifier position. View: In the boiling range all of the concentration, evaporation, and concentration of cane juice took place in open pans over the continous flue leaving this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifier lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Taxation and Sugar-Sweetened Beverages: Position of Dietitians of Canada.
2016-06-01
Dietitians of Canada recommends that an excise tax of at least 10-20% be applied to sugar-sweetened beverages sold in Canada given the negative impact of these products on the health of the population and the viability of taxation as a means to reduce consumption. For the greatest impact, taxation measures should be combined with other policy interventions such as increasing access to healthy foods while decreasing access to unhealthy foods in schools, daycares, and recreation facilities; restrictions on the marketing of foods and beverages to children; and effective, long-term educational initiatives. This position is based on a comprehensive review of the literature. The Canadian population is experiencing high rates of obesity and excess weight. There is moderate quality evidence linking consumption of sugar-sweetened beverages to excess weight, obesity, and chronic disease onset in children and adults. Taxation of sugar-sweetened beverages holds substantiated potential for decreasing its consumption. Based on economic models and results from recent taxation efforts, an excise tax can lead to a decline in sugar-sweetened beverage purchase and consumption. Taxation of up to 20% can lead to a consumption decrease by approximately 10% in the first year of its implementation, with a postulated 2.6% decrease in weight per person on average. Revenue generated from taxation can be used to fund other obesity reduction initiatives. A number of influential national organizations support a tax on sugar-sweetened beverages.
Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth.
Dumschott, Kathryn; Richter, Andreas; Loescher, Wayne; Merchant, Andrew
2017-12-01
The occurrence of sugar alcohols is ubiquitous among plants. Physiochemical properties of sugar alcohols suggest numerous primary and secondary functions in plant tissues and are often well documented. In addition to functions arising from physiochemical properties, the synthesis of sugar alcohols may have significant influence over photosynthetic, respiratory, and developmental processes owing to their function as a large sink for photosynthates. Sink strength is demonstrated by the high concentrations of sugar alcohols found in plant tissues and their ability to be readily transported. The plant scale distribution and physiochemical function of these compounds renders them strong candidates for functioning as stress metabolites. Despite this, several aspects of sugar alcohol biosynthesis and function are poorly characterised namely: 1) the quantitative characterisation of carbon flux into the sugar alcohol pool; 2) the molecular control governing sugar alcohol biosynthesis on a quantitative basis; 3) the role of sugar alcohols in plant growth and ecology; and 4) consequences of sugar alcohol synthesis for yield production and yield quality. We highlight the need to adopt new approaches to investigating sugar alcohol biosynthesis using modern technologies in gene expression, metabolic flux analysis and agronomy. Combined, these approaches will elucidate the impact of sugar alcohol biosynthesis on growth, stress tolerance, yield and yield quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lugtenberg, B J; Kravchenko, L V; Simons, M
1999-10-01
The role of tomato seed and root exudate sugars as nutrients for Pseudomonas biocontrol bacteria was studied. To this end, the major exudate sugars of tomato seeds, seedlings and roots were identified and quantified using high-performance liquid chromatographic (HPLC) analysis. Glucose, fructose and maltose were present in all studied growth stages of the plant, but the ratios of these sugars were strongly dependent on the developmental stage. In order to study the putative role of exudate sugar utilization in rhizosphere colonization, two approaches were adopted. First, after co-inoculation on germinated tomato seeds, the root-colonizing ability of the efficient root-colonizing P. fluorescens strain WCS365 in a gnotobiotic quartz sand-plant nutrient solution system was compared with that of other Pseudomonas biocontrol strains. No correlation was observed between the colonizing ability of a strain and its ability to use the major exudate sugars as the only carbon and energy source. Secondly, a Tn5lacZ mutant of P. fluorescens strain WCS365, strain PCL1083, was isolated, which is impaired in its ability to grow on simple sugars, including those found in exudate. The mutation appeared to reside in zwf, which encodes glucose-6-phosphate dehydrogenase. The mutant grows as well as the parental strain on other media, including tomato root exudate. After inoculation of germinated sterile tomato seeds, the mutant cells reached the same population levels at the root tip as the wild-type strain, both alone and in competition, indicating that the ability to use exudate sugars does not play a major role in tomato root colonization, despite the fact that sugars have often been reported to represent the major exudate carbon source. This conclusion is supported by the observation that the growth of mutant PCL1083 in vitro is inhibited by glucose, a major exudate sugar, at a concentration of 0.001%, which indicates that the glucose concentration in the tomato rhizosphere is very low.
Combustibility determination for cotton gin dust and almond huller dust
USDA-ARS?s Scientific Manuscript database
It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...
2014-01-01
Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol production from bagasse can be achieved without adversely affecting juice ethanol and cane yield, thus maintaining first generation ethanol production levels while maximizing second generation ethanol production. PMID:24725458
NASA Astrophysics Data System (ADS)
Nirmalkar, Jayant; Deshmukh, Dhananjay K.; Deb, Manas K.; Tsai, Ying I.; Sopajaree, Khajornsak
2015-09-01
The impact of biomass burning in atmospheric aerosols load is poorly known. We investigated the impact of biomass burning through molecular markers on the concentration of PM2.5 aerosol samples collected from a rural site in eastern central India during three episodic periods from October to November 2011. The collected PM2.5 samples were chemically quantified for potassium as well as sugars and dicarboxylic acids using ion chromatography. Levoglucosan and glucose were found as the most abundant sugar compounds and sugar-alcohols showed the predominance of mannitol whereas oxalic acid was the most abundant diacid followed by maleic acid in PM2.5 aerosols. Substantially enhanced concentrations of K+ as well as levoglucosan and glucose were observed in eastern central India. Analysis of the source specific molecular markers and ratios of sugars and diacids infer that combustion of biomass was the major emission sources of organic compounds associated with PM2.5 aerosols over eastern central India. We applied Spearman correlation analysis and principal component analysis to further investigate the sources of measured sugars and diacids. The concentrations of K+ and levoglucosan were significantly correlated with sugars and diacids that verifying their common sources from biomass burning emission. This study demonstrates that biomass burning for domestic heating and cooking purposes and agricultural activities significantly influence the air quality of eastern central India during the investigation period. The obtained data in this research is helpful for the global scientific community to assessments and remedial of air quality parameters in rural areas of developing countries under similar atmospheric circumstances.
Downes, Katherine; Terry, Leon A
2010-06-30
Onion soluble non-structural carbohydrates consist of fructose, glucose and sucrose plus fructooligosaccharides (FOS) with degrees of polymerisation (DP) in the range of 3-19. In onion, sugars and FOS are typically separated using liquid chromatography (LC) with acetonitrile (ACN) as a mobile phase. In recent times, however, the production of ACN has diminished due, in part, to the current worldwide economic recession. A study was therefore undertaken, to find an alternative LC method to quantify sugars and FOS from onion without the need for ACN. Two mobile phases were compared; the first taken from a paper by Vågen and Slimestad (2008) using ACN mobile phase, the second, a newly reported method using ethanol (EtOH). The EtOH mobile phase eluted similar concentrations of all FOS compared to the ACN mobile phase. In addition, limit of detection, limit of quantification and relative standard deviation values were sufficiently and consistently lower for all FOS using the EtOH mobile phase. The drawback of the EtOH mobile phase was mainly the inability to separate all individual sugar peaks, yet FOS could be successfully separated. However, using the same onion extract, a previously established LC method based on an isocratic water mobile phase could be used in a second run to separate sugars. Although the ACN mobile phase method is more convenient, in the current economic climate a method based on inexpensive and plentiful ethanol is a valid alternative and could potentially be applied to other fresh produce types. In addition to the mobile phase solvent, the effect of extraction solvents on sugar and FOS concentration was also investigated. EtOH is still widely used to extract sugars from onion although previous literature has concluded that MeOH is a superior solvent. For this reason, an EtOH-based extraction method was compared with a MeOH-based method to extract both sugars and FOS. The MeOH-based extraction method was more efficacious at extracting sugars and FOS from onion flesh, eluting significantly higher concentrations of glucose, kestose, nystose and DP5-DP8. Copyright 2010 Elsevier B.V. All rights reserved.
Switching the mode of sucrose utilization by Saccharomyces cerevisiae
Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U
2008-01-01
Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae. PMID:18304329
Switching the mode of sucrose utilization by Saccharomyces cerevisiae.
Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U
2008-02-27
Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.
Solubility of guaifenesin in the presence of common pharmaceutical additives.
Mani, Narasimhan; Jun, H W; Beach, J Warren; Nerurkar, Jayanti
2003-01-01
The aqueous solubility of guaifenesin, a highly water-soluble drug, in the presence of salts, sugars, and cosolvents was determined at 25 degrees C and 40 degrees C. The solubility of drug at both temperatures was reduced with increasing concentrations of salts and sugars. The extent of reduction in drug solubility was dependent on the type of salts and sugars used. The salting-out coefficient of additives was calculated by plotting log-linear solubility profiles of the drug against the concentrations of the additives. The solubility of guaifenesin, a neutral compound, was found to be higher at lower pH values, which could be due to hydrogen-bonding effects. At 25 degrees C, glycerin, PEG 300, and propylene glycol increased the solubility of drug at low solvent concentrations while the solubility was reduced at high concentrations. At 40 degrees C, the solubility of drug was reduced at all concentrations of cosolvents. The thermodynamic events accompanying the solubility process were discussed to explain the solubility phenomena observed in the presence of additives. The reduced aqueous solubility of guaifenesin in the presence of additives greatly improved the entrapment of drug into controlled-release wax microspheres.
Sakunkoo, Pornpun; Chaiear, Naesinee; Chaikittiporn, Chalermchai; Sadhra, Steven
2011-11-01
There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.
Thein, Z M; Smaranayake, Y H; Smaranayake, L P
2007-11-01
Despite the increasing recognition of the role played by mixed species biofilms in health and disease, the behavior and factors modulating these biofilms remain elusive. We therefore compared the effect of serum, two dietary sugars (sucrose and galactose) and a biocide, chlorhexidine digluconate, on a dual species biofilm (DSB) of Candida albicans and Escherichia coli and, their single species biofilm (SSB) counterparts. Both modes of biofilm growth on polystyrene plastic surfaces were quantified using a viable cell count method and visualized using confocal scanning laser microscopy (CSLM). Present data indicate that co-culture of C. albicans with varying initial concentrations of E. coli leads to a significant inhibition of yeast growth (r=-0.964; p<0.001). Parallel ultrastructural studies using CSLM and a Live/Dead stain confirmed that E. coli growth rendered blastospores and hyphal yeasts non-viable in DSB. SSB of C. albicans showed pronounced growth when its growth surface was pretreated with serum and by sugar supplements in the incubating medium (p<0.05). Intriguingly, C. albicans in DSB was more resistant to the antiseptic effect of chlorhexidine digluconate. Taken together, the current data elucidate some features of the colonization resistance offered by bacteria in mixed bacterial/fungal habitats and how such phenomena may contribute to the development of fungal superinfection during antimicrobial therapy.
Castro, Laura; Blázquez, M Luisa; González, Felisa; Muñoz, Jesús A; Ballester, Antonio
2017-11-15
The aim of this work was to demonstrate the feasibility of the application of biosorption in the treatment of metal polluted wastewaters through the development of several pilot plants to be implemented by the industry. The use as biosorbents of both the brown seaweed Fucus vesiculosus and a sugar beet pulp was investigated to remove heavy metal ions from a wastewater generated in an electroplating industry: Industrial Goñabe (Valladolid, Spain). Batch experiments were performed to study the effects of pH, contact time and initial metal concentration on metal biosorption. It was observed that the adsorption capacity of the biosorbents strongly depended on the pH, increasing as the pH rises from 2 to 5. The adsorption kinetic was studied using three models: pseudo first order, pseudo second order and Elovich models. The experimental data were fitted to Langmuir and Freundlich isotherm models and the brown alga F. vesiculosus showed higher metal uptake than the sugar beet pulp. The biomasses were also used for zinc removal in fixed-bed columns. The performance of the system was evaluated in different experimental conditions. The mixture of the two biomasses, the use of serial columns and the inverse flow can be interesting attempts to improve the biosorption process for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.
2014-12-01
In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.
Toquero, Cristina; Bolado, Silvia
2014-04-01
Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji
2013-01-01
Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sager, E P S; Hutchinson, T C; Croley, T R
2005-06-01
Tropospheric O3 has been implicated in the declining health of forest ecosystems in Europe and North America and has been shown to have negative consequences on human health. We have measured tropospheric ozone (O3) in the lower canopy through the use of passive monitors located in five woodlots along a 150 km urban-rural transect, originating in the large urban complex of Toronto, Canada. We also sampled foliage from 10 mature sugar maple trees in each woodlot and measured the concentration of a number of phenolic compounds and macronutrients. O3 concentrations were highest in the two rural woodlots, located approximately 150 km downwind of Toronto, when compared to the woodlots found within the Greater Toronto Area. Foliar concentrations of three flavonoids, avicularin, isoquercitrin, and quercitrin, were significantly greater and nitrogen concentrations significantly lower at these same rural woodlots, suggesting some physiological disruption is occurring in those sites where exposure to tropospheric O3 is greater. We suggest that foliar phenolics of sugar maple may be a biochemical indicator of tropospheric ozone exposure.
Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji
2011-12-01
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tokumitsu, S.; Hasegawa, M.
2018-05-01
The coloring phenomena caused by optical rotation of polarized light beams in sugared water can be an appropriate subject for use as an educational tool. In this paper, such coloring phenomena are studied in terms of theory, and the results are compared with experimental results. First, polarized laser beams in red, blue, or green were allowed to travel in sugared water of certain concentrations, and changes in the irradiance of the beams were measured while changing the distance between a pair of polarizing plates arranged in the sugared water. The angle of rotation was then determined for each color. An equation was established for predicting a theoretical value of the angle of rotation for laser beams of specific colors (wavelengths) traveling in sugared water of specific concentrations. The predicted results from the equation exhibited satisfactory agreement with the experimental values obtained from the measurements. In addition, changes in the irradiance of traveling laser beams, as well as the changes in colors observable for white light beams, were also predicted, resulting in good agreement with the observed results.
Oil palm frond juice as future fermentation substrate: a feasibility study.
Maail, Che Mohd Hakiman Che; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito
2014-01-01
Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities.
Shin, Hyun Yong; Nijland, Jeroen G.; de Waal, Paul P.
2017-01-01
ABSTRACT Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N‐terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d‐glucose and 4% d‐xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d‐xylose over d‐glucose with high d‐xylose transport rates. This mutant supported efficient sugar fermentation of both d‐glucose and d‐xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937–1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28464256
Shin, Hyun Yong; Nijland, Jeroen G; de Waal, Paul P; Driessen, Arnold J M
2017-09-01
Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N-terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d-glucose and 4% d-xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d-xylose over d-glucose with high d-xylose transport rates. This mutant supported efficient sugar fermentation of both d-glucose and d-xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937-1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Light Sweet Crude Oil (NYMEX) 50,000 bbl. Live Cattle (CME) NO BLOCKS. Mid-Columbia Day-Ahead Off-Peak.... Sugar #11 (ICE and NYMEX) 5,000 metric tons. Sugar #16 (ICE) NO BLOCKS. Temperature Index (CME) 400...
Registration of ‘CPCL 02-6848’ Sugarcane
USDA-ARS?s Scientific Manuscript database
Development of 'CPCL 02-6848' (Reg. No. 667596; PI), sugarcane (a complex hybrid of Saccharum spp.) was initiated by the United States Sugar Corporation (USSC) and completed by collaborative research of the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc. The female paren...
Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Eagar, Christopher
2008-06-01
In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health.
Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong
2012-03-01
An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.
Shupe, Alan M; Liu, Shijie
2012-09-01
Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm(3) and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K(L)a) of 0.108 min(-1). A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.
Cysewski, G R; Wilke, C R
1976-09-01
Ethanol fermentation studies were conducted with Saccharomyces cerevisiae ATCC "4126, to determine the optimal conditions of oxygen tension and feed sugar concentration. In long-term continuous culture maximum ethanol production was found to occur at 0.07 mmHg oxygen tension and 10% glucose feed concentration. Preliminary process design and cost studies are developed for industrial scale fermentations to produce ethanol and torula yeast from sugars obtained by enzymatic hydrolysis of newsprint.
Wang, Zhihao; Chan, Siu Hung Joshua; Sudarsan, Suresh; Blank, Lars M; Jensen, Peter Ruhdal; Solem, Christian
2016-11-01
The performance of Corynebacterium glutamicum cell factories producing compounds which rely heavily on NADPH has been reported to depend on the sugar being metabolized. While some aspects of this phenomenon have been elucidated, there are still many unresolved questions as to how sugar metabolism is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed us to propose a simple model explaining the correlation between sugar phosphate concentration, gene expression and ultimately the observed phenotype. To guide us in our analysis and help us identify bottlenecks in metabolism we debugged an existing genome-scale model onto which we overlaid the transcriptome data. Based on the results obtained we managed to enhance the NADPH supply and transform the wild-type strain into delivering the highest yield of lysine ever obtained on sucrose and fructose, thus providing a good example of how regulatory mechanisms can be harnessed for bioproduction. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Nandi, S; Mondal, S; Pal, D T; Gupta, P S P
2016-04-01
This study was undertaken to elucidate the effect of ammonia-generating diet on serum and follicular fluid ammonia and urea levels, serum oestrogen and progesterone concentrations and granulosa cell growth and secretion parameters in ewes (Ovis aries). Ewes were fed with 14% CP diet (control) or ammonia-generating diet or ammonia-generating diet plus soluble sugar. The serum and follicular fluid ammonia and urea level, serum oestrogen and progesterone levels and granulosa cell (obtained from ovaries of slaughtered ewes) growth parameters and secretory activities were estimated. Ammonia-generating diet (high-protein diet) increased the serum ammonia and urea concentration. Supplementation of soluble sugar significantly reduced the ammonia concentration in serum with comparable levels as in control group; however, the urea level in the same group was higher than that observed in control group. Supplementation of soluble sugar significantly reduced the follicular fluid ammonia concentration; however, the level was significantly higher compared to control group. Supplementation of soluble sugar brought down the follicular fluid urea level comparable to that observed in control group. Oestrogen and progesterone levels remained unchanged in ewes fed with different types of diet. Oestrogen and progesterone secretion were significantly lowered from granulosa cells recovered from ewes fed with high ammonia-generating diet. Low metabolic activity and high incidence of apoptosis were observed in granulosa cells obtained from ovaries of ewes fed with ammonia-generating diet. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Saksono, Budi; Dewi, Beti Ernawati; Nainggolan, Leonardo; Suda, Yasuo
2015-01-01
We propose a novel method of detecting trace amounts of dengue virus (DENVs) from serum. Our method is based on the interaction between a sulfated sugar chain and a DENV surface glycoprotein. After capturing DENV with the sulfated sugar chain-immobilized gold nanoparticles (SGNPs), the resulting complex is precipitated and viral RNA content is measured using the reverse-transcription quantitative polymerase chain reaction SYBR Green I (RT-qPCR-Syb) method. Sugar chains that bind to DENVs were identified using the array-type sugar chain immobilized chip (Sugar Chip) and surface plasmon resonance (SPR) imaging. Heparin and low-molecular-weight dextran sulfate were identified as binding partners, and immobilized on gold nanoparticles to prepare 3 types of SGNPs. The capacity of these SGNPs to capture and concentrate trace amounts of DENVs was evaluated in vitro. The SGNP with greatest sensitivity was tested using clinical samples in Indonesia in 2013-2014. As a result, the novel method was able to detect low concentrations of DENVs using only 6 μL of serum, with similar sensitivity to that of a Qiagen RNA extraction kit using 140 μL of serum. In addition, this method allows for multiplex-like identification of serotypes of DENVs. This feature is important for good healthcare management of DENV infection in order to safely diagnose the dangerous, highly contagious disease quickly, with high sensitivity.
Understanding the effect of carbon status on stem diameter variations
De Swaef, Tom; Driever, Steven M.; Van Meulebroek, Lieven; Vanhaecke, Lynn; Marcelis, Leo F. M.; Steppe, Kathy
2013-01-01
Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions. PMID:23186836
Rattanapoltee, Panida; Kaewkannetra, Pakawadee
2014-07-01
The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.
Enzyme activity and AGE formation in a model of AST glycoxidation by D-fructose in vitro.
Bousova, Iva; Vukasović, Danka; Juretić, Dubravka; Palicka, Vladimir; Drsata, Jaroslav
2005-03-01
Non-enzymatic glycation as the chain reaction between reducing sugars and free amino groups of proteins has been shown to correlate with physiological ageing and severity of diabetes. The process involves oxidative steps (glycoxidation). In this paper, the effect of D-fructose as a reactive sugar on aspartate aminotransferase (AST) as a model protein was monitored by measurements of the enzyme activity and formation of fluorescent advanced glycation end products (AGEs). Change in the AST activity was considered as a measure of the overall protein damage caused by glycation, and total AGEs and pentosidine represent, at least partly, the formation of glycoxidation products. Catalytic activity of AST in an incubation mixture containing D-fructose (50 mmol L(-1)), decreased compared to control values to 42% (p < 0.05) and to 11% (p < 0.05) on the 5th and on 21st day of incubation, respectively. In the presence of fructose, total fluorescent AGEs concentration was significantly higher since 5th day of incubation (110%, p < 0.05) and the fluorescent pentosidine concentration from 15th day of incubation (117%, p < 0.05) compared to control values, respectively. Catalytic activity of AST clearly and quantitatively demonstrated functional changes in the enzyme molecule caused by structural modifications initiated by fructose, while the evaluation of AGE formation and especially that of pentosidine by fluorescence measurement was less reliable.
NASA Astrophysics Data System (ADS)
Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander
2013-04-01
The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid lead to increasing conversion of hemicellulose to xylose. In contrast, increasing sodium hydroxide concentrations degrade the hemicellulose to unknown derivates. Consequently, almost no sugars from hemicellulose remain for fermentation. The hydrolysis of sulfuric acid pretreated straw results in a maximum glucose concentration of 100 g/kg straw and a xylose concentration of nearly 30 g/kg. Sodium hydroxide pretreated and hydrolyzed straw leads to a maximum glucose concentration of 90 g/kg straw and a xylose concentration of nearly 20 g/kg. In comparison to the two chemical pretreatment methods (sodium hydroxide and sulfuric acid pretreatment), the steam explosion pretreatment (conditions: temperature 190°C, time 20 minutes) results in a higher glucose concentration of about 190 g/kg straw and a xylose concentration of nearly 75 g/kg straw after enzymatic hydrolysis of the dried straw. Because of the small effect the sodium hydroxide pretreatment has on xylose recovery, this method won't be used for separation and conversion of hemicellulose into xylose and arabinose. Although pretreatment with sulfuric acid achieved promising results, further research and economical considerations have to be performed. In conclusion, the steam explosion method is still the state of the art pretreatment method for the production of lignocellulosic biofuels. Alkaline methods destroy most of the xylose part of the sugar fraction and a loss of up to 25 % of the fermentable sugars is not acceptable for a sustainable biofuel production. The acid pretreatment yields high amounts of accessible hemicellulose and cellulose, but the consumption of chemicals for acid pretreatment and neutralization has to be taken into account when considering technical implementation.
New starch methodology to measure both soluble and insoluble starch
USDA-ARS?s Scientific Manuscript database
Starch is a natural sugarcane juice impurity that greatly influences raw sugar quality and affects factory and refinery processing. Since the advent of the USDA Starch Research method, the mechanisms in which starch concentration and physical form affects sugar crop processing, conversion, and end-g...
Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation
USDA-ARS?s Scientific Manuscript database
Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...
The influence of post-veraison foliar potassium applications on table grape quality
USDA-ARS?s Scientific Manuscript database
Sugar concentration and skin color (for pigmented table grape cultivars) are primary indicators of maturity and are important for marketing purposes. Treatments that accelerate sugar and pigment development enable earlier harvest. Early harvest not only improves marketing, it reduces risks of losses...
USDA-ARS?s Scientific Manuscript database
The discovery of acrylamide in processed potato products has brought increased interest in the controlling Maillard reaction precursors (reducing sugars and amino acids) in potato tubers. Because of their effects on nonenzymatic browning of fried potato products, reducing sugars and amino acids have...
Mello, Michelle M.; Pomeranz, Jennifer; Moran, Patricia
2008-01-01
It is increasingly recognized that sugar-sweetened beverage consumption contributes to childhood obesity. Most states have adopted laws that regulate the availability of sugar-sweetened beverages in school settings. However, such policies have encountered resistance from consumer and parent groups, as well as the beverage industry. The beverage industry’s recent adoption of voluntary guidelines, which call for the curtailment of sugar-sweetened beverage sales in schools, raises the question, Is further policy intervention in this area needed, and if so, what form should it take? We examine the interplay of public and private regulation of sugar-sweetened beverage sales in schools, by drawing on a 50-state legal and regulatory analysis and a review of industry self-regulation initiatives. PMID:17901427
Kinetic model for the formation of acrylamide during the finish-frying of commercial french fries.
Parker, Jane K; Balagiannis, Dimitrios P; Higley, Jeremy; Smith, Gordon; Wedzicha, Bronislaw L; Mottram, Donald S
2012-09-12
Acrylamide is formed from reducing sugars and asparagine during the preparation of French fries. The commercial preparation of French fries is a multistage process involving the preparation of frozen, par-fried potato strips for distribution to catering outlets, where they are finish-fried. The initial blanching, treatment in glucose solution, and par-frying steps are crucial because they determine the levels of precursors present at the beginning of the finish-frying process. To minimize the quantities of acrylamide in cooked fries, it is important to understand the impact of each stage on the formation of acrylamide. Acrylamide, amino acids, sugars, moisture, fat, and color were monitored at time intervals during the frying of potato strips that had been dipped in various concentrations of glucose and fructose during a typical pretreatment. A mathematical model based on the fundamental chemical reaction pathways of the finish-frying was developed, incorporating moisture and temperature gradients in the fries. This showed the contribution of both glucose and fructose to the generation of acrylamide and accurately predicted the acrylamide content of the final fries.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-07-21
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-01-01
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876
Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.
Jochym, Kamila Kapusniak; Nebesny, Ewa
2017-09-15
The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rojo, M C; Arroyo López, F N; Lerena, M C; Mercado, L; Torres, A; Combina, M
2014-04-01
The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Ai-Hua; An, Ning-Bo; Lei, Feng-Jie; Ma, Wen-Li; Chi, Kun; Zhang, Lian-Xue
2016-11-01
The chemotaxis response of Erwinia carotovora to different sugars and amino acids in four kinds of chemotactic parameters (concentration, time, temperature and pH ) was determined by capillary method. The results showed that when pH was 8, concentration was 0.025 mg•L ⁻¹, culture temperature was 25 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of lysine was 2.509,when pH was 6, concentration was 0.25 mg•L ⁻¹, culture temperature was 25 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of arginine was 2.218 8,when pH was 7, concentration was 0.25 mg•L ⁻¹, culture temperature was 30 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of L-rhamnose was 3.091 2, when pH was 6, concentration was 0.25 mg•L ⁻¹, culture temperature was 30 ℃ and the duration was 45 minutes, the optimal chemotaxis rate of D-arabinose was 3.026 3. Sugars and amino acids had obvious chemotaxis with E. carotovora,the high concentration of carbohydrate and amino acid exited an inhibitory effect on chemotaxis response of E. carotovora, and the chemotaxis response decreased with the increase of concentration of carbohydrates and amino acids. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershkovitz, N.; Oren, A.; Cohen, Y.
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP{sub 4}, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 {mu}g of trehalose per {mu}g of chlorophyll in P. autumnale, 6.9 {mu}g of sucrose per {mu}g of chlorophyll in LPP{sub 4}, and 4.1 {mu}g of sucrose and 3.2 {mu}g of trehalose per {mu}g of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum andmore » Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.« less
Sorbitol, Rubus fruit, and misconception.
Lee, Jungmin
2015-01-01
It is unclear how the misunderstanding that Rubus fruits (e.g., blackberries, raspberries) are high in sugar alcohol began, or when it started circulating in the United States. In reality, they contain little sugar alcohol. Numerous research groups have reported zero detectable amounts of sugar alcohol in fully ripe Rubus fruit, with the exception of three out of 82 Rubus fruit samples (cloudberry 0.01 g/100 g, red raspberry 0.03 g/100 g, and blackberry 4.8 g/100 g(∗); (∗)highly unusual as 73 other blackberry samples contained no detectable sorbitol). Past findings on simple carbohydrate composition of Rubus fruit, other commonly consumed Rosaceae fruit, and additional fruits (24 genera and species) are summarised. We are hopeful that this review will clarify Rosaceae fruit sugar alcohol concentrations and individual sugar composition; examples of non-Rosaceae fruit and prepared foods containing sugar alcohol are included for comparison. A brief summary of sugar alcohol and health will also be presented. Published by Elsevier Ltd.
Etheridge, Alexandra B.
2015-12-07
Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.
Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek
2012-01-01
In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.
Triple helical polynucleotidic structures: an FTIR study of the C+ .G. Ctriplet.
Akhebat, A; Dagneaux, C; Liquier, J; Taillandier, E
1992-12-01
Triple helixes containing one homopurine poly dG or poly rG strand and two homopyrimidine poly dC or poly rC strands have been prepared and studied by FTIR spectroscopy in H2O and D2O solutions. The spectra are discussed by comparison with those of the corresponding third strands (auto associated or not) and of double stranded poly dG.poly dC and poly rG.poly rC in the same concentration range and salt conditions. The triplex formation is characterized by the study of the base-base interactions reflected by changes in the spectral domain involving the in-plane double bond vibrations of the bases. Modifications of the initial duplex conformation (A family form for poly rG.poly rC, B family form for poly dG.poly dC) when the triplex is formed have been investigated. Two spectral domains (950-800 and 1450-1350 cm-1) containing absorption bands markers of the N and S type sugar geometries have been extensively studied. The spectra of the triplexes prepared starting with a double helix containing only riboses (poly rC+.poly rG.poly rC and poly dC+.poly rG.poly rC) as well as that of poly rC+.poly dG.poly dC present exclusively markers of the North type geometry of the sugars. On the contrary in the case of the poly dC+.poly dG.poly dC triplex both N and S type sugars are shown to coexist. The FTIR spectra allow us to propose that in this case the sugars of the purine (poly dG) strand adopt the S type geometry.
Comparative assessment of sugar and malic acid composition in cultivated and wild apples.
Ma, Baiquan; Chen, Jie; Zheng, Hongyu; Fang, Ting; Ogutu, Collins; Li, Shaohua; Han, Yuepeng; Wu, Benhong
2015-04-01
Soluble sugar and malic acid contents in mature fruits of 364 apple accessions were quantified using high-performance liquid chromatography (HPLC). Fructose and sucrose represented the major components of soluble sugars in cultivated fruits, whilst fructose and glucose were the major items of sugars in wild fruits. Wild fruits were significantly more acidic than cultivated fruits, whilst the average concentration of total sugars and sweetness index were quite similar between cultivated and wild fruits. Thus, our study suggests that fruit acidity rather than sweetness is likely to have undergone selection during apple domestication. Additionally, malic acid content was positively correlated with glucose content and negatively correlated with sucrose content. This suggests that selection of fruit acidity must have an effect on the proportion of sugar components in apple fruits. Our study provides information that could be helpful for future apple breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peng, Yuancheng; Chen, Liangliang; Li, Shengjun; Zhang, Yueying; Xu, Ran; Liu, Zupei; Liu, Wuxia; Kong, Jingjing; Huang, Xiahe; Wang, Yingchun; Cheng, Beijiu; Zheng, Leiying; Li, Yunhai
2018-04-18
Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein β subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development.
Raposo, Rodrigo S; de Almeida, M Catarina M D; de Oliveira, M da Conceição M A; da Fonseca, M Manuela; Cesário, M Teresa
2017-01-25
Efficient production of poly-3-hydroxybutyrate (P(3HB)) based on glucose-xylose mixtures simulating different types of lignocellulosic hydrolysate (LCH) was addressed using Burkholderia sacchari, a wild strain capable of metabolizing both sugars and producing P(3HB). Carbon catabolite repression was avoided by maintaining glucose concentration below 10g/L. Xylose concentrations above 30g/L were inhibitory for growth and production. In fed-batch cultivations, pulse size and feed addition rate were controlled in order to reach high productivities and efficient sugar consumptions. High xylose uptake and P(3HB) productivity were attained with glucose-rich mixtures (glucose/xylose ratio in the feed=1.5w/w) using high feeding rates, while with xylose-richer feeds (glucose/xylose=0.8w/w), a lower feeding rate is a robust strategy to avoid xylose build-up in the medium. Xylitol production was observed with xylose concentrations in the medium above 30-40g/L. With sugar mixtures featuring even lower glucose/xylose ratios, i.e. xylose-richer feeds (glucose/xylose=0.5), xylonic acid (a second byproduct) was produced. This is the first report of the ability of Burkholderia sacchari to produce both xylitol and xylonic acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Carroll, A B; Pallardy, S G; Galen, C
2001-03-01
In a controlled environment, we artificially induced drought during flowering of Epilobium angustifolium, an animal-pollinated plant. Leaf water potential (ψ(l)) and floral traits were monitored over a 12-d period of soil moisture depletion. Soil moisture depletion induced drought stress over time, as revealed by significant treatment × day interactions for predawn and midday ψ(l). Nectar volume and flower size showed significant negative responses to drought stress, but nectar sugar concentration did not vary between treatments. Floral traits were more buffered from drought than leaf water potentials. We used path analysis to examine direct and indirect effects of ψ(l) on floral traits for plants in well-watered (control) vs. drought treatments. According to the best-fit path models, midday ψ(l) has significant positive effects on flower size and nectar volume in both environments. However, for controls midday ψ(l) also had a significant negative effect on nectar sugar concentration. Results indicate that traits influencing floral attractiveness to pollinators in E. angustifolium vary with plant water status, such that pollinator-mediated selection could indirectly target physiological or biochemical controls on ψ(l). Moreover, under mesic conditions selection for greater nectar sugar reward may be constrained by the antagonistic effects of plant water status on nectar volume and sugar concentration.
Centeno; Fernández; Feito; Rodríguez
1999-10-01
1-Naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) were required for in vitro callus formation at the basal edge of kiwifruit (Actinidia deliciosa [A. Chev] Liang and Ferguson, cv. Hayward) petioles. The uptake, metabolism, and concentration of NAA and indole-3-acetic acid (IAA) content were examined in the explants during the callus initiation period. After 1, 6, 12, 24, 48, and 96 h of culture in the presence of [H(3)]NAA, petioles were divided into apical, middle, and basal portions and analyzed. Except for a high IAA level measured at 12 h, IAA content decreased in tissues during a culture period of 96 h. NAA uptake was higher in petiolar edges than in the middle portion, and NAA was rapidly conjugated with sugars and aspartic acid inside the tissues. The amide conjugation was triggered in apical and basal portions from 12 h and in the middle part from 48 h, with alpha-naphthylacetylaspartic acid being the major metabolite. Free-NAA concentration in cultured petioles achieved an equilibrium with the exogenously applied NAA (0.27 µm) from 12 h, and it remained constant thereafter. The relationships between the role attributed to NAA and BA in the initiation and the maintenance of disorganized growth of callus in kiwifruit cultures are discussed.
Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H
2010-05-01
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.
Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.
Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili
2017-02-01
The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (< 30 min) and highly reliable method to detect and quantify TiO 2 particles (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.
A review of sugar consumption from nationally representative dietary surveys across the world.
Newens, K J; Walton, J
2016-04-01
Government and health organisations worldwide have recently reviewed the evidence on the role of dietary sugars in relation to health outcomes. Hence, it is timely to review current intakes of dietary sugars with respect to this guidance and as a benchmark for future surveillance. This review collates data from nationally representative dietary surveys across the world and reports estimates of intakes of total and added sugars, and sucrose in different population subgroups. Total sugars includes all mono- and disaccharides; namely, glucose, fructose, lactose, sucrose and maltose. Added and free sugars differ in the quantity of natural sugars included in their definitions. Free sugars include sugars naturally present in honey, syrups, fruit juices and fruit juice concentrates, whereas added sugars typically only refer to those added during processing. Most countries reported intakes of total sugars, with fewer reporting intakes of added sugars and sucrose. No country reported intakes of free sugars. The available data suggest that total sugars as a percentage of energy were highest in the infant (<4 years), with mean values ranging from 20.0% to 38.4%, and decreased over the lifespan to 13.5-24.6% in adults. Intakes of added sugars were higher in school-aged children and adolescents (up to 19% of total energy) compared to younger children or adults. Further research into the dietary patterns contributing to added sugars intake in children and adolescents is warranted. It would also be beneficial to policy guidance if future dietary surveys employed a uniform way of expressing sugars that is feasible to measure and has public health significance. © 2015 The Authors. Journal of Human Nutrition and Dietetics published by John Wiley & Sons Ltd on behalf of The British Dietetic Association Ltd.
21 CFR 146.132 - Grapefruit juice.
Code of Federal Regulations, 2011 CFR
2011-04-01
... CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146... essential composition and quality factors of the juice. It may be sweetened with the dry nutritive... concentrate. (iii) One or any combination of two or more of the dry or liquid forms of sugar, invert sugar...
21 CFR 146.132 - Grapefruit juice.
Code of Federal Regulations, 2013 CFR
2013-04-01
... CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146... essential composition and quality factors of the juice. It may be sweetened with the dry nutritive... concentrate. (iii) One or any combination of two or more of the dry or liquid forms of sugar, invert sugar...
21 CFR 146.132 - Grapefruit juice.
Code of Federal Regulations, 2010 CFR
2010-04-01
... CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146... essential composition and quality factors of the juice. It may be sweetened with the dry nutritive... concentrate. (iii) One or any combination of two or more of the dry or liquid forms of sugar, invert sugar...
21 CFR 146.132 - Grapefruit juice.
Code of Federal Regulations, 2014 CFR
2014-04-01
... CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146... essential composition and quality factors of the juice. It may be sweetened with the dry nutritive... concentrate. (iii) One or any combination of two or more of the dry or liquid forms of sugar, invert sugar...
21 CFR 146.132 - Grapefruit juice.
Code of Federal Regulations, 2012 CFR
2012-04-01
... CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146... essential composition and quality factors of the juice. It may be sweetened with the dry nutritive... concentrate. (iii) One or any combination of two or more of the dry or liquid forms of sugar, invert sugar...
Seasonal changes in carbohydrate levels in roots of sugar maple
Philip M. Wargo; Philip M. Wargo
1971-01-01
This study was done to determine the normal complement of individual carbohydrates present in roots of sugar maples duringthe year and to obtain, as a basis for future comparison, an estimate of the normal variation and range of concentrations of individual carbohydrates in the roots during the year.
Mussatto, Solange I; Dragone, Giuliano; Roberto, Inês C
2005-01-01
Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.
Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B
2009-05-01
The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82 +/- 2 mg/g CAB-H and 730 +/- 20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 degrees C, 2-fold higher than when using 15 FPU/g bagasse, 44 +/- 2 mg/g CAB-H, and 450 +/- 50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0 +/- 0.2 g L(-1) and 3.33 g L(-1) h(-1), respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L(-1)). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L(-1)), ethanol concentration and productivity were 8.2 +/- 0.1 g L(-1) and 2.7 g L(-1) h(-1) in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.
Biological Cr(VI) removal using bio-filters and constructed wetlands.
Michailides, Michail K; Sultana, Mar-Yam; Tekerlekopoulou, Athanasia G; Akratos, Christos S; Vayenas, Dimitrios V
2013-01-01
The bioreduction of hexavalent chromium from aqueous solution was carried out using suspended growth and packed-bed reactors under a draw-fill operating mode, and horizontal subsurface constructed wetlands. Reactors were inoculated with industrial sludge from the Hellenic Aerospace Industry using sugar as substrate. In the suspended growth reactors, the maximum Cr(VI) reduction rate (about 2 mg/L h) was achieved for an initial concentration of 12.85 mg/L, while in the attached growth reactors, a similar reduction rate was achieved even with high initial concentrations (109 mg/L), thus confirming the advantage of these systems. Two horizontal subsurface constructed wetlands (CWs) pilot-scale units were also built and operated. The units contained fine gravel. One unit was planted with common reeds and one was kept unplanted. The mean influent concentrations of Cr(VI) were 5.61 and 5.47 mg/L for the planted and unplanted units, respectively. The performance of the planted CW units was very effective as mean Cr(VI) removal efficiency was 85% and efficiency maximum reached 100%. On the contrary, the unplanted CW achieved very low Cr(VI) removal with a mean value of 26%. Both attached growth reactors and CWs proved efficient and viable means for Cr(VI) reduction.
NASA Astrophysics Data System (ADS)
Phillips, R. P.; Fahey, T. J.
2003-12-01
Rhizosphere carbon flux (RCF) has rarely been measured for intact root-soil systems. We measured RCF for eight year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from Hubbard Brook Experimental Forest and transplanted into 35 cm diameter pots with native soil horizons intact. We hypothesized birch roots which support ectomycorrhizal fungi would release more C to the rhizosphere than sugar maple roots which support vesicular-arbuscular mycorrhizal fungi. Saplings (n=5) were pulse-labeled with 13CO2 at ambient CO2 concentrations for 4-6 hours, and the label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We observed immediate appearance of the label in rhizosphere soil, and there was a striking difference in the temporal pattern of 13C concentration between species. In maple, peak concentration of the label appeared at day 1 and declined over time whereas in birch the label increased in concentration over the 7 day chase period. As a result, total RCF was 2-3 times greater from birch roots. We estimate at least 5% and 10% of NPP may be released from this flux pathway in sugar maple and yellow birch saplings respectively. These results suggest that rhizosphere C flux likely represents a substantial proportion of NPP in northern hardwood forests, and may be influenced by trees species and mycorrhizal association.
Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick
2013-09-01
The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.
USDA-ARS?s Scientific Manuscript database
Rhizoctonia root and crown is an important disease problem in sugar beet caused by Rhizoctonia solani and also shown to be associated with Leuconostoc. Since, the initial Leuconostoc studies were conducted with only a few isolates and the relationship of Leuconostoc with R. solani is poorly underst...
Don C. Bragg
2008-01-01
The birdseye grain abnormality in sugar maple can greatly enhance its commercial appeal. However, birdseye has been opportunistically exploited, without exploring management strategies that can improve its potential. Even though the initiation and development processes of birdseye maple are still largely unknown, useful silvicultural advice can still be provided for...
Registration of ‘CPCL 05-1102’ Sugarcane
USDA-ARS?s Scientific Manuscript database
‘CPCL 05-1102’ sugarcane (a complex hybrid of Saccharum spp.) is the product of research initiated by the United States Sugar Corporation (USSC), and completed cooperatively by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc. CPCL 05-1102 was released to growers in Fl...
How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings
NASA Astrophysics Data System (ADS)
Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea
2016-04-01
Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to survive several weeks without starch reserves and with extremely low sugar concentrations in all organs. Although it remains to be tested whether our findings are also valid for mature trees, these results show that NSC pools in trees are very sensitive to carbon limitation and that lethal carbon starvation is preceded by a significant (almost complete) depletion of starch and sugars in all tree organs.
Richardson, Ben
2010-01-01
This paper asks how investment in large-scale sugar cane production has contributed, and will contribute, to rural development in southern Africa. Taking a case study of the South African company Illovo in Zambia, the argument is made that the potential for greater tax revenue, domestic competition, access to resources and wealth distribution from sugar/ethanol production have all been perverted and with relatively little payoff in wage labour opportunities in return. If the benefits of agro-exports cannot be so easily assumed, then the prospective 'balance sheet' of biofuels needs to be re-examined. In this light, the paper advocates smaller-scale agrarian initiatives.
Influence of formulation properties on chemical stability of captopril in aqueous preparations.
Kristensen, S; Lao, Y E; Brustugun, J; Braenden, J U
2008-12-01
The influence of various formulation properties on the chemical stability of captopril in aqueous media at pH 3 was investigated, in order to reformulate and increase the shelf-life of an oral mixture of the drug. At this pH, chemical stability is improved by an increase in drug concentration (1-5 mg/ml) and a decrease in temperature (5-36 degrees C), the latter demonstrated by a linear Arrhenius-plot. The activation energy is low (Ea = 10.2 kcal/mol), thus the Q10 value is only 1.8 in pure aqueous solutions. The degradation at the lowest concentration investigated in pure aqueous solution apparently follows zero order kinetics. The reaction order is changed at higher concentrations. We are presenting a hypothesis of intramolecular proton transfer from the thiol to the ionized carboxylic group as the initial step in the oxidative degradation pathways of captopril. Long-term stability of 1 mg/ml captopril in aqueous solutions at pH 3, stored at 36 degrees C for one year, shows that the sugar alcohol sorbitol accelerates degradation of the drug while Na-EDTA at a concentration as low as 0.01% is sufficient to stabilize these samples. Purging with N2-gas prior to storage is not essential for drug stability, as long as Na-EDTA is present. Only at a low level of Na-EDTA (0.01%) combined with a high level of sorbitol (35%), purging with N2-gas appears to have a small effect. The destabilizing effect of sugar alcohols is confirmed by accelerated degradation also in the presence of glycerol. The efficient stabilization in the presence of Na-EDTA at a low concentration indicates that the metal-ion-catalyzed oxidation pathway dominates the chemical degradation process at low pH, although several mechanisms seem to be involved depending on excipients present.
Secchi, Francesca; Zwieniecki, Maciej A
2016-11-01
Severe water stress constrains, or even stops, water transport in the xylem due to embolism formation. Previously, the xylem of poplar trees was shown to respond to embolism formation by accumulating carbohydrates in the xylem apoplast and dropping xylem sap pH. We hypothesize that these two processes may be functionally linked as lower pH activates acidic invertases degrading sucrose and inducing accumulation of monosaccharides in xylem apoplast. Using a novel in vivo method to measure xylem apoplast pH, we show that pH drops from ~6.2 to ~5.6 in stems of severely stressed plants and rises following recovery of stem water status. We also show that in a lower pH environment, sugars are continuously accumulating in the xylem apoplast. Apoplastic carbohydrate accumulation was reduced significantly in the presence of a proton pump blocker (orthovanadate). These observations suggest that a balance in sugar concentrations exists between the xylem apoplast and symplast that can be controlled by xylem pH and sugar concentration. We conclude that lower pH is related to loss of xylem transport function, eventually resulting in accumulation of sugars that primes stems for recovery from embolism when water stress is relieved. © 2016 John Wiley & Sons Ltd.
Composition of hydroponic lettuce: effect of time of day, plant size, and season.
Gent, Martin P N
2012-02-01
The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry.
Pender, Richard J; Morden, Clifford W; Paull, Robert E
2014-01-01
Floral nectar sugar compositions have, for several decades, been used to predict a plant species' pollinator guild. Plants possessing a generalist ornithophilous pollination syndrome produce nectar that is dilute (8-12% w/v sugars) with a low sucrose to hexose (glucose and fructose) ratio. The Hawaiian lobeliad genus Clermontia contains 22 endemic species of shrubs and small trees that are believed to have evolved flowers adapted for pollination by now mostly extinct or endangered endemic passerines in the Drepanidinae and Mohoidae. We analyzed the nectar sugar compositions, concentration, and nectar standing crop of 23 taxa to test the assumption that Clermontia taxa have evolved floral traits in response to selection pressures from these avian pollinators. All Clermontia taxa produced nectar with sugar concentrations (mean: 9.2% w/v ± 1.8 SD) comparable to the nectar of other plant species with a generalized bird pollination system. Nectar sugars were overwhelmingly composed of hexoses in all taxa (mean sucrose/hexose ratio: 0.02 ± 0.02). Nectar standing crop volumes varied widely among taxa, ranging from 9.7 µL ± 7.1 to 430.5 µL ± 401.8 (mean volume: 177.8 ± 112.0). Collectively, the nectar traits indicate that Clermontia species possess a generalist passerine pollination syndrome.
Parisotto, T M; Stipp, R; Rodrigues, L K A; Mattos-Graner, R O; Costa, L S; Nobre-Dos-Santos, M
2015-08-01
Insoluble polysaccharide (IP) has been associated with caries prevalence in young children. However, the power of IP to predict ECC needs to be demonstrated. To assess the relationships between early childhood caries (ECC) and extracellular insoluble polysaccharides (IP) in dental plaque, sugar exposure and cariogenic microorganisms. Visible plaque on maxillary incisors was recorded, followed by caries diagnosis in 65 preschoolers (3-4 years) at baseline and after 1 year. Plaque was collected for mutans streptococci (MS), total microorganism (TM) and lactobacilli (LB) enumerations in selective media, as well as for IP analysis, which was later assessed by colorimetry. Sugar/sucrose exposure was assessed by a diet chart. Positive correlations were found among the prevalence of caries and MS, TM, LB, solid sucrose and visible dental plaque. Additionally, children with IP concentrations in dental plaque higher than 2.36 μg/mg (odds ratio-OR=6.8), with visible plaque on maxillary incisors (OR=4.3), harbouring LB (OR=13) and exposed to solid sugar more than twice/day (OR=5) showed higher risk of developing caries (p<0.05). Extracellular insoluble polysaccharides, solid sugar/sucrose, visible dental plaque and cariogenic microorganisms could predict caries development, partially explaining the ECC pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oil Palm Frond Juice as Future Fermentation Substrate: A Feasibility Study
Che Maail, Che Mohd Hakiman; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito
2014-01-01
Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities. PMID:25057489
Pinar, Orkun; Karaosmanoğlu, Kübra; Sayar, Nihat Alpagu; Kula, Ceyda; Kazan, Dilek; Sayar, Ahmet Alp
2017-12-01
The present work focuses firstly on the evaluation of the effect of laccase on enzymatic hydrolysis of hazelnut husk which is one of the most abundant lignocellulosic agricultural residues generated in Turkey. In this respect, the co-enzymatic treatment of hazelnut husk by cellulase and laccase, without a conventional pretreatment step is evaluated. Using 2.75 FPU/g substrate (40 g/L substrate) and a ratio of 131 laccase U/FPU achieved the highest reducing sugars concentration. Gas chromatography mass spectrometry confirmed that the hydrolysate was composed of glucose, xylose, mannose, arabinose and galactose. The inclusion of laccase in the enzyme mixture [carboxymethyl cellulase (CMCase) and β-glucosidase] increased the final glucose content of the reducing sugars from 20 to 50%. Therefore, a very significant increase in glucose content of the final reducing sugars concentration was obtained by laccase addition. Furthermore, the production of cellulases and laccase by Pycnoporus sanguineus DSM 3024 using hazelnut husk as substrate was also investigated. Among the hazelnut husk concentrations tested (1.5, 6, 12, 18 g/L), the highest CMCase concentration was obtained using 12 g/L husk concentration on the 10th day of fermentation. Besides CMCase, P. sanguineus DSM 3024 produced β-glucosidase and laccase using hazelnut husk as carbon source. In addition to CMCase and β-glucosidase, the highest laccase activity measured was 2240 ± 98 U/L (8.89 ± 0.39 U/mg). To the best of our knowledge, this is the first study to report hazelnut husk hydrolysis in the absence of pretreatment procedures.
Management practices impact vine carbohydrate status to a greater extent than vine productivity
Pellegrino, Anne; Clingeleffer, Peter; Cooley, Nicola; Walker, Rob
2014-01-01
Light pruning and deficit irrigation regimes are practices which are widely used in high yielding commercial vineyards in the warm climate regions of Australia. Little information is available on their impacts on carbohydrate dynamics in vegetative organs within and between seasons, and on the resulting plant capacity to maintain productivity and ripen fruits. This study was conducted to address this gap in knowledge over five vintages on Vitis vinifera L. cv. Cabernet Franc, Shiraz, and Cabernet Sauvignon in the Sunraysia region of Victoria, Australia. Lighter pruning did not change the total carbohydrates concentration and composition in wood and roots within seasons in Cabernet Franc and Shiraz. However, the total carbohydrate pool (starch and soluble sugars) at the end of dormancy increased under lighter pruning, due to higher vine size, associated with retention and growth of old-wood (trunk and cordons). Water deficit negatively impacted trunk and leaf starch concentrations, over the day and within seasons in Cabernet Sauvignon. Soluble sugars concentrations in these tissues tended to be higher under limited water supply, possibly due to higher sugar mobilization as photosynthesis decreased. Trunk carbohydrate concentrations markedly varied within and between seasons, highlighting the importance of interactive factors such as crop load and climate on carbon status. The period between fruit-set and véraison was shown to be critical for its impact on the balance between carbon accretion and depletion, especially under water deficit. The lower leaf and trunk starch concentration under water deficit resulted in a decrease of yield components at harvest, while similar yields were reached for all pruning systems. The sugar allocated to berries at harvest remained remarkably stable for all practices and seasons, irrespective of vine yield and carbohydrate status in vegetative organs in Shiraz and Cabernet Sauvignon. PMID:25018758
Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG
NASA Astrophysics Data System (ADS)
Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade
2017-03-01
The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.
Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.
Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J
2009-05-01
The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.
Swarna Nantha, Yogarabindranath
2014-10-01
The average consumption of sugar in the Malaysian population has reached an alarming rate, exceeding the benchmark recommended by experts. This article argues the need of a paradigm shift in the management of sugar consumption in the country through evidence derived from addiction research. "Food addiction" could lead to high levels of sugar consumption. This probable link could accelerate the development of diabetes and obesity in the community. A total of 94 reports and studies that describe the importance of addiction theory-based interventions were found through a search on PubMed, Google Scholar, and Academic Search Complete. Research in the field of addiction medicine has revealed the addictive potential of high levels of sugar intake. Preexisting health promotion strategies could benefit from the integration of the concept of sugar addiction. A targeted intervention could yield more positive results in health outcomes within the country. Current literature seems to support food environment changes, targeted health policies, and special consultation skills as cost-effective remedies to curb the rise of sugar-related health morbidities. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Qu, Y. H.; Lin, C.; Zhou, W.; Li, Y.; Chen, B.; Chen, G. Q.
2009-01-01
The dynamic fluctuations of CO 2 concentration in the tissue culture growth chamber after transplantation of petunia, chrysanthemum and tomato plantlets were recorded with a real-time control system to determine the critical CO 2 concentration levels of 35 μl l -1 at which CO 2 enrichment is needed. The experimental data showed that the tissue-cultured plantlets of petunia, chrysanthemum and tomato had the same CO 2 concentration dynamics. The results indicated that CO 2 enrichment was proper on the second day after transplantation. Petunia plantlets were used to conduct experiments under PPFD of 80 μmol m -2 s -1, and CO 2 concentrations of 350 ± 50 μl l -1, 650 ± 50 μl l -1 and 950 ± 50 μl l -1 as well as medium moisture contents of 60%, 70% and 80%, with the result that plantlets grew better under CO 2 concentration of 650 ± 50 μl l -1 than under the other two concentrations with all the different media water contents. Three media water contents under the same CO 2 concentration produced plantlets with the same quality. The impacts of CO 2 concentrations on plantlets are more important than those of the media water contents. Sugar-free tissue culture, as compared with the conventional culture, showed that CO 2 enrichment to 350 ± 50 μl l -1 can promote the growth of the cultured plantlets. Sugar-free tissue culture produced healthy plantlets with thick roots, almost equivalent to the common plantlets.
A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate.
Chen, Hanchi; Liu, Shijie
2015-09-01
Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller's grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-D-xylopyranose and α-L-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis.
Boo, Chelsea C; Parker, Christine H; Jackson, Lauren S
2018-01-01
Food allergy is a growing public health concern, with many individuals reporting allergies to multiple food sources. Compliance with food labeling regulations and prevention of inadvertent cross-contact in manufacturing requires the use of reliable methods for the detection and quantitation of allergens in processed foods. In this work, a novel liquid chromatography-tandem mass spectrometry multiple-reaction monitoring method for multiallergen detection and quantitation of egg, milk, and peanut was developed and evaluated in an allergen-incurred baked sugar cookie matrix. A systematic evaluation of method parameters, including sample extraction, concentration, and digestion, were optimized for candidate allergen peptide markers. The optimized method enabled the reliable detection and quantitation of egg, milk, and peanut allergens in sugar cookies, with allergen concentrations as low as 5 ppm allergen-incurred ingredient.
LOUISIANA STORY, 1964, THE SUGAR SYSTEM AND THE PLANTATION WORKERS.
ERIC Educational Resources Information Center
MYERS, ROBIN
BASED UPON THE FINDINGS OF A RURAL EDUCATION AND WELFARE SURVEY OF MORE THAN 900 SUGARCANE WORKERS IN THE NINE LOUISIANA COUNTIES WHERE SUGARCANE CULTIVATION IS CONCENTRATED, THIS DOCUMENT TELLS OF THE LIVES OF THE WORKERS AND EXPLAINS THE NATIONAL AND INTERNATIONAL "SUGAR SYSTEM" UNDER WHICH THEY LIVE. DISCUSSED ARE THE EFFECTS OF…
Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees
Andrew D. Richardson; Mariah S. Carbone; Trevor F. Keenan; Claudia I. Czimczik; David Y. Hollinger; Paula Murakami; Paul G. Schaberg; Xiaomei Xu
2013-01-01
Nonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars...
Postharvest respiration rate and sucrose concentration of Rhizoctonia-infected sugar beet roots
USDA-ARS?s Scientific Manuscript database
Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani AG 2-2, is a common root disease on sugar beet that reduces yield and sucrose during the growing season and causes further losses by increasing respiration and reducing sucrose content during storage. The industry needs to identify...
Composition of root pressure exudate from conifers.
D.O. Ketchie; W. Lopushinsky
1981-01-01
Root pressure exudates collected from detopped seedlings of Douglas-fir, grand fir, noble fir, Pacific silver fir, ponderosa pine, lodgepole pine, and Engelmann spruce were analyzed for sugars, amino acids, organic acids, nitrogen, potassium, calcium, and magnesium. Sugar concentrations ranged from 0.10 percent to 5 percent, and included glucose, sucrose, fructose, and...
Hirabayashi, Katsuki; Kondo, Nobuhiro; Toyota, Hiroshi; Hayashi, Sachio
2017-01-01
We report the production of the functional trisaccharide 1-kestose, O-β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl α-D-glucopyranoside, by β-fructofuranosidase from Aspergillus japonicus using sugar cane molasses as substrate. Sucrose in cane sugar molasses acted as a fructosyl donor and acceptor for the enzyme. The tetrasaccharide nystose, O-β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl α-D-glucopyranoside, was produced from 1-kestose. Cane sugar molasses mixed with water provided a better substrate solution for β-fructofuranosidase compared to undiluted molasses due to the high concentration of product inhibitors such as glucose and fructose in molasses. The maximum concentration of 1-kestose obtained was 84.9 mg/ml and the maximum production efficiency was 32.3% after 24 h reaction at 40 °C. The maximum efficiency of combined fructo-oligosaccharide (1-kestose and nystose) production was 40.6%. 1-Kestose was therefore produced via a fructosyl-transfer reaction catalyzed by β-fructofuranosidase from A. japonicus.
Kapoor, Manali; Soam, Shveta; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra
2017-01-01
The aim of this work was to study the dilute acid pretreatment of rice straw (RS) and fermentable sugar recovery at high solid loadings at pilot scale. A series of pretreatment experiments were performed on RS resulting in >25wt% solids followed by enzymatic hydrolysis without solid-liquid separation at 20 and 25wt% using 10FPU/g of the pretreated residue. The overall sugar recovery including the sugars released in pretreatment and enzymatic hydrolysis was calculated along with a mass balance. Accordingly, the optimized conditions, i.e. 0.35wt% acid, 162°C and 10min were identified. The final glucose and xylose concentrations obtained were 83.3 and 31.9g/L respectively resulting in total concentration of 115.2g/L, with a potential to produce >50g/L of ethanol. This is the first report on pilot scale study on acid pretreatment of RS in a screw feeder horizontal reactor followed by enzymatic hydrolysis at high solid loadings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inhibition of Cell Wall-Associated Enzymes in Vitro and in Vivo with Sugar Analogs
Nagahashi, Gerald; Tu, Shu-I; Fleet, George; Namgoong, Sun K.
1990-01-01
Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised. PMID:16667291
Gaucher, Catherine; Gougeon, Sébastien; Mauffette, Yves; Messier, Christian
2005-01-01
We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.
Günther Sillero, María A; Pérez-Zúñiga, Francisco; Gomes, Joana; de Carvalho, Ana Isabel; Martins, Susana; Silles, Eduardo; Sillero, Antonio
2008-03-01
Saccharomyces cerevisiae cells (strain W303-1A) treated with 5-fluorouracil and grown in 2% (fermentative conditions) or in 0.1% glucose (oxidative conditions) accumulated two types of 5-fluoro-UDP-sugars (FUDP-sugars): FUDP-N-acetylglucosamine and FUDP-glucose. No difference was observed in both conditions of culture. The viability of yeast cells on treatment with 5-fluorouracil was also followed. Both FUDP-sugars were partially purified by column chromatography (on Hypersil ODS and Mono Q columns) and characterized by: (i) treatment with alkaline phosphatase (EC 3.1.3.1), snake venom phosphodiesterase (EC 3.1.4.1) and UDP-glucose dehydrogenase (EC 1.1.1.22); (ii) UV spectra; and (iii) matrix-assisted laser desorption/ionization-time of flight mass analysis and 1H-nuclear magnetic resonance spectrometry. The syntheses of both FUDP-sugars were inversely related to the concentration of uracil and directly related to the concentration of 5-fluorouracil in the culture medium. The strain W303-1A, requiring uracil for growth, was useful as a tool to analyze the effect of 5-fluorouracil on nucleotide metabolism.
Katan, Martijn B.; de Ruyter, Janne C.; Kuijper, Lothar D. J.; Chow, Carson C.; Hall, Kevin D.; Olthof, Margreet R.
2016-01-01
Background Substituting sugar-free for sugar-sweetened beverages reduces weight gain. This effect may be more pronounced in children with a high body mass index (BMI) because their sensing of kilocalories might be compromised. We investigated the impact of sugar-free versus sugary drinks separately in children with a higher and a lower initial BMI z score, and predicted caloric intakes and degree of compensation in the two groups. Methods and Findings This is a secondary, explorative analysis of our double-blind randomized controlled trial (RCT) which showed that replacement of one 250-mL sugary drink per day by a sugar—free drink for 18 months significantly reduced weight gain. In the 477 children who completed the trial, mean initial weights were close to the Dutch average. Only 16% were overweight and 3% obese. Weight changes were expressed as BMI z-score, i.e. as standard deviations of the BMI distribution per age and sex group. We designated the 239 children with an initial BMI z-score below the median as ‘lower BMI’ and the 238 children above the median as ‘higher BMI’. The difference in caloric intake from experimental beverages between treatments was 86 kcal/day both in the lower and in the higher BMI group. We used a multiple linear regression and the coefficient of the interaction term (initial BMI group times treatment), indicated whether children with a lower BMI responded differently from children with a higher BMI. Statistical significance was defined as p ≤ 0.05. Relative to the sugar sweetened beverage, consumption of the sugar—free beverage for 18 months reduced the BMI z-score by 0.05 SD units within the lower BMI group and by 0.21 SD within the higher BMI group. Body weight gain was reduced by 0.62 kg in the lower BMI group and by 1.53 kg in the higher BMI group. Thus the treatment reduced the BMI z-score by 0.16 SD units more in the higher BMI group than in the lower BMI group (p = 0.04; 95% CI -0.31 to -0.01). The impact of the intervention on body weight gain differed by 0.90 kg between BMI groups (p = 0.09; 95% CI -1.95 to 0.14). In addition, we used a physiologically-based model of growth and energy balance to estimate the degree to which children had compensated for the covertly removed sugar kilocalories by increasing their intake of other foods. The model predicts that children with a lower BMI had compensated 65% (95% CI 28 to 102) of the covertly removed sugar kilocalories, whereas children with a higher BMI compensated only 13% (95% CI -37 to 63). Conclusions The children with a BMI above the median might have a reduced tendency to compensate for changes in caloric intake. Differences in these subconscious compensatory mechanisms may be an important cause of differences in the tendency to gain weight. If further research bears this out, cutting down on the intake of sugar-sweetened drinks may benefit a large proportion of children, especially those who show a tendency to become overweight. Trial Registration ClinicalTrials.gov NCT00893529 PMID:27447721
Sugar reduction in fruit nectars: Impact on consumers' sensory and hedonic perception.
Oliveira, Denize; Galhardo, Juliana; Ares, Gastón; Cunha, Luís M; Deliza, Rosires
2018-05-01
Sugar sweetened beverages are one of the main sources of added sugar in the diet. Therefore, sugar reduction in these products could contribute to the prevention of various negative health conditions, such as obesity, diabetes and cardiovascular diseases. In this context, the present work aimed to study consumer sensory and hedonic perception towards sugar reduction in fruit nectars. Five sequential difference thresholds for added sugar in three fruit nectars (passion fruit, orange/passion fruit and orange/pomegranate) were determined based on consumer perception. In each test, difference thresholds were estimated using survival analysis based on the responses of 50 consumers to six paired-comparison tests. Each pair was composed of two samples, a control nectar and a sample that was reduced in added sugar from the control. Consumers were asked to try each of the samples in each pair and to indicate which was sweeter. Then, consumers' sensory and hedonic perception of nectar samples was evaluated for each nectar using a 9-point hedonic scale and a check-all-that-apply question. Difference thresholds were estimated in 4.20%-8.14% of the added sugar concentration of the nectars. No significant differences in overall liking were detected for fruit nectars with 20% sugar reduction. However, large heterogeneity in consumer hedonic reaction towards sugar reduction was found, which should be taken into account in the design of sugar reduction programs. Consumer hedonic reaction towards sugar reduction was product dependent. Results from the present work reinforce the idea that gradual sugar reduction in sugar sweetened beverages is a feasible strategy that could contribute to reduce the sugar intake of the population. Copyright © 2018 Elsevier Ltd. All rights reserved.
Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana
Kunz, Sabine; Pesquet, Edouard; Kleczkowski, Leszek A.
2014-01-01
Background Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. Methodology/Principal Findings To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. Conclusions Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism. PMID:24950222
Bellini, Romeo; Puggioli, Arianna; Balestrino, Fabrizio; Brunelli, Paolo; Medici, Anna; Urbanelli, Sandra; Carrieri, Marco
2014-04-01
Aedes albopictus male survival in laboratory cages is no more than 4-5 days when kept without any access to sugar indicating their need to feed on a sugar source soon after emergence. We therefore developed a device to administer energetic substances to newly emerged males when released as pupae as part of a sterile insect technique (SIT) programme, made with a polyurethane sponge 4 cm thick and perforated with holes 2 cm in diameter. The sponge was imbibed with the required sugar solution and due to its high retention capacity the sugar solution was available for males to feed for at least 48 h. When evaluated in lab cages, comparing adults emerged from the device with sugar solution vs the device with water only (as negative control), about half of the males tested positive for fructose using the Van Handel anthrone test, compared to none of males in the control cage. We then tested the tool in semi-field and in field conditions with different sugar concentrations (10%, 15%, and 20%) and compared results to the controls fed with water only. Males were recaptured by a battery operated manual aspirator at 24 and 48 h after pupae release. Rather high share 10-25% of captured males tested positive for fructose in recollections in the vicinity of the control stations, while in the vicinity of the sugar stations around 40-55% of males were positive, though variability between replicates was large. The sugar positive males in the control test may have been released males that had access to natural sugar sources found close to the release station and/or wild males present in the environment. Only a slight increase in the proportion of positive males was obtained by increasing the sugar concentration in the feeding device from 10% to 20%. Surprisingly, modification of the device to add a black plastic inverted funnel above the container reduced rather than increased the proportion of fructose positive males collected around the station. No evidence of difference in the capacity of sterile (irradiated with 30 Gy) males to take a sugar meal relative to fertile males was observed in field comparison. A clear effect of temperature and relative humidity (RH) on the rate of sugar positive males was observed, with an increase of temperature and a decrease in RH strongly increasing the % of sugar positive males. In large enclosures we tested the effect of our sugar supplying tool on the mating competitiveness of sterile vs fertile males, which produced an evident favorable effect both on sterile and fertile males. Copyright © 2013 International Atomic Energy Agency 2013. Published by Elsevier B.V. All rights reserved.
3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...
3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Deposition Ice Nuclei Concentration at Different Temperatures and Supersaturations
NASA Astrophysics Data System (ADS)
López, M. L.; Avila, E.
2013-05-01
Ice formation is one of the main processes involved in the initiation of precipitation. Some aerosols serve to nucleate ice in clouds. They are called ice nuclei (IN) and they are generally solid particles, insoluble in water. At temperatures warmer than about -36°C the only means for initiation of the ice phase in the atmosphere involves IN, and temperature and supersaturation required to activate IN are considered as key information for the understanding of primary ice formation in clouds. The objective of this work is to quantify the IN concentration at ground level in Córdoba City, Argentina, under the deposition mode, that is to say that ice deposits on the IN directly from the vapor phase. It happens when the environment is supersaturated with respect to ice and subsaturated with respect to liquid water. Ice nuclei concentrations were measured in a cloud chamber placed in a cold room with temperature control down to -35°C. The operating temperature was varied between -15°C and -30°C. Ice supersaturation was ranged between 2 and 20 %. In order to quantify the number of ice particles produced in each experiment, a dish containing a supercooled solution of cane sugar, water and glycerol was placed on the floor of the cloud chamber. The activated IN grew at the expense of vapor until ice crystals were formed and these then fell down onto the sugar solution. Once there, these crystals could grow enough to be counted easily with a naked eye after a period of about three minutes, when they reach around 2 mm in diameter. In order to compare the present results with previously reported results, the data were grouped in three different ranges of supersaturation: the data with supersaturations between 2 and 8 %, the data with supersaturations between 8 and 14% and the data with supersaturations between 14 and 20 %. In the same way, in order to analize the behavior of IN concentration with supersaturation, the data were grouped for three different temperatures, the data with temperatures between -15°C and -20°C, the data with temperatures between -20°C and -25°C and the data with temperatures between -25°C and -30°C. The results confirm that for each temperature range, the concentration of IN increases at higher supersaturation, and show the tendency of the IN concentration to increase with increasing ice supersaturation. Based on previous parameterizations, a combination of IN concentration in relation with temperature and ice supersaturation is proposed in this work. As far as we know, this is among the first work to measure and parameterize the concentration of deposition ice nuclei in the Southern Hemisphere.
Prodhomme, Duyên; Gibon, Yves; Tardieu, François
2016-01-01
Flower or grain abortion causes large yield losses under water deficit. In maize (Zea mays), it is often attributed to a carbon limitation via the disruption of sucrose cleavage by cell wall invertases in developing ovaries. We have tested this hypothesis versus another linked to the expansive growth of ovaries and silks. We have measured, in silks and ovaries of well-watered or moderately droughted plants, the transcript abundances of genes involved in either tissue expansion or sugar metabolism, together with the concentrations and amounts of sugars, and with the activities of major enzymes of carbon metabolism. Photosynthesis and indicators of sugar export, measured during water deprivation, suggested sugar export maintained by the leaf. The first molecular changes occurred in silks rather than in ovaries and involved genes affecting expansive growth rather than sugar metabolism. Changes in the concentrations and amounts of sugars and in the activities of enzymes of sugar metabolism occurred in apical ovaries that eventually aborted, but probably after the switch to abortion of these ovaries. Hence, we propose that, under moderate water deficits corresponding to most European drought scenarios, changes in carbon metabolism during flowering time are a consequence rather than a cause of the beginning of ovary abortion. A carbon-driven ovary abortion may occur later in the cycle in the case of carbon shortage or under very severe water deficits. These findings support the view that, until the end of silking, expansive growth of reproductive organs is the primary event leading to abortion, rather than a disruption of carbon metabolism. PMID:27208256
NASA Astrophysics Data System (ADS)
Herlina, Netti; Siska Dewi Harahap, Ici
2018-03-01
Bioethanol (C2H5OH) is a biochemical liquid produced by microorganisms through fermentation process on sugar molecules from carbohydrates. Bioethanol is a fuel of vegetable oil that has similar properties to premium. With its main product of palm juice, Sugar palm (Arenga pinnata) is a potential source of sugar and carbohydrate for bioethanol production. Production of palm juice can reach up to 12-14 liters/tree/day with total sugar content in palm juice ranges from 12-15%. The purpose of this research was to produce highly-concentrated bioethanol from palm juice through fermentation proccess to subtitude fossil fuel. This study was conducted with three stages of treatment, namely: the fermentation of palm juice, distillation of bioethanol, and purification of bioethanol with the addition of adsorbent zeolite and calcium oxide.
Micropropagation and cytogenetic assessment of Zingiber species of Northeast India.
Das, Archana; Kesari, Vigya; Rangan, Latha
2013-12-01
An improved micropropagation protocol was developed for Zingiber moran and Z. zerumbet, two wild species of the genus Zingiber, found in Northeast India. The effects of growth regulators, sugar concentrations, and nutrients were tested on the rate of shoot initiation and multiplication. An increase in proliferation and multiplication occurred in modified Murashige and Skoog (MS) medium supplemented with benzyladenine and kinetin. About 2 % sucrose and 0.7 % agar were found to be the optimum for shoot multiplication and regeneration. Naphthalene acetic acid at 0.5 mg/L produced the best rooting response for both the species. Regenerated plantlets were acclimatized successfully and cytogenetic stability was confirmed by RAPD profiling and ploidy checks.
Kubo, Takuya; Kanemori, Koichi; Kusumoto, Risa; Kawai, Takayuki; Sueyoshi, Kenji; Naito, Toyohiro; Otsuka, Koji
2015-01-01
An effective separation and detection procedure for sugars by capillary electrophoresis (CE) using a complexation between quinolineboronic acid (QBA) and multiple hydroxyl structure of sugar alcohol is reported. We investigated the variation of fluorescence spectra of a variety of QBAs with sorbitol at a wide range of pH conditions and then found that 5-isoQBA strongly enhanced the fluorescence intensity by the complexation at basic pH conditions. The other sugar alcohols having multiple hydroxyls also revealed the enhancement of the fluorescence intensity with 5-isoQBA, whereas the alternation of the intensity was not found in the sugars such as glucose. After optimization of the 5-isoQBA concentration and pH of the buffered solution in CE analysis, 6 sugar alcohols were successfully separated in the order based on the formation constants with 5-isoQBA, which were calculated from the variation of the fluorescence intensity with each sugar alcohol and 5-isoQBA. Furthermore, the limits of detection for sorbitol and xylitol by the CE method were estimated at 15 and 27 μM, respectively.
Transformation of algal turf by echinoids and scarid fishes on French Polynesian coral reefs
NASA Astrophysics Data System (ADS)
Harmelin-Vivien, Mireille L.; Peyrot-Clausade, Mireille; Romano, Jean-Claude
1992-04-01
The respective roles of regular echinoids and scarid fishes in the transformation of turf algae, the main food resource for reef herbivores, were investigated on French Polynesian coral reefs. The role of one species of parrotfish ( Scarus sordidus) was compared with that of four species of echinoids. The degree and ways of degradation of the algal matter were determined by the organic matter percentage, the composition of the sugar fraction, and the concentration and composition of chlorophylltype pigments as assayed by HPLC analysis. Chemical analyses were performed on anterior and posterior intestines for scarids, intestinal contents and faeces for echinoids, and on fresh algal turf as a control of initial food quality. A decrease in mean percentage of organic matter in gut content was observed from intestine (9.7%) to faeces (7%) in sea urchins, but not in parrotfishes. The total sugar fraction decreased from fresh algal turf (32% of total organic matter) to echinoid (28%) to scarid (18%) gut contents. The ratio of insoluble to soluble sugars (I/S ratios) was higher in echinoids (2.6) than in scarid gut contents (1.0). A decrease in the total pigment concentration was measured from fresh algal turf to echinoid and it was found to be even lower in scarid gut contents. Chromatograms showed that the composition of chlorophyll-type pigments in scarid intestines was very similar to fresh algal turf, with a dominance of native forms, mainly chlorophyll a and b. On the contrary, degraded pigment forms dominated in echinoids. The main degraded products were pheophorbides in sea urchins, and chlorophyllides in parrotfishes. These results provided evidence for differentiation in digestive processes occurring in the two types of grazers. Echinoids released higher degraded algal material than did scarids. Thus, these two types of grazers play different roles in the recycling of organic matter on coral reefs.
Hu, Bin-Bin; Zhu, Ming-Jun
2017-05-03
Energy shortage and environmental pollution are two severe global problems, and biological hydrogen production from lignocellulose shows great potential as a promising alternative biofuel to replace the fossil fuels. Currently, most studies on hydrogen production from lignocellulose concentrate on cellulolytic microbe, pretreatment method, process optimization and development of new raw materials. Due to no effective approaches to relieve the inhibiting effect of inhibitors, the acid pretreated lignocellulose hydrolysate was directly discarded and caused environmental problems, suggesting that isolation of inhibitor-tolerant strains may facilitate the utilization of acid pretreated lignocellulose hydrolysate. Thermophilic bacteria for producing hydrogen from various kinds of sugars were screened, and the new strain named MJ1 was isolated from paper sludge, with 99% identity to Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. The hydrogen yields of 11.18, 4.25 and 2.15 mol-H 2 /mol sugar can be reached at an initial concentration of 5 g/L cellobiose, glucose and xylose, respectively. The main metabolites were acetate and butyrate. More important, MJ1 had an excellent tolerance to inhibitors of dilute-acid (1%, g/v) pretreated sugarcane bagasse hydrolysate (DAPSBH) and could efficiently utilize DAPSBH for hydrogen production without detoxication, with a production higher than that of pure sugars. The hydrogen could be quickly produced with the maximum hydrogen production reached at 24 h. The hydrogen production reached 39.64, 105.42, 111.75 and 110.44 mM at 20, 40, 60 and 80% of DAPSBH, respectively. Supplementation of CaCO 3 enhanced the hydrogen production by 21.32% versus the control. These results demonstrate that MJ1 could directly utilize DAPSBH for biohydrogen production without detoxication and can serve as an excellent candidate for industrialization of hydrogen production from DAPSBH. The results also suggest that isolating unique strains from a particular environment offers an ideal way to conquer the related problems.
Halford, Nigel G; Muttucumaru, Nira; Powers, Stephen J; Gillatt, Peter N; Hartley, Lee; Elmore, J Stephen; Mottram, Donald S
2012-12-05
Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.
Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars
NASA Astrophysics Data System (ADS)
Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.
2013-07-01
The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.
Moreno-Alvarado, Marcos; García-Morales, Soledad; Trejo-Téllez, Libia Iris; Hidalgo-Contreras, Juan Valente; Gómez-Merino, Fernando Carlos
2017-01-01
Aluminum (Al) is a beneficial element for some plant species, especially when used at low concentrations. Though some transcription factors are induced by exposure to this element, no data indicate that Al regulates the expression of NAC genes in rice. In this study we tested the effect of applying 200 μM Al on growth, chlorophyll, amino acids, sugars, macronutrient concentration and regulation of NAC transcription factors gene expression in 24-day-old plants of four rice (Oryza sativa ssp. indica) cultivars: Cotaxtla, Tres Ríos, Huimanguillo and Temporalero, grown hydroponically under greenhouse conditions. Twenty days after treatment, we observed that Al enhanced growth in the four cultivars studied. On average, plants grown in the presence of Al produced 140% more root dry biomass and were 30% taller than control plants. Cotaxtla and Temporalero showed double the root length, while Huimanguillo and Cotaxtla had three times more root fresh biomass and 2.5 times more root dry biomass. Huimanguillo plants showed 1.5 times more shoot height, while Cotaxtla had almost double the root dry biomass. With the exception of Tres Ríos, the rest of the cultivars had almost double the chlorophyll concentration when treated with Al, whereas amino acid and proline concentrations were not affected by Al. Sugar concentration was also increased in plants treated with Al, almost 11-fold in comparison to the control. Furthermore, we observed a synergic response of Al application on P and K concentration in roots, and on Mg concentration in shoots. Twenty-four hours after Al treatment, NAC transcription factors gene expression was measured in roots by quantitative RT-PCR. Of the 57 NAC transcription factors genes primer-pairs tested, we could distinguish that 44% (25 genes) showed different expression patterns among rice cultivars, with most of the genes induced in Cotaxtla and Temporalero plants. Of the 25 transcription factors up-regulated, those showing differential expression mostly belonged to the NAM subfamily (56%). We conclude that Al improves growth, increases sugar concentration, P and K concentrations in roots, and Mg concentration in shoots, and report, for the first time, that Al differentially regulates the expression of NAC transcription factors in rice. PMID:28261224
Morán-Marroquín, G A; Córdova, J; Valle-Rodríguez, J O; Estarrón-Espinosa, M; Díaz-Montaño, D M
2011-11-15
Knowledge of physiological behavior of indigenous tequila yeast used in fermentation process is still limited. Yeasts have significant impact on the productivity fermentation process as well as the sensorial characteristics of the alcoholic beverage. For these reasons a better knowledge of the physiological and metabolic features of these yeasts is required. The effects of dilution rate, nitrogen and phosphorus source addition and micro-aeration on growth, fermentation and synthesis of volatile compounds of two native Saccharomyces cerevisiae strains, cultured in continuous fed with Agave tequilana juice were studied. For S1 and S2 strains, maximal concentrations of biomass, ethanol, consumed sugars, alcohols and esters were obtained at 0.04 h⁻¹. Those concentrations quickly decreased as D increased. For S. cerevisiae S1 cultures (at D=0.08 h⁻¹) supplemented with ammonium phosphate (AP) from 1 to 4 g/L, concentrations of residual sugars decreased from 29.42 to 17.60 g/L and ethanol increased from 29.63 to 40.08 g/L, respectively. The S1 culture supplemented with AP was then micro-aerated from 0 to 0.02 vvm, improving all the kinetics parameters: biomass, ethanol and glycerol concentrations increased from 5.66, 40.08 and 3.11 g/L to 8.04, 45.91 and 4.88 g/L; residual sugars decreased from 17.67 g/L to 4.48 g/L; and rates of productions of biomass and ethanol, and consumption of sugars increased from 0.45, 3.21 and 7.33 g/L·h to 0.64, 3.67 and 8.38 g/L·h, respectively. Concentrations of volatile compounds were also influenced by the micro-aeration rate. Ester and alcohol concentrations were higher, in none aerated and in aerated cultures respectively. Copyright © 2011. Published by Elsevier B.V.
Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice
García-Morales, Soledad; Pérez-Sato, Juan Antonio
2018-01-01
Cerium (Ce) belongs to the rare earth elements (REEs), and although it is not essential for plants, it can stimulate growth and other physiological processes. The objective of this research was to evaluate the effect of Ce on seed germination, initial seedling growth, and vegetative growth in rice (Oryza sativa L.) cv. Morelos A-98. During the germination process, the seeds were treated with Ce concentrations of 0, 4, 8, and 12 μM; after 5 d, germination percentage was recorded and after 10 d seedling growth was measured. For vegetative growth, a hydroponic system was established where 14-d-old plants without previous Ce treatment were transferred into nutrient solution. After two weeks of acclimatizing, 0, 25, 50, and 100 μM Ce were added to the nutrient solution for 28 d. Ce significantly increased germination and the initial growth variables of the seedlings. During vegetative growth, Ce increased plant height, number of tillers, root volume, and shoot fresh and dry biomass, without affecting root biomass weight. With low Ce concentrations (25 and 50 μM), the concentrations of chlorophylls and amino acids in the shoots were similar to those in the control, like amino acid concentration in the roots at a concentration of 25 μM Ce. Conversely, the concentration of total sugars increased in the shoot with the application of 25, 50, and 100 μM Ce, and in the roots with the application of 50 μM Ce. Also, Ce did not affect the concentration of macro or micronutrients in the shoots. However, in the roots, the high Ce concentration decreased the concentrations of Ca, Fe, Mn, and Zn, while the Mg concentration increased. Our results indicate that Ce, at the right concentrations, can function as a biostimulant in rice germination and growth. PMID:29579100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.
2015-02-01
Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acidmore » hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.« less
Beasley, J M; Jung, M; Tasevska, N; Wong, W W; Siega-Riz, A M; Sotres-Alvarez, D; Gellman, M D; Kizer, J R; Shaw, P A; Stamler, J; Stoutenberg, M; Van Horn, L; Franke, A A; Wylie-Rosett, J; Mossavar-Rahmani, Y
2016-12-01
Measurement error in self-reported total sugars intake may obscure associations between sugars consumption and health outcomes, and the sum of 24 h urinary sucrose and fructose may serve as a predictive biomarker of total sugars intake. The Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS) was an ancillary study to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort. Doubly labelled water and 24 h urinary sucrose and fructose were used as biomarkers of energy and sugars intake, respectively. Participants' diets were assessed by up to three 24 h recalls (88 % had two or more recalls). Procedures were repeated approximately 6 months after the initial visit among a subset of ninety-six participants. Four centres (Bronx, NY; Chicago, IL; Miami, FL; San Diego, CA) across the USA. Men and women (n 477) aged 18-74 years. The geometric mean of total sugars was 167·5 (95 % CI 154·4, 181·7) g/d for the biomarker-predicted and 90·6 (95 % CI 87·6, 93·6) g/d for the self-reported total sugars intake. Self-reported total sugars intake was not correlated with biomarker-predicted sugars intake (r=-0·06, P=0·20, n 450). Among the reliability sample (n 90), the reproducibility coefficient was 0·59 for biomarker-predicted and 0·20 for self-reported total sugars intake. Possible explanations for the lack of association between biomarker-predicted and self-reported sugars intake include measurement error in self-reported diet, high intra-individual variability in sugars intake, and/or urinary sucrose and fructose may not be a suitable proxy for total sugars intake in this study population.
Beasley, JM; Jung, M; Tasevska, N; Wong, WW; Siega-Riz, AM; Sotres-Alvarez, D; Gellman, MD; Kizer, JR; Shaw, PA; Stamler, J; Stoutenberg, M; Van Horn, L; Franke, AA; Wylie-Rosett, J; Mossavar-Rahmani, Y
2017-01-01
Objective Measurement error in self-reported total sugars intake may obscure associations between sugars consumption and health outcomes, and the sum of 24-hr urinary sucrose and fructose may serve as a predictive biomarker of total sugars intake. Design The Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS) was an ancillary study to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort. Doubly labeled water (DLW) and 24-hr urinary sucrose and fructose were used as biomarkers of energy and sugars intake, respectively. Participants’ diets were assessed by up to three 24-hr recalls (88% had two or more recalls). Procedures were repeated approximately six months after the initial visit among a subset of 96 participants. Setting Four centers (Bronx, NY; Chicago, IL; Miami, FL; San Diego, CA) across the United States Subjects 477 men and women aged 18–74 years. Results The geometric mean of total sugars intake was 167.5 (95% CI: 154.4–181.7) g/day for the biomarker-predicted and 90.6 (95% CI: 87.6–93.6) g/day for the self-reported total sugars intake. Self-reported total sugars intake was not correlated with biomarker-predicted sugars intake (r=−0.06, P=0.20, n=450). Among the reliability sample (n=90), the reproducibility coefficient was 0.59 for biomarker-predicted and 0.20 for self-reported total sugars intake. Conclusions Possible explanations for the lack of association between biomarker-predicted and self-reported sugars intake include measurement error in self-reported diet, high intra-individual variability in sugars intake, and/or urinary sucrose and fructose may not be a suitable proxy for total sugars intake in this study population. PMID:27339078
TANG1, Encoding a Symplekin_C Domain-Contained Protein, Influences Sugar Responses in Arabidopsis1
Shang, Li; Chen, Xing; Zhang, Limin; Smith, Caroline; Jing, Hai-Chun
2015-01-01
Sugars not only serve as energy and cellular carbon skeleton but also function as signaling molecules regulating growth and development in plants. Understanding the molecular mechanisms in sugar signaling pathways will provide more information for improving plant growth and development. Here, we describe a sugar-hypersensitive recessive mutant, tang1. Light-grown tang1 mutants have short roots and increased starch and anthocyanin contents when grown on high-sugar concentration medium. Dark-grown tang1 plants exhibit sugar-hypersensitive hypocotyl elongation and enhanced dark development. The tang1 mutants also show an enhanced response to abscisic acid but reduced response to ethylene. Thus, tang1 displays a range of alterations in sugar signaling-related responses. The TANG1 gene was isolated by a map-based cloning approach and encodes a previously uncharacterized unique protein with a predicted Symplekin tight-junction protein C terminus. Expression analysis indicates that TANG1 is ubiquitously expressed at moderate levels in different organs and throughout the Arabidopsis (Arabidopsis thaliana) life cycle; however, its expression is not affected by high-sugar treatment. Genetic analysis shows that PRL1 and TANG1 have additive effects on sugar-related responses. Furthermore, the mutation of TANG1 does not affect the expression of genes involved in known sugar signaling pathways. Taken together, these results suggest that TANG1, a unique gene, plays an important role in sugar responses in Arabidopsis. PMID:26002908
Beilharz, J E; Maniam, J; Morris, M J
2016-06-01
Chronic high-energy diets are known to induce obesity and impair memory; these changes have been associated with inflammation in brain areas crucial for memory. In this study, we investigated whether inflammation could also be related to diet-induced memory deficits, prior to obesity. We exposed rats to chow, chow supplemented with a 10% sucrose solution (Sugar) or a diet high in fat and sugar (Caf+Sugar) and assessed hippocampal-dependent and perirhinal-dependent memory at 1 week. Both high-energy diet groups displayed similar, selective hippocampal-dependent memory deficits despite the Caf+Sugar rats consuming 4-5 times more energy, and weighing significantly more than the other groups. Extreme weight gain and excessive energy intake are therefore not necessary for deficits in memory. Weight gain across the diet period however, was correlated with the memory deficits, even in the Chow rats. The Sugar rats had elevated expression of a number of inflammatory genes in the hippocampus and WAT compared to Chow and Caf+Sugar rats but not in the perirhinal cortex or hypothalamus. Blood glucose concentrations were also elevated in the Sugar rats, and were correlated with the hippocampal inflammatory markers. Together, these results indicate that liquid sugar can rapidly elevate markers of central and peripheral inflammation, in association with hyperglycemia, and this may be related to the memory deficits in the Sugar rats. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective is to gain knowledge regarding variation in sugar and flavor content among a sample of dry bean and green pod-type accessions from the USDA Phaseolus Germplasm Core Collection, Pullman, WA. The results could be used to market product quality and offer unique opportunities to expand ma...
Stanhope, Kimber L; Griffen, Steven C; Bremer, Andrew A; Vink, Roel G; Schaefer, Ernst J; Nakajima, Katsuyuki; Schwarz, Jean-Marc; Beysen, Carine; Berglund, Lars; Keim, Nancy L; Havel, Peter J
2011-01-01
Background: Consumption of sugar-sweetened beverages has been shown to be associated with dyslipidemia, insulin resistance, fatty liver, diabetes, and cardiovascular disease. It has been proposed that adverse metabolic effects of chronic consumption of sugar-sweetened beverages are a consequence of increased circulating glucose and insulin excursions, ie, dietary glycemic index (GI). Objective: We determined whether the greater adverse effects of fructose than of glucose consumption were associated with glucose and insulin exposures. Design: The subjects were studied in a metabolic facility and consumed energy-balanced diets containing 55% of energy as complex carbohydrate for 2 wk (GI = 64). The subjects then consumed 25% of energy requirements as fructose- or glucose-sweetened beverages along with their usual ad libitum diets for 8 wk at home and then as part of energy-balanced diets for 2 wk at the metabolic facility (fructose GI = 38, glucose GI = 83). The 24-h glucose and insulin profiles and fasting plasma glycated albumin and fructosamine concentrations were measured 0, 2, 8, and 10 wk after beverage consumption. Results: Consumption of fructose-sweetened beverages lowered glucose and insulin postmeal peaks and the 23-h area under the curve compared with the baseline diet and with the consumption of glucose-sweetened beverages (all P < 0.001, effect of sugar). Plasma glycated albumin concentrations were lower 10 wk after fructose than after glucose consumption (P < 0.01, effect of sugar), whereas fructosamine concentrations did not differ between groups. Conclusion: The results suggest that the specific effects of fructose, but not of glucose and insulin excursions, contribute to the adverse effects of consuming sugar-sweetened beverages on lipids and insulin sensitivity. This study is registered at clinicaltrials.gov as NCT01165853. PMID:21613559
Taste does not determine daily intake of dilute sugar solutions in mice
Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H. N.
2010-01-01
When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions. PMID:20702804
Maeda, Roberto Nobuyuki; Barcelos, Carolina Araújo; Santa Anna, Lídia Maria Melo; Pereira, Nei
2013-01-10
This study aimed to produce a cellulase blend and to evaluate its application in a simultaneous saccharification and fermentation (SSF) process for second generation ethanol production from sugar cane bagasse. The sugar cane bagasse was subjected to pretreatments (diluted acid and alkaline), as for disorganizing the ligocellulosic complex, and making the cellulose component more amenable to enzymatic hydrolysis. The residual solid fraction was named sugar cane bagasse partially delignified cellulignin (PDC), and was used for enzyme production and ethanol fermentation. The enzyme production was performed in a bioreactor with two inoculum concentrations (5 and 10% v/v). The fermentation inoculated with higher inoculum size reduced the time for maximum enzyme production (from 72 to 48). The enzyme extract was concentrated using tangential ultrafiltration in hollow fiber membranes, and the produced cellulase blend was evaluated for its stability at 37 °C, operation temperature of the simultaneous SSF process, and at 50 °C, optimum temperature of cellulase blend activity. The cellulolytic preparation was stable for at least 300 h at both 37 °C and 50 °C. The ethanol production was carried out by PDC fed-batch SSF process, using the onsite cellulase blend. The feeding strategy circumvented the classic problems of diffusion limitations by diminishing the presence of a high solid:liquid ratio at any time, resulting in high ethanol concentration at the end of the process (100 g/L), which corresponded to a fermentation efficiency of 78% of the maximum obtainable theoretically. The experimental results led to the ratio of 380 L of ethanol per ton of sugar cane bagasse PDC. Copyright © 2012 Elsevier B.V. All rights reserved.
Low cost fiber optic sensing of sugar solution
NASA Astrophysics Data System (ADS)
Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao
2015-03-01
The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.
27 CFR 24.177 - Chaptalization (Brix adjustment).
Code of Federal Regulations, 2010 CFR
2010-04-01
... concentrated grape juice may be added before or during fermentation to develop alcohol. In producing natural... may be added before or during fermentation to develop alcohol. The quantity of sugar or concentrated...
NASA Astrophysics Data System (ADS)
Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.
2009-12-01
The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the different lysozyme solutions confirm that sugars induce a significant strengthening of the hydrogen bond network of water that may stabilize proteins at high temperatures.
[Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries
NASA Technical Reports Server (NTRS)
1998-01-01
The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.
Andreyeva, Tatiana; Chaloupka, Frank J; Brownell, Kelly D
2011-06-01
Beverage taxes came into light with increasing concerns about obesity, particularly among youth. Sugar-sweetened beverages have become a target of anti-obesity initiatives with increasing evidence of their link to obesity. Our paper offers a method for estimating revenues from an excise tax on sugar-sweetened beverages that governments of various levels could direct towards obesity prevention. We construct a model projecting beverage consumption and tax revenues based on best available data on regional beverage consumption, historic trends and recent estimates of the price elasticity of sugar-sweetened beverage demand. The public health impact of beverage taxes could be substantial. An estimated 24% reduction in sugar-sweetened beverage consumption from a penny-per-ounce sugar-sweetened beverage tax could reduce daily per capita caloric intake from sugar-sweetened beverages from the current 190-200 cal to 145-150 cal, if there is no substitution to other caloric beverages or food. A national penny-per-ounce tax on sugar-sweetened beverages could generate new tax revenue of $79 billion over 2010-2015. A modest tax on sugar-sweetened beverages could both raise significant revenues and improve public health by reducing obesity. To the extent that at least some of the tax revenues get invested in obesity prevention programs, the public health benefits could be even more pronounced. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakishi, S.; Okumura, J.; Namiki, M.
Effects of gamma -irradiation on the amimo-carbonyl reaction were investigated with the medel system of various sugar-glycine solutions. The mixed solutions of sugar and glycine were irradiatnd at 20 deg C with gamma rays from a /sup 60/Co source under the presence and absence of oxygen. The browning, the increase in absorbance at 420 nm of this solution with heating, was enhanced by irradiation, especially at the initial stage of browning reaction, but the extent of browning depended on the kinds of sugars, and fructose, sorbose, and sucrose were more remarkable than other sugars. Their browning was more enhanced inmore » the basic solution than the case of neutml and acidic solution, and they were also increased with irradiation doses. The browning between irradiated sugar and unirradiated glycine solution was similar to that of irradiated sugar-glycine solution, and therefore, it was assumed that this browning reaction was due to some fraction in the irradiated sugar. On the browning in the system of the irradiated fructose-other amino acid, the cases of histidine and tryptophane were more noticeable. Glycolaldehyde, glyceraldehyde and glucosone, which are known to be produced by gamma -radiolysis of sugars, showed the browning on reaction with glycine, and the last one was also detected in the irradiated fructose solution by paper chromatography. (auth)« less
Fuel ethanol production from Jerusalem artichoke stalks using different yeasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaritis, A.; Bajpai, P.; Bajpai, P.K.
1983-01-01
The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate,more » and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.« less
Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes.
Perla, Venu; Nimmakayala, Padma; Nadimi, Marjan; Alaparthi, Suresh; Hankins, Gerald R; Ebert, Andreas W; Reddy, Umesh K
2016-07-01
This study aimed to analyze 123 genotypes of Capsicum baccatum L. originating from 22 countries, at two stages of fruit development, for vitamin C content and its relationship with reducing sugars in fruit pericarp. Among the parametric population, vitamin C and reducing sugar concentrations ranged between 2.54 to 50.44 and 41-700mgg(-1) DW of pericarp, respectively. Overall, 14 genotypes accumulated 50-500% of the RDA of vitamin C in each 2g of fruit pericarp on a dry weight basis. Compared with ripened fruits, matured (unripened) fruits contained higher vitamin C and lower reducing sugars. About 44% variation in the vitamin C content could be ascribed to levels of reducing sugars. For the first time, this study provides comprehensive data on vitamin C in the world collection of C. baccatum genotypes that could serve as a key resource for food research in future. Published by Elsevier Ltd.
Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes
Perla, Venu; Nadimi, Marjan; Alaparthi, Suresh; Hankins, Gerald R.; Ebert, Andreas W.; Reddy, Umesh K.
2016-01-01
This study aimed to analyze 123 genotypes of Capsicum baccatum L. originating from 22 countries, at two stages of fruit development, for vitamin C content and its relationship with reducing sugars in fruit pericarp. Among the parametric population, vitamin C and reducing sugar concentrations ranged between 2.54 to 50.44 and 41–700 mg g−1 DW of pericarp, respectively. Overall, 14 genotypes accumulated 50–500% of the RDA of vitamin C in each 2 g of fruit pericarp on a dry weight basis. Compared with ripened fruits, matured (unripened) fruits contained higher vitamin C and lower reducing sugars. About 44% variation in the vitamin C content could be ascribed to levels of reducing sugars. For the first time, this study provides comprehensive data on vitamin C in the world collection of C. baccatum genotypes that could serve as a key resource for food research in future. PMID:26920284
14. RW Meyer Sugar Mill: 18761889. Sorghum Pan. Manufactured by ...
14. RW Meyer Sugar Mill: 1876-1889. Sorghum Pan. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: In the sorghum pan, heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. The pan was set on a slope so that the juice would move through the compartments by gravity. The hand-lever sluice valves in the partition walls between the compartments permitted the sugar boiler to regulate the movement of batches of cane juice flowing through the pan. The metal fins projecting from the bottom of the pan imparted a circuitous route to the juice as it flowed through the pan--this made it flow over a much greater heated surface. The fins also supplemented the pan's heating surface by ... - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M
2010-09-01
This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.
Epicotyl dormancy of tree peony as an oil plant broken by cyanamide
NASA Astrophysics Data System (ADS)
Xu, Jiajie; Gong, Mingfu; Liu, Fang; Wu, Sanlin; Liu, Xiaojie; Zhang, Ya; Xu, Gaoyu
2018-04-01
This test materials is `feng Dan', an oil peony, or tree peony as an oil plant, growing in Yangtze river basin. Impact of cyanamide on oil peony epicotyl dormancy was represented with germination rate of peony feeds, a-amylase activity, soluble sugar content, soluble protein content and peroxidase (POD) activity. Results showed that hypocotyls' dormancy of peony seeds was significant breaken by 0.3% cyanamide concentration. Alpha-amylase activity, soluble sugar content, soluble protein content and POD activity in 0.3% cyanamide concentration treatment was significantly higher than other treatments. There was no significant difference between the rest treatments.
Mallick, J; Stoddart, D M; Jones, I; Bradley, A J
1994-06-01
Socially dominant male sugar gliders are heavier than socially subordinate males, have higher plasma testosterone and lower cortisol concentrations, win more social encounters, scan the arena more, scent-mark more, and are more active and move more quickly, even though they spend more time in the colony nesting box. When they are transferred into a foreign stable colony there is an impressive reversal of behavioral measures and a concomitant decrease in concentration of plasma testosterone and rise in cortisol that is apparent over the first 3 weeks of observation.
Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study
NASA Astrophysics Data System (ADS)
Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.
2016-02-01
Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.
Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen
2017-02-14
Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.
Muhr, Jan; Messier, Christian; Delagrange, Sylvain; Trumbore, Susan; Xu, Xiaomei; Hartmann, Henrik
2016-03-01
While trees store substantial amounts of nonstructural carbon (NSC) for later use, storage regulation and mobilization of stored NSC in long-lived organisms like trees are still not well understood. At two different sites with sugar maple (Acer saccharum), we investigated ascending sap (sugar concentration, δ(13) C, Δ(14) C) as the mobilized component of stored stem NSC during early springtime. Using the bomb-spike radiocarbon approach we were able to estimate the average time elapsed since the mobilized carbon (C) was originally fixed from the atmosphere and to infer the turnover time of stem storage. Sites differed in concentration dynamics and overall δ(13) C, indicating different growing conditions. The absence of temporal trends for δ(13) C and Δ(14) C indicated sugar mobilization from a well-mixed pool with average Δ(14) C consistent with a mean turnover time (TT) of three to five years for this pool, with only minor differences between the sites. Sugar maple trees hence appear well buffered against single or even several years of negative plant C balance from environmental stress such as drought or repeated defoliation by insects. Manipulative investigations (e.g. starvation via girdling) combined with Δ(14) C measurements of this mobilized storage pool will provide further new insights into tree storage regulation and functioning. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.
Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M
2018-05-01
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yeasts in sustainable bioethanol production: A review.
Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis
2017-07-01
Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.
Chen, Yingying; Wu, Ying; Zhu, Baotong; Zhang, Guanyu; Wei, Na
2018-01-01
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is critically important for robust and efficient renewable biofuel production from lignocellulosic biomass.
The "sugar pack" health marketing campaign in Los Angeles County, 2011-2012.
Barragan, Noel C; Noller, Ali J; Robles, Brenda; Gase, Lauren N; Leighs, Michael S; Bogert, Suzanne; Simon, Paul A; Kuo, Tony
2014-03-01
As part of a comprehensive approach to combating the obesity epidemic, the Los Angeles County Department of Public Health launched the "Sugar Pack" health marketing campaign in fall 2011. Carried out in three stages, the campaign sought to educate and motivate the public to reduce excess calorie intake from sugar-sweetened beverage consumption. The primary Sugar Pack creative concepts provided consumers with information about the number of sugar packs contained in sugary drinks. Data from formative market research as well as lessons from previous campaigns in other U.S. jurisdictions informed the development of the materials. These materials were disseminated through a multipronged platform that included paid outdoor media on transit and billboards and messaging using social media (i.e., Twitter, Facebook, YouTube, and sendable e-cards). Initial findings from a postcampaign assessment indicate that the Sugar Pack campaign reached broadly into targeted communities, resulting in more than 515 million impressions. Lessons learned from the campaign suggest that employing health marketing to engage the public can lead to increased knowledge, favorable recognition of health messages, and self-reported intention to reduce sugar-sweetened beverage consumption, potentially complementing other obesity prevention strategies in the field.
Polonio, Julio Cesar; Ribeiro, Marcos Alessandro Dos Santos; Rhoden, Sandro Augusto; Sarragiotto, Maria Helena; Azevedo, João Lúcio; Pamphile, João Alencar
2016-12-01
3-nitropropionic acid (3-NPA) is a nitrogenated compound produced by plants and fungi and has been associated with poisoning episodes in humans, animals, and to induction of Huntington disease symptoms in rats. The production of 3-NPA by endophytes has been reported, but the function and biosynthesis are not well-defined. The specie of endophytic strain G-01 was confirmed as Diaporthe citri using a multilocus sequence analysis, and was verified different concentrations of 3-NPA produced at different initial pHs by these strain. The chemical analysis indicated that 3-NPA was the majority compound present in the crude extracts. The better extraction condition was at an initial pH of 7.0 for 22 d, yielding about 80 % of 3-NPA per mg of extract. It was observed that the concentration of 3-NPA increased after the initial consumption of reduction sugars, indicating that the compound is produced after the high energetic production phase of the fungus. These and other studies demonstrate the production of this compound by plants and endophytic fungi, indicating that 3-NPA may be involved in defence and nutrition systems of endophytes and host plants, and they also might participate in the biogeochemical nitrogen cycle. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Background Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-recombinant way to increase yeast tolerance to hydrolysates is by encapsulation of the yeast. This can be explained by concentration gradients occuring in the cell pellet inside the capsule. In the current study, we hypothesised that encapsulation might also lead to improved simultaneous utilisation of hexoses and pentoses because of such sugar concentration gradients. Results In silico simulations of encapsulated yeast showed that the presence of concentration gradients of inhibitors can explain the improved inhibitor tolerance of encapsulated yeast. Simulations also showed pronounced concentration gradients of sugars, which resulted in simultaneous xylose and glucose consumption and a steady state xylose consumption rate up to 220-fold higher than that found in suspension culture. To validate the results experimentally, a xylose-utilising S. cerevisiae strain, CEN.PK XXX, was constructed and encapsulated in semi-permeable alginate-chitosan liquid core gel capsules. In defined media, encapsulation not only increased the tolerance of the yeast to inhibitors, but also promoted simultaneous utilisation of glucose and xylose. Encapsulation of the yeast resulted in consumption of at least 50% more xylose compared with suspended cells over 96-hour fermentations in medium containing both sugars. The higher consumption of xylose led to final ethanol titres that were approximately 15% higher. In an inhibitory dilute acid spruce hydrolysate, freely suspended yeast cells consumed the sugars in a sequential manner after a long lag phase, whereas no lag phase was observed for the encapsulated yeast, and glucose, mannose, galactose and xylose were utilised in parallel from the beginning of the cultivation. Conclusions Encapsulation of xylose-fermenting S. cerevisiae leads to improved simultaneous and efficient utilisation of several sugars, which are utilised sequentially by suspended cells. The greatest improvement is obtained in inhibitory media. These findings show that encapsulation is a promising option for production of second-generation bioethanol. PMID:25050138
Thompson, S N; Redak, R A
2000-09-01
The non-homeostatic regulation of blood sugar concentration in the insect Manduca sexta L. was affected by nutritional status. Larvae maintained on diets lacking sucrose displayed low concentrations of trehalose, the blood sugar of insects, which varied from 5 to 15 mM with increasing dietary casein level between 12.5 and 75 g/l. These insects were glucogenic, as demonstrated by the selective 13C enrichment of trehalose synthesized from [3-13C]alanine, and de novo synthesis was the sole source of blood sugar. The distribution of 13C in glutamine established that following transamination of the 13C substituted substrate, [3-13C]pyruvate carboxylation rather than decarboxylation was the principal pathway of Pyr metabolism. The mean blood trehalose level was higher in insects maintained on diets with sucrose. At the lowest dietary casein level blood trehalose was approximately 50 mM, and declined to 20 mM at the highest casein level. Gluconeogenesis was detected in insects maintained on sucrose-free diets at the higher protein levels examined, but [3-13C]pyruvate decarboxylation and TCA cycle metabolism was the principal fate of [3-13C]alanine following transamination, and dietary carbohydrate was the principal source of glucose for trehalose synthesis. Feeding studies established a relationship between nutritional status, blood sugar level and dietary self-selection. Insects preconditioned by feeding on diets without sucrose had low blood sugar levels regardless of dietary casein level, and when subsequently given a choice between a sucrose diet or a casein diet, selected the former. Larvae preconditioned on a diet containing sucrose and the lowest level of casein had high blood sugar levels and subsequently selected the casein diet. Larvae maintained on the sucrose diet with the highest casein level had low blood sugar and self-selected the sucrose diet. When preconditioned on diets with sucrose and intermediate levels of casein, insects selected more equally between the sucrose and the casein diets. It is concluded that blood sugar level may be intimately involved in dietary self-selection by M. sexta larvae, and that in the absence of dietary carbohydrate, gluconeogenesis provides sufficient blood sugar to ensure that larvae choose a diet or diets that produce an optimal intake of dietary protein and carbohydrate.
Matteo, Perini; Tiziana, Nardin; Federica, Camin; Mario, Malacarne; Roberto, Larcher
2018-06-15
'Aceto Balsamico di Modena' (ABM) is a PGI (Protected Geographical Indication) salad dressing obtained from cooked and/or concentrated grape must, with the addition of wine vinegar and a maximum of 2% caramel (EU Reg. 583/2009). In this study we investigated whether the combination of 13 C/ 12 C of ethanol using Isotope Ratio Mass Spectrometry with 2 H-site-specific Natural Isotope Fractionation - Nuclear Magnetic Resonance, and minor sugars using Ion Chromatography with Pulse Amperometric and Charged Aerosol Detection, is able to improve detection of sugar addition to ABM must. A large selection of authentic Italian grape musts and different samples of balsamic vinegar with an increasing percentage of added beet, cane and sugar syrups were considered. The possible degradation of sugars in the ABM matrix during shelf life was also investigated. While stable isotope ratios analysis remains the favoured method for determining cane and beet sugar addition, dosage of minor sugar (in particular maltose) proved to be very useful for detecting the addition of sugar syrup. Thanks to this innovative approach, 3 out of 27 commercial ABMs were identified as adulterated. A combination of stable isotope ratio and IC-PAD-CAD analysis can be therefore proposed as a suitable tool for detecting the authenticity of ABM must. This article is protected by copyright. All rights reserved.
Desnoues, Elsa; Baldazzi, Valentina; Génard, Michel; Mauroux, Jehan-Baptiste; Lambert, Patrick; Confolent, Carole; Quilot-Turion, Bénédicte
2016-05-01
Knowledge of the genetic control of sugar metabolism is essential to enhance fruit quality and promote fruit consumption. The sugar content and composition of fruits varies with species, cultivar and stage of development, and is controlled by multiple enzymes. A QTL (quantitative trait locus) study was performed on peach fruit [Prunus persica (L.) Batsch], the model species for Prunus Progeny derived from an interspecific cross between P. persica cultivars and P. davidiana was used. Dynamic QTLs for fresh weight, sugars, acids, and enzyme activities related to sugar metabolism were detected at different stages during fruit development. Changing effects of alleles during fruit growth were observed, including inversions close to maturity. This QTL analysis was supplemented by the identification of genes annotated on the peach genome as enzymes linked to sugar metabolism or sugar transporters. Several cases of co-locations between annotated genes, QTLs for enzyme activities and QTLs controlling metabolite concentrations were observed and discussed. These co-locations raise hypotheses regarding the functional regulation of sugar metabolism and pave the way for further analyses to enable the identification of the underlying genes. In conclusion, we identified the potential impact on fruit breeding of the modification of QTL effect close to maturity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
John R. Donnelly
1971-01-01
Softwood stem cuttings from three mature sugar maple trees were treated with several types and concentrations of growth regulators. Lack of statistical significance was due to extreme variability in tree response: low levels of auxin stimulated rooting in two study trees, while auxins inhibited rooting in the other tree. It is postulated that variations in rooting...
de Alteriis, Elisabetta; Cartenì, Fabrizio; Parascandola, Palma; Serpa, Jacinta; Mazzoleni, Stefano
2018-01-01
ABSTRACT The mechanisms behind the Warburg effect in mammalian cells, as well as for the similar Crabtree effect in the yeast Saccharomyces cerevisiae, are still a matter of debate: why do cells shift from the energy-efficient respiration to the energy-inefficient fermentation at high sugar concentration? This review reports on the strong similarities of these phenomena in both cell types, discusses the current ideas, and provides a novel interpretation of their common functional mechanism in a dynamic perspective. This is achieved by analysing another phenomenon, the sugar-induced-cell-death (SICD) occurring in yeast at high sugar concentration, to highlight the link between ATP depletion and cell death. The integration between SICD and the dynamic functioning of the glycolytic process, suggests that the Crabtree/Warburg effect may be interpreted as the avoidance of ATP depletion in those conditions where glucose uptake is higher than the downstream processing capability of the second phase of glycolysis. It follows that the down-regulation of respiration is strategic for cell survival allowing the allocation of more resources to the fermentation pathway, thus maintaining the cell energetic homeostasis. PMID:29509056
Production of sugars and levulinic acid from marine biomass Gelidium amansii.
Jeong, Gwi-Taek; Park, Don-Hee
2010-05-01
This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.
Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.
2014-01-01
Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918
The Interaction of Sorbitol with Caffeine in Aqueous Solution
Tavagnacco, Letizia; Brady, John W.; Cesàro, Attilio
2013-01-01
Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity. PMID:24000279
The Interaction of Sorbitol with Caffeine in Aqueous Solution.
Tavagnacco, Letizia; Brady, John W; Cesàro, Attilio
2013-09-01
Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity.
Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias
2016-04-01
This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fredsgaard, Casper; Moore, Donald B.; Al Soudi, Amer F.; Crisler, James D.; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.
2017-04-01
The most extremely osmotolerant microbial isolates are fungi from high-sugar environments that tolerate the lowest water activity (0.61) for growth yet reported. Studies of osmotolerant bacteria have focused on halotolerance rather than sucretolerance (ability to grow in high sugar concentrations). A collection of salinotolerant (>=10% NaCl or >=50% MgSO4) bacterial isolates from the Great Salt Plains of Oklahoma and Hot Lake in Washington were screened for sucretolerance in medium supplemented with >=50% fructose, glucose or sucrose. Tolerances significantly differed between solutes, even though water activities for saline media (0.92 and 0.85 for 10 and 20% NaCl Salt Plains media, respectively) were comparable or lower than water activities for high-sugar media (0.93 and 0.90 for 50 and 70% sucrose artificial nectar media, respectively). These specific solute effects were differentially expressed among individual isolates. Extrapolating the results of earlier food science studies with yeasts at high sugar concentrations to bacteria in salty environments with low water activity should be done with caution. Furthermore, the discussion of habitable Special Regions on Mars and the icy worlds should reflect an understanding of specific solute effects.
Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production.
Agudelo, Roberto A; García-Aparicio, María P; Görgens, Johann F
2016-01-25
Triticale, a non-food based, low-cost and well-adapted crop in marginal lands has been considered as a potential 1G and 2G feedstock for bio-ethanol production. In this work, triticale straw was evaluated as a source of fermentable sugars by combination of uncatalyzed steam explosion and enzymatic hydrolysis. Pretreatment conditions with severities from 3.05 to 4.12 were compared in order to identify conditions that favour the recovery of hemicellulose-derived sugars, cellulose digestibility or the combined sugars yield (CSY) from the pretreatment-enzymatic hydrolysis. Xylose oligosaccharide was the major sugar in hydrolysates from all pretreatment conditions. Maximum hemicellulose-sugars recovery (52% of the feedstock content) was obtained at 200 °C and 5 min. The highest cellulose digestibility (95%) was found at 200 °C - 15 min, although glucose recovery from hydrolysis was maximised at 200 °C - 10 min (digestibility >92%) due to higher mass yield of pretreated solids. The maximum CSY (nearly 77% of theoretical content) was obtained at 200 °C - 5 min. Sugar loss after pretreatment was observed to higher extent at harsher severities. However, the concentrations of sugar degradation products and acetic acid were at levels below tolerance limits of the downstream biological conversions. Steam explosion pretreatment without acid impregnation is a good technology for production of fermentable sugars from triticale straw. This work provides foundation for future autohydrolysis steam explosion optimization studies to enhanced sugars recovery and digestibility of triticale straw. Copyright © 2015. Published by Elsevier B.V.
Closing the Yield Gap of Sugar Beet in the Netherlands-A Joint Effort.
Hanse, Bram; Tijink, Frans G J; Maassen, Jurgen; van Swaaij, Noud
2018-01-01
The reform of the European Union's sugar regime caused potential decreasing beet prices. Therefore, the Speeding Up Sugar Yield (SUSY) project was initiated. At the start, a 3 × 15 target was formulated: in 2015 the national average sugar yield in the Netherlands equals 15 t/ha (60% of the sugar beet potential) and the total variable costs 15 euro/t sugar beet, aspiring a saving on total variable costs and a strong increase in sugar yield. Based on their average sugar yield in 2000-2004, 26 pairs of "type top" (high yielding) and "type average" (average yielding) growers were selected from all sugar beet growing regions in the Netherlands. On the fields of those farmers, all measures of sugar beet cultivation were investigated, including cost calculation and recording phytopathological, agronomical and soil characteristics in 2006 and 2007. Although there was no significant difference in total variable costs, the "type top" growers yielded significantly 20% more sugar in each year compared to the "type average" growers. Therefore, the most profitable strategy for the growers is maximizing sugar yield and optimizing costs. The difference in sugar yield between growers could be explained by pests and diseases (50%), weed control (30%), soil structure (25%) and sowing date (14%), all interacting with each other. The SUSY-project revealed the effect of the grower's management on sugar yield. As a follow up for the SUSY-project, a growers' guide "Suikerbietsignalen" was published, Best Practice study groups of growers were formed and trainings and workshops were given and field days organized. Further, the benchmarking and feedback on the crop management recordings and the extension on variety choice, sowing performance, foliar fungi control and harvest losses were intensified. On the research part, a resistance breaking strain of the Beet Necrotic Yellow Vein Virus (BNYVV) and a new foliar fungus, Stemphylium beticola , were identified and options for control were tested, and implemented in growers practices. The joint efforts of sugar industry, sugar beet research and growers resulted in a raise in sugar yield from 10.6 t/ha in 2002-2006 to 13.8 t/ha in 2012-2016.
Use of Scented Sugar Bait Stations to Track Mosquito-Borne Arbovirus Transmission in California
LOTHROP, HUGH D.; WHEELER, SARAH S.; FANG, YING; REISEN, WILLIAM K.
2012-01-01
Laboratory and field research was conducted to determine if Culex tarsalis Coquillett expectorated West Nile virus (WNV) during sugar feeding and if a lure or bait station could be developed to exploit this behavior for WNV surveillance. Experimentally infected Cx. tarsalis repeatedly expectorated WNV onto filter paper strips and into vials with wicks containing sucrose that was readily detectable by a quantitative reverse transcriptase-polymerase chain reaction assay. Few females (33%, n = 27) became infected by imbibing sugar solutions spiked with high concentrations (107 plaque forming units/ml) of WNV, indicating sugar feeding stations probably would not be a source of WNV infection. In nature, sugar bait stations scented with the floral attractant phenyl acetaldehyde tracked WNV transmission activity in desert but not urban or agricultural landscapes in California. When deployed in areas of the Coachella Valley with WNV activity during the summer of 2011, 27 of 400 weekly sugar samples (6.8%) tested positive for WNV RNA by reverse transcriptase-polymerase chain reaction. Prevalence of positives varied spatially, but positive sugar stations were detected before concurrent surveillance measures of infection (mosquito pools) or transmission (sentinel chicken seroconversions). In contrast, sugar bait stations deployed in urban settings in Los Angeles or agricultural habits near Bakersfield in Kern County supporting WNV activity produced 1 of 90 and 0 of 60 positive weekly sugar samples, respectively. These results with sugar bait stations will require additional research to enhance bait attractancy and to understand the relationship between positive sugar stations and standard metrics of arbovirus surveillance. PMID:23270177
Berłowska, Joanna; Pielech-Przybylska, Katarzyna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr; Kręgiel, Dorota
2016-01-01
Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015-0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red ( S. cerevisiae ) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.
Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip.
Comtet, Jean; Jensen, Kaare H; Turgeon, Robert; Stroock, Abraham D; Hosoi, A E
2017-03-20
Vascular plants rely on differences in osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as Münch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem sugar concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems, counterintuitively, to occur by means of passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the non-linear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, the phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of Münch transport, where the phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies.
Guo, Feng-Xia; Zeng, Yang; Li, Jin-Ping; Chen, Zhen-Ning; Ma, Ji-Xiong
2013-04-01
The enzyme-inhibitor model and the sugar tolerance mouse model were used to evaluate the relationship between the inhibition rate of enzyme activity and concentration of Hippophae rhamnoides L. subsp. chinensis Rousi polysaccharide (HRP). The inhibitory patterns of enzyme and dose-dependent effects of HRP's effect on blood glucose using acarbose tablets as control were also examined. The mechanism underlying hypoglycemic effects of HRP was discussed. The results showed: in the enzyme-inhibitor model, the inhibitory activity of different concentrations of HRP (9.80, 19.60, 39.20, 78.40, 156.80 and 312.50 mg x L(-1)) on alpha-glucosaminidase (AG) inhibitory activity were 6.62%, 18.02%, 33.26%, 48.23%, 62.11%, 76.31%, 90.12%, IC50 was 31.59 mg x L(-1). The inhibitory rate of 25.00 x 10(3) mg x L(-1) acarbose tablets was only 64.87%, and IC50 was 10.75 x 10(3) mg x L(-1). In the sugar tolerance mouse model, different doses of HRP (240, 480, 960 mg x kg(-1)) tended to decrease levels of blood glucose compared with control group (acarbose tablets 375 mg x kg(-1)) at 15, 30, 60 and 120 min. It's further confirmed that HRP is a kind of competitive inhibitor of AG activity. Its inhibition rate increases with the increase of concentration in normal mice, and it subsequently improves the sugar tolerance showing the effect of reducing blood sugar.