Sample records for initial surface reconstruction

  1. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  2. Homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100): An in-situ STM study

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo

    2015-01-01

    A study of homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100) surfaces is presented. The growth behavior has been investigated by in-situ scanning tunneling microscopy for Au(100) in contact with 0.1 M H2SO4 + 5 μM K[AuCl4]. It is shown that the initial surface structure is decisive for the emerging Au structures, giving rise to clearly different surface morphologies for electro-crystallization of Au on the unreconstructed and on the reconstructed Au(100) surface. A layer-by-layer growth is observed at more positive potentials for unreconstructed Au(100). The electrodeposition proceeds initially by the formation of Au islands followed by island coalescence due to the high mobility of surface atoms. Monatomic recessed stripes are formed as a result of the coalescence of deposited Au islands. At more negative potentials, the growth of Au proceeds strongly anisotropic on the reconstructed surface by the formation of reconstructed elongated islands.

  3. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padama, Allan Abraham B.; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp; Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrencemore » of reconstructed surface.« less

  4. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  5. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    NASA Astrophysics Data System (ADS)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  6. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2016-04-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  7. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2015-10-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  8. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE PAGES

    Willey, T. M.; Champley, K.; Hodgin, R.; ...

    2016-06-17

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2 nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3 rd frame captures the flyer in flight, while the 4 th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  9. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  10. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, T. M., E-mail: willey1@llnl.gov; Champley, K., E-mail: champley1@llnl.gov; Hodgin, R.

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ∼80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images themore » flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  11. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, T. M.; Champley, K.; Hodgin, R.

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2 nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3 rd frame captures the flyer in flight, while the 4 th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  12. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less

  13. The ongoing emergence of robotics in plastic and reconstructive surgery.

    PubMed

    Struk, S; Qassemyar, Q; Leymarie, N; Honart, J-F; Alkhashnam, H; De Fremicourt, K; Conversano, A; Schaff, J-B; Rimareix, F; Kolb, F; Sarfati, B

    2018-04-01

    Robot-assisted surgery is more and more widely used in urology, general surgery and gynecological surgery. The interest of robotics in plastic and reconstructive surgery, a discipline that operates primarily on surfaces, has yet to be conclusively proved. However, the initial applications of robotic surgery in plastic and reconstructive surgery have been emerging in a number of fields including transoral reconstruction of posterior oropharyngeal defects, nipple-sparing mastectomy with immediate breast reconstruction, microsurgery, muscle harvesting for pelvic reconstruction and coverage of the scalp or the extremities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Shrink-wrapped isosurface from cross sectional images

    PubMed Central

    Choi, Y. K.; Hahn, J. K.

    2010-01-01

    Summary This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images. PMID:20703361

  15. Historical open forest ecosystems in the Missouri Ozarks: reconstruction and restoration targets

    Treesearch

    Brice B. Hanberry; D. Todd Jones-Farrand; John M. Kabrick

    2014-01-01

    Current forests no longer resemble historical open forest ecosystems in the eastern United States. In the absence of representative forest ecosystems under a continuous surface fire regime at a large scale, reconstruction of historical landscapes can provide a reference for restoration efforts. For initial expert-assigned vegetation phases ranging from prairie to...

  16. Chlorine adsorption on the InAs (001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding withmore » In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.« less

  17. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  18. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  19. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.

    2018-05-01

    Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.

  20. Phase compensation with fiber optic surface profile acquisition and reconstruction system

    NASA Astrophysics Data System (ADS)

    Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting

    2015-02-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.

  1. On differential photometric reconstruction for unknown, isotropic BRDFs.

    PubMed

    Chandraker, Manmohan; Bai, Jiamin; Ramamoorthi, Ravi

    2013-12-01

    This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives in the presence of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry, regardless of the form of isotropic BRDF. For the problem of shape-from-shading, we show that a reconstruction may be performed up to isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow; however, it does not suffer from the aperture problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information, but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.

  2. Effect of surface-related Rayleigh and multiple waves on velocity reconstruction with time-domain elastic FWI

    NASA Astrophysics Data System (ADS)

    Fang, Jinwei; Zhou, Hui; Zhang, Qingchen; Chen, Hanming; Wang, Ning; Sun, Pengyuan; Wang, Shucheng

    2018-01-01

    It is critically important to assess the effectiveness of elastic full waveform inversion (FWI) algorithms when FWI is applied to real land seismic data including strong surface and multiple waves related to the air-earth boundary. In this paper, we review the realization of the free surface boundary condition in staggered-grid finite-difference (FD) discretization of elastic wave equation, and analyze the impact of the free surface on FWI results. To reduce inputs/outputs (I/O) operations in gradient calculation, we adopt the boundary value reconstruction method to rebuild the source wavefields during the backward propagation of the residual data. A time-domain multiscale inversion strategy is conducted by using a convolutional objective function, and a multi-GPU parallel programming technique is used to accelerate our elastic FWI further. Forward simulation and elastic FWI examples without and with considering the free surface are shown and analyzed, respectively. Numerical results indicate that no free surface incorporated elastic FWI fails to recover a good inversion result from the Rayleigh wave contaminated observed data. By contrast, when the free surface is incorporated into FWI, the inversion results become better. We also discuss the dependency of the Rayleigh waveform incorporated FWI on the accuracy of initial models, especially the accuracy of the shallow part of the initial models.

  3. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    PubMed

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  4. Evolution of Ge nanoislands on Si(110)-'16 × 2' surface under thermal annealing studied using STM

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Subhashis; Yoshimura, Masamichi; Ueda, Kazuyuki

    2009-11-01

    The initial nucleation of Ge nanoclusters on Si(110) at room temperature (RT), annealing-induced surface roughening and the evolution of three-dimensional Ge nanoislands have been investigated using scanning tunneling microscopy (STM). A few monolayers (ML) of Ge deposited at room temperature lead to the formation of Ge clusters which are homogeneously distributed across the surface. The stripe-like patterns, characteristic of the Si(110)-'16 × 2' surface reconstruction are also retained. Increasing annealing temperatures, however, lead to significant surface diffusion and thus, disruption of the underlying '16 × 2' reconstruction. The annealing-induced removal of the stripe structures (originated from '16 × 2' reconstruction) starts at approximately 300 °C, whereas the terrace structures of Si(110) are thermally stable up to 500 °C. At approximately 650 °C, shallow Ge islands of pyramidal shape with (15,17,1) side facets start to form. Annealing at even higher temperatures enhances Ge island formation. Our findings are explained in terms of partial dewetting of the metastable Ge wetting layer (WL) (formed at room temperature) as well as partial relaxation of lattice strain through three-dimensional (3D) island growth.

  5. 3D surface reconstruction for laparoscopic computer-assisted interventions: comparison of state-of-the-art methods

    NASA Astrophysics Data System (ADS)

    Groch, A.; Seitel, A.; Hempel, S.; Speidel, S.; Engelbrecht, R.; Penne, J.; Höller, K.; Röhl, S.; Yung, K.; Bodenstedt, S.; Pflaum, F.; dos Santos, T. R.; Mersmann, S.; Meinzer, H.-P.; Hornegger, J.; Maier-Hein, L.

    2011-03-01

    One of the main challenges related to computer-assisted laparoscopic surgery is the accurate registration of pre-operative planning images with patient's anatomy. One popular approach for achieving this involves intraoperative 3D reconstruction of the target organ's surface with methods based on multiple view geometry. The latter, however, require robust and fast algorithms for establishing correspondences between multiple images of the same scene. Recently, the first endoscope based on Time-of-Flight (ToF) camera technique was introduced. It generates dense range images with high update rates by continuously measuring the run-time of intensity modulated light. While this approach yielded promising results in initial experiments, the endoscopic ToF camera has not yet been evaluated in the context of related work. The aim of this paper was therefore to compare its performance with different state-of-the-art surface reconstruction methods on identical objects. For this purpose, surface data from a set of porcine organs as well as organ phantoms was acquired with four different cameras: a novel Time-of-Flight (ToF) endoscope, a standard ToF camera, a stereoscope, and a High Definition Television (HDTV) endoscope. The resulting reconstructed partial organ surfaces were then compared to corresponding ground truth shapes extracted from computed tomography (CT) data using a set of local and global distance metrics. The evaluation suggests that the ToF technique has high potential as means for intraoperative endoscopic surface registration.

  6. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  7. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture X-ray microscopy (DAXM) on a sparse grid across the microstructure volume of interest. Resulting orientation data is clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi Implicit Interface Method (VIIM), progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surfacemore » reconstruction error provides an objective termination criterion for boundary relaxation.« less

  8. Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth

    DOE PAGES

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...

    2016-01-01

    The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  9. Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces.

    PubMed

    Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R

    1996-01-01

    It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.

  10. Lipid biomarkers in surface sediments from the Gulf of Genoa (Ligurian Sea) and their potential for palaeo-environmental reconstructions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Nicoletta; Kaiser, Jérôme; Arz, Helge W.; Hefter, Jens; Siegel, Herbert; Mollenhauer, Gesine; Lamy, Frank

    2014-05-01

    A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. The interest for the Gulf of Genoa lies in its contrasting coastal and central areas in terms of terrestrial input, oligotrophy, primary production and surface temperature gradient. Moreover, the Gulf of Genoa contains a large potential for climate reconstruction as it is one of the four major Mediterranean centres for cyclogenesis and the ultra high sedimentation rates on the shelf make this area suitable for high resolution environmental reconstruction. Initial results from sediment cores in the coastal area indeed reveal the potential for Holocene environmental reconstruction on up to decadal timescales (see Poster "Reconstruction of late Holocene flooding events in the Gulf of Genoa, Ligurian Sea" by Lamy et al.). During R/V Poseidon cruise P413 (May 2011), ca. 60 sediment cores were taken along the Ligurian shelf, continental slope, and in the basin between off Livorno and the French border. Results based on surface sediments suggest that some biomarker-based proxies are well-suited to reconstruct sea surface temperature (SST), the input of terrestrial organic material (TOM), and marine primary productivity (PP). The estimated UK'37 SST reflects very closely the autumnal mean satellite-based SST distribution, while TEXH86 SSTs correspond to summer SST at offshore sites and to winter SST for the nearshore sites. Using both SST proxies together may thus allow reconstructing past seasonality changes. Proxies for TOM input (terrestrial n-alkane and n-alkanol concentrations, BIT index) have higher values close to the major river mouths and decrease offshore suggesting that these may be used as proxy for the variability in TOM input by runoff. Interestingly, high n-alkane average chain length in the most offshore sites may result from aeolian input from northern Africa. Finally, high concentrations of crenarchaeol and isoprenoid GDGTs in the open basin illustrate the preference of Thaumarchaeota for oligotrophic waters. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems.more » Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.« less

  12. An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data.

    PubMed

    Ping, Bo; Su, Fenzhen; Meng, Yunshan

    2016-01-01

    In this study, an improved Data INterpolating Empirical Orthogonal Functions (DINEOF) algorithm for determination of missing values in a spatio-temporal dataset is presented. Compared with the ordinary DINEOF algorithm, the iterative reconstruction procedure until convergence based on every fixed EOF to determine the optimal EOF mode is not necessary and the convergence criterion is only reached once in the improved DINEOF algorithm. Moreover, in the ordinary DINEOF algorithm, after optimal EOF mode determination, the initial matrix with missing data will be iteratively reconstructed based on the optimal EOF mode until the reconstruction is convergent. However, the optimal EOF mode may be not the best EOF for some reconstructed matrices generated in the intermediate steps. Hence, instead of using asingle EOF to fill in the missing data, in the improved algorithm, the optimal EOFs for reconstruction are variable (because the optimal EOFs are variable, the improved algorithm is called VE-DINEOF algorithm in this study). To validate the accuracy of the VE-DINEOF algorithm, a sea surface temperature (SST) data set is reconstructed by using the DINEOF, I-DINEOF (proposed in 2015) and VE-DINEOF algorithms. Four parameters (Pearson correlation coefficient, signal-to-noise ratio, root-mean-square error, and mean absolute difference) are used as a measure of reconstructed accuracy. Compared with the DINEOF and I-DINEOF algorithms, the VE-DINEOF algorithm can significantly enhance the accuracy of reconstruction and shorten the computational time.

  13. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  14. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  15. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent the temperature dynamics. We further show that our proposed initialization procedure is effective and robust to uncertainty in paleo-climate reconstructions and that more than 300 years of reconstructed climate time series are needed for proper model initialization.

  16. Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks.

    PubMed

    Lin, Jianyu; Clancy, Neil T; Qi, Ji; Hu, Yang; Tatla, Taran; Stoyanov, Danail; Maier-Hein, Lena; Elson, Daniel S

    2018-06-15

    Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Anatomy structure creation and editing using 3D implicit surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Lyndon S.

    2012-05-15

    Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less

  18. Three-dimensional reconstruction of the topographical cerebral surface anatomy for presurgical planning with free OsiriX Software.

    PubMed

    Harput, Mehmet V; Gonzalez-Lopez, Pablo; Türe, Uğur

    2014-09-01

    During surgery for intrinsic brain lesions, it is important to distinguish the pathological gyrus from the surrounding normal sulci and gyri. This task is usually tedious because of the pia-arachnoid membranes with their arterial and venous complexes that obscure the underlying anatomy. Moreover, most tumors grow in the white matter without initially distorting the cortical anatomy, making their direct visualization more difficult. To create and evaluate a simple and free surgical planning tool to simulate the anatomy of the surgical field with and without vessels. We used free computer software (OsiriX Medical Imaging Software) that allowed us to create 3-dimensional reconstructions of the cerebral surface with and without cortical vessels. These reconstructions made use of magnetic resonance images from 51 patients with neocortical supratentorial lesions operated on over a period of 21 months (June 2011 to February 2013). The 3-dimensional (3-D) anatomic images were compared with the true surgical view to evaluate their accuracy. In all patients, the landmarks determined by 3-D reconstruction were cross-checked during surgery with high-resolution ultrasonography; in select cases, they were also checked with indocyanine green videoangiography. The reconstructed neurovascular structures were confirmed intraoperatively in all patients. We found this technique to be extremely useful in achieving pure lesionectomy, as it defines tumor's borders precisely. A 3-D reconstruction of the cortical surface can be easily created with free OsiriX software. This technique helps the surgeon perfect the mentally created 3-D picture of the tumor location to carry out cleaner, safer surgeries.

  19. DIEP Flap Breast Reconstruction in Patients with Breast Ptosis: 2-Stage Reconstruction Using 3-Dimensional Surface Imaging and a Printed Mold

    PubMed Central

    Yano, Kenji; Taminato, Mifue; Nomori, Michiko; Hosokawa, Ko

    2017-01-01

    Background: Autologous breast reconstruction can be performed for breasts with ptosis to a certain extent, but if patients desire to correct ptosis, mastopexy of the contralateral breast is indicated. However, accurate prediction of post-mastopexy breast shape is difficult to make, and symmetrical breast reconstruction requires certain experience. We have previously reported the use of three-dimensional (3D) imaging and printing technologies in deep inferior epigastric artery perforator (DIEP) flap breast reconstruction. In the present study, these technologies were applied to the reconstruction of breasts with ptosis. Methods: Eight breast cancer patients with ptotic breasts underwent two-stage unilateral DIEP flap breast reconstruction. In the initial surgery, tissue expander (TE) placement and contralateral mastopexy are performed simultaneously. Four to six months later, 3D bilateral breast imaging is performed after confirming that the shape of the contralateral breast (post-mastopexy) is somewhat stabilized, and a 3D-printed breast mold is created based on the mirror image of the shape of the contralateral breast acquired using analytical software. Then, DIEP flap surgery is performed, where the breast mold is used to determine the required flap volume and to shape the breast mound. Results: All flaps were engrafted without any major perioperative complications during both the initial and DIEP flap surgeries. Objective assessment of cosmetic outcome revealed that good breast symmetry was achieved in all cases. Conclusions: The method described here may allow even inexperienced surgeons to achieve reconstruction of symmetrical, non-ptotic breasts with ease and in a short time. While the requirement of two surgeries is a potential disadvantage, our method will be particularly useful in cases involving TEs, i.e., delayed reconstruction or immediate reconstruction involving significant skin resection. PMID:29184728

  20. Structural changes caused by H 2 adsorption on the Si(111)7 × 7 surface

    NASA Astrophysics Data System (ADS)

    Wolff, S. H.; Wagner, S.; Gibson, J. M.; Loretto, D.; Robinson, I. K.; Bean, J. C.

    1990-12-01

    Structural changes caused by the adsorption of molecular hydrogen adsorption onto the Si(111)7 × 7 surface reconstruction are quantified using the first structure parameter refinement on transmission electron diffraction (TED) data. We find that initial adsorption of molecular hydrogen onto the Si(111)7 × 7 surface causes a preferential decrease in the occupancy of the center adatoms. Further adsorption of hydrogen results in the breaking of the dimer bonds and the removal of the corner adatoms.

  1. Local Surface Reconstruction from MER images using Stereo Workstation

    NASA Astrophysics Data System (ADS)

    Shin, Dongjoe; Muller, Jan-Peter

    2010-05-01

    The authors present a semi-automatic workflow that reconstructs the 3D shape of the martian surface from local stereo images delivered by PnCam or NavCam on systems such as the NASA Mars Exploration Rover (MER) Mission and in the future the ESA-NASA ExoMars rover PanCam. The process is initiated with manually selected tiepoints on a stereo workstation which is then followed by a tiepoint refinement, stereo-matching using region growing and Levenberg-Marquardt Algorithm (LMA)-based bundle adjustment processing. The stereo workstation, which is being developed by UCL in collaboration with colleagues at the Jet Propulsion Laboratory (JPL) within the EU FP7 ProVisG project, includes a set of practical GUI-based tools that enable an operator to define a visually correct tiepoint via a stereo display. To achieve platform and graphic hardware independence, the stereo application has been implemented using JPL's JADIS graphic library which is written in JAVA and the remaining processing blocks used in the reconstruction workflow have also been developed as a JAVA package to increase the code re-usability, portability and compatibility. Although initial tiepoints from the stereo workstation are reasonably acceptable as true correspondences, it is often required to employ an optional validity check and/or quality enhancing process. To meet this requirement, the workflow has been designed to include a tiepoint refinement process based on the Adaptive Least Square Correlation (ALSC) matching algorithm so that the initial tiepoints can be further enhanced to sub-pixel precision or rejected if they fail to pass the ALSC matching threshold. Apart from the accuracy of reconstruction, it is obvious that the other criterion to assess the quality of reconstruction is the density (or completeness) of reconstruction, which is not attained in the refinement process. Thus, we re-implemented a stereo region growing process, which is a core matching algorithm within the UCL-HRSC reconstruction workflow. This algorithm's performance is reasonable even for close-range imagery so long as the stereo -pair does not too large a baseline displacement. For post-processing, a Bundle Adjustment (BA) is used to optimise the initial calibration parameters, which bootstrap the reconstruction results. Amongst many options for the non-linear optimisation, the LMA has been adopted due to its stability so that the BA searches the best calibration parameters whilst iteratively minimising the re-projection errors of the initial reconstruction points. For the evaluation of the proposed method, the result of the method is compared with the reconstruction from a disparity map provided by JPL using their operational processing system. Visual and quantitative comparison will be presented as well as updated camera parameters. As part of future work, we will investigate a method expediting the processing speed of the stereo region growing process and look into the possibility of extending the use of the stereo workstation to orbital image processing. Such an interactive stereo workstation can also be used to digitize points and line features as well as assess the accuracy of stereo processed results produced from other stereo matching algorithms available from within the consortium and elsewhere. It can also provide "ground truth" when suitably refined for stereo matching algorithms as well as provide visual cues as to why these matching algorithms sometimes fail to mitigate this in the future. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 218814 "PRoVisG".

  2. Electrical characteristics and thermal stability of HfO{sub 2} metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Noriyuki, E-mail: nori.miyata@aist.go.jp; Mori, Takahiro; Yasuda, Tetsuji

    2014-06-09

    HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200 °C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSbmore » surfaces was observed.« less

  3. Uniform Si nano-dot fabrication using reconstructed structure of Si(110)

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Uozumi, Yuki; Yasuda, Satoshi; Asaoka, Hidehito

    2018-06-01

    Si nano-dot (ND) formation on Si(110) is observed by means of a scanning tunneling microscope (STM). The initial Si-NDs are Si crystals that are continuous from the substrate and grow during the oxide layer desorption. The NDs fabricated on the flat surface of Si(110)-1 × 1 are surrounded by four types of facets with almost identical appearance probabilities. An increase in the size of the NDs increases the variety of its morphology. In contrast, most Si-NDs fabricated on straight-stepped surface of Si(110)-16 × 2 reconstructed structure are surrounded by only a single type of facet, namely the \\text{Si}(17,15,1)-2 × 1 plane. An appearance probability of the facet in which the base line is along the step of Si(110)-16 × 2 exceeds 75%. This finding provides a fabrication technique of uniformed structural Si-NDs by using the reconstructed structure of Si(110).

  4. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.

  5. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  6. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariš, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-02-01

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (ρ propto P/T), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. We show how the energy assignment can be corrected to account for such atmospheric effects.

  7. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  8. Characterization of cracking behavior using posttest fractographic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T.; Shockey, D.A.

    A determination of time to initiation of stress corrosion cracking in structures and test specimens is important for performing structural failure analysis and for setting inspection intervals. Yet it is seldom possible to establish how much of a component's lifetime represents the time to initiation of fracture and how much represents postinitiation crack growth. This exploratory research project was undertaken to examine the feasibility of determining crack initiation times and crack growth rates from posttest examination of fracture surfaces of constant-extension-rate-test (CERT) specimens by using the fracture reconstruction applying surface topography analysis (FRASTA) technique. The specimens used in this studymore » were Type 304 stainless steel fractured in several boiling water reactor (BWR) aqueous environments. 2 refs., 25 figs., 2 tabs.« less

  9. The algorithm of central axis in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhao, Bao Ping; Zhang, Zheng Mei; Cai Li, Ji; Sun, Da Ming; Cao, Hui Ying; Xing, Bao Liang

    2017-09-01

    Reverse engineering is an important technique means of product imitation and new product development. Its core technology -- surface reconstruction is the current research for scholars. In the various algorithms of surface reconstruction, using axis reconstruction is a kind of important method. For the various reconstruction, using medial axis algorithm was summarized, pointed out the problems existed in various methods, as well as the place needs to be improved. Also discussed the later surface reconstruction and development of axial direction.

  10. Ab initio calculations on the initial stages of GaN and ZnO growth on lattice-matched ScAlMgO4 (0001) substrates

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Wang, Yanfei; Li, Chengbo; Li, Xianchang; Niu, Yongsheng; Hou, Shaogang

    2016-12-01

    The initial stages of GaN and ZnO epitaxial growth on lattice-matched ScAlMgO4 substrates have been investigated by ab initio calculation. The geometrical parameters and electronic structure of ScAlMgO4 bulk and (0001) surface have been investigated by density-functional first-principles study. The effects of different surface terminations have been examined through surface energy and relaxation calculations. The O-Mg-O termination is more favorable than other terminations by comparing the calculated surface energies. It should be accepted as the appropriate surface structure in subsequent calculation. The initial stages of GaN and ZnO epitaxial growths are discussed based on the adsorption and diffusion of the adatoms on reconstructed ScAlMgO4 (0001) surface. According to theoretical characterizations, N adatom on the surface is more stable than Ga. O adatom is more favorable than Zn. These observations lead to the formation of GaN and ZnO epilayer and explain experimentally-confirmed in-plane alignment mechanisms of GaN and ZnO on ScAlMgO4 substrates. Furthermore, the polarity of GaN and ZnO surfaces on ScAlMgO4 (0001) at the initial growth stage have been explored by ab initio calculation. Theoretical studies indicate that the predominant growths of Ga-polar GaN and Zn-polar ZnO are determined by the initial growth stage.

  11. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Nasofacial defect following fibrosarcoma excision and radiotherapy.

    PubMed

    Burget, G L; Panje, W R; Krause, C J

    1988-01-01

    For initial reconstruction, Dr. Burget suggests that he would have advanced the cheek flap medially toward the nasal septum and, subsequently, reconstructed the missing right half of the nose with a forehead flap and cartilage grafts. Dr. Panje suggested early prosthetic rehabilitation, while Dr. Krause's concepts were similar to Dr. Burget's, with forehead flap nasal reconstruction, after cheek reconstruction to the nasofacial and nasolabial lines with a medially advanced cheek flap. Dr. Panje recommended an immediate maxillary denture prosthesis, as did Dr. Krause (who supplemented this with foam rubber). Dr. Burget placed the prosthesis 3 weeks after tumor ablation. For skin grafts, Drs. Panje and Burget suggested split thickness grafts to all new surfaces to decrease wound contracture, while Dr. Krause used dermis grafts for the same purpose. Other reconstructive methods mentioned were the (1) cervical tubed flap, (2) free scapular flap, (3) Washio flap, (4) tissue expansion, and (5) nasolabial flap. Suggestions for isolated defects included: Lower eyelid--increase internal support by building up the prosthesis; release lower lid from deltopectoral flap and V-Y advancement; support graft or irradiated cartilage (1-2 mm sheet) under orbicularis oculi. Nasal ala--bring present ala down and insert cartilage graft; turn internal skin down and fill the resulting defect with a composite graft. Upper lip--multiple Z-plasty. Retrodisplacement of cheek due to maxillectomy--release buccal scar; skin graft the raw internal surface and build up prosthesis.

  13. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  14. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-02-07

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (more » $$\\rho \\propto P/T$$), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. Lastly, we show how the energy assignment can be corrected to account for such atmospheric effects.« less

  15. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (more » $$\\rho \\propto P/T$$), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. Lastly, we show how the energy assignment can be corrected to account for such atmospheric effects.« less

  16. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  17. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  18. Multiresolution Distance Volumes for Progressive Surface Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, D E; Bertram, M; Duchaineau, M A

    2002-04-18

    We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less

  19. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  20. An Evaluation of Surgical Functional Reconstruction of the Foot Using Kinetic and Kinematic Systems: A Case Report.

    PubMed

    Jordán-Palomar, Elena Irene; Javierre, Etelvina; Rey-Vasalo, José; Alfaro-Santafé, Víctor; Gómez-Benito, María José

    Most pedobarographic studies of microsurgical foot reconstruction have been retrospective. In the present study, we report the results from a prospective pedobarographic study of a patient after microsurgical reconstruction of her foot with a latissimus dorsi flap and a cutaneous paddle, with a 42-month follow-up period. We describe the foot reconstruction plan and the pedobarographic measurements and analyzed its functional outcome. The goal of the present study was to demonstrate that pedobarography could have a role in the treatment of foot reconstruction from a quantitative perspective. The pedobarographic measurements were recorded after the initial coverage surgery and 2 subsequent foot remodeling procedures. A total of 4 pedobarographic measurements and 2 gait analyses were recorded and compared for both the noninvolved foot and the injured foot. Furthermore, the progress of the reconstructed foot was critically evaluated using this method. Both static and dynamic patterns were compared at subsequent follow-up visits after the foot reconstruction. The values and progression of the foot shape, peak foot pressure (kPa), average foot pressure (kPa), total contact surface (cm 2 ), loading time (%), and step time (ms) were recorded. Initially, the pressure distribution of the reconstructed foot showed higher peak values at nonanatomic locations, revealing a greater ulceration risk. Over time, we found an improvement in the shape and values of these factors in the involved foot. To homogenize the pressure distribution and correct the imbalance between the 2 feet, patient-specific insoles were designed and fabricated. In our patient, pedobarography provided an objective, repeatable, and recordable method for the evaluation of the reconstructed foot. Pedobarography can therefore provide valuable insights into the prevention of pressure ulcers and optimization of rehabilitation. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Hierarchical automated clustering of cloud point set by ellipsoidal skeleton: application to organ geometric modeling from CT-scan images

    NASA Astrophysics Data System (ADS)

    Banegas, Frederic; Michelucci, Dominique; Roelens, Marc; Jaeger, Marc

    1999-05-01

    We present a robust method for automatically constructing an ellipsoidal skeleton (e-skeleton) from a set of 3D points taken from NMR or TDM images. To ensure steadiness and accuracy, all points of the objects are taken into account, including the inner ones, which is different from the existing techniques. This skeleton will be essentially useful for object characterization, for comparisons between various measurements and as a basis for deformable models. It also provides good initial guess for surface reconstruction algorithms. On output of the entire process, we obtain an analytical description of the chosen entity, semantically zoomable (local features only or reconstructed surfaces), with any level of detail (LOD) by discretization step control in voxel or polygon format. This capability allows us to handle objects at interactive frame rates once the e-skeleton is computed. Each e-skeleton is stored as a multiscale CSG implicit tree.

  2. Feature-constrained surface reconstruction approach for point cloud data acquired with 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai

    2008-04-01

    Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.

  3. 360° Fourier transform profilometry in surface reconstruction for fluorescence molecular tomography.

    PubMed

    Shi, Bi'er; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-05-01

    Fluorescence molecular tomography (FMT) is an emerging tool in the observation of diseases. A fast and accurate surface reconstruction of the experimental object is needed as a boundary constraint for FMT reconstruction. In this paper, an automatic, noncontact, and 3-D surface reconstruction method named 360◦ Fourier transform profilometry (FTP) is proposed to reconstruct 3-D surface profiles for FMT system. This method can reconstruct 360◦ integrated surface profiles utilizing the single-frame FTP at different angles. Results show that the relative mean error of the surface reconstruction of this method is less than 1.4% in phantom experiments, and is no more than 2.9% in mouse experiments in vivo. Compared with the Radon transform method, the proposed method reduces the computation time by more than 90% with a minimal error increase. At last, a combined 360◦ FTP/FMT experiment is conducted on a nude mouse. Not only can the 360◦ FTP system operate with the FMT system simultaneously, but it can also help to monitor the status of animals. Moreover, the 360◦ FTP system is independent of FMT system and can be performed to reconstruct the surface by itself.

  4. Neutron stars: history of the magnetic field decay

    NASA Astrophysics Data System (ADS)

    Igoshev, Andrei P.; Kholtygin, Alexander F.

    2013-03-01

    Using the data of the ATNF pulsar catalog we study the relation connected the real age t of young neutron stars (NS) and their spin-down age τ. We suppose that this relation is independent from both initial period of the NS and its initial surface magnetic field, and that the laws of the surface magnetic field decay are similar for all NSs in the Milky Way. We further assume that the birth-rate of pulsars was constant during at least last 200 million years. With these assumptions we were able to restore the history of the magnetic field decay for the galactic NSs. We reconstruct the universal function f(t) = B(t)/B 0, where B 0 is the initial magnetic field and B(t) is the magnetic field of NS at the age t. The function f(t) can be fitted by a power law with power index α = -1.17.

  5. Reconstructing the vibro-acoustic quantities on a highly non-spherical surface using the Helmholtz equation least squares method.

    PubMed

    Natarajan, Logesh Kumar; Wu, Sean F

    2012-06-01

    This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.

  6. 40 CFR 63.1191 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... becomes a major source. (2) A source that has an initial startup before the effective date of the standard. (3) A new or reconstructed source that has an initial startup after the effective date of the... major source or reconstruct a major source where the initial startup of the new or reconstructed source...

  7. 40 CFR 63.1191 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... becomes a major source. (2) A source that has an initial startup before the effective date of the standard. (3) A new or reconstructed source that has an initial startup after the effective date of the... major source or reconstruct a major source where the initial startup of the new or reconstructed source...

  8. 40 CFR 63.1191 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... becomes a major source. (2) A source that has an initial startup before the effective date of the standard. (3) A new or reconstructed source that has an initial startup after the effective date of the... major source or reconstruct a major source where the initial startup of the new or reconstructed source...

  9. Formation of an Oceanic Transform Fault During Continental Rifting

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, F.; Bull, J. M.; Keir, D.; Gerya, T.; Pagli, C.; Gernon, T.; Ayele, A.; Goitom, B.; Hammond, J. O. S.; Kendall, J. M.

    2017-12-01

    We integrate evidence from surface faults, geodetic measurements, local seismicity, and 3D numerical modelling of the subaerial Afar continental rift to show that an oceanic-style transform fault is forming during the final stages of continental breakup. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges, and are vital in palaeotectonic reconstructions of passive margins. The current consensus is that transform faults initiate after the onset of seafloor spreading. However this inference has been difficult to test given the lack of observations of transform fault formation. We present the first direct observation of transform fault initiation, and shed unprecedented light on their formation mechanisms. We demonstrate that they originate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Our results have important implications for reconstructing the breakup history of the continents. Palaeotectonic reconstructions that use transform fault terminations as an indicator of the continent-ocean boundary may have placed the continent-ocean boundary landward of its true location. This will have led to an overestimation of the age of continental breakup of between 8-18 Myr. Our results therefore have significant implications for studies that rely on accurate dating of continental breakup events.

  10. Initial stages of Lutetium growth on Si (111)-7 × 7 probed by STM and core-level photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Smykalla, Lars; Shukrynau, Pavel; Hietschold, Michael

    2017-09-01

    The interaction of small amounts of Lutetium with the Si (111)-7 × 7 reconstructed surface was investigated in detail using a combination of Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (XPS and UPS). Various immobile and also fastly moving atoms and nanocluster were found in the initial growth of the Lu/Si interface. Density functional theory calculations and photoelectron spectroscopy results suggest that the most attractive adsorption sites for the Lu atoms are basins around Si rest-atoms and there is no strong interaction between Lu and Si at the initial steps of film growth. However Lu nanocluster could also be found on other adsorption sites which results in a different voltage dependence in STM. Coverage-dependent STM images reveal the growth of a closed Lu metal overlayer by joining of the clusters. The existence of a stoichiometric Lu silicide compound was not detected on the surface in the initial growth for deposition at room temperature.

  11. Evaluation of algorithms for point cloud surface reconstruction through the analysis of shape parameters

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Verbeek, Fons J.

    2012-03-01

    In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.

  12. Predicting supramolecular self-assembly on reconstructed metal surfaces

    NASA Astrophysics Data System (ADS)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.

  13. Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.

    2016-06-01

    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

  14. Functional and Aesthetic Outcome Enhancement of Head and Neck Reconstruction through Secondary Procedures

    PubMed Central

    Hofer, Stefan O.P.; Payne, Caroline E.

    2010-01-01

    The foundation of head and neck reconstruction is based on two pillars: the restoration of function and the restoration of aesthetics. The objective of this article is to provide insight into how to prevent undesirable functional and aesthetic outcome after the initial procedure and also to provide solutions for enhancement of functional and aesthetic outcome with secondary procedures. Functional and aesthetic outcome enhancement is discussed in relation to the individual structures within the oral cavity, for the mandible, and for facial reconstruction. Normal prerequisites for all individual structures are described, and key points for restoration of these functional and aesthetic issues are proposed. In addition, further suggestions to improve suboptimal results after initial reconstructive surgery are presented. Understanding the function and aesthetics of the area to be reconstructed will allow appropriate planning and management of the initial reconstruction. Secondary enhancement should be attainable by minor procedures rather than a requirement to redo the initial reconstruction. PMID:22550452

  15. Left ventricular endocardial surface detection based on real-time 3D echocardiographic data

    NASA Technical Reports Server (NTRS)

    Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.

    2001-01-01

    OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.

  16. Eocene to mid-Pliocene landscape evolution in Scandinavia inferred from offshore sediment volumes and pre-glacial topography using inverse modelling

    NASA Astrophysics Data System (ADS)

    Pedersen, Vivi K.; Braun, Jean; Huismans, Ritske S.

    2018-02-01

    The origin of high topography in Scandinavia is highly debated, both in terms of its age and the underlying mechanism for its formation. Traditionally, the current high topography is assumed to have formed by several Cenozoic (mainly Neogene) phases of surface uplift and dissection of an old peneplain surface. These same surface uplift events are suggested to explain the increased deposition observed in adjacent offshore basins on the Norwegian shelf and in the North Sea. However, more recently it has been suggested that erosion and isostatic rock uplift of existing topography may also explain the recent evolution of topography in Scandinavia. For this latter view, the increased sedimentation towards the present is assumed to be a consequence of a climate related increase in erosion. In this study we explore whether inverse modelling of landscape evolution can give new insight into Eocene to mid-Pliocene (54-4 Ma) landscape evolution in the Scandinavian region. We do this by combining a highly efficient forward-in-time landscape evolution model (FastScape) with an optimization scheme suitable for non-linear inverse problems (the neighbourhood algorithm - NA). To limit our approach to the fluvial regime, we exclude the most recent mid-Pliocene-Quaternary time period where glacial erosion processes are expected to dominate landscape evolution. The "goodness" of our landscape evolution models is evaluated using i) sediment fluxes based on decompacted offshore sediment volumes and ii) maximum pre-glacial topography from a mid-Pliocene landscape, reconstructed using geophysical relief and offshore sediment volumes from the mid-Pliocene-Quaternary. We find several tested scenarios consistent with the offshore sediment record and the maximum elevation for our reconstructed pre-glacial (mid-Pliocene) landscape reconstruction, including: I) substantial initial topography ( 2 km) at 54 Ma and no induced tectonic rock uplift, II) the combination of some initial topography ( 1.1 km) at 54 Ma and minor continued rock uplift (< 0.04 mm/yr) until 4 Ma, and III) a two-phased tectonic rock uplift of an initially low topography ( 0.1 km). However, out of these, only scenario I (no tectonic rock uplift) matches large-scale characteristics of our reconstructed pre-glacial (mid-Pliocene) topography well. Our preferred model for Eocene to mid-Pliocene landscape evolution in Scandinavia is therefore one where high topography ( 2 km) has existed throughout the time interval from 54 to 4 Ma. We do not find several phases of peneplain surface uplift necessary to explain offshore sediment volumes and large-scale topographic patterns. On the contrary, extensive peneplain dissection seems inconsistent with the low rates of erosion we infer based on the offshore sediment volumes.

  17. Model based LV-reconstruction in bi-plane x-ray angiography

    NASA Astrophysics Data System (ADS)

    Backfrieder, Werner; Carpella, Martin; Swoboda, Roland; Steinwender, Clemens; Gabriel, Christian; Leisch, Franz

    2005-04-01

    Interventional x-ray angiography is state of the art in diagnosis and therapy of severe diseases of the cardiovascular system. Diagnosis is based on contrast enhanced dynamic projection images of the left ventricle. A new model based algorithm for three dimensional reconstruction of the left ventricle from bi-planar angiograms was developed. Parametric super ellipses are deformed until their projection profiles optimally fit measured ventricular projections. Deformation is controlled by a simplex optimization procedure. A resulting optimized parameter set builds the initial guess for neighboring slices. A three dimensional surface model of the ventricle is built from stacked contours. The accuracy of the algorithm has been tested with mathematical phantom data and clinical data. Results show conformance with provided projection data and high convergence speed makes the algorithm useful for clinical application. Fully three dimensional reconstruction of the left ventricle has a high potential for improvements of clinical findings in interventional cardiology.

  18. Kinetics of (2 × 4) → (3 × 1(6)) structural changes on GaAs(001) surfaces during the UHV annealing

    NASA Astrophysics Data System (ADS)

    Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.

    2018-06-01

    The peculiarities of superstructural transition (2 × 4) → (3 × 1(6)) on the GaAs(001) surface were studied by the RHEED method in the conditions initiated by a sharp change of the arsenic flux. The specular beam intensities RHEED picture dependences on time were obtained during the transition. The measurement results were analyzed within the JMAK (Johnson - Melh - Avrami - Kolmogorov) kinetic model. It was established that the process of structural rearrangement proceeds in two stages and it is realized through the state of intermediate disordering, domains with different reconstructions being coexistent on the surface. The activation energies and phase transition velocities were determined for each of the stages. The procedure for precise determination of GaAs(001) surface temperature using the features of the α(2 × 4) → DO transition process kinetic was proposed. The results of this work allow us to broaden our understanding of the reconstruction transitions mechanisms. This information has a key (fundamental and applied) nature for the technologies of epitaxial growth of multilayer heterostructures, where the interface planarity and the sharpness of composition profile are of particular importance.

  19. Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics.

    PubMed

    Yeu, In Won; Park, Jaehong; Han, Gyuseung; Hwang, Cheol Seong; Choi, Jung-Hae

    2017-09-06

    A detailed understanding of the atomic configuration of the compound semiconductor surface, especially after reconstruction, is very important for the device fabrication and performance. While there have been numerous experimental studies using the scanning probe techniques, further theoretical studies on surface reconstruction are necessary to promote the clear understanding of the origins and development of such subtle surface structures. In this work, therefore, a pressure-temperature surface reconstruction diagram was constructed for the model case of the InAs (001) surface considering both the vibrational entropy and configurational entropy based on the density functional theory. Notably, the equilibrium fraction of various reconstructions was determined as a function of the pressure and temperature, not as a function of the chemical potential, which largely facilitated the direct comparison with the experiments. By taking into account the entropy effects, the coexistence of the multiple reconstructions and the fractional change of each reconstruction by the thermodynamic condition were predicted and were in agreement with the previous experimental observations. This work provides the community with a useful framework for such type of theoretical studies.

  20. High-Resolution Surface Reconstruction from Imagery for Close Range Cultural Heritage Applications

    NASA Astrophysics Data System (ADS)

    Wenzel, K.; Abdel-Wahab, M.; Cefalu, A.; Fritsch, D.

    2012-07-01

    The recording of high resolution point clouds with sub-mm resolution is a demanding and cost intensive task, especially with current equipment like handheld laser scanners. We present an image based approached, where techniques of image matching and dense surface reconstruction are combined with a compact and affordable rig of off-the-shelf industry cameras. Such cameras provide high spatial resolution with low radiometric noise, which enables a one-shot solution and thus an efficient data acquisition while satisfying high accuracy requirements. However, the largest drawback of image based solutions is often the acquisition of surfaces with low texture where the image matching process might fail. Thus, an additional structured light projector is employed, represented here by the pseudo-random pattern projector of the Microsoft Kinect. Its strong infrared-laser projects speckles of different sizes. By using dense image matching techniques on the acquired images, a 3D point can be derived for almost each pixel. The use of multiple cameras enables the acquisition of a high resolution point cloud with high accuracy for each shot. For the proposed system up to 3.5 Mio. 3D points with sub-mm accuracy can be derived per shot. The registration of multiple shots is performed by Structure and Motion reconstruction techniques, where feature points are used to derive the camera positions and rotations automatically without initial information.

  1. Surface supported gold-organic hybrids: on-surface synthesis and surface directed orientation.

    PubMed

    Zhang, Haiming; Franke, Jörn-Holger; Zhong, Dingyong; Li, Yan; Timmer, Alexander; Arado, Oscar Díaz; Mönig, Harry; Wang, Hong; Chi, Lifeng; Wang, Zhaohui; Müllen, Klaus; Fuchs, Harald

    2014-04-09

    The surface-assisted synthesis of gold-organic hybrids on Au (111) and Au (100) surfaces is repotred by thermally initiated dehalogenation of chloro-substituted perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs). Structures and surface-directed alignment of the Au-PBI chains are investigated by scanning tunnelling microscopy in ultra high vacuum conditions. Using dichloro-PBI as a model system, the mechanism for the formation of Au-PBI dimer is revealed with scanning tunnelling microscopy studies and density functional theory calculations. A PBI radical generated from the homolytic C-Cl bond dissociation can covalently bind a surface gold atom and partially pull it out of the surface to form stable PBI-Au hybrid species, which also gives rise to the surface-directed alignment of the Au-PBI chains on reconstructed Au (100) surfaces. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Evaluation of Magnetic Diagnostics for MHD Equilibrium Reconstruction of LHD Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Aaron C; Hanson, James D.; Lazerson, Sam

    2011-01-01

    Equilibrium reconstruction is the process of determining the set of parameters of an MHD equilibrium that minimize the difference between expected and experimentally observed signals. This is routinely performed in axisymmetric devices, such as tokamaks, and the reconstructed equilibrium solution is then the basis for analysis of stability and transport properties. The V3FIT code [1] has been developed to perform equilibrium reconstruction in cases where axisymmetry cannot be assumed, such as in stellarators. The present work is focused on using V3FIT to analyze plasmas in the Large Helical Device (LHD) [2], a superconducting, heliotron type device with over 25 MWmore » of heating power that is capable of achieving both high-beta ({approx}5%) and high density (>1 x 10{sup 21}/m{sup 3}). This high performance as well as the ability to drive tens of kiloamperes of toroidal plasma current leads to deviations in the equilibrium state from the vacuum flux surfaces. This initial study examines the effectiveness of using magnetic diagnostics as the observed signals in reconstructing experimental plasma parameters for LHD discharges. V3FIT uses the VMEC [3] 3D equilibrium solver to calculate an initial equilibrium solution with closed, nested flux surfaces based on user specified plasma parameters. This equilibrium solution is then used to calculate the expected signals for specified diagnostics. The differences between these expected signal values and the observed values provides a starting {chi}{sup 2} value. V3FIT then varies all of the fit parameters independently, calculating a new equilibrium and corresponding {chi}{sup 2} for each variation. A quasi-Newton algorithm [1] is used to find the path in parameter space that leads to a minimum in {chi}{sup 2}. Effective diagnostic signals must vary in a predictable manner with the variations of the plasma parameters and this signal variation must be of sufficient amplitude to be resolved from the signal noise. Signal effectiveness can be defined for a specific signal and specific reconstruction parameter as the dimensionless fractional reduction in the posterior parameter variance with respect to the signal variance. Here, {sigma}{sub i}{sup sig} is the variance of the ith signal and {sigma}{sub j}{sup param} param is the posterior variance of the jth fit parameter. The sum of all signal effectiveness values for a given reconstruction parameter is normalized to one. This quantity will be used to determine signal effectiveness for various reconstruction cases. The next section will examine the variation of the expected signals with changes in plasma pressure and the following section will show results for reconstructing model plasmas using these signals.« less

  4. The structure of reconstructed chalcopyrite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  5. Comparative Analysis of Reconstructed Image Quality in a Simulated Chromotomographic Imager

    DTIC Science & Technology

    2014-03-01

    quality . This example uses five basic images a backlit bar chart with random intensity, 100 nm separation. A total of 54 initial target...compared for a variety of scenes. Reconstructed image quality is highly dependent on the initial target hypercube so a total of 54 initial target...COMPARATIVE ANALYSIS OF RECONSTRUCTED IMAGE QUALITY IN A SIMULATED CHROMOTOMOGRAPHIC IMAGER THESIS

  6. The Effects of Bio-Lubricating Molecules on Flexor Tendon Reconstruction in A Canine Allograft Model In Vivo

    PubMed Central

    Zhao, Chunfeng; Wei, Zhuang; Kirk, Ramona L.; Thoreson, Andrew R.; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.

    2014-01-01

    Background Using allograft is an attractive alternative for flexor tendon reconstruction because of the lack of donor morbidity, and better matching to the intrasynovial environment. The purpose of this study was to use biolubricant molecules to modify the graft surface to decrease adhesions and improve digit function. Methods 28 flexor digitorum profundus (FDP) tendons from the 2nd and 5th digits of 14 dogs were first lacerated and repaired to create a model with repair failure and scar digit for tendon reconstruction. Six weeks after the initial surgery, the tendons were reconstructed with FDP allograft tendons obtained from canine cadavers. One graft tendon in each dog was treated with saline as a control and the other was treated with gelatin, carbodiimide derivatized, hyaluronic acid and lubricin (cd-HA-Lubricin). Six weeks postoperatively, digit function, graft mechanics, and biology were analyzed. Results Allograft tendons treated with cd-HA-Lubricin had decreased adhesions at the proximal tendon/graft repair and within flexor sheath, improved digit function, and increased graft gliding ability. The treatment also reduced the strength at the distal tendon to bone repair, but the distal attachment rupture rate was similar for both graft types. Histology showed that viable cells migrated to the allograft, but these were limited to the tendon surface. Conclusion cd-HA-Lubricin treatment of tendon allograft improves digit functional outcomes after flexor tendon reconstruction. However, delayed bone-tendon healing should be a caution. Furthermore, the cell infiltration into the allograft tendons substance should be a target for future studies, to shorten the allograft self-regeneration period. PMID:24445876

  7. Muon reconstruction in the Daya Bay water pools

    DOE PAGES

    Hackenburg, R. W.

    2017-08-12

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs’ timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Dayamore » Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, we describe an algorithm which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs’ charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs’ timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5° in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.« less

  8. Muon reconstruction in the Daya Bay water pools

    NASA Astrophysics Data System (ADS)

    Hackenburg, R. W.

    2017-11-01

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs' timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Daya Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, an algorithm is described which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs' charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs' timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5°in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.

  9. Single-layer TiO x reconstructions on SrTiO 3 (111): (√7 × √7)R19.1°, (√13 × √13)R13.9°, and related structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Wang, Shuqiu; Castell, Martin R.

    The atomic structures of two reconstructions, (√7 × √7)R19.1° and (√13 × √13)R13.9°, on the SrTiO 3 (111) surface were determined using a combination of density functional theory and scanning tunneling microscopy data and simulations. The combination of these methods allows for potential surface structures to be generated and verified in the absence of diffraction data, providing another tool for solving surface reconstructions. These reconstructions belong to the same stoichiometric, nSrTiO 3 • mTiO 2, structural family made up of an interconnected, single layer of edge-sharing TiO 6 and TiO 5[] octahedra. This family is found to include the previously-solvedmore » (2 × 2)a reconstruction as its smallest unit-cell sized member and serves as a tool for better understanding and predicting the structure of other reconstructions of arbitrary surface unit-cell size on SrTiO 3 (111). This reconstruction family and the calculations of surface energies for different hypothesis structures also shed light on the structure of Schottky defects observed on these reconstructed SrTO 3 (111) surfaces.« less

  10. Technical and Scientific Evaluation of EM-APEX in Hurricane Frances

    DTIC Science & Technology

    2006-09-30

    as part of the 2004 CBLAST experiment (Figure 1). Four of these initial floats were deployed again in the 2005 EDDIES experiment (NSF) near Bermuda . In... triangles indicate ascending and descending profiles, respectively. Circles indicate 500 mn deep profiles, while the rest are 200 mn deep. The figure shows...times marked with triangles can be used to reconstruct surface wave properties using more sophisticated methods. RESULTS Technical Results. a

  11. Altimetric lagrangian advection to reconstruct Pacific Ocean fine scale surface tracer fields

    NASA Astrophysics Data System (ADS)

    Rogé, Marine; Morrow, Rosemary; Dencausse, Guillaume

    2015-04-01

    In past studies, lagrangian stirring of surface tracer fields by altimetric surface geostrophic currents has been performed in different mid to high-latitude regions, showing good results in reconstructing finer-scale tracer patterns. Here we apply the technique to three different regions in the eastern and western tropical Pacific, and in the subtropical southwest Pacific. Initial conditions are derived from weekly gridded temperature and salinity fields, based on hydrographic data and Argo. Validation of the improved fine-scale surface tracer fields is performed using satellite AMSRE SST data, and high-resolution ship thermosalinograph data. We test two kinds of lagrangian advection. The standard one-way advection is shown to introduce an increased tracer bias as the advection time increases. Indeed, since we only use passive stirring, a bias is introduced from the missing physics, such as air-sea fluxes or mixing. A second "backward-forward" advection technique is shown to reduce the seasonal bias, but more data is lost around coasts and islands, a strong handicap in the tropical Pacific with many small islands. In the subtropical Pacific Ocean, the mesoscale temperature and salinity fronts are well represented by the one-way advection over a 10-day advection time, including westward propagating features not apparent in the initial fields. In the tropics, the results are less clear. The validation is hampered by the complex vertical stratification, and the technique is limited by the lack of accurate surface currents for the stirring - the gridded altimetric fields poorly represent the meridional currents, and are not detecting the fast tropical instability waves, nor the wind-driven circulation. We suggest that the passive lateral stirring technique is efficient in regions with moderate the high mesoscale energy and correlated mesoscale surface temperature and surface height. In other regions, more complex dynamical processes may need to be included.

  12. [Graphic reconstruction of anatomic surfaces].

    PubMed

    Ciobanu, O

    2004-01-01

    The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.

  13. Long-Term Data Reveal Rate and Risk Factors for Subsequent Surgeries Following Initial ACL Reconstruction

    MedlinePlus

    ... and Risk Factors for Subsequent Surgeries Following Initial ACL Reconstruction By Colleen Labbe, M.S. | December 1, 2013 ... surgery to reconstruct a torn anterior cruciate ligament (ACL) eventually need to have additional surgery on the ...

  14. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  15. Study of Huizhou architecture component point cloud in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin

    2017-06-01

    Surface reconfiguration softwares have many problems such as complicated operation on point cloud data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point cloud preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the acquired point cloud data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point cloud dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.

  16. Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2017-12-01

    The mechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved. We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.

  17. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  18. Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO 3 Nanocrystals

    DOE PAGES

    Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili

    2017-12-05

    For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less

  19. Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO 3 Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili

    For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less

  20. Evidence-Based Performance Measures: Quality Metrics for the Care of Patients Undergoing Breast Reconstruction.

    PubMed

    Manahan, Michele A; Wooden, William A; Becker, Stephen M; Cacioppo, Jason R; Edge, Stephen B; Grandinetti, Amanda C; Gray, Diedra D; Holley, Susan O; Karp, Nolan S; Kocak, Ergun; Rao, Roshni; Rosson, Gedge D; Schwartz, Jaime S; Sitzman, Thomas J; Soltanian, Hooman T; TerKonda, Sarvam P; Wallace, Anne M

    2017-12-01

    The American Society of Plastic Surgeons commissioned the Breast Reconstruction Performance Measure Development Work Group to identify and draft quality measures for the care of patients undergoing breast reconstruction surgery. Two outcome measures were identified. The first desired outcome was to reduce the number of returns to the operating room following reconstruction within 60 days of the initial reconstructive procedure. The second desired outcome was to reduce flap loss within 30 days of the initial reconstructive procedure. All measures in this report were approved by the American Society of Plastic Surgeons Breast Reconstruction Performance Measures Work Group and the American Society of Plastic Surgeons Executive Committee. The Work Group recommends the use of these measures for quality initiatives, Continuing Medical Education, Maintenance of Certification, American Society of Plastic Surgeons' Qualified Clinical Data Registry reporting, and national quality reporting programs.

  1. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less

  2. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.

  3. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347

  4. Morphing of spatial objects in real time with interpolation by functions of radial and orthogonal basis

    NASA Astrophysics Data System (ADS)

    Kosnikov, Yu N.; Kuzmin, A. V.; Ho, Hoang Thai

    2018-05-01

    The article is devoted to visualization of spatial objects’ morphing described by the set of unordered reference points. A two-stage model construction is proposed to change object’s form in real time. The first (preliminary) stage is interpolation of the object’s surface by radial basis functions. Initial reference points are replaced by new spatially ordered ones. Reference points’ coordinates change patterns during the process of morphing are assigned. The second (real time) stage is surface reconstruction by blending functions of orthogonal basis. Finite differences formulas are applied to increase the productivity of calculations.

  5. Surface modes and reconstruction of diamond structure crystals

    NASA Astrophysics Data System (ADS)

    Goldammer, W.; Ludwig, W.; Zierau, W.

    1986-08-01

    Applying our recently proposed Green function method we calculate the surface phonon spectra for the (111) surfaces of the diamond structure crystals C, Si, Ge and α-Sn on the basis of a phenomenological force constant model. Allowing for changes in the surface force constants we investigate the possibility of a surface phonon softening. Relating these soft modes to surface reconstructions we find evidence for a Si (7 × 7), Ge (8 × 8) and α-Sn (3 × 3) reconstruction, while diamond does not exhibit a soft mode behavior at all. We can thus explain the occurrence of different surface structures in these geometrically identical crystals as being determined to a great extent already by bulk properties. Finally, we derive models of the reconstructed surfaces and discuss our model for the Si (7 × 7) surface with respect to experimental TED patterns.

  6. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon=-2.7×10(-3) mm(-1), σrecon=7.0×10(-3) mm(-1)) and (μCT=-2.5×10(-3) mm(-1), σCT=5.3×10(-3) mm(-1)), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  7. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  8. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models.

    PubMed

    Wu, Florence T H; Ng-Thow-Hing, Victor; Singh, Karan; Agur, Anne M; McKee, Nancy H

    2007-11-01

    Computational musculoskeletal (MSK) models - 3D graphics-based models that accurately simulate the anatomical architecture and/or the biomechanical behaviour of organ systems consisting of skeletal muscles, tendons, ligaments, cartilage and bones - are valued biomedical tools, with applications ranging from pathological diagnosis to surgical planning. However, current MSK models are often limited by their oversimplifications in anatomical geometries, sometimes lacking discrete representations of connective tissue components entirely, which ultimately affect their accuracy in biomechanical simulation. In particular, the aponeuroses - the flattened fibrous connective sheets connecting muscle fibres to tendons - have never been geometrically modeled. The initiative was thus to extend Anatomy3D - a previously developed software bundle for reconstructing muscle fibre architecture - to incorporate aponeurosis-modeling capacity. Two different algorithms for aponeurosis reconstruction were written in the MEL scripting language of the animation software Maya 6.0, using its NURBS (non-uniform rational B-splines) modeling functionality for aponeurosis surface representation. Both algorithms were validated qualitatively against anatomical and functional criteria.

  10. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  11. Adsorption of hydrogen on stable and metastable Ir(100) surfaces

    NASA Astrophysics Data System (ADS)

    Arman, Mohammad Alif; Klein, Andreas; Ferstl, Pascal; Valookaran, Abhilash; Gustafson, Johan; Schulte, Karina; Lundgren, Edvin; Heinz, Klaus; Schneider, Alexander; Mittendorfer, Florian; Hammer, Lutz; Knudsen, Jan

    2017-02-01

    Using the combination of high resolution core level spectroscopy and density functional theory we present a detailed spectroscopic study for all clean and hydrogen covered phases of Ir(100). The results are complemented by an investigation of the hydrogen desorption process from various phases using temperature programmed desorption spectroscopy and scanning tunneling microscopy. In total, all experimentally determined core level shifts match very well with those predicted by density functional theory based on established structural models. In particular, we find for the (bridge site) adsorption on the unreconstructed 1×1 phase that the initial core level shift of surface Ir atoms is altered by +0.17 eV for each Ir-H bond formed. In the submonolayer regime we find evidence for island formation at low temperatures. For the H-induced deconstructed 5×1-H phase we identify four different surface core level shifts with two of them being degenerate. Finally, for the reconstructed 5×1-hex phase also four surface components are identified, which undergo a rather rigid core level shift of +0.15 eV upon hydrogen adsorption suggesting a similarly homogeneous charge transfer to all Ir surface atoms. Thermodesorption experiments for the 5×1-H phase reveal two different binding states for hydrogen independent of the total coverage. We conclude that the surface always separates into patches of fully covered deconstructed and uncovered reconstructed phases. We could also show by tunneling microscopy that with the desorption of the last hydrogen atom from the deconstructed unit cell the surface instantaneously reverts into the reconstructed state. Eventually, we could determine the saturation coverage upon molecular adsorption for all phases to be θmax1 × 1 - H = 1.0 ML , θmax5 × 1 - H = 0.8 ML , and θmax5 × 1 - hex - H ≥ 1.0 ML .

  12. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  13. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  14. Clinical application of intense pulsed light depilation technology in total auricular reconstruction.

    PubMed

    Guo, Ying; Shan, Jing; Zhang, Tianyu

    2017-08-01

    Although ear reconstruction technology has been highly developed in recent years, hair growth on the reconstructed ear has plagued both surgeons and patients. In this paper, the authors introduce a clinical application of intense pulsed light depilation in total auricular reconstruction. From August 2012 to August 2013, 27 patients (28 ears) suffering from congenital microtia were treated by intense pulsed light depilation (650-950-nm filter, initial fluence of 14-16 J/cm 2 and gradually increased, pulse width of 30-50 ms, spot size of 20 × 30 mm 2 , intervals of 6-8 weeks, a total of four sessions) either before or after auricular reconstruction. According to the treatment situation at diagnosis, the patients were divided into two groups: the preoperative group and the postoperative group. There were no differences between the two groups in terms of age or initial fluence for hair removal; however, there were less treatments in the former than in the latter group (preoperative group 4.1 ± 0.3, postoperative group 4.7 ± 0.7, F = 9.10, P = 0.006), and the maximum fluence used for hair removal was lower in the former than in the latter group (preoperative group 18-20 J/cm 2 , postoperative group 19-22 J/cm 2 , F = 22.31, P < 0.001). After follow-up for ≥4-6 months, the effective rate was 100% in the preoperative group, and the effective rate was 80% in the postoperative group. Intense pulsed light depilation technology is a reasonable complementary approach to total auricular reconstruction. And preoperative depilation is recommended over postoperative depilation. The non-invasive modern photonic technology can resolve the problem of postoperative residual hair on the reconstructed auricle, improving auricular shape and increasing patient satisfaction. In addition, an adequately set preoperative hair removal area can provide surface skin that is most similar to normal auricle skin for auricular reconstruction.

  15. Combining multi-atlas segmentation with brain surface estimation

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.

    2016-03-01

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitation in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  16. Combining Multi-atlas Segmentation with Brain Surface Estimation.

    PubMed

    Huo, Yuankai; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A

    2016-02-27

    Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitations in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.

  17. Special Inspector General for Afghanistan Reconstruction Quarterly Report to the United States Congress

    DTIC Science & Technology

    2008-10-30

    RECONSTRUCTION INITIATIVES AFGHANISTAN RECONSTRUCTION INITIATIVES Framework for Current U.S. Funding Current U.S. support to Afghanistan...reconstruction is based on the Foreign Assistance Framework as set forth in the Department of State’s most recent Congressional Budget Justi cation for 2008 and...Humanitarian Assistance • The Framework supports the goal of aiding in the development of “democratic, well-governed states that respond to the

  18. Virtual reconstruction of glenoid bone defects using a statistical shape model.

    PubMed

    Plessers, Katrien; Vanden Berghe, Peter; Van Dijck, Christophe; Wirix-Speetjens, Roel; Debeer, Philippe; Jonkers, Ilse; Vander Sloten, Jos

    2018-01-01

    Description of the native shape of a glenoid helps surgeons to preoperatively plan the position of a shoulder implant. A statistical shape model (SSM) can be used to virtually reconstruct a glenoid bone defect and to predict the inclination, version, and center position of the native glenoid. An SSM-based reconstruction method has already been developed for acetabular bone reconstruction. The goal of this study was to evaluate the SSM-based method for the reconstruction of glenoid bone defects and the prediction of native anatomic parameters. First, an SSM was created on the basis of 66 healthy scapulae. Then, artificial bone defects were created in all scapulae and reconstructed using the SSM-based reconstruction method. For each bone defect, the reconstructed surface was compared with the original surface. Furthermore, the inclination, version, and glenoid center point of the reconstructed surface were compared with the original parameters of each scapula. For small glenoid bone defects, the healthy surface of the glenoid was reconstructed with a root mean square error of 1.2 ± 0.4 mm. Inclination, version, and glenoid center point were predicted with an accuracy of 2.4° ± 2.1°, 2.9° ± 2.2°, and 1.8 ± 0.8 mm, respectively. The SSM-based reconstruction method is able to accurately reconstruct the native glenoid surface and to predict the native anatomic parameters. Based on this outcome, statistical shape modeling can be considered a successful technique for use in the preoperative planning of shoulder arthroplasty. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. First results from the spectral DCT trigger implemented in the Cyclone V Front-End Board used for a detection of very inclined showers in the Pierre Auger surface detector Engineering Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew

    2015-07-01

    The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundarymore » of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)« less

  20. DCT Trigger in a High-Resolution Test Platform for the Detection of Very Inclined Showers in Pierre Auger Surface Detectors

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Wiedeński, Michał

    2017-06-01

    We present first results from a trigger based on the discrete cosine transform (DCT) operating in new front-end boards with a Cyclone V E field-programmable gate array (FPGA) deployed in seven test surface detectors in the Pierre Auger Test Array. The patterns of the ADC traces generated by very inclined showers (arriving at 70° to 90° from the vertical) were obtained from the Auger database and from the CORSIKA simulation package supported by the Auger OffLine event reconstruction platform that gives predicted digitized signal profiles. Simulations for many values of the initial cosmic ray angle of arrival, the shower initialization depth in the atmosphere, the type of particle, and its initial energy gave a boundary on the DCT coefficients used for the online pattern recognition in the FPGA. Preliminary results validated the approach used. We recorded several showers triggered by the DCT for 120 Msamples/s and 160 Msamples/s.

  1. Probing the electronic transport on the reconstructed Au/Ge(001) surface

    PubMed Central

    Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf

    2014-01-01

    Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129

  2. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    2016-06-15

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  3. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discretemore » models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.« less

  4. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-01-01

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon = − 2.7 × 10−3 mm−1, σrecon = 7.0 × 10−3 mm−1) and (μCT = − 2.5 × 10−3 mm−1, σCT = 5.3 × 10−3 mm−1), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy. PMID:26520747

  5. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  6. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  7. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.

  8. Toward Immersed Boundary Simulation of High Reynolds Number Flows

    NASA Technical Reports Server (NTRS)

    Kalitzin, Georgi; Iaccarino, Gianluca

    2003-01-01

    In the immersed boundary (IB) method, the surface of an object is reconstructed with forcing terms in the underlying flow field equations. The surface may split a computational cell removing the constraint of the near wall gridlines to be aligned with the surface. This feature greatly simplifies the grid generation process which is cumbersome and expensive in particular for structured grids and complex geometries. The IB method is ideally suited for Cartesian flow solvers. The flow equations written in Cartesian coordinates appear in a very simple form and several numerical algorithms can be used for an efficient solution of the equations. In addition, the accuracy of numerical algorithms is dependent on the underlying grid and it usually deteriorates when the grid deviates from a Cartesian mesh. The challenge for the IB method lies in the representation of the wall boundaries and in providing an adequate near wall flow field resolution. The issue of enforcing no-slip boundary conditions at the immersed surface has been addressed by several authors by imposing a local reconstruction of the solution. Initial work by Verzicco et al. was based on a simple linear, one-dimensional operator and this approach proved to be accurate for boundaries largely aligned with the grid lines. Majumdar et al. used various multidimensional and high order polynomial interpolations schemes. These high order schemes, however, are keen to introduce wiggles and spurious extrema. Iaccarino & Verzicco and Kalitzin & Iaccarino proposed a tri-linear reconstruction for the velocity components and the turbulent scalars. A modified implementation that has proven to be more robust is reported in this paper. The issue of adequate near wall resolution in a Cartesian framework can initially be addressed by using a non-uniform mesh which is stretched near the surface. In this paper, we investigate an unstructured approach for local grid refinement that utilizes Cartesian mesh features. The computation of high Reynolds number wall bounded flows is particularly challenging as it requires the consideration of thin turbulent boundary layers, i.e. near wall regions with large gradients of the flow field variables. For such flows, the representation of the wall boundary has a large impact on the accuracy of the computation. It is also critical for the robustness and convergence of the flow solver.

  9. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  10. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  11. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    NASA Astrophysics Data System (ADS)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  12. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  13. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  14. Reconstruction of initial pressure from limited view photoacoustic images using deep learning

    NASA Astrophysics Data System (ADS)

    Waibel, Dominik; Gröhl, Janek; Isensee, Fabian; Kirchner, Thomas; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-02-01

    Quantification of tissue properties with photoacoustic (PA) imaging typically requires a highly accurate representation of the initial pressure distribution in tissue. Almost all PA scanners reconstruct the PA image only from a partial scan of the emitted sound waves. Especially handheld devices, which have become increasingly popular due to their versatility and ease of use, only provide limited view data because of their geometry. Owing to such limitations in hardware as well as to the acoustic attenuation in tissue, state-of-the-art reconstruction methods deliver only approximations of the initial pressure distribution. To overcome the limited view problem, we present a machine learning-based approach to the reconstruction of initial pressure from limited view PA data. Our method involves a fully convolutional deep neural network based on a U-Net-like architecture with pixel-wise regression loss on the acquired PA images. It is trained and validated on in silico data generated with Monte Carlo simulations. In an initial study we found an increase in accuracy over the state-of-the-art when reconstructing simulated linear-array scans of blood vessels.

  15. Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Anastasio, Mark A.

    2017-12-01

    The initial pressure and speed of sound (SOS) distributions cannot both be stably recovered from photoacoustic computed tomography (PACT) measurements alone. Adjunct ultrasound computed tomography (USCT) measurements can be employed to estimate the SOS distribution. Under the conventional image reconstruction approach for combined PACT/USCT systems, the SOS is estimated from the USCT measurements alone and the initial pressure is estimated from the PACT measurements by use of the previously estimated SOS. This approach ignores the acoustic information in the PACT measurements and may require many USCT measurements to accurately reconstruct the SOS. In this work, a joint reconstruction method where the SOS and initial pressure distributions are simultaneously estimated from combined PACT/USCT measurements is proposed. This approach allows accurate estimation of both the initial pressure distribution and the SOS distribution while requiring few USCT measurements.

  16. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    PubMed

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  17. Reconstructing extreme AMOC events through nudging of the ocean surface: A perfect model approach

    NASA Astrophysics Data System (ADS)

    Ortega, Pablo; Guilyardi, Eric; Swingedouw, Didier; Mignot, Juliette; Nguyen, Sebastien

    2017-04-01

    While the Atlantic Meridional Overturning Circulation (AMOC) is thought to be a crucial component of the North Atlantic climate and its predictability, past changes in its strength are challenging to quantify, and only limited information is available. In this study, we use a perfect model approach with the IPSL-CM5A-LR model to assess the performance of several surface nudging techniques in reconstructing the variability of the AMOC. Special attention is given to the reproducibility of an extreme positive AMOC peak from a preindustrial control simulation. Nudging includes standard relaxation techniques towards the sea surface temperature and salinity anomalies of this target control simulation, and/or the prescription of the wind-stress fields. Surface nudging approaches using standard fixed restoring terms succeed in reproducing most of the target AMOC variability, including the timing of the extreme event, but systematically underestimate its amplitude. A detailed analysis of the AMOC variability mechanisms reveals that the underestimation of the extreme AMOC maximum comes from a deficit in the formation of the dense water masses in the main convection region, located south of Iceland in the model. This issue is largely corrected after introducing a novel surface nudging approach, which uses a varying restoring coefficient that is proportional to the simulated mixed layer depth, which, in essence, keeps the restoring time scale constant. This new technique substantially improves water mass transformation in the regions of convection, and in particular, the formation of the densest waters, which are key for the representation of the AMOC extreme. It is therefore a promising strategy that may help to better initialize the AMOC variability and other ocean features in the models, and thus improve decadal climate predictions. As this restoring technique only uses surface data, for which better and longer observations are available, it opens up opportunities for improved reconstructions of the AMOC over the last few decades.

  18. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommend, authorize, or consent to road construction, road reconstruction, or surface occupancy associated... construction or road reconstruction associated with mineral leases in Idaho Roadless Areas designated as Backcountry/Restoration. Surface use or occupancy without road construction or reconstruction is permissible...

  19. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    NASA Astrophysics Data System (ADS)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  20. Impact of annealing on features of BCP coating on NiTi shape memory alloy: Preparation and physicochemical characterization

    NASA Astrophysics Data System (ADS)

    Dulski, Mateusz; Dudek, Karolina; Grelowski, Michał; Kubacki, Jerzy; Hertlein, Justyna; Wojtyniak, Marcin; Goryczka, Tomasz

    2018-04-01

    A multifunctional composite structure consisting of resorbable tricalcium phosphate with non-resorbable hydroxyapatite and NiTi shape memory alloy (SMA) has been manufactured to develop a biocompatible system for long-term implant applications. The hybrid system has been vacuum sintered to consolidate and form chemical binding between phosphate biomaterials and NiTi SMA. In this context, the impact of sintering on biomaterial's features in relation to initial material has been analyzed using a combination of structural and surface sensitive approaches. Moreover, a partial decomposition of the NiTi parent phase to the equilibrium Ti2Ni with cubic structure, and non-equilibrium Ti3Ni4 with hexagonal structure has been detected. Moreover, a sintering has provided a reconstruction of the orthophosphate surface through the disintegration of calcium phosphate material and increase of hydroxyapatite with smaller particles in volume. The biomaterial surface has become more enriched in calcium in relation to the initial composition, with a simultaneous decline of the roughness parameters due to the gradual consolidation of orthophosphates. Finally, surface modification accompanied with heat treatment has led to an increase of surface Young's modulus as an effect of partial recrystallization of calcium phosphates.

  1. 3D reconstruction of highly fragmented bone fractures

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence

    2007-03-01

    A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.

  2. Year Five of Southeast Atlantic Coastal Ocean Observing System (SEACOOS) Implementation

    DTIC Science & Technology

    2007-12-15

    137 total]. Alvera -Azcarate, A., A. Barth, J.M. Beckers, and R.H. Weisberg, 2007. Multivariate reconstruction of missing data in sea surface...temperature, chlorophyll and wind satellite fields. Jour. Geophys. Res., 112, C03008, doi: 10.1029/2006JC003660. Alvera -Azcarate, A., A. Barth, and R.H...A., J.-M. Beckers, A. Alvera -Azcarate, and R. H. Weisberg, 2007. Filtering inertia-gravity waves from the initial conditions of the linear shallow

  3. Automating the implementation of an equilibrium profile model for glacier reconstruction in a GIS environment

    NASA Astrophysics Data System (ADS)

    Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano

    2014-05-01

    Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.

  4. Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2016-05-14

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less

  5. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  6. [The influences of the stress distribution on the condylar cartilage surface by Herbst appliance under various bite reconstruction--a three dimensional finite element analysis].

    PubMed

    Hu, L; Zhao, Z; Song, J; Fan, Y; Jiang, W; Chen, J

    2001-02-01

    The distribution of stress on the surface of condylar cartilage was investigated. Three-dimensional model of the 'Temporomandibular joint mandible Herbst appliance system' was set up by SUPER SAP software (version 9.3). On this model, various bite reconstruction was simulated according to specified advanced displacement and vertical bite opening. The distribution of maximum and minimum principal stress on the surface of condylar cartilage were computerized and analyzed. When Herbst appliance drove the mandible forward, the anterior condyle surface was compressed while the posterior surface was drawn. The trend of stress on the same point on the condyle surface was consistent in various reconstruction conditions, but the trend of stress on various point were different in same reconstruction conditions. All five groups of bite reconstruction (3-7 mm advancement, 4-2 mm vertical bite opening of the mandible) designed by this study can be selected in clinic according to the patient's capability of adaptation, the extent of malocclusion and the potential and direction of growth.

  7. Fast Measurement and Reconstruction of Large Workpieces with Freeform Surfaces by Combining Local Scanning and Global Position Data

    PubMed Central

    Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu

    2015-01-01

    In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396

  8. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  9. Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor

    2017-07-19

    Although well known in the material science field, surface reconstruction of perovskites has not been implemented in heterogeneous catalysis. In this work, we employ multiple surface sensitive techniques to characterize the surface reconstruction of SrTiO3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface reconstruction of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO2. Density functional theory (DFT) calculations well explain the selectivity tuningmore » and reaction mechanism on differently reconstructed surfaces of STO. Similar catalytic tunability is also observed on BaZrO3, highlighting the generality of the finding from this work.« less

  10. Semi-automated Image Processing for Preclinical Bioluminescent Imaging.

    PubMed

    Slavine, Nikolai V; McColl, Roderick W

    Bioluminescent imaging is a valuable noninvasive technique for investigating tumor dynamics and specific biological molecular events in living animals to better understand the effects of human disease in animal models. The purpose of this study was to develop and test a strategy behind automated methods for bioluminescence image processing from the data acquisition to obtaining 3D images. In order to optimize this procedure a semi-automated image processing approach with multi-modality image handling environment was developed. To identify a bioluminescent source location and strength we used the light flux detected on the surface of the imaged object by CCD cameras. For phantom calibration tests and object surface reconstruction we used MLEM algorithm. For internal bioluminescent sources we used the diffusion approximation with balancing the internal and external intensities on the boundary of the media and then determined an initial order approximation for the photon fluence we subsequently applied a novel iterative deconvolution method to obtain the final reconstruction result. We find that the reconstruction techniques successfully used the depth-dependent light transport approach and semi-automated image processing to provide a realistic 3D model of the lung tumor. Our image processing software can optimize and decrease the time of the volumetric imaging and quantitative assessment. The data obtained from light phantom and lung mouse tumor images demonstrate the utility of the image reconstruction algorithms and semi-automated approach for bioluminescent image processing procedure. We suggest that the developed image processing approach can be applied to preclinical imaging studies: characteristics of tumor growth, identify metastases, and potentially determine the effectiveness of cancer treatment.

  11. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    PubMed

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  12. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    NASA Astrophysics Data System (ADS)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  13. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves.

    PubMed

    Krynkin, A; Dolcetti, G; Hunting, S

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  14. Updating a preoperative surface model with information from real-time tracked 2D ultrasound using a Poisson surface reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.

    2014-03-01

    In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.

  15. Noncontact holographic detection for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buj, Christian; Münter, Michael; Schmarbeck, Benedikt; Horstmann, Jens; Hüttmann, Gereon; Brinkmann, Ralf

    2017-10-01

    A holographic method for high-speed, noncontact photoacoustic tomography is introduced and evaluated. Relative changes of the object's topography, induced by the impact of thermoelastic pressure waves, were determined at nanometer sensitivity without physical contact. The object's surface was illuminated with nanosecond laser pulses and imaged with a high-speed CMOS camera. From two interferograms measured before and after excitation of the acoustic wave, surface displacement was calculated and then used as the basis for a tomographic reconstruction of the initial pressure caused by optical absorption. The holographic detection scheme enables variable sampling rates of the photoacoustic signal of up to 50 MHz. The total acquisition times for complete volumes with 230 MVoxel is far below 1 s. Measurements of silicone and porcine skin tissue phantoms with embedded artificial absorbers, which served as a model for human subcutaneous vascular networks, were possible. Three-dimensional reconstructions of the absorbing structures show details with a diameter of 310 μm up to a depth of 2.5 mm. Theoretical limitations and the experimental sensitivity, as well as the potential for in vivo imaging depending on the detection repetition rate, are analyzed and discussed.

  16. The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; hide

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  17. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Moucha, Robert; Forte, Alessandro; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci M.; Chandler, Mark; Foley, Kevin M.; Haywood, Alan M.

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  18. Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Peng, Bin; Shi, Jiancheng

    2017-10-01

    Land surface temperature (LST) is one of the key states of the Earth surface system. Remote sensing has the capability to obtain high-frequency LST observations with global coverage. However, mainly due to cloud cover, there are always gaps in the remotely sensed LST product, which hampers the application of satellite-based LST in data-driven modeling of surface energy and water exchange processes. We explored the suitability of the data interpolating empirical orthogonal functions (DINEOF) method in moderate resolution imaging spectroradiometer LST reconstruction around Ali on the Tibetan Plateau. To validate the reconstruction accuracy, synthetic clouds during both daytime and nighttime are created. With DINEOF reconstruction, the root mean square error and bias under synthetic clouds in daytime are 4.57 and -0.0472 K, respectively, and during the nighttime are 2.30 and 0.0045 K, respectively. The DINEOF method can well recover the spatial pattern of LST. Time-series analysis of LST before and after DINEOF reconstruction from 2002 to 2016 shows that the annual and interannual variabilities of LST can be well reconstructed by the DINEOF method.

  19. Nanopatterned articles produced using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  20. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability.

    PubMed

    Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon

    2012-12-01

    The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.

  1. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands.

    PubMed

    Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I

    2012-12-14

    Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.

  2. Surface reconstruction, figure-ground modulation, and border-ownership.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  3. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  4. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  5. 77 FR 25181 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... Post Earthquake Reconstruction, Cholera And HIV/AIDS Response, GH12-003, initial review. In accordance... Support Post Earthquake Reconstruction, Cholera And HIV/AIDS Response, GH12-003''. Contact Person for More...

  6. Anatomically constrained dipole adjustment (ANACONDA) for accurate MEG/EEG focal source localizations

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Jung, Hyun-Kyo; Fujimaki, Norio

    2005-10-01

    This paper proposes an alternative approach to enhance localization accuracy of MEG and EEG focal sources. The proposed approach assumes anatomically constrained spatio-temporal dipoles, initial positions of which are estimated from local peak positions of distributed sources obtained from a pre-execution of distributed source reconstruction. The positions of the dipoles are then adjusted on the cortical surface using a novel updating scheme named cortical surface scanning. The proposed approach has many advantages over the conventional ones: (1) as the cortical surface scanning algorithm uses spatio-temporal dipoles, it is robust with respect to noise; (2) it requires no a priori information on the numbers and initial locations of the activations; (3) as the locations of dipoles are restricted only on a tessellated cortical surface, it is physiologically more plausible than the conventional ECD model. To verify the proposed approach, it was applied to several realistic MEG/EEG simulations and practical experiments. From the several case studies, it is concluded that the anatomically constrained dipole adjustment (ANACONDA) approach will be a very promising technique to enhance accuracy of focal source localization which is essential in many clinical and neurological applications of MEG and EEG.

  7. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.

    2015-07-01

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.

  8. 40 CFR 63.4283 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initial startup of your new or reconstructed affected source is before May 29, 2003, the compliance date is May 29, 2003. (2) If the initial startup of your new or reconstructed affected source occurs after May 29, 2003, the compliance date is the date of initial startup of your affected source. (b) For an...

  9. 40 CFR 63.8186 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... December 19, 2006. (b) If you have a new or reconstructed mercury recovery facility and its initial startup..., 2003. (c) If you have a new or reconstructed mercury recovery facility and its initial startup date is... recordkeeping and reporting requirement in this subpart that applies to you upon initial startup. (d) You must...

  10. 40 CFR 63.8186 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... December 19, 2006. (b) If you have a new or reconstructed mercury recovery facility and its initial startup..., 2003. (c) If you have a new or reconstructed mercury recovery facility and its initial startup date is... recordkeeping and reporting requirement in this subpart that applies to you upon initial startup. (d) You must...

  11. 40 CFR 63.8186 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... December 19, 2006. (b) If you have a new or reconstructed mercury recovery facility and its initial startup..., 2003. (c) If you have a new or reconstructed mercury recovery facility and its initial startup date is... recordkeeping and reporting requirement in this subpart that applies to you upon initial startup. (d) You must...

  12. 40 CFR 63.8186 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... December 19, 2006. (b) If you have a new or reconstructed mercury recovery facility and its initial startup..., 2003. (c) If you have a new or reconstructed mercury recovery facility and its initial startup date is... recordkeeping and reporting requirement in this subpart that applies to you upon initial startup. (d) You must...

  13. 40 CFR 63.4283 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial startup of your new or reconstructed affected source is before May 29, 2003, the compliance date is May 29, 2003. (2) If the initial startup of your new or reconstructed affected source occurs after May 29, 2003, the compliance date is the date of initial startup of your affected source. (b) For an...

  14. 40 CFR 63.4283 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initial startup of your new or reconstructed affected source is before May 29, 2003, the compliance date is May 29, 2003. (2) If the initial startup of your new or reconstructed affected source occurs after May 29, 2003, the compliance date is the date of initial startup of your affected source. (b) For an...

  15. 40 CFR 63.8186 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... December 19, 2006. (b) If you have a new or reconstructed mercury recovery facility and its initial startup..., 2003. (c) If you have a new or reconstructed mercury recovery facility and its initial startup date is... recordkeeping and reporting requirement in this subpart that applies to you upon initial startup. (d) You must...

  16. 40 CFR 63.6611 - By what date must I conduct the initial performance tests or other initial compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal... compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site... of HAP emissions? If you own or operate a new or reconstructed 4SLB stationary RICE with a site...

  17. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    PubMed

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  18. Bidirectional reflectance distribution function effects in ladar-based reflection tomography.

    PubMed

    Jin, Xuemin; Levine, Robert Y

    2009-07-20

    Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

  19. Interaction of diamond (111)-(1 × 1) and (2 × 1) surfaces with OH: a first principles study.

    PubMed

    Stampfl, C; Derry, T E; Makau, N W

    2010-12-01

    The properties of hydroxyl groups on C(111)-(1 × 1) and reconstructed (2 × 1) surfaces at different sites and for various coverages are investigated using density functional theory. Out of the adsorption sites considered, i.e. face centred cubic, hexagonal close packed, on-top and bridge sites, the on-top site is the most stable for OH on the C(111)-(1 × 1) surface for all coverages. On the reconstructed (2 × 1) surface the on-top site is the preferred configuration. Adsorption of OH was not stable however at any site on the reconstructed C(111)-(2 × 1) relative to the (1 × 1) surface; thus adsorption of OH leads to the de-reconstruction of the former surface. Both the 0.5 and 1 monolayer (ML) coverages were able to lift the (2 × 1) surface reconstruction. Repulsion between the OH adsorbates on the (1 × 1) surface sets in for coverages greater than 0.5 ML. A general decrease in the work function with increasing OH coverage was observed on both the (1 × 1) and (2 × 1) surfaces relative to the values of their respective clean surfaces. Regarding the electronic structure, O 2p states on the reconstructed (2 × 1) surface are observed at around - 21, - 8.75 , - 5 and - 2.5 eV, while O 2s states are present at - 22.5 eV. On the (1 × 1) surface (for 0.33 ML in the on-top site), O 2p states occurred between - 8 and - 9 eV, - 5 and - 4 eV and at around - 2.5 eV. O 2s states are established between - 22.5 and - 21 eV. The valence band width is 21 eV, and a hybrid 2s/2p state that is characteristic of diamond is located at about 12.5 eV below the valence band minimum.

  20. Reconstructive Management of Devastating Electrical Injuries to the Face.

    PubMed

    Janis, Jeffrey E; Khansa, Ibrahim; Lehrman, Craig R; Orgill, Dennis P; Pomahac, Bohdan

    2015-10-01

    Devastating fourth-degree electrical injuries to the face and head pose significant reconstructive challenges. To date, there have been few peer-reviewed articles in the literature that describe those reconstructive challenges. The authors present the largest case series to date that describes the management of these injuries, including the incorporation of face transplantation. A retrospective case series was conducted of patients with devastating electrical injuries to the face who were managed at two level-1 trauma centers between 2007 and 2011. Data describing patient injuries, initial management, and reconstructive procedures were collected. Five patients with devastating electrical injuries to the face were reviewed. After initial stabilization and treatment of life-threatening injuries, all five underwent burn excision and microsurgical reconstruction using distant flaps. Two of the patients eventually underwent face transplantation. The authors describe differences in management between the two trauma centers, one of which had the availability for composite tissue allotransplantation; the other did not. Also described is how initial attempts at traditional reconstruction affected the eventual face transplantation. The care of patients with complex electrical burns must be conducted in a multidisciplinary fashion. As with all other trauma, the initial priority should be management of the airway, breathing, and circulation. Additional considerations include cardiac arrhythmias and renal impairment attributable to myoglobinuria. Before embarking on aggressive reconstruction attempts, it is advisable to determine early whether the patient is a candidate for face transplantation in order to avoid antigen sensitization, loss of a reconstructive "lifeboat," surgical plane disruption, and sacrifice of potential recipient vessels. Therapeutic, V.

  1. Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory

    NASA Astrophysics Data System (ADS)

    Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.

    2017-11-01

    We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.

  2. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  3. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183

  4. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  5. The impact of postoperative expansion initiation timing on breast expander capsular characteristics: a prospective combined clinical and scanning electron microscopy study.

    PubMed

    Paek, Laurence S; Giot, Jean-Philippe; Tétreault-Paquin, Jean-Olivier; St-Jacques, Samuel; Nelea, Monica; Danino, M Alain

    2015-04-01

    In the first stage of expander-to-implant breast reconstruction, postoperative expansion is classically initiated at 10 to 14 days (conventional approach). The authors hypothesized that it may be beneficial to wait 6 weeks postoperatively before initiating serial expansion (delayed approach). Clinical and ultrastructural periprosthetic capsule analysis is first required before determining whether a delayed approach ultimately improves capsular tissue adherence and expansion process predictability. Patients undergoing two-stage implant-based breast reconstruction were enrolled prospectively in this study. During expander-to-implant exchange, the clinical presence of "Velcro" effect, biofilm, and double capsule was noted. Periprosthetic capsule samples were also sent for scanning electron microscopic observation of three parameters: surface relief, cellularity, and biofilm. Samples were divided into four groups for data analysis (group 1, conventional/Biocell; group 2, delayed/Biocell; group 3, conventional/Siltex; and group 4, delayed/Siltex). Fifty-six breast reconstructions were included. Each group comprised between 13 and 15 breasts. In group 1, no cases exhibited the Velcro effect and there was a 53.8 percent incidence of both biofilm and double capsule. In group 2, all cases demonstrated the Velcro effect and there were no incidences of biofilm or double capsule. Group 3 and group 4 cases did not exhibit a Velcro effect or double-capsule formation; however, biofilm was present in up to 20.0 percent. All group 2 samples revealed more pronounced three-dimensional relief on scanning electron microscopy. Variations in expansion protocols can lead to observable modifications in periprosthetic capsular architecture. There may be real benefits to delaying expander inflation until 6 weeks postoperatively with Biocell expanders.

  6. Analytical study and numerical solution of the inverse source problem arising in thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Holman, Benjamin R.

    In recent years, revolutionary "hybrid" or "multi-physics" methods of medical imaging have emerged. By combining two or three different types of waves these methods overcome limitations of classical tomography techniques and deliver otherwise unavailable, potentially life-saving diagnostic information. Thermoacoustic (and photoacoustic) tomography is the most developed multi-physics imaging modality. Thermo- and photo- acoustic tomography require reconstructing initial acoustic pressure in a body from time series of pressure measured on a surface surrounding the body. For the classical case of free space wave propagation, various reconstruction techniques are well known. However, some novel measurement schemes place the object of interest between reflecting walls that form a de facto resonant cavity. In this case, known methods cannot be used. In chapter 2 we present a fast iterative reconstruction algorithm for measurements made at the walls of a rectangular reverberant cavity with a constant speed of sound. We prove the convergence of the iterations under a certain sufficient condition, and demonstrate the effectiveness and efficiency of the algorithm in numerical simulations. In chapter 3 we consider the more general problem of an arbitrarily shaped resonant cavity with a non constant speed of sound and present the gradual time reversal method for computing solutions to the inverse source problem. It consists in solving back in time on the interval [0, T] the initial/boundary value problem for the wave equation, with the Dirichlet boundary data multiplied by a smooth cutoff function. If T is sufficiently large one obtains a good approximation to the initial pressure; in the limit of large T such an approximation converges (under certain conditions) to the exact solution.

  7. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    PubMed

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  8. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating along the NW coast, and thinning expanding to higher elevations in SW and N Greenland. Several outlet glaciers, for example Humboldt and Petermann glaciers in NW Greenland and Kangilerngata Sermia in W Greenland exhibit a complex spatial and temporal pattern of thickening-thinning with regions of thickening observed at lower elevations. We will examine the thickening and thinning history and the record of surface velocity of these glaciers to investigate the processes responsible for initiating and sustaining these changes. Moreover, by analyzing the detailed surface elevation change history along flowlines or across drainage basins, the propagation of thinning following perturbations at the glacier terminus can be investigated. Results, depicting the evolution of surface elevation changes of three major outlet glaciers, Jakobshavn, Helheim and Kangerlussuaq glaciers, will be shown.

  9. A point cloud modeling method based on geometric constraints mixing the robust least squares method

    NASA Astrophysics Data System (ADS)

    Yue, JIanping; Pan, Yi; Yue, Shun; Liu, Dapeng; Liu, Bin; Huang, Nan

    2016-10-01

    The appearance of 3D laser scanning technology has provided a new method for the acquisition of spatial 3D information. It has been widely used in the field of Surveying and Mapping Engineering with the characteristics of automatic and high precision. 3D laser scanning data processing process mainly includes the external laser data acquisition, the internal industry laser data splicing, the late 3D modeling and data integration system. For the point cloud modeling, domestic and foreign researchers have done a lot of research. Surface reconstruction technology mainly include the point shape, the triangle model, the triangle Bezier surface model, the rectangular surface model and so on, and the neural network and the Alfa shape are also used in the curved surface reconstruction. But in these methods, it is often focused on single surface fitting, automatic or manual block fitting, which ignores the model's integrity. It leads to a serious problems in the model after stitching, that is, the surfaces fitting separately is often not satisfied with the well-known geometric constraints, such as parallel, vertical, a fixed angle, or a fixed distance. However, the research on the special modeling theory such as the dimension constraint and the position constraint is not used widely. One of the traditional modeling methods adding geometric constraints is a method combing the penalty function method and the Levenberg-Marquardt algorithm (L-M algorithm), whose stability is pretty good. But in the research process, it is found that the method is greatly influenced by the initial value. In this paper, we propose an improved method of point cloud model taking into account the geometric constraint. We first apply robust least-squares to enhance the initial value's accuracy, and then use penalty function method to transform constrained optimization problems into unconstrained optimization problems, and finally solve the problems using the L-M algorithm. The experimental results show that the internal accuracy is improved, and it is shown that the improved method for point clouds modeling proposed by this paper outperforms the traditional point clouds modeling methods.

  10. Iterative initial condition reconstruction

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  11. Method of producing nanopatterned articles using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2013-08-27

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  12. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  13. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction.

    PubMed

    Cao, Yanpeng; Xu, Baobei; Ye, Zhangyu; Yang, Jiangxin; Cao, Yanlong; Tisse, Christel-Loic; Li, Xin

    2018-04-02

    Three-dimensional geometrical models with incorporated surface temperature data provide important information for various applications such as medical imaging, energy auditing, and intelligent robots. In this paper we present a robust method for mobile and real-time 3D thermographic reconstruction through depth and thermal sensor fusion. A multimodal imaging device consisting of a thermal camera and a RGB-D sensor is calibrated geometrically and used for data capturing. Based on the underlying principle that temperature information remains robust against illumination and viewpoint changes, we present a Thermal-guided Iterative Closest Point (T-ICP) methodology to facilitate reliable 3D thermal scanning applications. The pose of sensing device is initially estimated using correspondences found through maximizing the thermal consistency between consecutive infrared images. The coarse pose estimate is further refined by finding the motion parameters that minimize a combined geometric and thermographic loss function. Experimental results demonstrate that complimentary information captured by multimodal sensors can be utilized to improve performance of 3D thermographic reconstruction. Through effective fusion of thermal and depth data, the proposed approach generates more accurate 3D thermal models using significantly less scanning data.

  14. Reconstruction after complex facial trauma: achieving optimal outcome through multiple contemporary surgeries.

    PubMed

    Jaiswal, Rohit; Pu, Lee L Q

    2013-04-01

    Major facial trauma injuries often require complex repair. Traditionally, the reconstruction of such injuries has primarily utilized only free tissue transfer. However, the advent of newer, contemporary procedures may lead to potential reconstructive improvement through the use of complementary procedures after free flap reconstruction. An 18-year-old male patient suffered a major left facial degloving injury resulting in soft-tissue defect with exposed zygoma, and parietal bone. Multiple operations were undertaken in a staged manner for reconstruction. A state-of-the-art free anterolateral thigh (ALT) perforator flap and Medpor implant reconstruction of the midface were initially performed, followed by flap debulking, lateral canthopexy, midface lift with redo canthopexy, scalp tissue expansion for hairline reconstruction, and epidermal skin grafting for optimal skin color matching. Over a follow-up period of 2 years, a good and impressive reconstructive result was achieved through the use of multiple contemporary reconstructive procedures following an excellent free ALT flap reconstruction. Multiple staged reconstructions are essential in producing an optimal outcome in this complex facial injury that would likely not have been produced through a 1-stage traditional free flap reconstruction. Utilizing multiple, sequential contemporary surgeries may substantially improve outcome through the enhancement and refinement of results based on possibly the best initial soft-tissue reconstruction.

  15. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    PubMed

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.

  16. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.

    2012-02-01

    Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.

  17. Coherent diffraction surface imaging in reflection geometry.

    PubMed

    Marathe, Shashidhara; Kim, S S; Kim, S N; Kim, Chan; Kang, H C; Nickles, P V; Noh, D Y

    2010-03-29

    We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.

  18. Haptic augmented skin surface generation toward telepalpation from a mobile skin image.

    PubMed

    Kim, K

    2018-05-01

    Very little is known about the methods of integrating palpation techniques to existing mobile teleskin imaging that delivers low quality tactile information (roughness) for telepalpation. However, no study has been reported yet regarding telehaptic palpation using mobile phone images for teledermatology or teleconsultations of skincare. This study is therefore aimed at introducing a new algorithm accurately reconstructing a haptic augmented skin surface for telehaptic palpation using a low-cost clip-on microscope simply attached to a mobile phone. Multiple algorithms such as gradient-based image enhancement, roughness-adaptive tactile mask generation, roughness-enhanced 3D tactile map building, and visual and haptic rendering with a three-degrees-of-freedom (DOF) haptic device were developed and integrated as one system. Evaluation experiments have been conducted to test the performance of 3D roughness reconstruction with/without the tactile mask. The results confirm that reconstructed haptic roughness with the tactile mask is superior to the reconstructed haptic roughness without the tactile mask. Additional experiments demonstrate that the proposed algorithm is robust against varying lighting conditions and blurring. In last, a user study has been designed to see the effect of the haptic modality to the existing visual only interface and the results attest that the haptic skin palpation can significantly improve the skin exam performance. Mobile image-based telehaptic palpation technology was proposed, and an initial version was developed. The developed technology was tested with several skin images and the experimental results showed the superiority of the proposed scheme in terms of the performance of haptic augmentation of real skin images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Exploring changes in vertical ice extent along the margin of the East Antarctic Ice Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.

    2017-12-01

    Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.

  20. Recent Climate Changes in Northwestern Qaidam Basin Inferred from Geothermal Gradients

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, T.

    2014-12-01

    Temperature perturbations under the ground surface are direct thermal response to ground surface temperature changes. Thus ground surface temperature history can be reconstructed from borehole temperature measurements using borehole paleothermometry inversion method. In this study, we use seven borehole temperature profiles to reconstruct the ground surface temperature variation of the past 500 years of the Qaidam basin, northwestern China. Borehole transient temperature measurement from seven sites in northwestern Qaidam basin were separated from geothermal gradients and analyzed by functional space inversion method to determine past ground surface temperature variations in this region. All temperature profiles show the effects of recent climatic disturbances. Inversion shows an overall increase in ground surface temperature by an averaged 1.2℃ (-0.11~2.21℃) during the last 500 years. Clear signs of a cold period between 1500 and 1900 A.D., corresponding to the Little Ice Age, have been found. Its coldest period was between 1780~1790 A.D. with the ground surface temperature of 5.4℃. During the 19th and the 20th century, reconstructed ground surface temperature shows a rising trend, and in the late 20th century, the temperature started to decrease. However, the highest temperature in 1990s broke the record of the past 500 years. This reconstructed past ground surface temperature variation is verified by the simulated annual surface air temperature computed by EdGCM and the cooling trend is also confirmed by other reconstruction of winter half year minimum temperatures using tree rings on the northeastern Tibetan Plateau.

  1. New method for initial density reconstruction

    NASA Astrophysics Data System (ADS)

    Shi, Yanlong; Cautun, Marius; Li, Baojiu

    2018-01-01

    A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms that were very recently put forward in the literature, with the reconstructed density field over ˜80 % (50%) correlated with the initial condition at k ≲0.6 h /Mpc (1.0 h /Mpc ). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.

  2. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Y.; Suzuki, T.; Takechi, M.

    2015-07-15

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less

  3. Cumulative costs for the prosthetic reconstructions and maintenance in young adult patients with birth defects affecting the formation of teeth.

    PubMed

    Incici, Erol; Matuliene, Giedre; Hüsler, Jürg; Salvi, Giovanni E; Pjetursson, Bjarni; Brägger, Urs

    2009-07-01

    To assess retrospectively the cumulative costs for the long-term oral rehabilitation of patients with birth defects affecting the development of teeth. Patients with birth defects who had received fixed reconstructions on teeth and/or implants > or =5 years ago were asked to participate in a comprehensive clinical, radiographic and economic evaluation. From the 45 patients included, 18 were cases with a cleft lip and palate, five had amelogenesis/dentinogenesis imperfecta and 22 were cases with hypodontia/oligodontia. The initial costs for the first oral rehabilitation (before the age of 20) had been covered by the Swiss Insurance for Disability. The costs for the initial rehabilitation of the 45 cases amounted to 407,584 CHF (39% for laboratory fees). Linear regression analyses for the initial treatment costs per replaced tooth revealed the formula 731 CHF+(811 CHF x units) on teeth and 3369 CHF+(1183 CHF x units) for reconstructions on implants (P<.001). Fifty-eight percent of the patients with tooth-supported reconstructions remained free from failures/complications (median observation 15.7 years). Forty-seven percent of the patients with implant-supported reconstructions remained free from failures/complications (median observation 8 years). The long-term cumulative treatment costs for implant cases, however, were not statistically significantly different compared with cases reconstructed with tooth-supported fixed reconstructions. Twenty-seven percent of the initial treatment costs were needed to cover supportive periodontal therapy as well as the treatment of technical/biological complications and failures. Insurance companies should accept to cover implant-supported reconstructions because there is no need to prepare healthy teeth, fewer tooth units need to be replaced and the cumulative long-term costs seem to be similar compared with cases restored on teeth.

  4. Sparse reconstruction of liver cirrhosis from monocular mini-laparoscopic sequences

    NASA Astrophysics Data System (ADS)

    Marcinczak, Jan Marek; Painer, Sven; Grigat, Rolf-Rainer

    2015-03-01

    Mini-laparoscopy is a technique which is used by clinicians to inspect the liver surface with ultra-thin laparoscopes. However, so far no quantitative measures based on mini-laparoscopic sequences are possible. This paper presents a Structure from Motion (SfM) based methodology to do 3D reconstruction of liver cirrhosis from mini-laparoscopic videos. The approach combines state-of-the-art tracking, pose estimation, outlier rejection and global optimization to obtain a sparse reconstruction of the cirrhotic liver surface. Specular reflection segmentation is included into the reconstruction framework to increase the robustness of the reconstruction. The presented approach is evaluated on 15 endoscopic sequences using three cirrhotic liver phantoms. The median reconstruction accuracy ranges from 0.3 mm to 1 mm.

  5. Iterative reconstruction for CT perfusion with a prior-image induced hybrid nonlocal means regularization: Phantom studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Lyu, Qingwen; Ma, Jianhua

    2016-04-15

    Purpose: In computed tomography perfusion (CTP) imaging, an initial phase CT acquired with a high-dose protocol can be used to improve the image quality of later phase CT acquired with a low-dose protocol. For dynamic regions, signals in the later low-dose CT may not be completely recovered if the initial CT heavily regularizes the iterative reconstruction process. The authors propose a hybrid nonlocal means (hNLM) regularization model for iterative reconstruction of low-dose CTP to overcome the limitation of the conventional prior-image induced penalty. Methods: The hybrid penalty was constructed by combining the NLM of the initial phase high-dose CT inmore » the stationary region and later phase low-dose CT in the dynamic region. The stationary and dynamic regions were determined by the similarity between the initial high-dose scan and later low-dose scan. The similarity was defined as a Gaussian kernel-based distance between the patch-window of the same pixel in the two scans, and its measurement was then used to weigh the influence of the initial high-dose CT. For regions with high similarity (e.g., stationary region), initial high-dose CT played a dominant role for regularizing the solution. For regions with low similarity (e.g., dynamic region), the regularization relied on a low-dose scan itself. This new hNLM penalty was incorporated into the penalized weighted least-squares (PWLS) for CTP reconstruction. Digital and physical phantom studies were performed to evaluate the PWLS-hNLM algorithm. Results: Both phantom studies showed that the PWLS-hNLM algorithm is superior to the conventional prior-image induced penalty term without considering the signal changes within the dynamic region. In the dynamic region of the Catphan phantom, the reconstruction error measured by root mean square error was reduced by 42.9% in PWLS-hNLM reconstructed image. Conclusions: The PWLS-hNLM algorithm can effectively use the initial high-dose CT to reconstruct low-dose CTP in the stationary region while reducing its influence in the dynamic region.« less

  6. On the growth mechanisms of polar (100) surfaces of ceria on copper (100)

    NASA Astrophysics Data System (ADS)

    Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.

    2018-05-01

    We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.

  7. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  8. A new skin flap method for total auricular reconstruction in microtia patients with a reconstructed ear canal: extended scalp and extended mastoid postauricular skin flaps.

    PubMed

    Hwang, Euna; Kim, Young Soo; Chung, Seum

    2014-06-01

    Before visiting a plastic surgeon, some microtia patients may undergo canaloplasty for hearing improvement. In such cases, scarred tissues and the reconstructed external auditory canal in the postauricular area may cause a significant limitation in using the posterior auricular skin flap for ear reconstruction. In this article, we present a new method for auricular reconstruction in microtia patients with previous canaloplasty. By dividing a postauricular skin flap into an upper scalp extended skin flap and a lower mastoid extended skin flap at the level of a reconstructed external auditory canal, the entire anterior surface of the auricular framework can be covered with the two extended postauricular skin flaps. The reconstructed ear shows good color match and texture, with the entire anterior surface of the reconstructed ear being resurfaced with the skin flaps. Clinical question/level of evidence; therapeutic level IV. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. A tale of two arcs? Plate tectonics of the Izu-Bonin-Mariana (IBM) arc using subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.

    2014-12-01

    Published plate reconstructions typically show the Izu-Bonin Marianas arc (IBM) forming as a result of long-lived ~50 Ma Pacific subduction beneath the Philippine Sea. These reconstructions rely on the critical assumption that the Philippine Sea was continuously coupled to the Pacific during the lifetime of the IBM arc. Because of this assumption, significant (up to 1500 km) Pacific trench retreat is required to accommodate the 2000 km of Philippine Sea/IBM northward motion since the Eocene that is constrained by paleomagnetic data. In this study, we have mapped subducted slabs of mantle lithosphere from MITP08 global seismic tomography (Li et al., 2008) and restored them to a model Earth surface to constrain plate tectonic reconstructions. Here we present two subducted slab constraints that call into question current IBM arc reconstructions: 1) The northern and central Marianas slabs form a sub-vertical 'slab wall' down to maximum 1500 km depths in the lower mantle. This slab geometry is best explained by a near-stationary Marianas trench that has remained +/- 250 km E-W of its present-day position since ~45 Ma, and does not support any significant Pacific slab retreat. 2) A vanished ocean is revealed by an extensive swath of sub-horizontal slabs at 700 to 1000 km depths in the lower mantle below present-day Philippine Sea to Papua New Guinea. We call this vanished ocean the 'East Asian Sea'. When placed in an Eocene plate reconstruction, the East Asian Sea fits west of the reconstructed Marianas Pacific trench position and north of the Philippine Sea plate. This implies that the Philippine Sea and Pacific were not adjacent at IBM initiation, but were in fact separated by a lost ocean. Here we propose a new IBM arc reconstruction constrained by subducted slabs mapped under East Asia. At ~50 Ma, the present-day IBM arc initiated at equatorial latitudes from East Asian Sea subduction below the Philippine Sea. A separate arc was formed from Pacific subduction below the East Asian Sea. The Philippine Sea plate moved northwards, overrunning the East Asian Sea and the two arcs collided between 15 to 20 Ma. From 15 Ma to the present, IBM arc magmatism was produced by Pacific subduction beneath the Philippine Sea.

  10. Silicon and Germanium (111) Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  11. Step patterns on vicinal reconstructed surfaces

    NASA Astrophysics Data System (ADS)

    Vilfan, Igor

    1996-04-01

    Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.

  12. Nanopatterned articles produced using reconstructed block copolymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Park, Soojin; Wang;, Jia-Yu

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred tomore » the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.« less

  13. Navigation surgery using an augmented reality for pancreatectomy.

    PubMed

    Okamoto, Tomoyoshi; Onda, Shinji; Yasuda, Jungo; Yanaga, Katsuhiko; Suzuki, Naoki; Hattori, Asaki

    2015-01-01

    The aim of this study was to evaluate the utility of navigation surgery using augmented reality technology (AR-based NS) for pancreatectomy. The 3D reconstructed images from CT were created by segmentation. The initial registration was performed by using the optical location sensor. The reconstructed images were superimposed onto the real organs in the monitor display. Of the 19 patients who had undergone hepatobiliary and pancreatic surgery using AR-based NS, the accuracy, visualization ability, and utility of our system were assessed in five cases with pancreatectomy. The position of each organ in the surface-rendering image corresponded almost to that of the actual organ. Reference to the display image allowed for safe dissection while preserving the adjacent vessels or organs. The locations of the lesions and resection line on the targeted organ were overlaid on the operating field. The initial mean registration error was improved to approximately 5 mm by our refinements. However, several problems such as registration accuracy, portability and cost still remain. AR-based NS contributed to accurate and effective surgical resection in pancreatectomy. The pancreas appears to be a suitable organ for further investigations. This technology is promising to improve surgical quality, training, and education. © 2015 S. Karger AG, Basel.

  14. Reconstruction of local perturbations in periodic surfaces

    NASA Astrophysics Data System (ADS)

    Lechleiter, Armin; Zhang, Ruming

    2018-03-01

    This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.

  15. Studies of the Ge(100) Surface Using a Low Energy Positron Beam: The Effects of Surface Reconstructions on Positron Trapping and Annihilation Characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2008-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(100) surface. The PAES spectrum from the Ge(100) surface displays several strong Auger peaks corresponding to M4,5N1N2,3 , M2,3M4,5M4,5 , M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. The experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the reconstructed Ge(100)-p(2x1), Ge(100)-p(2x2), and Ge(100)-c(4x2) surfaces. Estimates of positron binding energy, work function, and annihilation characteristics reveal their sensitivity to surface reconstruction of the topmost layers of clean Ge(100). These results are compared to the ones obtained for the reconstructed Si(100)-(2x1) and Si(100)-p(2x2) surfaces. A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  16. Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft.

    PubMed

    Suzuki, Tomoyuki; Shino, Konsei; Otsubo, Hidenori; Suzuki, Daisuke; Mae, Tatsuo; Fujimiya, Mineko; Yamashita, Toshihiko; Fujie, Hiromichi

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of 2 anterior cruciate ligament (ACL) reconstruction techniques using a bone-patellar tendon-bone (BPTB) graft with femoral tunnel, either a rectangular tunnel (RET) or a round tunnel (ROT). For experiment 1, nine fresh-frozen human cadaveric knees were tested with a robotic/universal force-moment sensor system to determine the initial optimal tension: the amount of graft tension at 15° of flexion most closely resembling the anterior laxity of a normal knee. The value was estimated by repeatedly measuring anterior laxity when 100 N of anteroposterior drawer load was applied to the knees at 30° of flexion after RET ACL or ROT ACL reconstruction. For experiment 2, six fresh-frozen human cadaveric knees were selected. On the basis of the initial tension determined in experiment 1, RET ACL reconstruction was conducted with the graft tensioned to 10 N, followed by ROT ACL reconstruction on the same knee at 40 N of initial tension, and the biomechanical efficacy of the 2 methods was compared. For experiment 1, the mean laxity match tension at 15° of flexion was 8.6 ± 4.8 N and 34.8 ± 9.2 N for RET- and ROT-reconstructed knees, respectively. For experiment 2, both RET and ROT ACL reconstructions were successful in controlling anterior tibial translation under anterior tibial loads, with the graft initially tensioned to 10 N in the former and to 40 N in the latter. However, the greater tensioning in ROT reconstruction led to proximal, posterior, and lateral displacement of the tibia along with its external and valgus rotation. The RET ACL-reconstructed knee more closely resembled the normal knee in biomechanical behavior. Although ROT reconstruction successfully controlled anterior translation with greater initial tensioning to the graft, the normal positional relation between the tibia and femur was impaired. Rectangular femoral ACL fixation constructs and grafts may prove more efficacious at restoring in vivo ACL kinematics than round femoral tunnels. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. AES and LEED study of the zinc blende SiC(100) surface

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1985-01-01

    Auger and LEED measurements have been carried out on the (100) surface of zinc blende SiC. Two different phases of the clean surface, in addition to two kinds of oxygen-covered surfaces, have been obtained, identified, and discussed. In the oxygen-covered surface, the oxygen is bonded to the Si. The carbon-rich phase is reconstructed (2 x 1), similar to the (100) clean surfaces of Si, Ge, and diamond. The Si-topped surface is reconstructed. A model of alternating Si dimers is suggested for this surface.

  18. General phase regularized reconstruction using phase cycling.

    PubMed

    Ong, Frank; Cheng, Joseph Y; Lustig, Michael

    2018-07-01

    To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Automatic segmentation and reconstruction of the cortex from neonatal MRI.

    PubMed

    Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Joseph V

    2007-11-15

    Segmentation and reconstruction of cortical surfaces from magnetic resonance (MR) images are more challenging for developing neonates than adults. This is mainly due to the dynamic changes in the contrast between gray matter (GM) and white matter (WM) in both T1- and T2-weighted images (T1w and T2w) during brain maturation. In particular in neonatal T2w images WM typically has higher signal intensity than GM. This causes mislabeled voxels during cortical segmentation, especially in the cortical regions of the brain and in particular at the interface between GM and cerebrospinal fluid (CSF). We propose an automatic segmentation algorithm detecting these mislabeled voxels and correcting errors caused by partial volume effects. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic expectation maximization (EM) scheme. Quantitative validation against manual segmentation demonstrates good performance (the mean Dice value: 0.758+/-0.037 for GM and 0.794+/-0.078 for WM). The inner, central and outer cortical surfaces are then reconstructed using implicit surface evolution. A landmark study is performed to verify the accuracy of the reconstructed cortex (the mean surface reconstruction error: 0.73 mm for inner surface and 0.63 mm for the outer). Both segmentation and reconstruction have been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. This preliminary analysis confirms previous findings that cortical surface area and curvature increase with age, and that surface area scales to cerebral volume according to a power law, while cortical thickness is not related to age or brain growth.

  20. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2012-01-01

    Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.

  1. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart

    PubMed Central

    Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.

    2012-01-01

    Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias. PMID:21984548

  2. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve.

    PubMed

    Jiang, Hongjun; Campbell, Gord; Xi, Fengfeng

    2005-03-01

    This paper describes the measurement and reconstruction of the leaflet geometry for a pericardial heart valve. Tasks involved include mapping the leaflet geometries by laser digitizing and reconstructing the 3D freeform leaflet surface based on a laser scanned profile. The challenge is to design a prosthetic valve that maximizes the benefits offered to the recipient as compared to the normally operating naturally-occurring valve. This research was prompted by the fact that artificial heart valve bioprostheses do not provide long life durability comparable to the natural heart valve, together with the anticipated benefits associated with defining the valve geometries, especially the leaflet geometries for the bioprosthetic and human valves, in order to create a replicate valve fabricated from synthetic materials. Our method applies the concept of reverse engineering in order to reconstruct the freeform surface geometry. A Brown & Shape coordinate measuring machine (CMM) equipped with a HyMARC laser-digitizing system was used to measure the leaflet profiles of a Baxter Carpentier-Edwards pericardial heart valve. The computer software, Polyworks was used to pre-process the raw data obtained from the scanning, which included merging images, eliminating duplicate points, and adding interpolated points. Three methods, creating a mesh model from cloud points, creating a freeform surface from cloud points, and generating a freeform surface by B-splines are presented in this paper to reconstruct the freeform leaflet surface. The mesh model created using Polyworks can be used for rapid prototyping and visualization. To fit a freeform surface to cloud points is straightforward but the rendering of a smooth surface is usually unpredictable. A surface fitted by a group of B-splines fitted to cloud points was found to be much smoother. This method offers the possibility of manually adjusting the surface curvature, locally. However, the process is complex and requires additional manipulation. Finally, this paper presents a reverse engineered design for the pericardial heart valve which contains three identical leaflets with reconstructed geometry.

  3. Model Based Iterative Reconstruction for Bright Field Electron Tomography (Postprint)

    DTIC Science & Technology

    2013-02-01

    which is based on the iterative coordinate descent (ICD), works by constructing a substitute to the original cost4 at every point, and minimizing this...using Beer’s law. Thus the projection integral corresponding to the ith measurement is given by log ( λD λi ) . There can be cases in which the dosage λD...Inputs: Measurements g, Initial reconstruction f ′, Initial dosage d′, Fraction of entries to reject R %Outputs: Reconstruction f̂ and dosage parameter d̂

  4. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    PubMed

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.

  5. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    PubMed

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Physical Character of the Au (001) Surface Reconstruction in the Presence of CO and O2

    NASA Astrophysics Data System (ADS)

    Loheac, Andrew; Pierce, Michael S.; Barbour, Andi; Komanicky, Vladimir; Zhu, Chenhui; You, Hoydoo

    2014-03-01

    The interaction of carbon monoxide and oxygen on Au (001) single crystal facets has been investigated using synchrotron based surface x-ray diffraction and scattering techniques. Preliminary experiments confirm the quasi-hexagonal surface reconstruction can be influenced by exposure to CO and O, and indicate that oxidation may be present. Subsequent surface x-ray scattering experiments included a residual gas analyzer (RGA) with isotopic CO to tag the chemical species. Both CO (by itself) and O (dissociated from molecular O2 by the x-rays) are capable of lifting the hexagonal surface reconstruction resulting in a disordered bulk truncated surface. A wide range of pressures (1 mTorr - 10 Torr) and temperatures (300 K - 900 K) have been explored. We have also adapted a system of coupled partial differential equations to model the absorption kinetics and surface reconstructions. This work and use of the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work at Safarik University was supported by Slovak grant VEGA 1/0782/12.

  7. Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface

    NASA Astrophysics Data System (ADS)

    Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare

    The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.

  8. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Devlin, P; Hansen, J

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curvedmore » surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level of positioning accuracy. Implementation of this technique has potential to decrease the planning time and may improve overall quality in superficial brachytherapy.« less

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation

    NASA Astrophysics Data System (ADS)

    Abramov, D. V.; Arakelyan, S. M.; Galkin, A. F.; Klimovskii, Ivan I.; Kucherik, A. O.; Prokoshev, V. G.

    2006-06-01

    The video image of the graphite surface exposed to focused laser radiation is obtained with the help of a laser monitor. A bright ring moving over the heated surface was observed. A method for reconstructing the surface relief from the video image is proposed and realised. The method is based on the measurement of the angular distribution of the light intensity scattered by the graphite sample surface. The surface relief of the graphite sample changing in time is reconstructed. The relative change in the relief height during laser excitation is measured. The statistical characteristics of the reconstructed graphite surface shape and their variation during laser irradiation are studied. It is found that a circular convexity appears within the bright ring. The formation mechanism of this convexity requires further investigations.

  10. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance

    DOE PAGES

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; ...

    2017-08-03

    Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less

  11. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin

    Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less

  12. Leapfrog Diffusion Mechanism for One-Dimensional Chains on Missing-Row Reconstructed Surfaces

    NASA Astrophysics Data System (ADS)

    Montalenti, F.; Ferrando, R.

    1999-02-01

    We analyze the in-channel diffusion of dimers and longer n-adatom chains on Au and Pt (110) \\(1×2\\) surfaces by molecular dynamics simulations. From our calculations it arises that, on the missing-row reconstructed surface, a novel diffusion process, called leapfrog, dominates over concerted jumps, thus becoming the most frequent diffusion mechanism.

  13. Tibiofemoral Compression Force Differences Using Laxity- and Force-Based Initial Graft Tensioning Techniques in the ACL-Reconstructed Knee

    PubMed Central

    Fleming, Braden C.; Brady, Mark F.; Bradley, Michael P.; Banerjee, Rahul; Hulstyn, Michael J.; Fadale, Paul D.

    2008-01-01

    Purpose To document the tibiofemoral (TF) compression forces produced during clinical initial graft tension protocols. Methods An image analysis system was used to track the position of the tibia relative to the femur in 11 cadaver knees. TF compression forces were quantified using thin-film pressure sensors. Prior to performing ACL reconstructions with patellar tendon grafts, measurements of TF compression force were obtained from the ACL-intact knee with knee flexion. ACL reconstructions were then performed using “force-based” and “laxity-based” graft tension approaches. Within each approach, high- and low-tension conditions were compared to the ACL-intact condition over the range of knee flexion angles. Results The TF compression forces for all initial graft tension conditions were significantly greater than that of the normal knee when the knee was in full extension (0°). The TF compression forces when using the laxity-based approach were greater than those produced with the force-based approach. However the laxity-based approach was necessary to restore normal laxity at the time of surgery. Conclusions The initial graft tension conditions produce different TF compressive force profiles at the time of surgery. A compromise must be made between restoring knee laxity or TF compressive forces when reconstructing the ACL with patellar tendon graft. Clinical Relevance The TF compression forces were greater in the ACL-reconstructed knee for all the initial graft tension conditions when compared to the ACL-intact knee, and that clinically relevant initial graft tension conditions produce different TF compressive forces. PMID:18760214

  14. Influence of AlN(0001) Surface Reconstructions on the Wettability of an Al/AlN System: A First-Principle Study.

    PubMed

    Cao, Junhua; Liu, Yang; Ning, Xiao-Shan

    2018-05-11

    A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.

  15. Electrophilic surface sites as precondition for the chemisorption of pyrrole on GaAs(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, Thomas; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str.9, 12489 Berlin; Fimland, Bjørn-Ove

    We report how the presence of electrophilic surface sites influences the adsorption mechanism of pyrrole on GaAs(001) surfaces. For this purpose, we have investigated the adsorption behavior of pyrrole on different GaAs(001) reconstructions with different stoichiometries and thus different surface chemistries. The interfaces were characterized by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and by reflectance anisotropy spectroscopy in a spectral range between 1.5 and 5 eV. On the As-rich c(4 × 4) reconstruction that exhibits only nucleophilic surface sites, pyrrole was found to physisorb on the surface without any significant modification of the structural and electronic properties of the surface. Onmore » the Ga-rich GaAs(001)-(4 × 2)/(6 × 6) reconstructions which exhibit nucleophilic as well as electrophilic surface sites, pyrrole was found to form stable covalent bonds mainly to the electrophilic (charge deficient) Ga atoms of the surface. These results clearly demonstrate that the existence of electrophilic surface sites is a crucial precondition for the chemisorption of pyrrole on GaAs(001) surfaces.« less

  16. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  17. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  18. Reverse engineering physical models employing a sensor integration between 3D stereo detection and contact digitization

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Lin, Grier C. I.

    1997-12-01

    A vision-drive automatic digitization process for free-form surface reconstruction has been developed, with a coordinate measurement machine (CMM) equipped with a touch-triggered probe and a CCD camera, in reverse engineering physical models. The process integrates 3D stereo detection, data filtering, Delaunay triangulation, adaptive surface digitization into a single process of surface reconstruction. By using this innovative approach, surface reconstruction can be implemented automatically and accurately. Least-squares B- spline surface models with the controlled accuracy of digitization can be generated for further application in product design and manufacturing processes. One industrial application indicates that this approach is feasible, and the processing time required in reverse engineering process can be significantly reduced up to more than 85%.

  19. Performance evaluation of algebraic reconstruction technique (ART) for prototype chest digital tomosynthesis (CDT) system

    NASA Astrophysics Data System (ADS)

    Lee, Haenghwa; Choi, Sunghoon; Jo, Byungdu; Kim, Hyemi; Lee, Donghoon; Kim, Dohyeon; Choi, Seungyeon; Lee, Youngjin; Kim, Hee-Joung

    2017-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve the detection of subtle lung disease over conventional chest radiography. Algorithm development for CDT system is challenging in that a limited number of low-dose projections are acquired over a limited angular range. To confirm the feasibility of algebraic reconstruction technique (ART) method under variations in key imaging parameters, quality metrics were conducted using LUNGMAN phantom included grand-glass opacity (GGO) tumor. Reconstructed images were acquired from the total 41 projection images over a total angular range of +/-20°. We evaluated contrast-to-noise ratio (CNR) and artifacts spread function (ASF) to investigate the effect of reconstruction parameters such as number of iterations, relaxation parameter and initial guess on image quality. We found that proper value of ART relaxation parameter could improve image quality from the same projection. In this study, proper value of relaxation parameters for zero-image (ZI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. Also, the maximum CNR values and the minimum full width at half maximum (FWHM) of ASF were acquired in the reconstructed images after 20 iterations and 3 iterations, respectively. According to the results, BP initial guess for ART method could provide better image quality than ZI initial guess. In conclusion, ART method with proper reconstruction parameters could improve image quality due to the limited angular range in CDT system.

  20. Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2004-02-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  1. SU-G-TeP2-11: Initial Evaluation of a Novel Split-Filter Dual-Energy CT for Use in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J; Huang, J; Szczykutowicz, T

    2016-06-15

    Purpose: To perform an initial evaluation of a novel split-filter dual-energy CT (DECT) system with the goal of understanding the clinical utility and limitations of the system for radiation therapy. Methods: Several phantoms were imaged using the split-filter DECT technique on the Siemens Edge CT scanner using a range of clinically-relevant doses. The optimum-contrast reconstruction, the mixed reconstruction, and the monoenergetic reconstructions (ranging from 40 keV to 190 keV) were evaluated. Each image was analyzed for CT number accuracy, uniformity, noise, low-contrast visibility (LCV), spatial resolution and geometric distortion. For comparison purposes, all parameters were evaluated on 120 kVp single-energymore » CT (SECT) scans used for treatment planning, as well as, a sequential-scan DECT technique for corresponding doses. Results: For all DECT reconstructions no observable geometric distortion was found. Both the optimal-contrast and mixed images demonstrated slight improvements in LCV and noise when compared to the SECT, and slight reductions in CT number accuracy and spatial resolution. The CT numbers trended as expected for the monoenergetic reconstructions, with CT number accuracy within 50 HU for materials of density <2 g/cm3. Spatial resolution increased with energy, and for monoenergetic reconstructions >70 keV the spatial resolution exceeded that of the SECT. The noise in the monoenergetic reconstructions increased with decreasing energy. Thus, the image uniformity, signal-to-noise ratio and LCV were diminished at lower energies (70 keV). Applying iterative reconstruction techniques to the low-energy images reduced noise and improved LCV. The signal-to-noise ratio was stable for energies >100 keV. Conclusion: The initial commissioning of the novel split-filter DECT technology demonstrated favorable results for clinical implementation. The mixed reconstruction showed potential as a replacement for the treatment planning SECT. The image parameters for the monoenergetic reconstructions varied appropriately with energy. This work provides an initial understanding of the limitations and potential applications for monoenergetic imaging.« less

  2. Initial stages of benzotriazole adsorption on the Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Grillo, Federico; Tee, Daniel W.; Francis, Stephen M.; Früchtl, Herbert; Richardson, Neville V.

    2013-05-01

    Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion.Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion. Electronic supplementary information (ESI) available: Calculated IR spectra, RAIRS assignments, modeling details, statistics on diffusion, experimental details, additional STM images, movie low coverage diffusing species. See DOI: 10.1039/c3nr00724c

  3. Surface reconstruction switching induced by tensile stress of DB steps: From Ba/Si(0 0 1)- 2 × 3 to Ba/Si(0 0 1)-4° off- 3 × 2

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Lkhagvasuren, Altaibaatar; Zhang, Rui; Seo, Jae M.

    2018-05-01

    The alkaline-earth metal adsorption on Si(0 0 1) has attracted much interest for finding a proper template in the growth of high- κ and crystalline films. Up to now on the flat Si(0 0 1) surface with double domains and single-layer steps, the adsorbed Ba atoms are known to induce the 2 × 3 structure through removing two Si dimers and adding a Ba atom per unit cell in each domain. In the present investigation, the Si(0 0 1)-4° off surface with DB steps and single domains has been employed as a substrate and the reconstruction at the initial stage of Ba adsorption has been investigated by scanning tunneling microscopy and synchrotron photoemission spectroscopy. On this vicinal and single domain terrace, a novel 3 × 2 structure rotated by 90° from the 2 × 3 structure has been found. Such a 3 × 2 structure turns out to be formed by adding a Ba atom and a Si dimer per unit cell. This results from the fact that the adsorbed Ba2+ ions with a larger ionic radius relieve tensile stress on the original Si dimers exerted by the rebonded atoms at the DB step.

  4. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.

    PubMed

    Chen, Long; Tang, Wen; John, Nigel W; Wan, Tao Ruan; Zhang, Jian Jun

    2018-05-01

    While Minimally Invasive Surgery (MIS) offers considerable benefits to patients, it also imposes big challenges on a surgeon's performance due to well-known issues and restrictions associated with the field of view (FOV), hand-eye misalignment and disorientation, as well as the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR) technology can help to overcome these limitations by augmenting the real scene with annotations, labels, tumour measurements or even a 3D reconstruction of anatomy structures at the target surgical locations. However, previous research attempts of using AR technology in monocular MIS surgical scenes have been mainly focused on the information overlay without addressing correct spatial calibrations, which could lead to incorrect localization of annotations and labels, and inaccurate depth cues and tumour measurements. In this paper, we present a novel intra-operative dense surface reconstruction framework that is capable of providing geometry information from only monocular MIS videos for geometry-aware AR applications such as site measurements and depth cues. We address a number of compelling issues in augmenting a scene for a monocular MIS environment, such as drifting and inaccurate planar mapping. A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm used in robotics has been extended to deal with monocular MIS surgical scenes for reliable endoscopic camera tracking and salient point mapping. A robust global 3D surface reconstruction framework has been developed for building a dense surface using only unorganized sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface reconstruction framework for real time processing of the point clouds data set. Finally, the 3D geometric information of the surgical scene allows better understanding and accurate placement AR augmentations based on a robust 3D calibration. We demonstrate the clinical relevance of our proposed system through two examples: (a) measurement of the surface; (b) depth cues in monocular endoscopy. The performance and accuracy evaluations of the proposed framework consist of two steps. First, we have created a computer-generated endoscopy simulation video to quantify the accuracy of the camera tracking by comparing the results of the video camera tracking with the recorded ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed mesh with that of the ground truth 3D models. An error of 1.24 mm for the camera trajectories has been obtained and the RMSD for surface reconstruction is 2.54 mm, which compare favourably with previous approaches. Second, in vivo laparoscopic videos are used to examine the quality of accurate AR based annotation and measurement, and the creation of depth cues. These results show the potential promise of our geometry-aware AR technology to be used in MIS surgical scenes. The results show that the new framework is robust and accurate in dealing with challenging situations such as the rapid endoscopy camera movements in monocular MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud are effective and operated in real-time. This demonstrates the potential of our algorithm for accurate AR localization and depth augmentation with geometric cues and correct surface measurements in MIS with monocular endoscopes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    PubMed

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  7. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    PubMed Central

    Solano-Altamirano, Juan Manuel; Khikhlukha, Danila

    2017-01-01

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722

  8. Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).

  9. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug Bonn, Ruixing Liang, Walter Hardy. Supported by BES ``Science of 100 tesla'' program.

  10. Reconstructing the Initial Relaxation Time of Young Star Clusters in the Large Magellanic Cloud: The Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; Chen, H.-C.

    2008-06-01

    We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.

  11. Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot.

    PubMed

    Kwiatkowska, Dorota; Routier-Kierzkowska, Anne-Lise

    2009-01-01

    Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess displacement velocity fields so that growth in the anticlinal direction can be assessed. In terms of self-perpetuation, the inflorescence SAM of Anagallis differs from the SAM in the vegetative phase in that the centrally located region of slow growth is less distinct in the inflorescence SAM. Moreover, the position of this slowly growing zone with respect to cells is not stable in the course of the meristem ontogeny.

  12. Five centuries of climate change in Australia: the view from underground

    NASA Astrophysics Data System (ADS)

    Pollack, Henry N.; Huang, Shaopeng; Smerdon, Jason E.

    2006-10-01

    Fifty-seven borehole temperature profiles from across Australia are analysed to reconstruct a ground surface temperature history for the past five centuries. The five-hundred-year reconstruction is characterised by a temperature increase of approximately 0.5 K, with most of the warming occurring in the 19th and 20th centuries. The 17th century was the coolest interval of the five-century reconstruction. Comparison of the geothermal reconstruction to the Australian annual surface air temperature time series in their period of overlap shows excellent agreement. The full geothermal reconstruction also agrees well with the low-frequency component of dendroclimatic reconstructions from Tasmania and New Zealand. The warming of Australia over the past five centuries is only about half that experienced by the continents of the Northern Hemisphere in the same time interval. Copyright

  13. Excitonic mechanism of the photoinduced surface restructuring of copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotskii, Michel

    An explanation for the photoinduced reconstruction of Cu single-crystal surfaces that was observed by Ernst et al. [Science 279, 679 (1998)] under the influence of visible light is proposed. It is suggested that reconstruction can be attributed to the energy released during the nonradiative decay of excitons that were excited by light irradiation and captured on surface active centers. The estimates performed show that exciton decay on surface steps and adatoms releases enough energy to create surface defects.

  14. Reconstructing 3-D skin surface motion for the DIET breast cancer screening system.

    PubMed

    Botterill, Tom; Lotz, Thomas; Kashif, Amer; Chase, J Geoffrey

    2014-05-01

    Digital image-based elasto-tomography (DIET) is a prototype system for breast cancer screening. A breast is imaged while being vibrated, and the observed surface motion is used to infer the internal stiffness of the breast, hence identifying tumors. This paper describes a computer vision system for accurately measuring 3-D surface motion. A model-based segmentation is used to identify the profile of the breast in each image, and the 3-D surface is reconstructed by fitting a model to the profiles. The surface motion is measured using a modern optical flow implementation customized to the application, then trajectories of points on the 3-D surface are given by fusing the optical flow with the reconstructed surfaces. On data from human trials, the system is shown to exceed the performance of an earlier marker-based system at tracking skin surface motion. We demonstrate that the system can detect a 10 mm tumor in a silicone phantom breast.

  15. Non-axisymmetric equilibrium reconstruction on the Compact Toroidal Hybrid Experiment using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.

    2015-11-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  16. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    NASA Astrophysics Data System (ADS)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  17. Recent advances in 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study

    PubMed Central

    2016-01-01

    Clean and stable surface modifications of an iridium (100) single crystal, i.e., the (1 × 1) phase, the (5 × 1) reconstruction, and the oxygen-terminated (2 × 1)-O surface, were prepared and characterized by low energy electron diffraction (LEED), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and polarization modulation IRAS (PM-IRAS). The adsorption of CO in UHV and at elevated (mbar) pressure/temperature was followed both ex situ and in situ on all three surface modifications, with a focus on mbar pressures of CO. The Ir(1 × 1) surface exhibited c(4 × 2)/c(2 × 2) and c(6 × 2) CO structures under low pressure conditions, and remained stable up to 100 mbar and 700 K. For the (2 × 1)-O reconstruction CO adsorption induced a structural change from (2 × 1)-O to (1 × 1), as confirmed by LEED, TPD, and IR. For Ir (2 × 1)-O TPD indicated that CO reacted with surface oxygen forming CO2. The (5 × 1) reconstruction featured a reversible and dynamic behavior upon CO adsorption, with a local lifting of the reconstruction to (1 × 1). After CO desorption, the (5 × 1) structure was restored. All three reconstructions exhibited CO adsorption with on-top geometry, as evidenced by IR. With increasing CO exposure the resonances shifted to higher wavenumber, due to adsorbate–adsorbate and adsorbate–substrate interactions. The largest wavenumber shift (from 2057 to 2100 cm–1) was observed for Ir(5 × 1) upon CO dosing from 1 L to 100 mbar. PMID:27257467

  19. Reconstruction of the Interface of Oxidatively Functionalized Polyethylene (PE-CO2H) and Derivatives on Heating. Revision.

    DTIC Science & Technology

    1987-03-01

    contact angle with water frin the initial va: e 蕫b to the final value ’:,)3@, follows KinetiCs tnat suggest trit -no polar functional groups lisappear...PE-CO 2H in contact with liquiJs such as water and perfluorodecalin suggest that reconstruction is driven initially by ;iinimization of the...distance from the polymer- water interface can exchange ions with bulk water . Thermally reconstructed PE-CO2H is thus a new type of thin-film ion

  20. Investigation of practical initial attenuation image estimates in TOF-MLAA reconstruction for PET/MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ju-Chieh, E-mail: chengjuchieh@gmail.com; Y

    Purpose: Time-of-flight joint attenuation and activity positron emission tomography reconstruction requires additional calibration (scale factors) or constraints during or post-reconstruction to produce a quantitative μ-map. In this work, the impact of various initializations of the joint reconstruction was investigated, and the initial average mu-value (IAM) method was introduced such that the forward-projection of the initial μ-map is already very close to that of the reference μ-map, thus reducing/minimizing the offset (scale factor) during the early iterations of the joint reconstruction. Consequently, the accuracy and efficiency of unconstrained joint reconstruction such as time-of-flight maximum likelihood estimation of attenuation and activity (TOF-MLAA)more » can be improved by the proposed IAM method. Methods: 2D simulations of brain and chest were used to evaluate TOF-MLAA with various initial estimates which include the object filled with water uniformly (conventional initial estimate), bone uniformly, the average μ-value uniformly (IAM magnitude initialization method), and the perfect spatial μ-distribution but with a wrong magnitude (initialization in terms of distribution). 3D GATE simulation was also performed for the chest phantom under a typical clinical scanning condition, and the simulated data were reconstructed with a fully corrected list-mode TOF-MLAA algorithm with various initial estimates. The accuracy of the average μ-values within the brain, chest, and abdomen regions obtained from the MR derived μ-maps was also evaluated using computed tomography μ-maps as the gold-standard. Results: The estimated μ-map with the initialization in terms of magnitude (i.e., average μ-value) was observed to reach the reference more quickly and naturally as compared to all other cases. Both 2D and 3D GATE simulations produced similar results, and it was observed that the proposed IAM approach can produce quantitative μ-map/emission when the corrections for physical effects such as scatter and randoms were included. The average μ-value obtained from MR derived μ-map was accurate within 5% with corrections for bone, fat, and uniform lungs. Conclusions: The proposed IAM-TOF-MLAA can produce quantitative μ-map without any calibration provided that there are sufficient counts in the measured data. For low count data, noise reduction and additional regularization/rescaling techniques need to be applied and investigated. The average μ-value within the object is prior information which can be extracted from MR and patient database, and it is feasible to obtain accurate average μ-value using MR derived μ-map with corrections as demonstrated in this work.« less

  1. Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu

    2017-09-01

    In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.

  2. A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment

    NASA Astrophysics Data System (ADS)

    Verri, Giorgia; Pinardi, Nadia; Gochis, David; Tribbia, Joseph; Navarra, Antonio; Coppini, Giovanni; Vukicevic, Tomislava

    2017-10-01

    A meteo-hydrological modelling system has been designed for the reconstruction of long time series of rainfall and river runoff events. The modelling chain consists of the mesoscale meteorological model of the Weather Research and Forecasting (WRF), the land surface model NOAH-MP and the hydrology-hydraulics model WRF-Hydro. Two 3-month periods are reconstructed for winter 2011 and autumn 2013, containing heavy rainfall and river flooding events. Several sensitivity tests were performed along with an assessment of which tunable parameters, numerical choices and forcing data most impacted on the modelling performance.The calibration of the experiments highlighted that the infiltration and aquifer coefficients should be considered as seasonally dependent.The WRF precipitation was validated by a comparison with rain gauges in the Ofanto basin. The WRF model was demonstrated to be sensitive to the initialization time and a spin-up of about 1.5 days was needed before the start of the major rainfall events in order to improve the accuracy of the reconstruction. However, this was not sufficient and an optimal interpolation method was developed to correct the precipitation simulation. It is based on an objective analysis (OA) and a least square (LS) melding scheme, collectively named OA+LS. We demonstrated that the OA+LS method is a powerful tool to reduce the precipitation uncertainties and produce a lower error precipitation reconstruction that itself generates a better river discharge time series. The validation of the river streamflow showed promising statistical indices.The final set-up of our meteo-hydrological modelling system was able to realistically reconstruct the local rainfall and the Ofanto hydrograph.

  3. PRISM4: Pliocene Research, Interpretation and Synoptic Mapping mid Piacenzian paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Dolan, A. M.; Rowley, D. B.; Moucha, R.; Forte, A. M.; Mitrovica, J. X.; Pound, M. J.; Salzmann, U.; Robinson, M. M.; Chandler, M. A.; Foley, K.; Haywood, A.

    2016-12-01

    Past Intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval in the mid Piacenzian ( 3 million years ago). The PRISM4 reconstruction contains twelve internally consistent and integrated data sets representing our best synoptic understanding of surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. Starting points in the generation of our Piacenzian reconstruction are basic geochemical, faunal, floral, soil, cryospheric, topographic, bathymetric, sedimentologic, and stratigraphic data. Marine and terrestral temperature estimates are based upon multiple proxies (including faunal, floral, geochemical, and biomarker analyses). The reconstruction of Piacenzian global vegetation is based on the integration of paleobotanical data and BIOME4 model outputs. Antarctic and Greenland ice sheets are derived from the previous PRISM3 and PLISMIP (Pliocene Ice Sheet Model Intercomparison Project) results, respectively. Paleogeography is based upon an initial ETOPO1 digital elevation model incorporating PRISM4 ice sheets, GIA, and adjustments due to mantle convection. Soils are determined through comparison of sedimentological and stratigraphic data with the BIOME reconstruction. Lakes are determined from stratigraphic and sedimentological data. Sea-level equivalent (+20 m) is estimated from the reduced volume of the PRISM4 ice sheets and is consistent with our PRISM4 paleogeography. While not an analog for future conditions, the PRISM4 conceptual reconstruction provides insights into processes that occurred in the past and can inform us about the future. We will discuss the use of these data as boundary conditions and verification for global climate model simulations of the Pliocene, aimed at improving our understanding of the climate system as we prepare for future changes.

  4. Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra [On the Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra

    DOE PAGES

    Gilroy, Kyle D.; Elnabawy, Ahmed O.; Yang, Tung -Han; ...

    2017-04-27

    Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wavemore » density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200–400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. As a result, the mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.« less

  5. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  6. Giant (12 ×12 ) and (4 ×8 ) reconstructions of the 6 H -SiC(0001) surface obtained by progressive enrichment in Si atoms

    NASA Astrophysics Data System (ADS)

    Martrou, David; Leoni, Thomas; Chaumeton, Florian; Castanié, Fabien; Gauthier, Sébastien; Bouju, Xavier

    2018-02-01

    Silicon carbide (SiC) is nowadays a major material for applications in high power electronics, quantum optics, or nitride semiconductors growth. Mastering the surface of SiC substrate is crucial to obtain reproducible results. Previous studies on the 6 H -SiC(0001) surface have determined several reconstructions, including the (√{3 }×√{3 }) -R 30∘ and the (3 ×3 ) . Here, we introduce a process of progressive Si enrichment that leads to the formation of two reconstructions, the giant (12 ×12 ) and the (4 ×8 ) . From electron diffraction and tunneling microscopy completed by molecular dynamics simulations, we build models introducing a type of Si adatom bridging two Si surface atoms. Using these Si bridges, we also propose a structure for two other reconstructions, the (2 √{3 }×2 √{3 }) -R 30∘ and the (2 √{3 }×2 √{13 } ). We show that five reconstructions follow each other with Si coverage ranging from 1 and 1.444 monolayer. This result opens the way to greatly improve the control of 6 H -SiC(0001) at the atomic scale.

  7. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.

    2018-01-01

    Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.

  8. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE PAGES

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...

    2018-01-31

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  9. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa2 Cu3 Oy : Fermi-Surface Reconstruction by Bidirectional Charge Order

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Badoux, S.; Grissonnanche, G.; Michon, B.; Afshar, S. A. A.; Fortier, S.; LeBoeuf, D.; Graf, D.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2017-07-01

    The Seebeck coefficient S of the cuprate YBa2 Cu3 Oy is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p =0.11 and p =0.12 , for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S /T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in Sb, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S /T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  10. Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods.

    PubMed

    Freiberger, Manuel; Clason, Christian; Scharfetter, Hermann

    2010-01-01

    Fluorescence tomography excites a fluorophore inside a sample by light sources on the surface. From boundary measurements of the fluorescent light, the distribution of the fluorophore is reconstructed. The optode placement determines the quality of the reconstructions in terms of, e.g., resolution and contrast-to-noise ratio. We address the adaptation of the measurement setup. The redundancy of the measurements is chosen as a quality criterion for the optodes and is computed from the Jacobian of the mathematical formulation of light propagation. The algorithm finds a subset with minimum redundancy in the measurements from a feasible pool of optodes. This allows biasing the design in order to favor reconstruction results inside a given region. Two different variations of the algorithm, based on geometric and arithmetic averaging, are compared. Both deliver similar optode configurations. The arithmetic averaging is slightly more stable, whereas the geometric averaging approach shows a better conditioning of the sensitivity matrix and mathematically corresponds more closely with entropy optimization. Adapted illumination and detector patterns are presented for an initial set of 96 optodes placed on a cylinder with focusing on different regions. Examples for the attenuation of fluorophore signals from regions outside the focus are given.

  11. Stochastic Surface Mesh Reconstruction

    NASA Astrophysics Data System (ADS)

    Ozendi, M.; Akca, D.; Topan, H.

    2018-05-01

    A generic and practical methodology is presented for 3D surface mesh reconstruction from the terrestrial laser scanner (TLS) derived point clouds. It has two main steps. The first step deals with developing an anisotropic point error model, which is capable of computing the theoretical precisions of 3D coordinates of each individual point in the point cloud. The magnitude and direction of the errors are represented in the form of error ellipsoids. The following second step is focused on the stochastic surface mesh reconstruction. It exploits the previously determined error ellipsoids by computing a point-wise quality measure, which takes into account the semi-diagonal axis length of the error ellipsoid. The points only with the least errors are used in the surface triangulation. The remaining ones are automatically discarded.

  12. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  13. Combined experimental and theoretical study of fast atom diffraction on the β2(2×4) reconstructed GaAs(001) surface

    NASA Astrophysics Data System (ADS)

    Debiossac, M.; Zugarramurdi, A.; Khemliche, H.; Roncin, P.; Borisov, A. G.; Momeni, A.; Atkinson, P.; Eddrief, M.; Finocchi, F.; Etgens, V. H.

    2014-10-01

    A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530∘C under an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure. Experimental diffraction data are in good agreement with results from quantum scattering calculations based on an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring in situ the subtle details of complex surface reconstructions. We have performed measurements at very small incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as -8.7 meV in very good agreement with results reported in literature.

  14. Transition from Reconstruction toward Thin Film on the (110) Surface of Strontium Titanate

    PubMed Central

    2016-01-01

    The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination of the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. This transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface. PMID:26954064

  15. Influence of Adsorbed Hydroxyl and Carbon Monoxide on Potential-Induced Reconstruction of Au(100) as Examined by Scanning Tunneling Microscopy

    DTIC Science & Technology

    1994-02-01

    years have witnessed substantial advances in our knowledge of metal reconstruction in electrochemical systems, primarily for low-index gold surfaces in...index gold surfaces, reconstruction can be formed or removed by applying electrode potentials corresponding to negative or positive electronic charge...potential and gold oxidation regions, for Au(100) in 0.1 M KOH, obtained in a conventional electrochemical cell (solid trace). The voltammetric

  16. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  17. ELUCID—Exploring the Local Universe with the reConstructed Initial Density Field. II. Reconstruction Diagnostics, Applied to Numerical Halo Catalogs

    NASA Astrophysics Data System (ADS)

    Tweed, Dylan; Yang, Xiaohu; Wang, Huiyuan; Cui, Weiguang; Zhang, Youcai; Li, Shijie; Jing, Y. P.; Mo, H. J.

    2017-05-01

    The ELUCID project aims to build a series of realistic cosmological simulations that reproduce the spatial and mass distributions of the galaxies as observed in the Sloan Digital Sky Survey. This requires powerful reconstruction techniques to create constrained initial conditions (ICs). We test the reconstruction method by applying it to several N-body simulations. We use two medium-resolution simulations, which each produced three additional constrained N-body simulations. We compare the resulting friend-of-friend catalogs by using the particle indexes as tracers, and quantify the quality of the reconstruction by varying the main smoothing parameter. The cross-identification method we use proves to be efficient, and the results suggest that the most massive reconstructed halos are effectively traced from the same Lagrangian regions in the ICs. A preliminary time-dependence analysis indicates that high-mass-end halos converge only at a redshift close to the reconstruction redshift. This suggests that, for earlier snapshots, only collections of progenitors may be effectively cross-identified.

  18. Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy

    PubMed Central

    Kanazawa, Ken; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2015-01-01

    The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe. PMID:27877752

  19. Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2004-03-01

    Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.

  20. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2

    NASA Astrophysics Data System (ADS)

    Wilfert, Stefan; Schmitt, Martin; Schmidt, Henrik; Mauerer, Tobias; Sessi, Paolo; Wang, Hangdong; Mao, Qianhui; Fang, Minghu; Bode, Matthias

    2018-01-01

    We report on the structural and superconducting electronic properties of the heavy-electron superconductor TlNi2Se2 . By using a variable-temperature scanning tunneling microscopy (VT-STM) the coexistence of (√{2 }×√{2 }) R 45∘ and (2 ×1 ) surface reconstructions is observed. Similar to earlier observations on the "122" family of Fe-based superconductors, we find that their respective surface fraction strongly depends on the temperature during cleavage, the measurement temperature, and the sample's history. Cleaving at low temperature predominantly results in the (√{2 }×√{2 }) R 45∘ -reconstructed surface. A detailed analysis of the (√{2 }×√{2 }) R 45∘ -reconstructed domains identifies (2 ×1 ) -ordered dimers, tertramers, and higher order even multimers as domain walls. Higher cleaving temperatures and the warming of low-temperature-cleaved samples increases the relative weight of the (2 ×1 ) surface reconstruction. By slowly increasing the sample temperature Ts inside the VT-STM we find that the (√{2 }×√{2 }) R 45∘ surface reconstructions transforms into the (2 ×1 ) structure at Ts=123 K. We identify the polar nature of the TlNi2Se2 (001) surface as the most probable driving mechanism of the two reconstructions, as both lead to a charge density ρ =0.5 e- , thereby avoiding divergent electrostatic potentials and the resulting "polar catastrophe." Low-temperature scanning tunneling spectroscopy (STS) performed with normal metal and superconducting probe tips shows a superconducting gap which is best fit with an isotropic s wave. We could not detect any correlation between the local surface reconstruction, suggesting that the superconductivity is predominantly governed by TlNi2Se2 bulk properties. Correspondingly, temperature- and field-dependent data reveal that both the critical temperature and critical magnetic field are in good agreement with bulk values obtained earlier from transport measurements. In the superconducting state the formation of an Abrikosov lattice is observed without any zero bias anomaly at the vortex core.

  1. 40 CFR 63.9495 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... October 18, 2005. (b) If you have a new or reconstructed solvent mixer and its initial startup date is... initial startup. (c) If your friction materials manufacturing facility is an area source that increases... reconstructed sources upon startup or no later than October 18, 2002, whichever is later. (2) For any portion of...

  2. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  3. Ice Elevation Changes in the Ellsworth Mountains, Antarctica Using Multiple Cosmogenic Nuclides

    NASA Astrophysics Data System (ADS)

    Marrero, S.; Hein, A.; Sugden, D.; Woodward, J.; Dunning, S.; Reid, K.

    2014-12-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Initial surface exposure ages (10Be, 26Al, 21Ne, and 36Cl ) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to 1.1 Ma in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  4. Impact of local electrostatic field rearrangement on field ionization

    NASA Astrophysics Data System (ADS)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  5. Positron Annihilation Induced Auger Electron Spectroscopic Studies Of Reconstructed Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Reed, J. A.; Starnes, S. G.; Weiss, A. H.

    2011-06-01

    The positron annihilation induced Auger spectrum from GaAs(100) displays six As and three Ga Auger peaks below 110 eV corresponding to M4,5VV, M2M4V, M2,3M4,5M4,5 Auger transitions for As and M2,3M4,5M4,5 Auger transitions for Ga. The integrated Auger peak intensities have been used to obtain experimental annihilation probabilities of surface trapped positrons with As 3p and 3d and Ga 3p core level electrons. PAES data is analyzed by performing calculations of positron surface and bulk states and annihilation characteristics of surface trapped positrons with relevant Ga and As core level electrons for both Ga- and As-rich (100) surfaces of GaAs, ideally terminated, non-reconstructed and with (2×8), (2×4), and (4×4) reconstructions. The orientation-dependent variations of the atomic and electron densities associated with reconstructions are found to affect localization of the positron wave function at the surface. Computed positron binding energy, work function, and annihilation characteristics demonstrate their sensitivity both to chemical composition and atomic structure of the topmost layers of the surface. Theoretical annihilation probabilities of surface trapped positrons with As 3d, 3p, and Ga 3p core level electrons are compared with the ones estimated from the measured Auger peak intensities.

  6. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases.

    PubMed

    Kobayashi, Masakazu; Nakamura, Takahiro; Yasuda, Makoto; Hata, Yuiko; Okura, Shoki; Iwamoto, Miyu; Nagata, Maho; Fullwood, Nigel J; Koizumi, Noriko; Hisa, Yasuo; Kinoshita, Shigeru

    2015-01-01

    Severe ocular surface diseases (OSDs) with severe dry eye can be devastating and are currently some of the most challenging eye disorders to treat. To investigate the feasibility of using an autologous tissue-engineered cultivated nasal mucosal epithelial cell sheet (CNMES) for ocular surface reconstruction, we developed a novel technique for the culture of nasal mucosal epithelial cells expanded ex vivo from biopsy-derived human nasal mucosal tissues. After the protocol, the CNMESs had 4-5 layers of stratified, well-differentiated cells, and we successfully generated cultured epithelial sheets, including numerous goblet cells. Immunohistochemistry confirmed the presence of keratins 3, 4, and 13; mucins 1, 16, and 5AC; cell junction and basement membrane assembly proteins; and stem/progenitor cell marker p75 in the CNMESs. We then transplanted the CNMESs onto the ocular surfaces of rabbits and confirmed the survival of this tissue, including the goblet cells, up to 2 weeks. The present report describes an attempt to overcome the problems of treating severe OSDs with the most severe dry eye by treating them using tissue-engineered CNMESs to supply functional goblet cells and to stabilize and reconstruct the ocular surface. The present study is a first step toward assessing the use of tissue-engineered goblet-cell transplantation of nonocular surface origin for ocular surface reconstruction. ©AlphaMed Press.

  7. Augmented reality based real-time subcutaneous vein imaging system

    PubMed Central

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-01-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  8. Augmented reality based real-time subcutaneous vein imaging system.

    PubMed

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  9. Nanostructure control: Nucleation and diffusion studies for predictable ultra thin film morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershberger, Matthew

    This thesis covers PhD research on two systems with unique and interesting physics. The first system is lead (Pb) deposited on the silicon (111) surface with the 7x7 reconstruction. Pb and Si are mutually bulk insoluble resulting in this system being an ideal case for studying metal and semiconductor interactions. Initial Pb deposition causes an amorphous wetting layer to form across to surface. Continued deposition results in Pb(111) island growth. Classic literature has classified this system as the Stranski-Krastanov growth mode although the system is not near equilibrium conditions. Our research shows a growth mode distinctly different than classical expectationsmore » and begins a discussion of reclassifying diffusion and nucleation for systems far away from the well-studied equilibrium cases.« less

  10. Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security

    NASA Astrophysics Data System (ADS)

    Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.

    2007-03-01

    3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; May, Brian M.; Serrano-Sevillano, Jon

    The surface configuration of pristine layered oxide cathode particles for Li-ion batteries significantly affects the electrochemical behavior, which is generally considered to be a thin rock-salt layer in the surface. Unfortunately, aside from its thin nature and spatial location on the surface, the true structural nature of this surface rock-salt layer remains largely unknown, creating the need to understand its configuration and the underlying mechanisms of formation. Using scanning transmission electron microscopy, we have found a correlation between the surface rock-salt formation and the crystal facets on pristine LiNi0.80Co0.15Al0.05O2 primary particles. It is found that the originally (01more » $$ \\overline{4}\\ $$) and (003) surfaces of the layered phase result in two kinds of rock-salt reconstructions: the (002) and (111) rock-salt surfaces, respectively. Stepped surface configurations are generated for both reconstructions. The (002) configuration is relatively flat with monoatomic steps while the (111) configuration shows significant surface roughening. Both reconstructions reduce the ionic and electronic conductivity of the cathode, leading to a reduced electrochemical performance.« less

  12. Surface models of the male urogenital organs built from the Visible Korean using popular software

    PubMed Central

    Shin, Dong Sun; Park, Jin Seo; Shin, Byeong-Seok

    2011-01-01

    Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively. PMID:21829759

  13. The Pliocene Model Intercomparison Project - Phase 2

    NASA Astrophysics Data System (ADS)

    Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Hunter, Stephen; Lunt, Daniel; Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate, and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilised for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilise state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land/ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  14. An iterative reconstruction of cosmological initial density fields

    NASA Astrophysics Data System (ADS)

    Hada, Ryuichiro; Eisenstein, Daniel J.

    2018-05-01

    We present an iterative method to reconstruct the linear-theory initial conditions from the late-time cosmological matter density field, with the intent of improving the recovery of the cosmic distance scale from the baryon acoustic oscillations (BAOs). We present tests using the dark matter density field in both real and redshift space generated from an N-body simulation. In redshift space at z = 0.5, we find that the reconstructed displacement field using our iterative method are more than 80% correlated with the true displacement field of the dark matter particles on scales k < 0.10h Mpc-1. Furthermore, we show that the two-point correlation function of our reconstructed density field matches that of the initial density field substantially better, especially on small scales (<40h-1 Mpc). Our redshift-space results are improved if we use an anisotropic smoothing so as to account for the reduced small-scale information along the line of sight in redshift space.

  15. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    NASA Astrophysics Data System (ADS)

    Plimley, Brian Christopher

    Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron track Compton imaging an effective means of reducing image background for photons of energy as low as 500 keV, or even less. The angular sensitivity of the reconstruction algorithm was also evaluated experimentally, by measuring electron tracks in the CCD in coincidence with the scattered photon in a germanium double-sided strip detector. By this method, electron tracks could be measured with the true initial direction known to within 3° FWHM, and the angular response of the algorithm compared to the known direction. The challenge of this experiment lay in the low geometric efficiency for photons scattering into the germanium, the poor time resolution in the current CCD implementation, and the resulting signal-to-background ratio of about 10--4 for photons scattered from the CCD into the germanium detector. Nonetheless, 87 events were measured in the FWHM of the total energy deposited and the angular resolution measure, with electron tracks between 160 keV and 360 keV in energy. The electron tracks from true coincident event sequences showed a FWHM in the pixel plane of 23°, and excellent agreement with the distribution calculated with models, with likelihood p-values of 0.44 and 0.73. Thus, the models used for the more thorough evaluation of angular sensitivities are shown to be consistent with the measured tracks from true coincident event sequences.

  16. Archival processes of the water stable isotope signal in East Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  17. Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium.

    PubMed

    Fatima, A; Iftekhar, G; Sangwan, V S; Vemuganti, G K

    2008-09-01

    To report histopathologic changes of the ocular surface pannus in patients with severe limbal stem cell deficiency (LSCD). Corneal and conjunctival pannus tissues from 29 patients undergoing ocular reconstruction with cultured limbal cell transplantation were included. The medical records of these patients were reviewed for demographics, aetiologic diagnosis, type of injury, interval between the initial insult and excision of pannus, and medical history involving human amniotic membrane (HAM) or limbal transplantation. The paraffin-embedded tissues were reviewed for epithelial changes, type-degree of fibrosis, degenerative changes, vascular changes, conjunctivalization of corneal surface, and evidence of residual HAM. We attempted a clinicopathologic correlation to understand the pathogenesis of pannus formation in LSCD. The 29 tissues were from 29 eyes of patients with primary aetiology of chemical burn in 89.6% (undetermined in 10.4%) of cases. The pannus showed epithelial hyperplasia in 62%, active fibrosis in 66%, severe inflammation in 21%, giant cell reaction in 28%, and stromal calcification in 14% cases. Goblet cells were seen over the cornea in 64% cases; their absence was associated with squamous metaplasia of the conjunctiva and with long duration of insult. Evidence of residual HAM was noted in 42% cases. The commonest cause of severe LSCD is alkali-induced injury. Goblet cells over the cornea were seen in 60% of cases. HAM used for ocular surface reconstruction could persist for long periods within the corneal pannus, thus raising the need for further studies with long-term follow-up.

  18. An integrated software suite for surface-based analyses of cerebral cortex.

    PubMed

    Van Essen, D C; Drury, H A; Dickson, J; Harwell, J; Hanlon, D; Anderson, C H

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  19. An integrated software suite for surface-based analyses of cerebral cortex

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  20. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoku, J; Nakabayashi, S; Kumagai, S

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image.more » We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)« less

  1. Prevalence of Body Dysmorphic Disorder Among Patients Seeking Breast Reconstruction.

    PubMed

    Metcalfe, Drew B; Duggal, Claire S; Gabriel, Allen; Nahabedian, Maurice Y; Carlson, Grant W; Losken, Albert

    2014-07-01

    Body dysmorphic disorder (BDD) is characterized by a preoccupation with a slight or imagined defect in physical appearance. It has significant implications for patients who desire breast reconstruction, because patient satisfaction with the aesthetic outcome is a substantial contributor to the success of the procedure. The authors estimated the prevalence of BDD among women seeking breast reconstruction by surveying patients with the previously validated Dysmorphic Concerns Questionnaire (DCQ). One hundred eighty-eight women who presented for immediate or delayed breast reconstruction completed the DCQ anonymously, during initial consultation with a plastic surgeon. Two groups of respondents were identified: those who desired immediate reconstruction and those who planned to undergo delayed reconstruction. The prevalence of BDD among breast reconstruction patients was compared between the 2 groups, and the overall prevalence was compared with published rates for the general public. Body dysmorphic disorder was significantly more prevalent in breast reconstruction patients than in the general population (17% vs 2%; P < .001). It also was much more common among patients who planned to undergo delayed (vs immediate) reconstruction (34% vs 13%; P = .004). Relative to the general public, significantly more women who sought breast reconstruction were diagnosed as having BDD. Awareness of the potential for BDD will enable clinicians to better understand their patients' perspectives and discuss realistic expectations at the initial consultation. Future studies are warranted to examine the implications of BDD on patient satisfaction with reconstructive surgery. 3. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  2. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2014-03-01

    The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle evolution thus suggest that mantle plumes play a key role in driving surface tectonic processes and large-scale volcanism.

  3. The Creation of Space Vector Models of Buildings From RPAS Photogrammetry Data

    NASA Astrophysics Data System (ADS)

    Trhan, Ondrej

    2017-06-01

    The results of Remote Piloted Aircraft System (RPAS) photogrammetry are digital surface models and orthophotos. The main problem of the digital surface models obtained is that buildings are not perpendicular and the shape of roofs is deformed. The task of this paper is to obtain a more accurate digital surface model using building reconstructions. The paper discusses the problem of obtaining and approximating building footprints, reconstructing the final spatial vector digital building model, and modifying the buildings on the digital surface model.

  4. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    PubMed

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  5. Learnings from Opportunistic Wetlands: The Role of Substrate and Landscape Position on Reconstructed Landforms in a Sub-humid Climate

    NASA Astrophysics Data System (ADS)

    Little-Devito, M.; Chasmer, L.; Devito, K.; Kettridge, N.; Lukenbach, M. C.; Mendoza, C. A.

    2017-12-01

    Wetlands are important features in large-scale reclamation projects, and are integral to sustaining landscape eco-hydrological function and meeting reclamation goals. Despite a sub-humid climate, opportunistic wetlands are appearing on reconstructed landforms, and present an opportunity to understand the requirements for wetland construction, relative wetland succession, and their role in functioning landscapes. The relative importance and relationship between local and landscape-scale factors in determining initial wetland formation, as well as the relative occurrence and wetland type found on newly reclaimed landscapes was studied using both field and active (LiDAR) remote sensing methods. A random transect survey approach was used to characterize vegetation communities, soil and hydrologic characteristics, and local and landscape physiographic position across reconstructed landforms. Transects were also used to validate a broader area LiDAR-based classification. Preliminary findings suggest a higher frequency of opportunistic wetlands than anticipated. Soil texture of constructed landforms was important in determining the significance of local and landscape factors. On fine-textured constructed landforms, regardless of landscape position, wetlands formed on flat areas and in shallow depressions where soils had low water storage that promoted frequent surface saturation. Wetlands were less frequent on coarse-textured landforms and their location was controlled by landscape-scale factors, being restricted to the toes of slopes and areas intersecting the groundwater table. Wetlands found across all material types were predominantly Salix sp. and Carex sp. swamps with Typha sp. marsh complexes. This may indicate a potential initial phase of wetland succession and paludification in the Boreal Plains. These findings have important implications for understanding general wetland development, the initial phase of wetland paludification, and will aid the development of a geomorphic framework to better inform wetland construction and promote sustainable forest-wetland complexes similar to those found in natural landscapes.

  6. Atom probe trajectory mapping using experimental tip shape measurements.

    PubMed

    Haley, D; Petersen, T; Ringer, S P; Smith, G D W

    2011-11-01

    Atom probe tomography is an accurate analytical and imaging technique which can reconstruct the complex structure and composition of a specimen in three dimensions. Despite providing locally high spatial resolution, atom probe tomography suffers from global distortions due to a complex projection function between the specimen and detector which is different for each experiment and can change during a single run. To aid characterization of this projection function, this work demonstrates a method for the reverse projection of ions from an arbitrary projection surface in 3D space back to an atom probe tomography specimen surface. Experimental data from transmission electron microscopy tilt tomography are combined with point cloud surface reconstruction algorithms and finite element modelling to generate a mapping back to the original tip surface in a physically and experimentally motivated manner. As a case study, aluminium tips are imaged using transmission electron microscopy before and after atom probe tomography, and the specimen profiles used as input in surface reconstruction methods. This reconstruction method is a general procedure that can be used to generate mappings between a selected surface and a known tip shape using numerical solutions to the electrostatic equation, with quantitative solutions to the projection problem readily achievable in tens of minutes on a contemporary workstation. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  7. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc

    2010-02-01

    This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.

  8. Driving Organic Molecule Crystalliztion with Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica; Trovato, Gianfranco

    This work examines how surface reconstructions can drive crystallization of organic molecules via self-assembly. Organic electronic molecules have low conductivities compared to inorganic materials, but crystallizing these polymers increases their conductivity. This project uses surface reconstructions with periodically repeating topographies to drive the crystallization process. The samples are grown by placing a drop of a dilute PEDOT solution on the clean Si(001)-(2x1) or Si(111)-(7x7) surface reconstruction and heating the surface up to both evaporate the solvent and promote diffusion of the polymer to the thermodynamically defined lowest energy position. The resulting samples are characterized by scanning tunneling microscopy (STM) with respect to their crystallinity and electronic properties. Of particular interest is whether there is a preferential location for the PEDOT molecule to adsorb and whether there are any conformational changes upon adsorption that modify the HOMO-LUMO gap. This work is being done in a new pan-style RHK-STM enclosed in a glovebox at Cleveland State University. The glovebox has O2 and H2O levels of less than 1ppm. This allows for sample preparation and imaging in a controlled environment that is free from contamination.

  9. Reconstruction of the 3-D Dynamics From Surface Variables in a High-Resolution Simulation of North Atlantic

    NASA Astrophysics Data System (ADS)

    Fresnay, S.; Ponte, A. L.; Le Gentil, S.; Le Sommer, J.

    2018-03-01

    Several methods that reconstruct the three-dimensional ocean dynamics from sea level are presented and evaluated in the Gulf Stream region with a 1/60° realistic numerical simulation. The use of sea level is motivated by its better correlation with interior pressure or quasi-geostrophic potential vorticity (PV) compared to sea surface temperature and sea surface salinity, and, by its observability via satellite altimetry. The simplest method of reconstruction relies on a linear estimation of pressure at depth from sea level. Another method consists in linearly estimating PV from sea level first and then performing a PV inversion. The last method considered, labeled SQG for surface quasi-geostrophy, relies on a PV inversion but assumes no PV anomalies. The first two methods show comparable skill at levels above -800 m. They moderately outperform SQG which emphasizes the difficulty of estimating interior PV from surface variables. Over the 250-1,000 m depth range, the three methods skillfully reconstruct pressure at wavelengths between 500 and 200 km whereas they exhibit a rapid loss of skill between 200 and 100 km wavelengths. Applicability to a real case scenario and leads for improvements are discussed.

  10. Optimization of the volume reconstruction for classical Tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies

    NASA Astrophysics Data System (ADS)

    Thomas, L.; Tremblais, B.; David, L.

    2014-03-01

    Optimization of multiplicative algebraic reconstruction technique (MART), simultaneous MART and block iterative MART reconstruction techniques was carried out on synthetic and experimental data. Different criteria were defined to improve the preprocessing of the initial images. Knowledge of how each reconstruction parameter influences the quality of particle volume reconstruction and computing time is the key in Tomo-PIV. These criteria were applied to a real case, a jet in cross flow, and were validated.

  11. Direct observation of the residual plastic deformation caused by a single tensile overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bichler, C.; Pippan, R.

    1999-07-01

    The fatigue crack growth behavior following single tensile overloads at high stress intensity ranges in a cold-rolled austenitic steel has been studied experimentally. After tensile overloads, fatigue cracks initially accelerate, followed by significant retardation, before the growth rates return to their baseline level. The initial acceleration was attributed to an immediate reduction in near-tip closure. Scanning electron micrography and stereophotogrammetric reconstruction of the fracture surface were applied to study the residual plastic deformation caused by a single tensile overload in the mid-thickness of the specimen. The measured residual opening displacement of the crack as a function of the overload ismore » presented and compared with simple estimations. Also, free specimen surface observations of the residual plastic deformation and crack growth rate were performed. In the midsection of the specimens the striation spacing-length, i.e., the microscopic growth rates, were measured before and after the applied overload. It will be shown that the measured plasticity-induced wedges from the single overload and the observed propagation behavior support the significance of the concept of crack closure.« less

  12. A novel mechanochemical method for reconstructing the moisture-degraded HKUST-1.

    PubMed

    Sun, Xuejiao; Li, Hao; Li, Yujie; Xu, Feng; Xiao, Jing; Xia, Qibin; Li, Yingwei; Li, Zhong

    2015-07-11

    A novel mechanochemical method was proposed to reconstruct quickly moisture-degraded HKUST-1. The degraded HKUST-1 can be restored within minutes. The reconstructed samples were characterized, and confirmed to have 95% surface area and 92% benzene capacity of the fresh HKUST-1. It is a simple and effective strategy for degraded MOF reconstruction.

  13. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery.

    PubMed

    Li, Jing; Zipper, Carl E; Donovan, Patricia F; Wynne, Randolph H; Oliphant, Adam J

    2015-09-01

    Surface mining disturbances have attracted attention globally due to extensive influence on topography, land use, ecosystems, and human populations in mineral-rich regions. We analyzed a time series of Landsat satellite imagery to produce a 28-year disturbance history for surface coal mining in a segment of eastern USA's central Appalachian coalfield, southwestern Virginia. The method was developed and applied as a three-step sequence: vegetation index selection, persistent vegetation identification, and mined-land delineation by year of disturbance. The overall classification accuracy and kappa coefficient were 0.9350 and 0.9252, respectively. Most surface coal mines were identified correctly by location and by time of initial disturbance. More than 8 % of southwestern Virginia's >4000-km(2) coalfield area was disturbed by surface coal mining over the 28-year period. Approximately 19.5 % of the Appalachian coalfield surface within the most intensively mined county (Wise County) has been disturbed by mining. Mining disturbances expanded steadily and progressively over the study period. Information generated can be applied to gain further insight concerning mining influences on ecosystems and other essential environmental features.

  14. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    NASA Astrophysics Data System (ADS)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  15. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    PubMed

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  16. Theory and Application of Auger and Photoelectron Diffraction and Holography

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    This dissertation addresses the theories and applications of three important surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron diffraction (XPD), and Auger and photoelectron holography. A full multiple-scattering scheme for the calculations of XPD, AED, and Kikuchi electron diffraction pattern from a surface cluster is described. It is used to simulate 64 eV M_{2,3}VV and 913 eV L_3VV AED patterns from Cu(001) surfaces, in order to test assertions in the literature that they are explicable by a classical "blocking" and channeling model. We find that this contention is not valid, and that only a quantum mechanical multiple-scattering calculation is able to simulate these patterns well. The same multiple scattering simulation scheme is also used to investigate the anomalous phenomena of peak shifts off the forward-scattering directions in photo -electron diffraction patterns of Mg KLL (1180 eV) and O 1s (955 eV) from MgO(001) surfaces. These shifts are explained by calculations assuming a short electron mean free path. Similar simulations of XPD from a CoSi_2(111) surface for Co-3p and Si-2p normal emission agree well with experimental diffraction patterns. A filtering process aimed at eliminating the self -interference effect in photoelectron holography is developed. A better reconstructed image from Si-2p XPD from a Si(001) (2 times 1) surface is seen at atomic resolution. A reconstruction algorithm which corrects for the anisotropic emitter waves as well as the anisotropic atomic scattering factors is used for holographic reconstruction from a Co-3p XPD pattern from a CoSi_2 surface. This new algorithm considerably improves the reconstructed image. Finally, a new reconstruction algorithm called "atomic position recovery by iterative optimization of reconstructed intensities" (APRIORI), which takes account of the self-interference terms omitted by the other holographic algorithms, is developed. Tests on a Ni-C-O chain and Si(111)(sqrt{3} times sqrt{3})B surface suggest that this new method may overcome the twin image problem in the traditional holographic methods, reduce the artifacts in real space, and even separately identify the chemical species of the scatterers.

  17. Preserving half-metallic surface states in Cr O2 : Insights into surface reconstruction rules

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Shi, X. Q.; Chen, L.; Tong, S. Y.

    2018-04-01

    The issue of whether the half-metallic (HM) nature of Cr O2 could be retained at its surface has been a standing problem under debate for a few decades, but until now is still controversial. Here, based on the density functional theory calculations we show, in startling contrast to the previous theoretical understandings, that the surfaces of Cr O2 favorably exhibit a half-metallic-semiconducting (SmC) transition driven by means of a surface electronic reconstruction largely attributed to the participation of the unexpected local charge carriers (LCCs), which convert the HM double exchange surface state into a SmC superexchange state and in turn, stabilize the surface as well. On the basis of the LCCs model, a new insight into the surface reconstruction rules is attained. Our novel finding not only provided an evident interpretation for the widely observed SmC character of Cr O2 surface, but also offered a novel means to improve the HM surface states for a variety of applications in spintronics and superconductors, and promote the experimental realization of the quantum anomalous Hall effect in half-metal based systems.

  18. Strain-induced structure transformations on Si(111) and Ge(111) surfaces: a combined density-functional and scanning tunneling microscopy study.

    PubMed

    Zhachuk, R; Teys, S; Coutinho, J

    2013-06-14

    Si(111) and Ge(111) surface formation energies were calculated using density functional theory for various biaxial strain states ranging from -0.04 to 0.04, and for a wide set of experimentally observed surface reconstructions: 3 × 3, 5 × 5, 7 × 7 dimer-adatom-stacking fault reconstructions and c(2 × 8), 2 × 2, and √3×√3 adatoms based surfaces. The calculations are compared with scanning tunneling microscopy data obtained on stepped Si(111) surfaces and on Ge islands grown on a Si(111) substrate. It is shown that the surface structure transformations observed in these strained systems are accounted for by a phase diagram that relates the equilibrium surface structure to the applied strain. The calculated formation energy of the unstrained Si(111)-9 × 9 dimer-adatom-stacking fault surface is reported for the first time and it is higher than corresponding energies of Si(111)-5 × 5 and Si(111)-7 × 7 dimer-adatom-stacking fault surfaces as expected. We predict that the Si(111) surface should adopt a c(2 × 8) reconstruction when tensile strain is above 0.03.

  19. Novel 3-D free-form surface profilometry for reverse engineering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Zhi-Xue

    2005-01-01

    This article proposes an innovative 3-D surface contouring approach for automatic and accurate free-form surface reconstruction using a sensor integration concept. The study addresses a critical problem in accurate measurement of free-form surfaces by developing an automatic reconstruction approach. Unacceptable measuring accuracy issues are mainly due to the errors arising from the use of inadequate measuring strategies, ending up with inaccurate digitised data and costly post-data processing in Reverse Engineering (RE). This article is thus aimed to develop automatic digitising strategies for ensuring surface reconstruction efficiency, as well as accuracy. The developed approach consists of two main stages, namely the rapid shape identification (RSI) and the automated laser scanning (ALS) for completing 3-D surface profilometry. This developed approach effectively utilises the advantages of on-line geometric information to evaluate the degree of satisfaction of user-defined digitising accuracy under a triangular topological patch. An industrial case study was used to attest the feasibility of the approach.

  20. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  1. Local motion-compensated method for high-quality 3D coronary artery reconstruction

    PubMed Central

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-01-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741

  2. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  3. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron positron correlations on positron trapping and annihilation characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2007-08-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 × 1), Ge(1 0 0)-p(2 × 2) and Ge(1 0 0)-c(4 × 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  4. Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach.

    PubMed

    Ng, Heung-Sun; Wu, Tai-Pang; Tang, Chi-Keung

    2010-11-01

    Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading.

  5. Three-channel dynamic photometric stereo: a new method for 4D surface reconstruction and volume recovery

    NASA Astrophysics Data System (ADS)

    Schroeder, Walter; Schulze, Wolfram; Wetter, Thomas; Chen, Chi-Hsien

    2008-08-01

    Three-dimensional (3D) body surface reconstruction is an important field in health care. A popular method for this purpose is laser scanning. However, using Photometric Stereo (PS) to record lumbar lordosis and the surface contour of the back poses a viable alternative due to its lower costs and higher flexibility compared to laser techniques and other methods of three-dimensional body surface reconstruction. In this work, we extended the traditional PS method and proposed a new method for obtaining surface and volume data of a moving object. The principle of traditional Photometric Stereo uses at least three images of a static object taken under different light sources to obtain 3D information of the object. Instead of using normal light, the light sources in the proposed method consist of the RGB-Color-Model's three colors: red, green and blue. A series of pictures taken with a video camera can now be separated into the different color channels. Each set of the three images can then be used to calculate the surface normals as a traditional PS. This method waives the requirement that the object imaged must be kept still as in almost all the other body surface reconstruction methods. By putting two cameras opposite to a moving object and lighting the object with the colored light, the time-varying surface (4D) data can easily be calculated. The obtained information can be used in many medical fields such as rehabilitation, diabetes screening or orthopedics.

  6. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.

    2015-12-15

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  7. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-12-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.

  8. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE PAGES

    Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...

    2015-12-22

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  9. Torso geometry reconstruction and body surface electrode localization using three-dimensional photography.

    PubMed

    Perez-Alday, Erick A; Thomas, Jason A; Kabir, Muammar; Sedaghat, Golriz; Rogovoy, Nichole; van Dam, Eelco; van Dam, Peter; Woodward, William; Fuss, Cristina; Ferencik, Maros; Tereshchenko, Larisa G

    We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Building Virtual Mars

    NASA Astrophysics Data System (ADS)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  11. Transition from reconstruction toward thin film on the (110) surface of strontium titanate

    DOE PAGES

    Wang, Z.; Loon, A.; Subramanian, A.; ...

    2016-03-08

    The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO 3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO 3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination ofmore » the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. Furthermore, this transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface.« less

  12. Challenges in the reconstruction of bilateral maxillectomy defects.

    PubMed

    Joseph, Shawn T; Thankappan, Krishnakumar; Buggaveeti, Rahul; Sharma, Mohit; Mathew, Jimmy; Iyer, Subramania

    2015-02-01

    Bilateral maxillectomy defects, if not adequately reconstructed, can result in grave esthetic and functional problems. The purpose of this study was to investigate the outcome of reconstruction of such defects. This is a retrospective case series. The defects were analyzed for their components and the flaps used for reconstruction. Outcomes for flap loss and functional indices, including oral diet, speech, and dental rehabilitation, also were evaluated. Ten consecutive patients who underwent bilateral maxillectomy reconstruction received 14 flaps. Six patients had malignancies of the maxilla, and 4 patients had nonmalignant indications. Ten bony free flaps were used. Four soft tissue flaps were used. The fibula free flap was the most common flap used. Three patients had total flap loss. Seven patients were alive and available for functional evaluation. Of these, 4 were taking an oral diet with altered consistency and 2 were on a regular diet. Speech was intelligible in all patients. Only 2 patients opted for dental rehabilitation with removable dentures. Reconstruction after bilateral maxillectomy is essential to prevent esthetic and functional problems. Bony reconstruction is ideal. The fibula bone free flap is commonly used. The complexity of the defect makes reconstruction difficult and the initial success rate of free flaps is low. Secondary reconstructions after the initial flap failures were successful. A satisfactory functional outcome can be achieved. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seliger, T; Engenhart-Cabillic, R; Czarnecki, D

    2016-06-15

    Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry andmore » its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.« less

  14. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration.

    PubMed

    Rohl, Sebastian; Bodenstedt, Sebastian; Suwelack, Stefan; Dillmann, Rudiger; Speidel, Stefanie; Kenngott, Hannes; Muller-Stich, Beat P

    2012-03-01

    In laparoscopic surgery, soft tissue deformations substantially change the surgical site, thus impeding the use of preoperative planning during intraoperative navigation. Extracting depth information from endoscopic images and building a surface model of the surgical field-of-view is one way to represent this constantly deforming environment. The information can then be used for intraoperative registration. Stereo reconstruction is a typical problem within computer vision. However, most of the available methods do not fulfill the specific requirements in a minimally invasive setting such as the need of real-time performance, the problem of view-dependent specular reflections and large curved areas with partly homogeneous or periodic textures and occlusions. In this paper, the authors present an approach toward intraoperative surface reconstruction based on stereo endoscopic images. The authors describe our answer to this problem through correspondence analysis, disparity correction and refinement, 3D reconstruction, point cloud smoothing and meshing. Real-time performance is achieved by implementing the algorithms on the gpu. The authors also present a new hybrid cpu-gpu algorithm that unifies the advantages of the cpu and the gpu version. In a comprehensive evaluation using in vivo data, in silico data from the literature and virtual data from a newly developed simulation environment, the cpu, the gpu, and the hybrid cpu-gpu versions of the surface reconstruction are compared to a cpu and a gpu algorithm from the literature. The recommended approach toward intraoperative surface reconstruction can be conducted in real-time depending on the image resolution (20 fps for the gpu and 14fps for the hybrid cpu-gpu version on resolution of 640 × 480). It is robust to homogeneous regions without texture, large image changes, noise or errors from camera calibration, and it reconstructs the surface down to sub millimeter accuracy. In all the experiments within the simulation environment, the mean distance to ground truth data is between 0.05 and 0.6 mm for the hybrid cpu-gpu version. The hybrid cpu-gpu algorithm shows a much more superior performance than its cpu and gpu counterpart (mean distance reduction 26% and 45%, respectively, for the experiments in the simulation environment). The recommended approach for surface reconstruction is fast, robust, and accurate. It can represent changes in the intraoperative environment and can be used to adapt a preoperative model within the surgical site by registration of these two models.

  15. 3D Equilibrium Effects Due to RMP Application on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Lazerson, E. Lazarus, S. Hudson, N. Pablant and D. Gates

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon [1]. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC [2] and SPEC [3] codes have been performed for an up-down symmetric shot (142603) in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nestedmore » family of flux surfaces is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.« less

  16. Reconstruction of the optical system of personalized eye models by using magnetic resonance imaging.

    PubMed

    Sun, Han-Yin; Lee, Chi-Hung; Chuang, Chun-Chao

    2016-11-10

    This study presents a practical method for reconstructing the optical system of personalized eye models by using magnetic resonance imaging (MRI). Monocular images were obtained from a young (20-year-old) healthy subject viewing at a near point (10 cm). Each magnetic resonance image was first analyzed using several commercial software to capture the profile of each optical element of the human eye except for the anterior lens surface, which could not be determined because it overlapped the ciliary muscle. The missing profile was substituted with a modified profile from a generic eye model. After the data-including the refractive indices from a generic model-were input in ZEMAX, we obtained a reasonable initial layout. By further considering the resolution of the MRI, the model was optimized to match the optical performance of a healthy eye. The main benefit of having a personalized eye model is the ability to quantitatively identify wide-angle ocular aberrations, which were corrected by the designed free-form spectacle lens.

  17. A hybrid multiview stereo algorithm for modeling urban scenes.

    PubMed

    Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep

    2013-01-01

    We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.

  18. Paired evaluation of calvarial reconstruction with prototyped titanium implants with and without ceramic coating.

    PubMed

    Calderoni, Davi Reis; Gilioli, Rovilson; Munhoz, André Luiz Jardini; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Lambert, Carlos Salles; Lopes, Eder Socrates Najar; Toro, Ivan Felizardo Contrera; Kharmandayan, Paulo

    2014-09-01

    To investigate the osseointegration properties of prototyped implants with tridimensionally interconnected pores made of the Ti6Al4V alloy and the influence of a thin calcium phosphate coating. Bilateral critical size calvarial defects were created in thirty Wistar rats and filled with coated and uncoated implants in a randomized fashion. The animals were kept for 15, 45 and 90 days. Implant mechanical integration was evaluated with a push-out test. Bone-implant interface was analyzed using scanning electron microscopy. The maximum force to produce initial displacement of the implants increased during the study period, reaching values around 100N for both types of implants. Intimate contact between bone and implant was present, with progressive bone growth into the pores. No significant differences were seen between coated and uncoated implants. Adequate osseointegration can be achieved in calvarial reconstructions using prototyped Ti6Al4V Implants with the described characteristics of surface and porosity.

  19. 40 CFR Table 5 to Subpart Zzzz of... - Initial Compliance With Emission Limitations and Operating Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrated initial compliance if . . . 1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP...

  20. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.; Llewellyn-Jones, D.; Saunders, R. W.; Rayner, N. A.; Kent, E. C.; Old, C. P.; Berry, D.; Birks, A. R.; Blackmore, T.; Corlett, G. K.; Embury, O.; Jay, V. L.; Kennedy, J.; Mutlow, C. T.; Nightingale, T. J.; O'Carroll, A. G.; Pritchard, M. J.; Remedios, J. J.; Tett, S.

    We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991 2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade-1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.

  1. An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Dickson, James; Harwell, John; Hanlon, Donna; Anderson, Charles H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database. PMID:11522765

  2. High-resolution multiproxy climate reconstruction for southern South America since 1000 AD: LOTRED-SA, a new IGBP-PAGES initiative

    NASA Astrophysics Data System (ADS)

    Kiefer, T.

    2006-12-01

    Regional high-resolution multi-proxy climate reconstructions and associated uncertainties for the last ca. 1000 years is a priority area of future research within the Past Global Changes project of the International Geosphere Biosphere Programme (IGBP-PAGES). Considerable progress has been made in the reconstruction techniques, in the handling of a wide range of high- and low-frequency proxy data, and in the quantity and quality of proxy data sets available at continental and northern hemispheric or global scale. Regional reconstructions are particularly important since regional climate change and extremes exhibit much larger amplitudes than hemispherical and global reconstructions. LOTRED-SA (Long-Term climate REconstruction and Dynamics of southern South America is a new collaborative long-term initiative under the umbrella of PAGES and will involve many research groups from different countries. The initiative seeks (i) to collate the large number of disperse already existing and new paleoclimate data sets (documentary data, early instrumental data, data from tree rings, glaciers and ice cores, high resolution marine and lake sediments, pollen data of peat cores etc.) for the last ca. 1000 years available for South America, and (ii) to use the Mann et al. (1998, Nature), Luterbacher et al. (2004, Science) and Moberg et al. (2005, Nature) methodologies to work towards a regional reconstruction at different temporal and spatial resolution with associated uncertainties for southern South America. This contribution reports on the state-of-the-art and the scientific highlights of the first LOTRED-SA science conference (October 2006 in Mendoza, Argentina).

  3. Spotted star mapping by light curve inversion: Tests and application to HD 12545

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Shimansky, V. V.

    2013-06-01

    A code for mapping the surfaces of spotted stars is developed. The concept of the code is to analyze rotational-modulated light curves. We simulate the process of reconstruction for the star surface and the results of simulation are presented. The reconstruction atrifacts caused by the ill-posed nature of the problem are deduced. The surface of the spotted component of system HD 12545 is mapped using the procedure.

  4. A Palynological Approach to Reconstruct Climatic and Oceanic Variability off Senegal During the Late Holocene

    NASA Astrophysics Data System (ADS)

    Bouimetarhan, I.; Dupont, L.; Schefuss, E.; Mollenhauer, G.; Stuut, J.; Mulitza, S.; Zonneveld, K.

    2007-12-01

    Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB9503 retrieved from the mud-belt (50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term paleo-oceanographic and paleo-environmental changes in tropical NW Africa during the interval from 4200 to 1200 years before present (BP). Our study emphasizes significant coeval changes in continental vegetation and oceanic environmental changes in and off Senegal. The land-sea correlation is further examined by comparison with paleo-sea surface temperature (SST) reconstructions based on alkenones analyses. These multi-proxy analyses reveal short-term land-sea climatic linkages in the western Sahel during the late Holocene. Initial dry conditions were followed by a strong and rapid humidity increase around 2,800 years BP when the environment became enriched in woody plants and plants requiring wet conditions. This interval is also characterized by the occurrence of dinoflagellate cysts of river plume affinity. We interpret these observations as the result of enhanced Senegal River runoff with high terrigenous input into the ocean and the local occurrence of cool and less-saline surface waters suggesting discharge-induced upwelling off the river mouth. After 2,500 years BP, the environment slowly became drier again, as indicated by slight increases in sahelian savanna and desert elements and SST. Around 2200 years BP, strong fluctuations in pollen and dinocyst accumulation rates in conjunction with periodically lowered SSTs, suggest an episodic "flash flood" events. The driest phase developed after about 1,800 years BP characterized by the decrease of arboreal pollen and its replacement by pollen from the Saharan group and occurrence of pollen of Pinus and Olea that have their source areas in North Africa suggesting strong trade winds. Furthermore, maximum SST in our record and high abundances of dinoflagellate cysts of subtropical/tropical affinity, such as Tuberculodinium vancampoae, indicate high nutrient, warm and stratified surface water conditions over the core site.

  5. Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Xiaoying, Wang; Ziqiang, Dai; Enhong, Zhang; Fuyang, K. E.; Yunchang, Cao; Lianchun, Song

    2014-01-01

    Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.

  6. Input reconstruction of chaos sensors.

    PubMed

    Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin

    2008-06-01

    Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.

  7. Optimizing Aesthetic Outcomes in Delayed Breast Reconstruction

    PubMed Central

    2017-01-01

    Background: The need to restore both the missing breast volume and breast surface area makes achieving excellent aesthetic outcomes in delayed breast reconstruction especially challenging. Autologous breast reconstruction can be used to achieve both goals. The aim of this study was to identify surgical maneuvers that can optimize aesthetic outcomes in delayed breast reconstruction. Methods: This is a retrospective review of operative and clinical records of all patients who underwent unilateral or bilateral delayed breast reconstruction with autologous tissue between April 2014 and January 2017. Three groups of delayed breast reconstruction patients were identified based on patient characteristics. Results: A total of 26 flaps were successfully performed in 17 patients. Key surgical maneuvers for achieving aesthetically optimal results were identified. A statistically significant difference for volume requirements was identified in cases where a delayed breast reconstruction and a contralateral immediate breast reconstruction were performed simultaneously. Conclusions: Optimal aesthetic results can be achieved with: (1) restoration of breast skin envelope with tissue expansion when possible, (2) optimal positioning of a small skin paddle to be later incorporated entirely into a nipple areola reconstruction when adequate breast skin surface area is present, (3) limiting the reconstructed breast mound to 2 skin tones when large area skin resurfacing is required, (4) increasing breast volume by deepithelializing, not discarding, the inferior mastectomy flap skin, (5) eccentric division of abdominal flaps when an immediate and delayed bilateral breast reconstructions are performed simultaneously; and (6) performing second-stage breast reconstruction revisions and fat grafting. PMID:28894666

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri

    Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.

  9. The surface orientation of some Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Morrison, D. A.; Hartung, J. B.

    1972-01-01

    Detailed stereomicroscopic studies of the distribution of microcraters, soil covers, and glass coatings were performed to reconstruct the most recent surface orientations of selected Apollo 14 rocks. Surface orientations could be established for rocks 14053, 14073, 14301, 14303, 14307, 14310, and 14311 (which includes rock 14308). A tentative orientation of rock 14055 is suggested, and comments concerning the surface history of rocks 14302, 14305, and 14318 are presented. The examination of rocks 14066, 14306, and 14321 indicates that these specimens have complicated surface histories that prevent reconstruction of their orientation by the criteria that were established in these stereomicroscopic studies.

  10. Atomically Visualizing Elemental Segregation-Induced Surface Alloying and Restructuring

    DOE PAGES

    Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri; ...

    2017-12-01

    Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.

  11. Electronic structure and surface properties of MgB2(0001) upon oxygen adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Eun; Ray, Keith G.; Bahr, David F.; Lordi, Vincenzo

    2018-05-01

    We use density-functional theory to investigate the bulk and surface properties of MgB2. The unique bonding structure of MgB2 is investigated by Bader's atoms-in-molecules, charge density difference, and occupancy projected band structure analyses. Oxygen adsorption on the charge-depleted surfaces of MgB2 is studied by a surface potential energy mapping method, reporting a complete map including low-symmetry binding sites. The B-terminated MgB2(0001) demonstrates reconstruction of the graphenelike B layer, and the reconstructed geometry exposes a threefold site of the subsurface Mg, making it accessible from the surface. Detailed reconstruction mechanisms are studied by simulated annealing method based on ab initio molecular dynamics and nudged elastic band calculations. The surface clustering of B atoms significantly modifies the B 2 p states to occupy low energy valence states. The present paper emphasizes that a thorough understanding of the surface phase may explain an apparent inconsistency in the experimental surface characterization of MgB2. Furthermore, these results suggest that the surface passivation can be an important technical challenge when it comes to development of a superconducting device using MgB2.

  12. Quantitative characterization of surface topography using spectral analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  13. Reconstruction of low-index graphite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2016-07-01

    The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.

  14. Profiling the robustness, efficiency and limits of the forward-adjoint method for 3-D mantle convection modelling

    NASA Astrophysics Data System (ADS)

    Price, M. G.; Davies, J. H.

    2018-02-01

    Knowledge of Earth's past mantle structure is inherently unknown. This lack of knowledge presents problems in many areas of Earth science, including in mantle circulation modelling (MCM). As a mathematical model of mantle convection, MCMs require boundary and initial conditions. While boundary conditions are readily available from sources such as plate reconstructions for the upper surface, and as free slip at the core-mantle boundary, the initial condition is not known. MCMs have historically `created' an initial condition using long `spin up' processes using the oldest available plate reconstruction period available. While these do yield good results when models are run to present day, it is difficult to infer with confidence results from early in a model's history. Techniques to overcome this problem are now being studied in geodynamics, such as by assimilating the known internal structure (e.g. from seismic tomography) of Earth at present day backwards in time. One such method is to use an iterative process known as the forward-adjoint method. While this is an efficient means of solving this inverse problem, it still strains all but the most cutting edge computational systems. In this study we endeavour to profile the effectiveness of this method using synthetic test cases as our known data source. We conclude that savings in terms of computational expense for forward-adjoint models can be achieved by streamlining the time-stepping of the calculation, as well as determining the most efficient method of updating initial conditions in the iterative scheme. Furthermore, we observe that in the models presented, there exists an upper limit on the time interval over which solutions will practically converge, although this limit is likely to be linked to Rayleigh number.

  15. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.

    PubMed

    Koehler, Christopher; Liang, Zongxian; Gaston, Zachary; Wan, Hui; Dong, Haibo

    2012-09-01

    Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based on the output of a high-speed camera system. The reconstruction method makes no rigid wing assumptions and allows for an arbitrary arrangement of marker points on the interior and edges of each wing. The resulting wing surfaces are projected back into image space and compared with expert segmentations to validate reconstruction accuracy. A least squares plane is then proposed as a universal reference to aid in making repeatable measurements of the reconstructed wing deformations. Using an Eastern pondhawk (Erythimus simplicicollis) dragonfly for demonstration, we quantify and visualize the wing twist and camber in both the chord-wise and span-wise directions, and discuss the implications of the results. In particular, a detailed analysis of the subtle deformation in the dragonfly's right hindwing suggests that the muscles near the wing root could be used to induce chord-wise camber in the portion of the wing nearest the specimen's body. We conclude by proposing a novel technique for modeling wing corrugation in the reconstructed flapping wings. In this method, displacement mapping is used to combine wing surface details measured from static wings with the reconstructed flapping wings, while not requiring any additional information be tracked in the high speed camera output.

  16. Impaction grafted bone chip size effect on initial stability in an acetabular model: Mechanical evaluation.

    PubMed

    Holton, Colin; Bobak, Peter; Wilcox, Ruth; Jin, Zhongmin

    2013-01-01

    Acetabular bone defect reconstruction is an increasing problem for surgeons with patients undergoing complex primary or revision total hip replacement surgery. Impaction bone grafting is one technique that has favourable long-term clinical outcome results for patients who undergo this reconstruction method for acetabular bone defects. Creating initial mechanical stability of the impaction bone graft in this technique is known to be the key factor in achieving a favourable implant survival rate. Different sizes of bone chips were used in this technique to investigate if the size of bone chips used affected initial mechanical stability of a reconstructed acetabulum. Twenty acetabular models were created in total. Five control models were created with a cemented cup in a normal acetabulum. Then five models in three different groups of bone chip size were constructed. The three groups had an acetabular protrusion defect reconstructed using either; 2-4 mm(3), 10 mm(3) or 20 mm(3) bone chip size for impaction grafting reconstruction. The models underwent compression loading up to 9500 N and displacement within the acetabular model was measured indicating the initial mechanical stability. This study reveals that, although not statistically significant, the largest (20 mm(3)) bone chip size grafted models have an inferior maximum stiffness compared to the medium (10 mm(3)) bone chip size. Our study suggests that 10 mm(3) size of bone chips provide better initial mechanical stability compared to smaller or larger bone chips. We dismissed the previously held opinion that the biggest practically possible graft is best for acetabular bone graft impaction.

  17. Smartphone based scalable reverse engineering by digital image correlation

    NASA Astrophysics Data System (ADS)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  18. Latissimus dorsi myocutaneous reconstruction: a study of long-term outcomes in a district general hospital.

    PubMed

    Kallaway, C; Humphreys, A; Laurence, N; Sutton, R

    2016-11-01

    INTRODUCTION The aim of this study was to evaluate the long-term outcome and durability of both autologous and implant-assisted latissimus dorsi reconstruction in a district general hospital over a 10-year follow-up period. METHODS A prospective cohort study was carried out using a detailed database of all latissimus dorsi flap reconstructions performed by a single consultant surgeon between 2003 and 2013 at the Royal United Hospital, Bath. The long-term outcome following reconstruction was assessed by analysing all episodes of 'reconstruction-specific' operations required from 6 months after the initial surgery. RESULTS The study included 110 patients with latissimus dorsi flap reconstructions, 21 autologous and 95 implant-assisted. Radiotherapy was given to 27 patients with reconstructed flaps. Mean follow-up was 69 months. Further reconstruction-specific surgery was needed in 27 (23%) cases, with 5 of these being post-radiotherapy flaps. Implant-related surgery was the most common reason for further surgery. Complications of the implant itself made up 52% of these cases, chronic sepsis being the most common. The rate of symptomatic capsular contracture requiring further surgery was 4.2%. Of these, one of four patients had undergone radiotherapy. DISCUSSION In our institution, latissimus dorsi reconstruction is durable and safe over the long term, with limited need for further substantial intervention to maintain a good outcome from the initial reconstruction. Autologous flaps were less likely to require further surgery over the long term compared with implant-based reconstructions. The low rate of symptomatic capsular contracture may be due to the protective mechanism provided by the extended harvest flap used.

  19. Accelerated gradient based diffuse optical tomographic image reconstruction.

    PubMed

    Biswas, Samir Kumar; Rajan, K; Vasu, R M

    2011-01-01

    Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data.

  20. SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J; Gao, H

    2015-06-15

    Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of opticalmore » coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the acoustic data. Jing Feng and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  1. Reconstruction of vibroacoustic responses of a highly nonspherical structure using Helmholtz equation least-squares method.

    PubMed

    Lu, Huancai; Wu, Sean F

    2009-03-01

    The vibroacoustic responses of a highly nonspherical vibrating object are reconstructed using Helmholtz equation least-squares (HELS) method. The objectives of this study are to examine the accuracy of reconstruction and the impacts of various parameters involved in reconstruction using HELS. The test object is a simply supported and baffled thin plate. The reason for selecting this object is that it represents a class of structures that cannot be exactly described by the spherical Hankel functions and spherical harmonics, which are taken as the basis functions in the HELS formulation, yet the analytic solutions to vibroacoustic responses of a baffled plate are readily available so the accuracy of reconstruction can be checked accurately. The input field acoustic pressures for reconstruction are generated by the Rayleigh integral. The reconstructed normal surface velocities are validated against the benchmark values, and the out-of-plane vibration patterns at several natural frequencies are compared with the natural modes of a simply supported plate. The impacts of various parameters such as number of measurement points, measurement distance, location of the origin of the coordinate system, microphone spacing, and ratio of measurement aperture size to the area of source surface of reconstruction on the resultant accuracy of reconstruction are examined.

  2. A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.

    2011-12-01

    The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.

  3. Evidence for early postglacial warming in Mount Field National Park, Tasmania

    NASA Astrophysics Data System (ADS)

    Rees, Andrew B. H.; Cwynar, Les C.

    2010-02-01

    Situated between the Western Pacific Warm Pool to the north and Antarctica to the south, Tasmania is an ideal location to study both postglacial and Holocene paleoclimates. Few well-dated, quantitative temperature reconstructions exist for the region so that important questions about the occurrence and magnitude of events, such as the Antarctic Cold Reversal and Younger Dryas, in Tasmania remain unanswered. Here, we provide chironomid-based reconstructions of temperature of the warmest quarter (TWARM) for two small subalpine lakes, Eagle and Platypus Tarns, Mount Field National Park. Shortly after deglaciation, TWARM reached modern values by approximately 15 000 cal a BP and remained high until 13 000 cal a BP after which temperatures began to cool steadily, reaching a minimum by 11 100-10 000 cal a BP. These results are consistent with sea surface temperature (SST) reconstructions from south of Tasmania but are in stark contrast to temperature inferences drawn from vegetation reconstructions based on pollen data that indicate cool initial temperatures followed by a broad warm period between 11 600-6800 cal a BP (10 000-6000 14C a BP). The chironomid record broadly matches the summer insolation curve whereas the vegetation record and associated climate inferences mirror winter insolation. The Antarctic Cold Reversal and Younger Dryas cold events are not evident in the chironomid-inferred temperatures, but the Antarctic Cold Reversal is evident in the loss-on-ignition curves.

  4. Pliocene three-dimensional global ocean temperature reconstruction

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.; Foley, K.M.

    2009-01-01

    The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations) and represent depths from 1000m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period. ?? Author(s) 2009.

  5. Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.

    2013-12-01

    In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.

  6. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession.

    PubMed

    Ma, Liyuan; Wang, Xingjie; Feng, Xue; Liang, Yili; Xiao, Yunhua; Hao, Xiaodong; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan

    2017-01-01

    The effect of co-culture microorganisms with different initial proportions on chalcopyrite bioleaching was investigated. Communities were rebuilt by six typical strains isolated from the same habitat. The results indicated, by community with more sulfur oxidizers at both 30 and 40°C, the final copper extraction rate was 19.8% and 6.5% higher, respectively, than that with more ferrous oxidizers. The variations of pH, redox potential, ferrous and copper ions in leachate also provided evidences that community with more sulfur oxidizers was more efficient. Community succession of free and attached cells revealed that initial proportions played decisive roles on community dynamics at 30°C, while communities shared similar structures, not relevant to initial proportions at 40°C. X-ray diffraction analysis confirmed different microbial functions on mineral surface. A mechanism model for chalcopyrite bioleaching was established coupling with community succession. This will provide theoretical basis for reconstructing an efficient community in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.

    PubMed

    Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F

    2003-11-07

    While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.

  8. Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.

    PubMed Central

    Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F

    2003-01-01

    While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents. PMID:14667360

  9. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  10. Automated dynamic feature tracking of RSLs on the Martian surface through HiRISE super-resolution restoration and 3D reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.

    2017-09-01

    In this paper, we demonstrate novel Super-resolution restoration and 3D reconstruction tools developed within the EU FP7 projects and their applications to advanced dynamic feature tracking through HiRISE repeat stereo. We show an example with one of the RSL sites in the Palikir Crater took 8 repeat-pass 25cm HiRISE images from which a 5cm RSL-free SRR image is generated using GPT-SRR. Together with repeat 3D modelling of the same area, it allows us to overlay tracked dynamic features onto the reconstructed "original" surface, providing a much more comprehensive interpretation of the surface formation processes in 3D.

  11. Temperature and heat flux changes at the base of Laurentide ice sheet inferred from geothermal data (evidence from province of Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Demezhko, Dmitry; Gornostaeva, Anastasia; Majorowicz, Jacek; Šafanda, Jan

    2018-01-01

    Using a previously published temperature log of the 2363-m-deep borehole Hunt well (Alberta, Canada) and the results of its previous interpretation, the new reconstructions of ground surface temperature and surface heat flux histories for the last 30 ka have been obtained. Two ways to adjust the timescale of geothermal reconstructions are discussed, namely the traditional method based on the a priori data on thermal diffusivity value, and the alternative one including the orbital tuning of the surface heat flux and the Earth's insolation changes. It is shown that the second approach provides better agreement between geothermal reconstructions and proxy evidences of deglaciation chronology in the studied region.

  12. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    PubMed

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  13. Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security.

    PubMed

    Mazura, Jan C; Juluru, Krishna; Chen, Joseph J; Morgan, Tara A; John, Majnu; Siegel, Eliot L

    2012-06-01

    Image de-identification has focused on the removal of textual protected health information (PHI). Surface reconstructions of the face have the potential to reveal a subject's identity even when textual PHI is absent. This study assessed the ability of a computer application to match research subjects' 3D facial reconstructions with conventional photographs of their face. In a prospective study, 29 subjects underwent CT scans of the head and had frontal digital photographs of their face taken. Facial reconstructions of each CT dataset were generated on a 3D workstation. In phase 1, photographs of the 29 subjects undergoing CT scans were added to a digital directory and tested for recognition using facial recognition software. In phases 2-4, additional photographs were added in groups of 50 to increase the pool of possible matches and the test for recognition was repeated. As an internal control, photographs of all subjects were tested for recognition against an identical photograph. Of 3D reconstructions, 27.5% were matched correctly to corresponding photographs (95% upper CL, 40.1%). All study subject photographs were matched correctly to identical photographs (95% lower CL, 88.6%). Of 3D reconstructions, 96.6% were recognized simply as a face by the software (95% lower CL, 83.5%). Facial recognition software has the potential to recognize features on 3D CT surface reconstructions and match these with photographs, with implications for PHI.

  14. Ensemble Kalman filter for the reconstruction of the Earth's mantle circulation

    NASA Astrophysics Data System (ADS)

    Bocher, Marie; Fournier, Alexandre; Coltice, Nicolas

    2018-02-01

    Recent advances in mantle convection modeling led to the release of a new generation of convection codes, able to self-consistently generate plate-like tectonics at their surface. Those models physically link mantle dynamics to surface tectonics. Combined with plate tectonic reconstructions, they have the potential to produce a new generation of mantle circulation models that use data assimilation methods and where uncertainties in plate tectonic reconstructions are taken into account. We provided a proof of this concept by applying a suboptimal Kalman filter to the reconstruction of mantle circulation (Bocher et al., 2016). Here, we propose to go one step further and apply the ensemble Kalman filter (EnKF) to this problem. The EnKF is a sequential Monte Carlo method particularly adapted to solve high-dimensional data assimilation problems with nonlinear dynamics. We tested the EnKF using synthetic observations consisting of surface velocity and heat flow measurements on a 2-D-spherical annulus model and compared it with the method developed previously. The EnKF performs on average better and is more stable than the former method. Less than 300 ensemble members are sufficient to reconstruct an evolution. We use covariance adaptive inflation and localization to correct for sampling errors. We show that the EnKF results are robust over a wide range of covariance localization parameters. The reconstruction is associated with an estimation of the error, and provides valuable information on where the reconstruction is to be trusted or not.

  15. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  16. "Democratic and Humanistic/Humane Paideia in the Euro-Cypriot Polity--Prospects for Reconstruction and Modernization": A Biographical Sociological Analysis of A Reform Initiative in a (De-)Globalizing World

    ERIC Educational Resources Information Center

    Klerides, Eleftherios

    2018-01-01

    In 2004, a reform report entitled "Democratic and Humanistic/ Humane Paideia in the Euro-Cypriot Polity: Prospects for Reconstruction and Modernization" was published by the Ministry of Education and Culture in the Republic of Cyprus. Professor Andreas M. Kazamias is held to have been the driving force behind this initiative, shaping…

  17. Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.

    PubMed

    Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf

    2018-05-12

    We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.

  18. Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces

    NASA Astrophysics Data System (ADS)

    Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf

    2016-06-01

    The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

  19. The functional interrelationship between gap junctions and fenestrae in endothelial cells of the liver organoid.

    PubMed

    Saito, Masaya; Matsuura, Tomokazu; Nagatsuma, Keisuke; Tanaka, Ken; Maehashi, Haruka; Shimizu, Keiko; Hataba, Yoshiaki; Kato, Fumitaka; Kashimori, Isao; Tajiri, Hisao; Braet, Filip

    2007-06-01

    Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.

  20. Predicting skin deficits through surface area measurements in ear reconstruction and adult ear surface area norms.

    PubMed

    Yazar, Memet; Sevim, Kamuran Zeynep; Irmak, Fatih; Yazar, Sevgi Kurt; Yeşilada, Ayşin Karasoy; Karşidağğ, Semra Hacikerim; Tatlidede, Hamit Soner

    2013-07-01

    Ear reconstruction is one of the most challenging procedures in plastic surgery practice. Many studies and techniques have been described in the literature for carving a well-pronounced framework. However, just as important as the cartilage framework is the ample amount of delicate skin coverage of the framework. In this report, we introduce an innovative method of measuring the skin surface area of the auricle from a three-dimensional template created from the healthy ear.The study group consisted of 60 adult Turkish individuals who were randomly selected (30 men and 30 women). The participant ages ranged from 18 to 45 years (mean, 31.5 years), and they had no history of trauma or congenital anomalies. The template is created by dividing the ear into aesthetic subunits and using ImageJ software to estimate the necessary amount of total skin surface area required.Reconstruction of the auricle is a complicated process that requires experience and patience to provide the auricular details. We believe this estimate will shorten the learning curve for residents and surgeons interested in ear reconstruction and will help surgeons obtain adequate skin to drape over the well-sculpted cartilage frameworks by providing a reference list of total ear skin surface area measurements for Turkish men and women.

  1. A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    NASA Astrophysics Data System (ADS)

    Driver, S. M.; Toomes, R. L.; Woodruff, D. P.

    2016-04-01

    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and [ 01 1 bar ] step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2-4 layers high are more typical. STM atomic-scale images show the (2 × 2)pg 'clock' reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2 × 2) structure, most readily reconciled with a 'rumpling' reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1 × 1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [ 01 1 bar ] step direction.

  2. Opposing effects of humidity on rhodochrosite surface oxidation.

    PubMed

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  3. Changing the Paradigm in Medial Canthal Reconstruction: The Bridge Principle and the Croissant-Like Keystone Island Perforator Flap as An Alternative for Medium Size Soft Tissue Defects in Internal Canthus Reconstruction.

    PubMed

    Kostopoulos, Epameinondas; Agiannidis, Christos; Konofaos, Petros; Kotsakis, Ioannis; Hatzigianni, Panagiota; Georgopoulos, Gerasimos; Papadatou, Zoe; Konstantinidou, Chara; Champsas, Gregorios; Papadopoulos, Othon; Casoli, Vincent

    2018-03-08

    Medial canthus is a common area of skin cancer prevalence. Defects in this region represent a challenging reconstructive task. The nasal version of keystone perforator island flap (KPIF) has proven its versatility. The aim of the present study was to expand its utilization in the neighbor medial canthus area. A modified croissant-like KPIF (CKPIF) was used resolving inner convexity-related problems. The presence of procerus in the glabella area, bridging a surface from nasalis up to the frontalis, changed the traditional dissecting flap technique. Thus, the authors introduce the bridge principle, which consists of the indirect transfer of the flap to the defect site through a muscular "bridge" (the procerus). The authors report their experience in medial canthal reconstruction combining a modified KPIF with a new dissecting "principle." From November 2016 to July 2017, a series of patients presenting soft tissue defects of various dimensions in the medial canthus, secondary to tumor extirpation, sustained reconstruction with a CKPIF dissected with the bridge principle. A total of 15 patients were treated with this new technique. Their mean age was 75.3 years. The mean size of the defect was 2.08 cm (length) × 1.5 cm (width). All flaps survived without any sign of venous congestion. A transient epiphora presented in 4 patients (4/15 or 26.6%), which was subsided 2 months later. A new approach following a novel paradigm was introduced to resolve an old problem. Initial outcomes are encouraging. However, longer series are needed to extract definitive and safer conclusion.

  4. Comparison of Autograft and Allograft with Surface Modification for Flexor Tendon Reconstruction: A Canine in Vivo Model.

    PubMed

    Wei, Zhuang; Reisdorf, Ramona L; Thoreson, Andrew R; Jay, Gregory D; Moran, Steven L; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2018-04-04

    Flexor tendon injury is common, and tendon reconstruction is indicated clinically if the primary repair fails or cannot be performed immediately after tendon injury. The purpose of the current study was to compare clinically standard extrasynovial autologous graft (EAG) tendon and intrasynovial allogeneic graft (IAG) that had both undergone biolubricant surface modification in a canine in vivo model. Twenty-four flexor digitorum profundus (FDP) tendons from the second and fifth digits of 12 dogs were used for this study. In the first phase, a model of failed FDP tendon repair was created. After 6 weeks, the ruptured FDP tendons with a scarred digit were reconstructed with the use of either EAG or IAG tendons treated with carbodiimide-derivatized hyaluronic acid and lubricin. At 12 weeks after tendon reconstruction, the digits were harvested for functional, biomechanical, and histologic evaluations. The tendon failure model was a clinically relevant and reproducible model for tendon reconstruction. The IAG group demonstrated improved digit function with decreased adhesion formation, lower digit work of flexion, and improved graft gliding ability compared with the EAG group. However, the IAG group had decreased healing at the distal tendon-bone junction. Our histologic findings verified the biomechanical evaluations and, further, showed that cellular repopulation of allograft at 12 weeks after reconstruction is still challenging. FDP tendon reconstruction using IAG with surface modification has some beneficial effects for reducing adhesions but demonstrated inferior healing at the distal tendon-bone junction compared with EAG. These mixed results indicate that vitalization and turnover acceleration are crucial to reducing failure of reconstruction with allograft. Flexor tendon reconstruction is a common surgical procedure. However, postoperative adhesion formation may lead to unsatisfactory clinical outcomes. In this study, we developed a potential flexor tendon allograft using chemical and tissue-engineering approaches. This technology could improve function following tendon reconstruction.

  5. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    PubMed

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Shawn

    This code consists of Matlab routines which enable the user to perform non-manifold surface reconstruction via triangulation from high dimensional point cloud data. The code was based on an algorithm originally developed in [Freedman (2007), An Incremental Algorithm for Reconstruction of Surfaces of Arbitrary Codimension Computational Geometry: Theory and Applications, 36(2):106-116]. This algorithm has been modified to accommodate non-manifold surface according to the work described in [S. Martin and J.-P. Watson (2009), Non-Manifold Surface Reconstruction from High Dimensional Point Cloud DataSAND #5272610].The motivation for developing the code was a point cloud describing the molecular conformation space of cyclooctane (C8H16). Cyclooctanemore » conformation space was represented using points in 72 dimensions (3 coordinates for each molecule). The code was used to triangulate the point cloud and thereby study the geometry and topology of cyclooctane. Futures applications are envisioned for peptides and proteins.« less

  7. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  8. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-06-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  9. Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.

    PubMed

    Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E

    2013-05-01

    Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.

  10. Active numerical model of human body for reconstruction of falls from height.

    PubMed

    Milanowicz, Marcin; Kędzior, Krzysztof

    2017-01-01

    Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated injuries overlap with the real injuries sustained by the casualty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Reconstructing a mid-Cretaceous landscape from paleosols in western Canada

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.; Leckie, D.

    2005-01-01

    The Albian Stage of the mid-Cretaceous was a time of equable climate conditions with high sea levels and broad shallow epeiric seas that may have had a moderating affect on continental climates. A Late Albian landscape surface that developed during a regression and subsequent sea-level rise in the Western Canada Foreland Basin is reconstructed on the basis of correlation of paleosols penetrated by cores through the Paddy Member of the Peace River Formation. Reconstruction of this landscape refines chronostratigraphic relationships and will benefit future paleoclimatological studies milizing continental sphaerosiderite proxy records. The paleosols developed in estuarine sandstones and mudstones, and they exhibit evidence of a polygenetic history. Upon initial exposure and pedogenesis, the Paddy Member developed deeply weathered, well-drained cumulative soil profiles. Later stages of pedogenesis were characterized by hydromorphic soil conditions. The stages of soil development interpreted for the Paddy Member correlate with inferred stages of pedogenic development in time-equivalent formations located both basinward and downslope (upper Viking Formation), and landward and upslope (Boulder Creek Formation). On the basis of the genetic similarity among paleosols in these three correlative formations, the paleosols are interpreted as having formed along a single, continuous landscape surface. Results of this study indicate that the catena concept of pedogenesis along sloping landscapes is applicable to ancient successions. Sphaerosiderites in the Paddy Mem ber paleosols are used to provide proxy values for meteoric ??18O values at 52?? N paleolatitude in the Cretaceous Western Interior Basin. The meteoric ??18O values are used to refine existing interpretations about the mid-Cretaceous paleolatitudinal gradient in meteoric ?? 18O values, and the mid-Cretaceous hydrologic cycle. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  12. Composition and structure of surfaces by time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongheon

    1997-10-01

    Time-of-flight scattering and recoiling spectrometry (TOF-SARS) was applied to characterize surface structures in order to understand the chemical and physical phenomena on various surfaces. The combination of TOF-SARS, LEED, and classical ion trajectory simulations has allowed characterization of the elemental composition in the outermost atomic layers, surface symmetry, and possible reconstruction or relaxation. The composition and structure of the CdS\\{0001\\}-(1 x 1) and CdS\\{000bar1\\}-(1 x 1) surfaces were investigated. The termination layer of each surface was determined by grazing incidence TOF-SARS. Both (1 x 1) surfaces are bulk-terminated without any reconstruction or relaxation detected by TOF-SARS. Each surface has two domains which are rotated by 60sp° from each other and there exist steps on both surfaces. The CdS\\{0001\\}-(1 x 1) surface is stabilized by O and H covering half a monolayer which are structurally ordered on the surface, while the O and H on the CdS\\{000bar1\\}-(1 x 1) stabilize the surface without ordering. The study of GaN\\{000bar1\\}-(1 x 1) shows the bulk-termination of the surface with no detectable reconstruction or relaxation. The surface is terminated in a N layer with Ga in the 2sp{nd}-layer. H atoms are bound to the outermost N atoms with a coverage of ˜3/4 monolayer and protrude outward from the surface. The surface termination, composition and structure of the Alsb2Osb3 (sapphire) were examined. The surface relaxation was studied quantitatively using classical ion trajectory simulations along with TOF-SARS. The surface undergoes 1sp{st}{-}2sp{nd}-layer relaxation as large as 0.5 A from the bulk value resulting in near coplanarity of Al and O atoms. The reconstruction of the Ni\\{100\\}-(2 x 2)-C surface was studied by TOF-SARS. The surface contained 80% of the (2 x 2)p4g phase and 20% of the unreconstructed (2 x 2) phase. The displacement of Ni atoms was determined by comparing the experimental and simulated results.

  13. Hydrological Changes in the Indian Ocean Around the Last Glacial Maximum and Deglaciation

    NASA Astrophysics Data System (ADS)

    Camille, L.; Laurent, L.; Harry, E.; Mervyn, G.; Franck, B.; Francois, G.; Martine, P.; Xuan, D.; Marie-alexandrine, S.

    2001-12-01

    The tropical ocean plays a key role in the global climate system. However, changes in tropical circulation have far reaching and hitherto unknown effects which could trigger global changes in climate. Precisely dated reconstructions of past sea surface temperature (SST) changes are therefore mandatory in order to establish the exact phase between tropical and high latitude climate variability during past abrupt climate events. Few SST records are sufficiently detailed to constrain accurately the low latitude climatology around the last glacial maximum. Available results are presented from 2 high sedimentation rate cores (IMAGES MD9821-65 and MD9821-72) with additional material from older cruises. These cores are located within the inner part of the Indonesian arc and in the vicinity of the outflow straits (between Timor and Sumbawa). With high resolution records (about 100 yr.) for the past 20 kyr and lower resolution records back to 300 kyr., planktonic and benthic isotopic records set the general stratigraphy and the hydrology of surface and deep waters. Sea surface temperature is reconstructed using Mg/Ca content from G.ruber (analysed in Cambridge's ICP\\-AES), foraminiferal assemblages (MAT) and alkenone unsaturation index Uḱ37. Sea surface salinity is derived from the coupled G.ruber δ 18O and Mg/Ca ratio. The time scale is constrained by AMS14C and the benthic foraminifera δ 18O. Preliminary results would indicate that at the initiation of the deglaciation SST leads planktic δ 18O by about 1 kyr but are in phase with benthic δ 18O. Similar lead of the benthic vs planktic δ 18O is also observed in other cores from the Indian Ocean.

  14. Assessment and application of a snowblow modelling approach for identifying enhanced snow accumulation in areas of former glaciation

    NASA Astrophysics Data System (ADS)

    Mills, Stephanie; Smith, Michael; Le Brocq, Anne; Ardakova, Ekaterina; Hillier, John; Boston, Clare

    2016-04-01

    The redistribution of snow by wind can play an important role in providing additional mass to the surface of glaciers and can, therefore, have an impact on the glacier's surface mass balance. In areas of marginal glaciation, this local topo-climatic effect may be prove crucial for the initiation and survival of glaciers, whilst it can also increase heterogeneity in the distribution of snow on ice caps and ice sheets. We present a newly developed snowblow model which calculates spatial variations in relative snow accumulation that result from variations in topography. We apply this model to areas of former marginal glaciation in the Brecon Beacons, Wales and an area of former plateau icefield glaciation in the Monadhliath, Scotland. We can then determine whether redistribution by snow can help explain variations in the estimated equilibrium line altitudes (ELAs) of these former glaciers. Specifically, we compare the areas where snow is modelled as accumulating, to the reconstructed glacier surface, which is based on mapped moraines believed to be of Younger Dryas age. The model is applied to 30 m resolution DEMs and potential snow accumulation is simulated from different wind directions in order to determine the most likely contributing sector. Total snow accumulation in sub-set areas is then calculated and compared to the reconstructed glacier area. The results suggest that areas with larger amounts of snow accumulation often correspond with those where the ELA is lower than surrounding glaciers and vice versa, in both the marginal and icefield setting, suggesting that the role of snowblow in supplying additional mass to the surface of glaciers is significant.

  15. Retractor-induced brain shift compensation in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  16. [From the French Society of Plastic and Reconstructive Surgery to the French Society of Plastic Reconstructive and Aesthetic Surgery].

    PubMed

    Glicenstein, J

    2004-04-01

    (The) 3rd December 1952, 11 surgeons and other specialists found the French Society of Plastic and Reconstructive Surgery (SFCPR) which was officially published on (the) 28 September 1953. The first congress was during October 1953 and the first president as Maurice Aubry. The first secretary was Daniel Morel Fatio. The symposiums were after about three of four times each year and the thematic subjects were initially according the reconstructive surgery. The review "Annales de chirurgie plastique" was free in 1956. The members of the Society were about 30 initially, but their plastic surgery in the big hospitals at Paris and other big towns in France. The "specialty" of plastic surgery was created in 1971. On "syndicate", one French board of plastic reconstructive and aesthetic surgery, the increasing of departments of plastic surgery were the front of increasing of the plastic surgery in French and of the number of the French Society of Plastic Reconstructive surgery (580 in 2003). The French Society organized the International Congress of Plastic Surgery in 1975. The society SFCPR became the French Society of plastic reconstruction and Aesthetic Surgery (SFCPRE) in 1983 and the "logo" (front view) was in the 1994 SOF.CPRE.

  17. Simulation of mirror surfaces for virtual estimation of visibility lines for 3D motor vehicle collision reconstruction.

    PubMed

    Leipner, Anja; Dobler, Erika; Braun, Marcel; Sieberth, Till; Ebert, Lars

    2017-10-01

    3D reconstructions of motor vehicle collisions are used to identify the causes of these events and to identify potential violations of traffic regulations. Thus far, the reconstruction of mirrors has been a problem since they are often based on approximations or inaccurate data. Our aim with this paper was to confirm that structured light scans of a mirror improve the accuracy of simulating the field of view of mirrors. We analyzed the performances of virtual mirror surfaces based on structured light scans using real mirror surfaces and their reflections as references. We used an ATOS GOM III scanner to scan the mirrors and processed the 3D data using Geomagic Wrap. For scene reconstruction and to generate virtual images, we used 3ds Max. We compared the simulated virtual images and photographs of real scenes using Adobe Photoshop. Our results showed that we achieved clear and even mirror results and that the mirrors behaved as expected. The greatest measured deviation between an original photo and the corresponding virtual image was 20 pixels in the transverse direction for an image width of 4256 pixels. We discussed the influences of data processing and alignment of the 3D models on the results. The study was limited to a distance of 1.6m, and the method was not able to simulate an interior mirror. In conclusion, structured light scans of mirror surfaces can be used to simulate virtual mirror surfaces with regard to 3D motor vehicle collision reconstruction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Elucidating Complex Surface Reconstructions with Atomic-Resolution Scanning Tunneling Microscopy: Au(100)-Aqueous Electrochemical Interface

    DTIC Science & Technology

    1992-05-01

    that unusually high-quality STM data of this type 5-7can be obtained at ordered gold -aqueous interfaces. Reconstruction is seen 2 to be triggered on...all three low-index gold surfaces by altering the potential to values corresponding to small (10-15 pC cm-2 ) negative surface electronic 5-7 charges...connections. The former was platinum and the latter was a freshly electrooxidized gold wire. All electrode potentials quoted here, however, are

  19. Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface.

    PubMed

    Cui, Y; Chung, J; Nogami, J

    2012-02-01

    We present STM data that show that it is possible to use a metal induced 2 × 7 reconstruction of Si(001) to narrow the width distribution of Dy silicide nanowires. This behavior is distinct from the effect of the 7 × 7 reconstruction on the Si(111) surface, where the 7 × 7 serves as a static template and the deposited metal avoids the unit cell boundaries on the substrate. In this case, the 2 × 7 is a dynamic template, and the nanowires nucleate at anti-phase boundaries between 2 × 7 reconstruction domains.

  20. The atomistic mechanism for Sb segregation and As displacement of Sb in InSb(001) surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, Evan M.; Millunchick, Joanna M.

    2018-01-01

    Interfacial broadening occurs in mixed-anion alloy heterostructures such as InAs/InAsSb due to both Sb-segregation and As-for-Sb exchange. In order to determine the atomistic mechanisms for these processes, we conduct ab initio calculations coupled with a cluster expansion formalism to determine the surface reconstructions of the pure and As-exposed InSb(001) surfaces. This approach provides a predicted phase diagram for pure InSb that is in better agreement with experiments. Namely, the α2(2 × 4) and α3c(4 × 4) structures are ultimately stable at 0K, but the α(4 × 3) and α2c(2 × 6) are within 1 meV/Å2. Exposure of the InSb(001) surface to As results in the As atoms infiltrating into the crystal and displacing subsurface Sb, thus providing the atomistic mechanisms for experimental observations of the As-for-Sb exchange reaction and Sb segregation. Experiments show that the widely reported A-(1 × 3) reconstruction is actually comprised of multiple reconstructions, which is consistent with the prediction of several nearly stable possible reconstructions.

  1. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  2. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  3. Access to breast reconstruction after mastectomy and patient perspectives on reconstruction decision making.

    PubMed

    Morrow, Monica; Li, Yun; Alderman, Amy K; Jagsi, Reshma; Hamilton, Ann S; Graff, John J; Hawley, Sarah T; Katz, Steven J

    2014-10-01

    Most women undergoing mastectomy for breast cancer do not undergo breast reconstruction. To examine correlates of breast reconstruction after mastectomy and to determine if a significant unmet need for reconstruction exists. We used Surveillance, Epidemiology, and End Results registries from Los Angeles, California, and Detroit, Michigan, for rapid case ascertainment to identify a sample of women aged 20 to 79 years diagnosed as having ductal carcinoma in situ or stages I to III invasive breast cancer. Black and Latina women were oversampled to ensure adequate representation of racial/ethnic minorities. Eligible participants were able to complete a survey in English or Spanish. Of 3252 women sent the initial survey a median of 9 months after diagnosis, 2290 completed it. Those who remained disease free were surveyed 4 years later to determine the frequency of immediate and delayed reconstruction and patient attitudes toward the procedure; 1536 completed the follow-up survey. The 485 who remained disease free at follow-up underwent analysis. Disease-free survival of breast cancer. Breast reconstruction at any time after mastectomy and patient satisfaction with different aspects of the reconstruction decision-making process. Response rates in the initial and follow-up surveys were 73.1% and 67.7%, respectively (overall, 49.4%). Of 485 patients reporting mastectomy at the initial survey and remaining disease free, 24.8% underwent immediate and 16.8% underwent delayed reconstruction (total, 41.6%). Factors significantly associated with not undergoing reconstruction were black race (adjusted odds ratio [AOR], 2.16 [95% CI, 1.11-4.20]; P = .004), lower educational level (AOR, 4.49 [95% CI, 2.31-8.72]; P < .001), increased age (AOR in 10-year increments, 2.53 [95% CI, 1.77-3.61]; P < .001), major comorbidity (AOR, 2.27 [95% CI, 1.01-5.11]; P = .048), and chemotherapy (AOR, 1.82 [95% CI, 0.99-3.31]; P = .05). Only 13.3% of women were dissatisfied with the reconstruction decision-making process, but dissatisfaction was higher among nonwhite patients in the sample (AOR, 2.87 [95% CI, 1.27-6.51]; P = .03). The most common patient-reported reasons for not having reconstruction were the desire to avoid additional surgery (48.5%) and the belief that it was not important (33.8%), but 36.3% expressed fear of implants. Reasons for avoiding reconstruction and systems barriers to care varied by race; barriers were more common among nonwhite participants. Residual demand for reconstruction at 4 years was low, with only 30 of 263 who did not undergo reconstruction still considering the procedure. Reconstruction rates largely reflect patient demand; most patients are satisfied with the decision-making process about reconstruction. Specific approaches are needed to address lingering patient-level and system factors with a negative effect on reconstruction among minority women.

  4. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    PubMed

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a function of iteration. Convergence of direct reconstruction was slow with uniform initialization; lower bias was achieved in fewer iterations by initializing with the filtered indirect iteration 1 images. For most parameters and regions evaluated, the direct method achieved the same or lower absolute bias at matched iteration as the indirect method, with 23%-65% lower noise. Additionally, the direct method gave better contrast between the perfusion defect and surrounding normal tissue than the indirect method. Gated parametric images from the human dataset had comparable relative performance of indirect and direct, in terms of mean parameter values per iteration. Changes in myocardial wall thickness and blood pool size across gates were readily visible in the gated parametric images, with higher contrast between myocardium and left ventricle blood pool in parametric images than gated SUV images. Direct reconstruction can produce parametric images with less noise than the indirect method, opening the potential utility of gated parametric imaging for perfusion PET. © 2017 American Association of Physicists in Medicine.

  5. Soil life in reconstructed ecosystems: initial soil food web responses after rebuilding a forest soil profile for a climate change experiment

    Treesearch

    Paul T. Rygiewicz; Vicente J. Monleon; Elaine R. Ingham; Kendall J. Martin; Mark G. Johnson

    2010-01-01

    Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems. That is, the sensitivity of analyzing ecosystem processes in a reconstructed system is...

  6. A Coral-based Reconstruction of Sea Surface Salinity at Sabine Bank, Vanuatu from 2007 to 1843 CE

    NASA Astrophysics Data System (ADS)

    Gorman, M. K.; Quinn, T. M.; Taylor, F. W.; Dunn, E. M.; Cabioch, G.; Ballu, V.; Maes, C.; Austin, J. A.; Saustrup, S.; Pelletier, B.

    2011-12-01

    We present a reconstruction of sea surface salinity (SSS) derived from a coral δ18O time series extending from 2007-1843 CE at Sabine Bank, Vanuatu (SBV, 166.04° E, 15.94°S). This reconstruction is significant because instrumental records of SSS are rare in time and space, yet the SSS response to the El Niño Southern Oscillation (ENSO) forcing is large in many regions of the tropical oceans. There is a strong positive relationship between sea surface temperature anomalies (SSTA) in the central Pacific (Niño 3.4 region; canonical ENSO signal) and six month lagged sea surface salinity anomalies (SSSA, data from Delcroix et al., 2011) at SBV, which establishes a dynamical link between surface ocean variability at SBV and ENSO variability. We calculate a coral δ18O anomaly time series and note that there is a strong correlation between it and instrumental SSS variations over the period 1970-2007 (r = 0.70, p < 0.01). We compute a linear transfer function that we use to predict SSS variations given observed coral δ18O variations. A calibration-verification exercise conducted over two intervals (1970-1987, 1988-2007) resulted in similar correlations between instrumental and reconstructed SSS for both time periods, which provides confidence in our SSS reconstructions in the pre-1970 interval. We further test our SBV transfer function by applying it to a previously published coral δ18O record from Malo Channel, Vanuatu (Kilbourne et al., 2004b), located 130 km to the east of Sabine Bank. The reconstructed SSS time series from the two locations over their common time interval (1991-1939 CE) are nearly always the same within error, indicating that the ENSO-influenced salinity signal is regional in extent, and can be reconstructed using coral δ18O records from Vanuatu. We observe high salinity excursions (>0.5 psu) pre-1970 corresponding to strong ENSO warm phase events recorded in the SST instrumental record and historical ENSO record (i.e. 1941-42, 1918-19, 1877-78), and an overall freshening trend, demonstrating the ability of our reconstructed dataset to capture interannual variability as well as long-term trends in SSS at Vanuatu.

  7. 3D Reconstruction of geological structures based on remote sensing data: example from Anaran anticline, Lurestan province, Zagros folds and thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.

    2009-04-01

    This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure: presence of a back thrust affecting the back limb in the southern part of the anticline, the geometry of the grabens located along the anticline crest, the crosscutting relationship in the north-south faulted zone with the main thrust, the northern dome periclinal closure.

  8. Friction Regimes of Water-Lubricated Diamond (111): Role of Interfacial Ether Groups and Tribo-Induced Aromatic Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael

    2017-09-01

    Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.

  9. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: Pierre Auger Collaboration

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analysesmore » including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.« less

  10. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  11. The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions.

    PubMed

    Marino, T A; Cook, P N; Cook, L T; Dwyer, S J

    1980-11-01

    Atrial muscle cells and atrioventricular bundle cells were reconstructed using a computer-assisted three-dimensional reconstruction system. This reconstruction technique permitted these cells to be viewed from any direction. The cell surfaces were approximated using triangular tiles, and this optimization technique for cell reconstruction allowed for the computation of cell surface area and cell volume. A transparent mode is described which enables the investigator to examine internal cellular features such as the shape and location of the nucleus. In addition, more than one cell can be displayed simultaneously, and, therefore, spatial relationships are preserved and intercellular relationships viewed directly. The use of computer imaging techniques allows for a more complete collection of quantitative morphological data and also the visualization of the morphological information gathered.

  12. Modeling the interface of platinum and α-quartz(001): Implications for sintering

    DOE PAGES

    Plessow, Philipp N.; Sánchez-Carrera, Roel S.; Li, Lin; ...

    2016-05-04

    We present a first-principles study which aims to understand the metal–support interaction of platinum nanoparticles on α-quartz(001) and, more generally, silica. The thermodynamic stability of the α-quartz(001) surface and its interface with Pt(111) are investigated as a function of temperature and partial pressure of H 2O and O 2. Potential defects in the α-quartz(001) surface as well as the adsorption energies of the Pt atom are also studied. This allows us to draw conclusions concerning nanoparticle shape and the resistance toward particle migration based on the interface free energies. We find that, as for the clean α-quartz(001) surface, a dry,more » reconstructed interface is expected at temperatures that are high but within experimentally relevant ranges. On an ideal, dry, reconstructed surface, particle migration is predicted to be a fast sintering mechanism. On real surfaces, defects may locally prevent reconstruction and act as anchoring points. Finally, the energetics of the adsorption of platinum atoms on α-quartz(001) do not support surface-mediated single-atom migration as a viable path for sintering on the investigated surfaces.« less

  13. Psychosocial reconstruction inventory : a postdictal instrument in aircraft accident investigation.

    DOT National Transportation Integrated Search

    1972-01-01

    A new approach to the investigation of aviation accidents has recently been initiated, utilizing a follow-on to the psychological autopsy. This approach, the psychosocial reconstruction inventory, enables the development of a dynamic, retrospective p...

  14. Attenuating Stereo Pixel-Locking via Affine Window Adaptation

    NASA Technical Reports Server (NTRS)

    Stein, Andrew N.; Huertas, Andres; Matthies, Larry H.

    2006-01-01

    For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as 'pixel-locking,' which produces artificially-peaked histograms of sub-pixel disparity. These peaks correspond to the introduction of erroneous ripples or waves in the 3D reconstruction of truly Rat surfaces. Since stereo vision is a common input modality for autonomous vehicles, these inaccuracies can pose a problem for safe, reliable navigation. This paper proposes a new method for sub-pixel stereo disparity estimation, based on ideas from Lucas-Kanade tracking and optical flow, which substantially reduces the pixel-locking effect. In addition, it has the ability to correct much larger initial disparity errors than previous approaches and is more general as it applies not only to the ground plane.

  15. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo.

    PubMed

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-03-02

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  16. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    PubMed Central

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  17. Titanium template for scaphoid reconstruction.

    PubMed

    Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P

    2015-06-01

    Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.

  18. Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Fowell, Sara E.; Sandford, Kate; Stewart, Joseph A.; Castillo, Karl D.; Ries, Justin B.; Foster, Gavin L.

    2016-10-01

    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site- and species-specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well-matched reconstructed temperatures in forereef coral, both between Sr/Ca-SSTs and Li/Mg-SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand-alone and combined proxies of sea surface temperature. However, the results also highlight that high-precision, site-specific calibrations remain critical for reconstructing accurate SSTs from coral-based elemental proxies.

  19. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  20. In induced reconstructions of Si(1 1 1) as superlattice matched epitaxial templates for InN growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in

    Graphical abstract: Display Omitted Highlights: ► A novel growth method to form InN at low growth temperatures. ► Use of Si reconstruction as a growth template for group III nitrides. ► Band gap variation of InN – Moss–Burstein shift – non-parabolic conduction band for InN. ► Super lattice matching epitaxy of metal induced reconstructions with III–V unit cell. -- Abstract: Indium induced surface reconstructions of Si(1 1 1)-7 × 7 are used as templates to grow high quality InN. We grow InN on Si(1 1 1)-7 × 7, Si(1 1 1)-4 × 1-In and Si(1 1 1)-1 × 1-In reconstructedmore » surfaces and study the quality of the films formed using complementary characterization tools. InN grown on Si(1 1 1)-1 × 1-In reconstruction shows superior film quality with lowest band-edge emission having a narrow full width at half maximum, intense and narrow 0 0 0 2 X-ray diffraction, low surface roughness and carrier concentration an order lower than other samples. We attribute the high quality of the film formed at 300 °C to the integral matching of InN and super lattice dimensions, we also study the reasons for the band gap variation of InN in the literature. Present study demonstrates the proposed Superlattice Matched Epitaxy can be a general approach to grow good quality InN at much lower growth temperature on compatible In induced reconstructions of the Si surface.« less

  1. Immediate breast reconstruction using autologous skin graft associated with breast implant.

    PubMed

    Dutra, A K; Andrade, W P; Carvalho, S M T; Makdissi, F B A; Yoshimatsu, E K; Domingues, M C; Maciel, M S

    2012-02-01

    Immediate breast reconstruction with skin graft is still little mentioned in the literature. Follow-up studies regarding the technique aspects are particularly scarce. The objective was to detail immediate breast reconstruction using autologous skin graft. Patients (n = 49) who underwent mastectomies and autologous immediate breast reconstruction with skin graft associated with a breast implant at A. C. Camargo Hospital (São Paulo, Brazil) between January 2007 and July 2010 were included. Information on clinical data, technique details and clinical outcome were prospectively collected. Following mastectomy, the autologous full-thickness skin graft was obtained through an inframammary fold incision along the contralateral breast in most patients. The skin graft was placed on the surface of the pectoralis major muscle after adjustments to conform to the mastectomy defect. A minimum of 10-month follow-up period was established. Patients' age ranged from 35 to 55 years and all received a silicone gel textured surface implant to obtain the necessary breast mound. The mean surgical time was 45 min, and the mean amount of skin resection was 4.5 cm in the largest diameter. Follow-up ranged from 10 to 35 months (median 23). All patients had silicone-gel textured surface implants to perform the breast mound reconstruction. No complications were observed in 87.8% of reconstructions. Forty-six patients (94%) had no complaints about the donor-site aesthetics. The result was a breast mound with a central ellipse of healed skin graft. Three (6%) poor results were observed. Thirty-six patients (67%) reported the results as good or very good. Our results lead us to conclude that autologous skin graft provided a reliable option in immediate breast reconstruction to skin-sparing mastectomy defects. The technique accomplished a single-stage implant breast reconstruction when there is inadequate skin coverage. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Back-analysis of the 1756 Tjellefonna rockslide (western Norway)

    NASA Astrophysics Data System (ADS)

    Sandøy, Gro; Oppikofer, Thierry; Nilsen, Bjørn

    2014-05-01

    The 22nd of February 1756 the largest historically recorded rockslide in Norway took place at Tjelle in Lang Fjord (western Norway). Three displacement waves of up to 50 meters were created by the impact of the failed rock mass constituting the Tjellefonna rockslide. A total of 32 people were killed and several houses and boats around the fjord were destroyed. This study presents a back-analysis of the Tjellefonna rockslide by (1) reconstructing the topography before the rockslide, (2) assessing the volumes of the initial rockslide mass, the onshore deposits and offshore deposits, (3) assessing the major discontinuities involved in the rockslide, and (4) by 2D numerical slope stability modelling for a detailed study of the parameters and trigger factors that affected the slope stability. The topography before the rockslide is reconstructed using (1) the Sloping Local Base Level technique and (2) a manual ART reconstruction in the PolyWorks software. Both topographic reconstructions yield an initial rockslide volume between 9.2 and 10.4 million m3, which is lower than previous estimates (12-15 million m3). The onshore deposits are estimated to 7.6 million m3 and only 3.9 million m3 deposited in the fjord. Finally, the volume impacting the fjord (3.9 million m3) is important for the generation of rockslide-triggered displacement waves, which highlights the necessity of precise volume estimations prior to back-analyses of landslide-triggered displacement waves. The granitic to granodioritic gneissic rock mass at Tjellefonna have high to very high mechanical strength. However, field mapping reveals that the intact rock strength is compromised by a combination of a variably developed foliation, extensive faulting and four persistent joint sets. The foliation is often folded into open folds with sub-horizontal axial planes. The foliation, faults and two joint sets are sub-parallel to Langfjorden and to regional structural lineaments. The back walls of the Tjellefonna crown are made up of a combination of these structures, while two joint sets that strike perpendicular to the fjord define the flanks of the scar. The numerical slope stability model Phase2 analyses include shear strength reduction (SSR) investigations and parameter sensitive tests. These tests demonstrate that the failure of the Tjellefonna slope must have required strain softening in combination with triggering factors, where high groundwater level is an essential feature. An earthquake has previously been assumed as trigger, but sensitivity tests rule out seismic acceleration as a factor alone. Additionally, the analyses show that a sub-horizontal discontinuity set is critical in order to induce slope instability. The shallow fjord-dipping joint set and sub-horizontal fault might form this necessary discontinuity, although they were only mapped locally and their persistence was limited. The sliding surface has been evaluated using the Phase2 model and the topographic reconstructions. It is concluded that the Tjellefonna rockslide was not composed of a uniform plane, but of a complex surface consisting of joints, faults, foliation surfaces and intact rock bridges. Finally, the failure was thus likely a consequence of progressive accumulation of rock weakening (strain softening), acting to degrade the equilibrium state of the slope. This could have generated a hillside creep explaining the opening tension cracks observed at the present head scarp prior to the rockslide.

  3. Is there more to the clinical outcome in posttraumatic reconstruction of the inferior and medial orbital walls than accuracy of implant placement and implant surface contouring? A prospective multicenter study to identify predictors of clinical outcome.

    PubMed

    Zimmerer, Rüdiger M; Gellrich, Nils-Claudius; von Bülow, Sophie; Strong, Edward Bradley; Ellis, Edward; Wagner, Maximilian E H; Sanchez Aniceto, Gregorio; Schramm, Alexander; Grant, Michael P; Thiam Chye, Lim; Rivero Calle, Alvaro; Wilde, Frank; Perez, Daniel; Bittermann, Gido; Mahoney, Nicholas R; Redondo Alamillos, Marta; Bašić, Joanna; Metzger, Marc; Rasse, Michael; Dittman, Jan; Rometsch, Elke; Espinoza, Kathrin; Hesse, Ronny; Cornelius, Carl-Peter

    2018-04-01

    Reconstruction of orbital wall fractures is demanding and has improved dramatically with the implementation of new technologies. True-to-original accuracy of reconstruction has been deemed essential for good clinical outcome, and reasons for unfavorable clinical outcome have been researched extensively. However, no detailed analysis on the influence of plate position and surface contour on clinical outcome has yet been published. Data from a previous study were used for an ad-hoc analysis to identify predictors for unfavorable outcome, defined as diplopia or differences in globe height and/or globe projection of >2 mm. Presumed predictors were implant surface contour, aberrant implant dimension or position, accuracy of reconstructed orbital volume, and anatomical fracture topography according to the current AO classification. Neither in univariable nor in multivariable regression models were unfavorable clinical outcomes associated with any of the presumed radiological predictors, and no association of the type of implant, i.e., standard preformed, CAD-based individualized and non-CAD-based individualized with its surface contour could be shown. These data suggest that the influence of accurate mechanical reconstruction on clinical outcomes may be less predictable than previously believed, while the role of soft-tissue-related factors may have been underestimated. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. VX fate on common matrices: evaporation versus degradation.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Marcovitch, Itzhak; Yehezkel, Lea; Mizrahi, Dana M

    2012-04-03

    A study of the volatilization rate of the nerve agent VX (O-ethyl S-2-(N,N-diisopropylamino)ethyl methylphosphonothiolate) from various urban matrices in a specially designed climatic chamber (model system) is described. The performance of the model system combined with the analytical procedure produced profiles of vapor concentration obtained from samples of VX dispersed as small droplets on the surfaces of the matrices. The results indicated that the bitumen-containing surfaces such as asphalt blocks and bitumen sheets conserve VX and slow-release part of it over a long period of time. No complete mass balance could be obtained for these surfaces. Influence of environmental and experimental parameters as well as the efficacy of decontamination procedure were also measured. From smooth surface tiles a fast release of VX was measured and almost a complete mass balance was obtained, which characterizes the behavior of inert surfaces. Experiments carried out on concrete blocks showed fast decay of the concentration profile along with a very poor reconstruction of the initial quantity of VX, implying that this matrix degraded VX actively due to its multiple basic catalytic sites. To complement this study, solid-state NMR measurements were compared to add data concerning agent-fate within the matrices.

  5. Atomic level characterization in corrosion studies

    NASA Astrophysics Data System (ADS)

    Marcus, Philippe; Maurice, Vincent

    2017-06-01

    Atomic level characterization brings fundamental insight into the mechanisms of self-protection against corrosion of metals and alloys by oxide passive films and into how localized corrosion is initiated on passivated metal surfaces. This is illustrated in this overview with selected data obtained at the subnanometre, i.e. atomic or molecular, scale and also at the nanometre scale on single-crystal copper, nickel, chromium and stainless steel surfaces passivated in well-controlled conditions and analysed in situ and/or ex situ by scanning tunnelling microscopy/spectroscopy and atomic force microscopy. A selected example of corrosion modelling by ab initio density functional theory is also presented. The discussed aspects include the surface reconstruction induced by hydroxide adsorption and formation of two-dimensional (hydr)oxide precursors, the atomic structure, orientation and surface hydroxylation of three-dimensional ultrathin oxide passive films, the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at grain boundaries of passive films and the role of step edges at the exposed surface of oxide grains on the dissolution of the passive film. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  6. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  7. Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    NASA Astrophysics Data System (ADS)

    Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.

    2016-05-01

    Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. Methods: The record of sunspot group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The complete total and spectral (115 nm-160 μm) irradiance reconstructions since 1700 will be available from http://www2.mps.mpg.de/projects/sun-climate/data.html

  8. Retrodicting the Cenozoic evolution of the mantle: Implications for dynamic surface topography

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro; Rowley, David; Simmons, Nathan; Grand, Stephen

    2014-05-01

    Seismic tomography is the essential starting ingredient for constructing realistic models of the mantle convective flow and for successfully predicting a wide range of convection-related surface observables. However, the lack of knowledge of the initial thermal state of the mantle in the geological past is still an outstanding problem in mantle convection. The resolution of this problem requires models of 3-D mantle evolution that yield maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. We have carried out mantle dynamic simulations (Glišović & Forte, EPSL 2014) using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spectral geometry that directly incorporate: 1) joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. These time-reversed convection simulations reveal how the buoyancy associated with hot, active upwellings is a major driver of the mantle-wide convective circulation and the changes in dynamic topography at the Earth's surface. These simulations reveal, for example, a stable and long-lived superplume under the East Pacific Rise (centred under the Easter and Pitcairn hotspots) that was previously identified by Rowley et al. (AGU 2011, Nature in review) on the basis of plate kinematic data. We also present 65 Myr reconstructions of the Reunion plume that gave rise to the Deccan Traps.

  9. Consistent cortical reconstruction and multi-atlas brain segmentation.

    PubMed

    Huo, Yuankai; Plassard, Andrew J; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A

    2016-09-01

    Whole brain segmentation and cortical surface reconstruction are two essential techniques for investigating the human brain. Spatial inconsistences, which can hinder further integrated analyses of brain structure, can result due to these two tasks typically being conducted independently of each other. FreeSurfer obtains self-consistent whole brain segmentations and cortical surfaces. It starts with subcortical segmentation, then carries out cortical surface reconstruction, and ends with cortical segmentation and labeling. However, this "segmentation to surface to parcellation" strategy has shown limitations in various cohorts such as older populations with large ventricles. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. A modification called MaCRUISE(+) is designed to perform well when white matter lesions are present. Comparing to the benchmarks CRUISE and FreeSurfer, the surface accuracy of MaCRUISE and MaCRUISE(+) is validated using two independent datasets with expertly placed cortical landmarks. A third independent dataset with expertly delineated volumetric labels is employed to compare segmentation performance. Finally, 200MR volumetric images from an older adult sample are used to assess the robustness of MaCRUISE and FreeSurfer. The advantages of MaCRUISE are: (1) MaCRUISE constructs self-consistent voxelwise segmentations and cortical surfaces, while MaCRUISE(+) is robust to white matter pathology. (2) MaCRUISE achieves more accurate whole brain segmentations than independently conducting the multi-atlas segmentation. (3) MaCRUISE is comparable in accuracy to FreeSurfer (when FreeSurfer does not exhibit global failures) while achieving greater robustness across an older adult population. MaCRUISE has been made freely available in open source. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Reconstruction of 3d Models from Point Clouds with Hybrid Representation

    NASA Astrophysics Data System (ADS)

    Hu, P.; Dong, Z.; Yuan, P.; Liang, F.; Yang, B.

    2018-05-01

    The three-dimensional (3D) reconstruction of urban buildings from point clouds has long been an active topic in applications related to human activities. However, due to the structures significantly differ in terms of complexity, the task of 3D reconstruction remains a challenging issue especially for the freeform surfaces. In this paper, we present a new reconstruction algorithm which allows the 3D-models of building as a combination of regular structures and irregular surfaces, where the regular structures are parameterized plane primitives and the irregular surfaces are expressed as meshes. The extraction of irregular surfaces starts with an over-segmented method for the unstructured point data, a region growing approach based the adjacent graph of super-voxels is then applied to collapse these super-voxels, and the freeform surfaces can be clustered from the voxels filtered by a thickness threshold. To achieve these regular planar primitives, the remaining voxels with a larger flatness will be further divided into multiscale super-voxels as basic units, and the final segmented planes are enriched and refined in a mutually reinforcing manner under the framework of a global energy optimization. We have implemented the proposed algorithms and mainly tested on two point clouds that differ in point density and urban characteristic, and experimental results on complex building structures illustrated the efficacy of the proposed framework.

  11. Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and Boundary Deformation

    PubMed Central

    Shi, Yonggang; Lai, Rongjie; Morra, Jonathan H.; Dinov, Ivo; Thompson, Paul M.; Toga, Arthur W.

    2010-01-01

    In medical shape analysis, a critical problem is reconstructing a smooth surface of correct topology from a binary mask that typically has spurious features due to segmentation artifacts. The challenge is the robust removal of these outliers without affecting the accuracy of other parts of the boundary. In this paper, we propose a novel approach for this problem based on the Laplace-Beltrami (LB) eigen-projection and properly designed boundary deformations. Using the metric distortion during the LB eigen-projection, our method automatically detects the location of outliers and feeds this information to a well-composed and topology-preserving deformation. By iterating between these two steps of outlier detection and boundary deformation, we can robustly filter out the outliers without moving the smooth part of the boundary. The final surface is the eigen-projection of the filtered mask boundary that has the correct topology, desired accuracy and smoothness. In our experiments, we illustrate the robustness of our method on different input masks of the same structure, and compare with the popular SPHARM tool and the topology preserving level set method to show that our method can reconstruct accurate surface representations without introducing artificial oscillations. We also successfully validate our method on a large data set of more than 900 hippocampal masks and demonstrate that the reconstructed surfaces retain volume information accurately. PMID:20624704

  12. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  13. Reconstruction of the Mesoscale Velocity Shear Seaward of Coastal Upwelling Regions from the Refraction of the Surface Wave Field

    NASA Technical Reports Server (NTRS)

    Flament, Pierre; Graber, Hans C.; Halpern, D.; Holt, B.

    1996-01-01

    The objective of this project is to study fronts that develop at the boundary between cold water recently upwelled to the surface through Ekman divergence, and warmer surrounding waters. This specific objective was suggested by studying the small scale structure of upwelling fronts (coastal, island, and equatorial) through shipboard surveys and infrared satellite images. Constraints on the shuttle equator crossing imposed by other land sites precluded a coverage of the area targeted in the initial SIR-C proposal, the California Current. The site was then relocated to the Equatorial Pacific upwelling tongue, that can be satisfactorily imaged for a wide range of longitudes of the equator crossing. Some limited data was nevertheless obtained over coastal upwelling off California in 1989, using the JPL AIRSAR in multifrequency mode, and over island upwelling off Hawaii in 1990, using the radar in along-track interferometric mode.

  14. Rough surface reconstruction for ultrasonic NDE simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors.more » This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.« less

  15. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  16. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  17. Sutureless amniotic membrane transplantation for partial limbal stem cell deficiency.

    PubMed

    Kheirkhah, Ahmad; Casas, Victoria; Raju, Vadrevu K; Tseng, Scheffer C G

    2008-05-01

    To evaluate the results of sutureless amniotic membrane (AM) transplantation using fibrin glue for reconstructing corneal surfaces with partial limbal stem cell deficiency (LSCD). Retrospective noncomparative interventional case series. Eleven eyes of nine patients that had LSCD with 120 degrees to almost 360 degrees of limbal involvement underwent superficial keratectomy to remove the conjunctivalized pannus followed by AM transplantation using fibrin glue. Additional sutureless AM patch (ProKera; Bio-Tissue, Inc, Miami, Florida, USA) was used in seven patients, and mitomycin C was applied on the cornea in four eyes and during fornix reconstruction in seven eyes. The surgery was repeated in three eyes for residual pannus. During a mean follow-up of 14.2 +/- 7.7 months (range, six to 26 months), all eyes maintained a smooth and stable corneal epithelial surface without recurrent erosion or persistent epithelial defect, and showed less stromal cloudiness and vascularization. Best-corrected visual acuity improved in nine eyes (81.8%). Corneal epithelialization proceeded by epithelial growth over AM (n = 4), accompanied by dissolution of AM (n = 4) or a combination of both (n = 3). No complication was noted regarding initial or repeated uses of fibrin glue. AM transplantation using fibrin glue appears to be a safe and effective method of restoring a stable corneal epithelium for cases with partial LSCD. This approach avoids the need of transplanting limbal epithelial stem cells.

  18. Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human

    PubMed Central

    Luo, Na; Tan, Liwen; Fang, Binji; Li, Ying; Xie, Bing; Liu, Kaijun; Chu, Chun; Li, Min

    2013-01-01

    We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons. PMID:24369489

  19. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    PubMed

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  20. From bed topography to ice thickness: GlaRe, a GIS tool to reconstruct the surface of palaeoglaciers

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon; Rea, Brice; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig; Hughes, Philip; Ribolini, Adriano; Renssen, Hans; Lukas, Sven

    2016-04-01

    We present GlaRe, A GIS tool that automatically reconstructs the 3D geometry for palaeoglaciers given the bed topography. This tool utilises a numerical approach and can work using a minimum of morphological evidence i.e. the position of the palaeoglacier front. The numerical approach is based on an iterative solution to the perfect plasticity assumption for ice rheology, explained in Benn and Hulton (2010). The tool can be run in ArcGIS 10.1 (ArcInfo license) and later updates and the toolset is written in Python code. The GlaRe toolbox presented in this paper implements a well-established approach for the determination of palaeoglacier equilibrium profiles. Significantly it permits users to quickly run multiple glacier reconstructions which were previously very laborious and time consuming (typically days for a single valley glacier). The implementation of GlaRe will facilitate the reconstruction of large numbers of palaeoglaciers which will provide opportunities for such research addressing at least two fundamental problems: 1. Investigation of the dynamics of palaeoglaciers. Glacier reconstructions are often based on a rigorous interpretation of glacial landforms but not always sufficient attention and/or time has been given to the actual reconstruction of the glacier surface, which is crucial for the calculation of palaeoglacier ELAs and subsequent derivation of quantitative palaeoclimatic data. 2. the ability to run large numbers of reconstructions and over much larger spatial areas provides an opportunity to undertake palaeoglaciers reconstructions across entire mountain, ranges, regions or even continents, allowing climatic gradients and atmospheric circulation patterns to be elucidated. The tool performance has been evaluated by comparing two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known with a basic reconstruction using GlaRe. Results from the comparisons between extant glacier surfaces and modelled ones show very similar ELA values on the order of 10-20 meter error (which would account for a 0.065-0.13 K degree variation on a typical -6.5 K altitudinal gradient), and these can be improved further by increasing the number of flowlines and using F factors where needed. GlaRe is able to quickly generate robust palaeoglacier surfaces based on the very limited inputs often available from the geomorphological record.

  1. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In thismore » approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all experiments showed that TPS interpolation provided the best results. The quantitative results in the phantom experiments showed comparable nRMSE of Almost-Equal-To 0.047 {+-} 0.004 for the TPS and Shepard's method. Only slightly inferior results for the smoothed weighting function and the linear approach were achieved. The UQI resulted in a value of Almost-Equal-To 99% for all four interpolation methods. On clinical human data sets, the best results were clearly obtained with the TPS interpolation. The mean contour deviation between the TPS reconstruction and the standard FDK reconstruction improved in the three human cases by 1.52, 1.34, and 1.55 mm. The Dice coefficient showed less sensitivity with respect to variations in the ventricle boundary. Conclusions: In this work, the influence of different motion interpolation methods on left ventricle motion compensated tomographic reconstructions was investigated. The best quantitative reconstruction results of a phantom, a porcine, and human clinical data sets were achieved with the TPS approach. In general, the framework of motion estimation using a surface model and motion interpolation to a dense MVF provides the ability for tomographic reconstruction using a motion compensation technique.« less

  2. Tectonic predictions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.

  3. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  4. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud

    NASA Astrophysics Data System (ADS)

    Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang

    2018-07-01

    Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.

  5. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    NASA Astrophysics Data System (ADS)

    Schwemmer, C.; Rohkohl, C.; Lauritsch, G.; Müller, K.; Hornegger, J.

    2013-06-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D-2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average.

  6. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  7. Human eyeball model reconstruction and quantitative analysis.

    PubMed

    Xing, Qi; Wei, Qi

    2014-01-01

    Determining shape of the eyeball is important to diagnose eyeball disease like myopia. In this paper, we present an automatic approach to precisely reconstruct three dimensional geometric shape of eyeball from MR Images. The model development pipeline involved image segmentation, registration, B-Spline surface fitting and subdivision surface fitting, neither of which required manual interaction. From the high resolution resultant models, geometric characteristics of the eyeball can be accurately quantified and analyzed. In addition to the eight metrics commonly used by existing studies, we proposed two novel metrics, Gaussian Curvature Analysis and Sphere Distance Deviation, to quantify the cornea shape and the whole eyeball surface respectively. The experiment results showed that the reconstructed eyeball models accurately represent the complex morphology of the eye. The ten metrics parameterize the eyeball among different subjects, which can potentially be used for eye disease diagnosis.

  8. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  9. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    DOE PAGES

    Chan, Mun Keat; Harrison, Neil; Mcdonald, Ross David; ...

    2016-07-22

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling ofmore » these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy« less

  10. Palinspastic reconstruction of structure maps: an automated finite element approach with heterogeneous strain

    NASA Astrophysics Data System (ADS)

    Dunbar, John A.; Cook, Richard W.

    2003-07-01

    Existing methods for the palinspastic reconstruction of structure maps do not adequately account for heterogeneous rock strain and hence cannot accurately treat features such as fault terminations and non-cylindrical folds. We propose a new finite element formulation of the map reconstruction problem that treats such features explicitly. In this approach, a model of the map surface, with internal openings that honor the topology of the fault-gap network, is constructed of triangular finite elements. Both model building and reconstruction algorithms are guided by rules relating fault-gap topology to the kinematics of fault motion and are fully automated. We represent the total strain as the sum of a prescribed component of locally homogeneous simple shear and a minimum amount of heterogeneous residual strain. The region within which a particular orientation of simple shear is treated as homogenous can be as small as an individual element or as large as the entire map. For residual strain calculations, we treat the map surface as a hyperelastic membrane. A globally optimum reconstruction is found that unfolds the map while faithfully honoring assigned strain mechanisms, closes fault gaps without overlap or gap and imparts the least possible residual strain in the restored surface. The amount and distribution of the residual strain serves as a diagnostic tool for identifying mapping errors. The method can be used to reconstruct maps offset by any number of faults that terminate, branch and offset each other in arbitrarily complex ways.

  11. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  12. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  13. Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method

    NASA Astrophysics Data System (ADS)

    Grün, H.; Paltauf, G.; Haltmeier, M.; Burgholzer, P.

    2007-07-01

    Photoacoustic imaging is based on the generation of acoustic waves in a semitransparent sample (e.g. soft tissue) after illumination with short pulses of light or radio waves. The goal is to recover the spatial distribution of absorbed energy density inside the sample from acoustic pressure signals measured outside the sample (photoacoustic inverse problem). If the acoustic pressure outside the illuminated sample is measured with a large-aperture detector, the signal at a certain time is given by an integral of the generated acoustic pressure distribution over an area that is determined by the shape of the detector. For example a planar detector measures the projections of the initial pressure distribution over planes parallel to the detector plane, which is the Radon transform of the initial pressure distribution. Stable and exact three-dimensional imaging with planar integrating detector requires measurements in all directions of space and so the receiver plane has to be rotated to cover the entire detection surface. We have recently presented a simpler set-up for exact imaging which requires only a single rotation axis and therefor the fragmentation of the area detector into line detectors perpendicular to the rotation axis. Using a two-dimensional reconstruction method and applying the inverse two-dimensional Radon transform afterwards gives an exact reconstruction of the three-dimensional sample with this set-up. In order to achieve high resolution, a fiber based Fabry-Perot interferometer is used. It is a single mode fiber with two fiber bragg gratings on both ends of the line detector. Thermal shifts and vibrations are compensated by frequency locking of the laser. The high resolution and the good performance of this integrating line detector has been demonstrated by photoacoustic measurements with line grid samples and phantoms using a model-based time reversal method for image reconstruction. The time reversed pressure field can be calculated directly by retransmitting the measured pressure on the detector positions in a reversed temporal order.

  14. Modeling aspects of the surface reconstruction problem

    NASA Astrophysics Data System (ADS)

    Toth, Charles K.; Melykuti, Gabor

    1994-08-01

    The ultimate goal of digital photogrammetry is to automatically produce digital maps which may in turn form the basis of GIS. Virtually all work in surface reconstruction deals with various kinds of approximations and constraints that are applied. In this paper we extend these concepts in various ways. For one, matching is performed in object space. Thus, matching and densification (modeling) is performed in the same reference system. Another extension concerns the solution of the second sub-problem. Rather than simply densifying (interpolating) the surface, we propose to model it. This combined top-down and bottom-up approach is performed in scale space, whereby the model is refined until compatibility between the data and expectations is reached. The paper focuses on the modeling aspects of the surface reconstruction problem. Obviously, the top-down and bottom-up model descriptions ought to be in a form which allows the generation and verification of hypotheses. Another crucial question is the degree of a priori scene knowledge necessary to constrain the solution space.

  15. Unusual island formations of Ir on Ge (111) studied by STM

    NASA Astrophysics Data System (ADS)

    van Zijll, M.; Huffman, E.; Lovinger, D. J.; Chiang, S.

    2017-12-01

    Island formation on the Ir/Ge(111) surface is studied using ultrahigh vacuum scanning tunneling microscopy. Ir was deposited at room temperature onto a Ge (111) substrate with coverages between 0.5 and 2.0 monolayers (ML). The samples were annealed to temperatures between 550 and 800 K, and then cooled prior to imaging. With 1.0 ML Ir coverage, at annealing temperatures 650-750 K, round islands form at locations where domain boundaries of the substrate reconstruction intersect. Both the substrate and the islands display a (√{ 3} x√{ 3}) R30∘ reconstruction. Additionally, a novel surface formation is observed where the Ir gathers along the antiphase domain boundaries between competing surface domains of the Ge surface reconstruction. This gives the appearance of the Ir in the domain boundaries forming pathways between different islands. The islands formed at higher annealing temperatures resulted in larger island sizes, which is evidence of Ostwald ripening. We present a model for the islands and the pathways which is consistent with our observations.

  16. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  18. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-03-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  19. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; hide

    2016-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  20. Towards Better Calibration of Modern Palynological Data against Climate: A Case Study in Osaka Bay, Japan

    NASA Astrophysics Data System (ADS)

    Kitaba, I.; Nakagawa, T.; McClymont, E.; Dettman, D. L.; Yamada, K.; Takemura, K.; Hyodo, M.

    2014-12-01

    Many of the difficulties in the pollen fossil-based paleoclimate reconstruction in coastal regions derive from the complex sedimentary processes of the near-shore environment. In order to examine this problem, we carried out pollen analysis of surface sediments collected from 35 sites in Osaka Bay, Japan. Using the biomisation method, the surrounding vegetation was accurately reconstructed at all sites. Applying the modern analogue technique to the same data, however, led to reconstructed temperatures that were lower by ca. 5 deg. C and precipitation amounts higher by ca. 5000 mm than the current sea level climate of the region. The range of reconstructed values was larger than the reconstruction error associated with the method. The principal component analysis shows that the surface pollen variation in Osaka Bay reflects sedimentary processes. This significant error associated with the quantitative climatic reconstruction using pollen data is attributed to the fact that the pollen assemblage is not determined solely by climate but reflects non-climatic influences. The accuracy and precision of climatic reconstruction can be improved significantly by expanding counts of minor taxa. Given this result, we re-examined the reconstructed climate using Osaka Bay palynological record reported in Kitaba et al. (2013). This new method did not significantly alter the overall variation in the reconstructed climate, and thus we conclude that the reconstruction was generally reliable. However, some intervals were strongly affected by depositional environmental change. In these, a climate signal can be extracted by excluding the patterns that arise from coastal sedimentation.

  1. A global multiproxy database for temperature reconstructions of the Common Era.

    PubMed

    2017-07-11

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  2. A global multiproxy database for temperature reconstructions of the Common Era

    USGS Publications Warehouse

    Emile-Geay, Julian; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, T.; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, M.; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, K.M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, X.; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, E.; Turney, Chris; Uemura, Ryu; Viau, A.E.; Vladimirova, Diana O.; Wahl, Eugene; White, James W. C.; Yu, Z.; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  3. Visualization of the meridian of traditional Chinese medicine with electrical impedance tomography: An initial experience

    NASA Astrophysics Data System (ADS)

    Cao, Yanli; Lu, Xiaozuo; Wang, Xuemin

    2010-04-01

    The meridian is a concept central to traditional Chinese medical techniques such as acupuncture. There is no physically verifiable anatomical or histological basis for the existence of meridians. In Chinese medicine, the meridians are channels along which the energy of the psychological system is considered to flow. It has been proven that the resistance along the meridian channels is lower compared to other paths. Based on this knowledge, we proposed using electrical impedance tomography (EIT) to visualize the meridians of human being. A simplified three dimensional (3D) mathematical model of the forearm developed. Current was injected in the direction perpendicular to the cross-section where eight electrodes were equally placed around the surface of the forearm for the voltage measurements. The model was solved using Finite Element Method (FEM) and dynamic image was reconstructed using truncated singular value decomposition (TSVD) regularization method. The conductivity distributions were compared with different current injections, along the meridian channel and channels around respectively. We also conducted experiments on models and the meridians were shown in final reconstructed images.

  4. A global multiproxy database for temperature reconstructions of the Common Era

    PubMed Central

    Emile-Geay, Julien; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, Takeshi; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A.N.; Björklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, Massimo; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Kilbourne, K. Halimeda; Koç, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi A.; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, Krystyna M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, Xuemei; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Kuwar Thapa, Udya; Thomas, Elizabeth R.; Turney, Chris; Uemura, Ryu; Viau, Andre E.; Vladimirova, Diana O.; Wahl, Eugene R.; White, James W.C.; Yu, Zicheng; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. PMID:28696409

  5. Topography reconstruction of specular surfaces

    NASA Astrophysics Data System (ADS)

    Kammel, Soren; Horbach, Jan

    2005-01-01

    Specular surfaces are used in a wide variety of industrial and consumer products like varnished or chrome plated parts of car bodies, dies, molds or optical components. Shape deviations of these products usually reduce their quality regarding visual appearance and/or technical performance. One reliable method to inspect such surfaces is deflectometry. It can be employed to obtain highly accurate values representing the local curvature of the surfaces. In a deflectometric measuring system, a series of illumination patterns is reflected at the specular surface and is observed by a camera. The distortions of the patterns in the acquired images contain information about the shape of the surface. This information is suited for the detection and measurement of surface defects like bumps, dents and waviness with depths in the range of a few microns. However, without additional information about the distances between the camera and each observed surface point, a shape reconstruction is only possible in some special cases. Therefore, the reconstruction approach described in this paper uses data observed from at least two different camera positions. The data obtained is used separately to estimate the local surface curvature for each camera position. From the curvature values, the epipolar geometry for the different camera positions is recovered. Matching the curvature values along the epipolar lines yields an estimate of the 3d position of the corresponding surface points. With this additional information, the deflectometric gradient data can be integrated to represent the surface topography.

  6. Transfer of free fillet lateral arm flap for facial reconstruction.

    PubMed

    Bayram, Fazli Cengiz; Dadaci, Mehmet; Ince, Bilsev; Altuntas, Zeynep

    2014-07-01

    We describe a 16-year-old male patient who had a major right facial degloving injury resulting in a soft-tissue defect with exposed zygoma as well as temporal and frontal bones. Multiple operations were undertaken in a staged manner for reconstruction. Lateral arm free fillet flap transfer was initially performed with fixation of bones with miniplates, which is followed by flap debulking, lateral canthopexy, scalp tissue expansion for hairline reconstruction, as well as ear reconstruction with costal cartilage and local flap techniques. After a follow-up period of 2 years, a good and impressive reconstructive result was achieved through the use of multiple contemporary reconstructive procedures after a successful free fillet flap transfer from an amputated part.

  7. Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.

    2017-05-01

    This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.

  8. Can Regional Climate Models be used in the assessment of vulnerability and risk caused by extreme events?

    NASA Astrophysics Data System (ADS)

    Nunes, Ana

    2015-04-01

    Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.

  9. Volume and contact surface area analysis of bony tunnels in single and double bundle anterior cruciate ligament reconstruction using autograft tendons: in vivo three-dimensional imaging analysis.

    PubMed

    Yang, Jae-Hyuk; Chang, Minho; Kwak, Dai-Soon; Wang, Joon Ho

    2014-09-01

    Regarding reconstruction surgery of the anterior cruciate ligament (ACL), there is still a debate whether to perform a single bundle (SB) or double bundle (DB) reconstruction. The purpose of this study was to analyze and compare the volume and surface area of femoral and tibial tunnels during transtibial SB versus transportal DB ACL reconstruction. A consecutive series of 26 patients who underwent trantibial SB ACL reconstruction and 27 patients with transportal DB ACL reconstruction using hamstring autograft from January 2010 to October 2010 were included in this study. Three-dimensional computed tomography (3D-CT) was taken within one week after operation. The CT bone images were segmented with use of Mimics software v14.0. The obtained digital images were then imported in the commercial package Geomagic Studio v10.0 and SketchUp Pro v8.0 for processing. The femoral and tibial tunnel lengths, diameters, volumes and surface areas were evaluated. A comparison between the two groups was performed using the independent-samples t-test. A p-value less than the significance value of 5% (p < 0.05) was considered statistically significant. Regarding femur tunnels, a significant difference was not found between the tunnel volume for SB technique (1,496.51 ± 396.72 mm(3)) and the total tunnel volume for DB technique (1,593.81 ± 469.42 mm(3); p = 0.366). However, the total surface area for femoral tunnels was larger in DB technique (919.65 ± 201.79 mm(2)) compared to SB technique (810.02 ± 117.98 mm(2); p = 0.004). For tibia tunnels, there was a significant difference between tunnel volume for the SB technique (2,070.43 ± 565.07 mm(3)) and the total tunnel volume for the DB technique (2,681.93 ± 668.09 mm(3); p ≤ 0.001). The tibial tunnel surface area for the SB technique (958.84 ± 147.50 mm(2)) was smaller than the total tunnel surface area for the DB technique (1,493.31 ± 220.79 mm(2); p ≤ 0.001). Although the total femoral tunnel volume was similar between two techniques, the total surface area was larger in the DB technique. For the tibia, both total tunnel volume and the surface area were larger in DB technique.

  10. Direct endoscopic video registration for sinus surgery

    NASA Astrophysics Data System (ADS)

    Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.

    2009-02-01

    Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.

  11. Surface acquisition through virtual milling

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1993-01-01

    Surface acquisition deals with the reconstruction of three dimensional objects from a set of data points. The most straightforward techniques require human intervention, a time consuming proposition. It is desirable to develop a fully automated alternative. Such a method is proposed in this paper. It makes use of surface measurements obtained from a 3-D laser digitizer - an instrument which provides the (x,y,z) coordinates of surface data points from various viewpoints. These points are assembled into several partial surfaces using a visibility constraint and a 2-D triangulation technique. Reconstruction of the final object requires merging these partial surfaces. This is accomplished through a procedure that emulates milling, a standard machining operation. From a geometrical standpoint the problem reduces to constructing the intersection of two or more non-convex polyhedra.

  12. Alignment of Ge nanoislands on Si(111) by Ga-induced substrate self-patterning.

    PubMed

    Schmidt, Th; Flege, J I; Gangopadhyay, S; Clausen, T; Locatelli, A; Heun, S; Falta, J

    2007-02-09

    A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.

  13. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  14. Maculoplasty for age-related macular degeneration: reengineering Bruch's membrane and the human macula.

    PubMed

    Del Priore, Lucian V; Tezel, Tongalp H; Kaplan, Henry J

    2006-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. Over the last decade, there have been significant advances in the management of exudative AMD with the introduction of anti-VEGF drugs; however, many patients with exudative AMD continue to lose vision and there are no effective treatments for advanced exudative AMD or geographic atrophy. Initial attempts at macular reconstruction using cellular transplantation have not been effective in reversing vision loss. Herein we discuss the current status of surgical attempts to reconstruct damaged subretinal anatomy in advanced AMD. We reinforce the concept of maculoplasty for advanced AMD, which is defined as reconstruction of macular anatomy in patients with advanced vision loss. Successful maculoplasty is a three-step process that includes replacing or repairing damaged cells (using transplantation, translocation or stimulation of autologous cell proliferation); immune suppression (if allografts are used to replace damaged cells); and reconstruction or replacement of Bruch's membrane (to restore the integrity of the substrate for proper cell attachment). In the current article we will review the rationale for maculoplasty in advanced AMD, and discuss the results of initial clinical attempts at macular reconstruction. We will then discuss the role of Bruch's membrane damage in limiting transplant survival and visual recovery, and discuss the effects of age-related changes within human Bruch's membrane on the initial attachment and subsequent proliferation of transplanted cells. We will discuss attempts to repair Bruch's membrane by coating with extracellular matrix ligands, anatomic reconstitution of the inner collagen layer, and the effects of Bruch's membrane reconstruction of ultrastuctural anatomy and subsequent cell behavior. Lastly, we will emphasize the importance of continued efforts required for successful maculoplasty.

  15. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis

    USGS Publications Warehouse

    Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.

    2010-01-01

    Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.

  16. Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle

    2013-01-01

    The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.

  17. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  18. Effect of surface on the dissociation of perfect dislocations into Shockley partials describing the herringbone Au(1\\xA01\\xA01) surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ait-Oubba, A.; Coupeau, C.; Durinck, J.; Talea, M.; Grilhé, J.

    2018-06-01

    In the framework of the continuum elastic theory, the equilibrium positions of Shockley partial dislocations have been determined as a function of their distance from the free surface. It is found that the dissociation width decreases with the decreasing depth, except for a depth range very close to the free surface for which the dissociation width is enlarged. A similar behaviour is also predicted when Shockley dislocation pairs are regularly arranged, whatever the wavelength. These results derived from the elastic theory are compared to STM observations of the reconstructed (1 1 1) surface in gold, which is usually described by a Shockley dislocations network.

  19. Surface reconstruction from scattered data through pruning of unstructured grids

    NASA Technical Reports Server (NTRS)

    Maksymiuk, C. M.; Merriam, M. L.

    1991-01-01

    This paper describes an algorithm for reconstructing a surface from a randomly digitized object. Scan data (treated as a cloud of points) is first tesselated out to its convex hull using Delaunay triangulation. The line-of-sight between each surface point and the scanning device is traversed, and any tetrahedra which are pierced by it are removed. The remaining tetrahedra form an approximate solid model of the scanned object. Due to the inherently limited resolution of any scan, this algorithm requires two additional procedures to produce a smooth, polyhedral surface: one process removes long, narrow tetrahedra which span indentations in the surface between digitized points; the other smooths sharp edges. The results for a moderately resolved sample body and a highly resolved aircraft are displayed.

  20. Lithium intercalation carbon and method for producing same

    DOEpatents

    Even, Jr., William R.; Guidotti, Ronald A.

    2001-01-01

    Disordered carbons were synthesized at 700.degree. C. from methacrylonitrile-divinylbenzene precursors. The disorder, even at the free surface, was confirmed with TEM. These powdered carbons were subjected to rapid surface heating by a pulsed infrared laser (59 MW pulses). While the bulk structure remained essentially unchanged, there was substantial "surface reconstruction" to a depth of 0.25 .mu.m presumably due to ablation, re-deposition, and "recrystallization" of the surface carbon after heating by the laser. The surface ordering appears similar to the bulk microstructure of carbons isothermally annealed at 2,200.degree. C. (i.e., turbostatic). Improvements were observed in first cycle irreversible loss, rate capability, and coulombic efficiencies of the "reconstructed" carbons, relative to the untreated carbon.

  1. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  2. Lateral Intercondylar Ridge: Is it a reliable landmark for femoral ACL insertion?: An anatomical study.

    PubMed

    Bhattacharyya, Rahul; Ker, Andrew; Fogg, Quentin; Spencer, Simon J; Joseph, Jibu

    2018-02-01

    Incorrect femoral tunnel placement is the most common cause of graft failure during Anterior Cruciate Ligament (ACL) Reconstruction. A reliable landmark can minimize errors. To identify whether the Lateral Intercondylar Ridge (LIR) is a consistent anatomical structure and define its relationship with the femoral ACL insertion. Phase 1: we studied 23 femoral dry bone specimens macroscopically. Using a digital microscribe, the medial surface of the lateral femoral condyle was reconstructed (3D) to evaluate whether there was an identifiable bony ridge. Phase 2: 7 cadaveric specimens with intact soft tissues were dissected to identify the femoral ACL insertion. A 3D reconstruction of the femoral ACL insertion and the surface allowed us to define the relationship between the LIR and the ACL insertion. All specimens had a defined LIR on the medial surface of the lateral femoral condyle. The ridge was consistently located just anterior to the femoral ACL insertion. The ACL footprint was present in the depression between the ridge and the Inferior Articular Cartilage Margin (IACM). The mean distance from the midpoint of the IACM to the LIR was 10.1 mm. This is the first study to use the microscribe to digitally reconstruct the medial surface of the lateral femoral condyle. It shows that the LIR is a consistent anatomical structure that defines the anterior margin of the femoral ACL insertion, which guides femoral tunnel placement. Our findings support the ruler technique, which is a commonly used method for anatomic single bundle ACL reconstruction. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. The Cost-Effectiveness of Anterior Cruciate Ligament Reconstruction in Competitive Athletes.

    PubMed

    Stewart, Bruce A; Momaya, Amit M; Silverstein, Marc D; Lintner, David

    2017-01-01

    Competitive athletes value the ability to return to competitive play after the treatment of anterior cruciate ligament (ACL) injuries. ACL reconstruction has high success rates for return to play, but some studies indicate that patients may do well with nonoperative physical therapy treatment. To evaluate the cost-effectiveness of the treatment of acute ACL tears with either initial surgical reconstruction or physical therapy in competitive athletes. Economic and decision analysis; Level of evidence, 2. The incremental cost, incremental effectiveness, and incremental cost-effectiveness ratio (ICER) of ACL reconstruction compared with physical therapy were calculated from a cost-effectiveness analysis of ACL reconstruction compared with physical therapy for the initial management of acute ACL injuries in competitive athletes. The ACL reconstruction strategy and the physical therapy strategy were represented as Markov models. Costs and quality-adjusted life-years (QALYs) were evaluated over a 6-year time horizon and were analyzed from a societal perspective. Quality of life and probabilities of clinical outcomes were obtained from the peer-reviewed literature, and costs were compiled from a large academic hospital in the United States. One-way, 2-way, and probabilistic sensitivity analyses were used to assess the effect of uncertainty in variables on the ICER of ACL reconstruction. The ICER of ACL reconstruction compared with physical therapy was $22,702 per QALY gained. The ICER was most sensitive to the quality of life of returning to play or not returning to play, costs, and duration of follow-up but relatively insensitive to the rates and costs of complications, probabilities of return to play for both operative and nonoperative treatments, and discount rate. ACL reconstruction is a cost-effective strategy for competitive athletes with an ACL injury.

  4. A high-resolution core-level photoemission study of the Au/4H-SiC(0001)-([Formula: see text]) interface.

    PubMed

    Stoltz, D; Stoltz, S E; Johansson, L S O

    2007-07-04

    We present a systematic study of different reconstructions obtained after deposition of Au on the [Formula: see text]-4H-SiC(0001) surface. For 1-2 monolayers (ML) Au and annealing temperature T(anneal)∼675 °C, a 3 × 3 reconstruction was observed. For 4 ML Au and T(anneal)∼650 °C, a [Formula: see text] reconstruction appeared, while 5 ML Au annealed at 700 °C reconstructed to give a [Formula: see text] pattern. From the Si 2p and Au 4f core-level components, we propose interface models, depending on the amount of Au on the surface and the annealing temperature. For 1-4 ML Au annealed at 650-675 °C, gold diffuses under the topmost Si into the SiC and forms a silicide. An additional Si component in our Si 2p spectra is related to the interface between the silicide and SiC. For 5 ML Au annealed at 700 °C, silicide is also formed at the surface, covering unreacted Au on top of the SiC substrate. The interface Si component is also observed in the Si 2p spectra of this surface. The key role in [Formula: see text]-4H-SiC(0001) interface formation is played by diffusion and the silicon-richness of the surface.

  5. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  6. Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways

    DOE PAGES

    Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran; ...

    2016-12-26

    Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran

    Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less

  8. Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan

    2018-04-01

    Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.

  9. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    PubMed

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  10. Reconstructing the Surface Permittivity Distribution from Data Measured by the CONSERT Instrument aboard Rosetta: Method and Simulations

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.

    2014-12-01

    One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.

  11. 25 CFR 700.829 - Determination of archaeological or commercial value and cost of restoration and repair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... research design, conducting filed work, carrying out laboratory analysis, and preparing reports as would be... contour reconstruction and surface stabilization; (4) Research necessary to carry out reconstruction or...

  12. 25 CFR 700.829 - Determination of archaeological or commercial value and cost of restoration and repair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... research design, conducting filed work, carrying out laboratory analysis, and preparing reports as would be... contour reconstruction and surface stabilization; (4) Research necessary to carry out reconstruction or...

  13. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  14. Exploration Flight Test 1 Afterbody Aerothermal Environment Reconstruction

    NASA Technical Reports Server (NTRS)

    Hyatt, Andrew J.; Oliver, Brandon; Amar, Adam; Lessard, Victor

    2016-01-01

    The Exploration Flight Test 1 vehicle included roughly 100 near surface thermocouples on the after body of the vehicle. The temperature traces at each of these instruments have been used to perform inverse environment reconstruction to determine the aerothermal environment experienced during re-entry of the vehicle. This paper provides an overview of the reconstructed environments and identifies critical aspects of the environment. These critical aspects include transition and reaction control system jet influence. A blind test of the process and reconstruction tool was also performed to build confidence in the reconstructed environments. Finally, an uncertainty quantification analysis was also performed to identify the impact of each of the uncertainties on the reconstructed environments.

  15. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  16. Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment.

    PubMed

    Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G

    2003-04-15

    The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.

  17. Linking plate reconstructions with deforming lithosphere to geodynamic models

    NASA Astrophysics Data System (ADS)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a "slab assimilation" method in which the thermal structure of the slab, derived analytically, is progressively assimilated into the upper mantle through time. This method not only improves the continuity of slabs in forward models with imposed plate motions, but it also allows us to model flat slab segments that are particularly relevant for understanding dynamic surface topography. When it comes to post-processing and visualisation, GPlates allows the user to import time-dependent model output image stacks to visualise mantle properties (e.g. temperature) at a given depth through time, with plate boundaries and other data attached to plates overlain. This approach provides an avenue to simultaneously investigate the contributions of lithospheric deformation and mantle flow to surface topography. Currently GPlates is being used in conjunction with the codes CitcomS, Terra, BEMEarth and the adaptive mesh refinement code Rhea. A GPlates python plugin infrastructure makes it easy to extend interoperability with other geodynamic modelling codes.

  18. Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations

    NASA Astrophysics Data System (ADS)

    Beilina, L.; Cristofol, M.; Li, S.; Yamamoto, M.

    2018-01-01

    We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.

  19. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  20. New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces

    NASA Technical Reports Server (NTRS)

    Chadi, D. J.

    1985-01-01

    A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces.

Top