Sample records for initial target cells

  1. The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells.

    PubMed

    Florio, Tullio; Barbieri, Federica

    2012-10-01

    Glioblastoma is the most prevalent and malignant form of brain cancer, but the current available multimodality treatments yield poor survival improvement. Thus, innovative therapeutic strategies represent the challenging topic for glioblastoma management. Multidisciplinary advances, supporting current standard of care therapies and investigational trials that reveal potential drug targets for glioblastoma are reviewed. A radical change in glioblastoma therapeutic approaches could arise from the identification of cancer stem cells, putative tumor-initiating cells involved in tumor initiation, progression and resistance, as innovative drug target. Still controversial identification of markers and molecular regulators in glioma tumor-initiating cells and novel approaches targeting these cells are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-13-1-0461 TITLE: Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells PRINCIPAL INVESTIGATOR: Daotai...29 2016 4. TITLE AND SUBTILE Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER...the c-MYC oncogene. POU5F1B is a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due

  3. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  4. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway.

    PubMed

    Assad Kahn, Suzana; Costa, Silvia Lima; Gholamin, Sharareh; Nitta, Ryan T; Dubois, Luiz Gustavo; Fève, Marie; Zeniou, Maria; Coelho, Paulo Lucas Cerqueira; El-Habr, Elias; Cadusseau, Josette; Varlet, Pascale; Mitra, Siddhartha S; Devaux, Bertrand; Kilhoffer, Marie-Claude; Cheshier, Samuel H; Moura-Neto, Vivaldo; Haiech, Jacques; Junier, Marie-Pierre; Chneiweiss, Hervé

    2016-05-01

    A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Evidence for label-retaining tumour-initiating cells in human glioblastoma

    PubMed Central

    Deleyrolle, Loic P.; Harding, Angus; Cato, Kathleen; Siebzehnrubl, Florian A.; Rahman, Maryam; Azari, Hassan; Olson, Sarah; Gabrielli, Brian; Osborne, Geoffrey; Vescovi, Angelo

    2011-01-01

    Individual tumour cells display diverse functional behaviours in terms of proliferation rate, cell–cell interactions, metastatic potential and sensitivity to therapy. Moreover, sequencing studies have demonstrated surprising levels of genetic diversity between individual patient tumours of the same type. Tumour heterogeneity presents a significant therapeutic challenge as diverse cell types within a tumour can respond differently to therapies, and inter-patient heterogeneity may prevent the development of general treatments for cancer. One strategy that may help overcome tumour heterogeneity is the identification of tumour sub-populations that drive specific disease pathologies for the development of therapies targeting these clinically relevant sub-populations. Here, we have identified a dye-retaining brain tumour population that displays all the hallmarks of a tumour-initiating sub-population. Using a limiting dilution transplantation assay in immunocompromised mice, label-retaining brain tumour cells display elevated tumour-initiation properties relative to the bulk population. Importantly, tumours generated from these label-retaining cells exhibit all the pathological features of the primary disease. Together, these findings confirm dye-retaining brain tumour cells exhibit tumour-initiation ability and are therefore viable targets for the development of therapeutics targeting this sub-population. PMID:21515906

  6. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  7. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms

    PubMed Central

    Cruceru, Maria Linda; Neagu, Monica; Demoulin, Jean-Baptiste; Constantinescu, Stefan N

    2013-01-01

    Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called ‘leukaemia of the brain’, given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation. PMID:23998913

  8. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  9. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  10. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  11. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms.

    PubMed

    Cruceru, Maria Linda; Neagu, Monica; Demoulin, Jean-Baptiste; Constantinescu, Stefan N

    2013-10-01

    Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called 'leukaemia of the brain', given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    PubMed Central

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  13. Magnetic Targeting of Stem Cell Derivatives Enhances Hepatic Engraftment into Structurally Normal Liver

    PubMed Central

    Fagg, W. Samuel; Liu, Naiyou; Yang, Ming-Jim; Cheng, Ke; Chung, Eric; Kim, Jae-Sung; Wu, Gordon

    2018-01-01

    Attaining consistent robust engraftment in the structurally normal liver is an obstacle for cellular transplantation. Most experimental approaches to increase transplanted cells’ engraftment involve recipient-centered deleterious methods such as partial hepatectomy or irradiation which may be unsuitable in the clinic. Here, we present a cell-based strategy that increases engraftment into the structurally normal liver using a combination of magnetic targeting and proliferative endoderm progenitor (EPs) cells. Magnetic labeling has little effect on cell viability and differentiation, but in the presence of magnetic targeting, it increases the initial dwell time of transplanted EPs into the undamaged liver parenchyma. Consequently, greater cell retention in the liver is observed concomitantly with fewer transplanted cells in the lungs. These highly proliferative cells then significantly increase their biomass over time in the liver parenchyma, approaching nearly 4% of total liver cells 30 d after transplant. Therefore, the cell-based mechanisms of increased initial dwell time through magnetic targeting combined with high rate of proliferation in situ yield significant engraftment in the undamaged liver. PMID:29390880

  14. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer

    PubMed Central

    Chavez-Gonzalez, Antonieta; Bakhshinejad, Babak; Pakravan, Katayoon

    2018-01-01

    Background Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. Conclusions A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy. PMID:27678246

  15. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt.

    PubMed

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirano; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.

  16. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    DTIC Science & Technology

    2012-02-01

    established cell lines and primary patient samples) with human prostate fibroblasts hold promise as models of tumor initiation/cancer stem cell activity...We continue to optimize and validate our in vitro model of prostate cancer initiation to facilitate cancer stem cell discovery as well as drug targeting.

  17. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells.

    PubMed

    Noh, Hyangsoon; Yan, Jun; Hong, Sungguan; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Xia, Xueqing; Heimberger, Amy B; Li, Shulin

    2016-11-01

    Intracellular vimentin overexpression has been associated with epithelial-mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.

  18. Th17 Cells Are Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques.

    PubMed

    Stieh, Daniel J; Matias, Edgar; Xu, Huanbin; Fought, Angela J; Blanchard, James L; Marx, Preston A; Veazey, Ronald S; Hope, Thomas J

    2016-04-13

    The difficulty in detecting rare infected cells immediately after mucosal HIV transmission has hindered our understanding of the initial cells targeted by the virus. Working with the macaque simian immunodeficiency virus (SIV) vaginal challenge model, we developed methodology to identify discrete foci of SIV (mac239) infection 48 hr after vaginal inoculation. We find infectious foci throughout the reproductive tract, from labia to ovary. Phenotyping infected cells reveals that SIV has a significant bias for infection of CCR6+ CD4+ T cells. SIV-infected cells expressed the transcriptional regulator RORγt, confirming that the initial target cells are specifically of the Th17 lineage. Furthermore, we detect host responses to infection, as evidenced by apoptosis, cell lysis, and phagocytosis of infected cells. Thus, our analysis identifies Th17-lineage CCR6+ CD4+ T cells as primary targets of SIV during vaginal transmission. This opens new opportunities for interventions to protect these cells and prevent HIV transmission. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Convergent Transcription At Intragenic Super-Enhancers Targets AID-initiated Genomic Instability

    PubMed Central

    Meng, Fei-Long; Du, Zhou; Federation, Alexander; Hu, Jiazhi; Wang, Qiao; Kieffer-Kwon, Kyong-Rim; Meyers, Robin M.; Amor, Corina; Wasserman, Caitlyn R.; Neuberg, Donna; Casellas, Rafael; Nussenzweig, Michel C.; Bradner, James E.; Liu, X. Shirley; Alt, Frederick W.

    2015-01-01

    Summary Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single stranded DNA targets. While largely specific for immunoglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-Seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting “convergent” transcription arises from antisense transcription that emanates from Super-Enhancers within sense transcribed gene bodies. Our findings provide an explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells. PMID:25483776

  20. Silibinin inhibits translation initiation: implications for anticancer therapy.

    PubMed

    Lin, Chen-Ju; Sukarieh, Rami; Pelletier, Jerry

    2009-06-01

    Silibinin is a nontoxic flavonoid reported to have anticancer properties. In this study, we show that silibinin exhibits antiproliferative activity on MCF-7 breast cancer cells. Exposure to silibinin leads to a concentration-dependent decrease in global protein synthesis associated with reduced levels of eukaryotic initiation factor 4F complex. Moreover, polysome profile analysis of silibinin-treated cells shows a decrease in polysome content and translation of cyclin D1 mRNA. Silibinin exerts its effects on translation initiation by inhibiting the mammalian target of rapamycin signaling pathway by acting upstream of TSC2. Our results show that silibinin blocks mammalian target of rapamycin signaling with a concomitant reduction in translation initiation, thus providing a possible molecular mechanism of how silibinin can inhibit growth of transformed cells.

  1. Personalized Medicine Approach for an Exceptional Response to Multiple-recurrent and Metastatic HER2-positive Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Seim, Nolan B; Kang, Stephen Y; Bhandari, Milan; Jones, Riley G; Teknos, Theodoros N

    2017-04-01

    Advanced stage squamous cell carcinoma of the head and neck carries an overall poor prognosis, and survivorship gains have remained relatively stagnant compared to other malignancies due to its complex tumor biology and lack of proven effective targeting agents. We present a case of an exceptional responder to molecular-targeted therapy for metastatic oropharyngeal squamous cell carcinoma using a chemotherapeutic agent FDA approved for breast cancer and targeting the HER2/Neu receptor in order to discuss the larger clinical implications. The National Cancer Institute (NCI) has recently instituted the Exceptional Responders Initiative in order to identify such patients with unexpected outcomes in order to expedite the development of additional targeted therapies. This case illustrates the opportunity for cure using targeted oncogene identification in a scenario of recurrent squamous cell carcinoma with lung metastasis typically considered fatal. Molecular tumor analysis is an infrequently utilized tool in head and neck squamous cell carcinoma; however, as understanding of biologic mechanisms improves, additional molecular targets will become available and expand treatment opportunities such as HER2/Neu targeting. The Exceptional Responders Initiative is a unique strategy with potential to expedite progress.

  2. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening.

    PubMed

    Christensen, Anne G; Ehmsen, Sidse; Terp, Mikkel G; Batra, Richa; Alcaraz, Nicolas; Baumbach, Jan; Noer, Julie B; Moreira, José; Leth-Larsen, Rikke; Larsen, Martin R; Ditzel, Henrik J

    2017-08-01

    A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/β-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation of pathways associated with cell viability, and CSCs are the major differences between tumor-initiating and nontumorigenic cells independent of their epithelial-like/mesenchymal-like phenotype. These altered pathways may provide targets for future drug development to eliminate CSCs, and the cell model may be a useful tool in such drug screenings. Stem Cells 2017;35:1898-1912. © 2017 AlphaMed Press.

  3. Receptor-Targeted, Magneto-Mechanical Stimulation of Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Hu, Bin; El Haj, Alicia J; Dobson, Jon

    2013-01-01

    Mechanical cues are employed to promote stem cell differentiation and functional tissue formation in tissue engineering and regenerative medicine. We have developed a Magnetic Force Bioreactor (MFB) that delivers highly targeted local forces to cells at a pico-newton level, utilizing magnetic micro- and nano-particles to target cell surface receptors. In this study, we investigated the effects of magnetically targeting and actuating specific two mechanical-sensitive cell membrane receptors—platelet-derived growth factor receptor α (PDGFRα) and integrin ανβ3. It was found that a higher mineral-to-matrix ratio was obtained after three weeks of magneto-mechanical stimulation coupled with osteogenic medium culture by initially targeting PDGFRα compared with targeting integrin ανβ3 and non-treated controls. Moreover, different initiation sites caused a differentiated response profile when using a 2-day-lagged magneto-mechanical stimulation over culture periods of 7 and 12 days). However, both resulted in statistically higher osteogenic marker genes expression compared with immediate magneto-mechanical stimulation. These results provide insights into important parameters for designing appropriate protocols for ex vivo induced bone formation via magneto-mechanical actuation. PMID:24065106

  4. Ligation of CD8α on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity

    PubMed Central

    Addison, Elena G; North, Janet; Bakhsh, Ismail; Marden, Chloe; Haq, Sumaira; Al-Sarraj, Samia; Malayeri, Reza; Wickremasinghe, R Gitendra; Davies, Jeffrey K; Lowdell, Mark W

    2005-01-01

    It has been previously shown that the subset of human natural killer (NK) cells which express CD8 in a homodimeric α/α form are more cytotoxic than their CD8– counterparts but the mechanisms behind this differential cytolytic activity remained unknown. Target cell lysis by CD8– NK cells is associated with high levels of effector cell apoptosis, which is in contrast to the significantly lower levels found in the CD8α+ cells after lysis of the same targets. We report that cross-linking of the CD8α chains on NK cells induces rapid rises in intracellular Ca2+ and increased expression of CD69 at the cell surface by initiating the influx of extracellular Ca2+ ions. We demonstrate that secretion of cytolytic enzymes initiates NK-cell apoptosis from which CD8α+ NK cells are protected by an influx of exogenous calcium following ligation of CD8 on the NK-cell surface. This ligation is through interaction with fellow NK cells in the cell conjugate and can occur when the target cells lack major histocompatibility complex (MHC) Class I expression. Protection from apoptosis is blocked by preincubation of the NK cells with anti-MHC Class I antibody. Thus, in contrast to the CD8– subset, CD8α+ NK cells are capable of sequential lysis of multiple target cells. PMID:16236125

  5. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.

    PubMed

    Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman

    2017-04-01

    Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.

  6. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  7. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma.

    PubMed

    Rainusso, N; Brawley, V S; Ghazi, A; Hicks, M J; Gottschalk, S; Rosen, J M; Ahmed, N

    2012-03-01

    Despite radical surgery and multi-agent chemotherapy, less than one third of patients with recurrent or metastatic osteosarcoma (OS) survive. The limited efficacy of current therapeutic approaches to target tumor-initiating cells (TICs) may explain this dismal outcome. The purpose of this study was to assess the impact of modified T cells expressing a human epidermal growth factor receptor (HER2)-specific chimeric antigen receptor in the OS TIC compartment of human established cell lines. Using the sarcosphere formation assay, we found that OS TICs were resistant to increasing methotrexate concentrations. In contrast, HER2-specific T cells decreased markedly sarcosphere formation capacity and the ability to generate bone tumors in immunodeficient mice after orthotopic transplantation. In vivo, administration of HER2-specific T cells significantly reduced TICs in bulky tumors as judged by decreased sarcosphere forming efficiency in OS cells isolated from explanted tumors. We demonstrate that HER2-specific T cells target drug resistant TICs in established OS cell lines, suggesting that incorporating immunotherapy into current treatment strategies for OS has the potential to improve outcomes.

  8. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  9. Genetic Heterogeneity and Clonal Evolution of Tumor Cells and their Impact on Precision Cancer Medicine.

    PubMed

    Sabaawy, Hatem E

    2013-11-18

    The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate detection and sustained targeting of initial and evolving driver mutations and/or aberrations in cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer progression contributes to the longitudinal variations of clonal, morphological, anatomical, and molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of therapy or emerging as a result of targeted therapies represent major challenges for achieving success of personalized therapies in providing meaningful improvement in cancer survival rates. Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the implementation of personalized or precision cancer medicine.

  10. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells.

    PubMed

    Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C

    2012-04-15

    To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.

  11. mRNA-Selective Translation Induced by FSH in Primary Sertoli Cells

    PubMed Central

    Musnier, Astrid; León, Kelly; Morales, Julia; Reiter, Eric; Boulo, Thomas; Costache, Vlad; Vourc'h, Patrick; Heitzler, Domitille; Oulhen, Nathalie; Poupon, Anne; Boulben, Sandrine; Cormier, Patrick

    2012-01-01

    FSH is a key hormonal regulator of Sertoli cell secretory activity, required to optimize sperm production. To fulfil its biological function, FSH binds a G protein-coupled receptor, the FSH-R. The FSH-R-transduced signaling network ultimately leads to the transcription or down-regulation of numerous genes. In addition, recent evidence has suggested that FSH might also regulate protein translation. However, this point has never been demonstrated conclusively yet. Here we have addressed this issue in primary rat Sertoli cells endogenously expressing physiological levels of FSH-R. We observed that, within 90 min of stimulation, FSH not only enhanced overall protein synthesis in a mammalian target of rapamycin-dependent manner but also increased the recruitment of mRNA to polysomes. m7GTP pull-down experiments revealed the functional recruitment of mammalian target of rapamycin and p70 S6 kinase to the 5′cap, further supported by the enhanced phosphorylation of one of p70 S6 kinase targets, the eukaryotic initiation factor 4B. Importantly, the scaffolding eukaryotic initiation factor 4G was also recruited, whereas eukaryotic initiation factor 4E-binding protein, the eukaryotic initiation factor 4E generic inhibitor, appeared to play a minor role in translational regulations induced by FSH, in contrast to what is generally observed in response to anabolic factors. This particular regulation of the translational machinery by FSH stimulation might support mRNA-selective translation, as shown here by quantitative RT-PCR amplification of the c-fos and vascular endothelial growth factor mRNA but not of all FSH target mRNA, in polysomal fractions. These findings add a new level of complexity to FSH biological roles in its natural target cells, which has been underappreciated so far. PMID:22383463

  12. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells

    PubMed Central

    Tang, Xun; Zhang, Xiao; Qiao, Yongxia; Shi, Yuling; Xu, Yanfeng; Wang, Zhongyong; Yu, Yongchun; Sun, Fenyong

    2015-01-01

    Doxorubicin (Doxo) is one of the most widely used chemotherapeutic drugs for patients with hepatocellular carcinoma (HCC). Doxo is a DNA intercalating drug that inhibits topoisomerase II. Thereby Doxo has the ability to block DNA replication and induce apoptosis. However, the other targets and mechanisms through which Doxo induces apoptosis to treat HCC still remain unknown. Here, we identified Mucosal vascular addressin cell adhesion molecule 1 (Madcam1) as a potential Doxo target because Madcam1 overexpression suppressed, while Madcam1 depletion stimulated Doxo-induced apoptosis. Furthermore, we first revealed that Doxo can induce apoptosis by blocking protein translation initiation. In contrast, Madcam1 activated protein translation through an opposite mechanism. We also found de-phosphorylation of AKT may be an important pro-apoptotic event that is triggered by Doxo-induced Madcam1 down-regulation. Finally, we revealed that Madcam1 promoted increased AKT phosphorylation, which is essential for maintaining the sensitivity of HCC cells to Doxo treatment. Taken together, we uncovered a potential mechanism for Doxo-induced apoptosis in HCC treatment through targeting Madcam1 and AKT and blocking protein translation initiation. PMID:26124182

  13. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a tumor but spare the stem-like cells, allowing the tumor to re-grow once chemotherapy is stopped. If, however, the cancer-initiating cells could be successfully targeted, cancer recurrence could be prevented.

  14. Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects?

    PubMed

    Nasr, Rihab; El Hajj, Hiba; Kfoury, Youmna; de Thé, Hugues; Hermine, Olivier; Bazarbachi, Ali

    2011-06-01

    Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL.

  15. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  16. Generation and Repair of AID-initiated DNA Lesions in B Lymphocytes

    PubMed Central

    Chen, Zhangguo; Wang, Jing H.

    2014-01-01

    Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions. PMID:24748462

  17. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  18. Pharmacological targets of breast cancer stem cells: a review.

    PubMed

    Pindiprolu, Sai Kiran S S; Krishnamurthy, Praveen T; Chintamaneni, Pavan Kumar

    2018-05-01

    Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.

  19. Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration.

    PubMed

    Riedel, Maria; Berthelsen, Martin F; Bakiri, Latifa; Wagner, Erwin F; Thomsen, Martin K

    2018-04-27

    With an increasing incidence of prostate cancer, identification of new tumor drivers or modulators is crucial. Genetically engineered mouse models (GEMM) for prostate cancer are hampered by tumor heterogeneity and its complex microevolution dynamics. Traditional prostate cancer mouse models include, amongst others, germline and conditional knockouts, transgenic expression of oncogenes, and xenograft models. Generation of de novo mutations in these models is complex, time-consuming, and costly. In addition, most of traditional models target the majority of the prostate epithelium, whereas human prostate cancer is well known to evolve as an isolated event in only a small subset of cells. Valuable models need to simulate not only prostate cancer initiation, but also progression to advanced disease. Here we describe a method to target a few cells in the prostate epithelium by transducing cells by viral particles. The delivery of an engineered virus to the murine prostate allows alteration of gene expression in the prostate epithelia. Virus type and quantity will hereby define the number of targeted cells for gene alteration by transducing a few cells for cancer initiation and many cells for gene therapy. Through surgery-based injection in the anterior lobe, distal from the urinary track, the tumor in this model can expand without impairing the urinary function of the animal. Furthermore, by targeting only a subset of prostate epithelial cells the technique enables clonal expansion of the tumor, and therefore mimics human tumor initiation, progression, as well as invasion through the basal membrane. This novel technique provides a powerful prostate cancer model with improved physiological relevance. Animal suffering is limited, and since no additional breeding is required, overall animal count is reduced. At the same time, analysis of new candidate genes and pathways is accelerated, which in turn is more cost efficient.

  20. Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A

    PubMed Central

    Cencic, Regina; Pelletier, Jerry

    2016-01-01

    ABSTRACT Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms regulating translation in normal and transformed cells have revealed that perturbed control in cancer cells may offer an Achilles' heel for the development of novel anti-neoplastic agents. Several small molecule inhibitors have been identified and characterized that target translation initiation – more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA helicase involved in this process. Herein, we highlight the biological properties of this compound, its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic target. PMID:27335721

  1. Phosphatidylinositol 3-Kinase (PI3K) δ blockade increases genomic instability in B cells

    PubMed Central

    Compagno, Mara; Wang, Qi; Pighi, Chiara; Cheong, Taek-Chin; Meng, Fei-Long; Poggio, Teresa; Yeap, Leng-Siew; Karaca, Elif; Blasco, Rafael B.; Langellotto, Fernanda; Ambrogio, Chiara; Voena, Claudia; Wiestner, Adrian; Kasar, Siddha N.; Brown, Jennifer R.; Sun, Jing; Wu, Catherine J.; Gostissa, Monica; Alt, Frederick W.; Chiarle, Roberto

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients. PMID:28199309

  2. Evolving phage vectors for cell targeted gene delivery.

    PubMed

    Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew

    2002-03-01

    We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.

  3. A comparison of the intoxication pathways of tumor necrosis factor and diphtheria toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M.P.

    1988-01-01

    The mechanism by which tumor necrosis factor-alpha (TNF) initiates tumor cell destruction is unknown. We have approached this problem by comparing the biological properties of TNF with diphtheria toxin (DTx), a well-characterized cytotoxin. Initial studies with human U937 cells revealed that a transient exposure to low pH enhances the cytotoxic activity of TNF. Detailed studies on the interaction of TNF with pure lipid vesicles revealed that the acid-enhanced cytolytic activity of this cytokine is correlated with the acquisition of membrane binding and insertion properties. Significantly, an increase in target membrane stabilization was observed in the presence of TNF; hence, TNFmore » is not directly lytic for membranes. In susceptible target cells, DTx induces the release of {sup 51}Cr- and {sup 75}Se-labeled proteins within 7 h. Although DTx-triggered cell death has generally been accepted as a straightforward effect of translation inhibition, little or no cell lysis was observed over a 20-30 h period when target cells were exposed to cycloheximide, amino acid deficient medium or metabolic poisons even though protein synthesis was inhibited to levels observed with DTx. The protein synthesis inhibition and cytolytic activities of DTx showed similar dose-dependencies, target cell specificities, and sensitivities to NH{sub 4}Cl inhibition. DTx-induced DNA fragmentation preceded cells lysis and did not occur in cells that were treated with the other protein synthesis inhibitors.« less

  4. RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation

    PubMed Central

    Xie, Qi; Wu, Qiulian; Kim, Leo; Miller, Tyler E.; Liau, Brian B.; Mack, Stephen C.; Yang, Kailin; Factor, Daniel C.; Fang, Xiaoguang; Huang, Zhi; Zhou, Wenchao; Alazem, Kareem; Wang, Xiuxing; Bernstein, Bradley E.; Bao, Shideng; Rich, Jeremy N.

    2016-01-01

    Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor–initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH. PMID:27322055

  5. Sickle red cell-endothelium interactions.

    PubMed

    Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A

    2009-01-01

    Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.

  6. Molecular Pathways: microRNAs, Cancer Cells, and Microenvironment

    PubMed Central

    Berindan-Neagoe, Ioana; Calin, George A.

    2015-01-01

    One of the most unexpected discoveries in molecular oncology over the last decade is the interplay between abnormalities in protein-coding genes and short non-coding microRNAs (miRNAs) that are causally involved in cancer initiation, progression, and dissemination. This phenomenon was initially defined in malignant cells; however, in recent years, more data have accumulated describing the participation of miRNAs produced by microenvironment cells. As hormones, miRNAs are released by a donor cell in various forms of vesicles or as ‘free’ molecules secreted by active mechanisms. These miRNAs spread as signaling molecules that are uptaken either as exosomes or as ‘free’ RNAs by cells located in other parts of the organism. Here, we discuss the communication between cancer cells and the microenvironment through miRNAs. We further expand this in the context of translational consequences and present miRNAs as predictors of therapeutic response and as targeted therapeutics and therapeutic targets in either malignant cells or microenvironment cells. PMID:25512634

  7. Resistance to Cell Death and Its Modulation in Cancer Stem Cells

    PubMed Central

    Safa, Ahmad R.

    2017-01-01

    Accumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways—including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin—and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of treating CSCs. PMID:27915972

  8. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    DTIC Science & Technology

    2017-10-01

    resemble normal stem cells, specifically in the ability to infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer...infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer initiation, progression, recurrence, and chemo...cell population that can infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer initiation, progression, radio

  9. Purine synthesis promotes maintenance of brain tumor initiating cells in glioma.

    PubMed

    Wang, Xiuxing; Yang, Kailin; Xie, Qi; Wu, Qiulian; Mack, Stephen C; Shi, Yu; Kim, Leo J Y; Prager, Briana C; Flavahan, William A; Liu, Xiaojing; Singer, Meromit; Hubert, Christopher G; Miller, Tyler E; Zhou, Wenchao; Huang, Zhi; Fang, Xiaoguang; Regev, Aviv; Suvà, Mario L; Hwang, Tae Hyun; Locasale, Jason W; Bao, Shideng; Rich, Jeremy N

    2017-05-01

    Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.

  10. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth.

    PubMed

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten; Grummt, Ingrid

    2003-02-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases. Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation.

  11. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.

    PubMed

    Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark

    2015-12-15

    Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. © 2015 Authors; published by Portland Press Limited.

  12. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  13. Immunological Targeting of Tumor Initiating Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    clinically using well-accepted immuno-competent animal models. 2) Keywords: Prostate Cancer, Lymphocyte, Vaccine, Antibody 3) Overall Project Summary...castrate animals . Task 1: Identify and verify antigenic targets from CAstrate Resistant Luminal Epithelial Cells (CRLEC) (months 1-16... animals per group will be processed to derive sufficient RNA for microarray analysis; the experiment will be repeated x 3. Microarray analysis will

  14. Controversies in Targeted Therapy of Adult T Cell Leukemia/Lymphoma: ON Target or OFF Target Effects?

    PubMed Central

    Nasr, Rihab; Hajj, Hiba El; Kfoury, Youmna; de Thé, Hugues; Hermine, Olivier; Bazarbachi, Ali

    2011-01-01

    Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL. PMID:21994752

  15. IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER

    PubMed Central

    Wei, Wei; Lewis, Michael T.

    2015-01-01

    Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646

  16. Are Mast Cells MASTers in Cancer?

    PubMed Central

    Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo

    2017-01-01

    Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin’s lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers. PMID:28446910

  17. Are Mast Cells MASTers in Cancer?

    PubMed

    Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo

    2017-01-01

    Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.

  18. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    PubMed Central

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  19. Personalized Medicine-Based Approach to Model Patterns of Chemoresistance and Tumor Recurrence Using Ovarian Cancer Stem Cell Spheroids.

    PubMed

    Raghavan, Shreya; Mehta, Pooja; Ward, Maria R; Bregenzer, Michael E; Fleck, Elyse M A; Tan, Lijun; McLean, Karen; Buckanovich, Ronald J; Mehta, Geeta

    2017-11-15

    Purpose: Chemoresistant ovarian cancers grow in suspension within the ascites fluid. To screen the effect of chemotherapeutics and biologics on resistant ovarian cancers with a personalized basis, we developed a 3D hanging drop spheroid platform. Experimental Design: We initiated spheroids with primary aldehyde dehydrogenase-positive (ALDH + ) CD133 + ovarian cancer stem cells (OvCSC) from different patient samples and demonstrated that stem cell progeny from harvested spheroids was similar to the primary tumor. OvCSC spheroids were utilized to initiate tumors in immunodeficient mice. Drug responses to cisplatin and ALDH-targeting compound or JAK2 inhibitor determined whether the OvCSC population within the spheroids could be targeted. Cells that escaped therapy were isolated and used to initiate new spheroids and model tumor reemergence in a personalized manner. Results: OvCSC spheroids from different patients exhibited varying and personalized responses to chemotherapeutics. Xenografts were established from OvCSC spheroids, even with a single spheroid. Distinct responses to therapy were observed in distinct primary tumor xenografts similar to those observed in spheroids. Spheroids resistant to cisplatin/ALDH inhibitor therapy had persistent, albeit lower ALDH expression and complete loss of CD133 expression, whereas those resistant to cisplatin/JAK2 inhibitor therapy were enriched for ALDH + cells. Conclusions: Our 3D hanging drop suspension platform can be used to propagate primary OvCSCs that represent individual patient tumors effectively by differentiating in vitro and initiating tumors in mice. Therefore, our platform can be used to study cancer stem cell biology and model tumor reemergence to identify new targeted therapeutics from an effective personalized medicine standpoint. Clin Cancer Res; 23(22); 6934-45. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.

    PubMed

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2015-01-15

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. ©2014 American Association for Cancer Research.

  1. Initial targets and cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Rodriguez, Myriam E.; Azizuddin, Kashif; Chiu, Song-mao; Delos Santos, Grace; Joseph, Sheeba; Xue, Liang-yan; Oleinick, Nancy L.

    2007-02-01

    Pc 4, a photosensitizer first synthesized at Case Western Reserve University and now in clinical trial at University Hospitals of Cleveland, has been shown to bind preferentially and with high affinity to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components are photodamaged. In most cancer cells, apoptosis is triggered by the initial photodamage; however, in cells deficient in one of the critical intermediates of apoptosis, this process does not occur, although the cells remain as sensitive to the lethal effects of Pc 4-PDT as the apoptosis-competent cells, when cell death is determined by colony formation. Here we report that an alternative death process, autophagy, is induced in all cells tested and becomes the dominant pathway for elimination of lethally damaged cells when apoptosis is compromised. The anti-apoptotic protein Bcl-2, when overexpressed, protects only apoptosis-competent cells against loss of clonogenicity, while the autophagy inhibitor 3-methyladenine provides a markedly greater protection to apoptosis-deficient cells. The results suggest that the primary determinant of cell death is not the final pathway for elimination of the cells but the initial photodamage to critical membrane targets. In attempts to identify those targets, we have studied the role of different membrane phospholipids in the localization of Pc 4. Cardiolipin (CL) is a phospholipid found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. Previous fluorescence resonance energy transfer studies revealed colocalization of Pc 4 and CL, which points to CL as a possible binding site and target for Pc 4. Unilamellar liposomes with different lipid compositions were used as membrane models to test the affinity of Pc 4. As revealed by the binding constants, Pc 4 does not display preferential binding to CL in these systems. Moreover, binding affinities appear to be independent of lipid composition. Localization of Pc 4 in mitochondrial membranes is likely determined by proteins or other factors not replicated in the liposomes. Studies in cells with modified CL content could report modified binding affinities.

  2. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was amore » positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.« less

  3. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.

    PubMed

    Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R

    2017-08-30

    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem-like cells and inhibition of STAT3 in cancer stem-like cells may offer a potential treatment for colorectal cancer.« less

  5. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry

    PubMed Central

    Zlitni, Aimen; Yin, Melissa; Janzen, Nancy; Chatterjee, Samit; Lisok, Ala; Gabrielson, Kathleen L.; Nimmagadda, Sridhar; Pomper, Martin G.; Foster, F. Stuart

    2017-01-01

    Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes. PMID:28472168

  6. Proteomic Identification of Carbonylated Proteins in 1,3-Dinitrobenzene Neurotoxicity

    PubMed Central

    Steiner, Stephen R.; Philbert, Martin A.

    2011-01-01

    This study demonstrated that 1,3-dinitrobenzene-induced (1,3-DNB) oxidative stress led to the oxidative carbonlyation of specific protein targets in DI TNC1 cells. 1,3-DNB-induced mitochondrial dysfunction, as indicated by loss of tetramethyl rhodamine methyl ester (TMRM) fluorescence, was initially observed at 5 h and coincided with peak reactive oxygen species (ROS) production. ROS production was inhibited in cells pre-treated with the mitochondrial permeability transition (MPT) inhibitor, bonkrekic acid (BkA). Pre-incubation with the antioxidant deferoxamine inhibited loss of TMRM fluorescence until 24 h after initial exposure to 1,3-DNB. Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and subsequent Oxyblot analysis were used to determine if 1,3-DNB exposure led to the formation of protein carbonyls. Exposing DI TNC1 cells to 1,3-DNB led to marked protein carbonylation 45 min following initial exposure. Pre-treatment with deferoxamine or Trolox reduced the intensity of protein carbonylation in DI TNC1 cells exposed to 1mM 1,3-DNB. Tandem MS/MS performed on protein samples isolated from 1,3-DNB-treated cells revealed that specific proteins within the mitochondria, endoplasmic reticulum (ER), and cytosol are targets of protein carbonylation. The results presented in this study are the first to suggest that the molecular mechanism of 1,3-DNB neurotoxicity may occur through selective carbonylation of protein targets found within certain intracellular compartments of susceptible cells. PMID:21402099

  7. Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties.

    PubMed

    Bostad, Monica; Berg, Kristian; Høgset, Anders; Skarpen, Ellen; Stenmark, Harald; Selbo, Pål K

    2013-06-28

    CD133 is a putative cancer stem cell (CSC) marker for a number of different cancers and is suggested to be a therapeutic target. Since also normal stem cells express CD133 it is of paramount importance that targeting strategies provide a specific and efficient delivery of cytotoxic drugs in only CD133-positive CSCs. In this study, we have employed photochemical internalization (PCI), a minimally invasive method for light-controlled, specific delivery of membrane-impermeable macromolecules from endocytic vesicles to the cytosol, to specifically target CD133-positive cancer cells. We demonstrate that PCI increases the cytotoxic effect of an immunotoxin (IT) targeting CD133-expressing cancer cells of colon (WiDr and HCT116) and pancreas (BxPC-3) origin. The IT consisted of the mAb CD133/1 (AC133) bound to the ribosome inactivating plant toxin saporin (anti-CD133/1-sap). We show that TPCS2a-PCI of anti-CD133/1-sap is specific, and highly cytotoxic at femto-molar concentrations. Specific binding and uptake of CD133/1, was shown by fluorescence microscopy and co-localization with TPCS2a in endosomes/lysosomes was determined by confocal microscopy. CD133(high) WiDr cells, isolated by fluorescence activated cell sorting, had a 7-fold higher capacity to initiate spheroids than CD133(low) cells (P<0.001) and were resistant to photodynamic therapy (PDT). However, PDT-resistance was bypassed by the PCI strategy. Tumor initiation and aggressive growth in athymic nude mice was obtained with only 10 CD133(high) cells in contrast to CD133(low) cells where substantially higher cell numbers were needed. The excellent high efficacy and selectivity of eliminating CD133-expressing cells by PCI warrant further pre-clinical evaluations of this novel therapeutic approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Identification of cancer specific ligands from one-bead one compound combinatorial libraries to develop theranostics agents against oral squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Frances Fan

    Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent disease worldwide. One-bead one-compound (OBOC) combinatorial technology is a powerful method to identify peptidomimetic ligands against a variety of receptors on cell surfaces. We therefore hypothesized that cancer specific ligands against OSCC might be identified and can be conjugated to optical dyes or nanocarriers to develop theranostic agents against OSCC. Material and methods: Different OSCC cell lines were incubated with OBOC libraries and beads with cell binding were sorted and then screened with normal human cells to identify peptide-beads binding to different OSCC cell lines but not binding to normal human cells. The molecular probes of OSCC were developed by biotinylating the carboxyl end of the ligands. OSCC theranostic agents were developed by decorating LLY13 with NPs and evaluated by using orthotopic bioluminescent oral cancer model. Results: Six OSCC specific ligands were discovered. Initial peptide-histochemistry study indicated that LLY12 and LLY13 were able to specifically detect OSCC cells grown on chamber slides at the concentration of 1 muM. In addition, LLY13 was found to penetrate into the OSCC cells and accumulate in the cytoplasm, and nucleus. After screened with a panel of integrin antibodies, only anti-alpha3 antibody was able to block most of OSCC cells binding to the LLY13 beads. OSCC theranostic agents developed using targeting LLY13 micelles (25+/- 4nm in diameter) were more efficient in binding to HSC-3 cancer cells compared to non-targeting micelles. Ex vivo images demonstrated that xenografts from the mice with targeting micelles appeared to have higher signals than the non-targeting groups. Conclusion: LLY13 has promising in vitro and in vivo targeting activity against OSCC. In addition, LLY13 is also able to penetrate into cancer cells via endocytosis. Initial study indicated that alpha3 integrin might partially be the corresponding receptor involved for LLY13's binding to oral cancer cells. OSCC ligands developed from this study may become potential candidates for the development of OSCC targeted theranostic agents.

  9. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters.

    PubMed

    Baseler, Laura; Scott, Dana P; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz; de Wit, Emmie

    2016-11-01

    Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

  10. Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion.

    PubMed

    Usta, O Berk; Alexeev, Alexander; Zhu, Guangdong; Balazs, Anna C

    2008-03-01

    Using simulation and theory, we demonstrate how nanoparticles can be harnessed to regulate the interaction between two initially stationary microcapsules on a surface and promote the self-propelled motion of these capsules along the substrate. The first microcapsule, the "signaling" capsule, encases nanoparticles, which diffuse from the interior of this carrier and into the surrounding solution; the second capsule is the "target" capsule, which is initially devoid of particles. Nanoparticles released from the signaling capsule modify the underlying substrate and thereby initiate the motion of the target capsule. The latter motion activates hydrodynamic interactions, which trigger the signaling capsule to follow the target. The continued release of the nanoparticles sustains the motion of both capsules. In effect, the system constitutes a synthetic analogue of biological cell signaling and our findings can shed light on fundamental physical forces that control interactions between cells. Our findings can also yield guidelines for manipulating the interactions of synthetic microcapsules in microfluidic devices.

  11. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation

    PubMed Central

    Ding, Xavier C.; Slack, Frank J.; Großhans, Helge

    2010-01-01

    MicroRNAs (miRNAs) are noncoding RNAs that regulate numerous target genes through a posttranscriptional mechanism and thus control major developmental pathways. The phylogenetically conserved let-7 miRNA regulates cell proliferation and differentiation, thus functioning as a key regulator of developmental timing in C. elegans and a tumor suppressor gene in humans. Using a reverse genetic screen, we have identified genetic interaction partners of C. elegans let-7, including known and novel potential target genes. Initial identification of several translation initiation factors as suppressors of a let-7 mutation led us to systematically examine genetic interaction between let-7 and the translational machinery, which we found to be widespread. In the presence of wild-type let-7, depletion of the translation initiation factor eIF3 resulted in precocious cell differentiation, suggesting that developmental timing is translationally regulated, possibly by let-7. As overexpression of eIF3 in humans promotes translation of mRNAs that are also targets of let-7-mediated repression, we suggest that eIF3 may directly or indirectly oppose let-7 activity. This might provide an explanation for the opposite functions of let-7 and eIF3 in regulating tumorigenesis. PMID:18818519

  12. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  13. Targeting ADAM17 inhibits human colorectal adenocarcinoma progression and tumor-initiating cell frequency.

    PubMed

    Dosch, Joseph; Ziemke, Elizabeth; Wan, Shanshan; Luker, Kathryn; Welling, Theodore; Hardiman, Karin; Fearon, Eric; Thomas, Suneetha; Flynn, Matthew; Rios-Doria, Jonathan; Hollingsworth, Robert; Herbst, Ronald; Hurt, Elaine; Sebolt-Leopold, Judith

    2017-09-12

    ADAM17 (a disintegrin and metalloproteinase 17)/TACE (TNFα converting enzyme) has emerged as a potential therapeutic target in colorectal cancer (CRC) and other cancers, due in part to its role in regulating various tumor cell surface proteins and growth factors and cytokines in the tumor microenvironment. The emergence of MEDI3622, a highly potent and specific antibody-based ADAM17 inhibitor, has allowed testing of the concept that targeting ADAM17 may be an important new therapeutic approach for CRC patients. We demonstrate that MEDI3622 is highly efficacious on tumor growth in multiple human CRC PDX models, resulting in improved survival of animals bearing tumor xenografts. MEDI3622 was further found to impact Notch pathway activity and tumor-initiating cells. The promising preclinical activity seen here supports further clinical investigation of this treatment approach to improve therapeutic outcome for patients diagnosed with metastatic CRC, including patients with KRAS-mutant tumors for whom other therapeutic options are currently limited.

  14. Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  15. In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space.

    PubMed

    Gu, Bobo; Pliss, Artem; Kuzmin, Andrey N; Baev, Alexander; Ohulchanskyy, Tymish Y; Damasco, Jossana A; Yong, Ken-Tye; Wen, Shuangchun; Prasad, Paras N

    2016-10-01

    This paper introduces the concept of in-situ upconversion of deep penetrating near infrared light via second harmonic generation from ZnO nanocrystals delivered into cells to effect photo activated therapies, such as photodynamic therapy, which usually require activation by visible light with limited penetration through biological tissues. We demonstrated this concept by subcellular activation of a photodynamic therapy drug, Chlorin e6, excited within its strong absorption Soret band by the second harmonic (SH) light, generated at 409 nm by ZnO nanocrystals, which were targeted to cancer cells and internalized through the folate-receptor mediated endocytosis. By a combination of theoretical modeling and experimental measurements, we show that SH light, generated in-situ by ZnO nanocrystals significantly contributes to activation of photosensitizer, leading to cell death through both apoptotic and necrotic pathways initiated in the cytoplasm. This targeted photodynamic action was studied using label-free Coherent Anti-Stokes Raman Scattering imaging of the treated cells to monitor changes in the distribution of native cellular proteins and lipids. We found that initiation of photodynamic therapy with upconverted light led to global reduction in the intracellular concentration of macromolecules, likely due to suppression of proteins and lipids synthesis, which could be considered as a real-time indicator of cellular damage from photodynamic treatment. In prospective applications this in-situ photon upconversion could be further extended using ZnO nanocrystals surface functionalized with a specific organelle targeting group, provided a powerful approach to identify and consequently maximize a cellular response to phototherapy, selectively initiated in a specific cellular organelle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The targeting mechanism of DHA ligand and its conjugate with Gemcitabine for the enhanced tumor therapy

    PubMed Central

    Li, Siwen; Qin, Jingyi; Tian, Caiping; Cao, Jie; Fida, Guissi; Wang, Zhaohui; Chen, Haiyan; Qian, Zhiyu; Chen, Wei R; Gu, Yueqing

    2014-01-01

    Docosahexaenoic acid (DHA), an omega-3 C22 natural fatty acid serving as a precursor for metabolic and biochemical pathways, was reported as a targeting ligand of anticancer drugs. However, its tumor targeting ability and mechanism has not been claimed. Here we hypothesized that the uptake of DHA by tumor cells is related to the phosphatidylethanolamine (PE) contents in cell membranes. Thus, in this manuscript, the tumor-targeting ability of DHA was initially demonstrated in vitro and in vivo on different tumor cell lines by labeling DHA with fluorescence dyes. Subsequently, the tumor targeting ability was then correlated with the contents of PE in cell membranes to study the uptake mechanism. Further, DHA was conjugated with anticancer drug gemcitabine (DHA-GEM) for targeted tumor therapy. Our results demonstrated that DHA exhibited high tumor targeting ability and PE is the main mediator, which confirmed our hypothesis. The DHA-GEM displayed enhanced therapeutic efficacy than that of GEM itself, indicating that DHA is a promising ligand for tumor targeted therapy. PMID:25004114

  17. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE PAGES

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; ...

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  18. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  19. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress.

    PubMed

    Chernyak, Boris V; Izyumov, Denis S; Lyamzaev, Konstantin G; Pashkovskaya, Alina A; Pletjushkina, Olga Y; Antonenko, Yuri N; Sakharov, Dmitrii V; Wirtz, Karel W A; Skulachev, Vladimir P

    2006-01-01

    Mitochondria can be a source of reactive oxygen species (ROS) and a target of oxidative damage during oxidative stress. In this connection, the effect of photodynamic treatment (PDT) with Mitotracker Red (MR) as a mitochondria-targeted photosensitizer has been studied in HeLa cells. It is shown that MR produces both singlet oxygen and superoxide anion upon photoactivation and causes photoinactivation of gramicidin channels in a model system (planar lipid bilayer). Mitochondria-targeted antioxidant (MitoQ) inhibits this effect. In living cells, MR-mediated PDT initiates a delayed ("dark") accumulation of ROS, which is accelerated by inhibitors of the respiratory chain (piericidin, rotenone and myxothiazol) and inhibited by MitoQ and diphenyleneiodonium (an inhibitor of flavin enzymes), indicating that flavin of Complex I is involved in the ROS production. PDT causes necrosis that is prevented by MitoQ. Treatment of the cell with hydrogen peroxide causes accumulation of ROS, and the effects of inhibitors and MitoQ are similar to that described for the PDT model. Apoptosis caused by H2O2 is augmented by the inhibitors of respiration and suppressed by MitoQ. It is concluded that the initial segments of the respiratory chain can be an important source of ROS, which are targeted to mitochondria, determining the fate of the cell subjected to oxidative stress.

  20. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae

    PubMed Central

    Prasai, Kanchanjunga; Robinson, Lucy C.; Scott, Rona S.; Tatchell, Kelly

    2017-01-01

    Abstract The mechanism of mitochondrial DNA (mtDNA) replication in Saccharomyces cerevisiae is controversial. Evidence exists for double-strand break (DSB) mediated recombination-dependent replication at mitochondrial replication origin ori5 in hypersuppressive ρ− cells. However, it is not clear if this replication mode operates in ρ+ cells. To understand this, we targeted bacterial Ku (bKu), a DSB binding protein, to the mitochondria of ρ+ cells with the hypothesis that bKu would bind persistently to mtDNA DSBs, thereby preventing mtDNA replication or repair. Here, we show that mitochondrial-targeted bKu binds to ori5 and that inducible expression of bKu triggers petite formation preferentially in daughter cells. bKu expression also induces mtDNA depletion that eventually results in the formation of ρ0 cells. This data supports the idea that yeast mtDNA replication is initiated by a DSB and bKu inhibits mtDNA replication by binding to a DSB at ori5, preventing mtDNA segregation to daughter cells. Interestingly, we find that mitochondrial-targeted bKu does not decrease mtDNA content in human MCF7 cells. This finding is in agreement with the fact that human mtDNA replication, typically, is not initiated by a DSB. Therefore, this study provides evidence that DSB-mediated replication is the predominant form of mtDNA replication in ρ+ yeast cells. PMID:28549155

  1. A 20-Amino Acid Module of Protein Kinase Cϵ Involved in Translocation and Selective Targeting at Cell-Cell Contacts*

    PubMed Central

    Diouf, Barthélémy; Collazos, Alejandra; Labesse, Gilles; Macari, Françoise; Choquet, Armelle; Clair, Philippe; Gauthier-Rouvière, Cécile; Guérineau, Nathalie C.; Jay, Philippe; Hollande, Frédéric; Joubert, Dominique

    2009-01-01

    In the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (α and ϵ) or at the entire plasma membrane (β1 and δ). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCϵ of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCδ, chimerin-α1, and the PKCϵ C1 domain to the cell-cell contact. We show that this selective targeting of PKCϵ is lost upon overexpression of 3CTS fused to a (R-Ahx-R)4 (where Ahx is 6-aminohexanoic acid) vectorization peptide, reflecting a dominant-negative effect of the overexpressed 3CTS on targeting selectivity. 3CTS contains a putative amphipathic α-helix, a 14-3-3-binding site, and the Glu-374 amino acid, involved in targeting selectivity. We show that the integrity of the α-helix is important for translocation but that 14-3-3 is not involved in targeting selectivity. However, PKCϵ translocation is increased when PKCϵ/14-3-3 interaction is abolished, suggesting that phorbol 12-myristate 13-acetate activation may initiate two sets of PKCϵ functions, those depending on 14-3-3 and those depending on translocation to cell-cell contacts. Thus, 3CTS is involved in the modulation of translocation via its 14-3-3-binding site, in cytoplasmic desequestration via the α-helix, and in selective PKCϵ targeting at the cell-cell contact via Glu-374. PMID:19429675

  2. Variation in Prescribing Patterns and Therapeutic Drug Monitoring of Intravenous Busulfan in Pediatric Hematopoietic Cell Transplant Recipients

    PubMed Central

    McCune, Jeannine S.; Baker, K. Scott; Blough, David K.; Gamis, Alan; Bemer, Meagan J.; Kelton-Rehkopf, Megan C.; Winter, Laura; Barrett, Jeffrey S.

    2016-01-01

    Personalizing intravenous (IV) busulfan doses in children using therapeutic drug monitoring (TDM) is an integral component of hematopoietic cell transplant. The authors sought to characterize initial dosing and TDM of IV busulfan, along with factors associated with busulfan clearance, in 729 children who underwent busulfan TDM from December 2005 to December 2008. The initial IV busulfan dose in children weighing ≤12 kg ranged 4.8-fold, with only 19% prescribed the package insert dose of 1.1 mg/kg. In those children weighing >12 kg, the initial dose ranged 5.4-fold, and 79% were prescribed the package insert dose. The initial busulfan dose achieved the target exposure in only 24.3% of children. A wide range of busulfan exposures were targeted for children with the same disease (eg, 39 target busulfan exposures for the 264 children diagnosed with acute myeloid leukemia). Considerable heterogeneity exists regarding when TDM is conducted and the number of pharmacokinetic samples obtained. Busulfan clearance varied by age and dosing frequency but not by underlying disease. The authors’ group is currently evaluating how using population pharmacokinetics to optimize initial busulfan dose and TDM (eg, limited sampling schedule in conjunction with maximum a posteriori Bayesian estimation) may affect clinical outcomes in children. PMID:23444282

  3. Cancer stem cells (CSCs), cervical CSCs and targeted therapies.

    PubMed

    Huang, Ruixia; Rofstad, Einar K

    2017-05-23

    Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain "purified" CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma.

  4. Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends

    PubMed Central

    Zhou, Qing; Gu, Jianhua; Lun, Zhao-Rong; Ayala, Francisco J.; Li, Ziyin

    2016-01-01

    Cytokinesis in Trypanosoma brucei, an early branching protozoan, occurs along its longitudinal axis uni-directionally from the anterior tip of the new flagellum attachment zone filament toward the cell’s posterior end. However, the underlying mechanisms remain elusive. Here we report that cytokinesis in T. brucei is regulated by a concerted action of Polo-like kinase, Aurora B kinase, and a trypanosome-specific protein CIF1. Phosphorylation of CIF1 by Polo-like kinase targets it to the anterior tip of the new flagellum attachment zone filament, where it subsequently recruits Aurora B kinase to initiate cytokinesis. Consistent with its role, CIF1 depletion inhibits cytokinesis initiation from the anterior end of the cell, but, surprisingly, triggers cytokinesis initiation from the posterior end of the cell, suggesting the activation of an alternative cytokinesis from the opposite cell end. Our results reveal the mechanistic roles of CIF1 and Polo-like kinase in cytokinesis initiation and elucidate the mechanism underlying the recruitment of Aurora B kinase to the cytokinesis initiation site at late anaphase. These findings also delineate a signaling cascade controlling cytokinesis initiation from the anterior end of the cell and uncover a backup cytokinesis that is initiated from the posterior end of the cell when the typical anterior-to-posterior cytokinesis is compromised. PMID:26929336

  5. CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide.

    PubMed

    Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok

    2014-05-01

    Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. We isolated CD133(+) cells from a spontaneous pancreatic ductal adenocarcinoma mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133(+) cells in immune competent mice. Effect of Minnelide, a drug currently under phase I clinical trial, was studied on the tumors derived from the CD133(+) cells. Our study showed for the first time that CD133(+) population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of prosurvival and proinvasive proteins compared to the CD133(-) non-TIC population. Our study further showed that Minnelide was very efficient in downregulating both CD133(-) and CD133(+) population in the tumors, resulting in a 60% decrease in tumor volume compared with the untreated ones. As Minnelide is currently under phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. ©2014 AACR.

  6. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    NASA Astrophysics Data System (ADS)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07923c

  7. CRISPRi and CRISPRa: New Functional Genomics Tools Provide Complementary Insights into Cancer Biology and Therapeutic Strategies | Office of Cancer Genomics

    Cancer.gov

    A central goal of research for targeted cancer therapy, or precision oncology, is to reveal the intrinsic vulnerabilities of cancer cells and exploit them as therapeutic targets. Examples of cancer cell vulnerabilities include driver oncogenes that are essential for the initiation and progression of cancer, or non-oncogene addictions resulting from the cancerous state of the cell. To identify vulnerabilities, scientists perform genetic “loss-of-function” and “gain-of-function” studies to better understand the roles of specific genes in cancer cells.

  8. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus.

    PubMed

    Bach, Patricia; Abel, Tobias; Hoffmann, Christopher; Gal, Zoltan; Braun, Gundula; Voelker, Iris; Ball, Claudia R; Johnston, Ian C D; Lauer, Ulrich M; Herold-Mende, Christel; Mühlebach, Michael D; Glimm, Hanno; Buchholz, Christian J

    2013-01-15

    Tumor-initiating cells (TIC) are critical yet evasive targets for the development of more effective antitumoral strategies. The cell surface marker CD133 is frequently used to identify TICs of various tumor entities, including hepatocellular cancer and glioblastoma. Here, we describe oncolytic measles viruses (MV) retargeted to CD133. The viruses, termed MV-141.7 and MV-AC133, infected and selectively lysed CD133(+) tumor cells. Both viruses exerted strong antitumoral effects on human hepatocellular carcinoma growing subcutaneously or multifocally in the peritoneal cavity of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Notably, the CD133-targeted viruses were more effective in prolonging survival than the parental MV-NSe, which is currently assessed as oncolytic agent in clinical trials. Interestingly, target receptor overexpression or increased spreading kinetics through tumor cells were excluded as being causative for the enhanced oncolytic activity of CD133-targeted viruses. MV-141.7 was also effective in mouse models of orthotopic glioma tumor spheres and primary colon cancer. Our results indicate that CD133-targeted measles viruses selectively eliminate CD133(+) cells from tumor tissue, offering a key tool for research in tumor biology and cancer therapy.

  9. Combining Cell Type-Restricted Adenoviral Targeting with Immunostaining and Flow Cytometry to Identify Cells-of-Origin of Lung Cancer.

    PubMed

    Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D

    2018-01-01

    Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.

  10. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme.

    PubMed

    Xing, Ai-Yan; Shi, Duan-bo; Liu, Wei; Chen, Xu; Sun, Yan-Lin; Wang, Xiao; Zhang, Jian-ping; Gao, Peng

    2013-06-01

    One of the main mechanisms for multidrug resistance (MDR) involves multidrug resistance gene 1 (MDR1) which encodes P-glycoprotein (Pgp). Pgp acts as a drug efflux pump and exports chemotherapeutic agents from cancer cells. Specific inhibition of Pgp expression by gene therapy is considered a well-respective strategy having less innate toxicities. At present, the investigation of DRz in reversal MDR is scarce. In the study, phosphorothioate DRz that targets to the translation initiation codon AUG was synthesized and transfected into breast cancer cells and leukemia cells with MDR phenotype. ASODN (antisense oligonucleotide) and ribozyme targets to the same region were also synthesized for comparison analysis. Alterations in MDR1 mRNA and Pgp were determined by RT-PCR, Northern blot, flow cytometry and Rh123 retention tests. Chemosensitivity of the treated cells was determined by MTT assay. The results showed that DRz could significantly suppress expression of MDR1 mRNA and inhibit synthesis of Pgp. The efflux activity of Pgp was inhibited accordingly. Chemosensitivity assay showed that a 21-fold reduction in drug resistance for Adriamycin and a 45-fold reduction in drug resistance for Vinblastine were found in the treated cells 36h after transfection. These data suggest that DRz targeted to the translation initiation codon AUG can reverse MDR phenotype in cancer cells and restore their chemosensitivity. Moreover, the reversal efficiency of DRz is better than that of ribozyme and ASODN targets to the same region of MDR1 mRNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  12. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives

    PubMed Central

    Labusca, Luminita; Herea, Dumitru Daniel; Mashayekhi, Kaveh

    2018-01-01

    The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications. PMID:29849930

  13. A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality.

    PubMed

    Grassian, A R; Scales, T M E; Knutson, S K; Kuntz, K W; McCarthy, N J; Lowe, C E; Moore, J D; Copeland, R A; Keilhack, H; Smith, J J; Wickenden, J A; Ribich, S

    2015-01-01

    Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for proliferation or survival. In our initial studies using CRISPR-Cas9 to verify the dependence on EZH2 activity for proliferation of a SMARCB1/SNF5/INI1 mutant malignant rhabdoid tumor (MRT) cell line, we noted that the initial reduction in proliferation was lost over time. We hypothesized that in the few cells that retain proliferative capacity, at least one allele of EZH2 remains functional. To verify this, we developed an assay to analyze 10s-100s of clonal cell populations for target gene disruption using restriction digest and fluorescent fragment length analyses. Our results clearly show that in cell lines in which EZH2 is essential for proliferation, at least one potentially functional allele of EZH2 is retained in the clones that survive. This assay clearly indicates whether or not a specific gene is essential for survival and/or proliferation in a given cell line. Such data can aid the development of more robust therapeutics by increasing confidence in target selection.

  14. Mo99 Production Plant Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Naranjo, Angela Carol

    The NorthStar Medical Technologies 99Mo production facility configuration is envisioned to be 8 accelerator pairs irradiating 7 100Mo targets (one spare accelerator pair undergoing maintenance while the other 7 pairs are irradiating targets). The required shielding in every direction for the accelerators is initially estimated to be 10 feet of concrete. With the accelerator pairs on one (ground) level and spaced with the required shielding between adjacent pairs, the only practical path for target insertion and removal while minimizing floor space is vertical. The current scheme then requires a target vertical lift of nominally 10 feet through a shield stack.more » It is envisioned that the lift will be directly into a hot cell where an activated target can be removed from its holder and a new target attached and lowered. The hot cell is on a rail system so that a single hot cell can service all active target locations, as well as deliver the ready targets to the separations lab. On this rail system, coupled to the hot cell, will be a helium recovery and clean-up system. All helium coolant equipment is located on the upper level near to the target removal point.« less

  15. Cellular reprogramming in skin cancer.

    PubMed

    Song, Ihn Young; Balmain, Allan

    2015-06-01

    Early primitive stem cells have long been viewed as the cancer cells of origin (tumor initiating target cells) due to their intrinsic features of self-renewal and longevity. However, emerging evidence suggests a surprising capacity for normal committed cells to function as reserve stem cells upon reprogramming as a consequence of tissue damage resulting in inflammation and wound healing. This results in an alternative concept positing that tumors may originate from differentiated cells that can re-acquire stem cell properties due to genetic or epigenetic reprogramming. It is likely that both models are correct, and that a continuum of potential cells of origin exists, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells. A combination of the nature of the target cell and the specific types of gene mutations introduced determine tumor cell lineage, as well as potential for malignant conversion. Evidence from mouse skin models of carcinogenesis suggests that initiated cells at different stages within a stem cell hierarchy have varying degrees of requirement for reprogramming (e.g. inflammation stimuli), depending on their degree of differentiation. This article will present evidence in favor of these concepts that has been developed from studies of several mouse models of skin carcinogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Interruption of the Sequential Release of Small and Large Molecules from Tumor Cells by Low Temperature During Cytolysis Mediated by Immune T-Cells or Complement

    PubMed Central

    Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj

    1974-01-01

    Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327

  17. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  18. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  19. Droplet microfluidics for amplification-free genetic detection of single cells.

    PubMed

    Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei

    2012-09-21

    In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.

  20. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.

    PubMed

    Goolam, Mubeen; Scialdone, Antonio; Graham, Sarah J L; Macaulay, Iain C; Jedrusik, Agnieszka; Hupalowska, Anna; Voet, Thierry; Marioni, John C; Zernicka-Goetz, Magdalena

    2016-03-24

    The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  2. Abolition of Peroxiredoxin-5 Mitochondrial Targeting during Canid Evolution

    PubMed Central

    Van der Eecken, Valérie; Clippe, André; Dekoninck, Sophie; Goemaere, Julie; Walbrecq, Geoffroy; Van Veldhoven, Paul P.; Knoops, Bernard

    2013-01-01

    In human, the subcellular targeting of peroxiredoxin-5 (PRDX5), a thioredoxin peroxidase, is dependent on the use of multiple alternative transcription start sites and two alternative in-frame translation initiation sites, which determine whether or not the region encoding a mitochondrial targeting sequence (MTS) is translated. In the present study, the abolition of PRDX5 mitochondrial targeting in dog is highlighted and the molecular mechanism underlying the loss of mitochondrial PRDX5 during evolution is examined. Here, we show that the absence of mitochondrial PRDX5 is generalized among the extant canids and that the first events leading to PRDX5 MTS abolition in canids involve a mutation in the more 5′ translation initiation codon as well as the appearance of a STOP codon. Furthermore, we found that PRDX5 MTS functionality is maintained in giant panda and northern elephant seal, which are phylogenetically closely related to canids. Also, the functional consequences of the restoration of mitochondrial PRDX5 in dog Madin-Darby canine kidney (MDCK) cells were investigated. The restoration of PRDX5 mitochondrial targeting in MDCK cells, instead of protecting, provokes deleterious effects following peroxide exposure independently of its peroxidase activity, indicating that mitochondrial PRDX5 gains cytotoxic properties under acute oxidative stress in MDCK cells. Altogether our results show that, although mitochondrial PRDX5 cytoprotective function against oxidative stress has been clearly demonstrated in human and rodents, PRDX5 targeting to mitochondria has been evolutionary lost in canids. Moreover, restoration of mitochondrial PRDX5 in dog MDCK cells, instead of conferring protection against peroxide exposure, makes them more vulnerable. PMID:24023783

  3. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    PubMed Central

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to the inhibition of protein synthesis, using multiple independent approaches. Our findings have important clinical implications, since they may also explain the positive therapeutic effects of PI3-kinase inhibitors and AKT inhibitors, as they ultimately converge on mTOR signaling and would block protein synthesis. We conclude that inhibition of mRNA translation by pharmacological or protein/methionine restriction may be effective strategies for eliminating TICs. Our data also indicate a novel mechanism by which caloric/protein restriction may reduce tumor growth, by targeting protein synthesis in anabolic tumor-initiating cancer cells. PMID:25671304

  4. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment.

    PubMed

    Willis, Rudolph E

    2016-09-14

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.

  5. Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key.

    PubMed

    Bansal, Meena B

    2016-11-01

    Since their original identification, our understanding of the role of hepatic stellate cells in both health and disease continues to grow. Numerous studies have delineated the role of stellate cell activation in contributing to the pool of myofibroblasts responsible for liver fibrosis, and these have resulted in the development of a number of anti-fibrotic strategies targeting this cell. However, their potential role in liver regeneration, both initiation and termination, is also emerging and needs to be contemplated when considering targeted therapy. Perhaps what is most striking is the increasing recognition that this is not just one cell, but rather, a heterogenous population made up of a number of different subsets of cells, each with differentiated and specific functions. The tools are emerging for this dissection and are greatly needed to truly develop targeted therapies that will inhibit fibrosis while promoting liver regeneration and repair.

  6. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  7. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Pharmaceuticals

    EPA Science Inventory

    Adverse effects of many chemical contaminants, including human pharmaceuticals and other chemicals of emerging concern (CECs), are initiated through interactions with specific proteins within the cells of effected organisms. When protein targets of a given chemical are known--as ...

  8. Yeast as a potential vehicle for neglected tropical disease drug discovery.

    PubMed

    Denny, P W; Steel, P G

    2015-01-01

    High-throughput screening (HTS) efforts for neglected tropical disease (NTD) drug discovery have recently received increased attention because several initiatives have begun to attempt to reduce the deficit in new and clinically acceptable therapies for this spectrum of infectious diseases. HTS primarily uses two basic approaches, cell-based and in vitro target-directed screening. Both of these approaches have problems; for example, cell-based screening does not reveal the target or targets that are hit, whereas in vitro methodologies lack a cellular context. Furthermore, both can be technically challenging, expensive, and difficult to miniaturize for ultra-HTS [(u)HTS]. The application of yeast-based systems may overcome some of these problems and offer a cost-effective platform for target-directed screening within a eukaryotic cell context. Here, we review the advantages and limitations of the technologies that may be used in yeast cell-based, target-directed screening protocols, and we discuss how these are beginning to be used in NTD drug discovery. © 2014 Society for Laboratory Automation and Screening.

  9. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. Copyright © 2016, American Association for the Advancement of Science.

  10. Medulloblastoma stem cells: Promising targets in medulloblastoma therapy.

    PubMed

    Huang, Guo-Hao; Xu, Qing-Fu; Cui, You-Hong; Li, Ningning; Bian, Xiu-Wu; Lv, Sheng-Qing

    2016-05-01

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite great improvements in the therapeutic regimen, relapse and leptomeningeal dissemination still pose great challenges to the long-term survival of MB patients. Developing more effective strategies has become extremely urgent. In recent years, a number of malignancies, including MB, have been found to contain a subpopulation of cancer cells known as cancer stem cells (CSCs), or tumor initiating/propagating cells. The CSCs are thought to be largely responsible for tumor initiation, maintenance, dissemination, and relapse; therefore, their pivotal roles have revealed them to be promising targets in MB therapy. Our growing understanding of the major medulloblastoma molecular subgroups and the derivation of some of these groups from specific stem or progenitor cells adds additional layers to the CSC knowledge base. Herein we review the current knowledge of MB stem cells, highlight the molecular mechanisms relating to MB relapse and leptomeningeal dissemination, and incorporate these with the need to develop more effective and accurate therapies for MB patients. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  12. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  13. MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2.

    PubMed

    Xu, Guodong; Shao, Guofeng; Pan, Qiaoling; Sun, Lebo; Zheng, Dawei; Li, Minghui; Li, Ni; Shi, Huoshun; Ni, Yiming

    2017-01-01

    MicroRNAs (miRNAs) play a critical role in cancer development and progression. Bioinformatics analyses has identified eukaryotic translation initiation factor 5A2 (eIF5A2) as a target of miR-9. In this study, we attempted to determine whether miR-9 regulates non-small cell lung cancer (NSCLC) cell invasion and migration by targeting eIF5A2 We examined eIF5A2 expression using reverse transcription-quantitative PCR (RT-qPCR) and subsequently transfected A549 and NCI-H1299 NSCLC cells with a miR-9 mimic or miR-9 inhibitor to determine the migration and invasive capability of the cells via wound healing assay and Transwell invasion assay, respectively. E-cadherin and vimentin expression was detected with western blotting. The miR-9 mimic significantly reduced NSCLC cell invasive and metastatic ability, and the miR-9 inhibitor enhanced NSCLC cell migration activity, increasing the number of migrated cells. There was no significant difference between the negative control siRNA and miR-9 mimic groups after knockdown of eIF5A2; western blotting showed that miR-9 regulated E-cadherin and vimentin expression. These data show that miR-9 regulates NSCLC cell invasion and migration through regulating eIF5A2 expression. Taken together, our findings suggest that the mechanism of miR-9-regulated NSCLC cell invasion and migration may be related to epithelial-mesenchymal transition.

  14. Targeting Leukemia Stem Cells in the Bone Marrow Niche

    PubMed Central

    Bornhäuser, Martin

    2018-01-01

    The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic. PMID:29466292

  15. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    PubMed

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  16. Tumor-targeted IL-2 amplifies T cell-mediated immune response induced by gene therapy with single-chain IL-12

    PubMed Central

    Lode, Holger N.; Xiang, Rong; Duncan, Steven R.; Theofilopoulos, Argyrios N.; Gillies, Stephen D.; Reisfeld, Ralph A.

    1999-01-01

    Induction, maintenance, and amplification of tumor-protective immunity after cytokine gene therapy is essential for the clinical success of immunotherapeutic approaches. We investigated whether this could be achieved by single-chain IL-12 (scIL-12) gene therapy followed by tumor-targeted IL-2 using a fusion protein containing a tumor-specific recombinant anti-ganglioside GD2 antibody and IL-2 (ch14.18-IL-2) in a poorly immunogenic murine neuroblastoma model. Herein, we demonstrate the absence of liver and bone marrow metastases after a lethal challenge with NXS2 wild-type cells only in mice (five of six animals) vaccinated with scIL-12-producing NXS2 cells and given a booster injection of low-dose ch14.18-IL-2 fusion protein. This tumor-protective immunity was effective 3 months after initial vaccination, in contrast to control animals treated with a nonspecific fusion protein or an equivalent mixture of antibody and IL-2. Only vaccinated mice receiving the tumor-specific ch14.18-IL-2 fusion protein revealed a reactivation of CD8+ T cells and subsequent MHC class I-restricted tumor target cell lysis in vitro. The sequential increase in the usage of TCR chains Vβ11 and -13 in mouse CD8+ T cells after vaccination and amplification with ch14.18-IL-2 suggests that the initial polyclonal CD8+ T cell response is effectively boosted by targeted IL-2. In conclusion, we demonstrate that a successful boost of a partially protective memory T cell immune response that is induced by scIL-12 gene therapy could be generated by tumor-specific targeting of IL-2 with a ch14.18-IL-2 fusion protein. This approach could increase success rates of clinical cancer vaccine trials. PMID:10411920

  17. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells are undifferentiated epithelial cells which initiate mammary tumors and render them resistant to anticancer therapies, when deregulated. Diets rich in fruits and vegetables are implicated in breast cancer risk reduction, yet underlying mechanisms are poorly understood. Here, we ad...

  18. Targeting the latest hallmark of cancer: another attempt at 'magic bullet' drugs targeting cancers' metabolic phenotype.

    PubMed

    Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N

    2012-10-01

    The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.

  19. Controversies in cancer stem cells: targeting embryonic signaling pathways.

    PubMed

    Takebe, Naoko; Ivy, S Percy

    2010-06-15

    Selectively targeting cancer stem cells (CSC) or tumor-initiating cells (TIC; from this point onward referred to as CSCs) with novel agents is a rapidly emerging field of oncology. Our knowledge of CSCs and their niche microenvironments remains a nascent field. CSC's critical dependence upon self-renewal makes these regulatory signaling pathways ripe for the development of experimental therapeutic agents. Investigational agents targeting the Notch, Hedgehog, and Wnt pathways are currently in late preclinical development stages, with some early phase 1-2 testing in human subjects. This series of articles will provide an overview and summary of the current state of knowledge of CSCs, their interactive microenvironment, and how they may serve as important targets for antitumor therapies. We also examine the scope and stage of development of early experimental agents that specifically target these highly conserved embryonic signaling pathways. (c) 2010 AACR.

  20. Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells

    PubMed Central

    Azizi, Ali; Kumar, Ashok; Diaz-Mitoma, Francisco; Mestecky, Jiri

    2010-01-01

    The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells. PMID:21085599

  1. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae.

    PubMed

    Prasai, Kanchanjunga; Robinson, Lucy C; Scott, Rona S; Tatchell, Kelly; Harrison, Lynn

    2017-07-27

    The mechanism of mitochondrial DNA (mtDNA) replication in Saccharomyces cerevisiae is controversial. Evidence exists for double-strand break (DSB) mediated recombination-dependent replication at mitochondrial replication origin ori5 in hypersuppressive ρ- cells. However, it is not clear if this replication mode operates in ρ+ cells. To understand this, we targeted bacterial Ku (bKu), a DSB binding protein, to the mitochondria of ρ+ cells with the hypothesis that bKu would bind persistently to mtDNA DSBs, thereby preventing mtDNA replication or repair. Here, we show that mitochondrial-targeted bKu binds to ori5 and that inducible expression of bKu triggers petite formation preferentially in daughter cells. bKu expression also induces mtDNA depletion that eventually results in the formation of ρ0 cells. This data supports the idea that yeast mtDNA replication is initiated by a DSB and bKu inhibits mtDNA replication by binding to a DSB at ori5, preventing mtDNA segregation to daughter cells. Interestingly, we find that mitochondrial-targeted bKu does not decrease mtDNA content in human MCF7 cells. This finding is in agreement with the fact that human mtDNA replication, typically, is not initiated by a DSB. Therefore, this study provides evidence that DSB-mediated replication is the predominant form of mtDNA replication in ρ+ yeast cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation.

    PubMed

    Gross, Catharina; Holler, Ernst; Stangl, Stefan; Dickinson, Anne; Pockley, A Graham; Asea, Alexzander A; Mallappa, Nagaraja; Multhoff, Gabriele

    2008-04-01

    In contrast to solid tumors, leukemic blasts frequently present both Hsp70 and HLA-E on their cell surface and thereby present activating and inhibitory signals to CD94(+) NK cells. In the first 12 months after stem cell transplantation (SCT) CD94(+) NK cells clearly dominate over CD3(+)/CD16(-)/56(-) T and CD3(+)/CD16(+)/56(+) NK-like T cells. An incubation of post-SCT-derived peripheral blood lymphocytes with the Hsp70 peptide TKD and IL-15 enhances the cell surface density of CD56/CD94 and initiates the cytolytic activity of NK cells against Hsp70/HLA-E double-positive autologous and allogeneic leukemic blasts. Hsp70 was identified as the target structure for TKD-activated NK cells.

  3. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  4. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    PubMed

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  5. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters

    PubMed Central

    Baseler, Laura; Scott, Dana P.; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz

    2016-01-01

    Background Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Methodology/Principal Findings Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Conclusions/Significance Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology. PMID:27812087

  6. Cancer stem cells (CSCs), cervical CSCs and targeted therapies

    PubMed Central

    Huang, Ruixia; Rofstad, Einar K.

    2017-01-01

    Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain “purified” CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma. PMID:27343550

  7. The Influence of the Shape of Model Hydrometeors on the Formation of Discharge between an Artificial-Thunderstorm Cell and the Ground

    NASA Astrophysics Data System (ADS)

    Temnikov, A. G.; Chernenskii, L. L.; Orlov, A. V.; Lysov, N. Yu.; Belova, O. S.; Gerastenok, T. K.; Zhuravkova, D. S.

    2017-12-01

    We have experimentally studied how arrays of model coarse hydrometeors influence the initiation and propagation of discharge between an artificial-thunderstorm cell of negative or positive polarity and the ground. It is established for the first time that the probability of initiation and stimulation of a channeled discharge between negatively or positively charged cloud and the ground significantly depends on the shape and size of coarse hydrometeors occurring near the thunderstorm cell boundaries. The obtained results can be used in developing methods for the artificial initiation of the cloud-ground type lightning of both polarities and targeted discharge of thunderstorm clouds.

  8. T regulatory cells in childhood asthma.

    PubMed

    Strickland, Deborah H; Holt, Patrick G

    2011-09-01

    Asthma is a chronic disease of the airways, most commonly driven by immuno-inflammatory responses to ubiquitous airborne antigens. Epidemiological studies have shown that disease is initiated early in life when the immune and respiratory systems are functionally immature and less able to maintain homeostasis in the face of continuous antigen challenge. Here, we examine the cellular and molecular mechanisms that underlie initial aeroallergen sensitization and the ensuing regulation of secondary responses to inhaled allergens in the airway mucosa. In particular, we focus on how T-regulatory (Treg) cells influence early asthma initiation and the potential of Treg cells as therapeutic targets for drug development in asthma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Mapping Cancer Cells’ Starting Lines | Center for Cancer Research

    Cancer.gov

    Many of the defective regulatory pathways that lead to aberrant proliferation in cancer converge on DNA replication. So replication regulatory pathways could be targeted to more specifically kill cancer cells.  Unfortunately such targeting would require knowing where and when DNA replication starts in the cancer genome.  In yeast, the locations of replication initiation sites on chromatin have been extensively mapped, but in human cancer cells only a handful of these sites have been identified.

  10. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  11. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    PubMed

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    USDA-ARS?s Scientific Manuscript database

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  13. Therapy-induced selective loss of leukemia-initiating activity in murine adult T cell leukemia

    PubMed Central

    El Hajj, Hiba; El-Sabban, Marwan; Hasegawa, Hideki; Zaatari, Ghazi; Ablain, Julien; Saab, Shahrazad T.; Janin, Anne; Mahfouz, Rami; Nasr, Rihab; Kfoury, Youmna; Nicot, Christophe; Hermine, Olivier; Hall, William

    2010-01-01

    Chronic HTLV-I (human T cell lymphotropic virus type I) infection may cause adult T cell leukemia/lymphoma (ATL), a disease with dismal long-term prognosis. The HTLV-I transactivator, Tax, initiates ATL in transgenic mice. In this study, we demonstrate that an As2O3 and IFN-α combination, known to trigger Tax proteolysis, cures Tax-driven ATL in mice. Unexpectedly, this combination therapy abrogated initial leukemia engraftment into secondary recipients, whereas the primary tumor bulk still grew in the primary hosts, only to ultimately abate later on. This loss of initial transplantability required proteasome function. A similar regimen recently yielded unprecedented disease control in human ATL. Our demonstration that this drug combination targeting Tax stability abrogates tumor cell immortality but not short-term growth may foretell a favorable long-term efficiency of this regimen in patients. PMID:21135137

  14. Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology).

    PubMed

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-04-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer-initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies, including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (eg, a lack of response, partial response, or nonpermanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of repopulating the tumor after subcurative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that use cell surface markers to identify cancer-initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed.

  15. Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor

    NASA Astrophysics Data System (ADS)

    Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph

    2014-04-01

    A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells.

  16. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  17. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. Electronic supplementary information (ESI) available: Synthesis of m-HA; synthesis of rhodamine-HA derivative; supplementary data on relative fluorescence intensity of DOX-EN-NGs on HeLa cells. See DOI: 10.1039/c5nr08895j

  18. Targeted Nanoparticles for Kidney Cancer Therapy

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-10-1-0434 TITLE: Targeted Nanoparticles for Kidney Cancer Therapy PRINCIPAL...Targeted Nanoparticles for Kidney Cancer Therapy 5b. GRANT NUMBER W81XWH-10-1-0434 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...lines following treatment with D5 nanotubes. Tthermoablation will be studied initially. Human kidney cancer cells will be injected into the kidney

  19. A Cell-Targeted Non-Cytotoxic Fluorescent Nanogel Thermometer Created with an Imidazolium-Containing Cationic Radical Initiator.

    PubMed

    Uchiyama, Seiichi; Tsuji, Toshikazu; Kawamoto, Kyoko; Okano, Kentaro; Fukatsu, Eiko; Noro, Takahiro; Ikado, Kumiko; Yamada, Sayuri; Shibata, Yuka; Hayashi, Teruyuki; Inada, Noriko; Kato, Masaru; Koizumi, Hideki; Tokuyama, Hidetoshi

    2018-05-04

    A cationic fluorescent nanogel thermometer based on thermo-responsive N-isopropylacrylamide and environment-sensitive benzothiadiazole was developed with a new azo compound bearing imidazolium rings as the first cationic radical initiator. This cationic fluorescent nanogel thermometer showed an excellent ability to enter live mammalian cells in a short incubation period (10 min), a high sensitivity to temperature variations in live cells (temperature resolution of 0.02-0.84 °C in the range 20-40 °C), and remarkable non-cytotoxicity, which permitted ordinary cell proliferation and even differentiation of primary cultured cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Regulation of leukemia-initiating cell activity by the ubiquitin ligase FBXW7

    PubMed Central

    King, Bryan; Trimarchi, Thomas; Reavie, Linsey; Xu, Luyao; Mullenders, Jasper; Ntziachristos, Panagiotis; Aranda-Orgilles, Beatriz; Perez-Garcia, Arianne; Shi, Junwei; Vakoc, Christopher; Sandy, Peter; Shen, Steven S.; Ferrando, Adolfo; Aifantis, Iannis

    2013-01-01

    SUMMARY Sequencing efforts led to the identification of somatic mutations that could affect self-renewal and differentiation of cancer-initiating cells. One such recurrent mutation targets the binding pocket of the ubiquitin ligase FBXW7. Missense FBXW7 mutations are prevalent in various tumors, including T-cell acute lymphoblastic leukemia (T-ALL). To study the effects of such lesions, we generated animals carrying regulatable Fbxw7 mutant alleles. We show here that these mutations specifically bolster cancer-initiating cell activity in collaboration with Notch1 oncogenes, but spare normal hematopoietic stem cell function. We were also able to show that FBXW7 mutations specifically affect the ubiquitylation and half-life of c-Myc protein, a key T-ALL oncogene. Using animals carrying c-Myc fusion alleles, we connected Fbxw7 function to c-Myc abundance and correlated c-Myc expression to leukemia-initiating activity. Finally, we demonstrated that small molecule-mediated suppression of MYC activity leads to T-ALL remission, suggesting a novel effective therapeutic strategy. PMID:23791182

  1. Membrane organization of virus and target cell plays a role in HIV entry.

    PubMed

    Dumas, Fabrice; Preira, Pascal; Salomé, Laurence

    2014-12-01

    The initial steps of the Human Immunodeficiency Virus (HIV) replication cycle play a crucial role that arbitrates viral tropism and infection efficiency. Before the release of its genome into the host cell cytoplasm, viruses operate a complex sequence of events that take place at the plasma membrane of the target cell. The first step is the binding of the HIV protein envelope (Env) to the cellular receptor CD4. This triggers conformational changes of the gp120 viral protein that allow its interaction with a co-receptor that can be either CCR5 or CXCR4, defining the tropism of the virus entering the cell. This sequential interaction finally drives the fusion of the viral and host cell membrane or to the endocytosis of the viruses. Here, we discuss how the membrane composition and organization of both the virus and the target cell can affect these steps and thus influence the capability of the viruses to infect cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts

    PubMed Central

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-01-01

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials. PMID:28404880

  3. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts.

    PubMed

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-05-09

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.

  4. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  5. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    PubMed

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  7. Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix

    PubMed Central

    López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro

    2012-01-01

    Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858

  8. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  9. Myofibrillogenesis regulator 1 (MR-1): a potential therapeutic target for cancer and PNKD.

    PubMed

    Wang, Junxia; Zhao, Wuli; Liu, Hong; He, Hongwei; Shao, Rongguang

    2017-11-15

    Human myofibrillogenesis regulator 1 (MR-1) is a functional gene also known as paroxysmal nonkinesigenic dyskinesia (PNKD). It is localised on human chromosome 2q35 and three different isomers, MR-1L, MR-1M and MR-1S, are formed by alternative splicing. MR-1S promotes cardiac hypertrophy and is closely related to cancer. MR-1S is overexpressed in haematologic and solid malignancies, such as hepatoma, breast cancer and chronic myelogenous leukaemia. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1S directly phosphorylates and activates the MEK-ERK-RSK pathway to accelerate cancer growth and facilitates metastasis by activating the MLC2-FAK-AKT pathway. Silencing MR-1 inhibits cancer cell proliferation and metastasis. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1 interacts with eukaryotic translation initiation factors and MRIP-1, which contains Ras GTPase, PH and zinc-containing ArfGap domains, as well as three ankyrin repeats. Mutations in the N-terminal region of MR-1L and MR-1S are the main causes of PNKD (a hereditary disease characterised by paroxysmal dystonic choreoathetosis) and targeting the mutated protein could provide symptomatic relief. These findings provide compelling evidence that MR-1 might be a diagnostic marker and therapeutic target for solid tumours, myelogenous leukaemia and PNKD.

  10. Molecular Pharmacology of Malignant Pleural Mesothelioma: Challenges and Perspectives From Preclinical and Clinical Studies.

    PubMed

    Thellung, Stefano; Favoni, Roberto E; Würth, Roberto; Nizzari, Mario; Pattarozzi, Alessandra; Daga, Antonio; Florio, Tullio; Barbieri, Federica

    2016-01-01

    Malignant pleural mesothelioma (MPM) is one of the deadliest and most heterogeneous tumors, highly refractory to multimodal therapeutic approach, including surgery, chemo- and radiotherapy. Preclinical and clinical studies exploring the efficacy of drugs targeting tyrosine kinases, angiogenesis and histone deacetylases, did not fulfil the expected clinical benefits. Thus, novel molecular targets should be identified from a definite knowledge of the unique biology and most relevant transduction pathways of MPM cells. Cancer stem cells (CSCs) are a subset of malignant precursors responsible for initiation, progression, resistance to cytotoxic drugs, recurrence and metastatic diffusion of tumor cells. CSCs are putative driving factors for MPM development and contribute to its clinical and biological heterogeneity; hence, targeted eradication of CSCs represents an ineludible goal to counteract MPM aggressiveness. In this context, innovative preclinical models could be exploited to identify novel intracellular pathway inhibitors able to target CSC viability. Novel drug targets have been identified among key factors responsible for the oncogenic transformation of mesothelial cells, often directly induced by asbestos. These include mitogenic and anti-apoptotic signaling that may also be activated by autocrine and paracrine cytokine pathways controlling cell plasticity. Both signaling pathways affecting proto-oncogene and transcription factor expression, or genetic and epigenetic alterations, such as mutations in cell cycle genes and silencing of tumor suppressor genes, represent promising disease-specific targets. In this review we describe current knowledge of MPM cell biology, focusing on potential targets to be tested in pharmacological studies, and highlighting results and challenges of clinical translation.

  11. Sickle red cell adhesion: many issues and some answers.

    PubMed

    Kaul, D K

    2008-01-01

    Among multiple pathologies associated with sickle cell disease, sickle red cell-endothelial interaction has been implicated as a potential initiating mechanism in vaso-occlusive events that characterize this disease. Vast literature exists on various aspects of sickle red cell adhesion, but many issues remain unresolved, especially pertaining to the role of sickle red cell heterogeneity, the relative role of multiple adhesion mechanisms and targets of antiadhesive therapy. This review briefly analyzes these issues.

  12. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    PubMed

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P < .05). And the in vivo tumorigenic ability of HeLa cells was reduced by inhibition of eukaryotic initiation factor 5A2. Knockdown of eukaryotic initiation factor 5A2 in HeLa cells decreased the cell viability compared with normal cells and induced G1 phase cell cycle arrest ( P < .05). Moreover, the cell migration ability of eukaryotic initiation factor 5A2 knockdown cells was dramatically inhibited. Associated with alterations in phenotypes, RhoA, ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that eukaryotic initiation factor 5A2 might function in carcinogenesis of cervical carcinoma through an RhoA/ROCK-dependent manner.

  13. Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells

    DTIC Science & Technology

    2015-10-01

    and stem cell To investigate whether POU5F1B overrxpression can induce cancer stem cell -related genes expression, we did cancer stem cell ...future 15. SUBJECT TERMS OCT4, cancer stem cells , prostate cancer, metastasis, tumor formation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...described in last report. Here we describe some findings previously not reported. 1.1 POU5F1B expression in prostatic tissue As cancer stem cell marker

  14. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets.

    PubMed

    Kudinov, Alexander E; Karanicolas, John; Golemis, Erica A; Boumber, Yanis

    2017-05-01

    Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila , the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    PubMed Central

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  16. Targeting Extracellular Matrix Glycoproteins in Metastases for Tumor-Initiating Cell Therapy

    DTIC Science & Technology

    2016-04-01

    effects of OPN-targeting system carrying a hedgehog pathway inhibitor (month 3-12) (not completed)  What was accomplished under these goals? Major...Preparation of prostaspheres 4 • objective 2: Evaluate the therapeutic effects of OPN-targeting system carrying a hedgehog pathway inhibitor...encapsulate a hedgehog pathway inhibitor cyclopamine (CP), and the data are as follows: Average diameter (nm) PDI Zeta potential (mV) Blank LN, no OPN

  17. In Situ Identification of Cyanobacteria with Horseradish Peroxidase-Labeled, rRNA-Targeted Oligonucleotide Probes

    PubMed Central

    Schönhuber, Wilhelm; Zarda, Boris; Eix, Stella; Rippka, Rosmarie; Herdman, Michael; Ludwig, Wolfgang; Amann, Rudolf

    1999-01-01

    Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria. PMID:10049892

  18. RNA targeting with CRISPR-Cas13.

    PubMed

    Abudayyeh, Omar O; Gootenberg, Jonathan S; Essletzbichler, Patrick; Han, Shuo; Joung, Julia; Belanto, Joseph J; Verdine, Vanessa; Cox, David B T; Kellner, Max J; Regev, Aviv; Lander, Eric S; Voytas, Daniel F; Ting, Alice Y; Zhang, Feng

    2017-10-12

    RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference can efficiently knockdown RNAs, but it is prone to off-target effects, and visualizing RNAs typically relies on the introduction of exogenous tags. Here we demonstrate that the class 2 type VI RNA-guided RNA-targeting CRISPR-Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.

  19. Retargeted human avidin-CAR T cells for adoptive immunotherapy of EGFRvIII expressing gliomas and their evaluation via optical imaging.

    PubMed

    Liu, Kaiyu; Liu, Xujie; Peng, Zhiping; Sun, Haojie; Zhang, Mingzhi; Zhang, Jianning; Liu, Shuang; Hao, Limin; Lu, Guoqiu; Zheng, Kangcheng; Gong, Xikui; Wu, Di; Wang, Fan; Shen, Li

    2015-09-15

    There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy against glioma xenografts expressing EGFRvIII. We initially biotinylated a novel anti-EGFRvIII monoclonal antibody (biotin-4G1) to pre-target EGFRvIII+ gliomas and then redirect activated avidin-CAR expressing T cells against the pre-targeted biotin-4G1. By optical imaging study and bio-distribution analysis, we confirmed the specificity of pre-target and target and determined the optimal time for T cells adoptive transfer in vivo. The results showed this therapeutic strategy offered efficient therapy effect to EGFRvIII+ glioma-bearing mice and implied that optical imaging is a highly useful tool in aiding in the instruction of clinical CAR-T cells adoptive transfer in future.

  20. Emerging immunotherapy and strategies directly targeting B cells for the treatment of diffuse large B-cell lymphoma.

    PubMed

    Witkowska, Magdalena; Smolewski, Piotr

    2015-01-01

    During the last decade, significant prolonged survival in diffusive large B-cell lymphoma (DLBCL) has been observed. The efficacy of initial treatment improved mostly due to addition of a chimeric anti-CD20 monoclonal antibody (rituximab) to standard chemotherapeutic regimens. Moreover, accurate understanding of DLBCL pathogenesis and remarkable progress in gene expression profiling have led to the development of a variety of tumor-specific regimens. Novel agents target directly the pathways involved in signal transduction, lead to apoptosis and cancer cells differentiation. In this article, we mainly focus on new treatment options, such as monoclonal antibodies, tyrosine kinase inhibitors and immunomodulatory drugs, currently investigated in aggressive B-cell lymphoma with particular attention to DLBCL type.

  1. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer.

    PubMed

    Chung, Suyoun; Suzuki, Hanae; Miyamoto, Takashi; Takamatsu, Naofumi; Tatsuguchi, Ayako; Ueda, Koji; Kijima, Kyoko; Nakamura, Yusuke; Matsuo, Yo

    2012-12-01

    We previously reported MELK (maternal embryonic leucine zipper kinase) as a novel therapeutic target for breast cancer. MELK was also reported to be highly upregulated in multiple types of human cancer. It was implied to play indispensable roles in cancer cell survival and indicated its involvement in the maintenance of tumor-initiating cells. We conducted a high-throughput screening of a compound library followed by structure-activity relationship studies, and successfully obtained a highly potent MELK inhibitor OTSSP167 with IC₅₀ of 0.41 nM. OTSSP167 inhibited the phosphorylation of PSMA1 (proteasome subunit alpha type 1) and DBNL (drebrin-like), which we identified as novel MELK substrates and are important for stem-cell characteristics and invasiveness. The compound suppressed mammosphere formation of breast cancer cells and exhibited significant tumor growth suppression in xenograft studies using breast, lung, prostate, and pancreas cancer cell lines in mice by both intravenous and oral administration. This MELK inhibitor should be a promising compound possibly to suppress the growth of tumor-initiating cells and be applied for treatment of a wide range of human cancer.

  2. Fragments of Target Cells are Internalized into Retroviral Envelope Protein-Expressing Cells during Cell-Cell Fusion by Endocytosis

    PubMed Central

    Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao

    2016-01-01

    Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711

  3. Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1.

    PubMed

    Alver, Robert C; Chadha, Gaganmeet Singh; Gillespie, Peter J; Blow, J Julian

    2017-03-07

    Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  5. Collateral damage control in cancer therapy: defining the stem identity in gliomas.

    PubMed

    Hsieh, David

    2011-01-01

    The discovery of discrete functional components in cancer systems advocates a paradigm shift in therapeutic design towards the targeted destruction of critical cellular constituents that fuel tumorigenic potential. In astrocytomas, malignant growth can be propagated and sustained by glioma stem cells (GSCs) endowed with highly efficient clonogenic and tumor initiation capacities. Given their disproportionate oncogenic contribution, GSCs are often considered the optimal targets for curative treatment because their eradication may subvert the refractory nature of GBMs. However, the close affinity of GSCs and normal neural stem cells (NSCs) is a cautionary note for off-target effects of GSC-based therapies. In fact, many parallels can be drawn between GSC and NSC functions, which ostensibly rely on a communal collection of stem cell-promoting transcription factors (TFs). Only through rigorous scrutiny of nuances in the stemness program of GSCs and NSCs may we clarify the pathogenic mechanisms of stemness factors and reveal processes exploited by cancer cells to co-opt stem cell traits. Importantly, discerning the specific requirements for GSC and NSC maintenance may be an essential requisite when assessing molecular targets for discriminatory targeting of GSCs with minimal sequelae.

  6. Synthetic Lethality as a Targeted Approach to Advanced Prostate Cancer

    DTIC Science & Technology

    2013-03-01

    cell line was derived from primary human prostate epithelial cells by transformation with human papilloma virus. While not tumorigenic, they do...normal cells and tissues has no significant adverse effects. Inhibition of PKCδ in human and murine cells containing an activated Ras protein, however...initiates rapid and profound apoptosis. In this work, we are testing the hypothesis that inhibition or down-regulation of PKCδ in human and murine

  7. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  8. Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer.

    PubMed

    Zhu, Xin-Xing; Yan, Ya-Wei; Ai, Chun-Zhi; Jiang, Shan; Xu, Shan-Shan; Niu, Min; Wang, Xiang-Zhen; Zhong, Gen-Shen; Lu, Xi-Feng; Xue, Yu; Tian, Shaoqi; Li, Guangyao; Tang, Shaojun; Jiang, Yi-Zhou

    2017-04-11

    Bladder cancer is the most common urologic malignancy in China, with an increase of the incidence and mortality rates over past decades. Recent studies suggest that bladder tumors are maintained by a rare fraction of cells with stem cell proprieties. Targeting these bladder tumor initiating cell (TICs) population can overcome the drug-resistance of bladder cancer. However, the molecular and genetic mechanisms regulating TICs in bladder cancer remain poorly defined. Jarid2 is implicated in signaling pathways regulating cancer cell epithelial-mesenchymal transition, and stem cell maintenance. The goal of our study was to examine whether Jarid2 plays a role in the regulation of TICs in bladder cancer. We found that knockdown of Jarid2 was able to inhibit the invasive ability and sphere-forming capacity in bladder cancer cells. Moreover, knockdown of Jarid2 reduced the proportion of TICs and impaired the tumorigenicity of bladder cancer TICs in vivo. Conversely, ectopic overexpression of Jarid2 promoted the invasive ability and sphere-forming capacity in bladder cancer cells. Mechanistically, reduced Jarid2 expression led to the upregulation of p16 and H3K27me3 level at p16 promoter region. Collectively, we provided evidence that Jarid2 via modulation of p16 is a putative novel therapeutic target for treating malignant bladder cancer.

  9. Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression

    PubMed Central

    Hayes, Sidney; Erker, Craig; Horbay, Monique A.; Marciniuk, Kristen; Wang, Wen; Hayes, Connie

    2013-01-01

    The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed. We observed that ColE1 replication and plasmid establishment upon transformation is extremely sensitive to P, and distinguish this effect from P-lethality directed to cells. We show that alleles of dnaB protect the variant cells from P expression. P-dependent cellular filamentation arose in ΔrecA or lexA[Ind-] cells, defective for SOS induction. Replication propagation and restart could represent additional targets for P interference of E. coli replication, beyond the oriC-dependent initiation step. PMID:23389467

  10. Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo

    PubMed Central

    Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2015-01-01

    Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their firing during tail pinch-induced brain state-activation. In addition, axo-axonic cells differ from other GABAergic parvalbumin-expressing cells in their spike timing during DOWN- to UP-state transitions of slow oscillations and in their coupling to gamma and spindle oscillations. The distinct firing dynamics and synaptic targets of axo-axonic and other parvalbumin-expressing cells provide differential contributions to the temporal organization of prefrontal networks. PMID:23152631

  11. Targeted therapies in non-small cell lung carcinoma: what have we achieved so far?

    PubMed Central

    Houhou, Wissam

    2013-01-01

    The search for innovative therapeutic agents in non-small cell lung cancer (NSCLC) has witnessed a swift evolution. The number of targeted drugs that can improve patient outcomes with an acceptable safety profile is steadily increasing. In this review, we highlight current drugs that have already been approved or are under evaluation for the treatment of patients with NSCLC, either in monotherapy or combined therapy for both the first- and second-line settings. Experience with drugs targeting the vascular endothelial growth factor and its receptor, as well as the epidermal growth factor receptor is summarized. Moreover, we provide an overview of more novel targets in NSCLC and initial experience with the respective therapeutic agents. PMID:23858333

  12. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  13. Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches?

    PubMed

    Huber, Heinrich J; McKiernan, Ross G; Prehn, Jochen H M

    2014-03-01

    Most cytotoxic chemotherapeutics are believed to kill cancer cells by inducing apoptosis. Understanding the factors that contribute to impairment of apoptosis in cancer cells is therefore critical for the development of novel therapies that circumvent the widespread chemoresistance. Apoptosis, however, is a complex and tightly controlled process that can be induced by different classes of chemotherapeutics targeting different signalling nodes and pathways. Moreover, apoptosis initiation and apoptosis execution strongly depend on patient-specific, genomic and proteomic signatures. Here, we will review recent translational studies that suggest a critical link between the sensitivity of cancer cells to initiate apoptosis and clinical outcome. Next we will discuss recent advances in the field of system modelling of apoptosis pathways for the prediction of treatment responses. We propose that initiation of mitochondrial apoptosis, defined as the process of mitochondrial outer membrane permeabilisation (MOMP), is a dose-dependent decision process that allows for a prediction of individual therapy responses and therapeutic windows. We provide evidence in contrast that apoptosis execution post-MOMP may be a binary decision that dictates whether apoptosis is executed or not. We will discuss the implications of this concept for the future use of novel adjuvant therapeutics that specifically target apoptosis signalling pathways or which may be used to reduce the impact of cell-to-cell heterogeneity on therapy responses. Finally, we will discuss the technical and regulatory requirements surrounding the use and implications of system-based patient stratification tools for the future of personalised oncology.

  14. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity.

    PubMed

    Hope, Kristin J; Jin, Liqing; Dick, John E

    2004-07-01

    Emerging evidence suggests cancer stem cells sustain neoplasms; however, little is understood of the normal cell initially targeted and the resultant cancer stem cells. We show here, by tracking individual human leukemia stem cells (LSCs) in nonobese diabetic-severe combined immunodeficiency mice serially transplanted with acute myeloid leukemia cells, that LSCs are not functionally homogeneous but, like the normal hematopoietic stem cell (HSC) compartment, comprise distinct hierarchically arranged LSC classes. Distinct LSC fates derived from heterogeneous self-renewal potential. Some LSCs emerged only in recipients of serial transplantation, indicating they divided rarely and underwent self-renewal rather than commitment after cell division within primary recipients. Heterogeneity in LSC self-renewal potential supports the hypothesis that they derive from normal HSCs. Furthermore, normal developmental processes are not completely abolished during leukemogenesis. The existence of multiple stem cell classes shows the need for LSC-targeted therapies.

  15. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.

    PubMed

    Brown, Christine E; Alizadeh, Darya; Starr, Renate; Weng, Lihong; Wagner, Jamie R; Naranjo, Araceli; Ostberg, Julie R; Blanchard, M Suzette; Kilpatrick, Julie; Simpson, Jennifer; Kurien, Anita; Priceman, Saul J; Wang, Xiuli; Harshbarger, Todd L; D'Apuzzo, Massimo; Ressler, Julie A; Jensen, Michael C; Barish, Michael E; Chen, Mike; Portnow, Jana; Forman, Stephen J; Badie, Behnam

    2016-12-29

    A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)-engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes - infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362 .).

  16. Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.

    PubMed

    Krastev, Dragomir B; Pettitt, Stephen J; Campbell, James; Song, Feifei; Tanos, Barbara E; Stoynov, Stoyno S; Ashworth, Alan; Lord, Christopher J

    2018-05-22

    Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.

  17. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  18. Mapping Cancer Cells’ Starting Lines | Center for Cancer Research

    Cancer.gov

    Many of the defective regulatory pathways that lead to aberrant proliferation in cancer converge on DNA replication. So replication regulatory pathways could be targeted to more specifically kill cancer cells.  Unfortunately such targeting would require knowing where and when DNA replication starts in the cancer genome.  In yeast, the locations of replication initiation sites

  19. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors

    PubMed Central

    Krampitz, Geoffrey Wayne; George, Benson M.; Willingham, Stephen B.; Volkmer, Jens-Peter; Weiskopf, Kipp; Jahchan, Nadine; Newman, Aaron M.; Sahoo, Debashis; Zemek, Allison J.; Yanovsky, Rebecca L.; Nguyen, Julia K.; Schnorr, Peter J.; Mazur, Pawel K.; Sage, Julien; Longacre, Teri A.; Visser, Brendan C.; Poultsides, George A.; Norton, Jeffrey A.; Weissman, Irving L.

    2016-01-01

    Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a “don’t eat me” signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90hi cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo. PMID:27035983

  20. Targeting the cancer initiating cell: the Achilles' heel of cancer.

    PubMed

    McCubrey, James A; Chappell, William H; Abrams, Stephen L; Franklin, Richard A; Long, Jacquelyn M; Sattler, Jennifer A; Kempf, C Ruth; Laidler, Piotr; Steelman, Linda S

    2011-01-01

    We have isolated cell with the cancer initiating cell (CIC) phenotype from PC3 cells. The PC3/(CIC) cells are more resistant than the PC3/(BC) cells to chemotherapeutic drugs such as docetaxel which is used to treat prostate cancer. Thus these prostate CICs could lay dormant and persist even after chemotherapeutic drug treatment. Then when the chemotherapeutic drug is removed, they could potentially repopulate the original tumor site or metastize to a distant site. However, the prostate CICs were not significantly more resistant to drugs which target EGFR, NF-κB, Smo and the natural product genistein. Interesting the prostate CICs could be rendered more sensitive to docetaxel by inclusion of suboptimal doses of genistein, cyclopamine, and EGFR inhibitors. In contrast, addition of suboptimal amounts of genistein, cyclopamine, or EGFR inhibitors did not increase the sensitivity of the PC/(BC) cells to docetaxel. Similar results were observed when combination experiments were performed with cyclopamine and suboptimal doses of either genistein or docetaxel. The BC cells are usually more rapidly proliferating than the CICs. Thus the CICs are not as sensitive to docetaxel which targets replication. In contrast, the CICs could be rendered sensitive to docetaxel or cyclopamine by co-treatment with certain other drugs, including the natural product genistein which is present in the human diet of many people, especially Asians. Genistein is by itself only weakly toxic to prostate and other cancer cells. That is probably one of the big reasons that it can be used as a dietary supplement for prostate and breast cancers. It is clear from our studies that low doses of genistein can increase the sensitivity of prostate CICs to drugs such as docetaxel and cyclopamine, two drugs either used or under consideration for prostate cancer therapy.

  1. [Optimizing carbon/energy metabolism to enhance monellin production by Pichia pastoris].

    PubMed

    Huai, Qiangqiang; Jia, Luqiang; Ding, Jian; Chen, Shanshan; Sun, Jiaowen; Shi, Zhongping

    2018-02-25

    In heterologous protein productions by Pichia pastoris, methanol induction is generally initiated when cell density reaches very high level. However, this traditional strategy suffers with the problems of difficulty in DO control, toxic by-metabolites accumulation and low targeted protein titer. Therefore, initiating methanol induction at lower cell concentration is considered as an alternative strategy to overcome those problems. However, the methanol/energy regulation mechanisms of initiating induction at lower concentration are not clear and seldom reported. In this article, with monellin production as a prototype, we analyzed the methanol/energy metabolism in protein expression process using the strategies of initiating induction at both higher/lower cells concentrations. We attempted to interpret the advantages of the "alternative" strategy, via online measurements of methanol consumption, CO₂ production and O₂ uptake rates. When adopting this "alternative" strategy and maintaining temperature at 30 °C, carbon flux ratio directing into monellin precursors synthesis reached the highest level of 65%. In addition, monellin synthesis was completely associated with cell growth.

  2. Small molecule ONC201/TIC10 targets chemotherapy-resistant colorectal cancer stem-like cells in an Akt/Foxo3a/TRAIL-dependent manner

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Dicker, David T.; El-Deiry, Wafik S.

    2015-01-01

    Self-renewing colorectal cancer stem/progenitor cells (CSCs) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class anti-tumor agent that induces TRAIL pathway mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent anti-tumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+) and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-Fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-Fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. PMID:25712124

  3. Small-Molecule ONC201/TIC10 Targets Chemotherapy-Resistant Colorectal Cancer Stem-like Cells in an Akt/Foxo3a/TRAIL-Dependent Manner.

    PubMed

    Prabhu, Varun V; Allen, Joshua E; Dicker, David T; El-Deiry, Wafik S

    2015-04-01

    Self-renewing colorectal cancer stem/progenitor cells (CSC) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class antitumor agent that induces TRAIL pathway-mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent antitumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+), and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown, and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. ©2015 American Association for Cancer Research.

  4. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  5. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  6. Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection

    PubMed Central

    Krishna, Benjamin A.; Poole, Emma L.; Smit, Martine J.; Wills, Mark R.

    2017-01-01

    ABSTRACT Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. PMID:29208743

  7. NF-κB activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer

    PubMed Central

    Blakely, Collin M.; Pazarentzos, Evangelos; Olivas, Victor; Asthana, Saurabh; Yan, Jenny Jiacheng; Tan, Irena; Hrustanovic, Gorjan; Chan, Elton; Lin, Luping; Neel, Dana S.; Newton, William; Bobb, Kathryn; Fouts, Timothy; Meshulam, Jeffrey; Gubens, Matthew A.; Jablons, David M.; Johnson, Jeffrey R.; Bandyopadhyay, Sourav; Krogan, Nevan J.; Bivona, Trever G.

    2015-01-01

    Summary Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR-mutant lung adenocarcinoma we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses. PMID:25843712

  8. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    PubMed Central

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  9. Emerging role of lipid metabolism alterations in Cancer stem cells.

    PubMed

    Yi, Mei; Li, Junjun; Chen, Shengnan; Cai, Jing; Ban, Yuanyuan; Peng, Qian; Zhou, Ying; Zeng, Zhaoyang; Peng, Shuping; Li, Xiaoling; Xiong, Wei; Li, Guiyuan; Xiang, Bo

    2018-06-15

    Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.

  10. Ets-1 is a target of MAPK signaling in the embryonic anterior pituitary gland during glucocorticoid initiation of pituitary growth hormone expression

    USDA-ARS?s Scientific Manuscript database

    Glucocorticoids play a critical role in functional differentiation of somatotrophs, the growth hormone (GH)-producing cells within the anterior pituitary gland. In chicken embryonic day 11 (e11) pituitary cells, premature induction of growth hormone (GH) resulting from corticosterone (CORT) treatmen...

  11. Perforin Rapidly Induces Plasma Membrane Phospholipid Flip-Flop

    PubMed Central

    Metkar, Sunil S.; Wang, Baikun; Catalan, Elena; Anderluh, Gregor; Gilbert, Robert J. C.; Pardo, Julian; Froelich, Christopher J.

    2011-01-01

    The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells. PMID:21931672

  12. Antibody-mediated targeting of replication-competent retroviral vectors.

    PubMed

    Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki

    2003-05-20

    Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.

  13. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    DTIC Science & Technology

    2017-12-01

    Nie, POU5F1B, an OCT4 Retrogene, Suppresses Uncontrolled Tumor Growth. Keystone Meeting on Molecular and Cellular Basis of Growth and Regeneration...Daotai Nie. Cancer Stem Cells in Resistance to Cytotoxic Drugs: Implications in Chemotherapy. B. Bonavida (ed.), Molecular Mechanisms of Tumor Cell...retrogene of the master embryonic stem cell gene POU5F1 is associated with prostate cancer susceptibility. American journal of human genetics 94

  14. MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Kazuyo; Hirohashi, Yoshihiko, E-mail: hirohash@sapmed.ac.jp; Kuroda, Takafumi

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH{sup high}) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver andmore » kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH{sup high} population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.« less

  15. Corruption of homeostatic mechanisms in the guanylyl cyclase C signaling pathway underlying colorectal tumorigenesis

    PubMed Central

    Waldman, Scott A

    2010-01-01

    Colon cancer, the second leading cause of cancer-related mortality worldwide, originates from the malignant transformation of intestinal epithelial cells. The intestinal epithelium undergoes a highly organized process of rapid regeneration along the crypt-villus axis, characterized by proliferation, migration, differentiation and apoptosis, whose coordination is essential to maintaining the mucosal barrier. Disruption of these homeostatic processes predisposes cells to mutations in tumor suppressors or oncogenes, whose dysfunction provides transformed cells an evolutionary growth advantage. While sequences of genetic mutations at different stages along the neoplastic continuum have been established, little is known of the events initiating tumorigenesis prior to adenomatous polyposis coli (APC) mutations. Here, we examine a role for the corruption of homeostasis induced by silencing novel tumor suppressors, including the intestine-specific transcription factor CDX2 and its gene target guanylyl cyclase C (GCC), as early events predisposing cells to mutations in APC and other sequential genes that initiate colorectal cancer. CDX2 and GCC maintain homeostatic regeneration in the intestine by restricting cell proliferation, promoting cell maturation and adhesion, regulating cell migration and defending the intestinal barrier and genomic integrity. Elimination of CDX2 or GCC promotes intestinal tumor initiation and growth in aged mice, mice carrying APC mutations or mice exposed to carcinogens. The roles of CDX2 and GCC in suppressing intestinal tumorigenesis, universal disruption in their signaling through silencing of hormones driving GCC, and the uniform overexpression of GCC by tumors underscore the potential value of oral replacement with GCC ligands as targeted prevention and therapy for colorectal cancer. PMID:20592492

  16. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulatedmore » in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.« less

  17. PML–RARA-RXR Oligomers Mediate Retinoid and Rexinoid/cAMP Cross-Talk in Acute Promyelocytic Leukemia Cell Differentiation

    PubMed Central

    Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues

    2004-01-01

    PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541

  18. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart

    PubMed Central

    Park, Eon Joo; Watanabe, Yusuke; Smyth, Graham; Miyagawa-Tomita, Sachiko; Meyers, Erik; Klingensmith, John; Camenisch, Todd; Buckingham, Margaret; Moon, Anne M.

    2009-01-01

    In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFβ and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development. PMID:18832392

  19. Use of Microsphere Technology for Targeted Delivery of Rifampin to Mycobacterium tuberculosis-Infected Macrophages

    PubMed Central

    Barrow, Esther L. W.; Winchester, Gary A.; Staas, Jay K.; Quenelle, Debra C.; Barrow, William W.

    1998-01-01

    Microsphere technology was used to develop formulations of rifampin for targeted delivery to host macrophages. These formulations were prepared by using biocompatible polymeric excipients of lactide and glycolide copolymers. Release characteristics were examined in vitro and also in two monocytic cell lines, the murine J774 and the human Mono Mac 6 cell lines. Bioassay assessment of cell culture supernatants from monocyte cell lines showed release of bioactive rifampin during a 7-day experimental period. Treatment of Mycobacterium tuberculosis H37Rv-infected monocyte cell lines with rifampin-loaded microspheres resulted in a significant decrease in numbers of CFU at 7 days following initial infection, even though only 8% of the microsphere-loaded rifampin was released. The levels of rifampin released from microsphere formulations within monocytes were more effective at reducing M. tuberculosis intracellular growth than equivalent doses of rifampin given as a free drug. These results demonstrate that rifampin-loaded microspheres can be formulated for effective sustained and targeted delivery to host macrophages. PMID:9756777

  20. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    PubMed

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  1. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  2. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    PubMed

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  3. Estrogen Receptor β as a Therapeutic Target in Breast Cancer Stem Cells

    PubMed Central

    Ma, Ran; Karthik, Govindasamy-Muralidharan; Lövrot, John; Haglund, Felix; Rosin, Gustaf; Katchy, Anne; Zhang, Xiaonan; Viberg, Lisa; Frisell, Jan; Williams, Cecilia; Linder, Stig; Fredriksson, Irma

    2017-01-01

    Abstract Background: Breast cancer cells with tumor-initiating capabilities (BSCs) are considered to maintain tumor growth and govern metastasis. Hence, targeting BSCs will be crucial to achieve successful treatment of breast cancer. Methods: We characterized mammospheres derived from more than 40 cancer patients and two breast cancer cell lines for the expression of estrogen receptors (ERs) and stem cell markers. Mammosphere formation and proliferation assays were performed on cells from 19 cancer patients and five healthy individuals after incubation with ER-subtype selective ligands. Transcriptional analysis was performed to identify pathways activated in ERβ-stimulated mammospheres and verified using in vitro experiments. Xenograft models (n = 4 or 5 per group) were used to study the role of ERs during tumorigenesis. Results: We identified an absence of ERα but upregulation of ERβ in BSCs associated with phenotypic stem cell markers and responsible for the proliferative role of estrogens. Knockdown of ERβ caused a reduction of mammosphere formation in cell lines and in patient-derived cancer cells (40.7%, 26.8%, and 39.1%, respectively). Gene set enrichment analysis identified glycolysis-related pathways (false discovery rate < 0.001) upregulated in ERβ-activated mammospheres. We observed that tamoxifen or fulvestrant alone was insufficient to block proliferation of patient-derived BSCs while this could be accomplished by a selective inhibitor of ERβ (PHTPP; 53.7% in luminal and 45.5% in triple-negative breast cancers). Furthermore, PHTPP reduced tumor initiation in two patient-derived xenografts (75.9% and 59.1% reduction in tumor volume, respectively) and potentiated tamoxifen-mediated inhibition of tumor growth in MCF7 xenografts. Conclusion: We identify ERβ as a mediator of estrogen action in BSCs and a novel target for endocrine therapy. PMID:28376210

  4. Bmi-1-targeting suppresses osteosarcoma aggressiveness through the NF-κB signaling pathway

    PubMed Central

    Liu, Jiaguo; Luo, Bin; Zhao, Meng

    2017-01-01

    Bone cancer is one of the most lethal malignancies and the specific causes of tumor initiation are not well understood. B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been reported to be associated with the initiation and progression of osteosarcoma, and as a prognostic indicator in the clinic. In the current study, a full-length antibody targeting Bmi-1 (AbBmi-1) was produced and the preclinical value of Bmi-1-targeted therapy was evaluated in bone carcinoma cells and tumor xenograft mice. The results indicated that the Bmi-1 expression level was markedly upregulated in bone cancer cell lines, and inhibition of Bmi-1 by AbBmi-1 reduced the invasiveness and migration of osteosarcoma cells. Overexpression of Bmi-1 promoted proliferation and angiogenesis, and increased apoptosis resistance induced by cisplatin via the nuclear factor-κB (NF-κB) signal pathway. In addition, AbBmi-1 treatment inhibited the tumorigenicity of osteosarcoma cells in vivo. Furthermore, AbBmi-1 blocked NF-κB signaling and reduced MMP-9 expression. Furthermore, Bmi-1 promoted osteosarcoma tumor growth, whereas AbBmi-1 significantly inhibited osteosarcoma tumor growth in vitro and in vivo. Notably, AbBmi-1 decreased the percentages of Ki67-positive cells and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in tumors compared with Bmi-1-treated and PBS controls. Notably, MMP-9 and NF-κB expression were downregulated by treatment with AbBmi-1 in MG-63 osteosarcoma cells. In conclusion, the data provides evidence that AbBmi-1 inhibited the progression of osteosarcoma, suggesting that AbBmi-1 may be a novel anti-cancer agent through the inhibition of Bmi-1 via activating the NF-κB pathway in osteosarcoma. PMID:28983587

  5. Development and validation of a whole-cell inhibition assay for bacterial methionine aminopeptidase by surface-enhanced laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Greis, Kenneth D; Zhou, Songtao; Siehnel, Richard; Klanke, Chuck; Curnow, Alan; Howard, Jeremy; Layh-Schmitt, Gerlinde

    2005-08-01

    Bacterial methionine aminopeptidase (MAP) is a protease that removes methionine from the N termini of newly synthesized bacterial proteins after the peptide deformylase enzyme cleaves the formyl group from the initiator formylmethionine. MAP is an essential bacterial gene product and thus represents a potential target for therapeutic intervention. A fundamental challenge in the antibacterial drug discovery field is demonstrating conclusively that compounds with in vitro enzyme inhibition activity produce the desired antibacterial effect by interfering with the same target in whole bacterial cells. One way to address the activity of inhibitor compounds is by profiling cellular biomarkers in whole bacterial cells using compounds that are known inhibitors of a particular target. However, in the case of MAP, no specific inhibitors were available for such studies. Instead, a genetically attenuated MAP strain was generated in which MAP expression was placed under the control of an inducible arabinose promoter. Thus, MAP inhibition in whole cells could be mimicked by growth in the absence of arabinose. This genetically attenuated strain was used as a benchmark for MAP inhibition by profiling whole-cell lysates for unprocessed proteins using surface-enhanced laser desorption ionization-time of flight mass spectrometry (MS). Eight proteins between 4 and 14 kDa were confirmed as being unprocessed and containing the initiator methionine by adding back purified MAP to the preparations prior to MS analysis. Upon establishing these unprocessed proteins as biomarkers for MAP inhibition, the assay was used to screen small-molecule chemical inhibitors of purified MAP for whole-cell activity. Fifteen compound classes yielded three classes of compound with whole-cell activity for further optimization by chemical expansion. This report presents the development, validation, and implementation of a whole-cell inhibition assay for MAP.

  6. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  7. Activation of plasmacytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells.

    PubMed

    Montoya, Carlos J; Jie, Hyun-Bae; Al-Harthi, Lena; Mulder, Candice; Patiño, Pablo J; Rugeles, María T; Krieg, Arthur M; Landay, Alan L; Wilson, S Brian

    2006-07-15

    CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.

  8. Tumor-initiating CD49f cells are a hallmark of chemoresistant triple negative breast cancer.

    PubMed

    Gomez-Miragaya, Jorge; González-Suárez, Eva

    2017-01-01

    Taxanes are mainstay treatment of triple negative breast cancer (TNBC) patients but resistance often develops. Using TNBC patient-derived orthoxenografts (PDX) we have recently discovered that a CD49f+ chemoresistant population with tumor-initiating ability is present in sensitive tumors and expands in tumors that have acquired resistance. Importantly, sensitivity to taxanes is recovered after long-term drug interruption. The characterization of this chemoresistant CD49f+ cells provides a unique opportunity to identify novel targets for the treatment of chemoresistant TNBC.

  9. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma.

    PubMed

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-05-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  10. T-REX on-demand redox targeting in live cells.

    PubMed

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2016-12-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t 1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.

  11. T-REX on-demand redox targeting in live cells

    PubMed Central

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2017-01-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)—a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE (alkyne)) and the HaloTag-targetable photocaged precursor to HNE (alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1–2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4–24 h, depending on the nature of the pathway and the type of readouts used. PMID:27809314

  12. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  13. From Ugly Duckling to Swan: Unexpected Identification from Cell-SELEX of an Anti-Annexin A2 Aptamer Targeting Tumors

    PubMed Central

    Cibiel, Agnes; Nguyen Quang, Nam; Gombert, Karine; Thézé, Benoit; Garofalakis, Anikitos; Ducongé, Frédéric

    2014-01-01

    Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application. PMID:24489826

  14. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis

    PubMed Central

    Chan, Keith Syson; Sano, Shigetoshi; Kiguchi, Kaoru; Anders, Joanne; Komazawa, Nobuyasu; Takeda, Junji; DiGiovanni, John

    2004-01-01

    Constitutive activation of signal transducer and activator of transcription 3 (Stat3) has been found in a wide spectrum of human malignancies. Here, we have assessed the effect of Stat3 deficiency on skin tumor development using the 2-stage chemical carcinogenesis model. The epidermis of Stat3-deficient mice showed a significantly reduced proliferative response following treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) because of a defect in G1-to-S-phase cell cycle progression. Treatment with the tumor initiator 7,12-dimethylbenz[a]anthracene (DMBA) resulted in a significant increase in the number of keratinocyte stem cells undergoing apoptosis in the bulge region of hair follicles of Stat3-deficient mice compared with nontransgenic littermates. Notably, Stat3-deficient mice were completely resistant to skin tumor development when DMBA was used as the initiator and TPA as the promoter. Abrogation of Stat3 function using a decoy oligonucleotide inhibited the growth of initiated keratinocytes possessing an activated Ha-ras gene, both in vitro and in vivo. In addition, injection of Stat3 decoy into skin tumors inhibited their growth. To our knowledge, these data provide the first evidence that Stat3 is required for de novo epithelial carcinogenesis, through maintaining the survival of DNA-damaged stem cells and through mediating and maintaining the proliferation necessary for clonal expansion of initiated cells during tumor promotion. Collectively, these data suggest that, in addition to its emerging role as a target for cancer therapy, Stat3 may also be a target for cancer prevention strategies. PMID:15343391

  15. The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells

    PubMed Central

    Wang, Hai; Yu, Cuijuan; Gao, Xia; Welte, Thomas; Muscarella, Aaron M.; Tian, Lin; Zhao, Hong; Zhao, Zhen; Du, Shiyu; Tao, Jianning; Lee, Brendan; Westbrook, Thomas F.; Wong, Stephen T. C.; Jin, Xin; Rosen, Jeffrey M.; Osborne, C. Kent; Zhang, Xiang H.-F.

    2014-01-01

    Summary Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We further elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human datasets analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases. Significance In advanced stages, breast cancer bone metastases are driven by paracrine crosstalk among cancer cells, osteoblasts, and osteoclasts, which constitute a vicious osteolytic cycle. Current therapies targeting this process limit tumor progression, but do not improve patient survival. On the other hand, bone micrometastases may remain indolent for years before activating the vicious cycle, providing a therapeutic opportunity to prevent macrometastases. Here, we show that bone colonization is initiated in a microenvironment niche exhibiting active osteogenesis. Cancer and osteogenic cells form heterotypic adherens junctions, which enhance mTOR activity and drive early-stage bone colonization prior to osteolysis. These results reveal a strong connection between osteogenesis and micrometastasis and suggest potential therapeutic targets to prevent bone macrometastases. PMID:25600338

  16. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients

  17. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks.

    PubMed

    Martin, Ulrich

    2017-01-01

    Stem-cell-based therapies are considered to be promising and innovative but complex approaches. Induced pluripotent stem cells (iPSCs) combine the advantages of adult stem cells with the hitherto unique characteristics of embryonic stem cells (ESCs). Major progress has already been achieved with regard to reprogramming technology, but also regarding targeted genome editing and scalable expansion and differentiation of iPSCs and ESCs, in some cases yielding highly enriched preparations of well-defined cell lineages at clinically required dimensions. It is noteworthy, however, that for many applications critical requirements such as the targeted specification into distinct cellular subpopulations and a proper cell maturation remain to be achieved. Moreover, current hurdles such as low survival rates and insufficient functional integration of cellular transplants remain to be overcome. Nevertheless, PSC technologies obviously have come of age and matured to a stage where various clinical applications of PSC-based cellular therapies have been initiated and are conducted.

  18. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts

    PubMed Central

    2013-01-01

    One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets. PMID:24238212

  19. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies.

    PubMed

    Jafri, Mohammad A; Ansari, Shakeel A; Alqahtani, Mohammed H; Shay, Jerry W

    2016-06-20

    Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.

  20. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    PubMed

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  1. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-08-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.

  2. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    PubMed

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  3. The TARGET Kidney Tumors (KT) project team (like other TARGET researchers) generated data in two phases: Discovery and Validation. Visit the TARGET Research page to learn more. In the discovery phase, nearly 80 FHWT that relapsed and approximately 50 anaplastic WT cases were characterized for molecular alterations; all patient cases are clinically annotated. Each fully-characterized case includes:

    Cancer.gov

    Pediatric kidney tumors, Wilms tumors (~85% of all cases), clear cell sarcomas of the kidney (~5%), congenital mesoblastic nephromas (~4%), and rhabdoid tumors of the kidney (~3%). The TARGET initiative is investigating three of these tumor types.

  4. The Use of Withaferin A to Study Intermediate Filaments.

    PubMed

    Mohan, Royce; Bargagna-Mohan, Paola

    2016-01-01

    Withaferin A (WFA), initially identified as a compound that inhibits experimental angiogenesis, has been shown to bind to soluble vimentin (sVim) and other type III intermediate filament (IF) proteins. We review WFA's dose-related activities (Section 1), examining nanomolar concentrations effects on sVim in cell proliferation and submicromolar effects on lamellipodia and focal adhesion formation. WFA effects on polymeric IFs are especially interesting to the study of cell migration and invasion that depend on IF mechanical contractile properties. WFA interferes with NF-κB signaling, though this anti-inflammatory mechanism may occur via perturbation of sVim-protein complexes, and possibly also via targeting IκB kinase β directly. However, micromolar concentrations that induce vimentin cleavage to promote apoptosis may increasingly show off-target effects via targeting other IFs (neurofilaments and keratin) and non-IFs (tubulin, heat-shock proteins, proteasome). Thus, in Section 2, we describe our studies combining cell cultures with animal models of injury to validate relevant type III IF-targeting mechanisms of WFA. In Section 3, we illuminate from investigating myofibroblast differentiation how sVim phosphorylation may govern cell type-selective sensitivity to WFA, offering impetus for exploring vimentin phosphorylation isoforms as targets and biomarkers of fibrosis. These different WFA targets and activities are listed in a summary table. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  7. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  8. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    PubMed Central

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  9. Insertion of targeting domains into the envelope glycoprotein of Moloney murine leukemia virus (MoMLV)-based vectors modulates the route of mCAT-1-mediated viral entry.

    PubMed

    Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F

    2005-03-01

    Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.

  10. A novel electrochemical cytosensor for selective and highly sensitive detection of cancer cells using binding-induced dual catalytic hairpin assembly.

    PubMed

    Zhang, Ye; Luo, Shihua; Situ, Bo; Chai, Zhixin; Li, Bo; Liu, Jumei; Zheng, Lei

    2018-04-15

    Rare cancer cells in body fluid could be useful biomarkers for noninvasive diagnosis of cancer. However, detection of these rare cells is currently challenging. In this work, a binding-induced dual catalytic hairpin assembly (DCHA) electrochemical cytosensor was developed for highly selective and sensitive detection of cancer cells. The fuel probe, released by hybridization between the capture probe and catalytic hairpin assembly (CHA) products of target cell-responsive reaction, initiated dual CHA recycling, leading to multiple CHA products. Furthermore, the hybridization between fuel probe and capture probe decreased non-specific CHA products, improving the signal-to-noise ratio and detection sensitivity. Under the optimal conditions, the developed cytosensor was able to detect cells down to 30 cells mL -1 (S/N = 3) with a linear range from 50 to 100,000 cells mL -1 and was capable of distinguishing target cells from normal cells in clinical blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PTEN Is a Negative Regulator of NK Cell Cytolytic Function

    PubMed Central

    Briercheck, Edward L.; Trotta, Rossana; Chen, Li; Hartlage, Alex S.; Cole, Jordan P.; Cole, Tyler D.; Mao, Charlene; Banerjee, Pinaki P.; Hsu, Hsiang-Ting; Mace, Emily M.; Ciarlariello, David; Mundy-Bosse, Bethany L.; Garcia-Cao, Isabel; Scoville, Steven D.; Yu, Lianbo; Pilarski, Robert; Carson, William E.; Leone, Gustavo; Pandolfi, Pier Paolo; Yu, Jianhua; Orange, Jordan S.; Caligiuri, Michael A.

    2015-01-01

    Human NK cells are characterized by their ability to initiate an immediate and direct cytolytic response to virally infected or malignantly transformed cells. Within human peripheral blood, the more mature CD56dim NK cell efficiently kills malignant targets at rest, whereas the less mature CD56bright NK cells cannot. In this study, we show that resting CD56bright NK cells express significantly more phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein when compared with CD56dim NK cells. Consistent with this, forced overexpression of PTEN in NK cells resulted in decreased cytolytic activity, and loss of PTEN in CD56bright NK cells resulted in elevated cytolytic activity. Comparable studies in mice showed PTEN overexpression did not alter NK cell development or NK cell–activating and inhibitory receptor expression yet, as in humans, did decrease expression of downstream NK activation targets MAPK and AKT during early cytolysis of tumor target cells. Confocal microscopy revealed that PTEN overexpression disrupts the NK cell’s ability to organize immunological synapse components including decreases in actin accumulation, polarization of the microtubule organizing center, and the convergence of cytolytic granules. In summary, our data suggest that PTEN normally works to limit the NK cell’s PI3K/AKT and MAPK pathway activation and the consequent mobilization of cytolytic mediators toward the target cell and suggest that PTEN is among the active regulatory components prior to human NK cells transitioning from the noncytolytic CD56bright NK cell to the cytolytic CD56dim NK cells. PMID:25595786

  12. Atherosclerosis. Potential targets for stabilization and regression.

    PubMed

    Schwartz, C J; Valente, A J; Sprague, E A; Kelley, J L; Cayatte, A J; Mowery, J

    1992-12-01

    Reviewed are various aspects of atherosclerotic plaque stabilization and regression in humans and experimental animals. Plaque regression is a function of the dynamic balance among initiation, progression, stabilization, and removal of plaque constituents. Pseudoregression, the result of the triad thrombolysis, age- or lesion-dependent arterial dilatation, and relaxation of vasospasm, may readily give rise to angiographic misinterpretation. Although lowering of plasma cholesterol and low density lipoprotein-cholesterol has demonstrated significant clinical benefits in a number of clinical trials, the magnitude of angiographic regressive changes is relatively small despite aggressive lipid-lowering regimens. The emerging need for alternative or complementary therapeutic interventions has been emphasized. In particular, they should be targeted to pivotal cellular or molecular mechanisms in initiation, progression, or stabilization. Potentially important therapeutic targets include the use of antioxidants or free radical scavengers such as Probucol or its analogues, butylated hydroxytoluene, tocopherols, and possibly the tocotrienols. Other therapeutic targets include intimal monocyte-macrophage recruitment, macrophage cholesterol acyltransferase inhibition, stimulation of the high density lipoprotein-mediated reverse cholesterol transport system, smooth muscle cell migration to and proliferation in the arterial intima, and intimal connective tissue synthesis. Whether the isoprenylated proteins associated with the cholesterol biosynthetic pathway will give rise to compounds regulating smooth muscle cell growth has yet to be determined. Because of the importance of thrombosis in the pathogenesis and progression of lesions, the need to develop interventional strategies targeted at endothelial cell thromboresistance and thromboregulation must assume a high priority in future research and development. Other areas of therapeutic promise include the calcium channel blockers and angiotensin converting enzyme inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. NAD+ salvage pathway in cancer metabolism and therapy.

    PubMed

    Kennedy, Barry E; Sharif, Tanveer; Martell, Emma; Dai, Cathleen; Kim, Youra; Lee, Patrick W K; Gujar, Shashi A

    2016-12-01

    Nicotinamide adenine dinucleotide (NAD + ) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD + an intriguing target for cancer therapeutics. NAD + is mainly synthesized by the NAD + salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD + salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD + depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD + causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD + levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD + salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  15. Non-targeted effects of ionizing radiation–implications for low dose risk

    PubMed Central

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.

    2014-01-01

    Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375

  16. Enterocolitis induced by autoimmune targeting of enteric glial cells: A possible mechanism in Crohn's disease?

    NASA Astrophysics Data System (ADS)

    Cornet, Anne; Savidge, Tor C.; Cabarrocas, Julie; Deng, Wen-Lin; Colombel, Jean-Frederic; Lassmann, Hans; Desreumaux, Pierre; Liblau, Roland S.

    2001-11-01

    Early pathological manifestations of Crohn's disease (CD) include vascular disruption, T cell infiltration of nerve plexi, neuronal degeneration, and induction of T helper 1 cytokine responses. This study demonstrates that disruption of the enteric glial cell network in CD patients represents another early pathological feature that may be modeled after CD8+ T cell-mediated autoimmune targeting of enteric glia in double transgenic mice. Mice expressing a viral neoself antigen in astrocytes and enteric glia were crossed with specific T cell receptor transgenic mice, resulting in apoptotic depletion of enteric glia to levels comparable in CD patients. Intestinal and mesenteric T cell infiltration, vasculitis, T helper 1 cytokine production, and fulminant bowel inflammation were characteristic hallmarks of disease progression. Immune-mediated damage to enteric glia therefore may participate in the initiation and/or the progression of human inflammatory bowel disease.

  17. KIFC1: a promising chemotherapy target for cancer treatment?

    PubMed

    Xiao, Yu-Xi; Yang, Wan-Xi

    2016-07-26

    The kinesin motor KIFC1 has been suggested as a potential chemotherapy target due to its critical role in clustering of the multiple centrosomes found in cancer cells. In this regard, KIFC1 seems to be non-essential in normal somatic cells which usually possess only two centrosomes. Moreover, KIFC1 is also found to initiatively drive tumor malignancy and metastasis by stabilizing a certain degree of genetic instability, delaying cell cycle and protecting cancer cell surviving signals. However, that KIFC1 also plays roles in other specific cell types complicates the question of whether it is a promising chemotherapy target for cancer treatment. For example, KIFC1 is found functionally significant in vesicular and organelle trafficking, spermiogenesis, oocyte development, embryo gestation and double-strand DNA transportation. In this review we summarize a recent collection of information so as to provide a generalized picture of ideas and mechanisms against and in favor of KIFC1 as a chemotherapy target. And we also drew the conclusion that KIFC1 is a promising chemotherapy target for some types of cancers, because the side-effects of inhibiting KIFC1 mentioned in this review are theoretically easy to avoid, while KIFC1 is functionally indispensable during mitosis and malignancy of multi-centrosome cancer cells. Further investigations of how KIFC1 is regulated throughout the mitosis in cancer cells are needed for the understanding of the pathways where KIFC1 is involved and for further exploitation of indirect KIFC1 inhibitors.

  18. Heat shock protein-27 (HSP27) regulates STAT3 and eIF4G levels in first trimester human placenta.

    PubMed

    Shochet, Gali Epstein; Komemi, Oded; Sadeh-Mestechkin, Dana; Pomeranz, Meir; Fishman, Ami; Drucker, Liat; Lishner, Michael; Matalon, Shelly Tartakover

    2016-12-01

    During placental implantation, cytotrophoblast cells differentiate to extravillous trophoblast (EVT) cells that invade from the placenta into the maternal uterine blood vessels. The heat shock protein-27 (HSP27), the signal transducer and activator of transcription-3 (STAT3) and the eukaryotic translation initiation factor 4E (EIF4E) are involved in regulating EVT cell differentiation/migration. EIF4E and EIF4G compose the translation initiation complex, which is a major control point in protein translation. The molecular chaperone distinctiveness of HSP27 implies that it directly interferes with many target proteins. STAT3, EIF4E, and EIF4G were found to be HSP27 client proteins in tumor cells. We aimed to analyze if HSP27 regulate STAT3 and EIF4G levels in first trimester human placenta. We found that like STAT3, EIF4G is highly expressed in the EVT cells (immunohistochemistry). Silencing HSP27 in HTR-8/SVneo cells (siRNA, EVT cell line) and in placental explants reduced STAT3 level (47 and 33 %, respectively, p < 0.05). HSP27 silencing reduced the levels of STAT3 phosphorylation (33 % reduction, p < 0.05) and targets (IRF1, MUC1, MMP2/9 and EIF4E, 30-49 % reduction, p < 0.05) in the HTR-8/SVneo cells. Moreover, HSP27 silencing significantly reduced EIF4G level and elevated the level of its fragments in HTR-8/SVneo cells and in the placental explants (p < 0.05). In conclusion, Placental implantation and development are accompanied by trophoblast cell proliferation and differentiation, which necessitates intense protein translation and STAT3 activation. HSP27 was found to be regulator of translation initiation and STAT3 level. Therefore, it suggests that HSP27 is a key protein during placental development and trophoblast cell differentiation.

  19. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan

    2010-11-26

    Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular sensitivity to anticancer treatments. These findings may provide pivotal insights in the context of fractionated radiation-based therapeutic interventions in brain cancer.« less

  20. Growth regulation in tip-growing cells that develop on the epidermis.

    PubMed

    Honkanen, Suvi; Dolan, Liam

    2016-12-01

    Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement. Copyright © 2016. Published by Elsevier Ltd.

  1. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment?

    PubMed

    Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A

    2010-06-15

    Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.

  2. Decreasing glioma recurrence through adjuvant cancer stem cell inhibition.

    PubMed

    Neman, Josh; Jandial, Rahul

    2010-06-24

    Gliomas remain one of the most challenging solid organ tumors to treat and are marked clinically by invariable recurrence despite multimodal intervention (surgery, chemotherapy, radiation). This recurrence perhaps, is as a consequence of the failure to eradicate a tumor cell subpopulation, termed cancer stem cells. Isolating, characterizing, and understanding these tumor-initiating cells through cellular and molecular markers, along with genetic and epigenetic understanding will allow for selective targeting through therapeutic agents and holds promise for decreasing glioma recurrence.

  3. Decreasing glioma recurrence through adjuvant cancer stem cell inhibition

    PubMed Central

    Neman, Josh; Jandial, Rahul

    2010-01-01

    Gliomas remain one of the most challenging solid organ tumors to treat and are marked clinically by invariable recurrence despite multimodal intervention (surgery, chemotherapy, radiation). This recurrence perhaps, is as a consequence of the failure to eradicate a tumor cell subpopulation, termed cancer stem cells. Isolating, characterizing, and understanding these tumor-initiating cells through cellular and molecular markers, along with genetic and epigenetic understanding will allow for selective targeting through therapeutic agents and holds promise for decreasing glioma recurrence. PMID:20631819

  4. Protein sorting, targeting and trafficking in photoreceptor cells

    PubMed Central

    Pearring, Jillian N.; Salinas, Raquel Y.; Baker, Sheila A.; Arshavsky, Vadim Y.

    2013-01-01

    Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins. PMID:23562855

  5. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not initiated by brain mononuclear cells. Purkinje cell death was not simply due to intraneuronal antibody accumulation.

  6. Anti-Yo Antibody Uptake and Interaction with Its Intracellular Target Antigen Causes Purkinje Cell Death in Rat Cerebellar Slice Cultures: A Possible Mechanism for Paraneoplastic Cerebellar Degeneration in Humans with Gynecological or Breast Cancers

    PubMed Central

    Greenlee, John E.; Clawson, Susan A.; Hill, Kenneth E.; Wood, Blair; Clardy, Stacey L.; Tsunoda, Ikuo; Carlson, Noel G.

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not initiated by brain mononuclear cells. Purkinje cell death was not simply due to intraneuronal antibody accumulation. PMID:25885452

  7. Small RNAs Targeting Transcription Start Site Induce Heparanase Silencing through Interference with Transcription Initiation in Human Cancer Cells

    PubMed Central

    Pu, Jiarui; Mei, Hong; Zhao, Jun; Huang, Kai; Zeng, Fuqing; Tong, Qiangsong

    2012-01-01

    Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against −9/+10 bp (siH3), but not −174/−155 bp (siH1) or −134/−115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (−9/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells. PMID:22363633

  8. Use and engineering of efflux pumps for the export of olefins in microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Aindrila

    2016-07-14

    The scope of the project is to investigate efflux pump systems in engineered host microorganisms, such as E. coli, and develop a pump engineered to export a target compound. To initiate the project in coordination with other TOTAL driven projects, the first target compound to be studied was 1-hexene. However, we were investigating other chemicals as Styrene. The main goal of the project was to generate a set of optimized efflux pump systems for microorganisms (E. coli and Streptomyces or other host) engineered to contain biosynthetic pathways to export large titers of target compounds that are toxic (or accumulate andmore » push back biosynthesis) to the host cell. An optimized microbial host will utilize specific and efficient cell wall located pumps to extrude harmful target compounds and enable greater production of these compounds.« less

  9. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells.

    PubMed

    Wang, Juan; Wu, Jiacai; Li, Xumei; Liu, Haowei; Qin, Jianli; Bai, Zhun; Chi, Bixia; Chen, Xu

    2018-06-30

    Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions through affinity chromatography approach coupled with mass spectrometry, has been conventionally used to identify target proteins and has yielded good results. Curcumol, has shown effective inhibition on Nasopharyngeal Carcinoma (NPC) Cells, interacted with NCL and then initiated the anti-tumor biological effect. This research demonstrated the effectiveness of chemical proteomics approaches in natural drugs molecular target identification, revealing and understanding of the novel mechanism of actions of curcumol is crucial for cancer prevention and treatment in nasopharynx cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.

    PubMed

    Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V

    2017-09-22

    Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.

  11. Modified Cross-Linking, Ligation, and Sequencing of Hybrids (qCLASH) Identifies Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Targets in Endothelial Cells.

    PubMed

    Gay, Lauren A; Sethuraman, Sunantha; Thomas, Merin; Turner, Peter C; Renne, Rolf

    2018-04-15

    Kaposi's sarcoma (KS) tumors are derived from endothelial cells and express Kaposi's sarcoma-associated herpesvirus (KSHV) microRNAs (miRNAs). Although miRNA targets have been identified in B cell lymphoma-derived cells and epithelial cells, little has been done to characterize the KSHV miRNA targetome in endothelial cells. A recent innovation in the identification of miRNA targetomes, cross-linking, ligation, and sequencing of hybrids (CLASH), unambiguously identifies miRNAs and their targets by ligating the two species while both species are still bound within the RNA-induced silencing complex (RISC). We developed a streamlined quick CLASH (qCLASH) protocol that requires a lower cell input than the original method and therefore has the potential to be used on patient biopsy samples. Additionally, we developed a fast-growing, KSHV-negative endothelial cell line derived from telomerase-immortalized vein endothelial long-term culture (TIVE-LTC) cells. qCLASH was performed on uninfected cells and cells infected with either wild-type KSHV or a mutant virus lacking miR-K12-11/11*. More than 1,400 cellular targets of KSHV miRNAs were identified. Many of the targets identified by qCLASH lacked a canonical seed sequence match. Additionally, most target regions in mRNAs originated from the coding DNA sequence (CDS) rather than the 3' untranslated region (UTR). This set of genes includes some that were previously identified in B cells and some new genes that warrant further study. Pathway analysis of endothelial cell targets showed enrichment in cell cycle control, apoptosis, and glycolysis pathways, among others. Characterization of these new targets and the functional consequences of their repression will be important in furthering our understanding of the role of KSHV miRNAs in oncogenesis. IMPORTANCE KS lesions consist of endothelial cells latently infected with KSHV. Cells that make up these lesions express KSHV miRNAs. Identification of the targets of KSHV miRNAs will help us understand their role in viral oncogenesis. The cross-linking and sequencing of hybrids (CLASH) protocol is a method for unambiguously identifying miRNA targetomes. We developed a streamlined version of CLASH, called quick CLASH (qCLASH). qCLASH requires a lower initial input of cells than for its parent protocol. Additionally, a new fast-growing KSHV-negative endothelial cell line, named TIVE-EX-LTC cells, was established. qCLASH was performed on TIVE-EX-LTC cells latently infected with wild-type (WT) KSHV or a mutant virus lacking miR-K12-11/11*. A number of novel targets of KSHV miRNAs were identified, including targets of miR-K12-11, the ortholog of the cellular oncogenic miRNA (oncomiR) miR-155. Many of the miRNA targets were involved in processes related to oncogenesis, such as glycolysis, apoptosis, and cell cycle control. Copyright © 2018 American Society for Microbiology.

  12. CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells.

    PubMed

    Bishop, Kathleen A; Harrington, Anne; Kouranova, Evguenia; Weinstein, Edward J; Rosen, Clifford J; Cui, Xiaoxia; Liaw, Lucy

    2016-07-07

    Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation. Copyright © 2016 Bishop et al.

  13. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  14. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  15. Targeted Therapies in Non-Small Cell Lung Cancer—Beyond EGFR and ALK

    PubMed Central

    Rothschild, Sacha I.

    2015-01-01

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called “driver mutations”) for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed. PMID:26018876

  16. Targeted Therapies in Non-Small Cell Lung Cancer-Beyond EGFR and ALK.

    PubMed

    Rothschild, Sacha I

    2015-05-26

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called "driver mutations") for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed.

  17. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma.

    PubMed

    Wang, Yun; Huang, Nanxin; Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Shen, Hai-Ying; Li, Chengren; Xiao, Lan

    2017-06-06

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.

  18. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma

    PubMed Central

    Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Li, Chengren

    2017-01-01

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma. PMID:28415586

  19. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    PubMed

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells

    PubMed Central

    Backer, Ronald; Schwandt, Timo; Greuter, Mascha; Oosting, Marije; Jüngerkes, Frank; Tüting, Thomas; Boon, Louis; O’Toole, Tom; Kraal, Georg; Limmer, Andreas; den Haan, Joke M. M.

    2009-01-01

    The spleen is the lymphoid organ that induces immune responses toward blood-borne pathogens. Specialized macrophages in the splenic marginal zone are strategically positioned to phagocytose pathogens and cell debris, but are not known to play a role in the activation of T-cell responses. Here we demonstrate that splenic marginal metallophilic macrophages (MMM) are essential for cross-presentation of blood-borne antigens by splenic dendritic cells (DCs). Our data demonstrate that antigens targeted to MMM as well as blood-borne adenoviruses are efficiently captured by MMM and exclusively transferred to splenic CD8+ DCs for cross-presentation and for the activation of cytotoxic T lymphocytes. Depletion of macrophages in the marginal zone prevents cytotoxic T-lymphocyte activation by CD8+ DCs after antibody targeting or adenovirus infection. Moreover, we show that tumor antigen targeting to MMM is very effective as antitumor immunotherapy. Our studies point to an important role for splenic MMM in the initial steps of CD8+ T-cell immunity by capturing and concentrating blood-borne antigens and the transfer to cross-presenting DCs which can be used to design vaccination strategies to induce antitumor cytotoxic T-cell immunity. PMID:20018690

  1. Mitochondria are targets for the antituberculosis drug rifampicin in cultured epithelial cells.

    PubMed

    Erokhina, M V; Kurynina, A V; Onishchenko, G E

    2013-10-01

    Rifampicin is a widely used drug for antituberculosis therapy. Its target is the bacterial RNA polymerase. After entry into the human or mammalian organism, rifampicin is accumulated in cells of epithelial origin (kidneys, liver, lungs) where it induces apoptosis, necrosis, and fibrosis. The purpose of this study was to determine the intracellular mechanisms leading to rifampicin-induced pathological changes and cell death. We analyzed the survival and state of the chondriome of cultured epithelial cells of the SPEV line under the influence of rifampicin. Our data show that the drug induces pronounced pathological changes in the network and ultrastructure of mitochondria, and their dysfunction results in excessive production of reactive oxygen species and release of cytochrome c. These data suggest the initiation of the mitochondrial pathway of apoptosis. Simultaneously, we observed inhibition of cell proliferation and changes in morphology of the epithelial cells toward fibroblast-like appearance, which could indicate induction of epithelial-mesenchymal transition. Thus, mitochondria are the main potential target for rifampicin in cells of epithelial origin. We suggest that similar mechanisms of pathological changes can be induced in vivo in organs and tissues accumulating rifampicin during chemotherapy of bacterial infectious diseases.

  2. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis.

    PubMed

    Jin, Rui; Zhou, Wei

    2016-12-01

    Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Initial Virologic Response and HIV Drug Resistance Among HIV-Infected Individuals Initiating First-line Antiretroviral Therapy at 2 Clinics in Chennai and Mumbai, India

    PubMed Central

    Hingankar, Nitin K.; Thorat, Smita R.; Deshpande, Alaka; Rajasekaran, S.; Chandrasekar, C.; Kumar, Suria; Srikantiah, Padmini; Chaturbhuj, Devidas N.; Datkar, Sharda R.; Deshmukh, Pravin S.; Kulkarni, Smita S.; Sane, Suvarna; Reddy, D. C. S.; Garg, Renu; Jordan, Michael R.; Kabra, Sandhya; Paranjape, Ramesh S.

    2012-01-01

    Human immunodeficiency virus drug resistance (HIVDR) in cohorts of patients initiating antiretroviral therapy (ART) at clinics in Chennai and Mumbai, India, was assessed following World Health Organization (WHO) guidelines. Twelve months after ART initiation, 75% and 64.6% of participants at the Chennai and Mumbai clinics, respectively, achieved viral load suppression of <1000 copies/mL (HIVDR prevention). HIVDR at initiation of ART (P <.05) and 12-month CD4 cell counts <200 cells/μL (P <.05) were associated with HIVDR at 12 months. HIVDR prevention exceeded WHO guidelines (≥70%) at the Chennai clinic but was below the target in Mumbai due to high rates of loss to follow-up. Findings highlight the need for defaulter tracing and scale-up of routine viral load testing to identify patients failing first-line ART. PMID:22544202

  4. Studies in Multifunctional Drug Development: Preparation and Evaluation of 11beta-Substituted Estradiol-Drug Conjugates, Cell Membrane Targeting Imaging Agents, and Target Multifunctional Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dao, KinhLuan Lenny D.

    Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized with an azido-tetraethylene glycol moiety that could be coupled to a complementary doxorubicin benzoyl hydrazone, functionalized with a propargyl tetraethylene glycol moiety. Huisgen [3+2] cycloaddition chemistry gave the final hybrid which was evaluated for receptor binding to demonstrate ER-affinity and for cytotoxicity in ER(+)-MCF-7 and ER(-)-MDA-MB-231 breast cancer cell lines. The anti-estrogen-doxorubicin hybrid demonstrated enhanced (>70-fold) selectivity for ER(+)-cells versus ER(-)-cells and enhanced efficacy compared to doxorubicin alone. The reversal of these effects by co-administration of estradiol demonstrated that the presence of the anti-estrogenic component was critical for selectivity and cytotoxicity in ER(+)-MCF-7 human breast cancer cells. The results suggest that this approach the basis for developing selective therapeutic agents for ER(+)-cancer cells with reduced effects on non-target tissues.1,2 The second study describes our use of 11beta-AE for targeting ER membrane targeting in hormone-dependent breast cancer, and of a urea-based prostate specific membrane antigen (PSMA) inhibitor for targeting PSMA membrane receptors in androgen-independent of prostate cancer. These derivatives were used to prepare a series of molecular imaging probes. We have successfully established our model compound, 11beta-AE radiolabeled with 18F-fluoro-OEG-azide, for in vivo imaging.3 The third study describes a strategy based on the design and synthesis of a multifunctional gold nanoparticulate (mfAuNPs) drug delivery system that can be used for prostate cancer therapy. We have utilized a convergent modular assembly approach to prepare individual components such as a) prostate specific membrane antigen (PSMA) ligands for targeting; b) pH-sensitive doxorubicin; and c) Re/99Tc chelating complex for radioimaging. The components can be assembled with a terminal lipoic acid or thiolated ethylene glycol oligomer for attachment to the Au surface. Initial in vitro studies with the PSMA-targeted mfAuNPs demonstrated significant selective uptake and localization properties in LnCaP and PC-3 prostate cancer cells.4 References: (1) Dao, K.-L.; Hanson, R. N.: Targeting the Estrogen Receptor using Steroid-Therapeutic Drug Conjugates (Hybrids). Bioconjugate Chemistry 2012. DOI: 10.1021/bc300378e. (2) Dao, K.-L.; Sawant, R. R.; Hendricks, J. A.; Ronga, V.; Torchilin, V. P.; Hanson, R. N.: Design, Synthesis, and Initial Biological Evaluation of a Steroidal Anti-Estrogen-Doxorubicin Bioconjugate for Targeting Estrogen Receptor-Positive Breast Cancer Cells. Bioconjugate Chemistry 2012, 23, 785-795. (3) Design, Synthesis, and in vivo PET imaging of radioligand 18F-11beta-substituted estradiol (18F-11betaAE) in breast cancer (manuscript in prep.) (4) Prostate Cancer-Specific Drug Delivery and Imaging Systems: Design, Synthesis, and Biological Evaluation of Multi-functional Gold Nanoparticles (manuscript in prep.)

  5. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    PubMed Central

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  6. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  7. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  8. Evidence for circulating cancer stem-like cells and epithelial-mesenchymal transition phenotype in the pleurospheres derived from lung adenocarcinoma using liquid biopsy.

    PubMed

    Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh

    2017-03-01

    Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.

  9. Data Sets from Major NCI Initiaves

    Cancer.gov

    The NCI Data Catalog includes links to data collections produced by major NCI initiatives and other widely used data sets, including animal models, human tumor cell lines, epidemiology data sets, genomics data sets from TCGA, TARGET, COSMIC, GSK, NCI60.

  10. MicroRNA-188 suppresses G1/S transition by targeting multiple cyclin/CDK complexes.

    PubMed

    Wu, Jiangbin; Lv, Qing; He, Jie; Zhang, Haoxiang; Mei, Xueshuang; Cui, Kai; Huang, Nunu; Xie, Weidong; Xu, Naihan; Zhang, Yaou

    2014-10-11

    Accelerated cell cycle progression is the common feature of most cancers. MiRNAs can act as oncogenes or tumor suppressors by directly modulating cell cycle machinery. It has been shown that miR-188 is upregulated in UVB-irradiated mouse skin and human nasopharyngeal carcinoma CNE cells under hypoxic stress. However, little is known about the function of miR-188 in cell proliferation and growth control. Overexpression of miR-188 inhibits cell proliferation, tumor colony formation and G1/S cell cycle transition in human nasopharyngeal carcinoma CNE cells. Using bioinformatics approach, we identify a series of genes regulating G1/S transition as putative miR-188 targets. MiR-188 inhibits both mRNA and protein expression of CCND1, CCND3, CCNE1, CCNA2, CDK4 and CDK2, suppresses Rb phosphorylation and downregulates E2F transcriptional activity. The expression level of miR-188 also inversely correlates with the expression of miR-188 targets in human nasopharyngeal carcinoma (NPC) tissues. Moreover, studies in xenograft mouse model reveal that miR-188 is capable of inhibiting tumor initiation and progression by suppressing target genes expression and Rb phosphorylation. This study demonstrates that miR-188 exerts anticancer effects, via downregulation of multiple G1/S related cyclin/CDKs and Rb/E2F signaling pathway.

  11. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    PubMed

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  12. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    PubMed Central

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  13. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer.

    PubMed

    Hsu, Jessie Hao-Ru; Hubbell-Engler, Benjamin; Adelmant, Guillaume; Huang, Jialiang; Joyce, Cailin E; Vazquez, Francisca; Weir, Barbara A; Montgomery, Philip; Tsherniak, Aviad; Giacomelli, Andrew O; Perry, Jennifer A; Trowbridge, Jennifer; Fujiwara, Yuko; Cowley, Glenn S; Xie, Huafeng; Kim, Woojin; Novina, Carl D; Hahn, William C; Marto, Jarrod A; Orkin, Stuart H

    2017-09-01

    Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Modularly Constructed Synthetic Granzyme B Molecule Enables Interrogation of Intracellular Proteases for Targeted Cytotoxicity.

    PubMed

    Ho, Patrick; Ede, Christopher; Chen, Yvonne Y

    2017-08-18

    Targeted therapies promise to increase the safety and efficacy of treatments against diseases ranging from cancer to viral infections. However, the vast majority of targeted therapeutics relies on the recognition of extracellular biomarkers, which are rarely restricted to diseased cells and are thus prone to severe and sometimes-fatal off-target toxicities. In contrast, intracellular antigens present a diverse yet underutilized repertoire of disease markers. Here, we report a protein-based therapeutic platform-termed Cytoplasmic Oncoprotein VErifier and Response Trigger (COVERT)-which enables the interrogation of intracellular proteases to trigger targeted cytotoxicity. COVERT molecules consist of the cytotoxic protein granzyme B (GrB) fused to an inhibitory N-terminal peptide, which can be removed by researcher-specified proteases to activate GrB function. We demonstrate that fusion of a small ubiquitin-like modifier 1 (SUMO1) protein to GrB yields a SUMO-GrB molecule that is specifically activated by the cancer-associated sentrin-specific protease 1 (SENP1). SUMO-GrB selectively triggers apoptotic phenotypes in HEK293T cells that overexpress SENP1, and it is highly sensitive to different SENP1 levels across cell lines. We further demonstrate the rational design of additional COVERT molecules responsive to enterokinase (EK) and tobacco etch virus protease (TEVp), highlighting the COVERT platform's modularity and adaptability to diverse protease targets. As an initial step toward engineering COVERT-T cells for adoptive T-cell therapy, we verified that primary human T cells can express, package, traffic, and deliver engineered GrB molecules in response to antigen stimulation. Our findings set the foundation for future intracellular-antigen-responsive therapeutics that can complement surface-targeted therapies.

  15. Phage display discovery of novel molecular targets in glioblastoma-initiating cells.

    PubMed

    Liu, J K; Lubelski, D; Schonberg, D L; Wu, Q; Hale, J S; Flavahan, W A; Mulkearns-Hubert, E E; Man, J; Hjelmeland, A B; Yu, J; Lathia, J D; Rich, J N

    2014-08-01

    Glioblastoma is the most common primary intrinsic brain tumor and remains incurable despite maximal therapy. Glioblastomas display cellular hierarchies with self-renewing glioma-initiating cells (GICs) at the apex. To discover new GIC targets, we used in vivo delivery of phage display technology to screen for molecules selectively binding GICs that may be amenable for targeting. Phage display leverages large, diverse peptide libraries to identify interactions with molecules in their native conformation. We delivered a bacteriophage peptide library intravenously to a glioblastoma xenograft in vivo then derived GICs. Phage peptides bound to GICs were analyzed for their corresponding proteins and ranked based on prognostic value, identifying VAV3, a Rho guanine exchange factor involved tumor invasion, and CD97 (cluster of differentiation marker 97), an adhesion G-protein-coupled-receptor upstream of Rho, as potentially enriched in GICs. We confirmed that both VAV3 and CD97 were preferentially expressed by tumor cells expressing GIC markers. VAV3 expression correlated with increased activity of its downstream mediator, Rac1 (ras-related C3 botulinum toxin substrate 1), in GICs. Furthermore, targeting VAV3 by ribonucleic acid interference decreased GIC growth, migration, invasion and in vivo tumorigenesis. As CD97 is a cell surface protein, CD97 selection enriched for sphere formation, a surrogate of self-renewal. In silico analysis demonstrated VAV3 and CD97 are highly expressed in tumors and inform poor survival and tumor grade, and more common with epidermal growth factor receptor mutations. Finally, a VAV3 peptide sequence identified on phage display specifically internalized into GICs. These results show a novel screening method for identifying oncogenic pathways preferentially activated within the tumor hierarchy, offering a new strategy for developing glioblastoma therapies.

  16. Phage display discovery of novel molecular targets in glioblastoma-initiating cells

    PubMed Central

    Liu, J K; Lubelski, D; Schonberg, D L; Wu, Q; Hale, J S; Flavahan, W A; Mulkearns-Hubert, E E; Man, J; Hjelmeland, A B; Yu, J; Lathia, J D; Rich, J N

    2014-01-01

    Glioblastoma is the most common primary intrinsic brain tumor and remains incurable despite maximal therapy. Glioblastomas display cellular hierarchies with self-renewing glioma-initiating cells (GICs) at the apex. To discover new GIC targets, we used in vivo delivery of phage display technology to screen for molecules selectively binding GICs that may be amenable for targeting. Phage display leverages large, diverse peptide libraries to identify interactions with molecules in their native conformation. We delivered a bacteriophage peptide library intravenously to a glioblastoma xenograft in vivo then derived GICs. Phage peptides bound to GICs were analyzed for their corresponding proteins and ranked based on prognostic value, identifying VAV3, a Rho guanine exchange factor involved tumor invasion, and CD97 (cluster of differentiation marker 97), an adhesion G-protein-coupled-receptor upstream of Rho, as potentially enriched in GICs. We confirmed that both VAV3 and CD97 were preferentially expressed by tumor cells expressing GIC markers. VAV3 expression correlated with increased activity of its downstream mediator, Rac1 (ras-related C3 botulinum toxin substrate 1), in GICs. Furthermore, targeting VAV3 by ribonucleic acid interference decreased GIC growth, migration, invasion and in vivo tumorigenesis. As CD97 is a cell surface protein, CD97 selection enriched for sphere formation, a surrogate of self-renewal. In silico analysis demonstrated VAV3 and CD97 are highly expressed in tumors and inform poor survival and tumor grade, and more common with epidermal growth factor receptor mutations. Finally, a VAV3 peptide sequence identified on phage display specifically internalized into GICs. These results show a novel screening method for identifying oncogenic pathways preferentially activated within the tumor hierarchy, offering a new strategy for developing glioblastoma therapies. PMID:24832468

  17. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    PubMed

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  18. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development

    PubMed Central

    Lu, Cecilia S.; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-01-01

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins. PMID:25135978

  19. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses

    PubMed Central

    Azzam, Diana J; Zhao, Dekuang; Sun, Jun; Minn, Andy J; Ranganathan, Prathibha; Drews-Elger, Katherine; Han, Xiaoqing; Picon-Ruiz, Manuel; Gilbert, Candace A; Wander, Seth A; Capobianco, Anthony J; El-Ashry, Dorraya; Slingerland, Joyce M

    2013-01-01

    Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44+CD24neg/low cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44+CD24low+ subpopulation generates CD44+CD24neg progeny with reduced sphere formation and tumourigenicity. CD44+CD24low+ populations contain subsets of ALDH1+ and ESA+ cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44+CD24low+ but not CD44+CD24neg express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44+CD24low+cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44+CD24low+ cells, but CD44+CD24neg were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness. PMID:23982961

  20. Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency

    PubMed Central

    Jia, Luqiang; Tu, Tingyong; Huai, Qiangqiang; Sun, Jiaowen; Chen, Shanshan; Li, Xin; Ding, Jian

    2017-01-01

    In heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers. However, the methanol/energy regulation mechanisms are seldom reported. We theoretically analyzed the methanol/energy metabolisms in protein expression process with the strategies of initiating induction at higher or lower cells concentrations, using monellin production as a prototype. When initiating induction at lower cells concentration and controlling induction temperature at 30°C, monellin concentration reached the highest levels of 2.62~2.71 g/L, which was 2.5~4.9 fold of those obtained with the strategy of initiating induction at higher cells concentration. With the desired induction strategy, 1) carbon metabolism ratio directing into the precursors synthesis route for monellin production reached the highest level of 65%, carbon metabolism ratios towards to precursors synthesis and ATP regeneration routes were regulated at relatively balanced levels; 2) monellin synthesis was completely cell growth associated, with the largest associated coefficient and higher specific growth rate; 3) theoretical NADH (energy) utilization efficiency η was the highest, and η stayed high levels (≥0.8) during most period (89%) within induction phase to supply sufficient energy in supporting monellin synthesis. PMID:28981536

  1. Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency.

    PubMed

    Jia, Luqiang; Tu, Tingyong; Huai, Qiangqiang; Sun, Jiaowen; Chen, Shanshan; Li, Xin; Shi, Zhongping; Ding, Jian

    2017-01-01

    In heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers. However, the methanol/energy regulation mechanisms are seldom reported. We theoretically analyzed the methanol/energy metabolisms in protein expression process with the strategies of initiating induction at higher or lower cells concentrations, using monellin production as a prototype. When initiating induction at lower cells concentration and controlling induction temperature at 30°C, monellin concentration reached the highest levels of 2.62~2.71 g/L, which was 2.5~4.9 fold of those obtained with the strategy of initiating induction at higher cells concentration. With the desired induction strategy, 1) carbon metabolism ratio directing into the precursors synthesis route for monellin production reached the highest level of 65%, carbon metabolism ratios towards to precursors synthesis and ATP regeneration routes were regulated at relatively balanced levels; 2) monellin synthesis was completely cell growth associated, with the largest associated coefficient and higher specific growth rate; 3) theoretical NADH (energy) utilization efficiency η was the highest, and η stayed high levels (≥0.8) during most period (89%) within induction phase to supply sufficient energy in supporting monellin synthesis.

  2. TLX-Its Emerging Role for Neurogenesis in Health and Disease.

    PubMed

    Sobhan, Praveen K; Funa, Keiko

    2017-01-01

    The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.

  3. Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells

    PubMed Central

    Zhao, Jiangsha; Li, Jieran; Fan, Teresa W.M.; Hou, Steven X.

    2017-01-01

    Tumor-initiating cells (TICs) play important roles in tumor progression and metastasis. Identifying the factors regulating TICs may open new avenues in cancer therapy. Here, we show that TIC-enriched prostate cancer cell clones use more glucose and secrete more lactate than TIC-low clones. We determined that elevated levels of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) are critical for the metabolic switch and the maintenance of TICs in prostate cancer. Information from prostate cancer patient databases revealed that higher PCK2 levels correlated with more aggressive tumors and lower survival rates. PCK2 knockdown resulted in low TIC numbers, increased cytosolic acetyl-CoA and cellular protein acetylation. Our data suggest PCK2 promotes tumor initiation by lowering acetyl-CoA level through reducing the mitochondrial tricarboxylic acid (TCA) cycle. Thus, PCK2 is a potential therapeutic target for aggressive prostate tumors. PMID:29137367

  4. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2010-07-14

    CD22 -binding peptides that initiate signal transduction and apoptosis in non-Hodgkin’s lymphoma (NHL), 2) optimize CD22 -mediated signal transduction...and lymphomacidal properties of ligand blocking anti- CD22 monoclonal antibodies (mAbs) and peptides with CD22 -specific phosphatase inhibition and 3...correlate mAb-mediated and anti- CD22 peptide-mediated in vivo physiologic changes, efficacy, and tumor targeting using advanced immuno-positron

  5. Engineering a new mouse model for vitiligo.

    PubMed

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  6. BI-09EphA3 RECEPTOR IS A MOLECULAR TARGET EXPRESSED IN MULTIPLE COMPARTMENTS OF GBM

    PubMed Central

    Ferluga, Sara; Gibo, Denise; Debinski, Waldemar

    2014-01-01

    Eph receptor A3 belongs to the Eph family of receptor tyrosine kinases playing critical roles in cancer. We and others found this receptor to be over-expressed in Glioblastoma (GBM), but not in normal brain. EphA3 is a plasma membrane receptor, which is internalized upon ligand binding making it as an attractive target for specific drug delivery. EphA3 overexpression was found in tumor cells and tumor-initiating cells in GBM. However, we noted that EphA3-positive cells localize around the neovasculature, being consistent with tumor-infiltrating cells. Therefore, we decided to analyze EphA3 in relation to microglia/macrophages, as these cells highly infiltrate GBM favoring tumor progression. It has been demonstrated that glioma-infiltrating microglia acquire the M2 phenotype expressing CD163 and CD204 markers. Co-localization studies using immunofluorescence on tumor-derived primary cells showed that EphA3 co-localizes with CD163 on a sub-population of cells. The two markers also highly co-localize in snap-frozen sections of human GBM specimens, mainly in the perivascular region, as well as on cells within the bulk of the tumor and in the invasive ring, but not on the contralateral side of the diseased brain. EphA3 on snap-frozen specimens co-localized also with CD68, a more general macrophages marker, confirming the presence of EphA3 on these bone marrow-derived cells. Microglia/ macrophages have been shown also around tumor necrotic areas. We cultured GBM cells under normoxia, hypoxia and anoxia conditions and found that the levels of EphA3 receptor increased under anoxia compared to hypoxia, following the same pattern seen with CD163 and CD204. We have already generated a novel and specific cytotoxin capable of activating and internalizing the receptor and potently killing EphA3-overexpressing cells. In this study we demonstrate that by utilizing the EphA3 receptor, we will target not only tumor and tumor-initiating cells, but also infiltrating cells active in promoting glioma cell migration and growth.

  7. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer.

    PubMed

    Nahta, Rita; Yu, Dihua; Hung, Mien-Chie; Hortobagyi, Gabriel N; Esteva, Francisco J

    2006-05-01

    Trastuzumab is a monoclonal antibody targeted against the human epidermal growth factor receptor (HER) 2 tyrosine kinase receptor, which is overexpressed in approximately 25% of invasive breast cancers. The majority of patients with metastatic breast cancer who initially respond to trastuzumab, however, demonstrate disease progression within 1 year of treatment initiation. Preclinical studies have indicated several molecular mechanisms that could contribute to the development of trastuzumab resistance. Increased signaling via the phosphatidylinositol 3-kinase/Akt pathway could contribute to trastuzumab resistance because of activation of multiple receptor pathways that include HER2-related receptors or non-HER receptors such as the insulin-like growth factor 1 receptor, which appears to be involved in a cross-talk with HER2 in resistant cells. Additionally, loss of function of the tumor suppressor PTEN gene, the negative regulator of Akt, results in heightened Akt signaling that leads to decreased sensitivity to trastuzumab. Decreased interaction between trastuzumab and its target receptor HER2, which is due to steric hindrance of HER2 by cell surface proteins such as mucin-4 (MUC4), may block the inhibitory actions of trastuzumab. Novel therapies targeted against these aberrant molecular pathways offer hope that the effectiveness and duration of response to trastuzumab can be greatly improved.

  8. Comparative study of anti-angiogenic activities of luteolin, lectin and lupeol biomolecules.

    PubMed

    Ambasta, Rashmi K; Jha, Saurabh Kumar; Kumar, Dhiraj; Sharma, Renu; Jha, Niraj Kumar; Kumar, Pravir

    2015-09-18

    Angiogenesis is a hallmark feature in the initiation, progression and growth of tumour. There are various factors for promotion of angiogenesis on one hand and on the other hand, biomolecules have been reported to inhibit cancer through anti-angiogenesis mechanism. Biomolecules, for instance, luteolin, lectin and lupeol are known to suppress cancer. This study aims to compare and evaluate the biomolecule(s) like luteolin, lupeol and lectin on CAM assay and HT-29 cell culture to understand the efficacy of these drugs. The biomolecules have been administered on CAM assay, HT-29 cell culture, cell migration assay. Furthermore, bioinformatics analysis of the identified targets of these biomolecules have been performed. Luteolin has been found to be better in inhibiting angiogenesis on CAM assay in comparison to lupeol and lectin. In line with this study when biomolecules was administered on cell migration assay via scratch assay method. We provided evidence that Luteolin was again found to be better in inhibiting HT-29 cell migration. In order to identify the target sites of luteolin for inhibition, we used software analysis for identifying the best molecular targets of luteolin. Using software analysis best target protein molecule of these biomolecules have been identified. VEGF was found to be one of the target of luteolin. Studies have found several critical point mutation in VEGF A, B and C. Hence docking analysis of all biomolecules with VEGFR have been performed. Multiple allignment result have shown that the receptors are conserved at the docking site. Therefore, it can be concluded that luteolin is not only comparatively better in inhibiting blood vessel in CAM assay, HT-29 cell proliferation and cell migration assay rather the domain of VEGFR is conserved to be targeted by luteolin, lupeol and lectin.

  9. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  10. The critical role that STAT3 plays in glioma-initiating cells: STAT3 addiction in glioma

    PubMed Central

    Ganguly, Debolina; Fan, Meiyun; Yang, Chuan He; Zbytek, Blazej; Finkelstein, David; Roussel, Martine F.; Pfeffer, Lawrence M.

    2018-01-01

    Glioma-Initiating Cells (GICs) are thought to be responsible for tumor initiation, progression and recurrence in glioblastoma (GBM). In previous studies, we reported the constitutive phosphorylation of the STAT3 transcription factor in GICs derived from GBM patient-derived xenografts, and that STAT3 played a critical role in GBM tumorigenesis. In this study, we show that CRISPR/Cas9-mediated deletion of STAT3 in an established GBM cell line markedly inhibited tumorigenesis by intracranial injection but had little effect on cell proliferation in vitro. Tumorigenesis was rescued by the enforced expression of wild-type STAT3 in cells lacking STAT3. In contrast, GICs were highly addicted to STAT3 and upon STAT3 deletion GICs were non-viable. Moreover, we found that STAT3 was constitutively activated in GICs by phosphorylation on both tyrosine (Y705) and serine (S727) residues. Therefore, to study STAT3 function in GICs we established an inducible system to knockdown STAT3 expression (iSTAT3-KD). Using this approach, we demonstrated that Y705-STAT3 phosphorylation was critical and indispensable for GIC-induced tumor formation. Both phosphorylation sites in STAT3 promoted GIC proliferation in vitro. We further showed that S727-STAT3 phosphorylation was Y705-dependent. Targeted microarray and RNA sequencing revealed that STAT3 activated cell-cycle regulator genes, and downregulated genes involved in the interferon response, the hypoxia response, the TGFβ pathway, and remodeling of the extracellular matrix. Since STAT3 is an important oncogenic driver of GBM, the identification of these STAT3 regulated pathways in GICs will inform the development of better targeted therapies against STAT3 in GBM and other cancers. PMID:29774125

  11. Gene targeting in mosquito cells: a demonstration of 'knockout' technology in extrachromosomal gene arrays

    PubMed Central

    Eggleston, Paul; Zhao, Yuguang

    2001-01-01

    Background Gene targeting would offer a number of advantages over current transposon-based strategies for insect transformation. These include freedom from both position effects associated with quasi-random integration and concerns over transgene instability mediated by endogenous transposases, independence from phylogenetic restrictions on transposon mobility and the ability to generate gene knockouts. Results We describe here our initial investigations of gene targeting in the mosquito. The target site was a hygromycin resistance gene, stably maintained as part of an extrachromosomal array. Using a promoter-trap strategy to enrich for targeted events, a neomycin resistance gene was integrated into the target site. This resulted in knockout of hygromycin resistance concurrent with the expression of high levels of neomycin resistance from the resident promoter. PCR amplification of the targeted site generated a product that was specific to the targeted cell line and consistent with precise integration of the neomycin resistance gene into the 5' end of the hygromycin resistance gene. Sequencing of the PCR product and Southern analysis of cellular DNA subsequently confirmed this molecular structure. Conclusions These experiments provide the first demonstration of gene targeting in mosquito tissue and show that mosquito cells possess the necessary machinery to bring about precise integration of exogenous sequences through homologous recombination. Further development of these procedures and their extension to chromosomally located targets hold much promise for the exploitation of gene targeting in a wide range of medically and economically important insect species. PMID:11513755

  12. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction.

    PubMed

    Liu, Chia-Ming; Peng, Chih-Yu; Liao, Yi-Wen; Lu, Ming-Yi; Tsai, Meng-Lun; Yeh, Jung-Chun; Yu, Chuan-Hang; Yu, Cheng-Chia

    2017-01-01

    Cancer stem cells (CSCs) are deemed as the driving force of tumorigenesis in oral squamous cell carcinomas (OSCCs). In this study, we investigated the chemotherapeutic effect of sulforaphane, a dietary component from broccoli sprouts, on targeting OSCC-CSCs. The effect of sulforaphane on normal oral epithelial cells (SG) and sphere-forming OSCC-CSCs isolated from SAS and GNM cells was examined. ALDH1 activity and CD44 positivity of OSCC-CSCs with sulforaphane treatment was assessed by flow cytometry analysis. In vitro and in vivo tumorigenicity assays of OSCC-CSCs with sulforaphane treatment were presented. We observed that the sulforaphane dose-dependently eliminated the proliferation rate of OSCC-CSCs, whereas the inhibition on SG cells proliferation was limited. Cancer stemness properties including self-renewal, CD44 positivity, and ALDH1 activity were also decreased in OSCC-CSCs with different doses of sulforaphane treatment. Moreover, sulforaphane treatment of OSCC-CSCs decreased the migration, invasion, clonogenicity, and in vivo tumorigenicity of xenograghts. Sulforaphane treatment resulted in a dose-dependent increase in the levels of tumor suppressive miR200c. These lines of evidence suggest that sulforaphane can suppress the cancer stemness and tumor-initiating properties in OSCC-CSCs both in vitro and in vivo. Copyright © 2016. Published by Elsevier B.V.

  13. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.

    PubMed

    Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash

    2018-01-01

    Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. T cells redirected to EphA2 for the immunotherapy of glioblastoma.

    PubMed

    Chow, Kevin K H; Naik, Swati; Kakarla, Sunitha; Brawley, Vita S; Shaffer, Donald R; Yi, Zhongzhen; Rainusso, Nino; Wu, Meng-Fen; Liu, Hao; Kew, Yvonne; Grossman, Robert G; Powell, Suzanne; Lee, Dean; Ahmed, Nabil; Gottschalk, Stephen

    2013-03-01

    Outcomes for patients with glioblastoma (GBM) remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)-13Rα2, epidermal growth factor receptor variant III (EGFRvIII), or human epidermal growth factor receptor 2 (HER2) has shown promise for the treatment of gliomas in preclinical models and in a clinical study (IL-13Rα2). However, targeting IL-13Rα2 and EGFRvIII is associated with the development of antigen loss variants, and there are safety concerns with targeting HER2. Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) has emerged as an attractive target for the immunotherapy of GBM as it is overexpressed in glioma and promotes its malignant phenotype. To generate EphA2-specific T cells, we constructed an EphA2-specific CAR with a CD28-ζ endodomain. EphA2-specific T cells recognized EphA2-positive glioma cells as judged by interferon-γ (IFN-γ) and IL-2 production and tumor cell killing. In addition, EphA2-specific T cells had potent activity against human glioma-initiating cells preventing neurosphere formation and destroying intact neurospheres in coculture assays. Adoptive transfer of EphA2-specific T cells resulted in the regression of glioma xenografts in severe combined immunodeficiency (SCID) mice and a significant survival advantage in comparison to untreated mice and mice treated with nontransduced T cells. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive GBM.

  15. UNG protects B cells from AID-induced telomere loss

    PubMed Central

    Cortizas, Elena M.; Zahn, Astrid; Safavi, Shiva

    2016-01-01

    Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair. PMID:27697833

  16. Acridine Orange Conjugated Polymersomes for Simultaneous Nuclear Delivery of Gemcitabine and Doxorubicin to Pancreatic Cancer Cells.

    PubMed

    Anajafi, Tayebeh; Scott, Michael D; You, Seungyong; Yang, Xiaoyu; Choi, Yongki; Qian, Steven Y; Mallik, Sanku

    2016-03-16

    Considering the systemic toxicity of chemotherapeutic agents, there is an urgent need to develop new targeted drug delivery systems. Herein, we have developed a new nuclear targeted, redox sensitive, drug delivery vehicle to simultaneously deliver the anticancer drugs gemcitabine and doxorubicin to the nuclei of pancreatic cancer cells. We prepared polymeric bilayer vesicles (polymersomes), and actively encapsulated the drug combination by the pH gradient method. A redox-sensitive polymer (PEG-S-S-PLA) was incorporated to sensitize the formulation to reducing agent concentration. Acridine orange (AO) was conjugated to the surface of the polymersomes imparting nuclear localizing property. The polymersomes' toxicity and efficacy were compared with those of a free drug combination using monolayer and three-dimensional spheroid cultures of pancreatic cancer cells. We observed that the redox sensitive, nuclear-targeted polymersomes released more than 60% of their encapsulated contents in response to 50 mM glutathione. The nanoparticles are nontoxic; however, the drug encapsulated vesicles have significant toxicity. The prepared formulation can increase the drug's therapeutic index by delivering the drugs directly to the cells' nuclei, one of the key organelles in the cells. This study is likely to initiate research in targeted nuclear delivery using other drug formulations in other types of cancers.

  17. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells

    PubMed Central

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  18. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells.

    PubMed

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-06-16

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis.

  19. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications.

    PubMed

    Burks, Scott R; Ziadloo, Ali; Kim, Saejeong J; Nguyen, Ben A; Frank, Joseph A

    2013-11-01

    Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases. © AlphaMed Press.

  20. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?

    PubMed

    Johnson, Robert D; Camelliti, Patrizia

    2018-03-15

    The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.

  1. Targeting Discoidin Domain Receptors in Prostate Cancer

    DTIC Science & Technology

    2017-08-01

    tumor incidence by bioluminescence. Thus, DDR1 may play a role in the initial seeding of tumor cells within the bone milieu. We are currently...conducting the quantitative analyses of bioluminescence and the histomorphometry analyses and evaluation of effects on bone remodeling. Studies on DDR1...regulation and function in culture cells is ongoing. 15. SUBJECT TERMS Prostate cancer, bone metastases, discoidin domain receptors, kinases

  2. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells

    PubMed Central

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-01-01

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC. PMID:26517679

  3. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    PubMed

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  4. Neurotrophins in healthy and diseased skin.

    PubMed

    Raap, U; Kapp, A

    2010-04-01

    Understanding the complex mechanism of allergic inflammatory skin diseases has been a main challenge of clinical and experimental research for years. It is well known that the inflammatory response is also controlled by tissue resident cells including neurons and structural cells. Thus, allergic inflammation triggers neuronal dysfunction and structural changes in diseased skin. Prime candidates for the interaction between immune, structural, and neuronal cells are presented by neurotrophins. Neurotrophins have initially been described for their neurotrophic capacity. However, recent evidence emerges that neurotrophins display bidirectional interaction pathways in activating structural cells, immune cells in addition to neurons. Neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are upregulated in allergic inflammatory skin diseases. Further, structural cells, neurons and tissue resident cells have not only been shown to be a target but also a source of neurotrophin. In this regard, eosinophil granulocytes which are key target effector cells in chronic inflammatory skin have been identified as a target of neurotrophins but are also capable of neurotrophin production. Thus, neuroimmune interaction mechanisms in allergic inflammatory skin display a novel pathophysiological aspect in which neurotrophins serve as prime candidates for bidirectional interaction mechanisms. In this review, we provide an actual overview of neurotrophins in healthy and diseased skin with special emphasis on atopic dermatitis and therapeutic implications.

  5. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line.

    PubMed

    Dolgova, Evgeniya V; Potter, Ekaterina A; Proskurina, Anastasiya S; Minkevich, Alexandra M; Chernych, Elena R; Ostanin, Alexandr A; Efremov, Yaroslav R; Bayborodin, Sergey I; Nikolin, Valeriy P; Popova, Nelly A; Kolchanov, Nikolay A; Bogachev, Sergey S

    2016-05-25

    Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 μg DNA/10(6) cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340-2600 copies of intact plasmid material, or up to 3.097 ± 0.044×10(6) plasmid copies (intact or not), as detected by quantitative PCR. The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of tumor stem cells, as well as developing a straightforward test system for the quantification of poorly differentiated cells, including tumor-initiating stem cells, in the bulk tumor sample (biopsy or surgery specimen).

  6. Meioc maintains an extended meiotic prophase I in mice

    PubMed Central

    Soh, Y. Q. Shirleen; Godfrey, Alexander K.; de Rooij, Dirk G.; Page, David C.

    2017-01-01

    The meiosis-specific chromosomal events of homolog pairing, synapsis, and recombination occur over an extended meiotic prophase I that is many times longer than prophase of mitosis. Here we show that, in mice, maintenance of an extended meiotic prophase I requires the gene Meioc, a germ-cell specific factor conserved in most metazoans. In mice, Meioc is expressed in male and female germ cells upon initiation of and throughout meiotic prophase I. Mouse germ cells lacking Meioc initiate meiosis: they undergo pre-meiotic DNA replication, they express proteins involved in synapsis and recombination, and a subset of cells progress as far as the zygotene stage of prophase I. However, cells in early meiotic prophase—as early as the preleptotene stage—proceed to condense their chromosomes and assemble a spindle, as if having progressed to metaphase. Meioc-deficient spermatocytes that have initiated synapsis mis-express CYCLIN A2, which is normally expressed in mitotic spermatogonia, suggesting a failure to properly transition to a meiotic cell cycle program. MEIOC interacts with YTHDC2, and the two proteins pull-down an overlapping set of mitosis-associated transcripts. We conclude that when the meiotic chromosomal program is initiated, Meioc is simultaneously induced so as to extend meiotic prophase. Specifically, MEIOC, together with YTHDC2, promotes a meiotic (as opposed to mitotic) cell cycle program via post-transcriptional control of their target transcripts. PMID:28380054

  7. Nanotechnology applications for glioblastoma.

    PubMed

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Development and Validation of a Whole-Cell Inhibition Assay for Bacterial Methionine Aminopeptidase by Surface-Enhanced Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Greis, Kenneth D.; Zhou, Songtao; Siehnel, Richard; Klanke, Chuck; Curnow, Alan; Howard, Jeremy; Layh-Schmitt, Gerlinde

    2005-01-01

    Bacterial methionine aminopeptidase (MAP) is a protease that removes methionine from the N termini of newly synthesized bacterial proteins after the peptide deformylase enzyme cleaves the formyl group from the initiator formylmethionine. MAP is an essential bacterial gene product and thus represents a potential target for therapeutic intervention. A fundamental challenge in the antibacterial drug discovery field is demonstrating conclusively that compounds with in vitro enzyme inhibition activity produce the desired antibacterial effect by interfering with the same target in whole bacterial cells. One way to address the activity of inhibitor compounds is by profiling cellular biomarkers in whole bacterial cells using compounds that are known inhibitors of a particular target. However, in the case of MAP, no specific inhibitors were available for such studies. Instead, a genetically attenuated MAP strain was generated in which MAP expression was placed under the control of an inducible arabinose promoter. Thus, MAP inhibition in whole cells could be mimicked by growth in the absence of arabinose. This genetically attenuated strain was used as a benchmark for MAP inhibition by profiling whole-cell lysates for unprocessed proteins using surface-enhanced laser desorption ionization-time of flight mass spectrometry (MS). Eight proteins between 4 and 14 kDa were confirmed as being unprocessed and containing the initiator methionine by adding back purified MAP to the preparations prior to MS analysis. Upon establishing these unprocessed proteins as biomarkers for MAP inhibition, the assay was used to screen small-molecule chemical inhibitors of purified MAP for whole-cell activity. Fifteen compound classes yielded three classes of compound with whole-cell activity for further optimization by chemical expansion. This report presents the development, validation, and implementation of a whole-cell inhibition assay for MAP. PMID:16048957

  9. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jian; Xiao, Gelei; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, includingmore » in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.« less

  10. Viral transduction of the HER2-extracellular domain expands trastuzumab-based photoimmunotherapy for HER2-negative breast cancer cells.

    PubMed

    Shimoyama, Kyoko; Kagawa, Shunsuke; Ishida, Michihiro; Watanabe, Shinichiro; Noma, Kazuhiro; Takehara, Kiyoto; Tazawa, Hiroshi; Hashimoto, Yuuri; Tanabe, Shunsuke; Matsuoka, Junji; Kobayashi, Hisataka; Fujiwara, Toshiyoshi

    2015-02-01

    The prognosis of HER2-positive breast cancer has been improved by trastuzumab therapy, which features high specificity and limited side effects. However, trastuzumab-based therapy has shortcomings. Firstly, HER2-targeted therapy is only applicable to HER2-expressing tumors, which comprise only 20-25% of primary breast cancers. Secondly, many patients who initially respond to trastuzumab ultimately develop disease progression. To overcome these problems, we employed virus-mediated HER2 transduction and photoimmunotherapy (PIT) which involves trastuzumab conjugated with a photosensitizer, trastuzumab-IR700, and irradiation of near-infrared light. We hypothesized that the gene transduction technique together with PIT would expand the range of tumor entities suitable for trastuzumab-based therapy and improve its antitumor activity. The HER2-extracellular domain (ECD) was transduced by the adenoviral vector, Ad-HER2-ECD, and PIT with trastuzumab-IR700 was applied in the HER2-negative cancer cells. Ad-HER2-ECD can efficiently transduce HER2-ECD into HER2-negative human cancer cells. PIT with trastuzumab-IR700 induced direct cell membrane destruction of Ad-HER2-ECD-transduced HER2-negative cancer cells. Novel combination of viral transduction of a target antigen and an antibody-based PIT would expand and potentiate molecular-targeted therapy even for target-negative or attenuated cancer cells.

  11. Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies

    PubMed Central

    Lehmann, Christian H. K.; Heger, Lukas; Heidkamp, Gordon F.; Baranska, Anna; Lühr, Jennifer J.; Hoffmann, Alana; Dudziak, Diana

    2016-01-01

    Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques. PMID:27043640

  12. PD-L1 Promotes Self-Renewal and Tumorigenicity of Malignant Melanoma Initiating Cells

    PubMed Central

    Dang, Jianzhong; Zha, Hui; Zhang, Bingyu; Lin, Ming

    2017-01-01

    Recent studies have indicated that therapeutic antibodies targeting PD-L1 show remarkable efficacy in clinical trials in multiple tumors and that a melanoma cell-intrinsic PD-1: PD-L1 axis promotes tumor growth. However, few studies have shown tumor-intrinsic PD-L1 effects in malignant melanoma initiating cells (MMICs). Here, we aim to determine the possible regulatory effects of PD-L1 on MMICs. The ALDEFLUOR kit was used to identify ALDH+ MMICs. Flow cytometry was used to examine the expression of PD-L1 on ALDH+ MMICs. To determine the role of PD-L1 in MMICs self-renewal, we cultured melanoma cells with anti-PD-L1 and measured tumorsphere formation and apoptosis. In addition, the effects of anti-PD-L1 on tumorigenicity and residual ALDH+ MMICs in tumors were evaluated in vivo. We demonstrated that melanoma cell-intrinsic PD-L1 was expressed in ALDH+ MMICs. Blocking PD-L1 in melanoma cell lines impaired tumorsphere formation and induced the apoptosis of sphere cells. In addition, blocking PD-L1 inhibited tumor growth in vivo. We observed residual ALDH+ MMICs within the tumor. The results showed that blocking PD-L1 also significantly decreased the residual ALDH+ MMICs in the tumors. In conclusion, these results suggest a new mechanism underlying melanoma progression and PD-L1-targeted therapy, which is distinct from the immunomodulatory actions of PD-L1. PMID:29250533

  13. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system.

    PubMed

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-10-15

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

  14. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system

    PubMed Central

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-01-01

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system. PMID:27795813

  15. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    PubMed

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  16. Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth.

    PubMed

    Bao, Xing; Ren, Tingting; Huang, Yi; Sun, Kunkun; Wang, Shidong; Liu, Kuisheng; Zheng, Bingxin; Guo, Wei

    2017-02-09

    Current practices for the therapy of chondrosarcoma, including wide-margin surgical resection and chemotherapy, are less than satisfactory. Recently, emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) have an essential role in the initiation and progression of tumors. As a typical lncRNA, HOTAIR is significantly overexpressed in various tumors. However, the function and potential biological mechanisms of HOTAIR in human chondrosarcoma remain unknown. Quantitative RT-PCR demonstrated that HOTAIR expression was upregulated in chondrosarcoma tissues and cell lines. High HOTAIR expression is correlated with tumor stage and poor prognosis. Functional experiments reveal that HOTAIR knockdown leads to growth inhibition of human chondrosarcoma cells in vitro and in vivo. In addition to cycle arrest and apoptosis, knockdown of HOTAIR inhibits autophagy, which favors cell death. Mechanistically, we demonstrated that HOTAIR induced DNA methylation of miR-454-3p by recruiting EZH2 and DNMT1 to the miR-454-3p promoter regions, which markedly silences miR-454-3p expression. Further analysis revealed that STAT3 and ATG12 are targets of miR-454-3p, initiate HOTAIR deficiency-induced apoptosis and reduce autophagy. Collectively, our data reveal the roles and functional mechanisms of HOTAIR in human chondrosarcoma and suggest that HOTAIR may act as a prognostic biomarker and potential therapeutic target for chondrosarcoma.

  17. The Human Respiratory Syncytial Virus Nonstructural Protein 1 Regulates Type I and Type II Interferon Pathways*

    PubMed Central

    Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.

    2012-01-01

    Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095

  18. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy

    PubMed Central

    Beavis, Paul A.; Henderson, Melissa A.; Giuffrida, Lauren; Mills, Jane K.; Sek, Kevin; Cross, Ryan S.; Davenport, Alexander J.; John, Liza B.; Mardiana, Sherly; Slaney, Clare Y.; Johnstone, Ricky W.; Trapani, Joseph A.; Stagg, John; Loi, Sherene; Kats, Lev; Gyorki, David; Kershaw, Michael H.; Darcy, Phillip K.

    2017-01-01

    Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types. PMID:28165340

  19. Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis.

    PubMed

    Feng, Dingqing; Yan, Keqin; Zhou, Ying; Liang, Haiyan; Liang, Jing; Zhao, Weidong; Dong, Zhongjun; Ling, Bin

    2016-10-04

    The human papillomavirus (HPV) oncoproteins E6 and E7 are risk factors that are primarily responsible for the initiation and progression of cervical cancer, and they play a key role in immortalization and transformation by reprogramming differentiating host epithelial cells. It is unclear how cervical epithelial cells transform into tumor-initiating cells (TICs). Here, we observed that the germ stem cell protein Piwil2 is expressed in pre-cancerous and malignant lesions of the cervix and cervical cancer cell lines with the exception of the non-HPV-infected C33a cell line. Knockdown of Piwil2 by shRNA led to a marked reduction in proliferation and colony formation, in vivo tumorigenicity, chemo-resistance, and the proportion of cancer stem-like cells. In contrast, Piwil2 overexpression induced malignant transformation of HaCaT cells and the acquisition of tumor-initiating capabilities. Gene-set enrichment analysis revealed embryonic stem cell (ESC) identity, malignant biological behavior, and specifically, activation targets of the cell reprogramming factors c-Myc, Klf4, Nanog, Oct4, and Sox2 in Piwil2-overexpressing HaCaT cells. We further confirmed that E6 and E7 reactivated Piwil2 and that E6 and E7 overexpression resulted in a similar gene-set enrichment pattern as Piwil2 overexpression in HaCaT cells. Moreover, Piwil2 overexpression or E6 and E7 activation induced H3K9 acetylation but reduced H3K9 trimethylation, which contributed to the epigenetic reprogramming and ESC signature maintenance, as predicted previously. Our study demonstrates that Piwil2, reactivated by the HPV oncoproteins E6 and E7, plays an essential role in the transformation of cervical epithelial cells to TICs via epigenetics-based cell reprogramming.

  20. High performance nanobio photocatalyst for targeted brain cancer therapy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhkova, E.; Ulasov, I.; Dimitrijevic, N. M.

    We report pronounced and specific antiglioblastoma cell phototoxicity of 5 nm TiO{sub 2} particles covalently tethered to an antibody via a dihydroxybenzene bivalent linker. The linker application enables absorption of a visible part of the solar spectrum by the nanobio hybrid. The phototoxicity is mediated by reactive oxygen species (ROS) that initiate programmed death of the cancer cell. Synchrotron X-ray fluorescence microscopy (XFM) was applied for direct visualization of the nanobioconjugate distribution through a single brain cancer cell at the submicrometer scale.

  1. Dorsal premotor cortex is involved in switching motor plans

    PubMed Central

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on-line. These findings were reproduced by a computational model suggesting that switches between action plans can be explained by the same competition process responsible for initial decisions. PMID:22493577

  2. Dendritic Cells and Innate Immunity in Kidney Transplantation

    PubMed Central

    Zhuang, Quan; Lakkis, Fadi G.

    2015-01-01

    Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by inducing monocyte differentiation into mature, antigen-presenting dendritic cells. Both concepts provide opportunities for preventing rejection by targeting monocytes or dendritic cells. PMID:25629552

  3. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination

    PubMed Central

    Brooks, Jill M.; Long, Heather M.; Tierney, Rose J.; Shannon-Lowe, Claire; Leese, Alison M.; Fitzpatrick, Martin; Taylor, Graham S.; Rickinson, Alan B.

    2016-01-01

    Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design. PMID:27096949

  4. A novel mechanism for Bcr-Abl action: Bcr-Abl-mediated induction of the eIF4F translation initiation complex and mRNA translation.

    PubMed

    Prabhu, S; Saadat, D; Zhang, M; Halbur, L; Fruehauf, J P; Ong, S T

    2007-02-22

    The oncogenic kinase Bcr-Abl is thought to cause chronic myelogenous leukemia (CML) by altering the transcription of specific genes with growth- and survival-promoting functions. Recently, Bcr-Abl has also been shown to activate an important regulator of protein synthesis, the mammalian target of rapamycin (mTOR), which suggests that dysregulated translation may also contribute to CML pathogenesis. In this study, we found that both Bcr-Abl and the rapamycin-sensitive mTORC1 complex contribute to the phosphorylation (inactivation) of 4E-BP1, an inhibitor of the eIF4E translation initiation factor. Experiments with rapamycin and the Bcr-Abl inhibitor, imatinib mesylate, in Bcr-Abl-expressing cell lines and primary CML cells indicated that Bcr-Abl and mTORC1 induced formation of the translation initiation complex, eIF4F. This was characterized by reduced 4E-BP1 binding and increased eIF4G binding to eIF4E, two events that lead to the assembly of eIF4F. One target transcript is cyclin D3, which is regulated in Bcr-Abl-expressing cells by both Bcr-Abl and mTORC1 in a translational manner. In addition, the combination of imatinib and rapamycin was found to act synergistically against committed CML progenitors from chronic and blast phase patients. These experiments establish a novel mechanism of action for Bcr-Abl, and they provide insights into the modes of action of imatinib mesylate and rapamycin in treatment of CML. They also suggest that aberrant cap-dependent mRNA translation may be a therapeutic target in Bcr-Abl-driven malignancies.

  5. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  6. Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance*

    PubMed Central

    Elhassan, Mohamed O.; Christie, Jennifer; Duxbury, Mark S.

    2012-01-01

    Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents. PMID:22174421

  7. Development and characterization of CD22-targeted pegylated-liposomal doxorubicin (IL-PLD).

    PubMed

    O'Donnell, Robert T; Martin, Shiloh M; Ma, Yunpeng; Zamboni, William C; Tuscano, Joseph M

    2010-06-01

    Non-Hodgkin's lymphoma (NHL) is the sixth most common cause of cancer deaths in the U.S. Most NHLs initially respond well to chemotherapy, but relapse is common and treatment is often limited due to the toxicity of chemotherapeutic agents. Pegylated-liposomal doxorubicin (PLD, Ben Venue Laboratories, Inc), a produces less myelotoxicity than non-liposomal (NL) doxorubicin. To further enhance efficacy and NHL targeting and to decrease toxicity, we conjugated an anti-CD22 monoclonal antibody (HB22.7) to the surface of PLD, thereby creating CD22-targeted immunoliposomal PLD (IL-PLD). HB22.7 was successfully conjugated to PLD and the resulting IL-PLD exhibits specific binding to CD22-expressing cells as assessed by immunofluorescence staining. IL-PLD exhibits more cytotoxicity than PLD in CD22 positive cell lines but does not increase killing of CD22 negative cells. The IC(50) of IL-PLD is 3.1 to 5.4 times lower than that of PLD in CD22+ cell lines while the IC(50) of IL-PLD is equal to that of PLD in CD22- cells. Furthermore, IL-PLD remained bound to the CD22+ cells after washing and continued to exert cytotoxic effects, while PLD and NL- doxorubicin could easily be washed from these cells.

  8. Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL

    PubMed Central

    De Falco, Filomena; Sabatini, Rita; Del Papa, Beatrice; Falzetti, Franca; Di Ianni, Mauro; Sportoletti, Paolo; Baldoni, Stefano; Screpanti, Isabella; Marconi, Pierfrancesco; Rosati, Emanuela

    2015-01-01

    In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4. Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells. Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL. PMID:26041884

  9. Support of Unrelated Stem Cell Donor Searches by Donor Center-Initiated HLA Typing of Potentially Matching Donors

    PubMed Central

    Schmidt, Alexander H.; Solloch, Ute V.; Baier, Daniel; Grathwohl, Alois; Hofmann, Jan; Pingel, Julia; Stahr, Andrea; Ehninger, Gerhard

    2011-01-01

    Large registries of potential unrelated stem cell donors have been established in order to enable stem cell transplantation for patients without HLA-identical related donors. Donor search is complicated by the fact that the stored HLA information of many registered donors is incomplete. We carried out a project that was aimed to improve chances of patients with ongoing donor searches to find an HLA-matched unrelated donor. For that purpose, we carried out additional donor center-initiated HLA-DRB1 typing of donors who were only typed for the HLA loci A and B so far and were potential matches for patients in need of a stem cell transplant. In total, 8,861 donors were contacted for donor center-initiated HLA-DRB1 typing within 1,089 donor searches. 12 of these donors have donated stem cells so far, 8 thereof for their respective target patients. We conclude that chances of patients with ongoing donor searches to find an HLA-matched unrelated donor can indeed be improved by donor-center initiated typing that is carried out in addition to the standard donor search process. Our results also raise questions regarding the appropriate use of incompletely typed donors within unrelated donor searches. PMID:21625451

  10. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells.

    PubMed

    Cuyàs, Elisabet; Corominas-Faja, Bruna; Martín, María Muñoz-San; Martin-Castillo, Begoña; Lupu, Ruth; Brunet, Joan; Bosch-Barrera, Joaquim; Menendez, Javier A

    2017-05-23

    Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.

  11. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells.

    PubMed

    Lim, Yi Chieh; Roberts, Tara L; Day, Bryan W; Stringer, Brett W; Kozlov, Sergei; Fazry, Shazrul; Bruce, Zara C; Ensbey, Kathleen S; Walker, David G; Boyd, Andrew W; Lavin, Martin F

    2014-12-01

    Glioblastoma is deemed the most malignant form of brain tumour, particularly due to its resistance to conventional treatments. A small surviving group of aberrant stem cells termed glioma initiation cells (GICs) that escape surgical debulking are suggested to be the cause of this resistance. Relatively quiescent in nature, GICs are capable of driving tumour recurrence and undergo lineage differentiation. Most importantly, these GICs are resistant to radiotherapy, suggesting that radioresistance contribute to their survival. In a previous study, we demonstrated that GICs had a restricted double strand break (DSB) repair pathway involving predominantly homologous recombination (HR) associated with a lack of functional G1/S checkpoint arrest. This unusual behaviour led to less efficient non-homologous end joining (NHEJ) repair and overall slower DNA DSB repair kinetics. To determine whether specific targeting of the HR pathway with small molecule inhibitors could increase GIC radiosensitivity, we used the Ataxia-telangiectasia mutated inhibitor (ATMi) to ablate HR and the DNA-dependent protein kinase inhibitor (DNA-PKi) to inhibit NHEJ. Pre-treatment with ATMi prior to ionizing radiation (IR) exposure prevented HR-mediated DNA DSB repair as measured by Rad51 foci accumulation. Increased cell death in vitro and improved in vivo animal survival could be observed with combined ATMi and IR treatment. Conversely, DNA-PKi treatment had minimal impact on GICs ability to resolve DNA DSB after IR with only partial reduction in cell survival, confirming the major role of HR. These results provide a mechanistic insight into the predominant form of DNA DSB repair in GICs, which when targeted may be a potential translational approach to increase patient survival. Copyright © 2014. Published by Elsevier B.V.

  12. Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells

    PubMed Central

    Corominas-Faja, Bruna; Cuyàs, Elisabet; Lozano-Sánchez, Jesús; Cufí, Sílvia; Verdura, Sara; Fernández-Arroyo, Salvador; Borrás-Linares, Isabel; Martin-Castillo, Begoña; Martin, Ángel G; Lupu, Ruth; Nonell-Canals, Alfons; Micol, Vicente; Joven, Jorge; Segura-Carretero, Antonio; Menendez, Javier A

    2018-01-01

    Abstract Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24−/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactor-binding pocket of DNMTs. FRET-based Z-LYTE™ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumor-initiating cell properties within BC populations. PMID:29452350

  13. BMI-1, a promising therapeutic target for human cancer

    PubMed Central

    WANG, MIN-CONG; LI, CHUN-LI; CUI, JIE; JIAO, MIN; WU, TAO; JING, LI; NAN, KE-JUN

    2015-01-01

    BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types. PMID:26622537

  14. Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature.

    PubMed

    Jung, Hye Jin

    2017-01-01

    Cancer stem cells (CSCs) have been proposed as central drivers of tumor initiation, progression, recurrence, and therapeutic resistance. Therefore, identifying stem-like cells within cancers and understanding their properties is crucial for the development of effective anticancer therapies. Recently, chemical proteomics has become a powerful tool to efficiently determine protein networks responsible for CSC pathophysiology and comprehensively elucidate molecular mechanisms of drug action against CSCs. This review provides an overview of major methodologies utilized in chemical proteomic approaches. In addition, recent successful chemical proteomic applications targeting CSCs are highlighted. Future direction of potential CSC research by integrating chemical genomic and proteomic data obtained from a single biological sample of CSCs are also suggested in this review. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. LAM Pilot Study with Imatinib Mesylate (LAMP-1)

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0132 TITLE: LAM Pilot Study with Imatinib Mesylate (LAMP-1) PRINCIPAL INVESTIGATOR: Charlie Strange, MD...completion dates or the percentage of completion. The LAMP-1 study is designed to generate short-term safety and efficacy data...block the growth of LAM cells through initiation of targeted cell death. This study employs a small clinical trial design using 20 participants at two

  16. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells.

    PubMed

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-06-09

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.

  17. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A

    PubMed Central

    Lotti, Fiorenza; Jarrar, Awad M.; Pai, Rish K.; Hitomi, Masahiro; Lathia, Justin; Mace, Adam; Gantt, Gerald A.; Sukhdeo, Kumar; DeVecchio, Jennifer; Vasanji, Amit; Leahy, Patrick; Hjelmeland, Anita B.

    2013-01-01

    Many solid cancers display cellular hierarchies with self-renewing, tumorigenic stemlike cells, or cancer-initiating cells (CICs) at the apex. Whereas CICs often exhibit relative resistance to conventional cancer therapies, they also receive critical maintenance cues from supportive stromal elements that also respond to cytotoxic therapies. To interrogate the interplay between chemotherapy and CICs, we investigated cellular heterogeneity in human colorectal cancers. Colorectal CICs were resistant to conventional chemotherapy in cell-autonomous assays, but CIC chemoresistance was also increased by cancer-associated fibroblasts (CAFs). Comparative analysis of matched colorectal cancer specimens from patients before and after cytotoxic treatment revealed a significant increase in CAFs. Chemotherapy-treated human CAFs promoted CIC self-renewal and in vivo tumor growth associated with increased secretion of specific cytokines and chemokines, including interleukin-17A (IL-17A). Exogenous IL-17A increased CIC self-renewal and invasion, and targeting IL-17A signaling impaired CIC growth. Notably, IL-17A was overexpressed by colorectal CAFs in response to chemotherapy with expression validated directly in patient-derived specimens without culture. These data suggest that chemotherapy induces remodeling of the tumor microenvironment to support the tumor cellular hierarchy through secreted factors. Incorporating simultaneous disruption of CIC mechanisms and interplay with the tumor microenvironment could optimize therapeutic targeting of cancer. PMID:24323355

  18. Critical Role of SAP in Progression and Reactivation but Not Maintenance of T Cell-Dependent Humoral Immunity

    PubMed Central

    2013-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (TFH) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway. PMID:23319045

  19. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  20. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells.

    PubMed

    Cui, Jiajia; Qin, Lingfeng; Zhang, Junwei; Abrahimi, Parwiz; Li, Hong; Li, Guangxin; Tietjen, Gregory T; Tellides, George; Pober, Jordan S; Mark Saltzman, W

    2017-08-04

    Human endothelial cells are initiators and targets of the rejection response. Pre-operative modification of endothelial cells by small interfering RNA transfection could shape the nature of the host response post-transplantation. Ablation of endothelial cell class II major histocompatibility complex molecules by small interfering RNA targeting of class II transactivator can reduce the capacity of human endothelial cells to recruit and activate alloreactive T cells. Here, we report the development of small interfering RNA-releasing poly(amine-co-ester) nanoparticles, distinguished by their high content of a hydrophobic lactone. We show that a single transfection of small interfering RNA targeting class II transactivator attenuates major histocompatibility complex class II expression on endothelial cells for at least 4 to 6 weeks after transplantation into immunodeficient mouse hosts. Furthermore, silencing of major histocompatibility complex class II reduces allogeneic T-cell responses in vitro and in vivo. These data suggest that poly(amine-co-ester) nanoparticles, potentially administered during ex vivo normothermic machine perfusion of human organs, could be used to modify endothelial cells with a sustained effect after transplantation.The use of gene silencing techniques in the treatment of post-transplantation host rejection is not long lasting and can have systemic effects. Here, the authors utilize a nanocarrier for siRNA for treatment of arteries ex vivo prior to implantation subsequently attenuating immune reaction in vivo.

  1. The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner.

    PubMed

    Stankevicius, Vaidotas; Kunigenas, Linas; Stankunas, Edvinas; Kuodyte, Karolina; Strainiene, Egle; Cicenas, Jonas; Samalavicius, Narimantas E; Suziedelis, Kestutis

    2017-03-18

    Numerous lines of evidence support the hierarchical model of cancer development and tumor initiation. According to the theory, cancer stem cells play a crucial role in the formation of the tumor and should be targeted for more effective anticancer treatment. However, cancer stem cells quickly loose their characteristics when propagated as 2D cell culture, indicating that the 2D cell culture does not provide the appropriate settings to maintain an in vivo environment. In this study we have investigated the expression of self-renewal, cancer stem cell and epithelial to mesenchymal transition markers after the transfer of human colorectal carcinoma cell DLD1 and HT29 lines from 2D cell cultures to scaffold-attached laminin rich extracellular matrix and scaffold-free multicellular spheroid 3D culture models. Based on the up-regulated expression of multipotency, CSC and EMT markers, our data suggests that human colorectal carcinoma cells grown in 3D exhibit enhanced cancer stem cell characteristics. Therefore, in order to design more efficient targeted therapies, we suggest that 3D cell culture models should be employed in cancer stem cell research. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. The Role of Central Metabolism in Prostate Cancer Progression

    DTIC Science & Technology

    2013-09-01

    prostate tissue for differences in tumor growth, proteomes and intermediates in polyunsaturated fatty acid (PUFA) metabolism . The use of the... MRM -based targeted proteomics. She has also learned a great deal of techniques in molecular and cell biology. As her initial study, she transfected

  3. Thioredoxin targets in plants: The first 30 years

    USDA-ARS?s Scientific Manuscript database

    The turn of the century welcomed major developments in redox biology. In one development with plants, proteomics made possible the identification of proteins linked to thioredoxin (Trx), initially in chloroplasts and then other cell compartments. Two procedures, one based on thiol specific probes an...

  4. SL-401 and SL-501, Targeted Therapeutics Directed at the Interleukin-3 Receptor, Inhibit the Growth of Leukaemic Cells and Stem Cells in Advanced Phase Chronic Myeloid Leukaemia

    PubMed Central

    Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K.; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E.; Konopleva, Marina

    2014-01-01

    SUMMARY While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34+/CD38− BCR-ABL1+ CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388-IL3) and SL-501 (DT388-IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34+/CD38−/CD123+ CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. PMID:24942980

  5. SL-401 and SL-501, targeted therapeutics directed at the interleukin-3 receptor, inhibit the growth of leukaemic cells and stem cells in advanced phase chronic myeloid leukaemia.

    PubMed

    Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E; Konopleva, Marina

    2014-09-01

    While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34(+) /CD38(-) BCR-ABL1(+) CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388 -IL3) and SL-501 (DT388 -IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34(+) /CD38(-) /CD123(+) CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. © 2014 John Wiley & Sons Ltd.

  6. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    PubMed

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  7. Understanding MHC Class I Presentation of Viral Antigens by Human Dendritic Cells as a Basis for Rational Design of Therapeutic Vaccines

    PubMed Central

    van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M.

    2014-01-01

    Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy. PMID:24795724

  8. New insights into the pathways initiating and driving pancreatitis

    PubMed Central

    Gukovskaya, Anna S.; Pandol, Stephen J.; Gukovsky, Ilya

    2016-01-01

    Purpose of review In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. Recent findings The central physiologic function of the pancreatic acinar cell – to synthesize, store, and secrete digestive enzymes – critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles’ disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. Summary The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis. PMID:27428704

  9. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    PubMed

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-05-02

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (<1%-13.1%). This resulted in significant depletion of the BM c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  10. Targeting the tumour microenvironment in ovarian cancer.

    PubMed

    Hansen, Jean M; Coleman, Robert L; Sood, Anil K

    2016-03-01

    The study of cancer initiation, growth, and metastasis has traditionally been focused on cancer cells, and the view that they proliferate due to uncontrolled growth signalling owing to genetic derangements. However, uncontrolled growth in tumours cannot be explained solely by aberrations in cancer cells themselves. To fully understand the biological behaviour of tumours, it is essential to understand the microenvironment in which cancer cells exist, and how they manipulate the surrounding stroma to promote the malignant phenotype. Ovarian cancer is the leading cause of death from gynaecologic cancer worldwide. The majority of patients will have objective responses to standard tumour debulking surgery and platinum-taxane doublet chemotherapy, but most will experience disease recurrence and chemotherapy resistance. As such, a great deal of effort has been put forth to develop therapies that target the tumour microenvironment in ovarian cancer. Herein, we review the key components of the tumour microenvironment as they pertain to this disease, outline targeting opportunities and supporting evidence thus far, and discuss resistance to therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cancer Nanotechnology: Recent Trends and Developments in Strategies for Targeting Cancer Cells to Improve Cancer Imaging and Treatment.

    PubMed

    Xu, Jingyao; Zhou, Xiaoling; Li, Yifei; Tian, Yudan

    2017-01-01

    Nanotechnology is a multidisciplinary field, which have the potential to cover applications in many subjects such as biology, chemistry and physics. The combined efforts of these subjects can lead to the successful engineering of nanodevices and nanovectors for targeted delivery and sensing/detection of cancer cells/tissues. The modulation of nanomaterials at surface and bulk level further adds value to this technology and develop strategies for early detection of precancerous and malignant cells from biological fluids. Furthermore, the novel nanotechnology-based imaging modalities have the prospects to offer non-invasive cancer imaging and treatment response study in real-time. This review covers the advantages of nanotechnology, which have been exploited for effective and targeted delivery of anti-cancer agents. Moreover, the initiatives taken by National Cancer Laboratory, USA to improve the clinical success of nanomedicines and nanovectors have also been comprehensively summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Compounds From Celastraceae Targeting Cancer Pathways and Their Potential Application in Head and Neck Squamous Cell Carcinoma: A Review

    PubMed Central

    Hernandes, Camila; Pereira, Ana Maria Soares; Severino, Patricia

    2017-01-01

    Squamous cell carcinoma of the head and neck is one of the most common cancer types worldwide. It initiates on the epithelial lining of the upper aerodigestive tract, at most instances as a consequence of tobacco and alcohol consumption. Treatment options based on conventional therapies or targeted therapies under development have limited efficacy due to multiple genetic alterations typically found in this cancer type. Natural products derived from plants often possess biological activities that may be valuable in the development of new therapeutic agents for cancer treatment. Several genera from the family Celastraceae have been studied in this context. This review reports studies on chemical constituents isolated from species from the Celastraceae family targeting cancer mechanisms studied to date. These results are then correlated with molecular characteristics of head and neck squamous cell carcinoma in an attempt to identify constituents with potential application in the treatment of this complex disease at the molecular level. PMID:28503090

  13. Compounds From Celastraceae Targeting Cancer Pathways and Their Potential Application in Head and Neck Squamous Cell Carcinoma: A Review.

    PubMed

    Hernandes, Camila; Pereira, Ana Maria Soares; Severino, Patricia

    2017-02-01

    Squamous cell carcinoma of the head and neck is one of the most common cancer types worldwide. It initiates on the epithelial lining of the upper aerodigestive tract, at most instances as a consequence of tobacco and alcohol consumption. Treatment options based on conventional therapies or targeted therapies under development have limited efficacy due to multiple genetic alterations typically found in this cancer type. Natural products derived from plants often possess biological activities that may be valuable in the development of new therapeutic agents for cancer treatment. Several genera from the family Celastraceae have been studied in this context. This review reports studies on chemical constituents isolated from species from the Celastraceae family targeting cancer mechanisms studied to date. These results are then correlated with molecular characteristics of head and neck squamous cell carcinoma in an attempt to identify constituents with potential application in the treatment of this complex disease at the molecular level.

  14. CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs?

    PubMed

    Lolli, Graziano; Johnson, Louise N

    2005-04-01

    The Cyclin-dependent kinase (CDK) Activating Kinase (CAK) is responsible for the activating phosphorylation of CDK1, CDK2, CDK4 and CDK6 and regulation of the cell cycle. The kinase is composed of three subunits: CDK7, Cyclin H and MAT1 (ménage a trois). Together with six other subunits, CAK is also part of the general transcription factor TFIIH where it is involved in promoter clearance and progression of transcription from the preinitiation to the initiation stage. CAK is required for cell cycle progression, which suggests that CDK7 could be a target for cancer therapy. However its role in transcription and its ubiquitous presence raise sensible concerns about possible toxicity of its inhibitors. The recently determined structure of CDK7 allows the design of inhibitors with differential specificity for the different CDKs. We review the role of CAK in different biological processes and evaluate the biological evidence for CDK7 as a possible pharmacological target.

  15. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.

    PubMed

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P; Hedley, David W

    2016-06-07

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX).The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche.

  16. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic.

    PubMed

    Teplyuk, Nadiya M; Uhlmann, Erik J; Gabriely, Galina; Volfovsky, Natalia; Wang, Yang; Teng, Jian; Karmali, Priya; Marcusson, Eric; Peter, Merlene; Mohan, Athul; Kraytsberg, Yevgenya; Cialic, Ron; Chiocca, E Antonio; Godlewski, Jakub; Tannous, Bakhos; Krichevsky, Anna M

    2016-03-01

    MicroRNA-10b (miR-10b) is a unique oncogenic miRNA that is highly expressed in all GBM subtypes, while absent in normal neuroglial cells of the brain. miR-10b inhibition strongly impairs proliferation and survival of cultured glioma cells, including glioma-initiating stem-like cells (GSC). Although several miR-10b targets have been identified previously, the common mechanism conferring the miR-10b-sustained viability of GSC is unknown. Here, we demonstrate that in heterogeneous GSC, miR-10b regulates cell cycle and alternative splicing, often through the non-canonical targeting via 5'UTRs of its target genes, including MBNL1-3, SART3, and RSRC1. We have further assessed the inhibition of miR-10b in intracranial human GSC-derived xenograft and murine GL261 allograft models in athymic and immunocompetent mice. Three delivery routes for the miR-10b antisense oligonucleotide inhibitors (ASO), direct intratumoral injections, continuous osmotic delivery, and systemic intravenous injections, have been explored. In all cases, the treatment with miR-10b ASO led to targets' derepression, and attenuated growth and progression of established intracranial GBM. No significant systemic toxicity was observed upon ASO administration by local or systemic routes. Our results indicate that miR-10b is a promising candidate for the development of targeted therapies against all GBM subtypes. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Immune Cell Metabolism in Systemic Lupus Erythematosus.

    PubMed

    Choi, Seung-Chul; Titov, Anton A; Sivakumar, Ramya; Li, Wei; Morel, Laurence

    2016-11-01

    Cellular metabolism represents a newly identified checkpoint of effector functions in the immune system. A solid body of work has characterized the metabolic requirements of normal T cells during activation and differentiation into polarized effector subsets. Similar studies have been initiated to characterize the metabolic requirements for B cells and myeloid cells. Only a few studies though have characterized the metabolism of immune cells in the context of autoimmune diseases. Here, we review what is known on the altered metabolic patterns of CD4 + T cells, B cells, and myeloid cells in lupus patients and lupus-prone mice and how they contribute to lupus pathogenesis. We also discuss how defects in immune metabolism in lupus can be targeted therapeutically.

  18. RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells

    PubMed Central

    Im, Jun-Sub; Park, Soon-Young; Cho, Won-Ho; Bae, Sung-Ho; Hurwitz, Jerard; Lee, Joon-Kyu

    2015-01-01

    Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells. PMID:25602958

  19. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain

    PubMed Central

    Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa

    2017-01-01

    ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978

  20. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.

    PubMed

    Liu, Can; Kelnar, Kevin; Liu, Bigang; Chen, Xin; Calhoun-Davis, Tammy; Li, Hangwen; Patrawala, Lubna; Yan, Hong; Jeter, Collene; Honorio, Sofia; Wiggins, Jason F; Bader, Andreas G; Fagin, Randy; Brown, David; Tang, Dean G

    2011-02-01

    Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.

  1. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  2. Cell-surface marker discovery for lung cancer

    PubMed Central

    Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917

  3. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets.

    PubMed

    Wood, Steven L; Pernemalm, Maria; Crosbie, Philip A; Whetton, Anthony D

    2014-05-01

    Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancer cases and currently has an overall five-year survival rate of only 15%. Patients presenting with advanced stage NSCLC die within 18-months of diagnosis. Metastatic spread accounts for >70% of these deaths. Thus elucidation of the mechanistic basis of NSCLC-metastasis has potential to impact on patient quality of life and survival. Research on NSCLC metastasis has recently expanded to include non-cancer cell components of tumors-the stromal cellular compartment and extra-cellular matrix components comprising the tumor-microenvironment. Metastasis (from initial primary tumor growth through angiogenesis, intravasation, survival in the bloodstream, extravasation and metastatic growth) is an inefficient process and few released cancer cells complete the entire process. Micro-environmental interactions assist each of these steps and discovery of the mechanisms by which tumor cells co-operate with the micro-environment are uncovering key molecules providing either biomarkers or potential drug targets. The major sites of NSCLC metastasis are brain, bone, adrenal gland and the liver. The mechanistic basis of this tissue-tropism is beginning to be elucidated offering the potential to target stromal components of these tissues thus targeting therapy to the tissues affected. This review covers the principal steps involved in tumor metastasis. The role of cell-cell interactions, ECM remodeling and autocrine/paracrine signaling interactions between tumor cells and the surrounding stroma is discussed. The mechanistic basis of lung cancer metastasis to specific organs is also described. The signaling mechanisms outlined have potential to act as future drug targets minimizing lung cancer metastatic spread and morbidity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Combined miRNA profiling and proteomics demonstrates that different miRNAs target a common set of proteins to promote colorectal cancer metastasis.

    PubMed

    Torres, Sofía; Garcia-Palmero, Irene; Bartolomé, Rubén A; Fernandez-Aceñero, María Jesús; Molina, Elena; Calviño, Eva; Segura, Miguel F; Casal, J Ignacio

    2017-05-01

    The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells.

    PubMed

    Guillen-Ahlers, Hector; Rao, Prahlad K; Perumalla, Danu S; Montoya, Maria J; Jadhav, Avinash Y L; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2018-06-01

    The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.

  6. Advances in cancer stem cell targeting: How to strike the evil at its root.

    PubMed

    Pützer, Brigitte M; Solanki, Manish; Herchenröder, Ottmar

    2017-10-01

    Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.

    PubMed

    Gerweck, Leo E; Wakimoto, Hiroaki

    2016-03-01

    Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.

  8. A Novel ¹¹¹In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer.

    PubMed

    Chatalic, Kristell L S; Veldhoven-Zweistra, Joke; Bolkestein, Michiel; Hoeben, Sander; Koning, Gerben A; Boerman, Otto C; de Jong, Marion; van Weerden, Wytske M

    2015-07-01

    Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer (PCa) and a promising target for molecular imaging and therapy. Nanobodies (single-domain antibodies, VHH) are the smallest antibody-based fragments possessing ideal molecular imaging properties, such as high target specificity and rapid background clearance. We developed a novel anti-PSMA Nanobody (JVZ-007) for targeted imaging and therapy of PCa. Here, we report on the application of the (111)In-radiolabeled Nanobody for SPECT/CT imaging of PCa. A Nanobody library was generated by immunization of a llama with 4 human PCa cell lines. Anti-PSMA Nanobodies were captured by biopanning on PSMA-overexpressing cells. JVZ-007 was selected for evaluation as an imaging probe. JVZ-007 was initially produced with a c-myc-hexahistidine (his) tag allowing purification and detection. The c-myc-his tag was subsequently replaced by a single cysteine at the C terminus, allowing site-specific conjugation of chelates for radiolabeling. JVZ-007-c-myc-his was conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-DTPA) via the lysines, whereas JVZ-007-cys was conjugated to maleimide-DTPA via the C-terminal cysteine. PSMA targeting was analyzed in vitro by cell-binding experiments using flow cytometry, autoradiography, and internalization assays with various PCa cell lines and patient-derived xenografts (PDXs). The targeting properties of radiolabeled Nanobodies were evaluated in vivo in biodistribution and SPECT/CT imaging experiments, using nude mice bearing PSMA-positive PC-310 and PSMA-negative PC-3 tumors. JVZ-007 was successfully conjugated to DTPA for radiolabeling with (111)In at room temperature. (111)In-JVZ007-c-myc-his and (111)In-JVZ007-cys internalized in LNCaP cells and bound to PSMA-expressing PDXs and, importantly, not to PSMA-negative PDXs and human kidneys. Good tumor targeting and fast blood clearance were observed for (111)In-JVZ-007-c-myc-his and (111)In-JVZ-007-cys. Renal uptake of (111)In-JVZ-007-c-myc-his was initially high but was efficiently reduced by coinjection of gelofusine and lysine. The replacement of the c-myc-his tag by the cysteine contributed to a further reduction of renal uptake without loss of targeting. PC-310 tumors were clearly visualized by SPECT/CT with both tracers, with low renal uptake (<4 percentage injected dose per gram) for (111)In-JVZ-007-cys already at 3 h after injection. We developed an (111)In-radiolabeled anti-PSMA Nanobody, showing good tumor targeting, low uptake in nontarget tissues, and low renal retention, allowing excellent SPECT/CT imaging of PCa within a few hours after injection. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene

    PubMed Central

    Marr, Matthew; D’Abramo, Anthony; Agbandje-McKenna, Mavis; Cotmore, Susan; Tattersall, Peter

    2018-01-01

    Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1) showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized. PMID:29385689

  10. Neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    The TARGET Neuroblastoma projects elucidate comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of high-risk or hard-to-treat childhood cancers. Neuroblastoma (NBL) is a cancer that arises in immature nerve cells of the sympathetic nervous system, primarily affecting infants and children.

  11. Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells.

    PubMed

    Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che

    2016-12-27

    Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.

  12. Flowcytometry – A rapid tool to correlate functional activities of human peripheral blood lymphocytes with their corresponding phenotypes after in vitro stimulation.

    PubMed Central

    Nirmala, R; Narayanan, PR

    2002-01-01

    Background While dealing with mixed in vitro lymphocyte cultures one is faced with the problem of relative contributions of different populations to the activity being studied. This is especially true in the controversy relating to the contributions of lymphocyte sub-populations to the Lymphokine Activated Killer (LAK) phenomenon. Flowcytometry can be used to highlight relative contributions of lymphocyte subpopulations towards LAK activity without resorting to difficult purification strategies. We set up long-term in vitro lymphocyte cultures, stimulated them with cytokines IL-2/IL-12, recorded their phenotypic changes and cytotoxic activity against U-937 tumor targets. Results The results indicated that natural killer cells (NK) constituted the predominant proliferating cell population in the cytokine stimulatedcultures. Flowcytometric evidence revealed that CD56+ T cells contributed little to LAK activity against U937 target cells as compared to cells with NK phenotype which were predominantly responsible for spontaneous killing of the tumor targets. The two cytokines, IL-2 and IL-12, had an additive effect on cell proliferation and spontaneous cytotoxicity. Conclusion Flowcytometry can be used to rapidly delineate phenotypic changes in immune cells after stimulation and simultaneously correlate them with corresponding functional activity. This approach may find application as a initial screening tool for studying different types of cells in mixed cultures and their respective activities under stimulatory / inhibitory conditions. PMID:12165101

  13. Therapies targeting cancer stem cells: Current trends and future challenges

    PubMed Central

    Dragu, Denisa L; Necula, Laura G; Bleotu, Coralia; Diaconu, Carmen C; Chivu-Economescu, Mihaela

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers. PMID:26516409

  14. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; ...

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm 2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  15. PMCA2 silencing potentiates MDA-MB-231 breast cancer cell death initiated with the Bcl-2 inhibitor ABT-263.

    PubMed

    Curry, Merril; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-09-30

    PMCA2 overexpression in some breast cancers suggests that this calcium pump isoform may play a role in breast pathophysiology. To investigate PMCA2 as a potential drug target for breast cancer therapy, we assessed the functional consequence of PMCA2 silencing on cell death pathways and calcium signals in the basal-like MDA-MB-231 breast cancer cell line. Silencing PMCA2 expression alone has no effect on MDA-MB-231 cell viability, however, PMCA2 silencing promotes calcium-induced cell death initiated with the calcium ionophore ionomycin. Assessment of cytoplasmic calcium responses generated with various agents including ionomycin demonstrates that in MDA-MB-231 cells, PMCA2 does not play a major role in shaping global calcium signals. We also examined the ability of PMCA2 silencing to modulate caspase-dependent cell death triggered by a Bcl-2 inhibitor that is in clinical development for the treatment of various cancers, ABT-263 (Navitoclax). Despite the lack of effect on global calcium responses, PMCA2 silencing augmented Bcl-2 inhibitor (ABT-263)-mediated MDA-MB-231 breast cancer cell death. These studies provide evidence that PMCA2 inhibitors could sensitize PMCA2-positive breast cancers to cell death initiators that work through mechanisms involving the Bcl-2 survival pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters

    PubMed Central

    Bruck, Nathalie; Vitoux, Dominique; Ferry, Christine; Duong, Vanessa; Bauer, Annie; de Thé, Hughes; Rochette-Egly, Cécile

    2009-01-01

    The nuclear retinoic acid (RA) receptor alpha (RARα) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARα target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARα at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARα/TFIIH complexes to response elements and subsequently RARα target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling. PMID:19078967

  17. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  18. The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor

    PubMed Central

    Bosma, Reggie; Witt, Gesa; Vaas, Lea A. I.; Josimovic, Ivana; Gribbon, Philip; Vischer, Henry F.; Gul, Sheraz; Leurs, Rob

    2017-01-01

    The pharmacodynamics of drug-candidates is often optimized by metrics that describe target binding (Kd or Ki value) or target modulation (IC50). However, these metrics are determined at equilibrium conditions, and consequently information regarding the onset and offset of target engagement and modulation is lost. Drug-target residence time is a measure for the lifetime of the drug-target complex, which has recently been receiving considerable interest, as target residence time is shown to have prognostic value for the in vivo efficacy of several drugs. In this study, we have investigated the relation between the increased residence time of antihistamines at the histamine H1 receptor (H1R) and the duration of effective target-inhibition by these antagonists. Hela cells, endogenously expressing low levels of the H1R, were incubated with a series of antihistamines and dissociation was initiated by washing away the unbound antihistamines. Using a calcium-sensitive fluorescent dye and a label free, dynamic mass redistribution based assay, functional recovery of the H1R responsiveness was measured by stimulating the cells with histamine over time, and the recovery was quantified as the receptor recovery time. Using these assays, we determined that the receptor recovery time for a set of antihistamines differed more than 40-fold and was highly correlated to their H1R residence times, as determined with competitive radioligand binding experiments to the H1R in a cell homogenate. Thus, the receptor recovery time is proposed as a cell-based and physiologically relevant metric for the lead optimization of G protein-coupled receptor antagonists, like the H1R antagonists. Both, label-free or real-time, classical signaling assays allow an efficient and physiologically relevant determination of kinetic properties of drug molecules. PMID:29033838

  19. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells

    PubMed Central

    Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. PMID:26263206

  20. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling

    PubMed Central

    Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S.; Costa, Magdaline; Ghahremani, Morvarid Farhang; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J. Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S.; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W.; Janzen, Viktor; McCormack, Matthew P.; Lock, Richard B.; Curtis, David J.; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P. P.; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J.

    2015-01-01

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005

  1. Targeting hepatocellular carcinoma with aptamer-functionalized PLGA/PLA-PEG nanoparticles

    NASA Astrophysics Data System (ADS)

    Weigum, Shannon E.; Sutton, Melissa; Barnes, Eugenia; Miller, Sarah; Betancourt, Tania

    2014-08-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, particularly in regions where chronic Hepatitis B and C infections are common. Nanoparticle assemblies that incorporate high-affinity aptamers which specifically bind malignant hepatocellular carcinoma cells could be useful for targeted drug delivery or enhancing contrast with existing ablation therapies. The in vitro interactions of a tumor-specific aptamer, TLS11a, were characterized in a hepatoma cell line via live-cell fluorescence imaging, SDS-PAGE and Western Blotting techniques. Cell surface binding of the aptamer-AlexaFluor®546 conjugate was found to occur within 20 minutes of initial exposure, followed by internalization and localization to late endosomes or lysosomes using a pH-sensitive LysoSensor™ Green dye and confocal microscopy. Aptamer-functionalized polymer nanoparticles containing poly(lactic-co-glycolic acid) (PLGA) and poly(lactide)-b-poly(ethylene glycol) (PLA-PEG) were then prepared by nanoprecipitation and passively loaded with the chemotherapeutic agent, doxorubicin, yielding spherical nanoparticles approximately 50 nm in diameter. Targeted drug delivery and cytotoxicity was assessed using live/dead fluorescent dyes and a MTT colorimetric viability assay with elevated levels of cell death found in cultures treated with either the aptamer-coated and uncoated polymer nanoparticles. Identification and characterization of the cell surface protein epitope(s) recognized by the TLS11a aptamer are ongoing along with nanoparticle optimization, but these preliminary studies support continued investigation of this aptamer and functionalized nanoparticle conjugates for targeted labeling and drug delivery within malignant hepatocellular carcinomas.

  2. MicroRNA miR-328 Regulates Zonation Morphogenesis by Targeting CD44 Expression

    PubMed Central

    Wang, Chia-Hui; Lee, Daniel Y.; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B.

    2008-01-01

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion. PMID:18560585

  3. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    PubMed

    Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B

    2008-06-18

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  4. Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.

    DTIC Science & Technology

    1995-08-31

    cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast

  5. Therapeutic Targeting of Alternative Translation Initiation in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    investigation within the next 6 months. Cell type specific cancer cell killing of the prototype oncolytic poliovirus , PVS-RIPO, depends on selective...demanded by FDA. 15. SUBJECT TERMS Translation, eIF4E, eIF4G, IRES, Cancer, Poliovirus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...genetically recombinant poliovirus . Moreover, my work has laid the groundwork for correlative testing and efficacy studies of a vast array of protein kinase

  6. Cytokine networking of innate immunity cells: a potential target of therapy.

    PubMed

    Striz, Ilja; Brabcova, Eva; Kolesar, Libor; Sekerkova, Alena

    2014-05-01

    Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.

  7. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins

    PubMed Central

    Chen, Jian; Cai, Tanxi; Zheng, Chunwei; Lin, Xiwen; Wang, Guojun; Liao, Shangying; Wang, Xiuxia; Gan, Haiyun; Zhang, Daoqin; Hu, Xiangjing; Wang, Si; Li, Zhen; Feng, Yanmin

    2017-01-01

    Abstract miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified. PMID:27998933

  8. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    PubMed

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  9. Protein biosynthesis, a target of sorafenib, interferes with the unfolded protein response (UPR) and ferroptosis in hepatocellular carcinoma cells

    PubMed Central

    Sauzay, Chloé; Louandre, Christophe; Bodeau, Sandra; Anglade, Frédéric; Godin, Corinne; Saidak, Zuzana; Fontaine, Jean-Xavier; Usureau, Cédric; Martin, Nathalie; Molinie, Roland; Pascal, Julie; Mesnard, François; Pluquet, Olivier; Galmiche, Antoine

    2018-01-01

    Sorafenib is the first line treatment for advanced hepatocellular carcinoma (HCC). We explored its impact on the proteostasis of cancer cells, i.e. the processes that regulate the synthesis, maturation and turn-over of cellular proteins. We observed that sorafenib inhibits the production of the tumour marker alpha-foetoprotein (AFP) in two different HCC cell lines, an effect that correlated with a radical inhibition of protein biosynthesis. This effect was observed at clinically relevant concentrations of sorafenib and was not related to the effect of sorafenib on the transport of amino acids across the plasma membrane or the induction of the unfolded protein response (UPR). Instead, we observed that sorafenib inhibits translation initiation and the mechanistic target of rapamycin (mTOR) signaling cascade, as shown by the analysis of phosphorylation levels of the protein 4EBP1 (eukaryotic translation initiation factor 4E binding protein 1). We explored the consequences of this inhibition in HCC cells. We observed that overall sorafenib is a weak inducer of the UPR that can paradoxically prevent the UPR induced by tunicamycin. We also found no direct synergistic anticancer effect between sorafenib and various strategies that inhibit the UPR. In agreement with the possibility that translation inhibition might be an adaptive stress response in HCC cells, we noted that it protects cancer cell from ferroptosis, a form of oxidative necrosis. Our findings point to the modulation of protein biosynthesis and mTOR signaling as being important, yet complex determinants of the response of HCC cells to sorafenib. PMID:29492203

  10. Protein biosynthesis, a target of sorafenib, interferes with the unfolded protein response (UPR) and ferroptosis in hepatocellular carcinoma cells.

    PubMed

    Sauzay, Chloé; Louandre, Christophe; Bodeau, Sandra; Anglade, Frédéric; Godin, Corinne; Saidak, Zuzana; Fontaine, Jean-Xavier; Usureau, Cédric; Martin, Nathalie; Molinie, Roland; Pascal, Julie; Mesnard, François; Pluquet, Olivier; Galmiche, Antoine

    2018-02-02

    Sorafenib is the first line treatment for advanced hepatocellular carcinoma (HCC). We explored its impact on the proteostasis of cancer cells, i.e. the processes that regulate the synthesis, maturation and turn-over of cellular proteins. We observed that sorafenib inhibits the production of the tumour marker alpha-foetoprotein (AFP) in two different HCC cell lines, an effect that correlated with a radical inhibition of protein biosynthesis. This effect was observed at clinically relevant concentrations of sorafenib and was not related to the effect of sorafenib on the transport of amino acids across the plasma membrane or the induction of the unfolded protein response (UPR). Instead, we observed that sorafenib inhibits translation initiation and the mechanistic target of rapamycin (mTOR) signaling cascade, as shown by the analysis of phosphorylation levels of the protein 4EBP1 (eukaryotic translation initiation factor 4E binding protein 1). We explored the consequences of this inhibition in HCC cells. We observed that overall sorafenib is a weak inducer of the UPR that can paradoxically prevent the UPR induced by tunicamycin. We also found no direct synergistic anticancer effect between sorafenib and various strategies that inhibit the UPR. In agreement with the possibility that translation inhibition might be an adaptive stress response in HCC cells, we noted that it protects cancer cell from ferroptosis, a form of oxidative necrosis. Our findings point to the modulation of protein biosynthesis and mTOR signaling as being important, yet complex determinants of the response of HCC cells to sorafenib.

  11. Real time observation of the ultrasound stimulated disintegration of optically trapped microbubbles in proximity to biological cells

    NASA Astrophysics Data System (ADS)

    Prentice, Paul; MacDonald, Michael P.; Cuschieri, Alfred; Dholakia, Kishan; Campbell, Paul

    2005-08-01

    Cells that are exposed to varying amounts of ultrasonic energy in the presence of ultrasound contrast agent (UCA) may undergo either permanent cell membrane damage (lethal sonoporation), or a transient enhancement of membrane permeability (reversible or non lethal sonoporation). The merits of each mode are clear; lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Our working hypothesis for understanding this problem was that the root cause and effect in sonoporation involves the interaction of individual cells with single microbubbles, and to that end we devised an experiment that facilitates video rate observation of this specific scenario under well defined optical control. Specifically, we have constructed an innovative hybridization apparatus involving holographic optical trapping of single and multiple UCA microbubbles, together with the facility to irradiate with MHz pulsed ultrasound energy in the presence cancerous cells. This approach allows the isolation of a target microbubble from a resident population and the relocation to a [controllable] predetermined position relative to a cell within a monolayer. Frame extraction from standard framing rate video microscopy demonstrates the individuality of single microbubble-cell interactions. We describe a fluorescence microscopy protocol that will allow future study of the potential to deliver molecular species to cells, the dependence of the delivery on the initial microbubble-cell distance and to determine the targeted cell survival.

  12. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway

    PubMed Central

    Alvero, Ayesha B; Visintin, Irene

    2011-01-01

    Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer. PMID:21623171

  13. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  14. 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, Ss; Siu, Kw Michael; Ralhan, Ranju

    2010-11-30

    The five-year survival rates for head and neck squamous cell carcinoma (HNSCC) patients are less than 50%, and the prognosis has not improved, despite advancements in standard multi-modality therapies. Hence major emphasis is being laid on identification of novel molecular targets and development of multi-targeted therapies. 14-3-3 zeta, a multifunctional phospho-serine/phospho-threonine binding protein, is emerging as an effector of pro-survival signaling by binding to several proteins involved in apoptosis (Bad, FKHRL1 and ASK1) and may serve as an appropriate target for head and neck cancer therapy. Herein, we determined effect of guggulsterone (GS), a farnesoid X receptor antagonist, on 14-3-3 zeta associated molecular pathways for abrogation of apoptosis in head and neck cancer cells. Head and neck cancer cells were treated with guggulsterone (GS). Effect of GS-treatment was evaluated using cell viability (MTT) assay and apoptosis was verified by annexin V, DNA fragmentation and M30 CytoDeath antibody assay. Mechanism of GS-induced apoptosis was determined by western blotting and co-IP assays using specific antibodies. Using in vitro models of head and neck cancer, we showed 14-3-3 zeta as a key player regulating apoptosis in GS treated SCC4 cells. Treatment with GS releases BAD from the inhibitory action of 14-3-3 zeta in proliferating HNSCC cells by activating protein phosphatase 2A (PP2A). These events initiate the intrinsic mitochondrial pathway of apoptosis, as revealed by increased levels of cytochrome c in cytoplasmic extracts of GS-treated SCC4 cells. In addition, GS treatment significantly reduced the expression of anti-apoptotic proteins, Bcl-2, xIAP, Mcl1, survivin, cyclin D1 and c-myc, thus committing cells to apoptosis. These events were followed by activation of caspase 9, caspase 8 and caspase 3 leading to cleavage of its downstream target, poly-ADP-ribose phosphate (PARP). GS targets 14-3-3 zeta associated cellular pathways for reducing proliferation and inducing apoptosis in head and neck cancer cells, warranting its investigation for use in treatment of head and neck cancer.

  15. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    PubMed

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    PubMed

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  17. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    PubMed

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases.

    PubMed

    Perl, Andras

    2016-03-01

    Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.

  19. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    PubMed

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  20. Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO.

    PubMed

    Kröncke, K D

    2001-11-01

    Nitric oxide (NO) in the low nanomolar range acts as a transcellular messenger molecule to initiate regulatory and physiological responses in nearby target cells via binding to the soluble guanylate cyclase heme moiety. Higher NO concentrations, as synthesized by the inducible NO synthase (iNOS) during inflammatory processes, show additional effects: NO may react with O2, yielding nitrogen oxides like N2O3 that are able to nitrosate thiols. A variety of proteins involved in very different functions of the cell contain cysteine-Zn2+ complexes. Effects of NO on different proteins containing cysteine-Zn2+ domains and playing essential roles during transcription, protein folding, and proteolysis are discussed. It is suggested that iNOS-derived NO acts as a signal molecule targeting cysteine-Zn2+ linkages, thus enabling cells to react toward nitrosative stress.

  1. G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment.

    PubMed

    Sun, Wei; Li, Lian; Yang, Qingqing; Shan, Wei; Zhang, Zhirong; Huang, Yuan

    2015-11-02

    Galectin-3 is overexpressed by numerous carcinomas and is a potential target for active tumor treatments. On the other hand, galectin-3 also plays a key role in cancer progression and prevents cells from undergoing apoptosis, thereby offsetting the benefits of active targeting drugs. However, the relative contribution of the protective antiapoptotic effects of galectin-3 and the proapoptotic effects of galectin-3-targeted therapies has remained yet unrevealed. Here, we show that a galectin-3-binding peptide G3-C12 could reverse galectin-3 from foe to friend for active targeting delivery system. Results showed G3-C12 modified N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin conjugates (G3-C12-HPMA-Dox) could internalize into galectin-3 overexpressed PC-3 cells via a highly specific ligand-receptor pathway (2.2 times higher cellular internalization than HPMA-Dox). The internalized Dox stimulated the translocation of galectin-3 to the mitochondria to prevent from apoptosis. In turn, this caused G3-C12-HPMA-Dox to concentrate into the mitochondria after binding to galectin-3 intracellularly. Initially, mitochondrial galectin-3 weakened Dox-induced mitochondrial damage; however, as time progressed, G3-C12 active-mediation allowed increasing amounts of Dox to be delivered to the mitochondria, which eventually induced higher level of apoptosis than nontargeted copolymers. In addition, G3-C12 downregulates galectin-3 expression, 0.43 times lower than control cells, which could possibly be responsible for the suppressed cell migration. Thus, G3-C12 peptide exerts sequential targeting to both cell membrane and mitochondria via regulating galectin-3, and eventually reverses and overcomes the protective effects of galectin-3; therefore, it could be a promising agent for the treatment of galectin-3-overexpressing cancers.

  2. Targeting Tumor-Initiating Cells for the Therapeutics of Breast Cancer

    DTIC Science & Technology

    2017-10-01

    policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting...clarifies or supports the text. Examples include original copies of journal articles, reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys , etc. None.

  3. A Potent Oncolytic Herpes Simplex Virus for Therapy of Advanced Prostate Cancer

    DTIC Science & Technology

    2005-07-01

    DNA replication in the targeted cells. As oncolytic HSV can only initiate - viral replication in tumor cells, this restricts the syncytial formation from virus infection to malignant cells only. Therefore fusogenic oncolytic HSV should be no more toxic than its parental construct. Nonetheless, we proposed in the year 2 of this funded project to conduct extensive studies in animal models to confirm its safety in vivo. The results obtained so far from these experiments have demonstrated that the fusogenic oncolytic HSV is indeed not significantly more toxic than the

  4. Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth

    PubMed Central

    Bao, Xing; Ren, Tingting; Huang, Yi; Sun, Kunkun; Wang, Shidong; Liu, Kuisheng; Zheng, Bingxin; Guo, Wei

    2017-01-01

    Current practices for the therapy of chondrosarcoma, including wide-margin surgical resection and chemotherapy, are less than satisfactory. Recently, emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) have an essential role in the initiation and progression of tumors. As a typical lncRNA, HOTAIR is significantly overexpressed in various tumors. However, the function and potential biological mechanisms of HOTAIR in human chondrosarcoma remain unknown. Quantitative RT-PCR demonstrated that HOTAIR expression was upregulated in chondrosarcoma tissues and cell lines. High HOTAIR expression is correlated with tumor stage and poor prognosis. Functional experiments reveal that HOTAIR knockdown leads to growth inhibition of human chondrosarcoma cells in vitro and in vivo. In addition to cycle arrest and apoptosis, knockdown of HOTAIR inhibits autophagy, which favors cell death. Mechanistically, we demonstrated that HOTAIR induced DNA methylation of miR-454-3p by recruiting EZH2 and DNMT1 to the miR-454-3p promoter regions, which markedly silences miR-454-3p expression. Further analysis revealed that STAT3 and ATG12 are targets of miR-454-3p, initiate HOTAIR deficiency-induced apoptosis and reduce autophagy. Collectively, our data reveal the roles and functional mechanisms of HOTAIR in human chondrosarcoma and suggest that HOTAIR may act as a prognostic biomarker and potential therapeutic target for chondrosarcoma. PMID:28182000

  5. ERdj5 sensitizes neuroblastoma cells to endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Thomas, Christophoros G; Spyrou, Giannis

    2009-03-06

    Down-regulation of the unfolded protein response (UPR) can be therapeutically valuable in cancer treatment, and endoplasmic reticulum (ER)-resident chaperone proteins may thus be targets for developing novel chemotherapeutic strategies. ERdj5 is a novel ER chaperone that regulates the ER-associated degradation of misfolded proteins through its associations with EDEM and the ER stress sensor BiP. To investigate whether ERdj5 can regulate ER stress signaling pathways, we exposed neuroblastoma cells overexpressing ERdj5 to ER stress inducers. ERdj5 promoted apoptosis in tunicamycin, thapsigargin, and bortezomib-treated cells. To provide further evidence that ERdj5 induces ER stress-regulated apoptosis, we targeted Bcl-2 to ER of ERdj5-overexpressing cells. Targeting the Bcl-2 to ER prevented the apoptosis induced by ER stress inducers but not by non-ER stress apoptotic stimuli, suggesting induction of ER stress-regulated apoptosis by ERdj5. ERdj5 enhanced apoptosis by abolishing the ER stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) and the subsequent translational repression. ERdj5 was found to inhibit the eIF2alpha phosphorylation under ER stress through inactivating the pancreatic endoplasmic reticulum kinase. The compromised integrated stress response observed in ERdj5-overexpressing ER-stressed cells due to repressed eIF2alpha phosphorylation correlated with impaired neuroblastoma cell resistance under ER stress. These results demonstrate that ERdj5 decreases neuroblastoma cell survival by down-regulating the UPR, raising the possibility that this protein could be a target for anti-tumor approaches.

  6. Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors*

    PubMed Central

    Lara, Haydee; Wang, Yuhua; Beltran, Adriana S.; Juárez-Moreno, Karla; Yuan, Xinni; Kato, Sumie; Leisewitz, Andrea V.; Cuello Fredes, Mauricio; Licea, Alexei F.; Connolly, Denise C.; Huang, Leaf; Blancafort, Pilar

    2012-01-01

    Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers. PMID:22782891

  7. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA

    PubMed Central

    Mackiewicz, Mark; Huppi, Konrad; Pitt, Jason J.; Dorsey, Tiffany H.; Ambs, Stefan

    2012-01-01

    The identification of molecular features that contribute to the progression of breast cancer can provide valuable insight into the pathogenesis of this disease. Deregulated microRNA expression represents one type of molecular event that has been associated with many different human cancers. In order to identify a miRNA/mRNA regulatory interaction that is biologically relevant to the triple-negative breast cancer genotype/phenotype, we initially conducted a miRNA profiling experiment to detect differentially expressed miRNAs in cell line models representing triple-negative (MDA-MB-231), ER+ (MCF7), and HER-2 over expressed (SK-BR-3) histotypes. We identified human miR-34a expression as being >3-fold down (from its median expression value across all cell lines) in MDA-MB-231 cells, and identified AXL as a putative mRNA target using multiple miRNA/target prediction algorithms. The miR-34a/AXL interaction was functionally characterized through ectopic over expression experiments with a miR-34a mimic in two independent triple-negative breast cancer cell lines. In reporter assays, miR-34a binds to its putative target site within the AXL 3′UTR to inhibit luciferase expression. We also observed degradation of AXL mRNA and decreased AXL protein levels, as well as cell signaling effects on AKT phosphorylation and phenotypic effects on cell migration. Finally, we present an inverse correlative trend in miR-34a and AXL expression for both cell line and patient tumor samples. PMID:21814748

  8. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states

    PubMed Central

    Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.

    2013-01-01

    Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438

  9. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium.

    PubMed

    Tucker, Matthew R; Okada, Takashi; Johnson, Susan D; Takaiwa, Fumio; Koltunow, Anna M G

    2012-05-01

    Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.

  10. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium

    PubMed Central

    Tucker, Matthew R.; Okada, Takashi; Johnson, Susan D.; Takaiwa, Fumio; Koltunow, Anna M. G.

    2012-01-01

    Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA. PMID:22378948

  11. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3

    PubMed Central

    Gaidt, Moritz M.; Ebert, Thomas S.; Chauhan, Dhruv; Ramshorn, Katharina; Pinci, Francesca; Zuber, Sarah; O’Duill, Fionan; Schmid-Burgk, Jonathan L.; Hoss, Florian; Buhmann, Raymund; Wittmann, Georg; Latz, Eicke; Subklewe, Marion; Hornung, Veit

    2018-01-01

    Summary Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells. Instead, detection of cytosolic DNA by the cGAS-STING axis induces a cell death program initiating potassium efflux upstream of NLRP3. Forward genetics identified regulators of lysosomal trafficking to modulate this cell death program, and subsequent studies revealed that activated STING traffics to the lysosome, where it triggers membrane permeabilization and thus lysosomal cell death (LCD). Importantly, the cGAS-STING-NLRP3 pathway constitutes the default inflammasome response during viral and bacterial infections in human myeloid cells. We conclude that targeting the cGAS-STING-LCD-NLRP3 pathway will ameliorate pathology in inflammatory conditions that are associated with cytosolic DNA sensing. PMID:29033128

  12. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations.

    PubMed

    Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh

    2012-07-15

    The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.

  13. Inhibition of HSV-1 Replication by Gene Editing Strategy

    PubMed Central

    Roehm, Pamela C.; Shekarabi, Masoud; Wollebo, Hassen S.; Bellizzi, Anna; He, Lifan; Salkind, Julian; Khalili, Kamel

    2016-01-01

    HSV-1 induced illness affects greater than 85% of adults worldwide with no permanent curative therapy. We used RNA-guided CRISPR/Cas9 gene editing to specifically target for deletion of DNA sequences of the HSV-1 genome that span the region directing expression of ICP0, a key viral protein that stimulates HSV-1 gene expression and replication. We found that CRISPR/Cas9 introduced InDel mutations into exon 2 of the ICP0 gene profoundly reduced HSV-1 infectivity in permissive human cell culture models and protected permissive cells against HSV-1 infection. CRISPR/Cas9 mediated targeting ICP0 prevented HSV-1-induced disintegration of promonocytic leukemia (PML) nuclear bodies, an intracellular event critical to productive HSV-1 infection that is initiated by interaction of the ICP0 N-terminus with PML. Combined treatment of cells with CRISPR targeting ICP0 plus the immediate early viral proteins, ICP4 or ICP27, completely abrogated HSV-1 infection. We conclude that RNA-guided CRISPR/Cas9 can be used to develop a novel, specific and efficacious therapeutic and prophylactic platform for targeted viral genomic ablation to treat HSV-1 diseases. PMID:27064617

  14. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  15. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia

    PubMed Central

    Charmsaz, Sara; Beckett, Kirrilee; Smith, Fiona M.; Bruedigam, Claudia; Moore, Andrew S.; Al-Ejeh, Fares; Lane, Steven W.; Boyd, Andrew W.

    2015-01-01

    Members of the Eph family of receptor tyrosine kinases and their membrane bound ephrin ligands have been shown to play critical roles in many developmental processes and more recently have been implicated in both normal and pathological processes in post-embryonic tissues. In particular, expression studies of Eph receptors and limited functional studies have demonstrated a role for the Eph/ephrin system in hematopoiesis and leukemogenesis. In particular, EphA2 was reported on hematopoietic stem cells and stromal cells. There are also reports of EphA2 expression in many different types of malignancies including leukemia, however there is a lack of knowledge in understanding the role of EphA2 in hematopoiesis and leukemogenesis. We explored the role of EphA2 in hematopoiesis by analyzing wild type and EphA2 knockout mice. Mature, differentiated cells, progenitors and hematopoietic stem cells derived from knockout and control mice were analyzed and no significant abnormality was detected. These studies showed that EphA2 does not have an obligatory role in normal hematopoiesis. Comparative studies using EphA2-negative MLL-AF9 leukemias derived from EphA2-knockout animals showed that there was no detectable functional role for EphA2 in the initiation or progression of the leukemic process. However, expression of EphA2 in leukemias initiated by MLL-AF9 suggested that this protein might be a possible therapy target in this type of leukemia. We showed that treatment with EphA2 monoclonal antibody IF7 alone had no effect on tumorigenicity and latency of the MLL-AF9 leukemias, while targeting of EphA2 using EphA2 monoclonal antibody with a radioactive payload significantly impaired the leukemic process. Altogether, these results identify EphA2 as a potential radio-therapeutic target in leukemias with MLL translocation. PMID:26083390

  16. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia.

    PubMed

    Charmsaz, Sara; Beckett, Kirrilee; Smith, Fiona M; Bruedigam, Claudia; Moore, Andrew S; Al-Ejeh, Fares; Lane, Steven W; Boyd, Andrew W

    2015-01-01

    Members of the Eph family of receptor tyrosine kinases and their membrane bound ephrin ligands have been shown to play critical roles in many developmental processes and more recently have been implicated in both normal and pathological processes in post-embryonic tissues. In particular, expression studies of Eph receptors and limited functional studies have demonstrated a role for the Eph/ephrin system in hematopoiesis and leukemogenesis. In particular, EphA2 was reported on hematopoietic stem cells and stromal cells. There are also reports of EphA2 expression in many different types of malignancies including leukemia, however there is a lack of knowledge in understanding the role of EphA2 in hematopoiesis and leukemogenesis. We explored the role of EphA2 in hematopoiesis by analyzing wild type and EphA2 knockout mice. Mature, differentiated cells, progenitors and hematopoietic stem cells derived from knockout and control mice were analyzed and no significant abnormality was detected. These studies showed that EphA2 does not have an obligatory role in normal hematopoiesis. Comparative studies using EphA2-negative MLL-AF9 leukemias derived from EphA2-knockout animals showed that there was no detectable functional role for EphA2 in the initiation or progression of the leukemic process. However, expression of EphA2 in leukemias initiated by MLL-AF9 suggested that this protein might be a possible therapy target in this type of leukemia. We showed that treatment with EphA2 monoclonal antibody IF7 alone had no effect on tumorigenicity and latency of the MLL-AF9 leukemias, while targeting of EphA2 using EphA2 monoclonal antibody with a radioactive payload significantly impaired the leukemic process. Altogether, these results identify EphA2 as a potential radio-therapeutic target in leukemias with MLL translocation.

  17. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    PubMed

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  18. Regulated Cell Death of Lymphoma Cells after Graded Mitochondrial Damage is Differentially Affected by Drugs Targeting Cell Stress Responses.

    PubMed

    Lombardo, Tomás; Folgar, Martín Gil; Salaverry, Luciana; Rey-Roldán, Estela; Alvarez, Elida M; Carreras, María C; Kornblihtt, Laura; Blanco, Guillermo A

    2018-05-01

    Collapse of the mitochondrial membrane potential (MMP) is often considered the initiation of regulated cell death (RCD). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is an uncoupler of the electron transport chain (ETC) that facilitates the translocation of protons into the mitochondrial matrix leading to the collapse of the MMP. Several cell stress responses such as mitophagy, mitochondrial biogenesis and the ubiquitin proteasome system may differentially contribute to restrain the initiation of RCD depending on the extent of mitochondrial damage. We induced graded mitochondrial damage after collapse of MMP with the mitochondrial uncoupler CCCP in Burkitt's lymphoma cells, and we evaluated the effect of several drugs targeting cell stress responses over RCD at 72 hr, using a multiparametric flow cytometry approach. CCCP caused collapse of MMP after 30 min., massive mitochondrial fission, oxidative stress and increased mitophagy within the 5-15 μM low-dose range (LDR) of CCCP. Within the 20-50 μM high-dose range (HDR), CCCP caused lysosomal destabilization and rupture, thus precluding mitophagy and autophagy. Cell death after 72 hr was below 20%, with increased mitochondrial mass (MM). The inhibitors of mitophagy 3-(2,4-dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone (Mdivi-1) and vincristine (VCR) increased cell death from CCCP within the LDR, while valproic acid (an inducer of mitochondrial biogenesis) also increased MM and cell death within the LDR. The proteasome inhibitor, MG132, increased cell death only in the HDR. Doxycycline, an antibiotic that disrupts mitochondrial biogenesis, had no effect on cell survival, while iodoacetamide, an inhibitor of glycolysis, increased cell death at the HDR. We conclude that mitophagy influenced RCD of lymphoma cells after MMP collapse by CCCP only within the LDR, while proteasome activity and glycolysis contributed to survival in the HDR under extensive mitochondria and lysosome damage. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  19. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  20. MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma.

    PubMed

    Du, Juan; Liu, Shuyan; He, Jie; Liu, Xi; Qu, Ying; Yan, Wenqing; Fan, Jianling; Li, Rong; Xi, Hao; Fu, Weijun; Zhang, Chunyang; Yang, Jing; Hou, Jian

    2015-06-20

    Side population (SP) cells are an enriched source of cancer-initiating cells with stemness characteristics, generated by increased ABC transporter activity, which has served as a unique hallmark for multiple myeloma (MM) stem cell studies. Here we isolated and identified MM SP cells via Hoechst 33342 staining. Furthermore, we demonstrate that SP cells possess abnormal cell cycle, clonogenicity, and high drug efflux characteristics-all of which are features commonly seen in stem cells. Interestingly, we found that bortezomib, As2O3, and melphalan all affected apoptosis and clonogenicity in SP cells. We followed by characterizing the miRNA signature of MM SP cells and validated the specific miR-451 target tuberous sclerosis 1 (TSC1) gene to reveal that it activates the PI3K/Akt/mTOR signaling in MM SP cells. Inhibition of miR-451 enhanced anti-myeloma novel agents' effectiveness, through increasing cells apoptosis, decreasing clonogenicity, and reducing MDR1 mRNA expression. Moreover, the novel specific PI3K/Akt/mTOR signaling inhibitor S14161 displayed its prowess as a potential therapeutic agent by targeting MM SP cells. Our findings offer insights into the mechanisms regulating MM SP cells and provide a novel strategy to overcome resistance to existing therapies against myeloma.

  1. MicroRNA-187 regulates gastric cancer progression by targeting the tumor suppressor CRMP1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Lian; Li, Fang; Di, Maojun

    Aberrant expression of microRNAs contributes to the initiation and progression of numerous human cancers. The underlying effects and molecular mechanisms of microRNA-187 (miR-187) in gastric cancer (GC) remain unclear. The present study reports that miR-187 was significantly overexpressed in GC tissues compared to that in non-tumor tissues and was associated with malignant clinical factors such as depth of invasion (P = 0.005), tumor size (P = 0.024), lymph node metastasis (P = 0.048), and TNM stage (P = 0.035). Additionally, miR-187 promoted tumor growth in vivo, and significantly increased migration, invasion, and proliferation, but inhibited apoptosis in GC cells. It was found that collapsin response mediator protein 1 (CRMP1),more » a tumor suppressor, was a direct downstream target of miR-187 in GC. Furthermore, CRMP1 silencing resulted in similar effects on cell proliferation, migration, and apoptosis as those of miR-187 overexpressing GC cells. Additionally, the effects of miR-187 inhibitor on cell migration and cell apoptosis were reversed by CRMP1 downregulation. In summary, miR-187 promotes tumor progression by regulating CRMP1 expression in GC and may thus be a potential prognostic marker and a therapeutic target in GC. - Highlights: • miR-187 was significantly overexpressed in GC tissues and associated with malignant clinical factors. • miR-187 significantly increased migration, invasion, and proliferation, but inhibited apoptosis in GC cells. • CRMP1 tumor suppressor is a direct target of miR-187 in GC. • Overexpression of miR-187 promoted GC progression by targeting tumor suppressor gene CRMP1.« less

  2. CD20-based Immunotherapy of B-cell Derived Hematologic Malignancies.

    PubMed

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili

    2017-01-01

    CD20 is a surface antigen, which is expressed at certain stages of B-cell differentiation. Targeting the CD20-positive B-cells with therapeutic monoclonal antibodies (MAbs) has been an effectual strategy in the treatment of hematologic malignancies such as non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Initial success with Rituximab (RTX) has encouraged the creation and development of more effective CD20 based therapeutics. However, treatment with conventional MAbs has not been adequate to overcome the problems such as refractory/ relapsed disease. In this regard, new generations of MAbs with enhanced affinity or improved anti-tumor properties have been developed. CD20 directed therapeutics have heterogeneous features and mechanisms of action. Hence, having sufficient knowledge on the immunological and molecular aspects of CD20 based cancer therapy is necessary for predicting the clinical outcomes and taking the necessary measures. An extensive search was performed in PubMed and similar databases for peer-reviewed articles concerning the biology, function and characteristics of CD20 molecule as well as the mechanisms of action and evolutionary process of CD20 targeting agents. This review provides information about the current situation of CD20 targeting immunotherapeutics including MAbs, bispecific antibodies (which exert multiple functions or involve Tcells in tumor elimination) and CAR T-cells (engineered T-cells armed with chimeric antigen receptors). Moreover, limitations, challenges and available solutions regarding the application of CD20 targeting treatments are addressed. Utilization of CD20-targeted therapeutics, due to their diverse properties, requires special considerations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor.

    PubMed

    Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru

    2016-06-17

    N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.

  4. Strict lymphotropism of Epstein-Barr virus during acute infectious mononucleosis in nonimmunocompromised individuals.

    PubMed

    Karajannis, M A; Hummel, M; Anagnostopoulos, I; Stein, H

    1997-04-15

    Previous investigations of exfoliated oropharyngeal cells from individuals suffering from infectious mononucleosis (IM) suggested that the oropharyngeal epithelia are the primary target and also the site of life-long persistence of the Epstein-Barr virus (EBV). This concept was widely accepted. However, the investigation of histological sections with more sensitive EBV detection techniques has drawn this concept into doubt since EBV proved to be constantly absent in normal epithelial cells. To elucidate the discrepancy, throat washings and peripheral mononuclear blood cells from 16 patients suffering from IM were investigated for EBV-DNA and EBV gene products employing highly sensitive in situ hybridization, immunocytochemistry, and polymerase chain reaction. Although all patients exhibited latently infected B lymphocytes in peripheral blood, samples of exfoliated oropharyngeal cells were constantly EBV-negative with the exception of three cases. In these cases, the patients additionally suffered from purulent ulcerating tonsillitis, EBV-infected B cells, but no EBV-infected epithelial cells were detectable. These findings support the view that recirculating lymphocytes of B-cell origin, but not epithelial cells are the initial target of EBV during primary infection and that B cells also represent the site of life-long viral persistence.

  5. Decorin-loaded poly lactic-co-glycolic acid nanoparticles modified by anti-alpha fetoprotein antibody: preparation, proliferation inhibition and induced apoptosis effects on HepG2 cells in vitro.

    PubMed

    Yang, Qiaoli; Wang, Shuyue; Wang, Yuan; Qu, Yane; Xue, Jun; Mi, Yang; Wang, Yanhong; Luo, Xuguang; Deng, Zhihua; Wang, Guiqin

    2017-06-01

    Decorin (DCN) is a negative regulatory factor for the growth of cancer cells and can inhibit the proliferation, metastasis of cancer cells and angiogenesis in cancer tissues. The aims of this study were to prepare the nanoparticles consisting of DCN and poly lactic-co-glycolic acid (PLGA) modified by anti-alpha fetoprotein (AFP) monoclonal antibody (mAb) and to examine the conventional physical properties, the in-vitro release of DCN and the targeting effect of these nanoparticles on HepG2 cells. The encapsulated plasmid was slowly and steadily released from the nanoparticles. The targeted PLGA nanoparticles were initiatively taken in HepG2 cells high-efficiently. According to the results of RT-PCR, DCN gene in AFPmAb-PLGA-rhDCN nanoparticles can be expressed in HepG2 cells successfully. These nanoparticles significantly inhibited the proliferation of HepG2 cells and induced apoptosis. The mRNA expression of Bcl-2 gene in the AFPmAb-PLGA-rhDCN-treated groups appeared significantly to decrease and the caspase-3 gene had the opposite trend as compared with that of control group (P < 0.01). These studies revealed that these nanoparticles were capable of specifically targeting the HepG2 cells and inhibiting the proliferation and they induce apoptosis of HepG2 cells in vitro, which was in a dose- and time-dependent manner. © 2017 Royal Pharmaceutical Society.

  6. Targeting the Human Papillomavirus E6 and E7 Oncogenes through Expression of the Bovine Papillomavirus Type 1 E2 Protein Stimulates Cellular Motility▿†

    PubMed Central

    Morrison, Monique A.; Morreale, Richard J.; Akunuru, Shailaja; Kofron, Matthew; Zheng, Yi; Wells, Susanne I.

    2011-01-01

    Expression of the high-risk human papillomavirus (HPV) E6 and E7 oncogenes is essential for the initiation and maintenance of cervical cancer. The repression of both was previously shown to result in activation of their respective tumor suppressor targets, p53 and pRb, and subsequent senescence induction in cervical cancer cells. Consequently, viral oncogene suppression is a promising approach for the treatment of HPV-positive tumors. One well-established method of E6/E7 repression involves the reexpression of the viral E2 protein which is usually deleted in HPV-positive cancer cells. Here, we show that, surprisingly, bovine papillomavirus type 1 (BPV1) E2 but not RNA interference-mediated E6/E7 repression in HPV-positive cervical cancer cells stimulates cellular motility and invasion. Migration correlated with the dynamic formation of cellular protrusions and was dependent upon cell-to-cell contact. While E2-expressing migratory cells were senescent, migration was not a general feature of cellular senescence or cell cycle arrest and was specifically observed in HPV-positive cervical cancer cells. Interestingly, E2-expressing cells not only were themselves motile but also conferred increased motility to admixed HeLa cervical cancer cells. Together, our data suggest that repression of the viral oncogenes by E2 stimulates the motility of E6/E7-targeted cells as well as adjacent nontargeted cancer cells, thus raising the possibility that E2 expression may unfavorably increase the local invasiveness of HPV-positive tumors. PMID:21835799

  7. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  8. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c4nr03693j

  9. Blockade of Fas Signaling in Breast Cancer Cells Suppresses Tumor Growth and Metastasis via Disruption of Fas Signaling-initiated Cancer-related Inflammation*

    PubMed Central

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-01-01

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer. PMID:24627480

  10. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian

    2013-11-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is tomore » identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.« less

  11. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ji; Huang, Yijiang; Gao, Yunsuo

    The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-cateninmore » phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.« less

  12. Expression of checkpoint molecules on myeloid-derived suppressor cells.

    PubMed

    Ballbach, Marlene; Dannert, Angelika; Singh, Anurag; Siegmund, Darina M; Handgretinger, Rupert; Piali, Luca; Rieber, Nikolaus; Hartl, Dominik

    2017-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population expanded in cancer, infection and autoimmunity capable of suppressing T-cell functions. Checkpoint inhibitors have emerged as a key therapeutic strategy in immune-oncology. While checkpoint molecules were initially associated with T cell functions, recent evidence suggests a broader expression and function in innate myeloid cells. Previous studies provided first evidence for a potential role for checkpoints on MDSCs, yet the human relevance remained poorly understood. Therefore, we investigated the expression and functional relevance of checkpoint molecules in human MDSC-T-cell interactions. Our studies demonstrate that programmed death-ligand 1 (PD-L1) is expressed on granulocytic MDSCs upon co-culture with T cells. Transwell experiments showed that cell-to-cell contact was required for MDSC-T-cell interactions and antibody blocking studies showed that targeting PD-L1 partially impaired MDSC-mediated T-cell suppression. Collectively, these studies suggest a role for PD-L1 in human MDSC function and thereby expand the functionality of this checkpoint beyond T cells, which could pave the way for further understanding and therapeutic targeting of PD-1/PD-L1 in innate immune-mediated diseases. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.

    PubMed

    Zhao, Xianda; Fan, Wei; Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-12-06

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.

  14. Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor.

    PubMed

    Mocan, Lucian; Matea, Cristian; Tabaran, Flaviu A; Mosteanu, Ofelia; Pop, Teodora; Mocan, Teodora; Iancu, Cornel

    2015-01-01

    We present a method of enhanced laser thermal ablation of HepG2 cells based on a simple gold nanoparticle (GNP) carrier system such as serum albumin (Alb), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. HepG2 or hepatocytes were treated with Alb-GNPs at various concentrations and various incubation times, and further irradiated using a 2 W, 808 nm laser. Darkfield microscopy and immunochemical staining was used to demonstrate the selective internalization of Alb-GNPs inside the HepG2 cells via Gp60 receptors targeting. The postirradiation apoptotic rate of HepG2 cells treated with Alb-GNPs ranged from 25.8% (for 5 μg/mL) to 48.2% (for 50 μg/mL) at 60 seconds, while at 30 minutes the necrotic rate increased from 35.7% (5 μg/mL) to 52.3% (50 μg/mL), P-value <0.001. Significantly lower necrotic rates were obtained when human hepatocytes were treated with Alb-GNPs in a similar manner. We also showed by means of immunocytochemistry that photothermal treatment of Alb-conjugated GNPs in liver cancer initiates Golgi apparatus-endoplasmic reticulum dysfunction with consequent caspase-3 apoptotic pathway activation and cellular apoptosis. The presented results may become a new method of treating cancer cells by selective therapeutic vectors using nanolocalized thermal ablation by laser heating.

  15. Expression of Eukaryotic Initiation Factor 5A and Hypusine Forming Enzymes in Glioblastoma Patient Samples: Implications for New Targeted Therapies

    PubMed Central

    Preukschas, Michael; Hagel, Christian; Schulte, Alexander; Weber, Kristoffer; Lamszus, Katrin; Sievert, Henning; Pällmann, Nora; Bokemeyer, Carsten; Hauber, Joachim; Braig, Melanie; Balabanov, Stefan

    2012-01-01

    Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity. PMID:22927971

  16. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    DTIC Science & Technology

    2016-11-01

    importance of myeloid derived ID2/VEGFR2 signaling in low-grade to high-grade glioma transformation . 15. SUBJECT TERMS Glioma, Pediatric, bone-marrow...derived-cells, endothelial, mesenchymal, myeloid, hematopoietic, differentiation, malignant, transformation , VEGFR2, ID2. 16. SECURITY CLASSIFICATION OF...subsequent recruitment, in order to suppress the malignant transformation of gliomas. In this project, we have initiated the study of BMDCs with RCAS and

  17. Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker.

    PubMed

    Rubinstein, M; Japón, M A; Low, M J

    1993-06-11

    The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes.

  18. Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker.

    PubMed Central

    Rubinstein, M; Japón, M A; Low, M J

    1993-01-01

    The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes. Images PMID:8392702

  19. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells

    PubMed Central

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-01-01

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD+) metabolism. However, the functional role of NAD+ metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD+ levels affect the characteristics of glioma-driven SSEA1+ TICs, including clonogenic growth potential. An increase in the mitochondrial NAD+ levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD+ levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors. PMID:28604662

  20. PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Brown, Daniel V; Christie, Michael; Waring, Paul M; Zhang, Yi; Haynes, John M; Pouton, Colin; Flanagan, Dustin; Vincan, Elizabeth; Johns, Terrance G; Montgomery, Karen; Phillips, Wayne A; Mantamadiotis, Theo

    2018-04-30

    Hyperactivation of PI3K signaling is common in cancers but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells, where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. To investigate the role for the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, PTEN, to neural stem/progenitor cells (NSPCs). Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased WNT signaling, while loss of CREB in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.

  1. Human immunodeficiency virus type 1 Tat does not transactivate mature trans-acting responsive region RNA species in the nucleus or cytoplasm of primate cells.

    PubMed Central

    Chin, D J; Selby, M J; Peterlin, B M

    1991-01-01

    Human immunodeficiency virus (HIV)-encoded transactivator Tat is essential for viral gene expression and replication. By interacting with a nascent RNA stem-loop called the trans-acting responsive region (TAR). Tat increases rates of initiation and/or elongation of HIV transcription. Several reports have also suggested that Tat has additional effects on mature HIV RNA species including modification of primary transcripts in the nucleus and their increased translation in the cytoplasm. These posttranscriptional effects are most pronounced in the Xenopus oocyte. To investigate directly whether Tat has similar effects on viral transcripts in cells that are permissive for HIV replication, we cotransfected and microinjected human and monkey cells with Tat and TAR in the form of DNA or RNA. Whereas Tat transactivated TAR DNA targets, it did not transactivate TAR RNA targets in the nucleus of microinjected cells or in the cytoplasm of transfected cells. We conclude that in cells permissive for viral replication, Tat exerts its effect primarily at the level of HIV transcription. Images PMID:1900539

  2. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma

    PubMed Central

    2017-01-01

    The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell–ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand–receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention. PMID:28573199

  3. RoMo: An efficient strategy for functional mosaic analysis via stochastic Cre recombination and gene targeting in the ROSA26 locus.

    PubMed

    Movahedi, Kiavash; Wiegmann, Robert; De Vlaminck, Karen; Van Ginderachter, Jo A; Nikolaev, Viacheslav O

    2018-07-01

    Functional mosaic analysis allows for the direct comparison of mutant cells with differentially marked control cells in the same organism. While this offers a powerful approach for elucidating the role of specific genes or signalling pathways in cell populations of interest, genetic strategies for generating functional mosaicism remain challenging. We describe a novel and streamlined approach for functional mosaic analysis, which combines stochastic Cre/lox recombination with gene targeting in the ROSA26 locus. With the RoMo strategy a cell population of interest is randomly split into a cyan fluorescent and red fluorescent subset, of which the latter overexpresses a chosen transgene. To integrate this approach into high-throughput gene targeting initiatives, we developed a procedure that utilizes Gateway cloning for the generation of new targeting vectors. RoMo can be used for gain-of-function experiments or for altering signaling pathways in a mosaic fashion. To demonstrate this, we developed RoMo-dnGs mice, in which Cre-recombined red fluorescent cells co-express a dominant-negative Gs protein. RoMo-dnGs mice allowed us to inhibit G protein-coupled receptor activation in a fraction of cells, which could then be directly compared to differentially marked control cells in the same animal. We demonstrate how RoMo-dnGs mice can be used to obtain mosaicism in the brain and in peripheral organs for various cell types. RoMo offers an efficient new approach for functional mosaic analysis that extends the current toolbox and may reveal important new insights into in vivo gene function. © 2018 Wiley Periodicals, Inc.

  4. Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy.

    PubMed

    Yang, Min; Pan, Zengkai; Huang, Kezhi; Büsche, Guntram; Feuerhake, Friedrich; Chaturvedi, Anuhar; Nie, Danian; Heuser, Michael; Thol, Felicitas; von Neuhoff, Nils; Ganser, Arnold; Li, Zhixiong

    2017-09-26

    The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.

  5. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.

    PubMed

    Kennedy, Patrick J; Perreira, Ines; Ferreira, Daniel; Nestor, Marika; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2018-06-01

    Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Correlation of cancer stem cell markers and immune cell markers in resected non-small cell lung cancer.

    PubMed

    Huang, Zhaoqin; Yu, Haining; Zhang, Jianbo; Jing, Haiyan; Zhu, Wanqi; Li, Xiaolin; Kong, Lingling; Xing, Ligang; Yu, Jinming; Meng, Xiangjiao

    2017-01-01

    Background: Recent studies confirmed that immunotherapy showed prominent efficacy in non-small cell lung cancer (NSCLC). Cancer stem cells/cancer initiating cells are resistant to anticancer treatment. The purpose of the study was to analyze the correlation of cancer stem cells/cancer initiating cells and tumor-infiltrating immune cells in NSCLC. Methods: CD133, octamer 4 (OCT-4), CD8, CD56, human leukocyte antigen (HLA) class I and programmed death ligand-1 (PD-L1) were assessed in 172 resected NSCLC samples. The staining was analyzed and scored by the pathologist who was blinded to the clinical pathological data of the patients. Results: High CD8+ T cell infiltration was correlated significantly with squamous cell carcinoma histology (p=0.008). High PD-L1 expression (≥10%) was associated with high tumor status (p=0.043). Pearson's correlation test showed that CD56+ cells were negatively correlated with CD133 expression (r=-0.361, p<0.001) and weakly correlated with negative OCT-4 expression (r=-0.180, p=0.018). There was a strong positive correlation between CD8 and HLA class I (r=0.573, p<0.001). In the survival analysis, high CD8+ T cell infiltration is an independent predictor of improved disease-free survival and overall survival. Patients with low CD133 expression and high CD56 expression had a longer overall survival than those with high CD133 expression and/or low CD56 expression (p=0.013). Conclusion: There is a negative correlation between CD56+ cells and cancer stem cell markers. This correlation may confirm the possibility that natural killer cells can target CD133+ cancer stem cells/cancer initiating cells in non-small cell lung cancer.

  7. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer

    PubMed Central

    2014-01-01

    Background Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. Methods The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). Results MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3′UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Conclusions Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer therapy. PMID:24885626

  8. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer.

    PubMed

    Yu, Jingshuang; Xie, Furong; Bao, Xin; Chen, Wantao; Xu, Qin

    2014-05-24

    Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3'UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer therapy.

  9. Merkel cell polyomavirus small T antigen initiates Merkel cell carcinoma-like tumor development in mice

    PubMed Central

    Verhaegen, Monique E.; Mangelberger, Doris; Harms, Paul W.; Eberl, Markus; Wilbert, Dawn M.; Meireles, Julia; Bichakjian, Christopher K.; Saunders, Thomas L.; Wong, Sunny Y.; Dlugosz, Andrzej A.

    2017-01-01

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a non-proliferative population of neuroendocrine cells which arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor’s cell of origin, are unknown. Using a panel of pre-term transgenic mice, we show that epidermis-targeted co-expression of sT and the cell fate determinant atonal bHLH transcription factor 1 (Atoh1) leads to development of widespread cellular aggregates with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Co-expression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with Atoh1. MCPyV sT, when co-expressed with Atoh1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. PMID:28512245

  10. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.

    PubMed

    Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A

    2017-06-15

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment.

    PubMed

    Charpentier, Monica S; Whipple, Rebecca A; Vitolo, Michele I; Boggs, Amanda E; Slovic, Jana; Thompson, Keyata N; Bhandary, Lekhana; Martin, Stuart S

    2014-02-15

    Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the human mammary epithelial (HMLE) cell line presents increased McTNs compared with its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTNs in stem cell reattachment. Moreover, live-cell confocal microscopy showed that McTNs persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. Although exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTNs can mediate attachment and metastasis but might be targeted by curcumin as an antimetastatic strategy. ©2013 AACR.

  12. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment

    PubMed Central

    Charpentier, Monica S.; Whipple, Rebecca A.; Vitolo, Michele I.; Boggs, Amanda E.; Slovic, Jana; Thompson, Keyata N.; Bhandary, Lekhana; Martin, Stuart S.

    2014-01-01

    Cancer stem-like cells (CSC) and circulating tumor cells (CTCs) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTNs), a type of tubulin-based protrusion of the plasma cell membrane which forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the HMLE breast cell line presents increased McTNs compared to its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTN in stem cell reattachment. Moreover, live cell confocal microscopy showed that McTN persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. While exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTN can mediate attachment and metastasis but might be targeted by curcumin as an anti-metastatic strategy. PMID:24371229

  13. Temozolomide-induced increase of tumorigenicity can be diminished by targeting of mitochondria in in vitro models of patient individual glioblastoma

    PubMed Central

    Walther, Madlin; Schneider, Björn; Linnebacher, Michael; Classen, Carl Friedrich

    2018-01-01

    Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor with a dismal prognosis. Development of resistance towards cytostatic drugs like the GBM standard drug temozolomide is a severe problem in GBM treatment. One potential source of GBM relapse could be so called cancer stem like cells (CSCs). These represent an undifferentiated subpopulation of cells with high potential for tumor initiation. Furthermore, it has been shown that differentiated GBM cells can regain CSC properties when exposed to continuous temozolomide treatment in vitro. In this study, treatment of several primary GBM cell lines with clinically relevant doses of temozolomide increased their tumorigenicity as determined by colony formation assays in soft agar. Increased tumorigenicity is a known property of CSCs. Hence, therapy options that specifically target CSCs are under investigation. CSCs appear to be particularly dependent on mitochondria biogenesis which may represent a useful target for CSC elimination. Toxicity towards mitochondria is a known side effect of several antibiotics. Thus, addition of antibiotics like doxycycline may represent a useful tool to inhibit CSCs in GBM. Here, we show that combining temozolomide treatment of primary GBM cells with doxycycline could counteract the increase of tumorigenicity induced by temozolomide treatment. PMID:29352318

  14. Entry inhibitors: New advances in HCV treatment

    PubMed Central

    Qian, Xi-Jing; Zhu, Yong-Zhe; Zhao, Ping; Qi, Zhong-Tian

    2016-01-01

    Hepatitis C virus (HCV) infection affects approximately 3% of the world's population and causes chronic liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although current antiviral therapy comprising direct-acting antivirals (DAAs) can achieve a quite satisfying sustained virological response (SVR) rate, it is still limited by viral resistance, long treatment duration, combined adverse reactions, and high costs. Moreover, the currently marketed antivirals fail to prevent graft reinfections in HCV patients who receive liver transplantations, probably due to the cell-to-cell transmission of the virus, which is also one of the main reasons behind treatment failure. HCV entry is a highly orchestrated process involving initial attachment and binding, post-binding interactions with host cell factors, internalization, and fusion between the virion and the host cell membrane. Together, these processes provide multiple novel and promising targets for antiviral therapy. Most entry inhibitors target host cell components with high genetic barriers and eliminate viral infection from the very beginning of the viral life cycle. In future, the addition of entry inhibitors to a combination of treatment regimens might optimize and widen the prevention and treatment of HCV infection. This review summarizes the molecular mechanisms and prospects of the current preclinical and clinical development of antiviral agents targeting HCV entry. PMID:26733381

  15. Tumor-suppressive microRNA-497 targets IKKβ to regulate NF-κB signaling pathway in human prostate cancer cells.

    PubMed

    Kong, Xiang-Jie; Duan, Liu-Jian; Qian, Xiao-Qiang; Xu, Ding; Liu, Hai-Long; Zhu, Ying-Jian; Qi, Jun

    2015-01-01

    Prostate cancer (PCa) is one of the most prevalent malignant tumors, PCa-related death is mainly due to the high probability of metastasis. MicroRNAs (miRNAs) play an important role in cancer initiation, progression and metastasis by regulating their target genes. real-time PCR was used to detected the expression of microRNA-497. The molecular biological function was investigated by using cell proliferation assays, cell cycle assay, and migration and invasion assay. We used several Algorithms and confirmed that IKKβ is directly regulated by miR-497. Here, we found miR-497 is downregulated in human prostate cancer (PCa) and inhibites the proliferation activity, migration and invasion of PC3-AR cells. Subsequently, IKKβ is confi rmed as a target of miR-497. Furthermore, knockdown of IKKβ expression resulted in decreased proliferation activity, migration and invasion. Finally, similar results was found after treatment with a novel IKK-β inhibitor (IMD-0354) in PC3-AR cells. CDK8, MMP-9, and PSA were involved in all these process. Taken together, our results show evidence that miR-497 may function as a tumor suppressor genes by regulating IKK-β in PCa, and may provide a strategy for blocking PCa metastasis.

  16. Neisseria meningitidis Opc invasin binds to the cytoskeletal protein alpha-actinin.

    PubMed

    Sa E Cunha, Claudia; Griffiths, Natalie J; Murillo, Isabel; Virji, Mumtaz

    2009-03-01

    Neisseria meningitidis Opc protein is an effective invasin for human endothelial cells. We have investigated novel human endothelial receptors targeted by Opc and observed that Opc-expressing bacteria interacted with a 100 kDa protein in whole-cell lysates of human endothelial and epithelial cells. The identity of the protein was established as alpha-actinin by mass spectrometry. Opc expression was essential for the recognition of alpha-actinin whether provided in a purified form or in cell extracts. The interaction of the two proteins did not involve intermediate molecules. As there was no demonstrable expression of alpha-actinin on the surfaces of any of the eight cell lines studied, the likelihood of the interactions after meningococcal internalization was examined. Confocal imaging demonstrated considerable colocalization of N. meningitidis with alpha-actinin especially after a prolonged period of internalization. This may imply that bacteria and alpha-actinin initially occur in separate compartments and co-compartmentalization occurs progressively over the 8 h infection period used. In conclusion, these studies have identified a novel and an intracellular target for the N. meningitidis Opc invasin. Since alpha-actinin is a modulator of a variety of signalling pathways and of cytoskeletal functions, its targeting by Opc may enable bacteria to survive/translocate across endothelial barriers.

  17. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.

    PubMed

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment.

  18. Systematic screening of isogenic cancer cells identifies DUSP6 as context-specific synthetic lethal target in melanoma

    PubMed Central

    Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen; Lyer, Stefan; Bewerunge-Hudler, Melanie; Gronert-Sum, Sabine; Strobel-Freidekind, Olga; Müller, Carolin; List, Markus; Jaskot, Aleksandra; Christiansen, Helle; Hafner, Mathias; Schadendorf, Dirk; Block, Ines; Mollenhauer, Jan

    2017-01-01

    Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression. PMID:28423600

  19. BRAF and MEK inhibitor therapy eliminates nestin expressing melanoma cells in human tumors.

    PubMed

    Doxie, Deon B; Greenplate, Allison R; Gandelman, Jocelyn S; Diggins, Kirsten E; Roe, Caroline E; Dahlman, Kimberly B; Sosman, Jeffrey A; Kelley, Mark C; Irish, Jonathan M

    2018-05-19

    Little is known about the in vivo impacts of targeted therapy on melanoma cell abundance and protein expression. Here, 21 antibodies were added to an established melanoma mass cytometry panel to measure 32 cellular features, distinguish malignant cells, and characterize dabrafenib and trametinib responses in BRAF V 600mut melanoma. Tumor cells were biopsied before neoadjuvant therapy and compared to cells surgically resected from the same site after 4 weeks of therapy. Approximately 50,000 cells per tumor were characterized by mass cytometry and computational tools t-SNE/viSNE, FlowSOM, and MEM. The resulting single cell view of melanoma treatment response revealed initially heterogeneous melanoma tumors were consistently cleared of Nestin expressing melanoma cells. Melanoma cells subsets that persisted to week 4 were heterogeneous but expressed SOX2 or SOX10 proteins and specifically lacked surface expression of MHC I proteins by MEM analysis. Traditional histology imaging of tissue microarrays from the same tumors confirmed mass cytometry results, including persistence of NES- SOX10+ S100β+ melanoma cells. This quantitative single cell view of melanoma treatment response revealed protein features of malignant cells that are not eliminated by targeted therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Cancer: Mitochondrial Origins.

    PubMed

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial targeted therapies has not been forthcoming.

  1. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    PubMed

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F 2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2 -/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.

  2. HMGB1, an alarmin promoting HIV dissemination and latency in dendritic cells

    PubMed Central

    Gougeon, M-L; Melki, M-T; Saïdi, H

    2012-01-01

    Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK–DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis. PMID:22033335

  3. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting.

    PubMed

    Å Urga, Simon; Nanut, Milica Perišić; Kos, Janko; Sabotič, Jerica

    2017-04-18

    Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus.

  4. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    PubMed

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  5. 'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death.

    PubMed

    Qiu, Shiqiao; Liu, Jing; Xing, Feiyue

    2017-04-01

    Pyroptosis is a lytic form of cell death distinguished from apoptosis, ferroptosis, necrosis, necroptosis, NETosis, oncosis, pyronecrosis and autophagy. Proinflammatory caspases cleave a gasdermin D (GSDMD) protein to generate a 31 kDa N-terminal domain. The cleavage relieves the intramolecular inhibition on the gasdermin-N domain, which then moves to the plasma membrane to exhibit pore-forming activity. Thus, GSDMD acts as the final and direct executor of pyroptotic cell death. Owing to the selective targeting of the inner leaflet of the plasma membrane with the pore-forming that determines pyroptotic cell death, GSDMD could be a potential target to control cell death or extracellular bacterial infections. Intriguingly, other gasdermin family members also share similar N-terminal domains, but they present different cell death programs. Herein, we summarize features and functions of the novel player proteins in cell death, including GSDMD triggering pyroptosis, Gsdma3/GSDMA initiating autophagy/apoptosis and DFNA5 inducing apoptosis/secondary necrosis. The gasdermin N terminus appears to be a novel pore-forming protein. This provides novel insight into the underlying roles and mechanisms of lytic or nonlytic forms of programmed cell death, as well as their potential applications in inflammation-associated diseases.

  6. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy

    PubMed Central

    Dandawate, Prasad R.; Subramaniam, Dharmalingam; Jensen, Roy A.; Anant, Shrikant

    2017-01-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3′-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. PMID:27609747

  7. Autophagy is dispensable for Kmt2a/Mll-Mllt3/Af9 AML maintenance and anti-leukemic effect of chloroquine.

    PubMed

    Chen, Xiaoyi; Clark, Jason; Wunderlich, Mark; Fan, Cuiqing; Davis, Ashley; Chen, Song; Guan, Jun-Lin; Mulloy, James C; Kumar, Ashish; Zheng, Yi

    2017-05-04

    Recently, macroautophagy/autophagy has emerged as a promising target in various types of solid tumor treatment. However, the impact of autophagy on acute myeloid leukemia (AML) maintenance and the validity of autophagy as a viable target in AML therapy remain unclear. Here we show that Kmt2a/Mll-Mllt3/Af9 AML (MA9-AML) cells have high autophagy flux compared with normal bone marrow cells, but autophagy-specific targeting, either through Rb1cc1-disruption to abolish autophagy initiation, or via Atg5-disruption to prevent phagophore (the autophagosome precursor) membrane elongation, does not affect the growth or survival of MA9-AML cells, either in vitro or in vivo. Mechanistically, neither Atg5 nor Rb1cc1 disruption impairs endolysosome formation or survival signaling pathways. The autophagy inhibitor chloroquine shows autophagy-independent anti-leukemic effects in vitro but has no efficacy in vivo likely due to limited achievable drug efficacy in blood. Further, vesicular exocytosis appears to mediate chloroquine resistance in AML cells, and exocytotic inhibition significantly enhances the anti-leukemic effect of chloroquine. Thus, chloroquine can induce leukemia cell death in vitro in an autophagy-independent manner but with inadequate efficacy in vivo, and vesicular exocytosis is a possible mechanism of chloroquine resistance in MA9-AML. This study also reveals that autophagy-specific targeting is unlikely to benefit MA9-AML therapy.

  8. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy.

    PubMed

    Dandawate, Prasad R; Subramaniam, Dharmalingam; Jensen, Roy A; Anant, Shrikant

    2016-10-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. Copyright © 2016. Published by Elsevier Ltd.

  9. Arsenic trioxide promoting ETosis in acute promyelocytic leukemia through mTOR-regulated autophagy.

    PubMed

    Li, Tao; Ma, Ruishuang; Zhang, Yan; Mo, Hongdan; Yang, Xiaoyan; Hu, Shaoshan; Wang, Lixiu; Novakovic, Valerie A; Chen, He; Kou, Junjie; Bi, Yayan; Yu, Bo; Fang, Shaohong; Wang, Jinghua; Zhou, Jin; Shi, Jialan

    2018-01-23

    Despite the high efficacy and safety of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) and eradicating APL leukemia-initiating cells (LICs), the mechanism underlying its selective cytotoxicity remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, through autophagy. However, the role of ETosis in ATO-induced APL LIC eradication remains unclear. For this study, we evaluated the effects of ATO on ETosis and the contributions of drug-induced ETosis to APL LIC eradication. In NB4 cells, ATO primarily increased ETosis at moderate concentrations (0.5-0.75 μM) and stimulated apoptosis at higher doses (1.0-2.0 μM). Furthermore, ATO induced ETosis through mammalian target of rapamycin (mTOR)-dependent autophagy, which was partially regulated by reactive oxygen species. Additionally, rapamycin-enhanced ATO-induced ETosis in NB4 cells and APL cells from newly diagnosed and relapsed patients. In contrast, rapamycin had no effect on apoptosis in these cells. We also noted that PML/RARA oncoprotein was effectively cleared with this combination. Intriguingly, activation of autophagy with rapamycin-enhanced APL LIC eradication clearance by ATO in vitro and in a xenograft APL model, while inhibition of autophagy spared clonogenic cells. Our current results show that ATO exerts antileukemic effects at least partially through ETosis and targets LICs primarily through ETosis. Addition of drugs that target the ETotic pathway could be a promising therapeutic strategy to further eradicate LICs and reduce relapse.

  10. The developing cancer stem-cell model: clinical challenges and opportunities.

    PubMed

    Vermeulen, Louis; de Sousa e Melo, Felipe; Richel, Dick J; Medema, Jan Paul

    2012-02-01

    During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry.

    PubMed

    Young, Travis W; Mei, Fang C; Yang, Gong; Thompson-Lanza, Jennifer A; Liu, Jinsong; Cheng, Xiaodong

    2004-07-01

    Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic ras(V12) allele. Of approximately 2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.

  12. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells.

    PubMed

    Sturgeon, Christopher M; Chicha, Laurie; Ditadi, Andrea; Zhou, Qinbo; McGrath, Kathleen E; Palis, James; Hammond, Scott M; Wang, Shusheng; Olson, Eric N; Keller, Gordon

    2012-07-17

    Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this miR also regulates EryP-CFCs in vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ßh1-globin(+) and Ter119(+) cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Cell chips as new tools for cell biology--results, perspectives and opportunities.

    PubMed

    Primiceri, Elisabetta; Chiriacò, Maria Serena; Rinaldi, Ross; Maruccio, Giuseppe

    2013-10-07

    Cell culture technologies were initially developed as research tools for studying cell functions, but nowadays they are essential for the biotechnology industry, with rapidly expanding applications requiring more and more advancements with respect to traditional tools. Miniaturization and integration of sensors and microfluidic components with cell culture techniques open the way to the development of cellomics as a new field of research targeting innovative analytic platforms for high-throughput studies. This approach enables advanced cell studies under controllable conditions by providing inexpensive, easy-to-operate devices. Thanks to their numerous advantages cell-chips have become a hotspot in biosensors and bioelectronics fields and have been applied to very different fields. In this review exemplary applications will be discussed, for cell counting and detection, cytotoxicity assays, migration assays and stem cell studies.

  14. The pharmacogenomics of drug resistance to protein kinase inhibitors

    PubMed Central

    Gillis, Nancy K.; McLeod, Howard L.

    2016-01-01

    Dysregulation of growth factor cell signaling is a major driver of most human cancers. This has led to development of numerous drugs targeting protein kinases, with demonstrated efficacy in the treatment of a wide spectrum of cancers. Despite their high initial response rates and survival benefits, the majority of patients eventually develop resistance to these targeted therapies. This review article discusses examples of established mechanisms of drug resistance to anticancer therapies, including drug target mutations or gene amplifications, emergence of alternate signaling pathways, and pharmacokinetic variation. This reveals a role for pharmacogenomic analysis to identify and monitor for resistance, with possible therapeutic strategies to combat chemoresistance. PMID:27620953

  15. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling.

    PubMed

    Lin, Chen-Ju; Robert, Francis; Sukarieh, Rami; Michnick, Stephen; Pelletier, Jerry

    2010-04-15

    Sertraline, a selective serotonin reuptake inhibitor, is a widely used antidepressant agent. Here, we show that sertraline also exhibits antiproliferative activity. Exposure to sertraline leads to a concentration-dependent decrease in protein synthesis. Moreover, polysome profile analysis of sertraline-treated cells shows a reduction in polysome content and a concomitant increase in 80S ribosomes. The inhibition in translation caused by sertraline is associated with decreased levels of the eukaryotic initiation factor (eIF) 4F complex, altered localization of eIF4E, and increased eIF2alpha phosphorylation. The latter event leads to increased REDD1 expression, which in turn impinges on the mammalian target of rapamycin (mTOR) pathway by affecting TSC1/2 signaling. Sertraline also independently targets the mTOR signaling pathway downstream of Rheb. In the Emu-myc murine lymphoma model where carcinogenesis is driven by phosphatase and tensin homologue (PTEN) inactivation, sertraline is able to enhance chemosensitivity to doxorubicin. Our results indicate that sertraline exerts antiproliferative activity by targeting the mTOR signaling pathway in a REDD1-dependent manner. (c) 2010 AACR.

  16. Inotuzumab ozogamicin in the management of acute lymphoblastic leukaemia.

    PubMed

    Morley, N J; Marks, D I

    2016-01-01

    Whilst most adult patients with acute lymphoblastic leukaemia will go into remission with standard induction chemotherapy, many will relapse. Response rates to standard salvage chemotherapy regimens are low and the outlook on relapse is very poor and associated with significant morbidity and mortality hence the need for newer targeted approaches. Inotuzumab ozogamicin (previously known as CMC-544) is an antibody-drug conjugate and consists of a monoclonal anti-CD22 antibody bound to calicheamicin. The target, CD22, is widely expressed on acute lymphoblastic leukaemia cells making it a potential therapeutic target. The calicheamicin is delivered intracellularly and causes leukaemia cell apoptosis. Overall response rates of 57% were observed in a Phase II study and the final results of a Phase III randomised controlled trial comparing this drug to the investigator choice 'standard of care' chemotherapy are eagerly awaited. Whilst initial results are promising, there have been concerns regarding liver toxicity and the incidence of veno-occlusive disease of the liver especially in patients who have previously received or go on to allogeneic stem cell transplant.

  17. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    PubMed Central

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  18. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth.

    PubMed

    Atapattu, Lakmali; Saha, Nayanendu; Chheang, Chanly; Eissman, Moritz F; Xu, Kai; Vail, Mary E; Hii, Linda; Llerena, Carmen; Liu, Zhanqi; Horvay, Katja; Abud, Helen E; Kusebauch, Ulrike; Moritz, Robert L; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M; Nikolov, Dimitar B; Lackmann, Martin; Janes, Peter W

    2016-08-22

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. © 2016 Atapattu et al.

  19. γ-Secretase inhibitor–resistant glioblastoma stem cells require RBPJ to propagate

    PubMed Central

    Fan, Xing

    2016-01-01

    Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) disrupts the Notch pathway and has shown some benefit in both pre-clinical models and in patients during phase I/II clinical trials. However, it is largely unknown why some glioblastoma (GBM) does not respond to GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-resistant brain tumor–initiating cells (BTICs) from GBM express a higher level of the gene RBPJ, which encodes a mediator of canonical Notch signaling, compared to non-BTICs. Knockdown of RBPJ in BTICs decreased propagation in vitro and in vivo by inducing apoptosis. Interestingly, RBPJ was shown to regulate a different transcription program than Notch in BTICs by binding CDK9, thereby affecting Pol II–regulated transcript elongation. Targeting CDK9 or c-MYC, an upstream regulator of RBPJ, with small molecules also decreased BTIC propagation, and prolonged survival in mice bearing orthotopic GBM xenografts. This study not only provides a mechanism for GSI treatment resistance, but also identifies two potential therapeutic strategies to target GSI-resistant BTICs. PMID:27322058

  20. γ-Secretase inhibitor-resistant glioblastoma stem cells require RBPJ to propagate.

    PubMed

    Fan, Xing

    2016-07-01

    Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) disrupts the Notch pathway and has shown some benefit in both pre-clinical models and in patients during phase I/II clinical trials. However, it is largely unknown why some glioblastoma (GBM) does not respond to GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-resistant brain tumor-initiating cells (BTICs) from GBM express a higher level of the gene RBPJ, which encodes a mediator of canonical Notch signaling, compared to non-BTICs. Knockdown of RBPJ in BTICs decreased propagation in vitro and in vivo by inducing apoptosis. Interestingly, RBPJ was shown to regulate a different transcription program than Notch in BTICs by binding CDK9, thereby affecting Pol II-regulated transcript elongation. Targeting CDK9 or c-MYC, an upstream regulator of RBPJ, with small molecules also decreased BTIC propagation, and prolonged survival in mice bearing orthotopic GBM xenografts. This study not only provides a mechanism for GSI treatment resistance, but also identifies two potential therapeutic strategies to target GSI-resistant BTICs.

  1. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302

    PubMed Central

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P.; Hedley, David W.

    2016-01-01

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX). The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche. PMID:27248663

  2. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

    PubMed Central

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-01-01

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.13715.001 PMID:26987017

  3. B cell modulation strategies in autoimmunity: the SLE example.

    PubMed

    Rosado, M Manuela; Diamanti, Andrea Picchianti; Capolunghi, Federica; Carsetti, Rita

    2011-01-01

    The paradigm that T cells are the prime effectors of autoimmune diseases has been recently challenged by growing evidence that B-lymphocytes play a role in the development, re-activation and persistence of autoimmune disorders. B-cells of different subsets may play different roles in autoimmune pathologies due to their ability to secrete antibodies, produce cytokines, present antigen and form ectopic germinal centers. Thus, a given therapeutic approach or drug may have distinct outcomes depending on which specific B cell subset is targeted. Immunosuppressive therapies such as azathioprine (AZA), cyclophosphamide (CyC) or methotrexate (MTX) are conventionally used in autoimmune diseases with the aim of reducing disease activity and improving the patient's general health conditions. These treatments do not target a specific cellular type or subset and have substantial side effects, such as impairment of liver function and fertility. Moreover, autoimmune patients may be refractory to immunosuppressive therapy. In these cases finding an effective treatment becomes a challenge. The fast evolution in antibody technology is leading to the production of a wide array of humanized monoclonal antibodies, targeting specific cell types or pathways, initiating a new era in the treatment of autoimmune disorders. In addition, the recent discovery that toll like receptors (TLRs) activation can fire up autoimmunity in humans and maintain disease gives the grounds for the development of new drugs targeting the TLR/MyD88 pathway. In contrast to conventional immune-suppression, the availability of drugs interfering with B-cell specific pathogenetic pathways gives the possibility to choose therapies tailored to each disease and, possibly, to each patient.

  4. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer

    PubMed Central

    Stein, Rebecca A.; Chang, Ching-yi; Kazmin, Dmitri A.; Way, James; Schroeder, Thies; Wergin, Melanie; Dewhirst, Mark W.; McDonnell, Donald P.

    2009-01-01

    Expression of estrogen-related receptor alpha (ERRα) has recently been shown to carry negative prognostic significance in breast and ovarian cancers. The specific role of this orphan nuclear receptor in tumor growth and progression, however, is yet to be fully understood. The significant homology between estrogen receptor alpha (ERα) and ERRα initially suggested that these receptors may have similar transcriptional targets. Using the well-characterized ERα-positive MCF-7 breast cancer cell line, we sought to gain a genome-wide picture of ERα-ERRα cross-talk using an unbiased microarray approach. In addition to generating a host of novel ERRα target genes, this study yielded the surprising result that most ERRα-regulated genes are unrelated to estrogen-signaling. The relatively small number of genes regulated by both ERα and ERRα led us to expand our study to the more aggressive and less clinically treatable ERα-negative class of breast cancers. In this setting we found that ERRα expression is required for the basal level of expression of many known and novel ERRα target genes. Introduction of an siRNA directed to ERRα into the highly aggressive breast carcinoma MDA-MB-231 cell line dramatically reduced the migratory potential of these cells. Although stable knockdown of ERRα expression in MDA-MB-231 cells had no impact on in vitro cell proliferation, a significant reduction of tumor growth rate was observed when these cells were implanted as xenografts. Our results confirm a role for ERRα in breast cancer growth and highlight it as a potential therapeutic target for estrogen receptor-negative breast cancer. PMID:18974123

  5. Molecular Validation of PACE4 as a Target in Prostate Cancer12

    PubMed Central

    D'Anjou, François; Routhier, Sophie; Perreault, Jean-Pierre; Latil, Alain; Bonnel, David; Fournier, Isabelle; Salzet, Michel; Day, Robert

    2011-01-01

    Prostate cancer remains the single most prevalent cancer in men. Standard therapies are still limited and include androgen ablation that initially causes tumor regression. However, tumor cells eventually relapse and develop into a hormone-refractory prostate cancer. One of the current challenges in this disease is to define new therapeutic targets, which have been virtually unchanged in the past 30 years. Recent studies have suggested that the family of enzymes known as the proprotein convertases (PCs) is involved in various types of cancers and their progression. The present study examined PC expression in prostate cancer and validates one PC, namely PACE4, as a target. The evidence includes the observed high expression of PACE4 in all different clinical stages of human prostate tumor tissues. Gene silencing studies targeting PACE4 in the DU145 prostate cancer cell line produced cells (cell line 4-2) with slower proliferation rates, reduced clonogenic activity, and inability to grow as xenografts in nude mice. Gene expression and proteomic profiling of the 4-2 cell line reveals an increased expression of known cancer-related genes (e.g., GJA1, CD44, IGFBP6) that are downregulated in prostate cancer. Similarly, cancer genes whose expression is decreased in the 4-2 cell line were upregulated in prostate cancer (e.g., MUC1, IL6). The direct role of PACE4 in prostate cancer is most likely through the upregulated processing of growth factors or through the aberrant processing of growth factors leading to sustained cancer progression, suggesting that PACE4 holds a central role in prostate cancer. PMID:21633671

  6. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment.

    PubMed

    Phi, Lan Thi Hanh; Sari, Ita Novita; Yang, Ying-Gui; Lee, Sang-Hyun; Jun, Nayoung; Kim, Kwang Seock; Lee, Yun Kyung; Kwon, Hyog Young

    2018-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.

  7. Effect of Rebamipide, a Novel Antiulcer Agent, on Helicobacter pylori Adhesion to Gastric Epithelial Cells

    PubMed Central

    Hayashi, Shunji; Sugiyama, Toshiro; Amano, Ken-Ichi; Isogai, Hiroshi; Isogai, Emiko; Aihara, Miki; Kikuchi, Mikio; Asaka, Masahiro; Yokota, Kenji; Oguma, Keiji; Fujii, Nobuhiro; Hirai, Yoshikazu

    1998-01-01

    Helicobacter pylori is a major etiological agent in gastroduodenal disorders. The adhesion of H. pylori to human gastric epithelial cells is the initial step of H. pylori infection. Inhibition of H. pylori adhesion is thus a therapeutic target in the prevention of H. pylori infection. Experiments were performed to evaluate the effect of rebamipide, a novel antiulcer agent, on H. pylori adhesion to gastric epithelial cells. MKN-28 and MKN-45 cells, derived from human gastric carcinomas, were used as target cells. Ten H. pylori strains isolated from patients with chronic gastritis and gastric ulcer were used in the study. We evaluated the effect of rebamipide on H. pylori adhesion to MKN-28 and MKN-45 cells quantitatively using our previously established enzyme-linked immunosorbent assay. The adhesion of H. pylori to MKN-28 and MKN-45 cells was significantly inhibited by pretreatment of these cells with 100 μg of rebamipide per ml. However, the adhesion was not affected by the pretreatment of H. pylori with rebamipide. On the other hand, the viabilities of H. pylori, MKN-28 cells, and MKN-45 cells were not affected by rebamipide. Our studies suggest that rebamipide inhibits the adhesion of H. pylori to gastric epithelial cells. PMID:9687380

  8. Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics

    PubMed Central

    Abhari, Alireza; Rahimzadeh, Sevda

    2018-01-01

    Cancer progression is a polygenic procedure in which the exosomes can function as substantial roles. Exosomes are tiny, phospholipid bilayer membrane nanovesicles of endocytic derivation with a diameter of 40–100 nm. These nanovesicles can transport bioactive molecules containing mRNAs, proteins, DNA fragments, and non-coding RNAs from a donor cell to recipient cells, and cause the alteration in genetic and epigenetic factors and reprogramming of the target cells. Many diverse cell types such as mesenchymal cells, immune cells, and cancer cells can induce the release of exosomes. Increasing evidence illustrated that the exosomes derived from tumor cells might trigger the tumor initiation, tumor cell growth and progression, metastasis, and drug resistance. The secreted nanovesicles of exosomes can play significant roles in cells communicate via shuttling the nucleic acid molecules and proteins to target cells and tissues. In this review, we discussed multiple mechanisms related to biogenesis, load, and shuttle of the exosomes. Also, we illustrated the diverse roles of exosomes in several types of human cancer development, tumor immunology, angiogenesis, and metastasis. The exosomes may act as the promising biomarkers for the prognosis of various types of cancers which suggested a new pathway for anti-tumor therapeutic of these nanovesicles and promoted exosome-based cancer for clinical diagnostic and remedial procedures. PMID:29868251

  9. Deubiquitylating enzymes as cancer stem cell therapeutics.

    PubMed

    Haq, Saba; Suresh, Bharathi; Ramakrishna, Suresh

    2018-01-01

    The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.

    PubMed

    Rich, Jeremy N

    2008-05-01

    The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.

  11. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ibrutinib (PCI-32765), the first BTK (Bruton's tyrosine kinase) inhibitor in clinical trials.

    PubMed

    Brown, Jennifer R

    2013-03-01

    Ibrutinib is a potent covalent kinase inhibitor that targets BTK. BTK, or Bruton's tyrosine kinase, is an obvious target for therapy of B cell diseases because inactivating mutations lead to B cell aplasia in humans and the disease X-linked agammaglobulinemia. Ibrutinib has modest cytotoxicity against CLL cells in vitro but also blocks trophic stimuli from the microenvironment. As with other inhibitors of the BCR pathway, ibrutinib causes rapid nodal reduction and response associated with rapid increase in lymphocytosis, which then returns to baseline over time. The ORR of ibrutinib in relapsed refractory CLL is 67 % with PFS 88 % at 15 months. In a cohort of untreated patients 65 years and over, the estimated 15 month PFS is 96 %. Registration trials have been initiated, and the difficult task that remains is to determine where in the course of CLL therapy this drug will have the greatest impact and benefit for patients.

  13. PCI-32765, the First BTK (Bruton’s Tyrosine Kinase) Inhibitor in Clinical Trials

    PubMed Central

    2013-01-01

    Ibrutinib is a potent covalent kinase inhibitor that targets BTK. BTK, or Bruton’s tyrosine kinase, is an obvious target for therapy of B cell diseases because inactivating mutations lead to B cell aplasia in humans and the disease X-linked agammaglobulinemia. Ibrutinib has modest cytotoxicity against CLL cells in vitro but also blocks trophic stimuli from the microenvironment. As with other inhibitors of the BCR pathway, ibrutinib causes rapid nodal reduction and response associated with rapid increase in lymphocytosis, which then returns to baseline over time. The ORR of ibrutinib in relapsed refractory CLL is 67 % with PFS 88 % at 15 months. In a cohort of untreated patients 65 years and over, the estimated 15 month PFS is 96 %. Registration trials have been initiated, and the difficult task that remains is to determine where in the course of CLL therapy this drug will have the greatest impact and benefit for patients. PMID:23296407

  14. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33

    PubMed Central

    Azoitei, Ninel; Hoffmann, Christopher M.; Ellegast, Jana M.; Ball, Claudia R.; Obermayer, Kerstin; Gößele, Ulrike; Koch, Britta; Faber, Katrin; Genze, Felicitas; Schrader, Mark; Kestler, Hans A.; Döhner, Hartmut; Chiosis, Gabriela; Glimm, Hanno

    2012-01-01

    Previous efforts to develop drugs that directly inhibit the activity of mutant KRAS, the most commonly mutated human oncogene, have not been successful. Cancer cells driven by mutant KRAS require expression of the serine/threonine kinase STK33 for their viability and proliferation, identifying STK33 as a context-dependent therapeutic target. However, specific strategies for interfering with the critical functions of STK33 are not yet available. Here, using a mass spectrometry-based screen for STK33 protein interaction partners, we report that the HSP90/CDC37 chaperone complex binds to and stabilizes STK33 in human cancer cells. Pharmacologic inhibition of HSP90, using structurally divergent small molecules currently in clinical development, induced proteasome-mediated degradation of STK33 in human cancer cells of various tissue origin in vitro and in vivo, and triggered apoptosis preferentially in KRAS mutant cells in an STK33-dependent manner. Furthermore, HSP90 inhibitor treatment impaired sphere formation and viability of primary human colon tumor-initiating cells harboring mutant KRAS. These findings provide mechanistic insight into the activity of HSP90 inhibitors in KRAS mutant cancer cells, indicate that the enhanced requirement for STK33 can be exploited to target mutant KRAS-driven tumors, and identify STK33 depletion through HSP90 inhibition as a biomarker-guided therapeutic strategy with immediate translational potential. PMID:22451720

  15. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.

    PubMed

    Letessier, Anne; Millot, Gaël A; Koundrioukoff, Stéphane; Lachagès, Anne-Marie; Vogt, Nicolas; Hansen, R Scott; Malfoy, Bernard; Brison, Olivier; Debatisse, Michelle

    2011-02-03

    Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.

  16. Patient-derived Mammosphere and Xenograft Tumour Initiation Correlates with Progression to Metastasis.

    PubMed

    Eyre, Rachel; Alférez, Denis G; Spence, Kath; Kamal, Mohamed; Shaw, Frances L; Simões, Bruno M; Santiago-Gómez, Angélica; Sarmiento-Castro, Aida; Bramley, Maria; Absar, Mohammed; Saad, Zahida; Chatterjee, Sumohan; Kirwan, Cliona; Gandhi, Ashu; Armstrong, Anne C; Wardley, Andrew M; O'Brien, Ciara S; Farnie, Gillian; Howell, Sacha J; Clarke, Robert B

    2016-12-01

    Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.

  17. [Poorly differentiated thyroid carcinomas: new therapeutic considerations].

    PubMed

    Graf, Hans

    2005-10-01

    For most differentiated thyroid carcinomas, as papillary and follicular carcinomas, following total thyroidectomy and 131I therapy for thyroid remnant ablation, treatment with thyroid hormones to suppress TSH levels will reduce the growth of any remaining thyroid cancer cells, and thyroid cell-specific radiation therapy will either cure or control the disease. Thyroid carcinomas are considered poorly differentiated when they start to lose such functions as iodine uptake and thyrotropin-dependence for growth and production of thyroid proteins like NIS, thyroglobulin and desiodases. One of the greatest challenges in the management of patients with follicular cell-derived thyroid cancer is the treatment of tumors that progressed despite surgery, (131)I and T4 suppression of TSH. With the better knowledge of the abnormal molecular signaling in thyroid cancer cells, actually known targeted cancer therapies, directed against molecules involved in neoplastic transformation, are being used. As the critical molecular requirements for tumor initiation, maintenance and progression are identified, combination therapies with targeted agents acting on each of them will improve the treatment of poorly differentiated thyroid carcinoma.

  18. A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action

    NASA Astrophysics Data System (ADS)

    Campaner, Elena; Rustighi, Alessandra; Zannini, Alessandro; Cristiani, Alberto; Piazza, Silvano; Ciani, Yari; Kalid, Ori; Golan, Gali; Baloglu, Erkan; Shacham, Sharon; Valsasina, Barbara; Cucchi, Ulisse; Pippione, Agnese Chiara; Lolli, Marco Lucio; Giabbai, Barbara; Storici, Paola; Carloni, Paolo; Rossetti, Giulia; Benvenuti, Federica; Bello, Ezia; D'Incalci, Maurizio; Cappuzzello, Elisa; Rosato, Antonio; Del Sal, Giannino

    2017-06-01

    The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.

  19. Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation.

    PubMed

    He, Qing-Li; Minn, Il; Wang, Qiaoling; Xu, Peng; Head, Sarah A; Datan, Emmanuel; Yu, Biao; Pomper, Martin G; Liu, Jun O

    2016-09-19

    Triptolide, a key ingredient from the traditional Chinese medicinal plant thunder god vine, which has been used to treat inflammation and autoimmune diseases for centuries, has been shown to be an irreversible inhibitor of the XPB subunit of the transcription factor TFIIH and initiation of RNA polymerase II mediated transcription. The clinical development of triptolide over the past two decades has been limited by its toxicity and low water solubility. Herein, we report the development of a glucose conjugate of triptolide, named glutriptolide, which was intended to target tumor cells overexpressing glucose transporters selectively. Glutriptolide did not inhibit XPB activity in vitro but demonstrated significantly higher cytotoxicity against tumor cells over normal cells with greater water solubility than triptolide. Furthermore, it exhibited remarkable tumor control in vivo, which is likely due to sustained stepwise release of active triptolide within cancer cells. These findings indicate that glutriptolide may serve as a promising lead for developing a new mechanistic class of anticancer drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    PubMed

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

Top